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ABSTRACT

Dynamic attending theory posits that we entrain to time-
structured events in a similar way to synchronizing oscil-
lators. Hence, a tempo tracker based on oscillators may
replicate humans’ ability to rapidly and robustly identify
musical tempi. We demonstrate this idea using virtual quad-
rupeds, whose gaits are controlled by oscillatory neural
circuits known as central pattern generators (CPGs). The
quadruped CPGs were first optimized for flexible gait fre-
quency and direction, and then an additional recurrent layer
was optimized for entrainment to isochronous pulses. Us-
ing excerpts of musical pieces, we find that the motion of
these agents can rapidly entrain to simple rhythms. Perfor-
mance was found to be partially predicted by pulse entropy,
a measure of the sample’s rhythmic complexity. Notably,
in addition to having wide tempo ranges, the best perform-
ing agents can also entrain to rhythms that are periodic but
not quantized on a grid. Our approach offers an embodied
alternative to other dynamical systems-based approaches
to entrainment, such as gradient-frequency arrays. Such
agents could find use as participants in virtual musicking
environments, or as real-world musical robots.

1. INTRODUCTION

Human rhythmic abilities owe a great deal to our capac-
ity for sensory-motor synchronization. In part due to the
tight coupling between the auditory and motor regions of
the brain, we spontaneously feel an urge to move when lis-
tening to music, and to track changes in tempo [1–3]. This
tendency for bodily and/or neural oscillations to match a
stimulus is known as rhythmic entrainment, and is the sub-
ject of intense research in music cognition [4, 5].

Beat tracking and tempo estimation, as with many other
kinds of computing, have recently seen advances inspired
by neuromorphic models of human cognition. While clas-
sically this has been achieved by signal processing meth-
ods such as Fourier transforms or autocorrelation [6], new
methods employ techniques such as recurrent and convo-
lutional neural networks [7,8]. The seminal work of Large
et al. [9, 10] provided a neurobiological model for rhyth-
mic entrainment in particular, based on dynamic attending
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theory. While this model superficially resembles a bank of
resonators, another common beat tracking technique, the
use of self-organizing dynamical systems more accurately
captures the human ability to discern beats from complex
signals, in particular where the beat frequency is missing
from the spectrum.

In this paper, we extend this self-organizing approach
to bodily entrainment by using evolved virtual quadruped
robots. These agents are controlled by central pattern gen-
erators (CPGs), neural circuits that organize periodic ac-
tions in vertebrates. Notably, CPGs for locomotion often
have highly flexible periods and gait patterns, to allow for
a range of movement speeds. In previous work, it was
demonstrated that optimizing for gait flexibility facilitates
entrainment to external rhythms [11]. Here, we analyze
in detail the entrainment capabilities of these agents. In
particular, we examine tempo ranges, uneven pulses, com-
plexity in the context of real musical samples, and transient
behaviour for real-time applications.

2. VIRTUAL ROBOT MODEL

Figure 1 shows the simulated quadruped body and a schem-
atic of its controller layout. The simulation, controller and
optimization are detailed fully in [11]. The controller is
implemented in Python, while the robot simulation is im-
plemented in Unity. 1

The CPG consists of 12 spiking neurons based on the
Matsuoka model with mutual connections [12], akin to bi-
ological neurons with inhibiting and excitatory connections
[13, 14]. The 12 neurons are arranged in four modules
with identical parameters and weights. The limbs are con-
nected via the interneurons (I), with weights satisfying lat-
eral symmetry, while the neurons labelled A and B are used
to drive the hip and knee joints of the legs. Measurements
of the body tilt from the simulation are fed back to the mo-
tor (A/B) neurons to stabilize the motion.

Characteristics of the motion—namely frequency and gait
type—are largely determined by a constant input applied to
all neurons. This control parameter models the slow input
from the brain stem that is known to modulate locomotive
CPGs [14, 15].

Neuron parameters, interconnection weights and feedback
coefficients were all optimized using a multi-objective evo-
lutionary algorithm (MOEA) [16]. Rather than optimiz-

1 The code used and datasets generated for this study, as well as an
example video, can be found at:
https://github.com/aszorko/COROBOREES/tree/
Paper3
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Figure 1. Controller schematic and simulated quadruped.
Circles denote modified Matsuoka neurons (n in the filter
component, and 12 in the central pattern generator). Ar-
rows denote one-way connections (either excitatory or in-
hibitory), lines ending in circles denote inhibitory connec-
tions, and regular lines denote mutual connections that may
be excitatory or inhibitory. The modules are connected via
n rectifying linear units, followed by an n by 4 weight ma-
trix M. A/B: motor neurons; I: interneurons. For this study,
n = 6.

ing a single controller for a single outcome, this method
evolves a population of controllers so that each member
optimizes a different combination of outcomes from a set,
thus encouraging diversity of solutions. This was used to
target flexibility of motion with respect to the brain stem
input and another parameter controlling the body’s centre
of mass.

External input was then fed through a recurrent layer com-
prising of 6 fully connected neurons (the “filter”). This
layer was optimized using a MOEA on a subset of CPGs
by inputting isochronous pulses at three different tempi,
with every fourth pulse missing, and with a small amount
of noise in the pulse timings. Pulses were low-pass filtered
delta functions, with a decay rate optimized separately for
each agent. The objective (or “fitness”) for the filter opti-
mization was closeness of the inter-pulse interval and gait
period for each tempo. The gait period in [11] and this
study was determined by the location of the maximum sum
of autocorrelation functions over all four limbs.

Of the two morphologies in the aforementioned paper, we
use the short-legged variety for the present analysis due to
its more stable behaviour. The 18 final controllers were
used in the present work. These agents used either walk-
ing, trotting or bounding gaits to move.

The time constant of the CPG was 7.5 ms, while commu-
nication with the Unity simulation occurred every 100 ms
for the isochronous pulse analysis (where the pulses are in-
troduced in Python), and every 15 ms for the audio sample
analysis (where the samples are stored in the Unity simula-
tion). All simulations ran for 24 seconds and were run five
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Figure 2. Entrainment score vs pulsed input tempo and
(A) asymmetry, and (B) amplitude, for the top-performing
agent.

times, with the median used as the final measurement.

3. ENTRAINMENT SCORE

The entrainment score in this paper was designed to mea-
sure the proximity of the measured gait period T to the
input period Tin, allowing for halving, doubling or qua-
drupling of the period:

score =


(
1 + |r−[r]|

ϵ

)−1

, if − 1.5 < r < 2.5

0, otherwise
(1)

where

r = log2(T/Tin) , (2)

[ ] denotes rounding to the nearest integer, and ϵ was set to
0.1 for this study.

An agent with good entrainment capability can be defined
in two ways. Firstly, it could entrain to a wide range of
pulse frequencies with the same level of brain stem drive
(Definition 1). Secondly, it could have a wide range of in-
trinsic gait frequencies as the brain stem drive is modified,
that are all able to be entrained to the same pulse tempo
(Definition 2).

We sort the 18 robots according to Definition 1, using
isochronous pulses ranging from 60 to 180 beats per minute
with an amplitude of 1 (i.e. the same amplitude used dur-
ing evolution), and taking the mean of the score according
to Equation 1.
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Figure 3. Comparison of 3/4 and 4/4 performance for each
of the 18 robots. The score is the median over the range 60
to 180 bpm, with an amplitude of 1. The solid diagonal line
has slope 1, indicating which meter had better performance
for each robot.

4. ENTRAINMENT TO ISOCHRONOUS AND
UNEVEN PULSES

To test robustness of the entrainment, we swept pulse am-
plitude and asymmetry in addition to tempo. Asymmetry
was created by moving every second pulse a fraction of
a beat, between 0.1 and 0.9. Apart from an asymmetry
of 0.5, creating alternating dotted quarter notes and eighth
notes, these asymmetries did not conform to binary metri-
cal hierarchies.

Figure 2 shows the score for the best performing agent as
a function of beats per minute against (A) asymmetry (am-
plitude = 1) and (B) amplitude (asymmetry = 0). While
the entrainment degraded for lower amplitudes, it was in
general able to entrain to asymmetric patterns. Perfor-
mance was reduced slightly at higher tempos, likely due to
the period approaching the CPG time-step interval, which
is the limit of precision in the output period.

5. EFFECT OF METER

It is also worth asking whether the quadruped agents are
sensitive to a rhythm’s meter. To answer this, we tested
performance against two repeated rhythms of comparable
complexity, one in 3/4 ( ˇ “ ˇ “‰ ˇ “( ) and one in 4/4 ( ˇ “ ˇ “‰ ˇ “‰ ).
Both rhythms contain three onsets per measure, and for
each rhythm only one inter-pulse interval per measure cor-
responds to the beat (quarter note) duration.

As shown in Figure 3, a majority of agents had similar
performance for each rhythm, particularly when compared
to the variability between agents. The non-parametric Mann-
Whitney U test did not find a significant difference be-
tween the two sets of scores (p=0.35).

6. RESPONSE TIME

The measurements in the preceding sections were made
using autocorrelation functions over the second half of the
simulation in order to determine the stable gait period. For
real-time applications, however, the transient properties of
the system with changing inputs are important. Hence, we
use wavelet transforms to measure the time to entrain to a
new input, the time to adjust to a change in tempo and the
time to relax back to the agent’s intrinsic tempo after the
input is turned off.

The time series for the leg joint angles were convolved
with a Morlet wavelet at the input period, with a resolution
parameter σ = 2, and then a Gaussian filter was applied
with a width of 0.5 s. As shown in Figure 4, the trotting
gait adjusts to each of the input pulse tempi, and then back
to its intrinsic tempo. A video of this agent responding to a
similar sequence, two consecutive drum loops of different
tempi, is available on this article’s repository (see Footnote
1).

To estimate the time taken to adjust to the input, the sec-
ond derivative of the synchronization level was calculated,
and the minimum was taken in the three second period af-
ter each transition time. According to this method, adjust-
ing to the initial input took approximately 1.55 s, adjusting
to the tempo change took 0.78 s, and relaxing back to the
normal state took 0.89 s

7. ENTRAINMENT VS COMPLEXITY IN
MUSICAL SAMPLES

Fifteen popular music excerpts, shown in Table 1, were
taken from [17], in which urge to move in humans was
measured as a function of rhythmic complexity. 2 Com-
plexity was measured by pulse clarity [18], which is de-
rived from the entropy of the autocorrelation function of
the amplitude envelope. A lower entropy measure implies
a clearer and more icochronous pulse. Here, we measure
the entrainment performance as a function of both pulse
clarity and a more recent measure of rhythmic complexity,
metrical strength [19]. The latter extracts a hierarchy of
metrical levels from the autocorrelation function, and in-
creases with a more consistent pulse at any metrical level.
Both values were measured from each audio sample using
MIR toolbox version 1.8.1 [20], using the mirpulseclarity
‘EntropyAutocor’ and mirmetroid functions respectively.

Samples were normalized to have equal average RMS
levels. In the simulation, the RMS level was calculated
every 30 ms within a window of the same length, and this
was passed to the robot controller, without the low-pass
filter that was used for isochronous pulses.

Since the samples have nearly uniform tempos (112 to
130 beats per minute), we used Definition 2 from Section
3 for entrainment performance. For the top five agents de-
termined in Section 3 according to Definition 1, the brain

2 In [17], two samples were edited to provide clearer pulses in the am-
plitude envelopes, otherwise hidden in spectral information. We use the
unedited versions, as spectral information was not available to our agent.
However, we leave out “South of Heaven” since in this sample the mea-
surable onsets are no more frequent than 60 BPM. Pulse entropy values
also differ slightly, as we trimmed the ends of the samples to allow seam-
less looping in Unity.
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Figure 4. Transient response of the best performing agent (intrinsic period 153 bpm) to changing inputs. Pulsed input
at 135 bpm was applied between 5 and 15 seconds, followed by 110 bpm between 15 and 25 seconds. Both inputs had
amplitude 1.2. From top: Pulsed input and step timings (R/L=right/left limbs, F/H=front/hind limbs), leg angle output
signals, wavelet convolution outputs (Sync) at 135 bpm and 110 bpm and the intrinsic 153 bpm, and total body tilt. The
maximum sync (normalized to equal 1) corresponds to synchronization at that tempo.

stem drive was iterated from 0 to 1 in steps of 0.1, and the
median entrainment scores to the musical excerpts were
measured. A score was also measured for a no-input con-
dition, to identify whether agents “accidentally” moved at
the approximately correct tempo (120 bpm) through the
whole range due to low frequency flexibility.

Figure 5 shows how the five best agents as defined above
performed as a function of pulse entropy, compared to iso-
chronous pulses at 120 bpm, and a no-input condition. All
five agents had perfect scores for the isochronous input.
A linear mixed-effects model with random slope and in-
tercept (grouped by agent) was used to test whether either
complexity measure predicted the decreasing performance.
The EntropyAutocor measure of pulse clarity was found to
be significant predictor of performance (z = −3.3, P =
0.001). Metrical strength was not significant at the P <
0.05 level (z = −1.5, P = 0.14).

The pulse clarity result indicates that while high com-
plexity samples caused a score of either zero (generally in-
dicating chaotic motion) or close to the no-input score, the
lower-complexity inputs were more able to have the tempo
reliably tracked by the agents. A notable exception was
“Under Attack”, which may be attributable to the mixed
3/4 and 4/4 meter.

8. DISCUSSION

We have demonstrated a proof of concept for virtual and
physical agents with spontaneous entrainment of motor-
sensory systems. A subset of our evolved virtual robots
are able to track the tempo of simple rhythms, including
real audio samples, in real time with fast adaptation. This
can be attributed to highly non-linear dynamical networks
that can adapt their endogenous oscillations to absorb peri-
odic inputs. This approach is similar to the work of Large
et al. [9, 10]. Notably, however, our oscillatory network
is modelled on spinal circuits involved directly in motor
control rather than higher-level cortical networks. This
makes the translation to motion of an agent — in partic-
ular a robotic agent — natural while avoiding delays in the
process. Hence, such agents may be useful for biomorphic
visualization of musical rhythms.

The agents shown here can also provide a responsive real
or virtual musical partner for the controlled study of inter-
personal synchronization. Instantaneous response is cru-
cial in musical contexts, however existing robotic partners
that incorporate adaptive timing (e.g. [21]) do so using sig-
nal processing methods that require relatively long sam-
pling times and computation. As a consequence, such sys-
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Title Artist Excerpt BPM Genre PC-E MS Avg. Score
Off The Wall Michael Jackson 0:15-0:23 119 Pop/funk 0.525 0.604 0.699
Under Attack ABBA 0:00-0:08 116 Pop 0.526 0.795 0.318
I Wanna Be Your Lover Prince 0:00-0:08 117 Pop/funk 0.568 0.574 0.479
Voyager Daft Punk 0:32-0:48 120 EDM 0.596 0.720 0.767
War of My Life John Mayer 0:00-0:08 120 Rock 0.616 0.661 0.381
Sugar Maroon 5 0:40-0:48 120 Rock 0.624 0.560 0.901
Get It Right Aretha Franklin 0:11-0:19 121 Soul/funk 0.653 0.608 0.558
I Got the Feeling James Brown 0:00-0:03 114 Soul/funk 0.706 0.587 0.303
For Whom the Bell Tolls Metallica 0:57-1:05 120 Metal 0.711 0.567 0.619
What About Me Snarky Puppy 0:15-0:23 127 Jazz/funk 0.731 0.505 0.297
Every Breaking Wave U2 0:00-0:08 116 Rock 0.752 0.808 0.349
Getaway Earth, Wind & Fire 0:00-0:09 112 Funk 0.753 0.486 0.589
Peggy Orchards 0:00-0:08 130 Alt. pop 0.762 0.577 0.242
Pinzin Kinzin Avishai Cohen Trio 2:01-2:05 116 Jazz/ 0.767 0.422 0.319

Experimental
Smash Avishai Cohen 0:08-0:16 115 Jazz/ 0.794 0.538 0.305

Experimental

Table 1. Musical excerpts used in the study, from [17], and mean entrainment scores for the top five agents. PC-E: Pulse
clarity - EntropyAutocor measure; MS: Metrical strength. Samples are ordered by increasing complexity according to pulse
entropy. All excerpts were in 4/4 apart from “Under Attack” which was a mixture of 4/4 and 3/4.
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Figure 5. Entrainment vs pulse clarity EntropyAutocor
measure for the top five agents. None: no input. Iso.:
isochronous pulses at 120 bpm. Each blue dot is one
agent’s mean score for a single sample. Error bars in-
dicate the mean range between maximum and minimum
score over five iterations with the same agent, sample and
brain stem drive. The solid line is the fit from the final lin-
ear mixed-effects model.

tems often rely on turn-taking and/or human reading of
robotic gestures [22]. We expect rapidly responsive tempo
tracking to greatly enhance the experience of human-robot
musical interactions.

Our model may also help research in music cognition.
As a biologically inspired and mechanistic sensorimotor
synchronization model, it may be useful as a comparison
in experiments such as tapping studies [4, 17]. An exist-
ing modelling approach for tapping experiments involves
coupled harmonic oscillators [23], while integrate-and-fire
type models are another potential candidate [24]. These

approaches are well suited to isochronous rhythms, how-
ever more complex tasks require more nonlinear oscillators
or neural models such as the one we present here.

We found that pulse clarity was a more suitable mea-
sure than metrical strength for rhythmic complexity in our
case. This is unsurprising, as the agents were optimized
using isochronous pulses, which maximize pulse clarity
(i.e. minimise entropy in the autocorrelation). In addition,
the oscillations of the CPG network are not expected to be
susceptible solely to hierarchically organised rhythms, as
shown in Section 4.

Our agents were optimized using evolutionary algorithms.
Hence, performance is partially determined by how thor-
oughly fitness is measured. In particular, performance was
unpredictable for input amplitudes lower than that used
during evolution. For music with high dynamic range, this
issue may be mitigated by pre-processing with a compres-
sion algorithm.

If used as a tempo tracker, the ouput tempo would need
to be limited to a factor of two, e.g. 75-150 bpm, due to the
tendency for frequency doubling or halving depending on
the affordances of the agent; i.e. with such limits in place,
a gait at 60bpm or 240bpm can be interpreted as 120bpm.

For precise prediction of beat timings and not just tempo
estimation, a phase-correcting feedback would be neces-
sary. This is because it takes time for perception to be
translated into action in our open-loop framework. To this
end, the integration of force feedback from the feet may be
sufficient to synchronize timings [25].

Acknowledgments

This project has received funding from the European Union
Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement 101030688,

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

287



and is partially supported by the Research Council of Nor-
way through its Centres of Excellence scheme, project num-
ber 262762. We would like to thank Connor Spiech for
providing the audio samples, David Løberg Code for use-
ful discussions, and the reviewers for helpful feedback.

9. REFERENCES

[1] B. Burger and P. Toiviainen, “Embodiment in elec-
tronic dance music: Effects of musical content and
structure on body movement,” Musicae Scientiae,
vol. 24, no. 2, pp. 186–205, 2020.

[2] A. Zelechowska, V. G. Sanchez, and A. R. Jense-
nius, “Standstill to the’beat’ differences in involuntary
movement responses to simple and complex rhythms,”
in Proceedings of the 15th International Audio Mostly
Conference, 2020, pp. 107–113.

[3] J. J. Cannon and A. D. Patel, “How beat perception
co-opts motor neurophysiology,” Trends in Cognitive
Sciences, vol. 25, no. 2, pp. 137–150, 2021.

[4] B. H. Repp and Y.-H. Su, “Sensorimotor synchroniza-
tion: a review of recent research (2006–2012),” Psy-
chonomic bulletin & review, vol. 20, pp. 403–452,
2013.

[5] D. J. Levitin, J. A. Grahn, and J. London, “The psy-
chology of music: Rhythm and movement,” Annual re-
view of psychology, vol. 69, pp. 51–75, 2018.

[6] M. Muller, D. P. Ellis, A. Klapuri, and G. Richard,
“Signal processing for music analysis,” IEEE Journal
of selected topics in signal processing, vol. 5, no. 6, pp.
1088–1110, 2011.
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