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Delay Differential Analysis (DDA) is a nonlinear method for analyzing time series based on principles
from nonlinear dynamical systems. DDA is extended here to incorporate network aspects to improve
the dynamical characterization of complex systems. To demonstrate its effectiveness, DDA with
network capabilities was first applied to the well-known Rössler system under different parameter
regimes and noise conditions. Network-Motif DDA (NM-DDA), based on cortical regions, was then
applied to invasive intracranial electroencephalographic (iEEG) data from drug-resistant epilepsy
patients undergoing presurgical monitoring. The directional network motifs between brain areas that
emerge from this analysis change dramatically before, during, and after seizures. Neural systems
provide a rich source of complex data, arising from varying internal states generated by network
interactions.

Epilepsy is a neural network disorder that affects
over fifty million people worldwide. Although
some patients benefit from current medical treat-
ments, many still have seizures that are refrac-
tory. Despite advances made in the diagnosis and
treatment of epilepsy, the proportion of patients
who are free of seizures following treatment has
not changed. Epilepsy manifests in a wide range
of symptoms and conditions, with influence that
often extends far beyond the regions of seizure
onset. Recent methods aimed at uncovering the
network dynamics of brain activity allow seizures
to be investigated in ever greater detail. Here we
use NM-DDA, a new flavor of delay-differential
analysis, to explore and better understand how
seizures originate, the pathways through which
they propagate, and how they eventually termi-
nate.

I. INTRODUCTION

Complex systems often display emergent properties and
are challenging to investigate. When the whole is greater
than the sum of its parts, reductionist descriptions are
not enough to understand, predict or control its behav-
ior. Examples of such systems are abundant in physics,
climate studies, economics, and biology [44, 49]. Thus,
developing frameworks to investigate complex networks
and uncover common principles between seemingly very

different systems or domains is an active and promising
research direction. Critical elements of such a framework
include nonlinear dynamics, statistical physics, and net-
work theory [1].

The activity of the brain is a preeminent example of
such a complex system and is challenging for the study
of networks. Complex network dynamics underlie cog-
nition and consciousness [46], and disruptions of these
networks on different spatiotemporal scales lead to neu-
rological conditions that are characterized by abnormal
synchronization and coupling between neuronal popula-
tions [47]. The most common examples of these include
Alzheimer’s disease [43], schizophrenia [26], autism spec-
trum disorder [9], Parkinson’s disease [10], and epilepsy
[36]. Among these conditions, epilepsy is a network dis-
order [13, 52] with special interest for network theory due
to its inherently dynamical nature. Abnormal synchro-
nization and network dynamics are increasingly recurring
themes in the theories and models of epilepsy [3], and
may be responsible for the pharmacological resistance in
20-30% of cases, which has not dropped in decades de-
spite the development of new treatments [5].

Changes in the functional or effective connectivity are
involved in the initiation [38, 50], spreading [12], and
termination of seizures [13, 48]. These changes may sup-
port clinical decisions in cases of intractable focal epilepsy
by providing a better assessment of the putative epilep-
togenic zones that are candidates for surgical resection
[24].
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Epileptogenic or seizure onset zones [42, 52] are at the
tip of epileptogenic networks involving interactions with
other critical nodes that generate and maintain seizures.
This has implications for the forecasting [4, 8, 31], con-
trol, and suppression of seizures [11, 29], in addition to
other targeted (mainly surgical) interventions [2, 24]. In
all of these cases, neural activity is supported by net-
work dynamics [30] and interactions occur between neu-
ral populations at different spatiotemporal scales [15, 51].
Understanding the relevant neural dynamics, which are
often nonlinear, is key to providing useful insights into
ameliorating seizure treatment.

Delay differential analysis (DDA) [16–18, 21] is a classifi-
cation tool that has been used extensively for analyzing
neural data, including iEEG recordings during epileptic
seizures. It has several variations that capture differ-
ent aspects of interacting dynamics in nonlinear systems.
However, what has been lacking so far is a focus on the
network aspects underlying dynamics. In this paper,
we aim to integrate DDA with network constraints to
better characterize complex systems. We analyzed data
from two nonlinear systems: (i) the well-known model
Rössler system with different parameters and noise con-
ditions, and (ii) invasive intracranial electroencephalo-
graphic (iEEG) recordings from epilepsy patients under-
going presurgical monitoring.

The paper is organized as follows: Section II describes
DDA and its different flavors or versions; Section III in-
troduces the proposed addition to the DDA framework
and demonstrates its use in simulated data from coupled
Rössler systems; Section IV contains results of the pro-
posed approach with real invasive iEEG data from two
epilepsy patients before, during, and after seizures. Dis-
cussion of results and conclusions are given in Section
V.

II. THE FLAVORS OF DDA

DDA is a detection/classification framework that com-
bines differential embeddings with linear and nonlinear
nonuniform functional delay embeddings [32, 40, 45] to
relate the current derivatives of a system to the current
and past values of the system variables [14, 17, 23].

More traditional analyses that are often based on spec-
tral features have hundreds of features per data segment
and approaches based on artificial neural networks in-
crease even further the feature space. Therefore, such
techniques rely on dimensionality reduction techniques
to achieve a viable number of features. DDA, on the
other hand, achieves a reduced feature space by mapping
the data on a “natural” nonlinear basis (inspired by Max
Planck’s “natural units” [34]) that is selected according
to the classification problem. Therefore, DDA is effi-
cient at embedding the meaningful dynamics of the data
in a low-dimensional DDA model of only three terms.

This has several advantages: it is noise-insensitive, less
prone to overfitting, and computationally fast and there-
fore making it a useful tool for analyzing real world iEEG
data [6, 16–19, 22, 39].

DDA has four flavors:

1. Single-Trial/Channel DDA (ST-DDA) [22] is the
classical variant developed for analyzing single time
series.

2. Cross-Trial/Channel DDA (CT-DDA) [20] deter-
mines the overall dynamics of multiple time series
simultaneously.

3. Dynamical-Ergodicity DDA (DE-DDA) [16] is a
combination of ST-DDA and CT-DDA to assess
dynamical ergodicity or similarity from data.

4. Cross-Dynamical DDA (CD-DDA) [17] measures
causality between two time series.

We introduce here Network-Motif DDA (NM-DDA) for
network analysis, which uses a combination of all four
DDA flavors above. In the next section, we introduce this
analysis framework on simulated data of coupled Rössler
systems; but first, we want to remind the reader of the
four flavors of DDA in detail.

A. ST-DDA

Single Trial/Channel DDA is used for analyzing a single
time series. To do that we first have to select the DDA
model that best fits the overall dynamics of the data.

The general nonlinear DDA model with two time delays
and three terms is

u̇(t) =
3∑

i=1

ai u(t− τ1)
mi u(t− τ2)

ni

u̇ = Fu + ρu

(1)

where u(t) is a time series and ρu is the fitting error and
noise term. The nonlinearity is specified by mi, ni, τ1,2 ∈
N0 and a degree mj + nj ≤ 4. The noise and residuals
are obtained through data analysis: First the upper line
in Eq. (1) with m1+n1 ≥ 1 is solved by excluding a con-
stant term to estimate the three coefficients a1,2,3 using
singular value decomposition (SVD) [35]. Then the noise
term ρu in the second line in Eq. (1) is estimated as the

least square fitting error ρu =
√∑

(u̇−Fu)2. For sta-
tionary data and a DDA model with an infinite number
of parameters, e.g. a Volterra series, the constant term
would be the noise term. For a sparse model of only three
terms, as used in DDA, the constant term includes the
noise as well as the fitting error of the model. The deriva-
tive on the left side is computed using a center derivative
algorithm [27, 28].

The model form of Eq. (1) has to be chosen to fit the
overall nonlinear orchestration of the data. For the two
data sets in this paper, the simulated data from coupled
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Rössler systems and real iEEG data from epilepsy pa-
tients, the models were chosen by minimizing the error
ρ. For the simulated uncoupled Rössler data we did an
exhaustive search over all three term models with two
delays up to a cubic order of nonlinearity and all delays
between 6 and 60 δt, where δt is the time step for numeri-
cal integration. For the iEEG data from epilepsy patients
we used a genetic algorithm as explained in [22] to find
the best model form and delays simultaneously. Data
(recorded with a 500 Hz sampling rate) from 13 patients
were used for this search. They consisted of a million
randomly selected two second data segments around the
155 seizures (half an hour before to half an hour after
seizure onset as marked by neurologists) from 730 iEEG
channels. Interestingly, most of the models chosen con-
sisted of two linear and one nonlinear term. Two of those
models had a mean high error before and a low error after
seizure onset. These models are

u̇ = a1 u1 + a2 u2 + a3 u
2
1

u̇ = a1 u1 + a2 u2 + a3 u
4
1

(2)

where we abbreviated u(t − τ⋆) = u⋆ to have a more
compact notation and be consistent with previous publi-
cations. We use here the second model because we want
to use only one and it proved slightly better in the past.
The genetic algorithm selected 8 delay pairs and all of
those were used in [22]. We chose here one of the delay
pairs that proved to be useful for the analysis of epilepsy
iEEG data. Here, the delays τ1 = 7 δt, τ2 = 10 δt are
employed, where δt is the sampling time corresponding
to a sampling rate of fs = 500Hz.

To better explain how ST-DDA extends to the other
DDA flavors we apply the DDA iEEG model to a time
series u(t) of length L and rewrite it as matrix equation
in the following way:

u̇ = a1 u1 + a2 u2 + a3 u
4
1

u̇(t+ 1)
u̇(t+ 2)
u̇(t+ 3)

...
u̇(t+ L)

 =


u(t+ 1− τ1) u(t+ 1− τ2) u(t+ 1− τ1)

4

u(t+ 2− τ1) u(t+ 2− τ2) u(t+ 2− τ1)
4

u(t+ 3− τ1) u(t+ 3− τ2) u(t+ 3− τ1)
4

...
u(t+ L− τ1) u(t+ L− τ2) u(t+ L− τ1)

4


 a1

a2
a3



u̇ = Mu A

(3)

Note, that Mu is an (L × 3) matrix. L is the number
of data points for each window for the estimation of the
three free parameters a1,2,3. It needs to be of sufficient
length to capture the embedded dynamics of the time
series while remaining concise enough to detect changes
in those dynamics, making it inherently dependent on
the data. Its choice also depends on the timescale of the
dynamics of interest. For the Rössler data we use 2000
data points for a integration step size of δt = 0.025 and
for the epilepsy data we use a quarter of a second, which
gives 125 data points for a sampling rate of 500 Hz.

B. CT-DDA

Multiple time series can be analyzed with CT-DDA. For
two time series, u1(t) and u2(t), the features can be ei-
ther computed for each time series separately, resulting
in (A, ρa)1 and (A, ρa)2, or in a combined way by solving
the equation (

u̇1

u̇2

)
=

(
Mu1

Mu2

)
B (4)

for the features B = (b1, b2, b3). In (4), the vector

(
u̇1

u̇2

)
has 2L elements since the two time series u1(t) and u2(t)

are each of length L.

(
Mu1

Mu2

)
is a (2L × 3) matrix

and Mu1 and Mu2 each have the same form as Mu in
Eq. (3). Therefore, B = (b1, b2, b3) is a vector with three
elements. This can be extended to any number of time
series. Note that for ST-DDA, there are as many feature
sets (A, ρa) as there are time series, while for CT-DDA
there is only one combined feature vector (B, ρb).

CT-DDA only makes sense if the dynamics in the two
time series u1(t) and u2(t) are similar and therefore can
be used to test for dynamical similarity. This motivates
dynamical ergodicity.

C. DE-DDA

Consider two time series u1(t) and u2(t) and the two
corresponding ST-DDA feature vectors (A, ρa)1 and
(A, ρa)2. From CT-DDA there is one combined feature
vector (B, ρb). The mean of the two ST-DDA errors, ρa,
and the CT-DDA error ρb should be similar if the ana-
lyzed time series have similar dynamics and the quotient
should be close to one. Dynamical Ergodicity as used in
DE-DDA is defined as:

E =

∣∣∣∣ρaρb − 1

∣∣∣∣ . (5)

D. CD-DDA

For CD-DDA we consider two dynamical systems X and
Y resulting in the time series u(t) and v(t). the first step
is to compute a set of features C = (c1, c2, c3) with

u̇ = Mu C+ ρu (6)

where u̇ is a vector of length L and the delay matrix
Mu is a (L × 3) matrix. To check if there is a causal
connection from Y to X, we add the delay matrix from
the other time series, Mv, to the equation

u̇ = (Mu Mv)E+ ρuv . (7)
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(Mu Mv) now is a (L × 6) matrix resulting in E =
(e1, e2, . . . , e6) with six elements. If there is a causal
connection from Y to X, then the last three elements
of E will make the model better and the error ρuv should
decrease. If there is no causal connection from Y to X,
then the last three elements of E will be irrelevant and
the error ρuv should not change. The difference

Cuv =| ρu − ρuv | (8)

can therefore be used to quantify causality from Y to X.
A causal connection from X to Y can be tested in the
same way, starting with

v̇ = Mv D+ ρv (9)

where v̇ is a vector of length L and Mv is a (L × 3)
matrix. Once again, the second delayed matrix Mu can
be added to the equation,

v̇ = (Mu Mv)F+ ρvu . (10)

(Mu Mv) is the same combined (L× 6) delay matrix as
in Eq. (7) resulting in F with six elements. Whether the
first three terms of F are relevant or not tells us whether
there is a causal connection and

Cvu =| ρv − ρvu | (11)

is used to quantify causality from X to Y .

However, this and all other causality measures assume
that the two dynamical systems are not entirely similar
or synchronized to each other. Adding Dynamical Er-
godicity and looking at E ∗ C adjacency matrices elim-
inates spurious incorrect connections that result from
non-independent systems.

III. NETWORK ANALYSIS ON SIMULATED
DATA OF THE RÖSSLER SYSTEM

To first test the framework, we use simulated data of the
Rössler system [37]. This system is a three-dimensional
system of ODEs with one nonlinearity that was intro-
duced by Rössler as a simplification of the Lorenz sys-
tem [25]. One reason it serves as a benchmark system
is that, despite its relative simplicity, it can generate a
wide variety of dynamical behaviors, including chaos. We
couple Rössler systems using diffusive coupling as intro-
duced in Paluš and Vejmelka [33] and consider here seven
(coupled) Rössler systems

ẋn = −yn − zn +
∑
j

ϵ(xn − xj)

ẏn = xn + an yn

żn = bn + cnzn + xnzn

(12)

with n = 1, 2, . . . , 7 and xj is the x-component of an-
other system. The values for an, bn, and cn are listed

TABLE I: Parameters of the seven Rössler systems

# an bn cn

1 0.21 0.21505 4.5

2 0.21 0.20201 4.5

3 0.21 0.20411 4.5

4 0.20 0.40503 4.5

5 0.20 0.39905 4.5

6 0.20 0.41000 4.5

7 0.18 0.50000 6.8

in Tab. I. ϵ is either 0 or 0.15 depending on which sys-
tems are coupled. The seven Rössler systems were inte-
grated with a step size of 0.05 and down-sampled by a
factor of two. We ran this experiment in three segments:
(i) seven uncoupled systems, (ii) systems #(4,5,6)→#7
with ϵ = 0.15, and (iii) #7→#(4,5,6) with ϵ = 0.15 (see
Fig. 1). This experiment was first run without noise and
then repeated for added white noise with a signal to noise
ratio (SNR) of 15 dB. Fig. 1 shows the embeddings of one
data window of 2000 data points for each of the seven xn

time series from Eq. (12) for no noise and added white
noise of SNR=15 dB. For the remainder of this section
the three different cases will have the same backgrounds
in the figures.

For the DDA part we chose a window length of 2000 data
points and a window shift of 500 data points. We used
the same model and delays as in [17]:

u̇ = a1 u1 + a2 u2 + a3 u
3
1 (13)

with uj = u(t−τj), τ1 = 32 δt, τ2 = 9 δt, and δt = 0.025.
We computed DE-DDA (E) as explained in [16] for all
pairwise combinations of the seven xn components of the
seven Rössler systems in Eq. (12). The lower the value of
E the more dynamically similar the data are. The mid-
dle panel in Fig. 2 shows them as function of time for a
few data windows. The bottom plots show the resulting
dynamical ergodicity matrices for three time windows.
These three time windows were chosen before the net-
work switch on, for a data window with data from before
and after switch on, and a data window after network
switch on. The corresponding networks are shown in the
top panel. Fig. 3 shows the same for the whole time series
and 500 data windows for each case. Lighter colors rep-
resent a lower E value and higher dynamical similarity.
As can be seen in Fig. 3 for the unconnected case systems
#(1,2,3), #(4,5,6), and #7 are clearly similar. For case
(ii), where #(4,5,6)→#7 system #7 is clearly different,
while all other systems are similar to each other, form-
ing 2 groups, namely #(1,2,3) and #(4,5,6). For case
(iii), where #7→#(4,5,6) systems #(1,2,3) are most dif-
ferent to all other systems and #(4,5,6) can still be dis-
tinguished from #7.
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FIG. 1: Comparisons of the embeddings of the seven Rössler systems in Eq. (12) with (a) No noise added and
with (b) Added white noise. For each graph one data window (2000 data points) with τ = 10δt of the xn components is
shown. The rows correspond to the three cases, (i) seven uncoupled systems, (ii) systems #(4,5,6)→#7 with ϵ = 0.15, and (iii)
#7→#(4,5,6) with ϵ = 0.15. In the boxes on the left the network motifs for these three cases are shown. The numbers in the
network motifs correspond to the seven systems.

To recover the network structure we first computed the
causality measure C using CD-DDA. The results are
shown in Fig. 4. The upper panel shows causality from
the seven systems to all other systems as function of time.
Each vertical line represents an adjacency matrix. The
mean of all adjacency matrices for each of the three cases
is shown in the middle panels. These can also be plotted
as network graphs in the bottom panel. To display the
network graphs we disregard the lower 25% of the values
in the adjacency matrices. For case (i) we get incorrect
connections between the groups of systems that are sim-
ilar. For the cases (ii) and (iii) the right connections
are bigger than additional incorrect connections. All in-
correct connections result from dynamical similarity. In
such cases causality is not meaningful. As explained in

[16] we therefore multiply C with E and show the results
in Fig. 5. Now, all the incorrect connections disappeared
and we recovered the correct networks for all three cases.
For the unconnected network in case (i) all values are very
small and much smaller than for the other two cases.

In the next step we did principal component analysis
(PCA) [35] and computed the first principal component
and first singular value from 100 E ∗ C adjacency matri-
ces with sliding windows over time. This analysis makes
more sense for real data where we have changes of net-
work connections over time that might e.g. lead to epilep-
tic seizures. From Fig. 6 we can see, that the first singu-
lar value in case (i), the unconnected systems, is close to
zero, while it is bigger for connected systems. Other SVs
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FIG. 2: Transitional DDA time windows. The top pan-
els show the network motifs on the left and right. In be-
tween there is a transitional time of 2000 data points (win-
dow length) where the analysis shifts from the left to the right
motif. In the middle panel the temporal evolution of the strat-
ified dynamical ergodicity matrices is shown. The lower panel
shows the mean of three ergodicity matrices over 2000 data
points before, during, and after the transition. After and
during the transition the three different types of dynamics
are more obvious indicated by much higher values of E than
for the uncoupled network. Lower values of the dynamical
ergodicity E correspond to higher dynamical similarity.
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FIG. 3: Transitional DDA time windows for the whole
time series. Network motifs (top panel), dynamical er-
godicity as function over time (middle panel), and dynamical
ergodicity matrices (bottom panel) for the 7 time series of the
x-components of the Rössler systems. This figure shows the
same properties as Fig. 2 on a bigger time scale.

could also be used for characterizing the dynamics, but
for the sake of simplicity and demonstrating the method,
we only used one. For the simple dynamics of the simu-
lated Rössler data adding additional SVs was not neces-

FIG. 4: Causality C for three different networks.
The top panel shows the stratified adjacency matrices C
for the three cases, (i) seven unconnected systems (12), (ii)
#(4,5,6)→#7, and (iii) #7→#(4,5,6). The middle panel
shows the mean adjacency matrices for each case and the bot-
tom panel shows the resulting network motifs where the lower
quarter of values was disregarded. The line widths indicate
the connection strengths. This figure clearly points out that
C alone causes spurious connections and needs improvement.

sary to improve the method. In the case of the epilepsy
data we need to look at more patients, which is planned
for a more medical oriented audience, to investigate the
importance of the other SVs.

To check how the analysis reacts to noise we added white
noise of SNR=15 dB to the data and repeated all previous
steps. Fig. 7 shows the reconstructed networks. Again,
the connections in cases (ii) and (iii) were identified cor-
rectly. For case (i) the values of the connections are very
small and the first singular value is close to zero.

To summarize our findings on simulated data, causality C
alone often shows incorrect connections because the sys-
tems are very similar (see also [17] for more examples and
comparison to other methods such as Granger causality,
transfer entropy, and convergent cross mapping). Adding
Dynamical Ergodicity and looking at E ∗C adjacency ma-
trices eliminates those incorrect connections but for un-
connected systems weak connections between the nodes
of similar dynamics appear. Adding PCA analysis elim-
inates those.

We will apply this framework in the next section to iEEG
data from epilepsy patients to identify network motifs
related to epileptic seizures.
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FIG. 5: E ∗ C for three different networks. The top panel
shows the stratified adjacency matrices E ⋆ C for the three
cases. The middle panel shows the mean adjacency matri-
ces for each case and the bottom panel shows the resulting
network motifs where the lower quarter of values was disre-
garded. The line widths indicate the connection strengths.
This figure is a clear improvement over Fig. 4 for the coupled
systems. In those two cases on the right only correct con-
nections are captured. The very left part for the unconnected
network still shows spurious connections but with much lower
values. Further improvement is needed.
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FIG. 6: First singular value Σ (middle panel) and first
principal component (bottom panel) of the E ∗ C ad-
jacency matrices in Fig. 5. The grey boxes indicate tran-
sitional windows between the cases. The top panel shows
the ground truth network motifs. This figure is a clear im-
provement over Fig. 5 where spurious connections have small
singular values.

FIG. 7: E ∗ C for three different networks with noise.
The top panel shows the stratified adjacency matrices E ⋆ C
for the three cases. The middle panel shows the mean ad-
jacency matrices for each case and the bottom panel shows
the resulting network motifs where the lower quarter of val-
ues was disregarded. The line widths indicate the connection
strengths. White noise of 15 dB was added to the data. This
figure should be compared to Fig. 5 where the noise-free case
is shown.
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FIG. 8: First singular value Σ1 (middle panel) and first
principal component (bottom panel) of the E ∗C adja-
cency matrices in Fig. 7. White noise of 15 dB was added
to the data. The grey boxes indicate transitional windows
between the cases. The top panel shows the ground truth
network motifs. This figure should be compared to Fig. 6
where the noise-free case is shown.
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IV. EPILEPSY DATA

In [22] a genetic algorithm was used to select the model
with minimum error from one second data segments for
one hour periods centered on the seizure onset times.
Around one million such data segments (155 seizures and
730 iEEG channels from 13 patients) were analyzed in
this way. The patient demographics and characteristics
are described in [22]. All data were obtained with in-
formed patient consent and handled following protocols
as approved by the IRB of the Massachusetts General
Hospital.

The DDA model selected in [22] for the characterization
of epileptic seizures is

u̇ = a1u1 + a2u2 + a3u
4
1 (14)

with ui = u(t − τi). We use overlapping data windows
of 250 ms length with a window shift of 25 ms. We did
not filter or pre-process the data except normalizing each
data window to zero mean and unit variance. Here, we
show results from two patients.

Since the patients in our data set have from around 80
to over 300 electrodes implanted, the networks may be
complex and heterogeneous. We therefore compute the
DDA features a1,2,3 and the error ρ for each channel as
well as E and C for each pairwise channel combination.
We then group channels according to brain region or net-
work and take the mean of the DDA features. Mapping
of channels to brain areas was done with an electrode
labeling algorithm (ELA) [7, 41], and grouped into eight
major regions indicated by

Brain Region Abbreviation

frontoparietal FP

cingulate CG

lateral temporal AT

mesial temporal MT

hippocampus HP

occipital OC

thalamus TH

subcortical SU

and are preceded by R or L to indicate the right or left
hemisphere. We then use the same template for all net-
work motifs. An example is shown in Fig. 9. Brain re-
gions without implanted electrodes are indicated with a
dot. The line widths indicate the connection strength.
The lower quarter of values in the E ∗ C adjacency matri-
ces were disregarded.

In Fig. 10 the value of a1 is shown as function over time
from 2 minutes before seizure onset to 2.5 minutes after
as determined by the neurologist. In [22] we showed a
similar plot according to the channels. Here we sorted
the channels according to the brain regions we used for
the network analysis.

FIG. 9: Example of a network motif. Thickness of the
lines indicates strength of coupling between brain regions.
Each hemisphere was divided into eight cortical and subcorti-
cal areas indicated by dots. Since in most cases not all of the
16 regions are covered by implanted electrodes dots without
labels represent regions without electrodes.

patient 1

FIG. 10: Coefficient a1 of seizure #4 of patient 1 from 2
minutes before seizure onset to 2.5 minutes after. The
channels were sorted according to the brain regions used for
network analysis. A similar plot without sorting was shown
in [22]. This plot indicates where the seizure starts and how
it progresses across different channels and regions.

In Fig. 11 the E ∗C causality is shown as function of time
along with the first principal component. The gray box
before seizure onset at time 0 indicates the window used
for PCA.

In Fig. 12 the first singular value is shown from 2 minutes
before to 2.5 minutes after seizure onset, as determined
by the neurologist. The network motifs are plotted every
20 seconds from 20 seconds before to 100 seconds after
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seizure onset. We then correlated the first PCs of those
time points with the first PCs across time to see if some
motifs are distinct seizure-related motifs. In Fig. 13 these
correlations are shown in the upper plot in the same col-
ors as the lines and network motifs in Fig. 12. In the
lower plot of Fig. 13 the values of these lines are shown
as colors. There are clearly distinct network motifs be-
fore, during, and after the seizure. We then computed
the first singular values and the correlations to the same
network motifs from 10 minutes before seizure #4 (the
same as in the previous plots) to 10 minutes after seizure
#5. This plot shows clear evidence that there are dis-
tinct network motifs related to the epileptic seizures of
this patient. We see the same behavior for all seizures of
this patient.

Comparing the correlations of the first PCs to data be-

tween two seizures (we chose the seizures closest together
in time for the two patients) we can see some similarities:
For patient 1 in Fig. 14 around 3 hours of data are shown.
The singular values have big peaks for the 2 seizures and
there are distinct correlations of the first PCs to the rest
of the data indicating distinct network motifs related to
the different phases of the seizures that do not occur in
between the seizures. For patient 2 in Fig. 15 around 2
hours of data are shown. The singular values have peaks
for the two seizures but show also activity in between.
The correlations of the first PCs to the rest of the data
are again distinct network motifs related to the different
phases of the seizures that do not occur in between the
seizures. For both patients there is a 20 minute post-ictal
state with distinct network structures.

patient 1

FIG. 11: Causal sending and first principal components. Time course for seizure #4 of patient 1 from 2 minutes before
seizure onset to 2.5 minutes after. For this patient, we have seven brain regions covered with electrodes. Taking the mean of
C ∗ E for each brain region leaves us with a 7x7 adjacency matrix for each time window. In the upper plot, these matrices
are stratified to show them across time. From this plot, the onset in the right hippocampal region is very distinct. The lower
plot shows the first principal components of the upper plots and this highlights the right hippocampal component even before
seizure onset.
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s s s s s s s

FIG. 12: Progression of interactions between brain areas before, during and after a seizure. Network motifs (top
panel) around seizure #4 for patient 1. Time 0 indicates seizure onset as determined by the neurologist. The gray box indicates
the window length for PCA. The seven lines (cyan to magenta) indicate the times between -20 seconds to 100 seconds in steps
of 20 seconds before and after seizure onset. The lower panel shows the first singular value Σ1.

s
s
s
s
s
s
s
s
s

FIG. 13: Correlations between the first PCs of network motifs. The top plot shows the correlations of the first PC
between -20 seconds and 100 seconds around seizure onset to all the other first PCs over time. The seven colors correspond
to the times and colors of Fig. 12. The lower plot shows the heat map of the upper plot. This plot indicates that for each
temporal phase around seizures we have distinct network motifs.
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FIG. 14: Analysis of iEEG recordings for patient 1 starting 10 minutes before seizure #4 to 10 minutes after
seizure #5. Nearly three hours of data are shown. The upper plot shows the first singular value Σ1 where the two seizures are
marked with black lines. The middle and lower plots show the correlations of the first PC between -20 seconds and 100 seconds
around seizure onset to all the other first PCs over time. The seven colors correspond to the times and colors of Fig. 12. As
seen in the previous figure, each temporal phase around seizures shows distinct network motifs. Interestingly the postictal
phase lasts for around 20 minutes.
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FIG. 15: Analysis of iEEG recordings for patient 2 starting 10 minutes before seizure #4 to 10 minutes after
seizure #5. These plots are the same as in Fig. 14 for another patient. For this patient about 2 hours of data are shown. As
seen in the previous figure, each temporal phase around seizures shows distinct network motifs. The postictal phase for this
patient also lasts for around 20 minutes but is less distinct than the previous patient. The two seizures have a smaller first PC
during the seizure and higher values between the seizures than the previous patient.
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Patient 2 is especially interesting because there are three
groups of seizures within the 11 seizures: (i) seizures #1,
#2, #9, and #11 stay on the right side of the brain; (ii)
seizures #3 and #10 are right progressing to left seizures;
and (iii) seizures #4, #5, #6, #7, and #8 occur on the
left side of the brain. Three examples of the a1 values
are shown in Fig. 16. The a1 values for all seizures in
each group look very similar.

seizure 1 seizure 3 seizure 4

R

L

high

low

FIG. 16: a1 value for one example seizure of each group for
patient 2: (i) seizures #1, #2, #9, and #11 stay on the
right side of the brain; (ii) seizures #3 and #10 are right
progressing to left seizures; and (iii) seizures #4, #5, #6,
#7, and #8 occur on the left side of the brain. The channels
were sorted according to the brain regions used for network
analysis.

1

2

9

11

FIG. 17: Correlations between the first PCs of network mo-
tifs for patient 2 and seizures #1, #2, #9, and #11. These
seizures stay on the right hemisphere. Interestingly, there
appear similar preictal network components on the left hemi-
sphere, as for all the other seizures (see Figs. 18 and 19).

In Figs. 17, 18, and 19 we show the correlations of the first
PCs for the three seizure groups. While the networks dur-
ing the seizures are located on the right, both, or left sides

3

10

FIG. 18: Correlations between the first PCs of network motifs
for patient 2 and seizures #3 and #10. These seizures are
progressing from right to left.

4

5

6

7

8

FIG. 19: Correlations between the first PCs of network motifs
for patient 2 and seizures #4, #5, #6, #7, and #8 which
occur on the left side of the brain.

of the brain, the networks before the seizures are in both
hemispheres for all seizures. The seizures originating
solely from the right mesial temporal area (RHP; Fig.17)
are particularly interesting since this method could iden-
tify changes in the dynamics of the left mesial temporal
area (LHP), which happens to be another seizure onset
region, despite no identifiable iEEG changes on the left
side.
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It is important to note that there are multiple ways of
mapping electrodes to brain regions and subsequently
grouping or merging the assigned regions. We classified
the regions into eight distinct groups based on proxim-
ity, structural similarity, and previous studies. However,
larger areas could further be divided into smaller clusters
(subnetworks), depending on the specific study. Inter-
estingly, this work showed that even a coarse and het-
erogeneous grouping of large brain regions is still able to
reveal the underlying dynamics that were otherwise not
visible. Further work that aims to classify or even fore-
cast seizures might require grouping regions in a different
manner.

V. DISCUSSION

We introduced a novel method for extracting network dy-
namics from data by combining existing flavors of DDA
and incorporating PCA into NM-DDA, an analytical
framework for identifying network motifs in time series
data. To assess the effectiveness of this approach, the
method was initially tested on coupled Rössler systems,
where the ground truth is known and the dynamics and
network structure can be manipulated. Furthermore, the
robustness of the method was evaluated by examining its
performance under the influence of added white noise.
This rather challenging test case, which involved connec-
tions between low-dimensional and highly similar nodes,
served to validate the effectiveness of the technique.

We also applied NM-DDA to recordings from human
brains during epileptic seizures and identified the con-
tributions of different brain regions over the course of
a seizure. We probed the underlying dynamical system
from intracranial recordings of seizures from two patients:
patient 1, whose seizures were determined to be identi-
cal based on their electrographic patterns, and patient
2, whose seizures were classified into three different elec-
trographic types, based on their regions of initiation and
propagation.

NM-DDA was able to identify the high degree of similar-
ity within each seizure type identified in both patients.
Further, the three seizure types in patient 2 could be dif-
ferentiated based on the changes in dynamics captured
by the framework. Intriguingly, we also identified un-
expected changes in some regions based on the iEEG
recordings. The dynamics in these “hidden” areas may
help differentiate seizure types and uncover underlying
causes that could not otherwise be detected visually.

These new analytical techniques have the potential to
enhance clinical practice in epilepsy diagnostics. For ex-
ample, our proposed framework could be used to evalu-
ate noninvasive data from patients with epilepsy. Before
being implanted with iEEG electrodes, patients receive
scalp EEG contacts whose recordings are used to inform
the placement of future invasive electrodes. A limited

time window is available for capturing these data, and
some seizure types from these patients may be missed,
resulting in possibly incomplete coverage during iEEG
evaluation. The framework we propose may be able to
better infer seizure lateralization and might capture other
potential regions of interest, which should lead to im-
proved surgical and clinical outcomes.

Another application is to use the dynamics of seizures
from different patients to develop a novel seizure classifi-
cation system. We found that the recordings from dozens
of electrodes can be characterized by their average, and
that the average retains the dynamics of the recorded re-
gions, allowing for a more efficient comparison of seizure
activity across patients. This would provide us with a
greater understanding of different seizures and bring us
a step closer to providing patient-specific treatments for
controlling an individual’s epilepsy. DDA is also able to
extract relevant dynamics in the presence of noise with
minimal preprocessing and can be applied online before
and during seizures to provide immediate feedback on
their time course.

VI. CONCLUSION

NM-DDA is an analytic framework that could provide
useful insights into other complex networks, as evalu-
ated here and in previous studies (see e.g. [23]). Nature
abounds with many nonlinear dynamical systems. NM-
DDA could be used to identify their networks of nodes
and detect subtle changes between them, as we demon-
strated in the simulated Rössler example.

Data Availability

The Rössler data used in this work were produced with
basic codes for integrating the systems under study by
using a Runge-Kutta integration scheme [35]. The iEEG
epilepsy data is not currently publicly available as it con-
tains information that could compromise the privacy of
the participants. The iEEG data can be made available
upon request from the corresponding author.

Acknowledgements

C.L. and T.J.S. were supported by NIH EB026899 and
MH132664. P.S. was supported by CDMRP W81XWH-
22-1-0315. S.S.C. was supported by NINDS R01-
2NS062092. E.M.A.M.M. was supported by CNPq
(Grants No. 310788/2021-8 and 405419/2021-0) and
FAPEMIG (Grant No. APQ-03197-18).



15

[1] Amaral, L. A. N. and Ottino, J. M. (2004). Complex
networks. The European Physical Journal B - Condensed
Matter, 38(2):147–162.

[2] Bartolomei, F., Lagarde, S., Wendling, F., McGonigal,
A., Jirsa, V., Guye, M., and Bénar, C. (2017). Defining
epileptogenic networks: Contribution of SEEG and signal
analysis. Epilepsia, 58(7):1131–1147.

[3] Bragin, A., Wilson, C. L., and Engel, J. (2000). Chronic
epileptogenesis requires development of a network of
pathologically interconnected neuron clusters: a hypoth-
esis. Epilepsia, 41 Suppl 6(8):S144–S152.

[4] Carvalho, V. R., Moraes, M. F. D., Cash, S. S., and
Mendes, E. M. A. M. (2021). Active probing to high-
light approaching transitions to ictal states in coupled
neural mass models. PLOS Computational Biology,
17(1):e1008377.

[5] Dalic, L. and Cook, M. (2016). Managing drug-resistant
epilepsy: challenges and solutions. Neuropsychiatric Dis-
ease and Treatment, Volume 12:2605–2616.

[6] Das, A., Sexton, D., Lainscsek, C., Cash, S. S., and Se-
jnowski, T. J. (2019). Characterizing brain connectivity
from human electrocorticography recordings with unob-
served inputs during epileptic seizures. Neural Computa-
tion, 31(7):1271–1326. PMID: 31113298.

[7] Felsenstein, O., Peled, N., Hahn, E., Rockhill, A. P.,
Folsom, L., Gholipour, T., Macadams, K., Rozengard,
N., Paulk, A. C., Dougherty, D., Cash, S. S., Widge,
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high noise regimes. Frontiers in Neurology, 4(182).

[24] Li, A., Chennuri, B., Subramanian, S., Yaffe, R., Gliske,
S., Stacey, W., Norton, R., Jordan, A., Zaghloul, K. A.,
Inati, S. K., Agrawal, S., Haagensen, J. J., Hopp, J.,
Atallah, C., Johnson, E., Crone, N., Anderson, W. S.,
Fitzgerald, Z., Bulacio, J., Gale, J. T., Sarma, S. V., and
Gonzalez-Martinez, J. (2018). Using network analysis to
localize the epileptogenic zone from invasive EEG record-
ings in intractable focal epilepsy. Network Neuroscience,
2(2):218–240.

[25] Lorenz, E. N. (1963). Deterministic nonperiodic flow. J.
Atmos. Sci., 20:130 – 141.

[26] Maran, M., Grent-‘t Jong, T., and Uhlhaas, P. J. (2016).
Electrophysiological insights into connectivity anomalies
in schizophrenia: a systematic review. Neuropsychiatric
Electrophysiology, 2(1):6.

[27] Miletics, E. and Molnárka, G. (2004). Taylor series
method with numerical derivatives for initial value prob-
lems. J. Comp. Methods in Sci. and Eng., 4(1,2):105–114.

[28] Miletics, E. and Molnárka, G. (2005). Implicit extension
of Taylor series method with numerical derivatives for
initial value problems. Comput. Math. Appl., 50(7):1167–
1177.

[29] Mina, F., Benquet, P., Pasnicu, A., Biraben, A., and
Wendling, F. (2013). Modulation of epileptic activ-
ity by deep brain stimulation: A model-based study of



16

frequency-dependent effects. Frontiers in Computational
Neuroscience, 7(JUN):1–16.

[30] Moraes, M. F. D., de Castro Medeiros, D., Mourao,
F. A. G., Cancado, S. A. V., and Cota, V. R. (2021).
Epilepsy as a dynamical system, a most needed paradigm
shift in epileptology. Epilepsy & Behavior, 121:106838.
NEWroscience 2018.

[31] Mormann, F., Andrzejak, R. G., Elger, C. E., and Lehn-
ertz, K. (2007). Seizure prediction: the long and winding
road. Brain, 130(2):314–333.

[32] Packard, N. H., Crutchfield, J. P., Farmer, J. D., and
Shaw, R. S. (1980). Geometry from a time series. Phys.
Rev. Lett., 45:712.

[33] Palus, M. and Vejmelka, M. (2007). Directionality of
coupling from bivariate time series: How to avoid false
causalities and missed connections. Phys. Rev. E, 75.
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