
1

1



Forward backward stochastic differential equations
with delayed generators

Auguste Amana † Harouna Coulibalyb ‡ and Jasmina Ðord̄ević c,d §
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1 Introduction
Backward stochastic differential equations (BSDEs, in short) were developed in the early
1990s, by Pardoux and Peng [23]. They established results on the existence and unique-
ness of the adapted solutions under Lipschitz condition. Since then, BSDEs have been
intensively developed both theoretically and in various applications. In [24, 25], authors
gave a probabilistic representation for the solutions of some quasilinear parabolic partial
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differential equations in terms of solutions of BSDEs which is a generalisation of the well-
known Feynman-Kac formula. Furthermore, BSDEs are encountered in many fields of
applied mathematics such as finance, stochastic games and optimal control, homogenisa-
tion, etc. For more details, the reader can see [12, 13, 14, 15].

Inspired with an application, i.e. with the model for stochastic differential utility in
finance, Antonelli and later Pardoux and Tang introduced respectively in [1, 26] a notion
of forward backward differential equations (FBSDEs, for short). Using the "Method of
Contraction Mapping" authors gave an existence and uniqueness result when the time
duration T is sufficiently small. Using a PDE approach called "The Four Step Scheme, Ma
et al. in [20] gave the existence and uniqueness to a class of FBSDEs in which the forward
SDE is non-degenerate (i.e the diffusion coefficient of forward SDE, denoted with σ, is
non-degenerate). Application of this method provided possibility to remove the restriction
on the time duration in the Markovian framework.

Initiated by Hu and Peng [17] and Peng and Wu [28], and later developed by Yong [34],
[35], the "Method of Continuation" solved non-Markovian FBSDEs with arbitrary duration
without the non degeneracy condition of σ. The main assumption for this method is the
so-called "monotonicity conditions" on the coefficients, which is restrictive in a different
way. This method has been used widely in applications (see, e.g., [31, 32, 36]) because
of its pure probabilistic nature. Recently, Ma et al. [21], study the well-posedness of the
FBSDEs in a general non-Markovian framework. They derive a unified scheme which
combines all above methodology and address some fundamental long-standing problems
for non Markovian context. The study of such equations is very interesting. They are
encountered when one applies the stochastic maximum principle to optimal stochastic
control problems (see [16] for a linear version in an optimal stochastic control problem,
see [27] for the probabilistic interpretation of a general type of systems of quasilinear
PDEs, for the application in finance see [8, 9] etc.).

In all those previously mentioned models via FBSDEs, it is assumed that coefficients
have a Markovian structure with respect to the triple (X ,Y,Z), i.e at time t, coefficients
depend only on the values of X(t), Y (t) and Z(t). For example let consider the following
simple FBSDE

X(t) = x+σ

∫ t

0
Z(s)dW (s), (1.1)

Y (t) = X(T )−
∫ T

t
Z(s)dW (s). (1.2)

This equation appears in many stochastic control problems when diffusion contains con-
trol, which is often the case in the optimal investment problems in finance.

However, in view of many papers (e.g [2, 10, 18, 19, 29]), it is well-know that a
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Markovian structure becomes too restrictive in some models in finance. Indeed, it re-
quires choices which are quantified by the values of all coefficients at time t , which are
only based on the current information without taking in to account anything from the past.
While in reality the investor compare previous and current opportunities, take into account
experienced trends in the prices or satisfaction from the past consumptions, form a priori
expectations about the projects, compare their past expectations with the current pay-offs,
study the risk factors and the realized gains, and finally make decisions. Therefore, taking
in to account the memory of the past values mentioned in [18] by Loewenstein (as one
of three factors which could help in understanding preferences and inter-temporal choices
of agents) is clearly very important in the applications, and it was a motivation for us to
consider non-Markovian coefficients and study associated FBSDEs. More precisely, sev-
eral works (e.g [2, 10, 19, 29]) explained that delay on the value function comes from the
notion of disappointment effect on non-monotone preferences modelling due to aversion
against volatility. Thus, according to the work of Delong in [3], on can derive a delayed
version of FBSDE (1.1)-(1.2) as follows: for all t ∈ [0,T ]

X(t) = x+
∫ t

0

σ

s

(∫ s

0
Z(u)du

)
dW (s), a.s (1.3)

Y (t) =
1
T

∫ T

0
X(s)ds−

∫ T

t
Z(s)dW (s), a.s. (1.4)

Even though there exist results in the literature about the study of the FBSDEs (1.1)-(1.2),
there exist no results for FBSDEs (1.3)-(1.4) which can be viewed as a simple version of
delayed FBSDEs. Motivated by the above, this paper is devoted to study the fully FBSDEs
with delayed generator in the form: for all t ∈ [0,T ],

X(t) = x+
∫ t

0
b(s,Xs,Ys,Zs)ds+

∫ t

0
σ(s,Xs,Ys,Zs)dW (s), a.s. (1.5)

Y (t) = ξ+
∫ T

t
f (s,Xs,Ys,Zs)ds−

∫ T

t
(g(s,Xs,Ys)+Z(s))dW (s), a.s. (1.6)

where (Xt ,Yt ,Zt) = (X(s+u),Y (s+u),Z(s+u))u∈[−T,0] design the past of the triple pro-
cesses (X ,Y,Z) until moment t.

In the special case that the function f does not depend to X and g identically null, BS-
DEs (1.6) have been already studied in [4]. They established an existence and uniqueness
result under sufficiently small Lipschitz constant or sufficiently small terminal times T .
Authors illustrated in two examples that the previously developed conditions are neces-
sary and sufficient. However, they also showed that, for some special class of generators,
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existence and uniqueness may still hold for an arbitrary time horizon and for arbitrary Lip-
schitz constant. Furthermore, in [5] authors extended previous result to BSDEs with time
delayed generators driven by Brownian motions and Poisson random measures.

When coefficients b and σ do not depend of Y and Z, equation (1.5) reduces to the well-
know delayed SDEs which have been studied in many papers under an arbitrary Lipschitz
condition constant and/or arbitrary time horizon, (see [30, 33]).

Paper is organized as follows in the sequel: In Section 2 we recall some preliminary
notations and results. Section 3 is dedicated to derive our main result which is an existence
and uniqueness results for the solution of FBSDEs (1.5)-(1.6).

2 Preliminaries
For a strict positive real number T , let us consider (Ω,F, IP,(Ft)0≤t≤T ) a a filtered prob-
ability space, where the filtration (Ft)0≤t≤T is assumed to be complete, right continuous
and generated by a (W (t))0≤t≤T , a d-dimensional Brownian motion, for d ∈ IN∗.

On the other hand, since we deal with delayed FBSDEs, let us set the following space
on which all generators will be defined:

• Let L2
−T (Rn×d) denote the space of measurable functions z : [−T ;0]→Rn×d satisfying∫ 0

−T
| z(t) |2 dt < ∞;

• Let L∞
−T (Rn) denote the space of bounded, measurable functions y : [−T,0]→ Rn

satisfying
sup
−T≤t≤0

| y(t) |2<+∞.

Finally, in order to give what we mean by solution of Eqs. (1.5)-(1.6), let us set the
following spaces. For any β > 0,

• Let L2(Ω,FT ,P) be the space of FT -measurable random variables ξ : Ω→Rn endowed
with the norm

‖ξ‖2
L2 := IE(|ξ|2);

• Let S 2(IRn) denote the space of all predictable process η = (η(t))−T≤t≤T with values
in IRn such that

IE
(

sup
−T≤s≤T

eβs|η(s)|2
)
<+∞;
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• Let H 2(IRn×d) denote the space of all predictable process η = (η(t))−T≤t≤T with
values in IRn×d such that

IE
(∫ T

−T
eβs|η(s)|2ds

)
<+∞.

In all this paper, we will use the following notations; |.| denotes the usual norm in IRn and
IRn×d with it associated Euclidian norm. For u = (x,y,z) ∈ IRn× IRn× IRn×d ,

‖u‖2 := |x|2 + |y|2 + |z|2

and
h(t,u) := ( f (t,u),b(t,u),σ(t,u)).

We are now able to introduce definition of the solution to the Eqs. (1.5)-(1.6).

Definition 2.1. A triple of adapted processes (X ,Y,Z) is called solution of Eqs. (1.5)-(1.6)
for t ∈ [0,T ] if it satisfies (1.5)-(1.6) IP-almost surely (a.s.).

Solution U = (X ,Y,Z) is unique, if for any other solution U ′ = (X ′,Y ′,Z′) and for
t ∈ [0,T ] following holds:

X = X ′, Y = Y ′, Z = Z′ a.s.

3 Mains results
In this section we derive an existence and uniqueness result for FBSDE with delayed. Our
method differ to one applied by Hu and Peng in [17] because in our context, we applied
Itô’s formula to |X |2 and |Y |2 rather than to 〈X ,Y 〉 which permit us to relax some of their
assumptions. Indeed, we work under the following classical assumptions:

(A1) ξ ∈ L2(Ω,FT ,P),

(A2) Φ : Ω× [−T,T ]× L∞
−T (Rn)× L∞

−T (Rn)× L2
−T (Rn×d)→ R` is a product measur-

able and F-adapted function such that for some probability measure α defined on
([−T,0],B([−T,0])) and any ut =(xt ,yt ,zt),u′t =(x′t ,y

′
t ,z
′
t)∈ L∞

−T (Rn)×L∞
−T (Rn)×

L2
−T (Rn×d), there exist two positive constant K such that following holds:

(i) |Φ(t,ut)−Φ(t,u′t) |2≤ K
∫ 0

−T
‖u(t + v)−u′(t + v)‖2

α(dv) a.s., ∀ t ∈ [0,T ].

5



(ii) For t < 0, Φ(t,ut) = 0 a.s.,

(iii) E
[∫ T

0
|Φ(t,0)|2dt

]
<+∞,

where Φ is respectively b,σ, f and `= n if Φ = b, f and `= n×d if Φ = σ.

(A3) g : Ω× [−T,T ]× L∞
−T (Rn)× L∞

−T (Rn) → Rn×d is a product measurable and F-
adapted function such that for some probability measure α defined on ([−T,0],B([−T,0]))
and any (xt ,yt),(x′t ,y

′
t) ∈ L∞

−T (Rn)×L∞
−T (Rn), there exist positive constant K such

that following holds:

(i) | g(t,xt ,yt)−g(t,x′t ,y
′
t) |2≤

K
∫ 0

−T
(|x(t +u)− x′(t +u)|2 + |y(t +u)− y′(t +u)|2)α(du) a.s. , ∀ t ∈ [0,T ],

(ii) For t < 0, g(t,xt ,yt) = 0, a.s,

(iii) E
[∫ T

0
|g(t,0,0)|2dt

]
<+∞.

Remark 3.1. (a) Assumption (A2)-(ii) allows us to take (X(t),Y (t),Z(t))= (X(0),Y (0),0)
for t < 0, as a solution of eqs. (1.5)-(1.6).

(b) The quantity Φ(t,0) in (A2)-(iii) and g(t,0,0) in (A3)-(iii) should be understood
respectively as a value of the generator φ at ut = (0,0,0) and g at (xt ,yt) = (0,0).

Remark 3.2. In view of (a) of Remark 3.1, if the process (X(t),Y (t),Z(t))−T≤t≤T be-
longs to S 2(IRn)× S 2(IRn)×H 2(IRn×d) and satisfies FBSDE (1.5)-(1.6), then for all
t < 0, X(t) = X(0), Y (t) = Y (0) and Z(t) = 0. Therefore we have

IE
(

sup
−T≤s≤T

eβs|η(s)|2
)
= IE

(
sup

0≤s≤T
eβs|η(s)|2

)
,

for η = X ,Y and

IE
(∫ T

−T
eβs|Z(s)|2ds

)
= IE

(∫ T

0
eβs|Z(s)|2ds

)
.

(c) Conditions (A2) (i) and (A3) (i) are versions of Lipschitz condition with a constant K.
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First we deal with a special form of FBSDEs (1.5)-(1.6) which arise when the function
g is identically null. More precisely let us consider the following FBSDEs

X(t) = x+
∫ t

0
b(s,Xs,Ys,Zs)ds+

∫ t

0
σ(s,Xs,Ys,Zs)dW (s), a.s. (3.1)

Y (t) = ξ+
∫ T

t
f (s,Xs,Ys,Zs)ds−

∫ T

t
Z(s)dW (s), a.s. (3.2)

Theorem 3.1. Let assumptions (A1)-(A2) hold, and let horizon time T > 0 and Lipschitz
constant K satisfy

21Kemax(1,T 2)< 1.

Then delayed FBSDEs (3.1)-(3.2) has an unique solution (X ,Y,Z) in S 2(IRn)×S 2(IRn)×
H 2(IRn×d)

Proof. This proof is subdivided in two parts.

Step 1: Existence.

Let set U0 = (X0,Y 0,Z0) = (0,0,0) and consider Un = (Xn,Y n,Zn) defined recursively
as follows: For all t ∈ [0,T ],

Xn(t) = x+
∫ t

0
b(s,Un−1

s )ds+
∫ t

0
σ(s,Un−1

s )dW (s),

Y n(t) = ξ+
∫ T

t
f (s,Un−1

s )ds−
∫ T

t
Zn(s)dW (s).

Setting
φ̄

n+1 = φ
n+1−φ

n,

for φ equal to X ,Y,Z and

Φ̄(s) = Φ(s,Xn
s ,Y

n
s ,Z

n
s )−Φ(s,Xn−1

s ,Y n−1
s ,Zn−1

s ),

for Φ equal to b,σ, f , it follows that

X̄n+1(t) =
∫ t

0
b̄(s)ds+

∫ t

0
σ̄(s)dW (s),

(3.3)

Ȳ n+1(t) =
∫ T

t
f̄ (s)ds−

∫ T

t
Z̄n+1(s)dW (s).
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Applying Itô’s formula to e
β

2 t X̄n+1(t), taking the modulus and applied the triangle
inequality, one obtains

e
β

2 t |X̄n+1(t)| ≤ β

2

∫ t

0
e

β

2 s|X̄n+1(s)|ds+
∫ t

0
e

β

2 s|b̄(s)|ds+
∣∣∣∣∫ t

0
e

β

2 s
σ̄(s)dW (s)

∣∣∣∣ .
Next, by Young’s inequality and isometry principle,

IE

(
sup

0≤t6T
eβt | X̄n+1(t) |2

)

≤ β2

2
T
∫ T

0
IE
(

eβs | X̄n+1(s) |2
)

ds+4IE
(

T
∫ T

0
eβs | b̄(s) |2 ds+

∫ T

0
eβs|σ̄(s)|2ds

)
≤ β2

2
T 2IE

(
sup

0≤t≤T
eβt | X̄n+1(t) |2

)
+4IE

(
T
∫ T

0
eβs | b̄(s) |2 ds+

∫ T

0
eβs|σ̄(s)|2ds

)
.

Hence,

IE

(
sup

0≤t6T
eβt | X̄n+1(t) |2

)
≤ 4

(
1− β2

2
T 2
)−1

max(1,T )IE
(∫ T

0
eβs | b̄(s) |2 ds+

∫ T

0
eβs|σ̄(s)|2ds

)
.

(3.4)

Let us now treat the backward SDE. Applying again Itô’s formula to eβt | Ȳ n+1(t) |2, we
obtain

IE
(

eβt | Ȳ n+1(t) |2 +β

∫ T

t
eβs | Ȳ n+1(s) |2 ds+

∫ T

t
eβs | Z̄n+1(s) |2 ds

)
= 2IE

∫ T

t
eβsȲ n+1(s) f̄ (s)ds.

From Young’s inequality it follows that there exists a positive constant β such that

2Ȳ n+1(s) f̄ (s)≤ β|Ȳ n+1(s)|2 + 1
β
| f̄ (s)|2,

so we obtain

IE
(

eβt | Ȳ n+1(t) |2 +
∫ T

t
eβs | Z̄n+1(s) |2 ds

)
≤ 1

β
IE

∫ T

t
| f̄ (s)|2ds. (3.5)
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On the other hand, according to the backward component of (3.3) and applying condi-
tional expectation which respect Ft , we have

e
β

2 tȲ n+1(t)≤ IE
(∫ T

t
e

β

2 s f̄ (s)ds | Ft

)
. (3.6)

Squaring each member of (3.6), we apply Doob’s martingale and Hôlder inequality to
obtain

IE

(
sup

0≤t6T
eβt | Ȳ n+1(t) |2

)
≤ 4T IE

(∫ T

0
eβs | f̄ (s) |2 ds

)
. (3.7)

Next, it follows from (3.7),(3.5) and (3.4) that

IE

[
sup

0≤t6T
eβt | X̄n+1(t) |2 + sup

0≤t6T
eβt | Ȳ n+1(t) |2 +

∫ T

0
eβs | Z̄n+1(s) |2 ds

]

≤ E

[
4
(

1− β2

2
T 2
)−1

max(1,T )
(∫ T

0
eβs|b̄(s)|2ds+

∫ T

0
eβs|σ̄(s)|2ds

)
+

(
4T +

1
β

)∫ T

0
eβs| f̄ (s)|2ds

]
.

(3.8)

Further, from the Lipschitz condition (A2) on b, σ and f that, it follows that

E
[∫ T

0
eβs|Φ̄(s)|2ds

]
≤ KIE

[∫ T

0

∫ 0

−T
eβs (| X̄n(s+u) |2 + | Ȳ n(s+u) |2 + | Z̄n(s+u) |2

)
α(du)ds

]
.

Since for each n ≥ 1, Xn(s) = x, Y n(s) = Y n(0) and Zn(s) = 0 for all s < 0, we obtain
respectively by Fubini’s theorem and the change of variable

E
[∫ T

0
eβt |Φ̄(s)|2ds

]
≤ KIE

[∫ 0

−T
e−βu

(∫ T+u

u
eβv (| X̄n(v) |2 + | Ȳ n(v) |2 + | Z̄n(v) |2

)
dv
)

α(du)
]

≤ Kemax(1,T )IE

[
sup

0≤t6T
eβt | X̄n(t) |2 + sup

0≤t6T
eβt | Ȳ n(t) |2 +

∫ T

0
eβs | Z̄n(s) |2 ds

]
.(3.9)
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Putting (3.9) in (3.8) we get

IE

[
sup

0≤t6T
eβt | X̄n+1(t) |2 + sup

0≤t6T
eβt | Ȳ n+1(t) |2 +

∫ T

0
eβs | Z̄n+1(s) |2 ds

]

≤

[
8
(

1− β2

2
T 2
)−1

max(1,T )+
(

4T +
1
β

)]

× IE

[
sup

0≤t6T
eβt | X̄n(t) |2 + sup

0≤t6T
eβt | Ȳ n(t) |2 +

∫ T

0
eβs | Z̄n(s) |2 ds

]
.

Therefore, setting β = 1
T , we obtain

IE

[
sup

0≤t6T
eβt | X̄n+1(t) |2 + sup

0≤t6T
eβt | Ȳ n+1(t) |2 +

∫ T

0
eβs | Z̄n+1(s) |2 ds

]

≤ 21Kemax(1,T 2)IE

[
sup

0≤t6T
eβt | X̄n(t) |2 + sup

0≤t6T
eβt | Ȳ n(t) |2 +

∫ T

0
eβs | Z̄n(s) |2 ds

]
.

Finally, by iterative argument, it not difficult to derive

IE

[
sup

0≤t6T
| eβt X̄n+1(t) |2 + sup

0≤t6T
eβt | Ȳ n+1(t) |2 +

∫ T

0
eβs | Z̄n+1(s) |2 ds

]

≤
[
21Kemax(1,T 2)

]n
IE

[
sup

0≤t6T
| eβt X̄1(t) |2 + sup

0≤t6T
eβt | Ȳ 1(t) |2 +

∫ T

0
eβs | Z̄1(s) |2 ds

]
.

Since 21Kemax(1,T 2) < 1, (Xn,Y n,Zn)n≥1 is a Cauchy sequence in the Banach space
S 2(IRn)×S 2(IRn)×H 2(IRn×d). It is then easy to conclude that (X ,Y,Z)= lim

n→+∞
(Xn,Y n,Zn)

solves delayed FBSDEs (3.1)-(3.2).

Step 2: Uniqueness.

Let define U = (X ,Y,Z) and U ′ = (X ′,Y ′,Z′) be two solutions of Eqs. (3.1)-(3.2). Let
us set δφ = φ−φ′, for φ = X ,Y,Z. Then (δX ,δY,δZ) satisfies

δX(t) =
∫ t

0
b̄(s)ds+

∫ t

0
σ̄(s)dW (s)

δY (t) =
∫ T

t
f̄ (s)ds−

∫ T

t
δZ(s)dW (s),
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where Φ̄(s) = Φ(s,Xs,Ys,Zs)−Φ(s,X ′s,Y
′
s ,Z
′
s) for Φ = b,σ and f . With the similar steps

used in existence part, we obtain

IE

[
sup

0≤t6T
eβt | δX(t) |2 + sup

0≤t6T
eβt | δY (t) |2 +

∫ T

0
eβs | δZ(s) |2 ds

]

≤ 21Kemax(1,T 2)IE

[
sup

0≤t6T
eβt | δX(t) |2 + sup

0≤t6T
eβt | δY (t) |2 +

∫ T

0
eβs | δZ(s) |2 ds

]
.

In the fact that 21Kemax(1,T 2)< 1 we have

IE

[
sup

0≤t6T
eβt | δX(t) |2 + sup

0≤t6T
eβt | δY (t) |2 +

∫ T

0
eβs | δZ(s) |2 ds

]
≤ 0,

which implies that X = X ′, Y = Y ′ and Z = Z′ a.s.

Now let us study a more general FBSDE delayed FBSDEs (1.5)-(1.6).

Theorem 3.2. Let assumptions (A1)-(A3) hold, and let horizon time T > 0 and Lipschitz
constant K satisfy

21Kemax(1,T 2)< 1.

Then delayed FBSDEs (1.5)-(1.6) admit an solution (X ,Y,Z) in S 2(IRn)×S 2(IRn)×H 2(IRn×d).

Proof. Our method is an adaptation of idea used by Janković, Ðord̄ević and Jovanović
[6, 7, 11]. In this fact, let us consider this following

X(t) = x+
∫ t

0
b̃(r,Xr,Yr,Zr)dr+

∫ t

0
σ̃(r,Xr,Yr,Zr)dW (r),

(3.10)

Y (t) = ξ+
∫ T

t
f̃ (r,Xr,Yr,Zr)dr−

∫ T

t
Z(r)dW (r),

where Φ̃(t,xt ,yt ,zt) = Φ(t,xt ,yt ,zt−g(t,xt ,yt)), with Φ = b,σ, f .
According to Assumption (A2) and (A3), the function Φ̃ satisfies the following as-

sumption

(A4) Φ̃ : Ω× [−T,T ]×L∞
−T (Rn)×L∞

−T (Rn)×L2
−T (Rn×d)→R` is a product measurable

and F-adapted function such that for some probability measure α on ([−T,0],B([−T,0]))
and for any u(t) = (xt ,yt ,zt) ,u′(t) = (x′t ,y

′
t ,z
′
t) ∈ L∞

−T (Rn)×L∞
−T (Rn)×L2

−T (Rn×d)
there exists a positive constant K such that following holds:
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(i) Φ̃(t,yt ,zt)− Φ̃(t,y′t ,z
′
t)|2 ≤ K

∫ 0

−T
‖u(t + v)−u′(t + v)‖2

α(dv) a.s.,

(ii) E
[∫ T

0
|Φ̃(t,0,0,0)|2dt

]
<+∞

(iii) Φ̃(t, ·, ·, ·) = 0 for t < 0.

Further, in view of Theorem 3.1, FBSDDE (3.10) admit an unique solution (X ,Y ,Z) in
S 2(IR)× S 2(IR)×H 2(IR). Setting X = X , Y = Y , Z = Z− g(.,X ,Y ), it not difficult to
prove that (X ,Y,Z) is the solution of FBSDDE (1.5)-(1.6). It remain to show that such
solution is unique.

Let us suppose that it exists (X ′,Y ′,Z′), an other solution of FBSDDE (1.5)-(1.6).
Therefore setting ∆X = X−X ′, ∆Y = Y −Y ′, we have

∆X(t) =
∫ t

0

[
b(s,Y ′s ,Z

′
s)−b(s,Y s,Zs−g(s,X s,Y s))

]
ds∫ t

0

[
σ(s,Y ′s ,Z

′
s)−σ(s,Y s,Zs−g(s,Y s))

]
dW (s),

∆Y (t) =
∫ T

t

[
f (s,Y ′s ,Z

′
s)− f (s,Y s,Zs−g(s,X s,Y s))

]
ds

−
∫ T

t

[
Z′(s)+g(s,Y ′s )−Z(s))

]
dW (s).

With the same computations used in the uniqueness part of the proof of Theorem 3.2, we
obtain that

IE

[
sup

0≤t6T
eβt | ∆X(t) |2 + sup

0≤t6T
eβt | ∆Y (t) |2 +

∫ T

0
eβs | Z′(s)+g(s,X ′s,Y

′
s )−Z(s)) |2 ds

]

≤ 21Kemax(1,T 2)IE

[
sup

0≤t6T
eβt | ∆X(t) |2 + sup

0≤t6T
eβt | ∆Y (t) |2

+
∫ T

0
eβs | Z′(s)+g(s,X ′s,Y

′
s )−Z(s)) |2 ds

]
.

Suppose again that 21Kemax(1,T 2)< 1, than

IE

[
sup

0≤t6T
eβt | ∆X(t) |2 + sup

0≤t6T
eβt | ∆Y (t) |2 +

∫ T

0
eβs | Z′(s)+g(s,X ′s,Y

′
s )−Z(s)) |2 ds

]
= 0.

Finally we get X ′ = X , Y ′ = Y and Z′ = Z−g(.,X ,Y ), which completes the proof.
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As a corollary of Theorem 3.2, let us state this existence and uniqueness result for the
BSDE (1.6) in the special case that function f and g are defined respectively in L∞

−T (R)×
L2
−T (R) and L∞

−T (R). (Proof is the same as in the more general case given with Theorem
3.2.

Corollary 3.1. Let assume f depends only to yt and zt and g depend only to yt for all
t ∈ [0,T ] and satisfy (A1)-(A3) such that

5KTemax(1,T )< 1.

Then delayed BSDEs (3.2) admit an unique solution (Y,Z) in S 2(IR)×H 2(IR).

Remark 3.3. In view of our work, we note that the condition on T and K introduced in
[4] has been weakened. On the other hand, condition appear in Theorem 3.1 and 3.2 is
equivalent to 21T Kemax(1,T ) and is justified by the addition of SDEs.
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