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Abstract

In highly renewable power systems the increased weather dependence can result in new resilience chal-
lenges, such as renewable energy droughts, or a lack of sufficient renewable generation at times of high
demand. The weather conditions responsible for these challenges have been well-studied in the literat-
ure. However, in reality multi-day resilience challenges are triggered by complex interactions between high
demand, low renewable availability, electricity transmission constraints and storage dynamics. We show
these challenges cannot be rigorously understood from an exclusively power systems, or meteorological, per-
spective. We propose a new method that uses electricity shadow prices — obtained by a European power
system model based on 40 years of reanalysis data — to identify the most difficult periods driving system
investments. Such difficult periods are driven by large-scale weather conditions such as low wind and cold
temperature periods of various lengths associated with stationary high pressure over Europe. However,
purely meteorological approaches fail to identify which events lead to the largest system stress over the
multi-decadal study period due to the influence of subtle transmission bottlenecks and storage issues across
multiple regions. These extreme events also do not relate strongly to traditional weather patterns (such as
Euro-Atlantic weather regimes or the North Atlantic Oscillation index). We therefore compile a new set of
weather patterns to define energy system stress events which include the impacts of electricity storage and
large-scale interconnection. Without interdisciplinary studies combining state-of-the-art energy meteorology
and modelling, further strive for adequate renewable power systems will be hampered.

1 Introduction

As electricity grids reach ever higher levels of renewable penetration to meet net-zero emissions targets, their
weather dependence increases. Weather and climate variability therefore become increasingly important for
power system operations and planning [1, 2]. However, traditional power system modelling has relied on
a “typical meteorological year” which may only include a few hourly time slices to represent demand and
renewable variability. There has been a large effort over recent years to incorporate the impacts of climate
variability into power system modelling, and running multi-year hourly simulations is becoming more common
[3, 4, 5, 6, 7, 8, 9, 10, 11] with climate scientists now producing demand, wind and solar inputs for national and
continental-scale modelling [12, 13, 14, 15, 16]. Particularly in systems containing large amounts of wind power
generation, the choice of simulation years can significantly impact the operational adequacy of a system [3, 4, 5]
and not considering year-to-year climate variability can also lead to failure to meet long-term decarbonisation
objectives [4].

Multi-decadal climate simulations are also important for characterising the most challenging days for power
system operation (e.g. days that might lead to blackouts). These energy system stress events can be investigated
without a full power system modelling approach by looking at time series of demand or demand–net-renewables
(“net load”) [17, 18, 19, 20, 21]. Although these events are commonly periods of peak demand, they may include
times of wind droughts (prolonged low wind speeds) [22], solar droughts or dunkelflauten (“dark doldrums”).
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In a renewables-based power system both electricity demand and generation are driven by weather and cannot
be considered independently; it is thus becoming common practice to consider times of energy system stress as
compound events involving a combination of near-surface temperatures, wind speeds, irradiance and hydrological
variables across large geographic and temporal scales [23, 24, 25]. For example, high pressure systems can cause
compound events [17, 26], affecting multiple countries simultaneously. While the basic mechanics of periods
with energy scarcity in Europe revolve around extremely low near-surface temperatures (for demand) and low
near-surface wind speeds (for wind power production), we still lack a detailed understanding of the power system
dynamics during these weather-driven extremes, including electricity transmission and storage.

The complicating factors of transmission and storage motivate the use of a high-resolution power system op-
timisation model to identify periods of power system stress. Such models output shadow prices, a proxy for
nodal electricity prices, which have been used successfully as a metric for strained supply situations in studies
using dispatch optimisation models [25, 27, 28]. With the shift towards power systems dominated by variable
renewable generation, where capital expenditure represents the majority of total system costs instead of opera-
tional and fuel costs, we propose using a capacity expansion model instead. Thus, we co-optimise infrastructure
investments and dispatch decisions simultaneously in order to generate cost-optimal, fully decarbonised power
system designs for Europe. In this setting, high shadow prices primarily indicate system-defining events trig-
gering large investments. For the present study, we use PyPSA-Eur [29, 30], an open optimisation model for
the European power system.

The central question we address is that of identifying energy system stress events for decarbonised systems, and
classifying the weather regimes leading to such events. We investigate events using three different approaches
over four decades of weather variability. Approach 1 is a baseline method rooted in energy meteorology and
assesses the difficulty of a period by net load as is commonly done [17, 18, 19]. The main novelty lays in
Approach 2, where we filter system-defining events whose total electricity costs explain large investments, based
on the shadow prices obtained by the capacity expansion model. Approach 3 is a validation using dispatch
optimisations with out-of-sample weather years and lost load as an alternative metric to shadow prices.

Identifying the large-scale weather patterns leading to system-defining events is of central importance for systems
planning, operations and forecasting. Whereas previous studies have compiled weather patterns leading to high
net load or compound events [17, 26, 18], an analysis informed by the operation of power systems including
transmission and storage into account is missing. We show that this additional consideration can impact results
significantly. While both Approach 2 & 3 take power system dynamics into account, we find that Approach 2
is the more practical and computationally less demanding of the two (as Approach 3 requires many additional
optimisations), while the outcomes of Approach 2 & 3 are similar.

To summarise, the key aims of this paper are to:

• Filter out and delineate system-defining events using shadow price outputs from a power system optim-
isation model.

• Classify these events based on the prevailing weather conditions, and determine the main factors leading
to continent-wide system stress.

• Construct a new set of weather patterns that define European power system stress from both a climate
and power systems modelling perspective.

Section 2 describes the meteorological and modelling set-up and introduces the definition of system-defining
events. In Section 3 we combine the insights from the power system model and meteorology to lay out weather
patterns underlying power system stress. We put the results into context of the expansion of renewables and
conclude with Section 4.

2 Data and methods

In the spirit of Craig et al. [2] we apply a trans-disciplinary approach to identifying challenging weather for power
systems. First, we use outputs from a power system optimisation model to filter out system-defining events
that drive investment in additional generator capacities. For these time periods, we cluster the meteorological
conditions into groups such that we can identify weather patterns that drive weather stress events. Then we
analyse the effects in the power system (model) during these time periods to determine which components lead
to difficulties and are under stress.
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2.1 Datasets and tools

The weather inputs to the meteorological analyses and to the power system optimisation model are based
on ERA5 reanalysis data [31] and are described in the following section. We represent the European power
system by using the open-source energy system optimisation model (ESOM) PyPSA-Eur (github.com/PyPSA/
PyPSA-Eur) [32] (version 0.6.1) with small modifications; the modelling setup follows thereafter.

2.1.1 Meteorological inputs and energy variables

We use gridded weather variables from the ERA5 reanalysis [31] from 1980 until 2021. 2m temperature,
10m wind speed and surface air pressure over the region 34◦–72◦N, 15◦–35◦E) are used to investigate the
meteorological conditions at times of power system stress. We use 500 hPa geopotential height anomalies over
the Euro-Atlantic region (90◦W–30◦E, 20◦–80◦N) to create European weather regimes (see Section 2.4).

Weather-dependent power systems time series are mainly generated using the open-source software Atlite [15].
In Atlite, 100m wind speeds from ERA5 are first extrapolated to turbine hub height using a logarithm law and
passed through a reference power curve to obtain capacity factors (fraction of rated power output that can be
produced at the given wind speed); we use the Vestas 112V 3MW turbine for our calculations. PV capacity
factors are computed from ERA5 direct and diffuse shortwave radiation influx data using a reference solar panel
model, assuming no tracking and a fixed 35◦ panel slope. Weather-dependent electricity demand is generated
based on historical ENTSO-E data and adjusted for heating or cooling demand using a heating/cooling degree
days approach as in [33, 9, 23].

2.1.2 Power system modelling set-up

PyPSA-Eur is configured with high spatial (181 generation and 90 network nodes [34]) and temporal resolution
(1-hourly), making it well-suited to investigating a highly renewable European electricity network [35, 36, 37,
38, 39, 40, 9, 41]. The model is solved for forty individual weather years (July 1980 – June 2020, preserving
winters). Although capable of a sector-coupled representation of the European energy system (e.g. including
the heat and transport sectors), we restrict PyPSA-Eur to the optimisation of the power sector alone for
clarity. We minimise total system costs of the European power system by optimising investment and dispatch
of electricity generation, storage, and transmission to meet prescribed hourly national demand over a year. The
model performs a partial greenfield optimisation, i.e. with existing transmission network (2019) and capacities
of hydropower and nuclear power (2022), but without existing renewable capacities (see Fig. S1 for a break-
down of total system costs for the forty different weather years). Our cost assumptions are based on a modelling
horizon of 2030 and we assume a fully decarbonised power system; the available generation technologies are thus
nuclear and renewables: hydropower and biomass (non-expandable), solar, onshore and offshore wind power (all
expandable). Transmission can be expanded (overnight) by 25% compared to current levels (Fig. 6 in Hörsch
& Brown [29]), and electricity can be stored through hydro reservoirs (non-expandable), battery storage and
hydrogen storage. This can be thought of as modelling an ambitious, early decarbonisation of the European
electricity sector using current or near-future technologies. The focus on the power system enables a study
of weather dependence providing more evidence on transmission and storage before the impacts of long-term
climate change emerge.

We run capacity expansion optimisations for each of the 40 weather years (July–June) separately, arriving at
40 different cost-optimal system designs. The overall make-up the resulting designs is similar for all weather
years with total system costs being dominated by wind, then solar investment expenditure. However, there are
significant variations in the magnitudes of installed capacities, as well as in the investment in hydrogen and
battery storage; see Fig. S1. Running separate optimisations allows for the identification of system-defining
events in each weather year, as opposed to only a smaller number of events that are defining over the entire
40-year period. The single-year optimisations also allow for a high spatial and temporal resolution, whereas
40-year optimisations have only been accomplished at a moderate resolution [9]. While basing the results on
40 different system designs is a potential limitation (is a period identified as challenging for one design also
challenging for other designs?), cross-validation using load shedding (Approach 3) shows that there is very good
alignment between system-defining events in one year and load shedding events for other designs operated on
the same year (see also Section 2.6).

2.2 Dual variables and shadow prices

PyPSA-Eur is formulated as a linear program in order to find investment- and operational decisions which
minimise the objective (total system costs) with linear constraints ensuring feasibility of the model result. An
optimal solution to a linear program consists of an optimal value for each decision variable, as well as an
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optimal dual value for each linear constraint. These dual values indicate how much the objective function would
decrease if the corresponding constraint was relaxed by one unit, quantifying the “difficulty” of satisfying the
given constraint.

The dual variables corresponding to the constraints ensuring that a fixed demand is met at each network node
n and timestep t are denoted λn,t following [32]. These dual variables — also called shadow prices of electricity
— can be interpreted as the modelled price of electricity (in EUR / MWh) at the given node and time (see e.g.
[28, 27] in the context of dispatch optimisation). Note, however, that despite this economic interpretation the
shadow prices are not comparable to electricity prices in the current European market, as the shadow prices
are largely driven by the need for renewable expansion in the model, not marginal operating costs..

Apart from these, other hourly and locational dual variables corresponding to constraints on transmission and
storage can be used to reveal transmission congestion rents and values of stored energy in the model, respectively
(see Supplementary Materials A.2). Since transmission expansion costs are recovered through congestion rents in
the model, the congestion rent time series can reveal which times primarily triggered investment in transmission;
the same goes for storage.

2.3 Identifying system-defining events

In this paper a system-defining event is a period where the incurred electricity costs surpass a specified threshold
within a limited time frame. We restrict the duration of a system-defining event to a maximum of two weeks,
and set the minimum cost threshold to 100 bn EUR.

An event starting at t0 and lasting for T hours is considered system-defining if

∑
n

t0+T−1∑
t=t0

dn,t · λn,t ≥ C (1)

for C = 100 bn EUR and T ≤ 336 (the number of hours in two weeks), where dn,t is the electricity demand
at node n and time step t, in MWh. A priori, many overlapping events of various lengths meet the above
criteria. For the purposes of this study, we thus filter out overlapping events until only a non-overlapping set
of system-defining events remains; see the Supplementary Materials for an exact description of the filtering
procedure.

By definition, relaxing either the length or cost threshold can only lead to additional events being classified as
system-defining; we have chosen the threshold values used in this study so as to produce approximately one
system-defining event per year. The relative values of the thresholds can affect the average duration of identified
events; we chose the cost threshold so as to obtain events averaging around 7 days — the discharge duration
of hydrogen storage included in our model. See also Fig. S2 for an overview of most costly periods of varying
times across the studied weather years. It should be stressed that the thresholds can be freely adjusted in future
studies to fit the research questions at hand.

2.4 Traditional meteorological weather regimes

To understand the weather conditions present during system-defining events we use a weather regimes approach.
Weather regimes are recurring large-scale atmospheric circulation patterns that can be linked to surface weather,
and energy system impacts [14]. Previous work has shown weather regimes have predictability for energy
applications out to a few weeks ahead [42], which is beneficial for energy system planning. Weather regimes
are calculated from daily-mean October–March 500 hPa geopotential height (Z500) anomalies over the Euro-
Atlantic region (90◦W–30◦E, 20◦–80◦N) following the classification method of [43]. The first 14 Empirical
Orthogonal Functions (EOFs) of the Z500 data are computed [44], which capture 89% of total data variance.
The associated Principal Component time series (PCs) are used as inputs for the k-means clustering algorithm,
with four clusters (which has previously been found to be the optimal number over the region [43]). Using the
PCs of the Z500 data makes the problem significantly quicker to compute without losing useful information
about the large-scale weather conditions. The four cluster centroids are: the positive and negative phases of the
North Atlantic Oscillation, the Atlantic Ridge and Scandinavian Blocking (see Fig. 6(c)–(f) for visualisation of
these). We then find the weather regime present during each system-defining event. Previous work has shown
that although these patterns have some useful sub-seasonal predictability for energy applications, extreme events
are not necessarily represented well by the cluster centroids [18]. Therefore, as well finding the regime number
during each extreme event, the pattern correlation between the days’ Z500 anomaly, and the days’ cluster
centroid is also calculated.
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Approach Underlying method Description

1 Net load Energy meteorology inputs Periods of mismatch of load and renewable produc-
tion.

2 Shadow prices Capacity expansion Periods that are defining for system design.
3 Load shedding Dispatch optimisation Periods of failure to meet demand.

Table 1: An overview over the three approaches we compare in this study. Approach 1 is commonly used in the
literature. We introduce Approach 2 in this study (also see Section 2.2 and 2.3) and validate it with Approach
3 (see Section 2.6). Also see Fig. 1 for a visualisation of the workflow.

2.5 K-means clustering of system-defining events

In addition to weather regimes defined in terms of 500 hPa geopotential height anomaly representing mid-
troposphere dynamics, we also study near-surface weather data during extreme events. These near-surface
data better represent the weather conditions present near the power system impacts. For each system-defining
event hourly gridded 2m temperature and 10m wind speeds are taken for the region described in Section 2.1.1.
This gives 5615 hours (∼ 233 days) of data. We then perform another k-means clustering, similar to the
method of [43] and applied above to Z500 data (see Section 2.4). Temperatures and wind speeds are first
normalised by their 1980–2021 daily climatologies (by both mean and standard deviation, to allow both fields
to be comparable). The data are then converted into principal components (the first 14 are kept, explaining
56% of the total variance). These principal components are then grouped into four clusters using the k-means
algorithm. Four was identified as the optimal number of clusters using the silhouette score (commonly used to
determine optimal cluster number for k-means algorithms). There was no obvious elbow present when using
the elbow method (not shown). The cluster centroids can then be analysed and compared to more traditional
methods as in Section 2.4.

2.6 Validation using load shedding as indicator for difficulty

An alternative approach to capture the adequacy of the power system is to measure load shedding (unmet
demand) in a fixed power system design. In the context of net-zero scenarios, we can first obtain a power
system design from a capacity expansion model, and then subject that design to a dispatch optimisation with
different inputs in order to measure potential load shedding. In our case, we run a capacity expansion model
with one weather year y1, and perform a dispatch optimisation over a different weather year y2. Periods of
system stress in weather year y2 can then be recognised by high load shedding in this dispatch optimisation.
We perform this cross-year dispatch optimisation for all 1600 combinations of y1, y2 ∈ {1980/81, . . . , 2019/20}
and average the load shedding profiles for each weather year to obtain time series comparable to those derived
from electricity shadow prices. Calculating the average load shedding based on the out-of-sample weather years
relies on the optimal networks (or some other network assumptions) and is computationally more expensive
than Section 2.3.

3 Results

Traditionally, power grids and generation stock have been designed around fossil fuels which could act as
dispatchable generators, especially during peak demand. With increased reliance on variable renewables and
balancing via transmission and energy storage, this paradigm breaks down. In particular, the most critical
events to system design extend beyond a single hour or day, and identifying such periods no longer depends
only on weather data but also power system parameters including storage and transmission [7, 45, 46, 20].

We propose a re-orientation to studying power system stress through system-defining weather events (see Table 1
and Fig. 1). Electricity shadow prices reveal which time periods cause additional infrastructure investments
(Section 2.3) and determine an hourly total electricity cost (Fig. 2) whose yearly sum is the total annual value of
electricity in the model. The total annual value of electricity is closely linked to the total system cost (differing
only because of existing infrastructure), which is dominated in this model by investment costs (especially as
renewables are optimised from scratch — see Fig. S1).

3.1 Characteristics of periods driving system design

We find that on average across 40 weather years, the single most expensive day in each year accounts for 12.4%
(6.6–31.3%) of total yearly electricity cost, whereas 19 weather years contain a three-week period accruing more
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Figure 1: An overview over the workflow and the three approaches we compare in this study. For a definition
of the approaches, see Table 1.

6



Oct Nov Dec Jan Feb Mar

80/81
81/82
82/83
83/84
84/85
85/86
86/87
87/88
88/89
89/90
90/91
91/92
92/93
93/94
94/95
95/96
96/97
97/98
98/99
99/00

Oct Nov Dec Jan Feb Mar

00/01
01/02
02/03
03/04
04/05
05/06
06/07
07/08
08/09
09/10
10/11
11/12
12/13
13/14
14/15
15/16
16/17
17/18
18/19
19/20

System-defining events
Net-load events1 10 100 1000 10000

Hourly electricity cost (million EUR)

1
Figure 2: An overview of all identified system-defining events in the context of daily system cost. Additionally
the week with the highest net load for each year is marked (Approach 1 in Table 1). Only winter months are
shown as shadow prices are consistently low during the summer. All costs are in 2013 EUR, but derive from
model shadow prices, not actual market prices.

than 50% of total electricity cost (Fig. S2). This heterogeneity of events calls into question the use of represent-
ative periods or time slices in energy systems modelling. Moreover, we find large variations between different
weather years, with the single most expensive week explaining between 18% and 77% of total respective electri-
city costs. For context, the total yearly electricity costs (that also include the value of existing infrastructure)
range from 216 to 330 billion EUR depending on the weather year.

As introduced in Section 2.3, we define a system-defining event as accumulating costs exceeding 100 billion
EUR in less than two weeks. We identify 32 such events which all happen between November and February
(see Fig. 2 and Table S1). The events vary in length considerably (2–13 days), being 7 days long on average.

We find that meteorologically extreme single days [18, 47, 19] do not reliably identify system-defining events in
individual weather years (Fig. S3). While such extreme days almost always lead to high shadow prices, these
are not necessarily surrounded by a challenging enough period to have a large impact on system design (e.g.
see the events in 1997/98, 2011/12 and 2012/13 from Bloomfield et al. [19], Figs. S3–4); the same also holds
for week-long events (Fig. 2 and Figs. S5–8).

As opposed to methods considering only peak load or net load, (i.e. peak mismatch between renewable gener-
ation and load) [17, 18, 19, 20, 23], using power system optimisation outputs to identify system-defining events
takes the complex interactions between storage and transmission into account. Moreover, we need not make
assumptions about the availability of storage and transmission in any particular region.

3.2 Origins of power systems stress events

In line with previous research, we find that power system stress occurs in the winter months when temperatures,
wind and solar production are low in Europe [19, 46, 41]. Power systems based on renewables are primarily
wind-dependent in the winter, especially in the northern latitudes [48], making them prone to “wind droughts”.
Using standard cost projections, we see annualised investments of 60.9 bn EUR in wind power (onshore and
offshore), 28.4 bn EUR in solar power, 15.2 and 13.3 bn EUR in batteries and hydrogen storage respectively,
and 18.4 bn EUR in transmission expansion (mean over 40 individual weather year optimisations — Fig. S1).

We find significant variations in the magnitude and location of stress triggers over Europe across the 32 system-
defining events (e.g. Figs. S9–10). Still, all but one identified events are consistently driven by low wind power
and high load anomalies (Fig. 3 (a)–(b)) when aggregating over the whole system. Moreover, we find that
even though the low wind and high load anomalies during system-defining events are concentrated over certain
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Figure 3: A summary of key metrics compared to 40-year means. Each dot represents the mean value of the
metric in question over one system-defining event. From left to right: (a) renewable production deviation from
40-year mean at the time of each event, (b) load deviation from 40-year mean at the time of each event, (c)
mean shadow price of transmission congestion during each event, (d) mean value of stored energy for each event.
An overview over all events can be found in Table S1.

regions, high shadow prices typically spread to the whole continent (Fig. 4). This is despite a modest maximum
allowed transmission investment of 25% compared to the current-day grid value in the model. Only peripheral
regions (northern Scandinavia and, to a lesser extent, the Iberian peninsula) have significantly lower shadow
prices during some of the events; even then they are much higher than average.

3.3 Role of transmission and storage during system-defining events

While system-defining events can be caused by various meteorological conditions, the most severe events almost
always impact the sizing of all power system components. Fig. 4 shows a representative example of a week-long
system-defining event during December 2007. This period was caused by a high pressure system over central
Europe causing a period of prolonged low wind as well as high heating load (Fig. 4 (a)–(b)). The event is
identified as difficult by the spiking electricity shadow prices (shown by region in Fig. 4 (c) and over time in
(d)).

To discern the roles of transmission and storage during this event, we consider the dual variables of the line
capacity constraints and inter-hour storage energy level linking constraints respectively (see Section 2.2 and
Supplementary Materials for details). While we see in Fig. 3 that the 40-year mean shadow price of congestion
µl,t across the network is just below 2 EUR / MW, Fig. 4 (c) shows that µl,t reaches event-average values above
1000 EUR / MW for individual lines. This demonstrates that the event in question is a major factor in driving
transmission expansion — in fact some 39% of the total annual network congestion rent for the 2007/08 network
was gained during the week in Fig. 4. There is significant congestion between continental Europe on one hand
and Scandinavia and the British Isles on the other hand, with significant wind- and hydropower supplied from
these regions. The transmission grid is well-connected enough to avoid extreme price spikes in the affected
regions.

The value of stored hydrogen energy around the December 2007 event in Fig. 4 (d) reaches a maximum during
the event, but as the marginal electricity prices are higher still, the entire hydrogen storage reserves in the
network are discharged. This particular system-defining event was preceded by a week of already high prices
and high values of stored energy, during which not all hydrogen storage was able to fill up in anticipation of the
main event. Other weather years contain meteorologically distinct system-defining periods up to several weeks
apart that are nonetheless connected by sustained high values of storage in the interim. This underlines the
temporal interdependence of power system dynamics when storage is included, meaning that periods of system
stress cannot be studied as isolated events.

8



Example: 2007-12-17 16:00:00 - 2007-12-24 08:00:00

(a) Wind speeds, pressure

1014

1014

1018

1018

1022

1026

1030

1034

(c) Mean shadow prices of congestion, electricity
Congestion shadow price

300 EUR/MW
600 EUR/MW
1200 EUR/MW

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Norm. 10m wind speed anomaly

0 250 500 750 1000 1250 1500
Mean electricity shadow price [EUR/MWh]

Dec Jan 2008
0

100

200

300

400

500

600

Lo
ad

/w
in

d
pr

od
.[

G
W

]

(b) Rolling avg. of load and wind (24 hours)

System load
Wind power prod.

40y mean system load
40y mean wind prod.

Dec Jan 2008
0

500

1000

1500

2000

2500

St
at

e
of

ch
ar

ge
[G

W
h]

(d) Modelled hydrogen storage

Value of stored energy
Electricity shadow price

State of charge
System-def. event

101

102

103

En
er

gy
va

lu
e

[E
U

R
/M

W
h]

1
Figure 4: System-defining events are the result of an interplay of low renewable availability, high load, storage
constraints and transmission congestion. Inputs in the top row, comparable to a usual meteorological approach
(Approach 1). System variables in the bottom row. (a) Average weather in Europe over the example event.
Note the wind speed anomalies over the North Sea region and the temperature anomalies in Central Europe in
Fig. S11. (b) Time series of wind power production and electricity load around the highlighted event (smoothed
with rolling averages of 24 hours). The dashed lines show seasonality deduced from the period 1980–2020. (c)
Network map of the European power system with the edge widths showing shadow prices of congestion and the
regions shaded with the average electricity price during the event. (d) Time series of electricity prices, value
of hydrogen storage (with logarithmic scales), and the hydrogen storage level around the highlighted event (all
network averages). All costs are in 2013 EUR.
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3.4 Comparison to the traditional relationship between climate and power systems

Composites of the normalised surface weather conditions observed during each of the 32 events from Approach
2 (Table 1) are shown in Fig. 5 (a)–(b). The events are defined by high pressure systems over Central Europe
and the North Sea region (where the capacity expansion model mainly builds wind power), resulting in cold
temperatures and low wind speeds. This is similar to the synoptic situations [17, 18, 26] seen using Approach
1.

Within Fig. 5 (a)–(b) multiple surface weather conditions are present. Performing K-means clustering on the
normalised hourly near-surface temperature and wind speed fields over the 32 events to isolate key weather
patterns of interest (see Section 2.5) gives the four clusters shown in Fig. 5 (c)–(j). All include high pressure
centres over parts of Europe and low winds over the North Sea. However, each cluster has very different spatial
patterns of surface temperature anomalies, which are not seen in studies neglecting transmission and storage
constraints [18, 19]. Future work will investigate if these conditions are unique to system-defining events, or if
it is possible to also have these anomalous weather conditions at times of low power system stress.

If instead each day is assigned to a more traditional Euro-Atlantic weather regimes framework from Cassou [43],
we see a high frequency of Scandinavian blocking (54%) which is over double the 25% seen climatologically.
We also see over four times fewer instances of NAO+ (Fig. 6). Generally the pattern correlation between each
day’s weather and the assigned cluster is low (Fig. 6), particularly when a day is assigned to NAO+ or the
Atlantic ridge. Fig. 6 (g) shows the 500 hPa geopotential height composite for all of the system defining events.
This explains the higher prevalence of Scandinavian blocking events (Fig. 6 (d)) but importantly, the system
defining events resemble a fusion between the high pressure centre from the Scandinavian blocking pattern, and
low pressure region from the NAO− pattern.

Fig. 7 shows the temporal evolution of the weather regime categorisation from Fig. 6 over each event. The figure
is centred around the peak day of each event, which is the day containing the single most expensive hour of the
event. It is interesting to note that the peak day can be at any point during the extreme event, and that the
weather regime present during an extreme event is often quite persistent. Both of these are interesting points
for future work. The results in this section motivate the need for more bespoke approaches to extreme energy
days [49, 50].

When considering seasonal extremes, previous studies have shown strong correlations between the North Atlantic
Oscillation (NAO) and national demand and wind power generation [51, 52, 17, 53]. Winters with a negative
NAO index have weaker surface pressure gradients across Europe, leading to colder, stiller conditions and
higher seasonal demands. Fig. 8 (a) shows positive correlation between the October-March NAO index and
European mean wind capacity factor (R = 0.52), with similarly strong negative correlations seen for NAO index
and European mean load (Fig. 8 (b)). Significant correlation is also found when costs of electricity (between
October and March) are considered (R = −0.42). Winters with a negative NAO index generally exhibit higher
costs (Fig. 8 (c)). However, there are times where a high cost can happen in a mild winter. For instance,
January 1997 (Fig. S12–13) experienced a low-wind-cold-snap driving high system costs; a very anomalous
event compared to the rest of the season.

Fully modelling transmission and storage constraints can lead to a different characterisation of the most challen-
ging winters for power system operation than seen in studies entirely based on meteorological input variables.
This is particularly important when considering the sub-seasonal to seasonal prediction of extreme energy events.

3.5 Validation of system-defining events

We validate our approach through load shedding (or lost load) which is a commonly used tool to measure power
system adequacy [54, 55, 50, 9]. Load shedding can be measured in dispatch optimisations of fixed power system
designs, whereas capacity expansion models avoid any load shedding by design.

To validate whether system-defining events align with periods of high load shedding, we calculate for each
weather year yi the hourly average load shedding in the dispatch optimisations of the power system designs
obtained from weather years yj , j ∈ {1980/81, . . . , 2019/20} operating over year yi (a total of 40 dispatch
optimisations per weather year). See Section 2.6 and Supplementary Materials for details. We find that all but
one system-defining events overlap with the week-long periods of highest load shedding in the weather year they
occurred in.

In any year, system-defining events tend to be those with high load shedding; either method can be used to
identify power system stress. Crucially, both shadow prices and load shedding agree on extreme events that
are different than those from Approach 1 (Table 1) based only on net load (Figs. S14–S17). This highlights
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Figure 5: Meteorological conditions during system-defining events (a)–(b). For all 32 events, (c)–(j) are the
four extracted clusters of events.
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Figure 6: (a) Frequency of occurrence of Euro-Atlantic weather regimes as defined in [43] during system-defining
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between the daily 500 hPa geopotential height anomaly from the 32 system-defining events and the four Euro-
Atlantic weather regimes, (c)–(f) 500 hPa geopotential height (Z500) anomaly composites for the Euro-Atlantic
weather regime cluster centroids, (g) Z500 anomaly composite during the 32 system-defining events.
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The events are centred around the peak day, which is the day containing the single most expensive hour of
the event. If the association of a day to a weather regime is not statistically significant, it is shown with high
transparency.
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Figure 8: The relationship between October–March mean North Atlantic Oscillation (NAO) index and October–
March (a) European mean onshore wind capacity factor, (b) total European net load, and (c) total costs of
electricity (all between October and March). The year with the highest costs accrued between October and
March (1996/97) is marked with green in (a)–(c). R values show the Pearson correlation coefficient between
variables. Similar results are seen for individual countries (not shown).

yet again the importance of detailed power systems modelling (also required for computing load shedding) in
identifying weather stress events.

Arriving at load shedding data takes an additional step (possibly on top of Approach 2): first obtaining one or
several system designs and then running them in dispatch mode to reveal load shedding. The latter approach
also entails additional assumptions: one has to choose which input scenarios to use for capacity expansion steps
and dispatch steps respectively.

4 Discussion & Conclusions

In this study we investigate difficult weather events for power systems through an integrated approach combining
meteorology with power systems modelling. To improve resilience against weather extremes, we show that it
is not enough to look at meteorological variables alone (Approach 1), but we also need to include a detailed
representation of future, to-be-designed energy systems (Approaches 2 and 3). We propose identifying system-
defining weather periods as those being the main drivers of investments; such periods are defined by high
electricity shadow prices in a power systems model. As this approach builds directly on modelling outputs, it
is free of assumptions on specific characteristics of extreme events.

We find that risk factors like persistent low temperatures and low wind align well with previous literature
[56, 22, 21], however, conventional meteorological analysis does not reliably identify the most severe difficult
periods for future power systems. In particular, challenging periods for the integrated European network vary
in duration and are characterised by transmission and storage interactions over time, not only extreme weather.
We see that isolated regional studies are not good enough, as the vast majority of the continent experiences
uniformly high shadow prices during all system-defining events. To reliably predict future energy system stress
events traditional meteorological classifications [43, 56, 18] are not enough, and more detailed knowledge on
surface weather impacts on power systems is needed [14, 50].

Since our approach is based on single-year optimisations resulting in different system designs for different
weather years, electricity shadow prices and thus severity of events are not directly comparable across weather
years. This limitation can be addressed by using load shedding (Approach 3 in Table 1) instead of electricity
shadow prices to identify extreme events. However, our validation shows that the load shedding and shadow
price approaches agree on the most severe events in each individual weather year. Computing load shedding is
also more computationally expensive and involves more assumptions, requiring a two-step process.

Restricting our analysis to events shorter than two weeks, we capture significant fractions of total electricity
cost, but do not capture the full chain of cascading compound events. A complete understanding of how seasonal
weather relates to total annual system cost (beyond the partial correlation with the NAO index) is still elusive.
Perfect foresight also limits the ability of our model to react realistically to multi-week or longer events. On
the other hand, our analysis also does not focus on very brief events. Further analysis over a variety of event
length, both longer and shorter, would be beneficial.
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An interesting extension of this study would be the inclusion of sector coupling: electrification of heating
strengthens the impacts of heating load and the inclusion of more sectors could lead to different dynamics than
in the power sector alone. Still, low wind generation will be key in years to come due to higher penetration
of renewable technologies. With ever-improving climate models, these methods could be applied to climate
model projections, as system insights based on weather from the 1980s might not necessarily be transferable to
mid-century systems under climate change.

The question of pinning down what makes certain weather years difficult (in terms of system costs) remains
complicated and computationally expensive; the main part of investments throughout the years is driven by
a few short-lived and severe events. Our classification can help meteorologists, transmission system operators
and long-term system planners to develop early warning systems and resilience strategies for these events. It
is worth remembering that current systems usually struggle with high load, but that these risks and coping
mechanisms will shift towards supply issues when renewable production dominates. A good understanding of
the anatomy of such events will help in risk assessments including frequency and severity under climate change,
crucial for ensuring system adequacy.

Our flexible approach can be applied to other contexts beyond this European case study and shows that rigid
assumption-based analyses within one discipline do not suffice for challenges the world is facing. Our approach
exploits inherent information from existing models and unites perspectives from linear optimisation, energy
modelling, and meteorology to enhance the understanding on how more resilient future energy systems can be
planned. Without interdisciplinary studies with state-of-the-art power system models and meteorological data,
progress in researching and implementing renewable energy systems cannot be made.

Code and data availability

The code to reproduce the results of the present study, as well as links to the data used, are available at
https://github.com/koen-vg/stressful-weather/tree/v0. All code is open source (licensed under GPL
v3.0 and MIT), and all data used are open (various licenses).
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