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1. Introduction

One of the most quoted and useful theorems in combinatorial matrix theory (CMT) [4] is known as the Frobenius-König 
Theorem:

Given an n × n (0, 1)-matrix X, there exists an n × n permutation matrix P ≤ X (entrywise inequality) if and only if X does not 
have an r × s zero submatrix with r + s = n + 1.

This theorem asserts when an n × n (0, 1)-matrix contains within it a (0, 1)-matrix of very special type, namely a permu-
tation matrix. Although there are other theorems of this type in CMT, none are as celebrated as this theorem. We refer to 
[11] for a historical account of the Frobenius-König Theorem and some related theorems. An original statement of the (main 
part of the) theorem is, that if all the n! terms of the determinant of an n × n matrix X , as given in the Leibniz formula, are 
zero, then X has an r × s zero submatrix with r + s = n + 1.

Recently (0, ±1)-matrices have played an increasing role in CMT, for instance in the context of alternating sign matrices
(ASMs). An ASM is an n ×n (0, ±1)-matrix such that the ±1’s in each row and column alternate in sign, starting and ending 
with a 1. For some of the developments of ASMs, see the book [3] and e.g. [2,5–9,12,13] and the references contained 
therein.

The goal of this paper is to investigate similar questions as in the Frobenius-König Theorem, but for classes of (0, ±1)-
matrices. A main contribution is a Frobenius-König Theorem for the class of (0, ±1)-matrices with all row and column sums 
being 1. Moreover, some related results are shown for ASMs.

Since permutation matrices are the ASMs without any −1’s, it seems natural in the context of the Frobenius-König 
Theorem, to replace the set of n × n (0,1)-matrices with the set Xn of n × n (0, ±1)-matrices and to replace the set Pn of 
n × n permutation matrices with the set An of n × n ASMs resulting in the following

Basic Question: Given an n × n (0, ±1)-matrix, when does it contain an n × n ASM?
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In this generality, there is probably no simple answer as we have in the Frobenius-König theorem; see the discussion 
and results in Section 4. But first one has to decide what ‘contain’ means in this context.

First we note that if A is an n × n ASM then, unlike permutation matrices, A can contain an r × s zero submatrix with 
r + s = n + 1. For instance, the 3 × 3 ASM

A =
⎡
⎣ 0 1 0

1 −1 1
0 1 0

⎤
⎦

contains a 2 × 2 zero submatrix with 2 + 2 = 4.
In [6] a partial order, called the pattern-plus partial order and denoted by �pp , was defined on the class An of n ×n ASMs. 

We extend this partial order to the more inclusive set Xn of n × n (0, ±1)-matrices and adopt a more suggestive name and 
notation. Let A and X be n × n (0, ±1)-matrices. We define A � X (read: A is subordinate to X) to mean that A can be 
obtained from X by replacing some of the ±1’s of X with 0’s (just as in the Frobenius-König Theorem where we replace 
some of the 1’s with 0’s). We observe that for a (0, ±1)-matrix X , X = X(1) + X(−1) where X(1) is the matrix obtained 
from X by replacing its −1’s with 0’s and X(−1) is obtained from X by replacing its 1’s with 0’s.

The notion of maximality of an ASM in the partial order � was considered in [5] using the notion of an ASM extension 
and the following theorem (restated in our language here) was proved.

Theorem 1.1. [5] If an n × n (0, ±1)-matrix is a maximal ASM in the �-partial order, then it is a permutation matrix.

Not every permutation matrix is maximal. The permutation matrix⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦

is maximal as is easily verified, while the permutation matrix below is not maximal as shown:⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1
1 −1 1

1 −1 1
1

⎤
⎥⎥⎦ .

It is easily verified that the identity matrix In is maximal in the partial order �. In our matrices we now usually write +
in place of 1’s and − in place of −1’s; empty positions are assumed to contain 0’s.

In [5,6] permutation matrices which are maximal in the �-partial order are characterized as follows. Let σ = i1i2 · · · in be 
a permutation of {1, 2, . . . , n}. Then σ contains a 2143 pattern provided that it has a subsequence j1 j2 j3 j4 in the same rel-
ative order as 2143: otherwise, σ is 2143-avoiding. A permutation matrix is 2143-avoiding provided that the corresponding 
permutation is 2143-avoiding. In a similar way we define 3412-avoiding where we note that 3412 is the reverse of 2143.

Theorem 1.2. [5,6] An n × n permutation matrix is a maximal ASM in the �-partial order if and only if it is both 2143-avoiding and 
3412-avoiding.

There are other similar questions that one might consider in the case of (0, ±1)-matrices:

Question 1.3.

(I) Given an n × n (0, 1)-matrix X ∈Xn , when does there exist an ASM A ∈An obtained by replacing some of the 0’s of X
with −1’s, that is, for which A(1) = X?

(II) Given an n × n (0, −1)-matrix X ∈ Xn , when does there exist an ASM A ∈ An obtained by replacing some of the 0’s of 
X with 1’s, that is, for which A(−1) = X?

We do not pursue these questions here. Our motivation for this paper is to answer our basic question by placing some 
restrictions on the (0, ±1)-matrix X . Our goal would be to do this in such a way as to obtain the Frobenius-König Theorem 
as a special case. In this connection, we define an n × n (0, ±1)-matrix to be a near-permutation matrix, abbreviated NPM, 
provided every row and column sum equals 1. Thus a NPM need not have the alternating property of ASMs. The NPM-class 
Cn consists of all n × n NPMs. The class Cn is general enough so that we have the inclusions

Pn ⊆ An ⊆ Cn ⊆ Xn.
2
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We first give an answer to our basic question when X is an arbitrary n ×n (0, ±1)-matrix in Xn and the class An is replaced 
with the more general class Cn . Note that while An for n ≥ 3 is not invariant under row and column permutations, Cn is. 
We also allow X to be restricted in some precise way resulting in the existence of an ASM A � X .

To illustrate some of these ideas developed in this introductory section, we now discuss some examples.

Example 1.4. Let

X =

⎡
⎢⎢⎣

+ +
+ − +

+ + −
+

⎤
⎥⎥⎦ .

Then

A =

⎡
⎢⎢⎣

+
+ − +

+
+

⎤
⎥⎥⎦

is an ASM and satisfies A � X . In this example there is no permutation matrix P with P � X ; in fact, X has a 3 ×2 submatrix 
without any 1’s (rows 1, 3 and 4, and columns 1 and 4). In contrast, let

X =

⎡
⎢⎢⎢⎢⎣

+ + + + +
+ − + + +
+ − + + +
+ + + − +
+ + + + +

⎤
⎥⎥⎥⎥⎦ .

Then

P =

⎡
⎢⎢⎢⎢⎣

+
+

+
+

+

⎤
⎥⎥⎥⎥⎦

is a permutation matrix and satisfies P � X . �
Example 1.5. Let

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

+
+

+ +
+ +

+
+

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then the ASMs A equal to⎡
⎢⎢⎢⎢⎢⎢⎣

+
+

+ − +
+ − +

+
+

⎤
⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎣

+
+

+ − +
+ − +

+
+

⎤
⎥⎥⎥⎥⎥⎥⎦

have A(1) = X but different A(−1)’s. The two ASMs⎡
⎢⎢⎢⎢⎣

+
+

+ − +
+

+

⎤
⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

+
+

+ − +
+

+

⎤
⎥⎥⎥⎥⎦

have the same A(−1) but different A(1)’s. Obviously, A(1) and A(−1) together always determine A. �

3
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The remaining part of this paper is organized as follows. In Section 2 we consider our class Cn of (0, ±1)-matrices with 
all line sums 1, and show our main result, a Frobenius-König Theorem for the class Cn . Our proof is based on a construction 
involving circulations in a certain directed graph. The class Cn is studied further in Section 3 and we characterize the 
possible sizes of zero submatrices in this class. Section 4 concerns other classes of (0, ±1)-matrices and whether a matrix 
in such a class can contain an ASM.

Notation: For a matrix A we let σ(A) denote the sum of its entries. If A is an n × n matrix and I, J ⊆ {1, 2, . . . , n}, then 
A[I, J ] denotes the submatrix consisting of the entries with rows in I and columns in J .

2. The Frobenius-König theorem for class Cn

In this section we answer our basic question for arbitrary n × n (0, ±1)-matrices X but by replacing the set An of ASMs 
with the larger, less-restricted set Cn of n × n NPMs. We use the following notation for an n × n (0, ±1)-matrix X = [xij]: 
σ+(X) (resp. σ−(X)) is the number of 1’s (resp. −1’s) in X . The complement of a subset S is denoted by S̄ (where the 
ground set is clear).

We first derive inequalities that are satisfied by an n × n (0, ±1)-matrix X ∈ Cn . Let I, J ⊆ {1, 2, . . . , n} and consider a 
partition of X as indicated by⎡

⎢⎢⎢⎢⎢⎢⎣

X[I, J ] X[I, J̄ ]

X[ Ī, J ] X[ Ī, J̄ ]

⎤
⎥⎥⎥⎥⎥⎥⎦

after row and column permutations. Let a ≥ 0 be the number of 1’s in X[I, J ] and let b ≥ 0 be the number of −1’s in its 
complementary submatrix X[ Ī, J̄ ]. We claim that

|I| + | J | − n ≤ a + b. (1)

Since the row sums corresponding to the rows with index in I equal 1, the submatrix X[I, J̄ ] must have at least (|I| −a) 1’s 
(this number may be negative). Since the column sums corresponding to the columns indexed by J̄ equal 1, the number b
of −1’s in X[ Ī, J̄ ] is at least (|I| − a) − | J̄ | so that

b ≥ (|I| − a) − | J̄ |,
that is

|I| − | J̄ | ≤ a + b,

equivalently,

|I| + | J | − n ≤ a + b.

We now show that given an arbitrary n × n (0, ±1)-matrix X , (1) is equivalent to the existence of a matrix A ∈ Cn with 
A � X .

Theorem 2.1. Let X = [xij] ∈Xn be an n × n (0, ±1)-matrix. Then there exists a matrix A ∈ Cn such A � X if and only if

|I| + | J | − n ≤ σ+(X[I, J ]) + σ−(X[ Ī, J̄ ]) (2)

for all subsets I, J ⊆ {1, 2, . . . , n} with |I| + | J | ≥ n + 1.

Proof. We transform the problem into a (network flow) circulation problem in a certain directed graph. Let D = (V , E) be 
a directed graph with vertex set

V = {v1, v2, . . . , vn, w1, w2, . . . , wn, t},
of 2n + 1 vertices. The set E of directed edges consists of

(a) an edge ei j = (vi, w j) whenever xij = ±1 for all 1 ≤ i, j ≤ n,
(b) an edge f i = (t, vi) and an edge gi = (wi, t) for all 1 ≤ i ≤ n.

Note that there is no edge associated with the pair vi, w j when xij = 0. Moreover we define two functions L, U : E →Z as 
follows:
4
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• if xij = 1, then L(ei j) = 0 and U (ei j) = 1,
• if xij = −1, then L(ei j) = −1 and U (ei j) = 0 for 1 ≤ i, j ≤ n,
• L( f i) = U ( f i) = L(gi) = U (gi) = 1 for 1 ≤ i ≤ n.

For a vertex v , let δ−(v) denote the set of edges entering v (having head v), and let δ+(v) denote the set of edges leaving 
v (having tail v). An (L, U )-circulation (in D) is a function y : E →R satisfying∑

e∈δ−(v) y(e) = ∑
e∈δ+(v) y(e) for all v ∈ V ,

L(e) ≤ y(e) ≤ U (e) for all e ∈ E.

In particular, y( f i) = y(gi) = 1 for 1 ≤ i ≤ n. Associated with such a function y is a matrix A(y) = [aij] given by aij = y(ei j)

for every edge ei j and aij = 0 otherwise. Then A(y) has every row and column sum equal to 1 and, if y is integral, then 
A(y) is a (0, ±1)-matrix satisfying A(y) � X . Conversely, a (0, ±1)-matrix A = [aij] with A � X determines an integral 
(L, U )-circulation y by defining y( f i) = y(gi) = 1 for 1 ≤ i ≤ n and y(ei j) = aij for every edge ei j .

By a theorem by Hoffman (see [4,10]) an (L, U )-circulation y exists if and only if
∑

e∈δ−(S)

L(e) ≤
∑

e∈δ+(S)

U (e) for all S ⊆ V , (3)

where δ−(S) (resp. δ+(S)) denotes the set of edges entering S (resp. leaving S). Moreover, as both L and U are integer-
valued, there exists an integer-valued y (whenever (3) holds).

We now determine what the conditions (3) are in our context. Let S ⊂ V , and let I = {i : vi ∈ S} and J = { j : w j 
∈ S}. For 
simplicity we write i 
∈ I to mean that i ∈ {1, 2, . . . , n} \ I , and similarly for j 
∈ J .

Case 1: t 
∈ S. Then δ−(S) consists of the edges (t, vi) for i ∈ I and (vi, w j) for i 
∈ I , w j 
∈ J . So
∑

e∈δ−(S)

L(e) = |I| +
∑

i 
∈I, j 
∈ J

L(eij) = |I| − σ−(X( Ī, J̄ )).

Moreover, δ+(S) consists of the edges (w j, t) for j 
∈ J and (vi, w j) for i ∈ I , w j ∈ J . So
∑

e∈δ+(S)

U (e) = | J̄ | +
∑

i∈I, j∈ J

U (eij) = | J̄ | + σ+(X(I, J )) = n − | J | + σ+(X(I, J )).

Therefore (3) becomes

|I| + | J | ≤ n + σ+(X(I, J )) + σ−(X( Ī, J̄ )).

Case 2: t ∈ S. Then δ−(S) consists of the edges (w j, t) for j ∈ J and (vi, w j) for i 
∈ I , w j 
∈ J . So
∑

e∈δ−(S)

L(e) = | J | +
∑

i 
∈I, j 
∈ J

L(eij) = | J | − σ−(X( Ī, J̄ )).

Moreover, δ+(S) consists of the edges (t, vi) for i 
∈ I and (vi, w j) for i ∈ I , w j ∈ J . So
∑

e∈δ+(S)

U (e) = | Ī| +
∑

i∈I, j∈ J

U (eij) = | Ī| + σ+(X(I, J )) = n − |I| + σ+(X(I, J )).

Therefore (3) becomes

|I| + | J | ≤ n + σ+(X(I, J )) + σ−(X( Ī, J̄ )).

Thus, in both cases we obtain the same inequalities (2), as desired. Finally, when |I| + | J | ≤ n the inequality is redundant 
(as the right hand side is nonnegative). �
Example 2.2. Let n = 5 and consider

X =

⎡
⎢⎢⎢⎢⎣

− +
+

+
− + + −

+ + + −

⎤
⎥⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎣

+
+

+
+

+ + −

⎤
⎥⎥⎥⎥⎦ .

Then A ∈ Cn and A � X . Let I = J = {1, 2, 3}. The inequality (2) becomes
5
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1 = |I| + | J | − n ≤ σ+(X(I, J )) + σ−(X( Ī, J̄ )) = 0 + 2 = 2.

Note that there does not exist a permutation matrix P with P � X as X has a 3 × 3 zero submatrix.
Next, consider the modification X ′ of X obtained by replacing the −1’s in positions (4, 5) and (5, 5) by 0. Then 

σ−(X ′( Ī, J̄ )) = 0 and the corresponding inequality (2) is violated. Thus there does not exist a matrix A′ ∈ Cn with A′� X ′ . �
Corollary 2.3. Let X = [xij] be an n ×n (0, ±1)-matrix. Assume that there exists an ASM A ∈An such that A � X. Then the inequalities
(2) hold.

Proof. This follows from Theorem 2.1 as An ⊆ Cn . �
However, the inequalities (2) are not sufficient for the existence of an ASM A ∈ An such that A � X . This is illustrated 

in Example 2.2 where (2) holds, but there is no ASM A with A � X : each −1 can be eliminated and, as mentioned in 
Example 2.2, there is no suitable permutation matrix.

Corollary 2.4. Let X = [xij] ∈ Xn be an n × n (0, ±1)-matrix. Then one can check in polynomial time if there exists an A ∈ Cn such 
that A � X and, if so, find such a matrix A. In fact, this can be checked in “nearly linear time” as a max-flow problem.

Proof. This follows from the construction in Theorem 2.1 as a general circulation problem with lower/upper bounds can be 
solved efficiently by network flow algorithms. In fact, let y be an (L, U )-circulation (as defined in the proof of Theorem 2.1). 
Define x = y − L, so O  ≤ x ≤ C where x = (x(e) : e ∈ E), O is the zero vector and C := U − L. Then

∑
e∈δ−(v)

(L(e) + x(e)) =
∑

e∈δ+(v)

(L(e) + x(e)) for all v ∈ V ,

i.e.,

∑
e∈δ+(v)

x(e) −
∑

e∈δ−(v)

x(e) = b(v) for all v ∈ V ,

where b(v) = ∑
e∈δ−(v) L(e) − ∑

e∈δ+(v) L(e) for each vertex v . Thus, one can determine if an (L, U )-circulation exists as 
a flow feasibility problem: determine if there is a flow x in the graph with divergence b and capacities O  ≤ x ≤ C . This 
problem can be solved as a max-flow problem in a modified graph with two extra vertices (source and sink) and edges 
with capacities corresponding to C , one for each vertex. For details on this (standard) construction, see [1]. �

Next, we show how the Frobenius-König Theorem can be derived from Theorem 2.1 by letting X be a (0, 1)-matrix.

Theorem 2.5. (Frobenius-König Theorem) Let X be an n × n (0, 1)-matrix. Then there exists an n × n permutation matrix P ≤ X if 
and only if X does not have an r × s zero submatrix O rs with r + s = n + 1.

Proof. We consider Theorem 2.1 in the special case when X is a (0, 1)-matrix. A (0, ±1)-matrix A ∈ Cn with A � X is 
necessarily a permutation matrix. Thus, we only need to show that (2) is equivalent to the Frobenius-König condition that 
every r × s zero submatrix O rs of X satisfies r + s ≤ n. Clearly (2) implies this condition since, when X[I, J ] = O rs , the right 
hand side in (2) is zero, so |I| + | J | ≤ n.

Conversely, assume the Frobenius-König condition holds, and consider an inequality (2) associated with I and J . Choose 
an r × s zero submatrix X[I ′, J ′] of X[I, J ] with r + s maximal (we may have r = s = 0). The Frobenius-König condition then 
gives r + s ≤ n, so

σ+(X[I, J ]) ≥ |I \ I ′| + | J \ J ′| = |I| + | J | − (r + s) ≥ |I| + | J | − n

where the first inequality holds because of the maximality of the zero submatrix X[I ′, J ′]. Thus, inequality (2) associated 
with I and J holds (as there are no negative entries). �

Finally, in this section, we comment on Hoffman’s Theorem on circulations. Chapter 6 in [4] discusses several existence 
theorems for matrices and uses the Max-flow min-cut Theorem as a starting point for the proofs. This is possible by 
considering an entry in a matrix as a flow in an edge in a (directed) graph with a bipartition. In [4] Hoffman’s Theorem is 
derived from the Max-flow min-cut Theorem, but the opposite derivation is also possible. Frobenius’ original proof is quite 
complicated, and we refer to [11] for a discussion of that proof as well as a later proof by König.
6
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3. The class Cn and zero submatrices

We consider again the NPM class Cn consisting of all n × n (0, ±1)-matrices with every row and column sum equal to 
1. In view of the role of zero submatrices in the Frobenius-König Theorem, we determine how large (sum of the number of 
rows and the number of columns) a zero submatrix can be in a matrix in Cn . Since Cn is invariant under row and column 
permutations, we may restrict our attention to the case when the zero submatrix is a leading submatrix. Therefore, consider 
a matrix A ∈ Cn of the form

A =
[

O A12

A21 A22

]
(4)

where the leading zero submatrix has size r × s with 1 ≤ r, s < n. We may assume that all rows of A21 and all columns of 
A12 are nonzero. We assume throughout this section that n ≥ 2 (otherwise there is no zero submatrix).

An interchange applied to a (0, ±1)-matrix A is the addition of

±
[

1 −1
−1 1

]

to a 2 × 2 submatrix of A provided the result is also a (0, ±1) matrix. The following lemma shows an essential property of 
Cn .

Lemma 3.1. Assume that Cn contains a matrix A as described above in (4). Then A can be transformed by interchanges into another 
matrix in Cn of the same form (4) where now both the corresponding submatrices A12 and A21 are (0, 1)-matrices having nonzero 
rows and nonzero columns, respectively, thus implying that each of the first r rows and the first s columns of A now contain exactly 
one 1. In particular, r + s ≥ n.

Proof. If A = [aij] itself has the desired form, there is nothing to prove. Assume A21 contains a −1. Since each column sum 
is 1, there are i, k and j such that aij = −1 and akj = 1 where both the positions (i, j) and (k, j) lie in the submatrix A21. 
Since rows i and k in A each have row sum 1, there must be a l 
= j such that ail > akl . Consider the submatrix A′ of A
defined by rows i, k and columns j, l (in this order). Then A′ equals one of the following three matrices:[ −1 1

1 0

]
,

[ −1 1
1 −1

]
,

[ −1 0
1 −1

]
.

In each case we can perform an interchange resulting, respectively, in[
0 0
0 1

]
,

[
0 0
0 0

]
,

[
0 −1
0 0

]
.

Clearly the updated matrix A lies in Cn and in each case the number of −1’s is strictly reduced. So, we can repeat this 
procedure until there are no −1’s in the submatrix A21. If A21 now has a zero row we can include it with the O before we 
deal with A12 in a similar way. If we then get a zero column in A12, we can include it with the O . This may then introduce 
a −1 in the new A21 and we could repeat. Thus eventually we obtain the situation in which A21 has no −1’s and no zero 
rows (and a similar situation holds for A12). Thus the number of 1’s in A21 equals s. Since all column sums equal 1, A21
cannot contain two 1’s in the same column. Hence A21 is an (n − r) × s (0, 1)-matrix with all column sums equal to 1. Thus 
s ≥ n − r and so r + s ≥ n. �

Note the obvious fact that if a matrix in Cn contains an r × s zero submatrix, then it also contains an r′ × s′ submatrix 
for any r′ ≤ r and s′ ≤ s.

Theorem 3.2. Let r, s, n be integers with 1 ≤ r, s < n. The class Cn contains a matrix A with an r × s zero submatrix as in (4) if and 
only if

r + s − n ≤ (n − r)(n − s). (5)

Proof. Assume first Cn contains a matrix A of the form (4) with the conditions given in Lemma 3.1 satisfied. Thus A21
contains exactly s 1’s. Since each of the last n − r rows sum to 1, there must be (at least) s − (n − r) −1’s in the (n − r)(n − s)
submatrix A22. Hence s − (n − r) ≤ (n − r) × (n − s) and (5) holds; this also follows directly from (2).

Conversely, assume that (5) holds. We construct a matrix A ∈ Cn of the form (4). We take for A22 any (0, −1)-matrix 
with k = max{0, r + s −n} −1’s. We then choose the 1’s in A21 and A12 in staircase patterns in order to achieve that the last 
n − r rows and last n − s columns have sum 1. This is possible in A21 as the number of −1’s in A22 is k and r + s − n < s, 
where s is the number of columns in A21. Similarly, concerning A12, we have r + s − n < r, so it is possible to complete this 
matrix as desired. �
7
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Example 3.3. Let n = 8 and consider the three cases (i) r = 5, s = 4, (ii) r = 6, s = 5, and (iii) r = 6, s = 6. The construction 
in the proof of Theorem 3.2 gives the matrices A1, A2 and A3 in these cases, respectively.

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+

+
+

+
+ + −

+
+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+

+
+

+
+

+ + + + − − −
+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+
+

+
+
+

+ + + − −
+ + + − −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. �

Theorem 3.4. The maximum ξn of r + s such that Cn contains a matrix A with an r × s zero submatrix is

ξn = max{2�n + 1 − √
n + 1�,2�(1/2)

(
2n + 3 − √

4n + 5
)� − 1}.

Proof. By Theorem 3.2, Cn contains a matrix A with an r × s zero submatrix as in (4) if and only if (5) holds. We now 
analyze this condition on (r, s). We call (r, s) a maximizer if (r, s) satisfies (5) and r + s = ξn . Clearly, a maximizer exists.

Claim: There exists a maximizer (r, s) with r = s or r = s + 1.
Proof of Claim: Let (r, s) be a maximizer. By symmetry in (5) we observe that also (s, r) is a maximizer. We may therefore 

assume r ≥ s. If r = s, we are done, so assume r ≥ s + 1. Let (r′, s′) = (r − 1, s + 1). Then

r′ + s′ = r + s = ξn

and

(n − r′)(n − s′) + n = (n − r)(n − s) + n + (r − s − 1) ≥ (n − r)(n − s) + n.

Therefore, (r′, s′) also satisfies (5) and must be a maximizer. If r′ equals s′ or s′ + 1 we are done, otherwise we can repeat 
this “shifting” procedure until the desired property holds.

Based on the claim, we are left with a one-variable problem, with two cases.
Case 1: r = s. Then (5) becomes 2r ≤ (n − r)2 +n. By simple algebra this inequality holds if and only if r ≤ n + 1 −√

n + 1. 
This gives the bound

r ≤ �n + 1 − √
n + 1�

Case 2: s = r − 1. Then (5) becomes 2r − 1 ≤ (n − r)(n − r + 1) + n. Again by some algebra we obtain the bound

r ≤ �(1/2)
(
2n + 3 − √

4n + 5
)�.

Using the relationship between r and s in the two cases leads to the desired expression for ξn . �
The following table shows the values of ξn up to n = 15, based on Theorem 3.2.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ξn 2 4 5 7 8 10 12 13 15 17 18 20 22 24

(As pointed out by a referee, this agrees with the sequence A123663 in the Online Encyclopedia of Integer Sequences 
(OEIS)). For instance, when n = 8, we get ξ8 = 12 and a maximizer is shown in Example 3.3, where r = s = 6. We also note 
that, for large n, ξn is close to 2n. For instance, for n = 1000, we have ξ1000 = 1938, so the zero submatrix is very large.
8
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4. Special case: X is a restricted (0, ±1)-matrix

In this final section we collect a number of additional facts concerning the existence of ASMs that are subordinate to a 
(0, ±1)-matrix. The Frobenius-König Theorem concerns the existence of a permutation matrix P ≤ X where X is an n × n
(0, 1)-matrix, equivalently, an ASM A � X when X has no −1’s. For an arbitrary n × n (0, ±1)-matrix X ∈Xn , let An(X) be 
the set of ASMs A with A � X .

Next we obtain a Frobenius-König Theorem for ASMs in the special case of (0, ±1)-matrices X having a (0, −1)-
submatrix (not necessarily of consecutive rows and consecutive columns) containing all the 0’s and −1’s of X .

Theorem 4.1. Let X = [xij] be an n × n (0, ±1)-matrix such that X has an r × s (0, −1)-submatrix and all other entries of X equal 1. 
Then there exists an ASM A with A � X if and only if r + s ≤ n, in which case there is actually a permutation matrix P � X. If r + s = n, 
then every such A is a permutation matrix.

Proof. First assume that there exists an ASM A with A � X . If r + s > n, then there are n − r rows and n − s columns of X , 
all of whose entries equal 1 and that contain all the 1’s of X , where (n − r) + (n − s) = 2n − (r + s) ≤ n − 1. Since each of 
the specified (n − r) rows and (n − s) columns can contain at most one 1 in the ASM A � X , A has at most (n − 1) 1’s, a 
contradiction.

If r + s ≤ n, then, since all the 0’s of X are contained in an r × s submatrix with r + s ≤ n, it follows from the Frobenius-
König Theorem that there is a permutation matrix, thus ASM, P � X . If r + s = n, the calculation above shows that A has n
1’s, so it must be a permutation matrix. �
Lemma 4.2. There does not exist an n × n ASM with an r × s submatrix E with r + s ≥ n + 1 the sum of whose entries is nonpositive 
and whose complementary submatrix B has nonnegative sum.

Proof. Suppose there is such an ASM A. After row and column permutations (for convenience only),

A =
[

B C
D E

]
,

where the sum of the entries of E is nonpositive and the sum of the entries of B is nonnegative. Then, since σ(B) ≥ 0 and 
σ(E) ≤ 0, the sum of the entries of A satisfies

σ(A) ≤ (σ (B) + σ(C)) + σ(D) ≤ (n − r) + (n − s) = 2n − (r + s) ≤ n − 1,

a contradiction, since the sum of the entries of an n × n ASM equals n. �
Theorem 4.3. Let X be a (0, ±1)-matrix with an r × s (0, −1)-submatrix E with r + s ≥ n + 1 and such that E contains all the −1’s 
in X. Then there is no ASM A with A � X.

Proof. An ASM A with A � X cannot exist by Lemma 4.2. �
Note that as a special case this contains the easy part of the Frobenius-König Theorem. In the case of a (0,1)-matrix, the 

converse also holds. But the converse of Lemma 4.2 does not hold in general for ASMs.

Example 4.4. Let n = 3 and

X =
⎡
⎣ − + −

+ − +
− + −

⎤
⎦ .

Then

A =
⎡
⎣ +

+ − +
+

⎤
⎦

is an ASM and A � X . However, X has an r × s (0, −1) submatrix with r + s > n, namely the 2 × 2 submatrix of X
corresponding to the first and last row and column, and r + s = 4 > 3 = n. Now, modify X by the replacing the entry in 
position (2, 2) with a 0, so

X ′ =
⎡
⎣ − + −

+ +
− + −

⎤
⎦ .
9
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Then there is no ASM A′ with A′ � X ′ because we would have to replace all the −1’s by 0, and then by the Frobenius-König 
Theorem there cannot exist a permutation matrix P satisfying P ≤ X ′ . �

From this example we conclude that the possible existence of an ASM does not only depend on the properties of 
individual submatrices; the signs of the entries outside the submatrix play a role. We conclude with a question.

Question 4.5. Let X be an n × n (±1)-matrix whose −1’s form an r × s submatrix with r + s ≤ n. What is the maximum 
number η(X) of −1’s in an ASM A with A � X? If r + s = n, then as shown in Theorem 4.1, η(X) = 0. Another possibility 
to consider is the minimum of η(X) taken over all n × n (±1)-matrices whose −1’s form an r × s submatrix with r + s ≤ n.
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