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Chapter 1

Introduction

1.1 States of matter

The states of matter, and phase transitions from one to another, have been of in-
terest for scientists for decades, and fascinated humans even longer. Progress in un-
derstanding the nature of phase transitions has been achieved in experimental work,
theoretical work and numerical simulations. Whilst many of such phase transitions
are now rather well known, the melting mechanism is still a puzzle.

Through the years, the roles of both dimensionality and impurities have been
evaluated in the search for the melting mechanism, but the small scale details of the
two dimensional transition is still not fully understood. Disagreement between the
theoretical approaches and the experimental results have made it difficult to reveal
the mechanism of melting. Without a full understanding of the melting mechanism,
it is difficult to predict the critical behaviour of materials in nature, as well as in
laboratories.

“Thales of Miletus taught that all things are water” - Aristotle [4]

The first ideas of matter was developed already by the early Greek philosophers.
The ancient Greeks were concerned with states of matter even though they lived in
a society with no developed science and no pure mathematics [4]. The philosopher
Thales is believed to be one of the first to seek for the understanding of the nature
of substances. He stated that water is the origin of all matter, that is a definition of
“water” which includes all types of matter in the liquid state. By observing liquids,
the philosophers realized that the fluid substance could produce all the different states
of matter through phase transitions, and hence they argued that liquid had to be a
principal element in nature.

Later, natural sciences have taken over the task to classify the different states of
matter. As the same set of molecules can create different phases, the state of matter
has to be determined by the arrangement of the molecules. Hence, it is reasonable
to define the solid and liquid states in terms of how their molecules are organized.

7



8 CHAPTER 1. INTRODUCTION

In a perfect crystalline solid, the molecules are bound in periodic lattices creating
a rigid structure. At the absolute zero temperature, all atoms are in equilibrium,
and there is no movement in the system. As the temperature increases, the energy
in the system cause the atoms to move, but as long as the movement is restricted
to vibrations around the confined lattice position, the solid will remain rigid. At
some critical energy, which we percieve as temperature, the rigid structure of the
solid breaks down. Then, in the limit of low density, the molecules can move around
freely, only restricted by the external boundaries of the system, e.g. the container in
which the fluid flows. This is the perfect liquid phase, a disordered phase in which
the system is homogeneous with randomly distributed molecules.
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Figure 1.1: (a) Illustration of the perfect solid state. The atoms are locked in their
positions and the matter retains it shape and volume. The only motion in the system
are the lattice vibrations. (b) Illustration of the perfect liquid state. The molecules
move freely within the system. The atoms collide with each other in the system and
hence frictional force is induced.

Even though the definitions of the two perfect phases seem quite understandable,
a phase transition between them is more perplex. Changes of state are of the most
dramatic and fascinating phenomena exhibited by condensed matter, and the process
of melting is especially confusing [8]. As the different states of matter are determined
by the collective behaviour of the molecules in the system, it is reasonable to ex-
pect that the laws of physics are capable of predicting the behaviour of the system
through a phase transition. The search for universalities in the melting mechanism,
i.e. the solid-liquid phase transition, have been particularly challenging and various
theories have been developed. We emphasize in particular the Kosterlitz-Thouless-
Halperin-Nelson-Young-theory, the KTHNY-theory, [18, 39], and the grain-boundary-
theory, [7], but neither of the developed theories seem to be able to capture the wide
variety in the experimental result.

Theoretically, we comprehend phase transitions through the laws of thermody-
namics, by means of the energy in the system. The appearance of different phases
is dependent on state variables, such as temperature and density in the system. In
Ref. [20], Léwen boils it down to a fundamental question;

“What kind of phases occur for a given interaction potential as a function
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of the thermodynamical parameters, temperature, T, and density, p?”

That is, the search for a general understanding of phase transitions and their uni-
versalities is a search for how the structure of a material changes with variating state
variables. By revealing such universalities, we can predict how and when different
materials loose their resistance to external stresses.

1.2 A fascinating phenomenon

So far, we have argued that a phase transition is a change of state of matter which alter
the nature of substances. Phase transitions are important in all condensed matter
physics and is hence of interest in science as well as in industry. As an example, the
development of new materials within material sciences, are based on the increasing
knowledge about formation and changes of microstructures [31].

As common phenomena in nature, phase transitions are important for various
fields within natural sciences. The importance of phase transitions within the field
of geology was discovered more than 2000 years ago by the Greek scientist Strabo,
who observed that magma from a volcanic eruption cooled down and solidified on the
surface of the Earth [16]. Since then, the knowledge about geological systems have
improved significantly. It is now well known that the high temperature, and pressure,
differences between the Earth’s surface and its interior cause incessant transitions
between solid rocks and viscous magma, though on a geological time scale. The last
couple of years, geophysics have improved further through increasing knowledge about
mineral physics [26]. Many of the geological forms we observe in nature are caused
by different minerals crystallizing under various conditions. Due to natural impacts,
such as impurities and external forces, the resulting patterns can be very fascinating,
as well as quite difficult to describe. Also other natural phenomena are dependent
on phase transitions, e.g. glaciers which require specific weather conditions over time
in order to persist. That is, the existance of glaciers is dependent on a positive
mass balance, that is the balance between the mass of ice freezing during winter and
the mass which melts during summer. Frost at your window and freezing lakes are
two typical two dimensional phase transitions. The first being crystal growth on an
undercooled window substrate, the latter being crystallization process in the liquid-air
interface.

The difference between the rigid solid phase and the mobile liquid phase play an
important role in daily life. One can not undermine the importance of the melting
transition when you go for skiing and a liquid-like layer on top of the snow acts as a
mobile substance at which your skies can slide. Neither of the freezing process high
in the Earth’s atmosphere which forms the snowflakes you ski on. Hence, your skiing
activity is dependent on two phase transitions, that is freezing of snow crystals and
the subsequent surface melting which ensures that your skies glide on the crystalline
snow. During summer, when the seasonal changes no longer encourages skiing, one



10 CHAPTER 1. INTRODUCTION

can not deny the importance of the phase transition which causes cream and melted
chocolate to transform into ice cream.

1.3 The search for the melting mechanism

As previously mentioned, the search for universalities of the melting mechanism have
been puzzle for theoretical scientists since the nineteenth century. The observation
of mild changes in physical parameters, such as volume and specific heat, through
the melting process suggested a melting transition with gradual change of matter
properties within the same state, i.e. a continuous melting transition, more than a
transition between two different states. The idea of temperature dependent thermal
vibrations in lattice structures led to an idea of increasing atomic vibrations being
the mechanism of melting. An early scientific proposal was by Fredrick Lindemann
in 1910, [25], who obtained a rather simple estimate of the melting temperature by
a connection to atomic vibrations. The well known Lindemann theory appears to be
the first adoption of quantum theory applied to condensed matter, after Einstein’s
proposal in 1907 [8]. The vibrational approach is based on the assumption that at a
certain critical temperature, the molecules acquire enough energy to break the bonds
in the structure. Hence the molecules are no longer confined in their positions, and
“the crystal has shaken it self to pieces” [14].

The vibrational approach did not succeed in revealing the mechanism of melting
and the search continued. As the most striking difference between the solid and the
liquid phases is the degree of order, it seemed reasonable that lattice dimensionality
and the possibility of defects, such as dislocations, in the lattice played an important
role in the process of melting.

That is, the attention was drawn to the effect of dimensionality in an early stage
in the search of the melting scenario with Peierls as one of the originators [9]. He
studied the positional order of lower dimensional crystals for temperatures above the
absolute zero. An one-dimensional crystal was modeled as a simple chain of identical
particles with regular distances, a system in which the long-range order can not persist
for temperatures above the absolute zero. Thus, the crystal structure does not really
exist for any thermal motion. In contrast, in a three-dimensional crystalline material,
the long-range order persists for increasing thermal motion until a well defined critical
point where a dicontinuous phase transition takes place.

The two-dimensional situation is the borderline between the 3D long-range order
and 1D nonexistent order, and the melting transition in this dimension is still a puzzle.
As the temperature increases the particles are displaced relative to their equilibrium
positions. Peierls predicted a gradual destroyed long rang order and thus a transition
without a well defined critical point. His prediction was later dismissed as misleading
and the search for the theory of the 2D melting transition continued [8].

The lack of understanding of the transition in two dimensions stimulated the
development of 2D models of matter and the study of the physics of them [8]. In



1.4. SUMMARY OF THE THESIS 11

addition to the role of dimensionality, the effect of impurities in the system was
investigated by the scientists. In nature, perfect materials are not likely to exist.
Hence, condensed matter, and crystals therein, are arrangements of particles in which
defects is likely to be present. The presence of defects will disturbe the geometry of
the material structure, and thus also the dynamics of the crystal structure [17]. In
1952, Shockley proposed a definition of liquid to be a solid so densly packed with
dislocations that is gets a viscous behaviour, [26], and calculated the fluid viscosity
by means of the movement of dislocations in the material. Hence, the response to
external stresses can possibly be described by the way dislocations are generated and
move through the crystal.

In addition to natural impurities, also the crystal surface and internal grain bound-
aries act as defects in the material. The former represents the boundary between the
crystal and its surroundings. Along this boundary, the solid is at its weakest and the
thermal energy can most easily disorder the structure. Hence, the boundary plays
the role of the most important defect in the system [9]. The later represents the
boundaries between crystals of different lattice orientations in a polycrystalline ma-
terial. These are defined as chains of defects and play the role of surface defects for
each of the grains in the crystalline network. The prescence of defects in a material
weakens the structure and can hence mediate the melting process [17]. That is, the
material might stat to melt from these defects before the bulk of the system reaches
the critical melting temperature of the material. Hence, the presence of defects may
mediate a premelting phenomena.

1.4 Summary of the thesis

Though melting is a common phase transition in nature, the small scall details of
the crystal breakdown in two dimensions are not yet fully understood. In this thesis
we will present a numerical investigation of melting and freezing in two dimensions
through the phase field crystal model. We start out, in the second chapter, by dis-
cussing phase transitions by means of disorder-order transitions through the phase
field method. The method is suitable of describing phase transitions in heteroge-
neous and isotropic systems and is an important tool for modeling microstructural
evolution [38]. We continue in the third chapter by deriving the phase field crystal
method. That is a method in which the isotropic approximation is relaxed and the
free energy functional is constructed to ensure a periodic structure in the equilibrium
state. By this approach, important features such as crystal orientation, defects and
deformations are naturally incorporated in the model. Hence, this method provides a
suitable method for describing the process of crystal growth as well as the breakdown
of the crystalline structure, that is the processes of freezing and melting respectively.
Additionaly, a set of amplitude equations are presented for the study of the dynamical
evolution in the crystalline phase.

In the fourth chapter, we discuss the process of melting and the role of dimension-
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ality and dislocations in the phase transition. We limit our work to two dimensional
systems and investigate the evolution of melting numerically with a particular focus
on the role of defects in the phase transition. The simulated melting is induced by two
different protocols, that is uniform heating and applied shear stress, and we evaluate
our numerical results relative to the theory of dislocation mediated melting. In the
fifth, and last, chapter we summarize our results and elaborate upon the challenges
in the search for the melting mechanism. As a closure, we propose ideas for future
work which can be carried through with the phase field crystal method.



Chapter 2

Phase field modeling

In this section we develop simple physical pictures of the dynamics of phase transi-
tions in the mean field approximation. We review the phase field method which is
a suitable model for describing phase transitions in heterogenous and isotropic sys-
tems, i.e liquid-like systems. In this method the interface between different phases
is treated diffusively. The method is based on defining a space and time dependent
order parameter which can distinguish between the different phases, hence the rate
of change of the order parameter provides a description of the kinetics of the system.
The state of a physical system can be characterized by a set of physical quantities,
such as density, temperature or concentration. The physical quantities can be both
conserved or non-conserved through the transition, and it can relax to a homogeneous
and isotropic value (liquid-like phase) or an anisotropic, periodic structure (crystal-
like phase). In this section we will investigate the dynamics of phase separation and
growth, for physical systems of both non-conserved and conserved field parameters.

2.1 The phase field technique

The kinetics of a phase transition, i.e. the evolution dynamics of a thermodynamically
unstable system as it relaxes towards equilibrium has been intensively studied [28].
Phase transitions occur spontaneously in almost all systems which are driven out of
their equilibrium state by rapid changes in system parameters, and is hence an impor-
tant aspect of material science. The field of material science is wide and, in general,
separated in ’subfields’ dependent on the level of description. From a macroscopic
point of view, the phase transition from a liquid to a solid state is recognized through
the apperance of a shear resistent crystalline material. The classical approach for
treating this transition is dividing the system into two parts. The first being the solid
state and the second being the liquid state. The boundary between the two phases
is represented by a sharp interface at which the material parameters change discon-
tinously, like a step function. The solidification process then appears as a moving
boundary process in which the position of the boundary describes the growth pro-

13
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cess. From a mathematical point of view, this model is simple and tractable. In a
numerical implementation,however, the sharp interface method requires tracking of
the interfacial position as the transition evolves and hence the model can be numer-
ically challenging [31]. A different approach is the phase field model which is based
on the concept of a diffusive interface. In this model, the interface is defined as a
narrow region in which the material parameters change continuously. Hence, there is
made no distinction between the solid, the liquid and the interface, and the diffusive
change in a material parameter across the interface is described through an auxiliary
variable. That is, a space and time dependent order parameter, which provides a
basis for describing the kinetics in the system. By defining the order parameter to
minimize the free energy in stable phases, thermodynamical stability is ensured. The
order parameter is kept uniform and constant within stable phases, while it changes
continuously across interfaces. Its value indicates different phases and the boundary
between two phases need not be tracked as in the classical sharp interface approach.
Thus, the phase field technique provides a good numerical tool for predicting the
kinetics through a phase transition in heterogeneous and isotropic systems [36]. The
material parameters can be both conserved or non-conserved quantities, presented by
Cahn-Hilliard equation, or the Ginzburg-Landau equation, respectively.

In Fig.( 2.1) we illustrate the interfacial region between two species in a hetero-
geneous binary system represented by the two approaches discussed above. (a) and
(b) depict the sharp and the diffusive interface representation, respectively.
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Figure 2.1: Illustration of the interfacial region in a hetereogeneous system consisting
of two species, A and B, with different densities. (a) illustrates a system in which
the different species are separated by a sharp interface while (b) illustrates a diffusive
interface with a continously changing parameter value through a narrow interfacial
region

Phase field modeling is one of the fastest growing areas in computational material
science and several phase field model approaches have been developed [31]. Here we
adopt one of them, a so-called variational approach, based on a thermodynamical
treatment of a single scalar parameter. The phase field method results in a set of
partial differential equations which will be discussed in the following sections.

2.2 The dynamics of a phase transition

Consider a disordered binary system, i.e. a mixture of two species in a homogeneous
state in which the two species are characterized by different densities. A suitable
order parameter to describe this system is the density difference between the two
species. For temperatures above a critical temperature, 7., the system admits a
single equilibrium phase in which the species appears in a homogeneous mixture,
whereas below T, there is a degenerated equilibrium with two possible states. The two
density fields have different equilibrium patches distributed randomly in space. Hence,
a system quenched below T, will undergo a gradual process of domain coarsening,
exhibited by a heterogeneous density field.

Such a system is most easily treated through a mean field approximation of the
order parameter. The basis of the mean field approximation is to ignore all spatial
fluctuations in the system. Hence, the free energy can be expressed as an analytical
function of the order parameter, ¢(r), which can be written as a Taylor expansion.

The Landau free energy density provides such a free energy expression of the simple
form, [37],

a 1
[ = fo+ SR + i), 2.1)

where r represents the position and o« = (T' — T.)/T. and denotes the undercooling
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parameter, i.e the depth of the temperature quench.

The total free energy is obtained by a volume average of the energy density, and
the equilibrium energy configuration corresponds to the minimum of the free energy
function. That is,

dFiy
dy
ap +4° = 0, (2.2)

which corresponds to the variational of the free energy in Eq.( 2.1). From Eq.( 2.2),
we see that the sign of a determines the number of equilibrium solutions. For o > 0
and o = 0 the only equilibrium solution is the trivial ¢y = 0. On the contrary, for
o < 0 the system admits two additional solutions at ¢o(1,2) = +v/—a and hence there
are three possible equilibrium states. Fig.( 2.2) illustrates the energy landscapes given
by the Landau free energy for three different values of «, that is > 0, @ = 0 and
a < 0. The equilibrium solutions of Eq.( 2.2) are recognized as maxima and minima
in the energylandcapes.

X x \J’/

Figure 2.2: Sketch of the energy landscape given by the Landau free energy for
decreasing values of «, (a) a > 0, (b) a =0 and (¢) a < 0. For temperatures below
the critical, the energy landscape appears as a symmetrical double well potential.
For subcritical temperatures, the depth of the wells is controlled by the depth of the
temperature quench. A deeper quench leads to deeper 'valleys’ and hence one can
expect a more rapid phase transition

Below the critical temperature, a < 0, we obtain the generic double-well potential
and observe that the solutions, ¢12) = £+/a, are located in the "valleys”, bridged
by a "hill” at 1y = 0 in the energy landscape. This correponds to having two stable
equilibria in the valleys and one unstable equilibrium on the hill. Moreover, in the
absence of a cubic term in the free energy, we notice that the equilibrium states cor-
respond to exactly the same values in the free energy (symmetric valleys), hence the
equilibrium is degenerated. Dynamically, this equilibrium degeneracy implies that
when the system is rapidly quenched below the critical temperature, the homoge-
neous state is no longer the preferred equilibrium state and the system spontaneously
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nucleates and grows new equilibrium patches that form domains. The domains are
characterized by a lengthscale, L(t), and separated by a diffuse interface, where there
are sharp gradients in the density variations.

In the next two subsections, we discuss the dynamics of the system after a tem-
perature quench which results in new equilibrium patches and formation of domains
for both non-conserved and conserved fields.

2.2.1 Non-conserved fields

If the two species in the system described in the previous paragraph are competative,
that is if a phase grows or shrinks at the expense of the other, the density field is
typically non-conserved. The system can be described by a density order parameter,
¥ (r,t), at position r and time ¢. In the Ginzburg-Landau theory, the effect of fluctu-
ations is added to the mean field free energy by an additional energy cost associated
with heterogeneities near interfaces, hence the free energy is modified by adding a
nonlocal term given as

Fiwy = [do (1) + 5IV0L). (2.3

where f(v)) is the local energy contribution described by the double-well potential in
the previous section. The second term is an additional non-linear contribution corre-
sponding to the energy increase near interfaces. The new equilibrium configuration
corresponds to the minimum of this global free energy, which can be expressed as

o0F = o) + 9> — KV = 0. (2.4)
oY
The trivial solution to this system is the ¢y = 0 solution. For a flat interface, that is
a 1D approximation, the problem of solving Eq.( 2.4) reduces to only one direction,
that is the one across the interface. Hence, the gradient term reduces, V) — %ﬁ,
and it is possible to obtain the additional non-trivial solutions analytically. Suppose
the interface is stretched along the y-direction. Then, after one integration, Eq. (2.4)
for the density profile in the perpendicular direction along the x-axis simplifies to
Y 3
s = a) + 7. (2.5)

This can be reduced to a first order differential equation,

(2.6)

dp \/2a¢2+¢4+c
de 2Kk ’

where ¢ denotes the constant of integration. Keep in mind that in order for the system
to admit to a degenerated equilibrium with two states, then o < 0. The interfacial
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profile between these two states is given by the solution of Eq.( 2.6). As the phase
gradients across the interface vanish in the equilibrium bulks, the rhs of Eq.( 2.6)
equals zero in these states, that is for 1. 2) = £v/—a. By substitution we obtain an
expression for the constant of integration, ¢, given by,

Yo +2as+c = 0 =c=a’ (2.7)

Now, Eq.( 2.6) reduces to

- (2.8)

with solution

Y(z) = vV/—atanh (\/ix) . (2.9)

Hence, we have obtained an expression for the interfacial profile between the two
equilibrium states.

The dynamics of the relaxtion towards a new equilibrium state can be described
by the Ginzberg-Landau equation with % from Eq.( 2.4),

OY(r,t) B oF
o 0
%g;’t) = —atp(r,t) — *(r,t) + KVZY(r, 1), (2.10)

The evolution towards a segregated phase for a non-conserved density field can be
investigated by solving the Ginzberg-Landau equation, Eq.( 2.10), numerically. In
Fig.( 2.3), we depict the evolution of the density field as it reorganizes into do-
mains after a temperature quench. The random initial condition is embossed by large
amount of interfaces throughout the system. Due to the energy cost of having inter-
facial profiles, the system reorganizes in order to reduce the interfacial length in the
system. The two components demix into a gradually increasing heterogeneous state
of coarser domains.
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Ra¢’

Figure 2.3: Snapshots of the temporal evolution of a quenched system with a non-
conserved density field. (a), (b), (¢) and (d) represent the initial random start, and
three successive later times. The initial homogeneous system reorganizes into a more
heterogeneous state consisting of domains with different densities. In the steady
state, the interface and the domains possess different local equilibria. Undercooling
parameter and mean density a = —1 and ¢y = 0. System size nx=ny=500.

The coarsening regime of the path towards a new equilibrium is characterized
by domains growing with length scale, L(t). In non-conserved systems, the domain
scaling obeys the Lifshitz-Allen-Cahn-law, the LAC-law, [28],

L(t) = Vt, (2.11)

where L(t) denotes the time dependent length scale. The LAC-law implies that
the growth slows down with time.

A feature of the new equilibrium state is an equilibrium interface profile sepa-
rating the two domains, each in its equilibrium state with constant density. In the
1D approximation, this interfacial profile is represented by the non-trivial analytical
solution given in Eq.( 2.9). In Fig.( 2.4), a comparison between the analytical and
numerical interfacial density profile is made for different quenching depths.



20 CHAPTER 2. PHASE FIELD MODELING

Analytical solutions

08 * a=-0.1
06k o a=-0.1
o a=-0.001

0.4F

02

¥ (y)

02+

04}k

06F

08F

Figure 2.4: The figure illustrates a comparison of the numerical and analytical non-
trivial solutions for the flat interface profile when the system is quenched at differ-
ent temperatures. The solid lines represent the analytical solutions, whilst the dots
represent the different numerical solutions. « denotes the undercooling parameter
a = (T — T.)/T. and hence gives a description of the quenching depth. Deeper
quenches require larger gradients across the interface and hence lead to sharper in-
terfacial profiles. The analytical and numerical profiles are in agreement.

The interfacial profiles vary with respect to the quenching depth. Deeper quenches
correspond to systems driven further from their initial equilibrium state. Hence the
temperature gradients across the interface are larger, resulting in larger interfacial
gradients. The interfacial profile is thereby sharper for higher values of the under-
cooling parameter, o. Less dramatic temperature drops require smaller gradients and
hence the interfacial profile appears as more diffuse.

Growth

The growth mechanics of a single droplet in a binary system can be evaluated by
the same differential equation as the separation process. The system is comparable
to binary liquid systems which do not mix up well, such as a droplet of vinegar in
water. After a temperature quench, the droplet grows or shrinks at the expense of
the surrounding liquid and the boundary between the two phases is moving radially.
As the droplet grows, its surface area, and thus also the surface energy in the system,
increases. The rate of growth can be connected to the rate of the free energy and it
can be shown that the mean curvature is directly proportional to the growth velocity.
Hence, the direction of the moving boundary is dependent on the surface energy of
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the blob, represented by the curvature of the blob.
The process of a single droplet growing isotropically is illustrated in Fig. 2.5

Figure 2.5: Pictures (a)-(d) illustrate isotropic growth at successive time steps. An
initial droplet grows rad1ally outwards after a rapid temperature drop. The droplet
grows at the expense of the surrounding liquid, hence the growth evolution is governed
by the Ginzberg-Landau equation. Undercooling parameter and mean density a =
—0.25 and g = 0.25. System size nx=ny=>500.

The growth of the droplet can be calculated by expanding around the planar solu-
tion and represented in terms of the droplet radius. In Fig.( 2.6) the time development
of the droplet radius for different quench depths are plotted together with the rate
of growth for the same quench depths. As for the process of phase separation, the
droplet growth is dependent on the depth of the temperature quench, i.e. the value
of the undercooling parameter. A deep quench drives the system further from its
original equilibrium and results in deeper wells of the energy potential represented by
Landau free energy, Eq.( 2.1). Hence, the gradients in the system are larger and the
growth rate is higher than for more shallow quenches.
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Figure 2.6: Plot of the time development of the radius of an isotropic growing droplet
for different tempreature quenching depths. The inset figure gives the rate of growth
for the different undercooling parameters, « = —0.25, —0.289, —0.328 — 0.367, —0.4.
R denotes the radius of the droplet and is normalized with respect to the system size.

2.2.2 Conserved fields

In systems where the parameter fields are conserved, there is no competition between
the species in the system. The ordering process is evolving by two species interchang-
ing their positions. Hence, and in contrast to the non-conserved scenario, an evolving
phase is now dependent on two process happening simultaneously within the same
system. When one specie reorganizes, it is dependent on an other specie to perform
the opposite movement simultaneously. Analogous to the Ising model, this process is
equivalent to a spin-exchanging process. When one spin flips from +1 to -1 in one
part of the system, an other spin must flip simultaneously from -1 to 41 in order
to conserve the number of spins. Due to this additional conservation constraint, the
dynamics of this system is typically slower than for the non-conserved case.

In this section, the disordered binary system from the previous section is evaluated
in a scenario where the density field is conserved throughout the phase separation.
Though the phase separation processes in the non-conserved and conserved cases
evolve differently, the same space and time-dependent order parameter, 1 (r,t), can be
used to describe the evolutions of their parameter fields. The additional conservation
constraint on the parameter field implies that the order parameter obeys a continuity
equation of the form

o(r,t) +V - J(r,t) =0, (2.12)

where J(r,t) denotes the density current through the material. The current has
its origin due to flucutations in the density field and hence it can be represented as
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J(r,t) = —mVpu(r,t)
J(r,t) = —mvw, (2.13)

where pu(r,t) is the chemical potential and m denotes constant mobility in the
medium.

The system is treated in the mean field approximation with local free energy as
described by Landau, Eq.( 2.1). The energy cost due to hetereogeneities close to the
interface is accounted for by an additional non local term. Hence, the global free
energy F is given by Eq.( 2.3) with equilibrium configuration

0F _ 3+ ap — KV = 0. (2.14)
oY
An equation describing the dynamics of the phase separation process can be ob-
tained by combining the additional conservation constraint, represented by the conti-
nuity equation Eq.( 2.12), with the minimized free energy functional, Eq.( 2.14). The
resulting differential equation known also as the Cahn-Hilliard equation, [6, 5], is

9t (r, 1)
ot

= mV? (agp(r, t) + ¥*(r, 1) — KVZP(r, 1)) . (2.15)

The Cahn-Hilliard equation provides a description of the relaxation process to-
wards a new equilibrium state for a conserved density field, equivalent to the Ginzburg-
Landau equation, Eq.( 2.10), for the non-conserved density field. If the homogeneous
binary system is quenched below the critical temperature, the homogeneous stare is
no longer the preferred equilibrium state and hence the system will relax towards a
new equilibirum state. The new equilibrium patches form domains and the system
undergoes a process in which the two species are segregated into separate areas. Solv-
ing Eq.( 2.15) numerically, we obtain a description of the phase separation process. In
Fig.( 2.7), snapshots of the coarsening process at successive timesteps are presented.
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Figure 2.7: Snapshots of the temporal evolution of a quenched system with a con-
served density field. (a), (b), (¢) and (d) represent the initial random start, and
three successive later times. The initial homogeneous system reorganizes into a more
heterogeneous state consisting of domains with different densities. In the steady
state, the interface and the domains possess different local equilibria. Undercooling
parameter and mean density o = —1 and ¢y = 0. System size nx = ny = 500.

Also in this system the phase separation process is characterized by a domain
length scale, L(t). Due to the additional conservation constraint, the growth is ex-
pected to be slower than for the scenario with the non-conserved density field. Lifshitz
and Slyozov derived a power law behavior for the temporal evolution of the typical
domain scale, [28],

L(t) = Vt. (2.16)

In this section we have discussed modeling of phases in the isotropic approxima-
tion, that is in systems where the order parameter is confined across the boundaries,
while it relaxes to a certain homogeneous value inside each phase. The phase field
method is suitable for isotropic and heterogeneous systems and has been used widely
within several fields for many years. Such systems are somewhat idealized physical
systems in which natural impurities, such as defects, are not included.

According to Puri, [28], phase separations are typically mediated by vacancies in
the system. Hence, impurities do not only act as complications in the system, but
might be important contributers to the nature of the phase transition. In the follow-
ing chapter the phase field crystal model is rigorously derived from the microscopic
interactions between colloidal particles. Hence, the periodic nature of the atomic
density in the solid is included and defects in the material can be incorporated in the
investigation of phase transitions.



Chapter 3

Phase field crystal modeling

In the previous chapter, we discussed modeling of binary liquids or amorphous-like
phases. The phase field method has become an important tool for modeling mi-
crostructural evolution in material science, [38], but is limited to systems in which
the density field of each phase relaxes to a homogeneous and isotropic value at equilib-
rium. The approximation is suitable for isotropic materials, but can not, for instance,
capture the periodic structure of a crystalline material. Thus, it can not easily incor-
porate important features such as crystal orientation, defects and deformations.

In this chapter, we present the phase field crystal method, as an extension of the
classical phase field method, in which the isotropic approximation is relaxed. The
method is able to model a system with crystal lattice anisotropy by representing the
crystalline phase by a periodic density field. As the method is able to incorporate
defects in the periodic structure, it provides a firm basis for modeling imperfect
solid materials. Here, we provide a derivation of this model from the microscopic
interactions between colloidal particles, based on the paper by van. Teeffelen et al. in
Ref. [35]. In addition, we study the dynamical evolution in the crystal phase by means
of the amplitude equations, as discussed in Ref. [1, 38]. The steps in the derivation of
these equations are presented and their applicability to modeling freezing and melting
in crystal and polycrystalline materials is discussed.

3.1 The phase field crystal approach

The process of formation of microstructural materials involves a wide range of length
scales, from the atomistic structure to the macroscopic properties of materials. Both
the PF-method and the PFC-method possess descriptions of such material processing
phenomena by providing a link between microscopic and mesoscopic descriptions of
phenomena through modeling the collective behavior of particles on diffusive time
scales [13]. The PF-method incorporates the range of scales, but operates with den-
sity fields which are homogeneous in space, and hence it fails to incorporate defects
and elastic properties [15]. In Ref. [12], Elder et al. proposed a phase field crystal
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method as a phenomenological model that incorporates crystal anisotropy. Hence,
the model provides a suitable method to describe the process of crystal growth and
crystal deformation. As previously discussed, the free energy functional provides a
basis of the thermodynamics in a system. Thus, it is convenient to connect the free
energy to the parameter field of interest when we want to investigate the evolution
of the parameter field through a phase transition. Equivalent to the PF-method,
the PFC-method describes the free energy in the system in terms of the density
function, p(r,t). However, whilst the density field was uniform in all phases at equi-
librium in the PF-method, the density function is now constructed to have the same
symmetry as a given crystalline lattice, [11]. That is, in the PFC-method the free
energy functional is constructed in the simplest form that produces periodic phase
fields in equilibrium. In a liquid phase, the density field relaxes to a homogeneous
value, while it is represented by periodic density waves in a crystalline phase. The
evolution of these waves can be represented by amplitude equations. The dynam-
ical equation of motion for the density field is chosen to conserve the density field
through a phase transition [12]. Hence the PFC-model provides a conserving analogue
to the Swift-Hohenberg equation, [1], which treats the atomic structure in systems
with non-conserved physical fields. A free energy functional which is minimized by
a periodic field includes, in addition to the internal energy, the elastic energy and
symmetry properties of the periodic field [11]. Thus, the PFC-method has the ability
to describe crystalline materials and thereby incorporate defects, such as dislocations
and grain boundaries.

In the following sections we will present the derivation of the equations in the phase
field crystal model based on the paper by van Teeffelen et al., [35]. We start by inves-
tigating equations of motion for a collection of colloidal particles in an overdamped
physical system. Thereafter we derive the Smoluchowski equation from the Langevin
equation and specify a free energy functional which minimize to a periodic structure.
The equations of motion derived from the variational of the free energy, provide a
theoretical basis for the equations of motion in the phase field crystal model, [35], and
the relationship between them will be examined. In addition, we derive suitable am-
plitude equations which posit a description of motion for the periodic density waves
in the crystalline structure.

3.1.1 The Langevin equation

Consider a simple physical system in which colloids move through a liquid phase.
Each of the colloids follow its own path and, as they move, they bump into the
surrounding fluid particles. These collisions induce frictional force in the system
and hence the dynamics of the flowing colloids change. In the absence of potential
interactions between the colloids, the particles move only due to the random kicks.
Hence, the path of a moving colloid is equivalent to the one for a Brownian particle
in a force field and the colloids in the system describe random walk.
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At the microscale the density field, p(r,t), in a physical system consists of a
collection of N colloidal particles in a viscous suspension. As the particles bump into
the surrounding fluid, they interact with the fluid particles via a linear viscous drag
due to friction. Hence, the density field can be interpreted as a probability density
of having a particle at position r and time ¢. In such a system, the particle position
can be described through the Langevin equation for overdamped particles,

dI’i
Tt

The left hand side denotes the time evolution of each of the colloidal positions
{r} = {r;---ry} and represents the drag force with a friction coefficient, . The first
term on the right hand side represents a deterministic force induced by the interaction
between the colloidal particles, while the second term represents stochastic forces due
to random collisions between the colloids in the system. The deterministic interaction
between the colloidal particles is given by pairwise additive potentials u(|r; — r;]).
Hence the deterministic force acting on particle ¢ is represented by

Fi({r},t) = —ViU({r})
= -V (;Zu(lri—rjl))- (3.2)

i#]

The force is determined by the gradient of the interaction potential U({r}), which
is a superposition of all the pairwise potentials in the system. V; is a short hand
notation for gradients at position, r;, where the particle is located. Notice that the
pair interaction potential depends only on the relative distance between particles.

The additional stochastic force is represented by an approximation of the random
collisions between the particles. The stochastic force is assumed to be uncorrelated
Gaussian white noise determined by its zero mean and variance, namely

(f:(t)) = 0
(EWGE) = 2vkpT0i0i-v, (3.3)

where 9;; is the unit d x d matrix, and ¢;_y is the Kronecker symbol. These equa-
tions fulfill the dissipation-fluctuation relation, from which we have that the diffusion
constant is related to mobility by D = v~ 1kgT.

In the approximation that inertial effects are small, the evolution of a particle ¢
at position r; is derived by a Langevin equation on the form of Eq.( 3.4). That is,

dI'i
Tt

— —V,U({r}) +f. (3.4)
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3.1.2 The Smoluchowski equation

A complete solution of a macroscopic system would contain the collection of all the
solutions of the microscopic equations of the system. That is solutions of the Langevin
equation for all the colloids in the system. Typically, the number of colloids in the
system is large and hence it is costly to treat each particle independently. For a
large collection of colloids it is more convenient to track the dynamics of the system
collectively as in a continuous model. This approach is equivalent to investigate the
stochastic processes by means of distribution functions, i.e. to track how the density
distribution evolves in time. The collective behaviour can be interpreted in terms
of the evolution of the configuration probability, W ({r},t), of having N particles
situated at positions {r} = {r; ---ry} at an instant of time ¢. The collective dynamics
in the system can be described by a set of coupled stochastic equations of motion, such
as the Langevin equation, Eq.( 3.4). Hence, the evolution of W ({r},t) is determined
from the set of N Langevin equations of the individual particles and satisfies the
so-called Smoluchowski equation given as, [35],

T
kol oy Ly WV u(lr; — ;) |, (3.5)
v 2y i#]

W({r},t) =

which determines the probability to find the set of N particles within a small value
around the position {r} at time t, given a normalized initial distribution W ({r},0)
[35].

From Eq. (3.5), we notice that in the absence of pair interactions, the second term
on the rhs vanishes and as a consequence the system is described at a mesoscale by
the classical diffusion equation. That is, Fick’s law which predicts that the diffusion
flux, responsible for the space and time evolution of the density distribution in a
system, becomes proportional to Vp. For more complex, non-Fickian diffusion the
additional deterministic interactions must be accounted for. Then the diffusive flux
is controlled by gradients in the chemical potential, which here can be related by the
second term on the rhs of Eq.( 3.5).

As mentioned, Eq. (3.5) provides a description of the evolution of a N-point
probability density,

P ({r}t) = W({r}, ), (3.6)

with N-degrees of freedom. A more local description can be obtained by means of
a 1-point density p(r,t) where the degrees of freedom are reduced by integration over
all other variables {ry---ry}. The relation between a given n-th order probability
density and the configuration density is given by

LD = [ (i), (37)

m=n+1
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That is, the probability of a n-particle configuration is obtained by integrating up the
N —n degrees of freedom corresponding to the other particles that do not participate
into this reduced configuration. All the particles are treated identically, which is
accounted for by the combinatorial factor. Using the formula in Eq. (3.7), we have
that the one point density and the two-point density are given as

oV, t) = N / 1 v, ({r}. 1)

PP, t) = N(N— 1)/ 1 v, ({r}.0). (3.8)

Formally, the interaction potentials for the colloidal particles contain both short-
range and long-range interactions and hence these potentials can be quite compli-
cated. The nature of the interactions may however be simplified by assuming that
the pair interactions dominate over the higher order interactions. Deviations from
this identity arise in systems where the long-interaction forces cannot be neglected
and the correlation between particles has to be treated. This is the case for instance
in a crystal, where the long-range elastic forces between particles, impose a long-range
crystal lattice order and hence strong correlation between particles in the lattice. Due
to these long-range interactions, the diffusion process described by the Smoluchowski
equation, Eq. (3.5), becomes very nontrivial.

An evolution equation for p(r) can be obtained from Eq. (3.5), by applying a
N — 1-dimensional integral over all the dummy degrees of freedom and arrive at

dip(r,t) = DV?p(r,t) + v 'V - /er’p(Z)(\r —r'[,t)Vu(r — r'|), (3.9)

which is a continuity equation for the density. Notice that the equation reduces
to Fick’s diffusion equation for the system if the second term on the rhs vanishes.
As previously discussed, that would correspond to a system in which there is no
correlation between the colloidal particles. However, our system consists of interacting
particles and is hence non-Fickian.

Now, recall that, to a large extend, the study of phase transitions involves the
study of the dynamics of a system as it evolves towards a state in which the values
of the physical parameters ensure equilibrium. A phase is stable in the parameter
space which minimize the free energy functional, hence it is convenient to express the
evolution of the density field as a function of a free energy functional. For our system
the evolution of the density, Eq. (3.9), can be expressed as a generic non-Fickian
diffusion along the gradient of a chemical potential u = §F/dp, namely as

8ip = DV - <p(r)v‘v;)p}> . (3.10)

That is, an expression for the density evolution in terms of the free energy functional
F{p}. Each of the terms of the rhs of Eq. (3.9) can be connected to the free energy by
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identifying the individual terms as different energetic contributions. In the absence
of contributions due to external fields, the total free energy is composed of two terms,

Fip} = Fialp} + Feip}- (3.11)

The first term in Eq. (3.11) represents the ideal gas free energy that corresponds to
the Fickan diffusion term in Eq. (3.9). Thus, it represents the free energy of an ideal
system consisting of non-interacting particles. It is determined by the entropic energy
contributions and has the form

Fialp} = / d*rp(r) <ln (p(r)) - 1) : (3.12)

Po

with derivative

0Fia{p} _

£ = mlplr)] (3.13)

apart from some additional constants that will disappear in the process of identi-
fying the term on the form in Eq.( 3.10) and hence is of less importance.

For a system consisting of interacting particles, there is an additional contribu-
tion to the free energy functional which is interpreted by the second energy term in
Eq. (3.11). This excess energy represents the non-ideal interactions between particles
and is more difficult than the ideal term. The first order density function is now de-
pendent on second order correlations, which have to be provided a priori. The excess
free energy is related to the second term in Eq. (3.9) by the identity, [35],

5F€I{p} 1 2 ,p(2)<‘1‘—1‘,‘,t) /
Viz—/dr—Vu r—r')), 3.14
dp D~y p(r,t) ( ) (3:14)

but is yet to be specified.

In the next section, we provide a set of simplifications that allows us to reduce the
expressions for the free energy such that they only depend on the local density p(r)
and its gradients. Hence, we will arrive at the phase field crystal model, equivalent
to the phenomenological model proposed by Elder et al. in [12].

3.1.3 The Phase field crystal equation

A suitable expression for the free energy functional is yet to be specified. As previously
mentioned, we want the free energy functional to minimize to a periodic density
field and thereby include the elastic energy and symmetry properties of a crystalline
material. Hence, it is convenient to have a free energy functional which is only
dependent on the local density. Equivalent to the phase field method, the density field,
p(r), in the phase field crystal method is regarded as a phase field, ¢(r). Hence, the
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density dependent free energy functional is interpreted as a function of the phase field,
that is F{p(r)} = F{¢(r)}. To obtain the expression for the free energy functional
in terms of the phase field parameter, three main simplifications are carried through.
First, we assume that the mobility, pD, in the diffusion equation, Eq.( 3.10), is
constant. By this assumption, we claim that the contribution from a heterogeneous
mobility coefficient from the density variations is neglegible. The density, p(r), in front
of the functional derivative is represented by a constant equilibrium mean density, that
is p(r) = po. We can thereby approximate an effective diffusion constant D = Dp,
and express Eq. (3.10) as
0F{p}
op
The second approximation is an approximation of the ideal free energy in Eq. (3.12).
A suitable expression for the logarithmic ideal free energy is obtained through a Tay-
lor expansion of the logarithm relative to the equilibrium reference density py,. We
define the relative units ¥ (r) = (p(r) — po)/po, a dimensionless phase field parameter
which describes the density field relative to the previously defined equilibrium den-
sity, po. The coefficients in front of the Taylor expansion are chosen so that we arrive
at the double-well potential with a tunable well-depth in terms of the a parameter.
Disregarding the constant terms, we have that the ideal free energy part reduces to

Op = DV? (3.15)

Fulb(e.0)} = [ dr <§¢2 + iw). (3.16)

We have now obtained an expression for the ideal free energy in terms of the
relative ¢ (r, t) units. Keep in mind that the temperature parameter must be negative,
ie. a = (T —1T.)/T. <0, in order to obtain the double well potential.

The non-ideal free energy contribution, represented by the excess free energy,
is the term which generates the periodic structure in the material. Thus, it is an
important part of the phase field crystal model and a density dependent expression
for the excess free energy in terms of the order parameter is obtained through a last
approximation. A gradient expansion of the excess energy defined by Eq. (3.14), is
performed also in the relative ¥ (r,¢) units. Truncating the expansion on the fourth
order and rearranging the corresponding terms, it can be shown that the excess energy
reduces to the following functional form [35],

Fufot = s [@rh (149, (3.17)

where k = 1/vD.

Under these approximations, we have obtained an expression for the free energy
functional which minimizes to a periodic density field. The expression is given by
means of a phase field parameter, 1(r), which describes the density field relative to
the mean equilibrium density, py. The evolution of the relative density field can be
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described by the following equation
Op(r) = DV? (o) + ¢ + (1 4+ V2)*9) (3.18)

which is recognized as the phase field crystal equation proposed in a phenomeno-
logical model by Elder et al. in [12]. Notice that the equation of motion is constrained
by conservation of the density field.

As previously discussed, a state of matter is determined by the value of the state
variables, here represented by density and temperature, that is p(r) and «. In a
two dimensional system, there are three equilibrium phases representing the three
distinct solutions for ¢(r). That is, the free energy functional is minimized by different
solutions resulting in phases with different periodic patterns; the constant phase,
the stripe phase or the triangular phase, the latter being the crystalline phase. In
Fig.( 3.1) we present a two dimensional phase diagram calculated in the one mode
approximation by Elder et al. in Ref. [11].
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Figure 3.1: Two dimensional phase diagram calculated in the one mode approximation
by Elder et. al. The constant phase, the stripe phase and the triangular phase
represent the equilibrium states for the three disinct solutions for v (r), while the
hatched areas correspond to regions of coexistance. The different phases can be
obtained by varying the values of the state variables, r and ¥(r), where the former
corresponds to the tunable temperature parameter, i.e. r = «

By varying the values of a and y(mathbfr) we can obtain equilibrium states
with different patterns. In addition, we can obtain systems in which different states
of matter coexist, in Fig.( 3.1) this situation is presented as hatched areas.
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3.2 The dynamics of a phase transition

In the previous chapter, we discussed the process of phase transitions for both con-
served and non-conserved density fields through phase field modeling. We considered
disordered binary systems in which the species was characterized by different densi-
ties. The initial homogeneous system was driven out of its prefered equilibrium by
a rapid drop in temperature and the evolution of the density field towards a new
equilibrium was investigated. Recall that the free energy functional then was mini-
mized by uniform density fields and that for a conserved density field we arrived at
the Cahn-Hilliard equation,

O (x) = DV? (ap + ¢ — V) , (3.19)

as an equation for describing the dynamics of the relaxation process, where D now
denotes the constant mobility.

Recall that the ideal contribution to the free energy in the PFC-model was con-
structed as a symmetrical double-well potential with a tunable well-depth in terms of
the a -parameter, that is by the Landau free energy. In the previous chapter, we de-
rived the CH- equation and the Ginzberg-Landau equation with the same free energy
funtional. Then, the ideal contribution was modified by a non-local term to account
for the energy cost of having heterogeneities near the interface. In the PFC-equation,
the modification is extended and renders a spatial structure of the density field in
equilibrium. The spatial structure is provided through the excess free energy by in-
cluding the contributions from long-range interactions in the interaction potential.
Hence, the PFC-equation, Eq.( 3.18), describes the evolution of a time-averaged den-
sity field, subjected to the constraint of density conservation [1] and provides thereby
an extension of the Cahn-Hilliard equation, in which the density field is averaged in
both time and space.

In the following paragraph, we investigate a phase transition in a two dimensional
system in which the dynamics of the conserved density field is governed by the PFC-
equation. We consider the same simple physical system as in the previous chapter,
that is a homogeneous mixture of two species characterized by different densities. A
sudden drop in temperature drives the system out of its equilibrium state and the
evolution towards a new equilibrium state starts. Fig.( 3.2), depicts snapshots of the
evolution of the density field as it reorganizes on the path towards the new equilibrium
state. In this simulation, the parameter values,a and v are chosen from Fig.( 3.1)
to ensure a periodic crystalline structure in equilibrium.



34 CHAPTER 3. PHASE FIELD CRYSTAL MODELING

Wx'eﬂﬁ*&- #19 b
A TR e SR

| e e T
Figure 3.2: Snapshots of the temporal evolution of a quenched system. (a),(b),(c)
and (d) represent the initial homogeneous system and three successive later times.
The initial disordered species reorganize into a periodic structure. The numerical
simulation is performed with undercooling parameter and mean density, a = r =
—0.25 and vy = 0.25. That is, values which in the parameter space correspond
to the regime where the the system relaxes to a crystalline structure. System size
nx = ny = 500.

The dynamics of the phase transition in Fig.( 3.2) was goverened by the PFC-
equation and the figure depicts the time evolution as the two species reorganize into
a periodic structure. The pattern of the density field in the new equilibrium state is
dependent on the value of the equilibrium mean density, py, and the temperature in
the system. The latter is here represented by means of the dimensionless undercooling
parameter, o = (T — T.)/T..

So far, we have discussed phase transitions and how its nature is dependent on
the equations governing the phase dynamics in the system as well as on the values of
the state variables. The former is determined by the choice of free energy functional
and the constraints on the dynamics in the system, while the later is chosen from
the phase diagram depicted in Fig.( 3.1). In Fig.( 3.3) we illustrate the differences
by a comparison of patterns generated in phase transitions governed by different
differential equations. Late stage pictures from the evolution process for both non-
conserved and conserved parameter fields with both uniform and periodic density
fields are depicted in the figure. The phase dynamics in the four systems,(a)-(d),
are governed by the Ginzberg-Landau -, the Swift-Hohenberg, the Cahn-Hilliard- and
the phase field crystal - equations respectively. From the point of view of pattern
formation theory, the PFC equation is a conserved analogue of the Swift-Hohenberg
equation [1]. The SH-equation reads as,

Ob(r) = D (—atp — ¢* — (1+ V)2, (3.20)
whilst the Ginzberg-Landau and Cahn-Hilliard -equations are the phase field equa-
tions we discussed in the previous chapter.
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Figure 3.3: Pictures (a),(b),(c) and (d) represent pattern formation due to disorder-
order processes in binary systems, all at a late times, and illustrates the dependence
of the governing differential equations. The patterns originates from the same initial
heterogeneous system consisting of two species characterized by their different den-
sities. The dynamics of the phase transitions are governed by the Ginzberg-Landau,
Swift-Hohenberg, Cahn-Hilliard and PFC-equations respectively. The numerical sim-
ulations are performed in a system with state variables o = —0.25 and ¥y = 0.25 for
PFC and SH, and a = —1 and ¢y = 0 for GL and CH. System sizes nx = ny = 500.

F—=303\

Fig.( 3.3) illustrates the difference between the phase field method and the phase
field crystal method. In the PF-method, the density field is averaged in both space
and time, and hence posess uniform density fields, as illustrated in pictures (a) and
(c). In contrast, the PFC-method (as well as the SH equation) averages in time, but
leaves a spatially variating density field, as depicted in Fig.( 3.3(d)). The additional
constraints on the free energy functional ensure periodic equilibrium states and hence
give the possibility of simulating microsctructural evolution at diffusive time scales.
This is a fundamental feature of the phase field crystal model.

According to Ref. [11], the basic physical features of elasticity is naturally incorpo-
rated by any free energy that is minimized by a spatially periodic function. Hence, by
constructing phase fields which prefer to be periodic in space, the phase field crystal
method possess a useful method to describe various properties of crystalline materi-
als. In Ref. [11], Elder et al. argue that the method is capable of capturing features
such as the energy of grain boundaries separating two phases, epitaxial growth and
yield strength of crystalline materials.

The dissipative dynamics in the phase transition is driven by free energy mini-
mization and the form of the free energy functional determines the symmetry of the
crystalline structure. According to Ref. [11], there is no systematical way of deter-
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mining the crystal symmetry by adjusting the free energy functional, but it is known
that it is determined by the choice of non-linear terms in the free energy functional.
The free energy functional that we present here is of a simple form and will always
produce a triangular lattice in two dimensions. In three dimensions, the same choice
of free energy functional will give the body centered cubic structure.

The structure of the density field repeats itself consistently in time and space,
similar to the shape of a wave. In a single mode approximation, the density field can
be decomposed into periodic density waves with characteristic amplitudes. Hence, we
can investigate liquid-solid phase transitions through the dynamics of the amplitudes
in the solid phase.

3.3 The Amplitude equations

In this section, we discuss the density waves in the crystalline phase, represented by
their amplitudes. Let us recall the phase field crystal equation that was previously
derived. In a non-dimensional form, it is given by

o = V2 (ot + 0* + (14 V2)2p), (3.21)

where o = (T — T.) /T, is the undercooling parameter relative to the critical temper-
ature. In the liquid phase, the density field is uniform and will take a homogeneous
value, say ;. In the solid phase, the spatially variating density field, 1s(x,t), can be
decomposed into a homogeneous mean density 1) and heterogeneously superimposed
density fluctuations, &(x,t). That is, 1, = ¥ + 1/; By inserting this decomposition
into Eq. (3.18), we obtain that the density fluctuations satisfy in the limit of small
variations, i.e. || < 1, a linearized equation on the form

O =V (at) +30°¢ + (1+ VA)2) . (3.22)

For a perfect crystal phase, the density fluctuations have a periodic structure
with the crystal-lattice symmetry, which in two dimensions is triangular. Hence,
the free energy functional is minimized by three distinct solutions for v4(r,¢) and
we can decompose @/NJ(X, t) into a superposition of three planar waves. The waves are
characterized by the same constant amplitude, A(t), and the corresponding reciprocal
wave-vectors, k; with j = 1,2,3. Thus,

_ 3
D(x,t) = At) Y (M + e M), (3.23)

j=1

where the lattice vectors representing a hexagonal crystal are given by

k1 =——i- 7j7 k2 :j7 k3 = —i-— 7j7 (324)
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with i and j being the unit vectors in the zy-plane. In order to obtain translational
invariance between the crystal-lattice and the reciprocal lattice, the k-vectors must
satisfy the following properties: |k;| =1 for every j =1,2,3 and Z?:l k; =0.

By combining the form of density fluctuations in a perfect crystal from Eq. (3.23)
with the evolution of these small perturbations as in Eq. (3.22), we find that the
uniform crystal amplitude, A(¢), satifies the following equation

QA(t) = —[k;[* (a+ 307 + (1= [k, *)?) At). (3.25)

Since the prefactor on the rhs is constant and, in fact, simply left to being —(a+ 3¢?)
for unit k-vectors (see the property above), it follows that the above equation has an
exponential solution as A(t) = Age*!, determined by a constant growth rate equal
to w = —a — 3¢ Hence, for w < 0, the crystal amplitude decays exponentially to
zero, and with it, so the density fluctuations vanish leaving behind a stable uniform
density. In this way, we can determine the values of the state parameters which gives
the constant equilibrium phase depicted in Fig.( 3.1). That is,

w=-a—-30 < 0
V—a/3 < |l (3.26)

Hence, the uniform liquid phase is dynamically stable for the state variables which
satisfy the stability requirement ,/—a/3 < [ig|. In the next section we will examine
the process of a single crystal growing from an undercooled liquid by means of the
periodic density fields, as well as through the dynamics of the amplitude fields.

3.3.1 Growth of single crystals

Recall from the previous chapter, the investigation of the growth mechanics of a
droplet in a binary system through the phase field model. A single droplet, referring
to a solid phase, surrounded by a liquid phase started to grow when the temperature in
the system was quenched. As previously discussed, the phase field method is restricted
to the case of isotropic growth. In this section, we will examine the growing crystal
through the PFC-model and hence provide a periodic structure in the solid phase
which is capable of capturing anisotropy. The initial system is now constructed as
a droplet with periodic density field surrounded by a homogeneous liquid phase. In
Fig.( 3.4) we present the evolution of a single crystal growing from the surrounding
undercooled liquid.
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Figure 3.4: Pictures (a)-(d) illustrates growth in a two dimensional system at succes-
sive time steps. The droplet grows radially outwards after a rapid temperature drop.
The liquid phase is represented by a uniform density field, while the growing crystal
is represented by a periodic density structure. The roughening of the crystal surface
in the later stage suggests surface instabilities in the system which leads to dendritic
patterns. Undercooling parameter and mean density o = —0.25 and ¢) = 0.25. These
parameter values are chosen from the phase diagram to ensure a dynamically stable
crystalline phase. System size nx = ny = 500.

We have now investigated the growth of a blob through both the phase field
method and the phase field crystal method. A comparison of the single crystal in the
phase transition for the two method is presented in Fig.( 3.5). In the PF-method,
both the crystal and the liquid phase possess a uniform density field, while a feature
of the phase field crystal method is its ability to capture the spatial structure of the
solid phase.
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Figure 3.5: Pictures (a) and (b) represent the density fields of a single crystal sur-
rounded by a liquid phase constructed by the PF-method and the PFC-method,
respectively. The PF-method simulates both the crystal phase and the liquid phase
by homogeneous density fields, separated by a diffuse interface. The PFC-method
captures the periodic structure of the crystal phase, whilst the liquid phase is rep-
resented by a homogeneous density field. The two phases are separated by a diffuse
interface. Undercooling parameter and mean densities are « = —0.25 and ¢ = 0.25.
System sizes nxz = ny = 500.
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The evolution of the crystalline material can also be examined by means of the
amplitude equations, Eq.( 3.25). In Fig.( 3.6) we present the density field and the
amplitude field of a single crystal in a liquid phase, simulated by the PFC-method.

Figure 3.6: (a) represents the density field of a single crystal surrounded by a liquid
phase. The density field has a periodic structure within the crystalline phase, while
the liquid phase is represented by a homogeneous density field. (b) represents the
amplitude field of the same single crystal and its surrounding liquid. Notice that
the amplitude field is constant inside the crystal, vanishes in the liquid phase whilst
it changes rapidly across the solid-liquid interface. The density field connected to
(b) is a cut out of the density field depicted in (a). Undercooling parameter and
mean density for the system is @« = —0.6 and a = 0.39 respectively. System Size
nr = ny = 1024.

So far, we have discussed the case of single crystals. But the conditions under
which a single crystal can grow progressively without disturbance are straight. That
is, from the very beginning of the solidification process, there can only be a single
crystal surrounded by a liquid phase. In nature, it is however more likely that the
solidification starts from a system consisting of several seeds growing simultaneously
with atomic structures in accordance with the structure of each seed. There is however
no reason for all the crystals to have the same lattice orientation. That is, the
solidification process is likely to form what we call a polycrystalline material consisting
of single crystals with different lattice orientations which have grown together.

What happens though, with the dynamics of the density field, when there are
many crystals having different orientations? In the next section we will generalize the
density fluctuations for a single crystal in Eq. (3.23) to represent a polycrystalline
material.
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3.3.2 From single crystals to polycrystalline materials

In general, a solidified mass consists of a collection of single crystal grains grown
together and separated by grain boundaries. The individual grains are periodic in
structure, but the different lattice orientations breaks the periodicity across the grain
boundaries. The broken periodicity breaks the crystal rotational symmetry and hence,
the grain boundaries can be seen as defects in the system. The PFC-method can
incorporate such defects and is thereby suitable to describe the evolution of several
crystals of arbitrary orientation that collides and form grain boundaries [1]. By
relaxing the assumption of a constant amplitude for the density fluctuations for a
single crystal, Eq. (3.23) can be generalized to represent a polycrystalline material.

We assign a spacially-dependent amplitude A;(x,t) for each mode j = 1,2,3
and derive amplitude equations governing the dynamics of each of these modes. On
the whole, these amplitudes are constant inside each crystal, vanish in the liquid
phase and have sharp gradients across grain boundaries. Since all the crystals are
expanded relative to a base crystal orientation with the wave-vectors k;, the relative
misorientation between grains is consequently incorporated in the complex phase of
the amplitudes. Hence, for a polycrystalline phase we consider a generic amplitude
expansion of the density fluctuations on the form

_ 3
D%, ) = D7 (Aj(x, 1)e™™ 4 A3 (x, b ™) (3.27)
j=1

where the complex conjugate of the amplitude is denoted by the upper star index,
i.e. A*. The evolution of these complex amplitudes follows from the governing equa-
tion of the density field, that is the phase field equation, given in Eq. (3.18). The
PFC-equation is however strongly non-linear and we will in the following treat the
linear terms seperately from the more difficult non-linear coupling terms between the
amplitudes and their complex conjugates.

The linear part can be straighforwardly obtained by inserting Eq. (3.27) into the
linearized equation

O = V? (0 + 360 + (1 + VA% | (3.28)
representing the dynamics of the density fluctuations in the limit of small variations,

i.e. )| < 1, equivalent to Eq.( 3.22). In the linear regime, the modes decouple and
we can treat them seperately. Each of the modes satisfy the following equation

DA(xt) = (1—L;) (—a—30" = £2) A;(x, 1), (3.29)

where £; = (V2+2ik;- V) denotes the differential operator corresponding to (V?+1)

when it acts upon A;(x, t)eik'x for each of the modes, j = 1,2, 3.
The additional nonlinear coupling terms come from expanding the cubic nonlinear
part in Eq. (3.18), that is

(b + )% = ® + 302 + 300% + P, (3.30)
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where qﬂ(x, t) is given by Eq. (3.27). The first term in the equation above disappears
from the equation of motion when the mean density is homogeneous. The second term
represents the linear part that we have just taken into account, whilst the last two
terms yield the nonlinear amplitude couplings. The last step in the derivation of the
equations of motion for the amplitude field of a polycrystalline material is to obtain
expressions for these non-linear coupling terms. We can obtain this by inserting the
amplitude expansion of the density fluctuations into the last two terms and using the
properties of the k-vectors.

Then we arrive at the following nonlinear equation for the j = 1 -mode amplitude,
Alv

QAL = (1- L) (—a—30% = L7 = 3(| A1 + 2| A + 2| 45*)) A1, (3.31)

Similar equations describe the evolution of A; and Az by the corresponding index
permutation.

Similar to the case of the single crystal, we can now examine polycrystalline mate-
rial by means of both periodic density fields and the amplitude fields. In Fig.( 3.7) we
present the density field, ¥(r, t), and the amplitude field of a polycrystalline material,
simulated by the PFC-method.
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Figure 3.7: (a) Represents the density field of a polycrystalline material. The den-
sity field is a result of several individual crystals of same hexagonal periodicity but
arbitrary lattice orientation which have grown together. As the individual crystals
collide, they form grain boundaries which separate grains of different orientations.
Notice that the pattern is periodic inside each grain and that there is a break in the
periodicity across the grain boundaries. (b) depicts the amplitude field of the same
polycrystalline material as depicted in (a). Notice that the amplitude field is homo-
geneous inside each grain and vary rapidly across the grain boundaries and across
other defects in the material. The latter is recognized as 'red dots’ in the amplitude
field. The density field connected to (b) is an out cut of the density field depicted
in (a). Undercooling parameter and mean density for the system is @« = —0.6 and
a = 0.39 respectively. System Size nx = ny = 1024.

We have now derived equations of motion for the amplitudes of periodic density
fields and examined the density fields and amplitude fields for both single crystals
and polycrystalline materials. The values of the state variables was chosen from
the phase diagram in Fig.( 3.1), to ensure that the system relaxed into the crys-
talline phase. Recall that, in the previous derivations, we decomposed the density
field into a constant mean density and periodically variating density fluctuations, i.e.
Y(r,t) = (r,t)+(r,t). The approximation of having a homogeneous mean density
in space is valid for single-phase systems, but fails to describe regions of coexistance,
represented as hatched areas in the phase diagram. In these regions we have a two-
phase system in which liquid is at coexistance with the crystal phase. Hence, there
can be density variations across the liquid-solid interface and the approximation of
having a homogeneous mean density in space is not longer valid.

In Ref. [38], Yeon et al. present an extended amplitude formulation for the density
waves that does not restrict the amplitude equations to single-phase systems. The
space dependence of the mean density, i.e. ¥(x,t), is taken into account by use of a
multiple scale analysis. The basic of this method is to take advantage of the fact that
the average density and amplitudes vary at larger length and time scales than the
density fluctuations [38]|. Hence, a small parameter, €, can be introduced to scale the
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arguments for the amplitude equations and the density field. The now slowly varying
mean density field, 1(x,t), is thereafter expanded in powers of e. The equations of
motion for the mean density field and the amplitudes are obtained by substituting
the extended and scaled expansion of ¥ (x,t) in the PFC-equation. By rescaling the
new evolution equations back to the original variables, the additional equations of
motion governing the mean density field is obtained,

3 3
Op = V2 (aq]} +30Y7 + (1 + VA2 + 4° + 6 (H Ai+ 1] A;*)) - (332
=1 =1

By substituting 35, |4;|> = ¥ for the second term on the rhs, the three first
terms on the rhs corresponds to the linear terms, equivalent to the linearized equation
of motion for the density fluctuations given in Eq.( 3.28).

The dynamics of the amplitudes are given as

0 AL = (1 - L) (—a =307 — LT = 3(|A1* + 2| Ao* + 2| 45]") ) Ay, (3.33)

equivalent to Eq.( 3.31). In this model for a two-phase system, the approximation
of a constant mean density is relaxed and the system is described by equations of
motion for the amplitude field and the mean density, in Eq.( 3.33) and Eq.( 3.32),
respectively.

We have now derived the phase field crystal model, a method which represents
the crystalline phase by a periodic density field and hence incorporates physical fea-
tures, such as impurities and grain boundaries. In the one mode approximation, the
periodic structure of a crystalline materials can be decomposed into periodic density
waves with characteristic amplitudes. We have presented equations of motion for
these amplitudes which gives the possibility of invetigation the evolution of a phase
transition by means of the dynamics of the amplitude fields. This method provides
a suitable for investigating changes of state. In the next chapter, we will present
our results from the investigation of phase transitions between liquid and crystalline
materials, i.e. melting and freezing, through the PFC-method.
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Chapter 4

Liquid-solid phase transitions

In the previous chapters we argued that the PFC-method provides a good description
for the liquid-solid phase transition and studied simple physical systems in order to
investigate the dynamics of such phase transitions. Additionaly, we derived ampli-
tude equations capable of describing the crystalline phases on larger lengthscale. As
a phase transition, melting of crystals is a common phenomena in nature. Disloca-
tion mediated melting is a common theoretical approach to describe two dimensional
melting with two plausible scenarios, that is the KTHNY-melting process and the
grain boundary induced melting. The small scale details for crystal breakdown bring
up challenges, however. In this chapter will will discuss the nature of melting and
freezing on thin films that can be approximated as two dimensional systems. We fo-
cus on the small-scale mechanisms of melting crystals and discuss the role of defects
through the phase transition.

In the study of phase transitions, progress has been made within both experimen-
tal work, theoretical theories as well as within numerical simulations. We will here
present our numerical investigaton of freezing and melting and evaluate our results
upon the two most relevant theories within dislocation mediated melting, i.e. the
KTHNY- and grain-boundary-scenarios.

4.1 A change of state

Matter in different states and the process of transformation between the phases of
matter has fascinated humans and challenged scientists for centuries. Of all the phe-
nomena exhibited by condensed matter, changes of state are of the most dramatic and
have stimulated development of quantum mechanics and classical thermodynamics.
Various concepts, such as the role of dimensionality and the impact of impurities,
such as dislocations, have been incorporated in the search of a full understanding of
the small-scale details for the melting mechanism, [8, 32].

The different states of condensed matter can be classified by the range of order in
the system. While a perfect crystalline solid is recognized by its order and periodic

45
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lattice structure, a liquid phase is homogeneous with randomly distributed atoms and
appears as a disordered system. Hence, the melting transition can be interpreted as a
breakdown of the periodic order in a system with crystal symmetry. Investigating the
nature of this reduction process can hence be a method to characterize the melting
mechanism and to reveal its universalities.

Real systems usually consist of large amount of particles, which for convenience
are treated on a coarse grained level by means of statistical mechanics. Hence, the
density provides a coarse grained description of matter. In the previous chapters
we treated phase transitions through the energy functionals Ginzberg-Landau and
Cahn-Hilliard, represented in terms of the dimensionless order parameter, related to
the density by ¥(r,t) = (p — po)/po-

By creating simple models which captures the essential physics of the system, we
can extract a clear understanding of the physics leading to a specific behavior [37].
Through models which can incorporate defects, we can investigate the cooperative
interactions between dislocations in a crystalline material. The nature of the dislo-
cation interactions is one of the aspects that separate the various theories of melting.
Both the dislocation unbinding theory, by Kosterlitz, Thouless, Halperin, Nelson and
Young, and the grain-boundary theory, by Chui, are based the dislocation energy,
in analogy to the well-known treatment of a magnetic system in terms of a spin
Hamiltonian [32].

The transformation between the solid and liquid state is a common phase tran-
sition in nature. As previously discussed, the state of matter is determined by the
energy in the system, that is the energy which we perceive as temperature. For low
temperatures, the system takes the ordered solid state, whilst the disordered liquid
state is formed when the temperature is high enough to break the rigid structure of
the solid. In the PFC-model, the solid state is represented by a density field which is
periodic in space, while the liquid state has a homogeneous density field represented
by the equilibrium mean density, po(r) = p.

Though one could expect freezing and melting to be opposite of each other, these
phase transitions are actually described by different small scale mechanics. Some work
has been done in generalizing the two processes, and there has been great progress in
understanding each of them, but a general theory of freezing and melting is still to
be constructed [20].

Freezing is treated within a liquid-based theory, in which the process is described
as condensation of the liquid phase. The process of crystallization is a spontaneous
appearance of periodic order in a disordered system, [20], and the solidification process
is associated with release of latent heat. On the other hand, the melting process
is often discussed within a crystal-based theory where the ordered crystal lattice
breaks down and leaves a uniform liquid. The melting transition occurs in systems of
interacting particles, that is, systems in which the particles behave collectively and
hence require a rigorous treatment. Most crystalline materials carry imperfections,
i.e. contain defects such as dislocations, in the crystalline structure. The presence of
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dislocations in the system affect the energy functional and is hence expected to have
an impact on the melting temperature. Dislocation mediated melting is a common
theoretical approach to describe the melting transition and we will in the following
sections discuss some of the aspects that contribute to the nature of the melting
transition, in particular, but as a counterpart, the process of freezing will also be
discussed.

4.1.1 Continuous vs first order transition

One of the biggest puzzels in understanding the melting scenario is to determine the
order of the phase transition which can occur in the thermodynamical limit [9]. As
previously discussed, the different phases can be characterized by certain macroscopic
properties, such as density. For convenience, these properties can be represented by a
dimensionless order parameter, ¥ (r,t) = (p— po)/po, which gives the density in a cer-
tain area of the system relative to the equilibrium mean density of the system. During
a phase transition, the system reorganizes and hence the value of ¥ (r,t) changes. As
the order parameter represents the density of the matter, its behaviour through a
transition can indicate the order of the transition. Whilst a first order transition
is abrupt and causes a discontinuously jump in the order parameter, a continuous
transition is less sudden and the order parameter will change gradually [23].

Through a continuous phase transition, the properties of the matter change grad-
ually and the transition can be described as a transition within one phase rather than
a transition between two phases. According to Landau’s theory, a continuous phase
transition can only occur if certain symmetry conditions are satisfied [23]. That is,
there can be no cubic term in the free energy functional, thus we obtain a symmetrical
double well potential. An additional feature of this gradual change of state is the lack
of latent heat connected to the phase transition.

A first order transition is abrupt, i.e. the material properties changes discontin-
uously. As opposed to a continuous transition, there are no symmetry requirements
in the system. That means that there are no restrictions on the order of the func-
tional which describes the energy in the system. The double well potential might
very well be non-symmetrical and hence, the appearance of a cubic term in the en-
ergy functional will in general cause a first order transition to occur. Additionaly, the
transition is dismissive and requires a finite latent heat.

The order of a phase transition determines its dynamically nature as well as the
evolution of the state variables. Hence, revealing the order of the melting transition
is of importance for understanding the melting mechanism. In the following sections
we will investigate the phase transition between liquids and solids, that is freezing
and melting, in two dimensions using the phase field crystal model presented in the
previous chapter.
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4.2 Freezing

As previously mentioned, freezing is recognized as a spontaneous appearance of order
in a disordered system. The phase transition is of first order, [20], and can occur if
a uniform liquid state is turned dynamically unstable, e.g. through rapid changes in
the state variables of a system. The solidified material is characterized by a certain
regular pattern in which the particles are arranged. Recall that for a two dimensional
material in the crystalline phase, the arrangement has the form of a triangular lattice.

In the previous chapter we discussed growth of a single droplet surrounded by a
liquid phase as an application to the PFC-method. We will now investigate a process
which is more likely to occur in nature, that is growth of a polycrystalline material by
use of the same method. A simple model of the process is a system in which several
individual droplets are surrounded by a uniform liquid. Below a critical temperature,
the disordered liquid phase turns dynamically unstable and the droplets start to
grow radially outwards with curvature dependent dynamics. Though the individual
grains may have the same periodic lattice structure, the orientations of their lattices
might distinguish them. Hence, as the individual droplets grow into each other, a
network of grains with different orientations is created. Where the grains of different
lattice orientations meet, grain boundaries are formed. The misorientation between
the grains in the polycrystalline material breaks the symmetry and hence, the grain
boundaries act as defects in the system.

In the previous chapter we ensured the crystalline phase by choosing suitable val-
ues for density and temperature, and we continue here in the same manner. We create
an inital system consisting of randomly distributed crystalline droplets surrounded by
a uniform liquid phase. The initial state variables are chosen from the phase diagram
depicted in Fig.( 3.1), to ensure a metastable liquid phase. Then, as we quench the
temperature below its critical value, the crystalline droplets start to grow. Snapshots
of the temporal evolution of the density field through the crystallization process is
presented Fig.( 4.1).
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Figure 4.1: (a)-(d) represent snapshots from a numerical simulation of the temporal
evolution of growth of a two dimensional polycrystalline material. The inital droplets
are randomly distributed and of the same radius. As the individual grains grow they
bump into each other and grain boundaries are formed between grains of different
orientation. The misorientations lead to symmetry breaking and hence, the grain
boundaries act as defects in the system. The pictures are cut outs from a larger
numerical simulation with undercooling parameter and mean density, o = —0.6, ¢y =
0.39, respectively. System size nx = ny = 1024

In Fig.( 4.1) we see that all the individual grains have density fields with the same
periodic structure, but with differently oriented lattices. The average atomic density
in the system is relatively constant, [38]. Hence, the periodic density field should
vary around an intermediate liquid-phase density. We point out that this is fulfilled
in the the density fields depicted in the figure, where the density field within the
crystal phase vary from “low” to “high” values, i.e. black to yellow, that is around
the density of the liquid phase, the “intermediate” valued red areas.

As the grains grow larger and start to collide, the misorientation between the
lattices lead to the formation of grain boundaries and leaves a system simulating a
polycrystalline material. The droplets are squeezed together at the grain boundaries,
but continue to grow in the directions where they are not hindered by other grains.
Hence they loose their close to circular gemometry and regular curvature. The latter
is closely related to the growth rate and thus the droplets do not longer grow at
the same rate. The combination of changing growth rate and the hinders due to
other droplets in the sytem, leaves a network of arbitrarily sized and shaped grains
separated by grain boundaries.
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The freezing process can also be investigated by means of the evolution of the
amplitude fields, represented by the amplitude equations which we discussed in the
previous chapter. The pictures presented in Fig.( 4.1) are enlarged views of a part
of a larger numerical simulation of the liquid-solid transition, and in Fig.( 4.2) we
present the evolution of the corresponding amplitude field for the whole system.

Figure 4.2: Pictures (a)-(d) depict the temporal evolution of the amplitude field of a
polycrystalline material through a freezing process induced by a homogenous temper-
ature drop in the system. High values of the field parameter (yellow)indicates crystal
phase, low values(black)represent the liquid phase while the intermediate values(red)
represent grain boundaries within the polycrystal. Simulations are carried through
with undercooling parameter &« = —0.6 and mean density 1y = 0.39. System size
nr = ny = 1024.

In Fig.( 4.2) we present snapshots of the temporal evolution of the amplitude field
of a system through the freezing transition. The initial system consists of randomly
distributed blobs with crystalline structure which is surrounded by a homogeneous
liquid phase. As the homogeneous temperature field in the system suddenly drops
below the critical temperature, the blobs start to grow. The periodic structure of
the crystalline phase corresponds to high amplitudes and is hence depicted as yellow
regions in the system. We point out that the values of the amplitudes are increasing
through the freezing process until it saturates to the equilibrium values, that is the
brightness of the amplitude fields within the crystalline material is decreasing. Hence,
the “strength” of the periodic structure is increasing. Notice also that the growing
blobs obtain a six-fold anisotropy at their surfaces, that is there is anisotropy in the
system, a tendency that was also noticable in Fig.( 4.1). As the blobs grow larger,
they create a solid network of grains separated by grain boundaries. Notice now, that
the internal grain boundaries in the system are much thinner than the quite sharp
boundaries between the liquid phase and the crystalline phase. Even in the fully
solidified system, Fig.( 4.2(d)), the grain boundaries appears as droplets organized
in buckled lines, reminding us of a boundary. Notice also the defects in the system
which are not connected in any boundary-like structure.
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Both the isolated defects and the grain boundaries, i.e. the misorientation in the
material, are energetically costly. That is, their presence in the material is noticable
in the free energy functional. Through the phase transition, we notice that these
grain boundaries deform slightly as the grains collide and form the polycrystalline
network. This deformation contributed to the free energy by means of an elastic
energy contribution. In the next section we will discuss the possibility of investigating
the state of deformation in the material by means of the elastic energy field.

4.2.1 Elastic energy density fields

As previously discussed, the PFC-method is capable of incorporating the elastic prop-
erties of a material. That is, the free energy functional contains a contribution due to
deformations in the material through an elastic energy term. Hence, an investigation
of the elastic energy field can indicate the state of deformation in a material, and its
evolution through a phase transition. In [38], Yeon et al. present a calculation of the
linear elastic energy, in the limit of small deformations. Consider a small deformation
on the amplitude form, that is A; = Ae™™, for each of the modes j = 1,2,3. This
elastic deformation field contributes to the elastic part of the free energy by means of
the squared L-operator, that is £* = (V2 + 2ik; - V)% For the j = 1-mode we obtain

1L, A = (V24 21k, - V) Ae™ )2
442 (ky - V(k; - u))?, (4.1)

where the last approximation is valid in the continuum elasticity limit. That
is, the limit of elastic behaviour of the material, which is represented by a critical
stress at which the deformation field, u, turns permanent. For stresses beyond this
elastic limit, the higher order gradient terms are included due to their contribution
to the finite elastic deformations. The k;-vectors are the lattice vectors representing
a hexagonal crystal, that is

V3, 1 V3, 1
ki=——i—=j, ke=j, ky=—i—-] 4.2
1 9 1 2J7 2 J 3 9 1 2J7 ( )
with i and j being the unit vectors in the xy-plane. That is, the elastic energy density
contribution to the free energy functional is determined as the sum over the three

modes,

3 3
E = Y |LgAP =442 (k- V(k; - u))? (4.3)
j=1

J=1

In Fig. 4.3 we present the elastic energy density field corresponding to the density
field depicted in Fig.( 4.1d).
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Figure 4.3: The picture depicts an enlarged view of the elastic energy density field
of the polycrystalline material during the freezing process and corresponds to the
density field represented in Fig. ( 4.1(d)). The bulk of each grain is in equilibrium
and hence there is no deformation in these areas. At the grain boundaries, however,
the elastic energy density is higher, that is red areas. The boundary does not appear
as uniform along its length and in the inset figure, which is a further enlargement on
a part of the grain boundary, it clearly appears pointwise as ’dots’ with particularly
high energy (yellow core). Cut out from system size nz = ny = 1024.

In Fig.( 4.3) we see how the elastic energy density changes adruptly across the
grain boundaries. The bulks of each grain are in their equilibrium state. Hence there
is no deformation within these areas, that is there is no elastic energy density. The
grain boundaries are however stretched and deformed as the initially individual grains
starts to collide. Notice the tendency, emphasized in the inset figure, that the grain
boundaries partly consist of localized regions, in which the energy is higher than in
the more uniform parts of the grain boundaries.

In the next section we will focus on the solid-liquid phase transition, i.e. the
process of melting. We will discuss some of the aspects which are considered imporant
for the melting transition, as well as discuss two of the theories which have been
observed experimentally.

4.3 Melting

Liquids can be undercooled and in coexistance with solid surfaces, whereas no crystal
can be superheated without loosing its crystallinity. The melting process of a crys-
talline material is defined as the prosess of reducing the order in the system resulting
in a disordered liquid. One of the puzzles is to understand the role of crystalline
dimensionality and defects, which most often is present in the lattice structure. The
interest in the former originated from the discovery by Peierls that the range of order
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in a system is dependent on the dimensionality of the system, hence the breakdown
of order is also expected to be dependent on dimensionality [9]. The latter has moti-
vated the development of several theories with melting being mediated by dislocations.
One of them is the theory of pair-dislocations unbinding resulting in two successive
continuous phase transitions, as described by Kosterlitz, Thouless, Halperin, Nelson
and Young (KTHNY) [18, 39, 32]. The competing theory of grain-boundary induced
melting, which predicts a preemting of the KTHNY-scenario and causes a single first
order transition, was proposed by Chui in Ref. [7].

We will in the following sections discuss the role of dimensionality and dislocations
through the melting transition and investigate the two main competing theories of
dislocation-mediated melting in two dimensional systems.

4.3.1 The role of dimensionality

While three dimensional crystals generally melt through a first order phase transition
associated with a latent heat release, the two dimensional case is not as easy to
characterize. Hence, the role of dimensionality is one of the concepts that has been
investigated in the search for the fundamental melting mechanism. As mentioned
earlier, Peierls proposed theories of melting in lower dimensions based on the effect
of the collective behavior of atoms in a structure [9]. At the abosolute zero, all atoms
are at rest and the system is motionless. For temperatures above zero Kelvin, the
atoms stay relatively fixed in their lattice with only small vibrations around their
positions. For increasing temperatures, these vibrations are increasing and the atoms
are allowed to be further displaced from their equilibrium positions. The structure
of the solid determines the atoms ability to stay in their regular structure. The long
range order in the system is kept as long as two atoms situated on a long distance
from each other manage to keep their correct relative positions to each other.

Peierls modeled a one dimensional solid as a linear chain of atoms in which the
atoms can only sense the position of their nearest neighbours [9]. For temperatures
above the absolute zero, the atoms will vibrate around their regular positions in the
chain and hence be somewhat displaced from their equilibrium positions. Consider
now two long distanced atoms which are connected in a one dimensional chain. Due to
the chain structure, which ensures that both atoms have only two nearest neighbours,
the atoms have only one path from which they can extract “information” about the
position of the other atoms. As all the atoms along this path vibrate around their
correct positions, the two long-distanced atoms are not likely to obtain the right
relative position. Thus, at finite temperatures, the regular structure is not kept
through the array and the long range order in the system is broken.

On the other hand, in three dimensions, the atoms have more nearest neighbours
than in the one dimensional chain of atoms. That is, there are more paths between
the two long distanced atoms and hence, the atoms can get information about each
others positions through these additional paths. Thus they are more likely to maintain
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their regular positions despite the increasing vibrational energy in the system. In
such three dimensional systems, the long-range-order in the system persists until the
temperature in the system reaches the melting temperature of the material. At this
well defined melting point, the long-range-order breaks discontinuously and a first
order phase transition has occured [9].

The intermediate situation of melting in a two dimensional system is more in-
teresting. The boarderline between the three dimensional long-range-order and the
one dimensional disorder, differs from both of the other dimensions with its quasi-
long-range-order [8]. That is, through the melting process the order decreases with
increasing temperatures, but in a much more gradual way than for 3D systems.

This implies that reduced dimensionality prevents the long-range-order we find in
3D and the order of dimensions may play an important role in the melting mechanism.
In 1D long-rang order in the array is actually destroyed as soon as the temperature
raises above the absolute zero and thus, the 1D crystal does not really exist.

In addition to the effect of dimensionality, there might be thermal excitations in
a system which will influence the energy in the system and hence affect the melting
transition. An example of such thermal excitations are defects, such as dislocations,
which in nature always will be incorporated in crystalline materials. Hence, the theory
of dislocation mediated melting is a common theoretical approach to the melting
mechanism.

4.3.2 Dislocation mediated melting

Dislocations are thermal excitations which work as defects in a solid structure. The
energies of these thermal excitations increase with increasing temperature and hence
change the properties of the solid [8]. The dislocations in a material can be either
isolated, bound in pairs or connected in chains, e.g. internal grain boundaries in a
polycrystalline material. The theories of dislocation mediated melting are based the
interaction between the dislocations in the material. As the interaction potentials
between the dislocations contribute to the free energy of the system, [32], the degree
of interaction between the dislocations can influence the equilibrium conditions for the
system. That is, the density of dislocations and their arrangement in the system might
be connected to the state of matter. For low temperatures, all atoms and dislocations
are bound. Hence, the system is rigid and has the form of a solid material. When
the temperature increases and approaches the critical temperature from below, the
behaviour of the system is more complicated and still not fully understood.

Within dislocation mediated melting there are two competing theories. The first
scenario is a defect-unbinding theory, the KTHNY-theory [18, 39, 32]. This theory
anticipate that the melting transition is caused by formation of dislocation dipoles
which decouple close to the melting temperature. The mechanism of melting pre-
dicts two successive continuous phase transitions [32]. Another theory is the grain
boundary induced melting proposed by Chui in Ref. [7], that predicts a first order, i.e.



4.4. DISLOCATION MEDIATED MELTING IN 2D 5%}

discontinuous phase transition, induced by generation of dislocations which pile up
into grain boundaries. The main idea in his work was a prediction that the KTHNY-
mechanism would be preempted by premelting at these boundaries. When a material
is heated to its critical temperature, the material will start to melt from its bulk.
When defects, such as impurities and grain boundaries, are present in the material,
we can however experience the phenomena of premelting. That is, the material starts
to melt from these defects before the material reaches its critical temperature.

The grain-boundary premelting is dependent on the balance between the free
energies of the bulk and the interfaces. Whilst the former will favor the crystalline
phase for temperatures below the critical temperature of the material, the latter
will favor the creation of a liquid-layer along the boundary or around the isolated
core before the critical temperature is reached [21]. As the defects in the system is
expected to have an impact on the nature of the melting transition, we will in the
following section elaborate upon the theories of dislocation-mediated melting in two
dimensions.

4.4 Dislocation mediated melting in 2D

The crystal-based theory of melting is described as a breakdown of the crystalline
periodicity as a reaction on a rapid change in state variables, e.g. a rapid tempera-
ture increase, which leaves a thermodynamically unstable system. The nature of the
breakdown process of thin films is still a puzzle as both the continuous and discontin-
uous melting scenarios have been observed experimentally [22, 33]. As the breakdown
process evolves very differently for different order of the phase transition, it is difficult
to reveal the universal behaviour of the melting transition in two dimensions.

As previously discussed, the theories of dislocation mediated melting are based
on the interaction between the dislocations in a solid material. Hence, density of
dislocations in the material and their structure, that is their way of organizing in
the material, is expected to be of importance for the nature of dislocation-mediated
phase transitions. The KTHNY-theory is based on a physical picture of pairwise
interacting dislocatios, dipoles, which interact through logarithmic potentials. The
transition theory argues that the energy cost of having isolated dislocations in the
system, requires the temperature in the system to be rather high for them to appear.
Hence, the dislocation pairs will be tightly bound in pairs as long as the temperature
is low, but increasing temperature will allow for the dislocations to be less bound.
Thus, the proposed theory describes the melting transition by means of a gradual
reduction of the interaction potentials within the dislocation-pairs in the material.

In a low-energy system the dislocations are assumed to appear as tightly bound
dislocation-dipoles, interacting through logarithmic interaction potentials. As long
as the dipoles are assumed not to interact with other dipoles in the system, they act
as isolated dislocations and the logarithmic interaction potential within each dipole
is not reduced. In Ref. [18], the authors define a threshold for when the dipoles
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are expected to be independent on other dislocation-dipoles. That is, the dipoles
in the system moves independently on each other if the ratio between the typical
size of the dipoles and the distance between each dipole is kept below this certain
threshold. Above this threshold, however, the dipoles are no longer expected to
move undisturbed in the system, and the interaction potential within each dipole
is reduced through interactions with other dipole-pairs. In order to describe this
reduction, Kosterlitz and Thouless drew a parallell between the theory of dislocation
interaction and magnetic systems, in which the reduction of interaction potentials
within the dislocation-dipoles were described similar to the ’screening-effect’” known
from the electro magnetic systems [17]. As the melting point is approached from
below, the interaction potentials within the dislocation-dipoles are gradually reduced
due to the interaction with other dipoles in the system.

The free energy in the system is defined by means of the hamiltonian energy, as
a sum of two contributions. That is the energy due to the pairwise interactions and
the temperature dependent entropy in the system. As the former reduces and the
latter increases for increasing temperature, the entropic contribution the free energy
functional will change sign when the energy function changes sign. At this turning
point, an instability, defined as the point were the first dislocation-dipole dissociates
leaving isolated dislocations in the system, occurs [18]. The gradual dissociation
process leads to a gradual change of state, that is a continuous phase transition. The
existance of a second continuous phase transition was suggested by Halperin, Nelson
and Young after elaboration upon the original ideas of Kosterlitz and Thouless, [32],
resulting in the KTHNY-theory of melting. They expected that the KT-instability
did not cause a full melting transition, but that it rather led to a transition from
the solid phase to an intermediate hexatic phase. That is a phase that has properties
between the mobile liquid phase and the rigid solid structure. An additional transition
was therefore added to the theory, leading to a theory of melting, the KTHNY-theory,
which predicts that two dimensional materials typically melt through two continuous
phase transitions. The first transition, known as the KT-instability, is the transition
from the initial solid phase to an intermediate hexatic phase and the second from the
hexatic phase to an isotropic liquid phase.

The other dislocation-mediated-melting scenario is the grain boundary induced
melting process proposed by Chui in Ref. [7]. As previously discussed, grain bound-
aries are naturally incorporated in polycrystalline materials as boundaries between
subgrains of different orientations, that is they take the role of surface defects of each
of the grains in the network. A grain boundary is defined to consist of an array of
dislocations, [32], and might hence mediate the melting transition for temperatures
below the critical temperature of the material. Chui’s calculations indicated that a
hexatic phase above the critical temperature, as predicted by the KTHNY-theory,
does not exist and in Ref. [7], he proposed a theory in which the KTHNY-scenario is
preempted by a first order melting transition. In this theory, generation of new dislo-
cations which pile up and create new grain boundaries are expected to occur before
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the bulk of the system reaches the melting temperature, T,. Thus, Chui predicted a
first order melting transition for all two dimensional materials.

Later, the theory have been shown to break down for dislocations with core ener-
gies above a certain threshold. The core energy is defined as the energy within the
area at which the dislocation does not interact logarithmically with other dislocations,
that is inside the core radius of the dislocation [32]. That is for defects which have
high core energies. Hence the defects are likely to exist in a dilute system. Simulations
performed by Strandburg [32], indicate that that the nature of the phase transition
changes from the one-step first order transition to a two-step continuous transition as
a critial core energy value is approached from below. Above this threshold, the dis-
tance between the dislocation pairs become large. Then, the KTHNY-theory for the
behaviour of dislocation-dipoles in a dilute medium appears appropriate [32]. Whilst,
the KTHNY-theory does not predict any increase in the number of dislocations [39],
the grain boundary mechanism is based on the creation of new dislocations which pile
up and form internal grain boundaries. Hence, the two theories are quite distinct in
their description of the melting transition.

In Ref. [2], Berry et al. present their study of dislocation-mediated melting in
three dimensional systems by use of the phase field crystal method. The numerical
simulations are performed with bee-symmetry, which corresponds to the 3D version
of the two dimensional triangular lattice. The authors argue that, in the limit of
small misorientations between the grains, that is # — 0, the dislocations appear
as individual “cores” and can by approximation be treated as isolated dislocations.
Hence, the melting transition can be investigated by a study of the evolution of the
core-size of each dislocation. At the temperature where the initially distinguishable
dislocations start to coalesence, the energy of the grain boundary becomes increasingly
uniform along its length. That is a liquid-like layer is formed along the grain boundary.
Now, the approximation of isolated dislocations does no longer hold, as the energy of
each dislocation is expected to decrease due to ’screening’ from the other dislocations
in the grain boundary [2].

As long as the individual dislocations are distinguishable, it is possible to measure
the evolution of their radius as the temperature in the system increases. By quanti-
tative measurements of the radius of melting around the core, we can investigate how
much these defects premelt the system before the temperature in the bulk reaches the
critical temperature of the material. According to Berry et al. in Ref. [2], a quanti-
tative description can be obtained by means of continuum elasticity theory as long
as the grain boundaries are below a certain critical angle,f. In Ref. [21], Mellenthin
et al, present their study of grain-boundary melting through the phase field crystal
method. They investigate the evolution of both high- and low-angle boundaries as the
melting point is approached from below, and find qualitatively different behaviours
for the two cases. Whilst the defects in low-angle boundaries are found to be ’dots’
surrounded by a liquid layer, the high-angle boundaries are uniformely wetted along
their lengths [21].
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Berry et al. investigated the premelting due to dislocations in a three dimensional
crystalline material. We will in the following sections perform a similar investigation
of the melting transition in two dimensional systems. The phase transitions are
triggered by exposing thin films of crystalline materials to a homogeneous temperature
increase and applied external load, both separately and in combination.

4.4.1 Melting by temperature

The process of melting can be induced by driving a material out of its equilibrium
state by increasing the temperature of a solid material. The polycrystalline material
depicted in Fig.( 4.2d) provides a fully solidified system and possess a good initial
system for investigating of the melting process. In Fig.( 4.4) we present the temporal
evolution of the melting process, by means of the evolution of the amplitude field, for
a polycrystalline material which is exposed to a homogeneous temperature increase.

S AL ™

Figure 4.4: Pictures(a)-(d) depict the temporal evolution of the mean amplitude field
of a polycrystalline material through a melting transition induced by a homogeneous
temperature increase in the system, whilst pictures (e)-(f) depict a zoom-in of a cer-
tain area in the same system. High values of the field parameter(yellow) indicate
the crystal phase, low values (black) represent the liquid phase whilst the interme-
diate values(red) represent grain boundaries and other defects in the material. The
gradients across the grain boundaries give the cross over from the uniform liquid
to the periodic solid. Simulations are carried through with undercooling parameter
a = —0.35 and mean density 1y = —0.39. System size nx = ny = 1024.
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The temperature increase causes a phase transition through which the polycrys-
talline material melts and looses its strength, as depicted in Fig.( 4.4(a)-(d)). The
periodic crystalline structure with density peaks is represented by amplitudes, whilst
the density field in the liquid state takes an homogeneous mean value. In the ampli-
tude field, the former is represented by high values, i.e. yellow, whilst the later takes
the zero-value, i.e. black. We see that the amplitudes are decreasing through the
phase transition, that is the yellow crystalline phase gets brighter, mostly starting
from the grain boundaries and moving inwards in the bulk of the individual grains.
The grain boundaries in the material grow thicker with time, that is, the solid material
is reduced from a fully solidified phase to smaller pieces of solid material surrounded
by a liquid phase. The amplitude fields in the individual pieces are non-zero, whilst
they are separated by regions of zero-amplitude fields(black regions), that is the liquid
phase. Although the general tendency is that the phase transitions seem to originate
at the internal surface defects, the grain boundaries, and the additional individual
defects, there are however also some tendency of bulk melting at later times.

The pictures in Fig.( 4.4(e)-(h)) represent enlarged views of the lower right part
of the amplitude field through the transition. We see that the interfaces between the
two phases are embossed by gradients in the amplitude field. At early times, the
melting is in general focused at the grain boundaries, that is surface melting at each
of the grains. As time evolves, we notice a tendency of changes in the amplitude field
from the bulk of some of the grains. Notice in particular the single grain situated in
the center of Fig.( 4.4(g)-(h)). The amplitude field of the grain is decreasing from
both its grain boundary its bulk. At the latest picture, we see the tendency of a
zero-amplitude field inside the grain, i.e. the tendency of a liquid phase. Notice in
particular that there are no defects in the bulk of this crystalline droplet which can
induce premelting. Hence the crystalline phase seems to reach its critical temperature
before the defects in the system manages to melt the solid material fully. In Fig.( 4.5)
we present enlarged views of a part of the density field of the crystalline material as
it evolves through the melting transition. The pictures represent approximately the
same area as the ones depicted in Fig.( 4.4(e)-(h)).
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Figure 4.5: (a)-(d) represent snapshots from a numerical simulation of the temporal
evolution of a melting two dimensional polycrystalline material. The pictures are
enlarged views of a part of a larger numerical simulation, depicted in Fig.( 4.4), with
state variables in the system, o = —0.35 and 1y = —0.39. System size nx = ny =
1024.

By studying the evolution of the density field, we get a rather good impression of
how the crystalline solid is reduced through the phase transition. Notice in particular
the grain which we discussed by means of its amplitude field. In Fig.( 4.5d) we can
see that the crystalline grain have melted from the bulk and left a liquid like phase
inside the grain, leaving a doughnut-like structure. Hence, the melting transition
seems to initiate from both the bulk and the defects. We emphasize that the enlarged
part of the system which we are discussing is not situated at the very boundary
of the numerical simulation, hence the external boundaries of the system can not
be expected to cause this effect. That is ,the temperature in the bulk reaches the
melting temperature before the defects and the grain boundaries cause the grain to
melt completely.

The dynamics of the phase transition is dependent on the size of the tempera-
ture change, i.e. how far away from the equilibrium state we drive the system. In
Fig.( 4.6) we illustrate this dependence by presenting a late time step for the melting
of the polycrystalline material as it is exposed to homogeneous temperature fields
characterized by different a-parameters. For comparison we present both the elastic
energy density and the density fields for the four melted polycrystalline materials.



4.4. DISLOCATION MEDIATED MELTING IN 2D 61

Figure 4.6: Pictures (a)-(d)depict the elastic energy density fields of a polycrystalline
material melted at different temperatures, ranged from lower to higher, whilst pic-
tures (e)-(h)depict the corresponding density fields. The pictures give the melted
polycrystalline at the same late timestep, but for different values of the undercooling
parameter . (a)-(d) corresponds to a = —0.5, —0.4, —0.38, —0.35 respectively. The
mean density is fixed at 1)y = —0.39. System size nz = ny = 1024.

The different values of the a-parameters clearly results in different degree of melt-
ing for the same late time. The crystalline phase depicted in Fig.( 4.6e) is exposed
to a homogeneous temperature corresponding to undercooling parameter « = —0.5
for a longer period of time, but it still seems to keep its rigid structure. From its
elastic energy field, we can also see that the grain boundaries in the system are still
well defined. Additionaly, there are still individual defects in the system, for which
the radius has not increased sufficiently for the melting transition to be noticed. As
previously discussed, defects in a material, such as dislocations or grain boundaries,
are energetic costly. The pictures in Fig.( 4.6(f)-(g)) correspond to temperature pa-
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rameters a = —0.4, —0.38, —0.35, respectively, at a fixed value of the mean density.
That is they are ranged based on the applied temperature fields, from low to higher,
and each of the pictures correspond to the same time steps in the phase transition.
We point out that the phase transitions for all temperatures leave single crystalline
droplets surrounded by a liquid phase, but notice also that the increasing temper-
ature results in higher degree of melting, as expected. The elastic energy density
fields for the same phase transitions are depicted in Fig.( 4.6(a)-(d)). As previously
pointed out, the elastic density field for &« = —0.5 is embossed by single defects and
grain boundaries which are not uniform along its length. For increasing tempera-
tures, we see a tendency of melting from the previously single defects. That is, the
radius of the defects are increasing and equilibrium phases are formed within their
core and further increasing temperatures seems to enlarge this tendency. Additionaly,
the increasing temperature seems to result in wider grain-boundaries, i.e larger elastic
energy density.

Back to the single crystals

We have discussed the tendency of polycrystalline materials premelting from their
grain boundaries, that is the surface defects of each of the grains making up the
polycrystalline material. Even though we in the previous chapter argued that it is
not very likely to discover single crystals in nature, an investigation of single crystals
melting can give an indication of how the melting transition of a polycrystalline
material evolves after the solid network of grains have subdivided into single crystals
surrounded by a liquid phase. We will now investigate the melting process of a
single crystalline material. Recall the simulation setup for the single crystal growth
as discussed in the previous section, that is an inital blob of crystalline material
surrounded by a uniform density field, simulating a metastable liquid phase. When
we quenched the temperature in the system, the inital blob started to grow. The
evolution of the freezing process is depicted in Fig.( 3.4), in the previous chapter. We
now let the single crystal grow until it spans the whole system size. The fully grown
crystal contains impurities, both in its bulk and along the external boundaries of the
system. In Fig.( 4.7) we compare the melting transition for a single crystal and a
polycrystalline material, both being imperfect materials containing defects.
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Figure 4.7: Comparison of the melting process for a single crystal and a polycrystalline
material. Both systems are exposed to a temperature increase with undercooling
parameter &« = —0.36 and have mean densities 1o = —0.39. Pictures (a)-(d) and (e)-
(h), illustrate the evolution of the density fields through the phase transition, whilst
(i)-(l)and (m)-(p) illustrate the related amplitude fields. System size nz = ny = 1024.

From pictures Fig.( 4.7(a)-(d)) we see the tendency that the single crystal melts
from defects due to the six-fold anisotropy which we also discovered during the process
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of single crystal growth in the previous chapter. At a late time, the system consist of a
large single crystal surrounded by a liquid phase with some additional smaller “dots”
of crystals which have broken off. Comparing the hexagonal anisotropy pattern from
the growing crystal in Fig.( 3.4) with the melting process depicted in Fig.( 4.7(a)-(d)),
we see a tendency of melting starting at these anisotropies and move inwards in the
bulk of the crystal.

Comparing the evolution of the phase transition for the polycrystalline material
and the single crystal, we see a tendency that both the density fields and the ampli-
tude fields of the fully grown single crystals seem to coincide pretty well with each
of the single crystals in the partly melted polycrystalline material. We recall the
crystalline droplet from Fig.( 4.5), which appeard to melt both at the surface and
from its bulk, leaving a doughnut-like crystalline phase surrounded by a liquid phase.
Fig.( 4.7(i)-(1)) illustrates the evolution of the amplitude fields for the single crys-
talline material through the phase transition. Notice how the crystalline material is
affected by impurities even at early times and that the melting transition seems to
start at these points and move inwards in the crystal, leaving a system consisting
of a large crystalline phase surrounded by a liquid phase and small single crystalline
droplets.

In Fig.( 4.7(1)) we notice that the amplitude field inside the bulk of the main
single crystal is rapidly decreasing. Hence, it seems like the crystal starts to melt
from its bulk in addition to the melting initiated by the surface defects and addi-
tional anisotropy which we have already discussed. The crystal does not melt fully
in its bulk, hence the doughnut like structure from Fig.( 4.5) does not appear in this
simulation. Remember however that we now investigate the melting transition at a
lower temperature, thus we expect the crystal breakdown to develop slower and not
reach the same level.

Notice that Fig.( 4.7(m)-(p)) illustrates the evolution of the amplitude fields for a
melting polycrystalline material, this is equivalent to the process depicted in Fig.( 4.4).
The two melting processes start from the same initial polycrystalline material, which
we produced previously through a freezing process, but the applied temperature field
are different in the two cases. Whilst the process depicted in Fig.( 4.4) is induced
by a temperature field with parameter o = —0.35, the temperature field applied in
Fig.( 4.7(m)-(p)) corresponds to o = —0.36. Hence, the latter melting process is
carried through in a colder system than the former. For o = —0.35 we see that at
the last time step, the polycrystalline material is reduced to a system in which a few
“dots” of crystalline material are surrounded by a homogeneous liquid, whilst we for
a = —0.36 see a somewhat slower melting of the polycrystalline material. Except
the expected difference due to difference in the degree of heating up the systems, the
melting transitions seem to evolve in similar manner. For both phase transitions we
see the same tendency of melting starting from the internal defects, both the point
defects and the grain boundaries, and that the amplitude fields in the bulks of the
crystalline grains starts to decreases at later times. Hence, its seems like impurities in
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the material induce premelting of the material before the bulk of the material reaches
the critical temperature and starts to break down. In the case of the fully grown
single crystal, the purity in the bulk of the crystalline phase was higher and hence,
the melting transition left a rather large single crystal surrounded by a liquid phase.

So far, we have investigated the melting transition through exposing both poly-
crystalline materials and single crystals to a homogeneous temperature increase. Ac-
cording to Khantha et al. in [17], the crystalline material looses its strength the solid
is exposed to shear stress. That is, if a material is exposed to both stress and tem-
perature, the material is expected to be weaker and break down earlier. In the next
paragraph we will investigate the behaviour of the polycrystalline material when it
is exposed to shear stress. We will thereafter combine a homogeneous temperature
increase with the applied shear stress to see how the melting transition evolves in
loaded systems.

4.4.2 Deformation and stress-assistance

The KT-transition occurs in the limit of zero applied load. In Ref. [17], Khantha
et al. argue that a similar transition can occur in systems which are exposed to
external stresses. That is a smooth stress-induced generation of new disloations which
move around in the system due to the applied load. As previously discussed, a phase
transition is expected to occur at the point where the free energy changes sign, that is
at the point where the entropic contribution is larger than the enthalpy in the system.
The increasing dislocation density reduces the enthalpy in the system and hence, the
enthalpy in a loaded material is lower than in a non-loaded material. In addition,
the applied shear stress will induce a temperature increase in the material [19]. That
is, the combination of the two can trigger a cooperative instability, similar to the
KT-instability, that is expected for temperatures close to the critical temperature, to
occur in the system without increasing the temperature in the system.

If a material, in addition, is exposed to an increasing temperature, the entropic
contribution to the free energy will have an additional increase. Hence, the free
energy can change sign even earlier and we can expect premelting at temperatures
even further below the critical temperature of the material [17].

As applied load is expected to trigger the creation of new defects in the material,
the PFC-method can provide a good tool for description of this process. We notice
however, that the temperature increase which is induced by the applied shear stress,
is smeared out in the diffusive time scale of the PFC-method. That is, we keep the
temperature in the system fixed, though the theory of elasticity predicts an increasing
temperature. By use of the same polycrystalline material as we produced in the
freezing process, we will now investigate the effect of exposing the system to an
external shear flow, both with and without the additional temperature increase. An
illustration of the numerical setup and snapshots from the evolution of the amplitude
fields through the process is depicted in Fig.( 4.8).
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Figure 4.8: Picture (a) illustrates the numerical setup for applying external load to
the polycrystalline material. The arrows indicate the direction of the applied shear
stress, whilst the dotted lines mark the limited area in which the material is exposed
to stress. Pictures(b)-(e)depict snapshots of the temporal evolution of the amplitude
field between the dotted lines in (a), as the material is exposed to shear stress. In
order to ensure that the evolution in the system is caused by the applied load, the
temperature field is set at & = —0.75 in the simulation. The inital polycrystalline
solid was solidified at &« = —0.6, hence the system is now kept rather cold. System
size,(a), nx = ny = 1024.

In Fig.( 4.8) we present snapshots from the temporal evolution of the amplitude
field for a polycrystalline material which is loaded externally. Due to the periodic
boundary conditions in the system, the shear stress is applied in the bulk of the solid
material in order to avoid the shear stress to add up at the boundaries. Hence, we
can control that the polycrystalline material is exposed to the same amount of load
for the whole simulation. During the evolution, we see that the individual grains in
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the polycrystalline network deform. Some grains disappear in the transition, whilst
others are created. The shear stress causes the dislocations to move around in the
system and there seems to be a tendency for them to move towards the already existing
grain boundaries in the system. There is however an additional tendency of creation of
new defects in the material, that is in regions of somewhat lower amplitudes which we
recognize by brighter yellow colour. The decrease in the amplitude field indicates that
the periodic structure of the crystalline phase is reduced, and hence appears as weaker.
This is consistent with the theory, which predicts generation of dislocations when a
material is weakened by external loads. As the tendency of dislocation formation is
not very clear in Fig.( 4.8), we present an enlarged view of a part of the system at
some successive time steps of particular interest in Fig.( 4.9).
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Figure 4.9: Pictures (a)-(d) illustrate enlarged views of a part of particular interest
in the amplitude field of a polycrystalline material as it is exposed to shear stress.
The pictures correspond to the same evolution process as depicted in Fig.( 4.8),
but for different time steps. Pictures (e)-(h) depict the elastic energy density fields
corresponding to the amplitude fields (a)-(d). Undercooling parameter o = —0.75.
Out cut of system size nx = ny = 1024.

In Fig.( 4.9) we present the amplitude fields and energy density fields of a certain
area of the simulation for a short time period in which interesting phenomena appear.
In the first picture, ( 4.9(a)), we count three independent defects in the middle of
the material and we notice the tendency of a brighter yellow region, which indicates
decreasing amplitudes in the periodic structure, in the lower part. A few timestep
later, that is Fig.( 4.9(b)), the number of dislocations have increased, appearing in
the lower, bright yellow region where the periodic crystalline structure is weaker. The
defects have a tendency to form as elongated red areas which thereafter separate into
two fairly circular shaped defects. This might correspond to nucleation of dislocation
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dipoles which later unbinds and go separate ways due to local shears. In the lower part
of the pictures, that is close to where the shear stress is applied, the newly created
defects start to move. In the next snapshot, that is Fig.( 4.9(c)), we see that no more
defects are created. We notice, however, that the defects start to gather closer to
each other, moving towards the centre of the area. Notice in addition that two of
the three initial defects from Fig.( 4.9(a)) is still situated somewhat in their original
positions. This suggests that the shear stress which was applied at the lower boundary
has not yet propagated through this area. This can also explain why the new defects
in the material seem to be generated only in this area. In Fig.( 4.9(d)) we see two
interesting phenomena. The first is that both the initial and the newly created defects
are starting to pile of to create a new grain boundary in the material. The second is
that a new process of defect generation has started in the lower region of the area.
We notice also that the grain on the very left side of the area has deformed through
the evolution and that new defects have been created also in the centre of this grain.
The creation of new defects seems to occur in the bulk of each grain, that is in the
areas which are farthest away from the grain boundaries. Fig.( 4.9(e)-(h)) illustrates
the corresponding elastic energy density fields. In the previous elastic density fields
which we have presented, the bulk areas of each grain have been in the equilibrium
state. As the material now is loaded, the bulks are slightly deformed and will there
will be an elastic contribution to the free energy functional. In the simulations, we
observe the predicted increasing deformation through the increasing elastic energy
within the bulks of the grains. We notice, however, that this only occurs in the bulk
areas close to where the shear flow is applied. This implies that the lower parts are
more deformed, which is a clear indication that the effect of the shear flow has not
yet propagated up through the material. The generation of defects appear only in
the areas of increasing elastic energy density, that corresponds to the areas where
the amplitude fields are decreasing. Notice that when the defects are generated as
elongated areas of higher energy, they appear with significantly lower energy than the
isloated defects after the separation process.

So far, we have studied the polycrystalline material by means of two protocols,
that is applied load and homogeneous temperature increase, separately. Through the
former we observed that the applied shear stress triggered the creation of new defects,
whilst the latter indicated melting transition being induced by defects in the solid
material, though without increasing the dislocation density. Hence, we would expect
the combination of the two protocols to accelerate the melting process, as discussed
by Khantha et al. in Ref. [17]. We will in the next section elaborate more upon the
stress-assisted melting transition.
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4.4.3 Stress-assisted melting

We have previously discussed premelting and formation of wet layers around the
defects for increasing temperatures. The presence of such liquid films at the grain
boundaries can reduce the resistance to shear stresses, [21]. Thus premelting around
the defects can weaken the heated materials and make them more sensitive to applied
shear stress.

In Fig.( 4.10) snapshots from the evolution of a polycrystalline material as it is
exposed to both a homogeneous temperature increase and applied shear stress.

Figure 4.10: Pictures(a)-(d)depict snapshots of the temporal evolution of the ampli-
tude field of a polycrystalline material is it exposed to both a homogeneous temper-
ature increase and applied shear stress. Undercooling parameter « = —0.5 and mean
density 19 = —0.39. System size nx = ny = 1024.

The simulation depicted in Fig.( 4.10) is carried through with undercooling pa-
rameter &« = —0.5. Though this temperature increase is relatively small compared to
the parameter of the melting process presented in Fig.( 4.4), we can clearly see that
the crystalline structure in the material breaks down, typically by creation of wet lay-
ers along the uniform grain boundaries. Hence, it seems like the applied shear stress
reduces the material strength and causes the material to melt at lower temperatures,
as discussed in Ref. [17].

In order to investigate this possible reduction of material strength, we present
comparisons of the amplitude and elastic energy density fields for the different proto-
cols at late times, that is close to their relaxed state, in Fig.( 4.11). Pictures (a)-(f)
illustrates the two protocols separately as well as in combination.
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Figure 4.11: Pictures (a)-(c) and (d)-(f) depict comparisons of the amplitude and
elastic energy density fields, respectively, at late times for a polycrystalline material
which is exposed to a homogeneous temperature increase and shear stress. Picture(a)
and (d) depict the fields after a homogeneous temperature increase corresponding to
a = —0.5. (c)and (f) illustrate the fields of a material which is exposed to shear stress
at cold temperature, « = —0.75. The intermediate pictures, (b) and (e), represent
a late time snapshot of a melting transition induced by a combination of the two
protocols, with @ = —0.5. The mean density is fixed at g = —0.39. System sizes
nx = ny = 1024.

Fig.( 4.11) depicts the amplitude fields and the corresponding elastic energy fields
of a polycrystalline material close to its relaxed state after it has been exposed to,(a)
and (d), a homogeneous temperature increase, (c)and (f) applied load in terms of an
external shear flow and (b) and (e), a combination of the two protocols. As previously
discussed, the density of dislocations in a material is expected to increase when a
system is exposed to external stresses. We notice that the number of individual
defects in Fig.( 4.11(c)) is significantly larger than in the two other systems. In
this situation, however, the material still seems rigid, that is, the system seems to
still be fully solidified. There is no clear sign of melting from the defects, but we
notice that the amplitude fields are brighter, that is the amplitudes seem to be some
what reduced even though the system seems to keep its rigidity. In Fig.( 4.11(b))
we see the expected tendency of a further developed melting transition in a loaded
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system. The dislocations that enumerate and pile up as grain boundaries at the
same time as they induce melting in the system, leaving a system that is partly
melted, even for low temperatures o = —0.5. The individual grains in the network
are still connected, but dark regions in the amplitude field implies that there is liquid
present in the system. The corresponding elastic energy density fields, Fig.( 4.11(d)-
(f)),underline the tendency we pointed out for the amplitude fields. We can however
see the tendency of deformed grains more clearly in these pictures. We point out
Fig.( 4.11(e)) and the areas where the shear stress is applied. The grains in these
areas are typically smaller than in both the rest of the area as well as in the other
pictures in the figure. In addition, the number of dislocations in this area seems to be
higher than in both the two other systems. This implies that the material looses its
resistance to temperature increase when it is exposed to shear stress, as predicted by
theory [17]. We emphasize that the homogeneous temperature increase, « = —0.5,
was chosen in a way that ensured that the melting transition was not carried through
before the applied stress managed to propagate in the system and start the creation
of new dislocations.

In the nest section we will give a brief overview of some of the experiments that
have been carried out in order to figure out whether the melting scenario occurs in
accordance with the KTHNY-theory, or if it is preempted by the grain-boundary
melting-scenario.

4.5 Experimental work

Both the KTHNY- and the grain-boundary-scenario have been observed in experi-
mental work in different systems [22, 33]. Hence, it has been difficult to argue that
either of them provides a satisfactory description of the melting transition in two
dimensions. To reveal the characteristic features of the melting scenario in two di-
mensional systems, various experimental investigations have been performed. Even
though the experimental techniques have improved greatly the last years, they have
still not been successful in revealing the order of the observed melting transitions and
hence obtaining a full understanding of the melting mechanism. In Ref. [40], Zahn et
al. present their analyze of a two dimensional melting process in a system of colloidal
particles, and argue that their results support the two-stage melting transition with
an intermediate hexatic phase. Hence, their results indicate that the KTHNY-theory
provides a basis for decribing the melting transition in two dimensions. A contradic-
tary result is presented in Ref. [22], that is experimental work performed by Nosenko
et al. in two dimensional complex plasma systems. The authors compare their results
with both the two-step continuous phase transition and the one-step first order sce-
narios, and argue that their results suggest that the KTHNY-scenario is preempted
by the grain-boundary induced melting mechanism for this system.

Similar experimental work has been carried through in order to investigate the
order of the freezing process. In Ref. [10], Dillmann et al. present their investigation
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of crystallization in a two dimensional colloidal system. The motive of the experi-
ment was to adress the question of whether the hexatic phase occurs in the system
upon cooling. As they quench an initial isotropic liquid phase, small crystallities
starts to grow in the system. After some time, they grow into each other creating a
polycrystalline material. This experiment is hence similar to our numerical study of
the freezing process. Dillmann et al. argue that there is no indication of the hexatic
phase through the temperature driven crystallization process. Hence, the process of
freezing seems to be first order.

In this chapter we have discussed liquid-solid phase transitions, that is the pro-
cesses of freezing and melting. We have discussed the two models of particular rele-
vance, being the KTHNY- and grain-boundary induced melting scenarios. The former
represents two continuous phase transitions and the latter a single first order phase
transition. We have presented our numerical results of freezing and melting, and dis-
cussed our results upon the two competing scenarios. Additionaly, we have given a
brief introduction to a small piece of the experimental work that has been performed,
motivated by the wish to understand the melting mechanism.
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Chapter 5

Discussion

In the previous chapter we presented numerical results from our study of the liquid-
solid phase transition, i.e. freezing and melting, in two dimensions. We focused
especially on the latter and evaluated our results upon the most relevant theories
of dislocation mediated melting. The melting transition was studied with a homo-
geneous temperature increase, as well as with reduced material strength by means
of applying external shear stress. We thereafter performed a comparison of melting
transitions induced by these two protocols. In this chapter, we will summarize our
results and compare them to studies of similar systems performed by others, that
is both numerical and experimental investigations. As a final word, we will discuss
ideas for future work as well as point out some of the challenges that remain in the
search for a general theory of the mechanism of two dimensional melting.

To determine the order of the melting transition in two dimension is perhaps the
biggest struggle in the search for the melting mechanism. The abrupt nature of the
first order transition predicted by Chui in Ref. [7], leaves no sign of the intermediate
hexatic phase that is predicted in the theory of the two continuous melting transitions
described in the KTHNY-theory, [18, 39]. The puzzle which remains is that both
the scenarios, despite their very different nature, have been observed experimentally.
Whilst Zahn et al. in Ref. [40] present their results indicating a continuous phase
transition in a system of colloidal particles, experiments performed by Nosenko et
al., [22] suggest a first order transition induced by grain boundaries in their study of
two dimensional complex plasmas. Hence, the unresolved question is which physical
conditions that leads to either of the scenarios.

5.1 Core energy and dislocation density

Within the theory of disocation mediated melting, the evolution of the melting mecha-
nism is assumed to be dependent on the core energy of the dislocations in the material.
Recall that the core energy is defined as the energy within the area where the dis-
location does not interact logarithmically with other dislocations, that is inside the

5
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core radius of the dislocation [32]. In Ref. [30], Saito argues that both the KTHNY-
scenario and the theory of grain boundary induced melting are possible, dependent
on the typical core energy of the dislocations in the material. Though Strandburg,
in Ref. [32], questions the validity of his simulated first order transition, his results
are rather tractable as he argues that whilst high core energies cause the dislocation
unbinding mechanism, low values of the core energy will cause a preempting of the
continuous phase transition. Chui, [7], argues however that the phase transition will
be first order, irrespectable of the core energy. He distinguishes between weak and
strong first order, at a certain threshold, the same threshold as others, Ref. [32],
define at the threshold between the first order and the continuous phase transition
scenarios. Hence, from a theoretical point of view, the mechanism of melting in two
dimensions seems to be somewhat understood.

That is, an estimation of the core energy for the dislocations in a material might
reveal the nature of the melting transition. To estimate this value is however not a
simple task, neither by numerical simulations or through experiments. As prevoiusly
discussed, the defects in the material can be isolated, coupled in pairs as well as
contained in grain boundaries. Hence, in areas of high dislocation density, such as
in grain boundaries, it is not necessarily possible to separate the defects from each
other. Whilst the dislocations are still separable in some grain boundaries, recall the
grain boundary depicted in Fig. 4.3, other grain boundaries are uniform along their
length. Previously we discussed the energy reduction due to screening which occurs
when dislocations interact with each other [32]. As the core energy is the energy of a
dislocation can not be reduced, the screening effect will not affect the energy we want
to measure. Though it is difficult to measure the core energy for isolated dislocations,
it is even more difficult when we can not distinguish them from each other. The
problem of determining the core energy of a dislocation is also a difficult task from
the experimental point of view. It would involve measurements of thermodynamical
quantities at a microscopic level. Experimentally, such measurements are very difficult
to perform, [32, 21].

A second criterion which can be useful in the study of the two theories are their dis-
tinct predictions of the evolution of the dislocation density. Whilst the grain boundary
induced melting transition predicts generation of new dislocations through the phase
transition, the KTHNY-scenario of continuous phase transitions predicts a constant
dislocation density. Hence, a quantitative investigation of the number of dislocations
in the material through the transition can reveal the nature of the phase transition,
i.e. its order. Such an investigation is possible through numerical simulations. In our
simulations, the defects in the material are clearly visable and can hence be counted
by use of numerical techniques. Though we have not specified whether the observed
defects are single dislocations or other types of defects, we expect that an increasing
number of defects in throughout the simulation would indicate an increasing number
of dislocations in the material, implying a first order melting transition by means of
theory of grain boundary induced melting.
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An additional discussion involves the different kinds of defects that is assumed
to occur in the system. The continuous phase transitions in the KTHNY-theory,
are defined as dissociation of defects of different types. Hence, the possibility of
distinguishing between various types of defects is beneficiary in the work of developing
a further understanding of the melting mechanism. In Ref. [30], Saito argues upon
a criterion which determines whether the melting transition is continuous or of first
order. Saito does however only include dislocations in his model and hence, he can
only investigate the KT-transition and the dissociation of dislocation-dipoles, and
not the second transition in the full KTHNY-theory [32]. We emphasize however
that his work was published in 1982 and that the evolution within computational
techniques have developed to a very great extent since then. According to Tegze et
al. in Ref. [33], the various attempts to investigate the two phase transitions in the
KTHNY-theory have led to diverse results. Whilst some investigations indicate that
the first transition is continuous and the second of first order, others suggest that it is
the other way around. In Ref. [33], Tegze et al. present their numerical investigation
of freezing and melting, through the phase field crystal method. They do not observe
any hexatic phase in their simulations, but claim that the lack of an intermediate
phase might be caused by limitations of the phase field crystal method. That is
the possibility of the time averaging in the PFC-model smearing out the information
regarding the structure in the hexatic phase and hence make the model unable to
distinguish the fluid phase from the hexatic phase.

5.2 Phase transitions in geological systems

Mineralogy is an area of Earth science which treats the structure and stability of
minerals[26], that is the behaviour of the minerals on Earth and how they respond
when the geological environment which they are situated in changes through geo-
logical processes. Melting and recrystallization of minerals are of specific interest
as it is well known that the high temperature, and pressure, differences between
the Earth’s surface and its interior cause incessant transitions between solid rocks
and viscous magma. The mineralogical side of the geoscience is embossed by these
phase transitions and has improved a lot after taking condensed matter physics into
account [16, 29].

Rocks are polycrystalline materials consisting of grains of different minerals. The
different minerals have different chemical composition and hence different melting
temperatures. That is, if the rock is exposed to a temperature increase, some of
the minerals might melt whilst others remain solids. This phenomenon is known as
partial melting and results in a system of both melt and solid. As the solid minerals
are less bound along the resulting liquid-solid interface, elements from the mineral
composition might dissolve into the fluid and change the composition of both the
solid mineral and the melt.

If the temperature decreases and the melt leaves the system, the recrystallized
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material can now consist of different minerals than the original rock. Hence, for
geological systems, phase transitions can have an impact on both the crystal structure
and the chemical composition. Due to its simple chemical composition, the study of
ice is simpler than the study of rocks. The individual grains in ice are all solidified
water, and hence changing environmental conditions cannot induce chemical reactions
and successive changes in composition. Additionally, all grains in the network have
the same melting temperature and are hence only distinguished by their size and
lattice orientation.

Though the mechanism of melting is not fully understood, geologists have achieved
increasing understanding through laboratory experiments. A record of critical melting
temperatures for rocks was obtained through experimental work by means of heating
various igneous rocks, that is rocks formed by crystallization of magma [3]. The
microstructures of minerals can be investigated through experimental methods. An
old and common method is use of polarization microscopy to investigate thin sections
of the interesting material. In Fig.( 5.1) we present our simulated two dimensional
polycrystalline material together with thin sections of ice and rock under polarized
light during laboratory experiments.

Figure 5.1: (a) snapshot of the crystal density of a polycrystalline material simu-
lated by the PFC-method, shows a material consisting of grains with different lattice
orientations (b) thin section ( 1mm) of ice core sampled during field work in the
Barents Sea (1.75 m depth ) under polarized light shows differently oriented crystals
in a polycrystalline formation (c¢) optical photomicrograph under crossed polars of a
granulite containing quartz, feldspar and pyroxene grains with different orienations.
The image was obtained from a standard thin (30um) section.

5.3 Summary and future work

The periodic structure in the crystalline phase gives rise to several physical phenom-
ena of interest, e.g. impurities, multiple grain orientations as well as elastic and plastic
deformations, [27], all of which are assumed to be important for the evolution of phase
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transitions. Information regarding these phenomena is naturally incorporated in the
phase field, ¢(r,t), in the phase field crystal method. In this thesis, we have used
this method to investigate the liquid-solid phase transitions numerically. The pre-
sented results indicate that the temperature induced melting transition is embossed
by melting from the defects in the material, that is both isolated and chain-structured
defects.

The defects will influence the mechanical properties of a material [19]. Hence, both
the density of them and their behaviour through a phase transition is of importance
for the strength of the material. Inspired by this, we have also investigated stress-
assisted melting transitions, i.e, melting of materials after having reduced the material
strength by externally applied load. We observed, through our simulations, that
the combination of applied load and increased temperatures led the melting further,
as compared to the melting process in the limit of zero applied stress. That is,
the material started to melt before the critical temperature was reached in both
the stress-assisted systems and in systems in the limit of zero applied stress. As
previously discussed, a quantitative description of the dislocation density as well as
measurements of the core energies can be helpful in the investigations of the melting
mechanism. Hence, it would be interesting to obtain a qualitative description of the
numerical results presented in this thesis. To obtain the additional measure of the
core energies within the defects would be very beneficiary in order test the predicted
threshold, but this task is more challenging than the counting of dislocations.

The processes of pattern formation and crystalline breakdown can be quite com-
plicated, due to impacts such as anisotropy in the material, chemical reactions as well
as deformation due to external forces. If we can determine the conditions for when
a phase transition is first order or continuous, we would be a step closer to obtain
an understanding of the melting mechanism. Of particularly interest is prediction
of the melting temperature, that is the critical point at which a material looses its
strength and yields. As the two continuous phase transitions in the KTHNY-theory
are associated with different types of defects, a full investigation of this transition
would require a model which distinguishes between dislocations and other defects, as
well as between isolated dislocations and the ones which are coupled in dipoles.

In order to obtain a better understanding of these phenomena it is necessary to
reveal the key processes and variables which triggers the transformation, as well as
the physical framework which is capable of predicting their behaviour.
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Appendix

Discretization Schemes

Both the spatial uniform density fields and the periodic density fields, the latter with
their pertaining amplitude fields, are space and time dependent. All simulations have
been carried through with the same discretization schemes.

Spatial discretization
In the numerical simulations we discretize the lattice structure by means of the spher-
ical laplacian as described in Ref. [24, 34]. Ooni et al. argue, in Ref. [24], that for
conserved fields the discretization scheme have to contain the contributions from the
next nearest neighbours in addition to the nearest neighbour, in order to create an
isotropic model. A suitable discretization scheme is hence spherical,

O O O
O o O

O O O

Figure 5.2: Spherical discretization scheme. The black dot represents the considered
node. The grey and white dots represent its nearest and next nearest neighbours
respectively. The two types of neighbours are weighted differently in the discretization
scheme.

The gradients in the lattice structure are discretized as follows, here illustrated
with the phase field parameter, 1,

1 1

nnn
where nn denotes the nearest neighbours, whilst nnn denotes the next nearest
neighbours.
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The Laplacian acting on the fields is discretized in a similar manner,

Vi = g YU s Y v (52)
Amplitude fields
When the differential operator(V?+1) acts upon the amplitude fields, it is denoted

The discretized operator is hence represented by

L;=V*+2i(kj(1)V,+k;j(2)V,), (5.3)

where k(1) and k(2) denotes the first and second element in each of the hexagonal
lattice vectors, ki, ks, k3. and V? given in Eq. 5.2.

In the numerical simulations we have increased the numerical efficiency by disre-
garding the differential operator in the prefactor (1 — £;)in Eq. 3.33. This leaves a
numerical efficient calculation of the evolution of the amplitude field for each of the
modes

0Ar = L3 = 3A; (0 = 307 + |A1? + 2| Aof* + 2| A3]” + 6P A3 A7) (5.4)

In addition to the evolution of the amplitude fields, we calculate the evolution

of the mean density field. The equation of motion for the mean density is given in
Eq. 3.32.

Time discretization
Together with the spatial discretization we apply the forward Euler scheme,

AW+ A®)
dt
= AD 1 dt-dA. (5.5)

dA =
A(tJrl)

We know that is scheme can be unstable, but ensure small numerical error by a
choosing sufficiently small time steps, dt = 0.03.

We save the mean density fields and the amplitude fields for all time steps and
analyse them seperately.

Phase field modeling
Although Oono et al. in Ref. [24] argue that the contributions from the next near-
est neighbours are not necessary in system of non-conserved parameters, we have
performed all simulations with the discretization scheme described in the previous
chapter.
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Ginzberg-Landau, Cahn-Hilliard, Swift-Hohenburg and PFC:

e Numerical parameters GL: nx = ny = 500;dx = 1;dt = 0.01

e Numerical parameters CH: nx = ny = 500;dz = 1;dt = 0.001

e Numerical parameters SH: nx = ny = 500;dx = 1;dt = 0.001

e Numerical parameters PFC: nx = ny = 500;dx = 1;dt = 0.001

e Physical parameters GL: a = —1,1y =0

e Physical parameters GL droplet growth o = —0.25 and ¢y = 0.25
e Physical parameters CH: a = —1,¢y =0

e Physical parameters SH: a = —0.25, ¢y = 0.25

e Physical parameters PFC: o = —0.25,v¢ = 0.25

e Physical parameters PFC droplet growth a = —0.25 and vy = 0.25

PFC with amplitude equations
Freezing

We start out by constructing an initial system consisting of randomly distributed
droplets in the bulk. The restriction on the distribution is included in order to avoid
droplets at the boundaries of the system. We define each of the initial droplets as
solids, that is each of them is represented by periodic fields with different lattice orien-
tations. The system is exposed to a rapid homogeneous temperature drop, controlled
by the a-parameter.

For growth of a single crystal, the initial system is simplified to consist of only
one inital droplet with periodic structure.

Heating

The initial polycrystalline material is contructed by a reconstruction of the crystal
density from the last time step of the freezing process. The process of melting is in-
duced by a homogeneous temperature increase,controlled through by the a-parameter.
The melting process is investigated for various values of the «, and the evolution of
the amplitude fields and mean density fields are saved for analysis.

For melting of a single crystal, the initial system is constructed by uploading a
fully grown single crystal, i.e. an inital single crystal which have grown to fill the
entire system size.



84 CHAPTER 5. DISCUSSION

Shearing

The code used for investigation of the processes of freezing and melting is modified
to apply a stress field to the fully grown crystal. The shear flow is applied at a distance
nx /4 from the top and bottom system boundaries. This in order to avoid that the
shear stress adds up at the boundary due to the periodic boundary conditions. The
shear stress is implemented as band of shear velocity, defined across the vertical
direction of the system.

The applied shear stress contributes to the spatial evolution of the mean density
and amplitude fields by an additional term. This is accounted for through additional
gradient fields of each of the amplitude fields as well as for the mean density field,
here represented by means of one of the amplitude modes,

APt = A" 4 dt x dA; — dt - vV Ay, (5.6)
where v denoted the velocity of the applied field.

Numerical and physical parameters

e Numerical parameters : nx = ny = 1024;dx = 7/4;dt = 0.03
e Figure 3.6 : a = —0.6;¢9 = 0.39

e Figure 3.7: a = —0.6;¢y = 0.39

e Figure 4.1 : a = —0.6;1¢ = 0.39

e Figure 4.2 : a = —0.6;¢9 = 0.39

e Figure 4.3 : a = —0.6;¢9 = 0.39

e Figure 4.4 : a= —0.35;99 = —0.39

e Figure 4.5 : a = —0.35;¢9 = —0.39

e Figure 4.6 : a = —0.5,—0.4, —0.38, —0.35; ¥y = 0.39

e Figure 4.7 : a = —0.36;99 = —0.39

e Figure 4.8 : a = —0.75 shear velocity = 0.05

e Figure 4.9 : o = —0.75 shear velocity = 0.05

e Figure 4.10 : a = —0.5;¢9 = —0.39

e Figure 4.11 : a = —0.5, —0.75; Y9 = —0.39 shear velocity = 0.05
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