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Abstract: TheCretaceous Periodwasmarked by the formation of numerous large igneous provinces (LIPs), sev-
eral ofwhichwere associatedwith geologically rapid climate, environmental and biosphere perturbations, includ-
ing the early Aptian and latest Cenomanian oceanic anoxic events (OAEs 1a and 2, respectively). In most cases,
magmatic CO2 emissions are thought to have been the major driver of climate and biosphere degradation. This
work summarizes the relationships between Cretaceous LIPs and environmental perturbations, focusing on
how volcanism caused climate warming during OAE 1a using osmium-isotope and mercury concentration
data. The new results support magmatic CO2 output from submarine LIP activity as the primary trigger of climate
warming and biosphere stress before/during OAE 1a. This submarine volcanic trigger of OAE 1a (and OAE 2),
twoof themost climatically/biotically severeCretaceous events, highlights the capacity of oceanic LIPs to impact
Earth’s environment as profoundly as many continental provinces. Cretaceous magmatism (and likely output of
CO2 and trace-metalmicronutrients)was apparentlymost intense during thoseOAEs; further studies are needed to
better constrain the eruption histories of those oceanic plateaus. Another open question is why the Cretaceous
Period overall featured a higher rate ofmagmatic activity andLIP formation comparedwith before and afterwards.

Supplementarymaterial:Geochemical datasets fromDeep Sea Drilling Project (DSDP) Site 398 and Alstätte-
1 and a summary of Cretaceous Os isotope literature are available at https://doi.org/10.6084/m9.figshare.c.
7026011

Large igneous provinces (LIPs) represent the forma-
tion of huge volumes of igneous material emplaced
into and/or onto the Earth’s continental or oceanic
crust over a geologically short time interval (Coffin
and Eldholm 1994). This emplacement occurs
through a combination of both intrusive magmatism
and extrusive volcanic activity: the latter is most
famously in the form of continental flood basalts,
some of which featured individual lava flows with
an aerial extent on the order of 104 km2 (e.g. Coffin
and Eldholm 1994; Bryan and Ernst 2008; Bryan
and Ferrari 2013; Ernst 2014). Several different

formal definitions for large igneous provinces have
been proposed, characterizing them as magmatic
provinces with high volumes of igneous material
that can form in a range of intraplate tectonic settings,
with themajority ofmagmas emplaced over a geolog-
ically short space of time (e.g..0.1 Mkm3 in pulses
of c. 1–5 Myr; Bryan andErnst 2008; or.0.1 Mkm3,
frequently .1 Mkm3, in ,5 Myr, often ,2 Myr;
Ernst et al. 2021).

The history of LIP formation over the last
300 Myr, since the formation of the Pangaean super-
continent, is relatively well established. Several
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provinces are preserved as flood basalt units and/or
large-scale intrusive sill and dyke swarms on the
continents, or as oceanic plateaus in the Pacific and
Indian ocean basins (see e.g. Coffin and Eldholm
1994; Ernst 2014; Kerr 2014; Ernst et al. 2021).
These LIPs are generally better preserved than
those that formed prior to 300 Ma, and are typically
estimated to have had original volumes of emplaced
magma greater than 0.1 Mkm3; frequently above
1 Mkm3 (Bryan and Ernst 2008; Ernst et al. 2021).
However, the Greater Ontong–Java Plateau in the
western Pacific Ocean may have been an order of
magnitude more voluminous still (Gladczenko et al.
1997; Taylor 2006; Hoernle et al. 2010). The rapid
emplacement of most provinces (within c. 1 Myr;
see Kasbohm et al. 2021, and references therein)
highlights that the rate of magma production during
LIP formation was typically both higher and sus-
tained for longer time periods than for any observed
volcanic activity in human history. In this context,
it is notable that the large majority of geologically
rapid changes to Earth’s global climate and environ-
ment during the PhanerozoicAeon, particularly in the
last 300 Myr, broadly coincided with an interval of
LIPformation.Theseevents includeat least fourof the
so called ‘Big Five’ mass extinctions (e.g. Wignall
2001; Courtillot and Renne 2003; Bond and Wignall
2014; Ernst et al. 2021; Kasbohm et al. 2021).

The Cretaceous Period (143–66 Ma; Gale et al.
2020) was marked by the highest rate of LIP forma-
tion in at least the last 300 Myr. Numerous provinces
were emplaced into both the continental and oceanic
crust, and estimates of the total number of Cretaceous
LIPs vary (but see recent lists by e.g. Torsvik 2019;
Ernst et al. 2021). However, there are seven major
Cretaceous LIPs that comprise both high volumes
of igneous material and have been widely linked
with climate/environmental change and/or elevated
biotic stress/extinction during that period (Fig. 1).
Continental flood-basalt provinces include the
Paraná–Etendeka LIP, the High Arctic LIP (HALIP),
theMadagascanLIP, and theDeccanTraps (although
the latter three also comprise offshore components).
Additionally, the Greater Ontong–Java, Kerguelen,
andCaribbean plateauswere emplaced into continen-
tal margins and ocean crust to form oceanic plateaus,
which are considered to represent large areas of ele-
vated and thickened basaltic ocean floor formed
through mantle-plume activity rather than seafloor
spreading-related magmatic processes (Kerr 2014).
Indeed, owing to the subduction of most pre-Jurassic
crust, many currently known oceanic LIPs are Creta-
ceous in age, including those that are best preserved
and most extensively investigated (see Kerr 2014).
This work reviews the seven major Cretaceous LIPs
that are thought to have impacted Earth’s environ-
ment and/or biosphere, and the relationship between
these phenomena, utilizing both new datasets for one

such environmental episode, the Early Aptian oce-
anic anoxic event (OAE 1a), and published datasets
relating to this and other Cretaceous intervals and
LIPs.

Cretaceous LIPs and episodes of
environmental change

The Paraná–Etendeka LIP and Valanginian
‘Weissert’ Event

The Paraná–Etendeka LIP covers an area of c.
4 Mkm2 in western South America (principally Bra-
zil, but also Paraquay, Uruguay and Argentina) and
western Africa (Namibia and Angola), and has
long been associated with the opening of the South
Atlantic Ocean (Peate 1997). Extrusive magmas
largely comprise tholeiitic basalt flows, with some
silicic and alkaline units and intrusive sills and
dyke swarms, particularly in the South American
Paraná part of the province (e.g. Erlank et al. 1984;
Milner et al. 1992, 1995; Peate 1997; Marsh et al.
2001; De Min et al. 2018; see also Gomes and Vas-
concelos 2021, and references therein). The volatile
budget of Paraná–Etendeka magmas may have been
relatively low compared with other LIPs, as calcu-
lated from phenocrysts and measured from melt
inclusions (maximum of 900–1100 ppm S,
125 ppm Cl and 450 ppm F; Callegaro et al. 2014;
Marks et al. 2014). Moreover, the magmas were
emplaced within or erupted on to country rocks
that largely consisted of aeolian sandstones,
organic-lean shales and crystalline basement (Bar-
reto et al. 2016; Jones et al. 2016). These lithologies
were all probably volatile depleted and would not
have been a major source of thermogenic carbon or
sulfur following heating by the intruding magmas
(cf., Svensen et al. 2004, 2009; Heimdal et al. 2018).

Paraná–Etendeka volcanism is widely attributed
to have caused an episode of prolonged environmen-
tal perturbation during the Valanginian Stage
(137.7–132.6 Ma), known as the Weissert Event
(Erba et al. 2004). This episode of environmental
change is characterized in the upper Valanginian
stratigraphic record by a positive carbon-isotope
(δ13C) excursion of ∼1.5–2 ‰ in carbonate and up
to 4 ‰ in bulk organic matter (e.g. Lini et al.
1992; Weissert et al. 1998; Erba et al. 2004; Price
and Mutterlose 2004; Gröcke et al. 2005; McArthur
et al. 2007; Bornemann and Mutterlose 2008; Littler
et al. 2011; Price et al. 2018; Jelby et al. 2020). The
end of the Weissert Event is marked by the maxi-
mum value of the positive carbon-isotope excursion
in upper Valanginian strata (Erba et al. 2004),
although the δ13C values decrease gradually through
lower Hauterivian strata. This δ13C shift was initially
hypothesized to result from enhanced burial of
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organic carbon (which is isotopically light) in
sediments as they were deposited, leaving the resid-
ual seawater carbon inventory, and any carbonates or
organic material subsequently formed from it,

isotopically heavier (Weissert et al. 1998; Erba
et al. 2004). However, while some Valanginian
strata do preserve organic-rich facies consistent
with this hypothesis, the majority do not. Thus,

(a) (b)

Fig. 1. (a) Occurrence of large igneous province (LIP) volcanism (vertical orange bars), and episodes of major
environmental change (horizontal grey bars), during the Cretaceous Period. Ages and durations of volcanic activity
are primarily based on Jiang et al. (2023) (the range of the Ontong-Java is extended into the Aptian to account for
palaeontological and geochemical evidence of activity at that time). Ages and durations of major events from
Wagreich (2012), Jenkyns (2010), Schulte et al. (2010), Eldrett et al. (2015), Cavalheiro et al. (2021), Matsumoto
et al. (2022) and Martinez et al. (2023). (b) Palaeogeographic maps show the reconstructed continental positions
during the Weissert Event, oceanic anoxic events (OAEs) 1a, 1b and 2, and the Cretaceous–Paleogene (KPg)
transition, with the LIPs that have been associated with each event indicated in red (with the Chicxulub impact crater
also indicated by the yellow star for the KPg). Sources: Palaeogeographical reconstructions are modified from the
following sources: Weissert Event from Möller et al. (2020) and Charbonnier et al. (2020b); OAE 1a from Percival
et al. (2021b) and Kocsis and Scotese (2021); OAE 1b from Kocsis and Scotese (2021); OAE 2 from Du Vivier et al.
(2015); and the KPg from Claeys et al. (2002).
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enhanced primary productivity and burial of organic
carbon in terrestrial sediments have been proposed as
alternative contributors towards the carbon-cycle
change (Westermann et al. 2010).

The nature of climate change during the Weissert
Event is debated. The Early Valanginian interval
prior to and during the onset of the Weissert Event
was marked by a warm global climate (Littler et al.
2011), and evidence for surface warming at that
time has been documented from bulk-rock oxygen-
isotope (δ18O) records in some NW Tethyan and
proto-Atlantic archives (Duchamp-Alphonse et al.
2007; Charbonnier et al. 2020c). Clay mineralogy
and calcareous nannofossil and spore–pollen assem-
blages also indicate enhanced humidity in and
around the former region (Kujau et al. 2013; Möller
et al. 2020; Charbonnier et al. 2020c). Thus far, this
warming has not been as clearly recorded by other
palaeotemperature proxies or robustly documented
in other areas around the world, with only modest
temperature increases of at most 1°C that largely
do not significantly exceed pre-event variations
(e.g. Littler et al. 2011; Price et al. 2018; Charbon-
nier et al. 2020c; Cavalheiro et al. 2021). In contrast,
in several Valanginian records, particularly those
from the Boreal Realm but also in the NW Tethys
and southern high latitudes, the turning point in
δ13C values at the peak of the positive excursion
stratigraphically correlates with evidence for the
onset of a transient fall in surface temperatures,
(e.g. Erba et al. 2004; McArthur et al. 2007; Meiss-
ner et al. 2015; Price et al. 2018; Cavalheiro et al.
2021). This correlation between the δ13C peak and
onset of temperature decrease is consistent with
enhanced atmospheric CO2 sequestration through
the hypothesized increase in organic-carbon burial.
However, proto-Atlantic sea-surface temperature
reconstructions based on the biomarker-based TEX86

palaeothermometer suggest that stable warm condi-
tions persisted throughout the Valanginian in that
low-latitude environment (Littler et al. 2011), poten-
tially highlighting a steepening of global temperature
gradients during the Weissert Event (Charbonnier
et al. 2020c; Cavalheiro et al. 2021).

Age constraints for Paraná–Etendeka volcanism
are based on magnetostratigraphy and both argon–
argon (40Ar/39Ar) and uranium–lead (U–Pb) geo-
chronology. Collectively, these data suggest a dura-
tion of at least 2–3 Myr of effusive volcanic activity
for the LIP as a whole, with Etendeka magnetostra-
tigraphy suggesting even more protracted eruptions
in that part of the province (see compilations by
Mena et al. 2011; Dodd et al. 2015; Gomes and Vas-
concelos 2021; Bacha et al. 2022; Jiang et al. 2023).
Uranium–lead and 40Ar/39Ar dating of Paraná and
Etendeka units by several studies have outlined a
pronounced pulse of volcanic activity that probably
reached its maximum between 134 and 135 Ma

(Renne et al. 1992, 1996; following recalculation
by Thiede and Vasconcelos 2010; also Ernesto
et al. 1999; Janasi et al. 2011; Pinto et al. 2011; Flo-
risbal et al. 2014; Almeida et al. 2018; Gomes and
Vasconcelos 2021; Bacha et al. 2022). These mag-
matic ages broadly overlap with the onset date of
the Weissert Event based on both magnetostrati-
graphic (133.9 Ma; Cavalheiro et al. 2021) and
cyclostratigraphic (134.56 Ma; Martinez et al.
2023) age modelling. However, recent high-
precision U–Pb dating of Paraná rocks has shown
that at least part of the intense volcanic activity post-
dated the start of the Weissert Event (Rocha et al.
2020). To what extent the older v. younger dates of
Paraná–Etendeka magmas are representative of
rates of extrusive volcanic activity across the prov-
ince as a whole is unclear. Because the majority of
dated rocks are coeval with the onset of the Weissert
Event, it is widely assumed that there was a causal
relationship between the two phenomena (e.g. Erba
et al. 2004; Martinez et al. 2015, 2023; Gomes and
Vasconcelos 2021; Bacha et al. 2022), although it
cannot be excluded that significant Paraná–Etendeka
volcanism occurred later, potentially questioning the
nature of any link (Rocha et al. 2020).

The Greater Ontong–Java Plateau and
Early Aptian OAE (OAE 1a)

The total magmatic volume comprised by the
Greater Ontong–Java Plateau (G-OJP) is debated,
but is often defined as the Ontong–Java Plateau
together with subsidiary nearby flood-basalt prov-
inces such as the Nauru, East Mariana, Manihiki
and Hikurangi (after Ingle and Coffin 2004; Char-
bonnier and Föllmi 2017; see also Svensen et al.
2019, and references therein). These provinces
were collectively emplaced on to the western Pacific
oceanic crust during the Early Cretaceous, covering
an area over 2 Mkm2, and comprising a combined
total volume of several tens of millions of cubic kilo-
metres, significantly greater than any other preserved
LIP (Taylor 2006; Hoernle et al. 2010). Moreover,
part of the original plateau has likely been subducted
since its emplacement (see Schlanger et al. 1981;
Larson 1991). Accreted and exposed Ontong–Java
magmas in Malaita (Solomon Islands) consist of
massive sheeted and pillowed basalt flows, with
basaltic rocks also recovered from ODP drill sites
on the plateau (e.g. Saunders et al. 1996; Tejada
et al. 1996; Neal et al. 1997; Fitton and Godard
2004). It is likely that much of the G-OJP was
emplaced via submarine volcanic activity (Saunders
et al. 1996). However, preservation of phreatomag-
matic deposits at Ocean Drill Program (ODP) Site
1184 in the Eastern Salient of the Ontong–Java Pla-
teau shows that at least some eruptions occurred near
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or above the sea surface (Chambers et al. 2004;
Thordarson 2004).

Geochronological 40Ar/39Ar studies on Ontong–
Java basalts and volcaniclastic sediments from south-
ern Malaitia, Ramos Island and ODP sites 289, 807
and1184 indicate apulseof volcanic activity that cov-
ered a huge area around 122 Ma (Mahoney et al.
1993; Tejada et al. 1996, 2002; Chambers et al.
2004). Submarine eruptions of a broadly similar age
have also been reported from studies of whole rock
basalts recovered from the Manihiki and Hikurangi
plateaus (Ingle et al. 2007; Hoernle et al. 2010;
Timm et al. 2011). Recently, this geochronology
has been challenged by Davidson et al. (2023), on
the basis that older ages might be affected by recoil,
while plagioclase 40Ar/39Ar dates from Ontong–
Java and Manihiki plateau rocks have ages closer to
110 Ma than 120 Ma. However, those authors do
not discount the possibility that the G-OJP had a pro-
tracted emplacement over several million years
across the late Barremian to early Albian interval, in
which their dates are from volcanic rocks that were
erupted towards the end of the plateau’s formation.
Mahoney et al. (1993) and Tejada et al. (1996) also
report eruption ages of c. 90 Ma at Sigana Island
and ODP Site 803, potentially highlighting a second
major pulse of volcanism on the G-OJP. Plateau for-
mation through two distinct spells of volcanism
30 Myr apart is at odds with the mantle plume
model of LIP emplacement, and it has been suggested
that the younger dates are also affected by argon
recoil, and may represent minimum ages (Chambers
et al. 2002).

The 122 Ma pulse of volcanism has long been
associated with OAE 1a (121 Ma), based on the
broad temporal correlation between the two phenom-
ena (e.g. Larson and Erba 1999; Courtillot and Renne
2003; Erba et al. 2015). The Early Aptian oceanic
anoxic event was marked by the development of
marine anoxia/euxinia across the global ocean for
approximately 1–1.4 Myr (Li et al. 2008;Malinverno
et al.2010;Leandro et al.2022).Widespreadoxygen-
depleted conditionswere initially interpreted from the
preservation of laminated, organic-rich, mudstones
around the world, dubbed the Selli Level in the
Umbria–MarcheBasin of central Italy (e.g. Schlanger
and Jenkyns 1976; Weissert 1989; Jenkyns 1995;
Pancost et al. 2004; Föllmi et al. 2006; van Breugel
et al. 2007; see also reviews by Jenkyns 2010 and
Robinson et al. 2017). Global stratigraphic records
of OAE 1a are further characterized by a series of
δ13C excursions, reflecting sequential carbon-cycle
perturbations during the Early Aptian (Weissert
1989; Jenkyns 1995; Menegatti et al. 1998; Gröcke
et al. 1999; Ando et al. 2008; Robinson et al. 2008;
Vickers et al. 2016). These δ13C excursions have
been subdivided into segments (C3–C7) based on
Tethyan archives (Menegatti et al. 1998). Following

a relatively stable δ13C signature through uppermost
Barremian–lowermost Aptian strata (C1–C2), a
sharp negative shift is documented at the base of the
OAE 1a level (C3), highlighting a large influx of iso-
topically light carbon to the Earth’s surface from one
or more of volcanic activity, thermogenic emissions,
and methane clathrate destabilization (e.g. Jahren
et al. 2001; Méhay et al. 2009; Kuhnt et al. 2011;
Naafs et al. 2016; Bauer et al. 2017; Adloff et al.
2020). The negative isotopic signature is followed
by a positive rebound (C4), another stable spell
(C5), a second positive excursion at the top of the
OAE level (C6) and a continuation of elevated δ13C
values that remain high above it (C7), with these
later shifts probably reflecting thewidespread deposi-
tion of organic carbon (Jenkyns 2010). The various
carbon-cycle perturbations impacted Earth’s surface
climate during OAE 1a, with overarching climate
warming and transient interludes of cooling during
the event interpreted from palaeontological and geo-
chemical evidence (e.g. Menegatti et al. 1998; Jen-
kyns 2003, 2018; Dumitrescu et al. 2006; Ando
et al. 2008; Kuhnt et al. 2011; Bottini et al. 2015;
Naafs and Pancost 2016). As well as oceanic anoxia
and global temperature changes, OAE 1a is thought
to have been marked by seawater acidification, bio-
spheric stress, accelerated hydrological cycling and
enhanced continental weathering (e.g. Erba 2004;
Erba et al. 2010, 2015; Bottini et al. 2012;Mutterlose
et al. 2014; Lechler et al. 2015; Naafs and Pancost
2016).

The Kerguelen Plateau and Aptian–Albian
OAE (OAE 1b)

The Kerguelen Plateau began to form during the
break-up of India from Australia and Antarctica dur-
ing the Early Cretaceous, and today encompasses an
area of elevated oceanic crust comprising.2 Mkm3

of mainly basaltic rock, with some dacites and rhyo-
lites (Kerr 2014). Additional fragments of the plateau
such as Broken Ridge and Ninetyeast Ridge are pre-
served in the Indian Ocean (see Wallace et al. 2002,
and references therein). Some older magmas that
formed during the initial break-up of southern Gond-
wana are also preserved in NE India and western
Australia (Frey et al. 1996; Coffin et al. 2002;
Kent et al. 2002). Unlike many LIPs, the Kerguelen
Plateau has a long volcanic history, commencing in
the Early Cretaceous and continuing (less volumi-
nously) to the present day (see Coffin et al. 2002;
Jiang et al. 2021). The onshore volcanics all date
to 114 Ma or older; Baksi 1995; Frey et al. 1996;
Coffin et al. 2002; Kent et al. 2002). The oldest
part of the main oceanic province is the Southern
Kerguelen Plateau, for which 40Ar/39Ar dates sug-
gest that volcanic activity commenced by 125 Ma
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at least, and possibly earlier (Jiang et al. 2022). Vol-
canic activity on the Southern Kerguelen Plateau
continued until 110 Ma (Whitechurch et al. 1992;
Coffin et al. 2002; Duncan 2002; Jiang et al.
2022), with later eruptions occurring on the Central
Kerguelen Plateau and Elan Bank (100.4 + 0.7
and 107.7 Ma, respectively; Duncan 2002). Further
north, Broken Ridge samples have been dated to c.
95 Ma (Duncan 2002), while ages for rocks from
Ninetyeast Ridge and Skiff Bank are younger still
(c. 85–35 Ma; Duncan 1978, 1991, 2002).

Jiang et al. (2022, 2023) have recently proposed a
revision of the temporal magmatic history of Ker-
guelen, and argue that the volcanism commenced
at 125 Ma or earlier. As such, these authors suggest
that early volcanic activity on the plateau may have
contributed towards the environmental change asso-
ciated with OAE 1a, while acknowledging that Ker-
guelen carbon emissions were unlikely to have
caused the OAE alone. More frequently, a link has
been postulated between the Kerguelen Plateau and
more moderate environmental change during the
Aptian–Albian transition (c. 113 Ma), often referred
to as OAE 1b, based on a better age correlation
between the two phenomena (e.g. Trabucho Alexan-
dre et al. 2011; Erba et al. 2015; Sabatino et al. 2018;
Matsumoto et al. 2020). This interval of marine
anoxia is documented in the Vocontian Basin (SE
France) and NW Tethys by the preservation of four
main discrete organic-rich shale intervals (the
Jacob, Kilian, Paquier or Urbino level, and Leen-
hardt levels; Bréhéret 1988; Coccioni et al. 2014).
Some of these shale horizons have also been identi-
fied in Atlantic sites (e.g. Erbacher et al. 2001; Herrle
et al. 2004; Trabucho Alexandre et al. 2011). Of
those four shale levels, the Kilian and Paquier hori-
zons are the two that have been the most widely iden-
tified around the world (see overviews in Coccioni
et al. (2014); Bodin et al. 2023), with OAE 1b some-
times referred to as the Paquier Event (Jenkyns
2010). Upper Aptian–lower Albian strata also docu-
ment a series of δ13C excursions, with the Kilian and
Paquier levels both marked by sharp negative
carbon-isotope shifts of 2–3‰ that have been used
to identify OAE 1b strata at sites around the world
not marked by deposition of organic-rich sediments
(e.g., Gröcke et al. 1999; Millán et al. 2014; Tsikos
et al. 2004b; Herrle et al. 2015; Navarro-Ramirez
et al. 2015; Phelps et al. 2015; Li et al. 2016; Zhao
et al. 2022). Upper Aptian palaeotemperature
records from the North Atlantic indicate a prolonged
cooling pulse prior to/during the onset of OAE 1b
(McAnena et al. 2013), and a cold pulse has also
been postulated from study of Vocontian Basin and
NW Tethys Ocean sites (Herrle and Mutterlose
2003; Bottini and Erba 2018). However, there is no
clear evidence for a similar fall in temperatures in
the South Atlantic (Jenkyns et al. 2012). In contrast,

the Paquier level (or its stratigraphic equivalent) is
marked by evidence for climate warming in the
Vocontian Basin, North Atlantic and NW Tethys
(Erbacher et al. 2001; Herrle et al. 2003; Huber
et al. 2011; Bottini and Erba 2018).

The Caribbean LIP and the latest
Cenomanian OAE (OAE 2)

The Caribbean (or Caribbean–Colombian) LIP was
an oceanic plateau that is preserved today as
obducted fragments outcropping in Ecuador, Colom-
bia (including Isla Gorgona), Costa Rica, and several
Caribbean islands, most prominently Haiti, Jamaica,
Curaçao, and Aruba (Kerr et al. 1997). The plateau
also comprises a substantial proportion of the thick-
ened oceanic crust of the Caribbean (Mauffret and
Leroy 1997). The fragmentary nature of the rem-
nants of this LIP hinders determination of its original
volume, although 4–4.5 Mkm3 has been estimated
(see Courtillot and Renne 2003; Kerr et al. 2003;
Kuroda et al. 2007). It is widely accepted that the
plateau formed on the Farallon (proto-Pacific) plate
and possibly represents the ‘head’ phase of the Galá-
pagos plume (Kerr et al. 2003; Boschman et al.
2014; Nerlich et al. 2014). After its formation, the
southern part of the plateau collided with and
accreted onto the NW margin of South America,
while the northern portion moved into the inter-
American gap that had been opening between
north and south America since the Jurassic (see
reviews in Kerr et al. 2003; Boschman et al. 2014).
Studies of the exposed outcrop and recovered rocks
from ODP sites indicate that the emplaced magmas
largely consist of tholeiitic pillow basalts, with
some basaltic and dolerite sills in addition to picritic
and komatiitic lavas also preserved (Kerr et al.
2003). While it is evident that the plateau predomi-
nantly formed through submarine volcanism,
Buchs et al. (2018) reported layered tuffs with accre-
tionary lapilli and interbedded lahar deposits with
rounded clasts of basalt in accreted oceanic plateau
sequences from western Colombia. These tuffs indi-
cate that, like other Cretaceous Pacific plateaus, the
Caribbean LIP became subaerial. The preservation
of corals and carbonized tree-trunk fragments in sed-
iments interbedded with LIP basalts in the Western
Cordillera of Colombia supports the occurrence of
eruptions in either shallow water depths or a subae-
rial context (Hall et al. 1972; Moreno-Sanchez and
Pardo-Trujillo 2003). Dating of Caribbean LIP sam-
ples through 40Ar/39Ar and Re–Os geochronology
has highlighted a wide range of ages spanning the
Cretaceous to the Early Paleogene (see Kerr et al.
2003). However, 40Ar/39Ar ages from Deep Sea
Drilling Project (DSDP) Leg 15, Haiti, Gorgona
Island, Costa Rica, Hispaniola, Western Colombia
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and Curaçao all suggest a major pulse of volcanism
between 93 and 88 Ma (Walker et al. 1991, 1999;
Sinton et al. 1998; Kerr et al. 2004; Snow et al.
2005; see also Kasbohm et al. 2021).

The Cenomanian–Turonian boundary has been
dated to 93.9 Ma (Meyers et al. 2012), and records
another interval of widespread oceanic anoxia
(OAE 2), which has been widely linked to the coeval
Caribbean volcanism (e.g. Sinton and Duncan 1997;
Kerr 1998; Snow et al. 2005; Turgeon and Creaser
2008; Du Vivier et al. 2014, 2015; Scaife et al.
2017; Percival et al. 2018). Stratigraphic archives
of this episode of global environmental perturbation
are characterized by a positive δ13C excursion of up
to 6‰ in all of carbonates, bulk-, and compound-
specific organic matter (e.g. Scholle and Arthur
1980; Hasegawa 1997; Tsikos et al. 2004a; Erbacher
et al. 2005; Sageman et al. 2006; Jarvis et al. 2011).
Well-preserved laminated organic-rich shales have
been reported from uppermost Cenomanian–lower-
most Turonian strata in numerous sites, particularly
in the Atlantic, NW Tethys and Boreal Realm
(Schlanger and Jenkyns 1976; Arthur et al. 1987;
Linnert et al. 2010; see also reviews by Jenkyns
2010; Robinson et al. 2017). Thus, this isotopic
shift is typically interpreted as reflecting enhanced
organic-carbon burial in the global ocean. Palaeo-
temperature reconstructions based on carbonate
oxygen-isotope (and in some locations, TEX86)
trends indicate a rise in temperatures at the onset of
OAE 2, with both proxies highlighting that the
warm conditions continued after the end of the
event (Paul et al. 1999; Forster et al. 2007; Jarvis
et al. 2011; van Helmond et al. 2014, 2015; O’Con-
nor et al. 2020).

However, the elevated temperatures were punctu-
ated by a transient interval of climate cooling (and
seawater re-oxygenation) across large parts of the
marine realm, dubbed the Plenus Cold Event
owing to its initial recognition by the southward
migration of the boreal belemnite species Praeacti-
nocamax plenus (Gale and Christensen 1996). This
cooling/reoxygenation pulse is further documented
by multiple geochemical palaeothermometers, a
shift in the abundance of specific nannofossils (nota-
bly cold-water species), and often a return to pre-
OAE lithologies and the disappearance of
organic-rich shales (e.g. Tsikos et al. 2004a; Forster
et al. 2007; Sinninghe-Damsté et al. 2008; Linnert
et al. 2010; van Helmond et al. 2014, 2015, 2016;
Desmares et al. 2016; O’Connor et al. 2020). The
transient temperature decrease probably resulted
from sequestration of organic carbon caused by
one or both of the documented organic-carbon burial
and enhanced silicate weathering (Pogge von Strand-
mann et al. 2013; Robinson et al. 2019; Percival
et al. 2020; Papadomanolaki et al. 2022). However,
this fall in temperatures did not occur synchronously

across the world, suggesting that local oceano-
graphic and climatic conditions significantly influ-
enced the regional manifestation of any cooling
(O’Connor et al. 2020; Percival et al. 2020).

The High Arctic LIP (HALIP) and its
relation to the Cretaceous OAEs

Numerous studies have documented the preservation
of Cretaceous magmatic units across much of the
High Arctic, spanning Svalbard, Franz Josef Land,
Novaya Zemlya, the Barents Sea, Northern Green-
land, the Canadian Arctic islands, and New Siberian
Islands, together with the offshore Alpha-Mendeleev
Ridge and Chukchi Plateau (see e.g. Tarduno 1998;
Maher 2001; Buchan and Ernst 2006; Tegner et al.
2011; Corfu et al. 2013; Senger et al. 2014; Naber
et al. 2021; Bédard et al. 2021a, b; Senger and Gal-
land 2022). Comprising both extrusive volcanic
units and intrusive dyke swarms in particular, these
magmatic formations have been postulated to collec-
tively represent the HALIP (Tarduno 1998). Thus
far, geochronology studies of the HALIP have pri-
marily focused on areas in Arctic Canada (particu-
larly the islands of Axel Heiberg and Ellesmere),
with U–Pb and 40Ar/39Ar dates indicating that the
LIP formed through numerous spells of emplace-
ment over a 40 Myr interval of the Cretaceous
(Tegner et al. 2011; Dockman et al. 2018). In partic-
ular, two major magmatic pulses at 135–120 Ma and
105–90 Ma have been identified (e.g. Corfu et al.
2013; Evenchick et al. 2015; Estrada et al. 2016;
Polteau et al. 2016; Dockman et al. 2018; Kingsbury
et al. 2018; Naber et al. 2021; Deegan et al. 2022).
Dating of alkaline HALIP rocks in Northern
Greenland potentially indicates a later episode of
HALIP-related alkaline volcanism between 85 and
70 Ma (Tegner et al. 2011; Thórarinsson et al.
2015). Recognized magmatic pulses of HALIP over-
lap in age with both OAEs 1a and 2; consequently,
the province has been linked with both episodes of
environmental change (e.g. Tegner et al. 2011;
Zheng et al. 2013; Polteau et al. 2016; Adloff et al.
2020). In the case of OAE 1a, this link may be related
to the emission of thermogenic carbon following
intrusion of organic-rich sedimentary rocks by basal-
tic sills, providing a source of isotopically light car-
bon to the Earth’s surface that could have caused the
C3 negative excursion in δ13C (Polteau et al. 2016;
Adloff et al. 2020; Deegan et al. 2022).

The Madagascan LIP

The Madagascan LIP largely comprises tholeiitic
flood basalt sequences, with minor alkaline and sili-
cic units, and associated sill and dyke swarms and
intrusive complexes, and has been attributed to the
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Marion plume prior to the separation of Madagascar
from the Indian subcontinent (e.g. Storey et al. 1995;
Torsvik et al. 1998, 2000; Kumar et al. 2001). Rem-
nants of the province are well exposed and preserved
along Mahajanga and the eastern coastal area, and in
the Morondava sedimentary basins in western Mad-
agascar (Mahoney et al. 1991; Storey et al. 1995;
Melluso et al. 2001; Cucciniello et al. 2022). Further
volcanism is also recorded through intrusions into
and extrusions onto Precambrian basement. The
original volume of the province is poorly con-
strained, but probably exceeded 1 Mkm3, including
the Madagascar Plateau flanking the south coast of
the island, as well as the Conrad Rise (Storey et al.
1995). Age estimates for Madagascar LIP volcanism
largely range between c. 93 and 86 Ma, based largely
on 40Ar/39Ar and some U–Pb dating, together with
biostratigraphic constraints based on interbedded
sedimentary rocks (Storey et al. 1995; Torsvik
et al. 2000; Melluso et al. 2001, 2005; Pande et al.
2001; Mahoney et al. 2008; Cucciniello et al.
2010, 2011, 2013, 2022; see also Jiang et al.
2023). Because these ages are close to that of the
Cenomanian–Turonian boundary, it has been postu-
lated that the Madagascan LIP might have contrib-
uted to environmental change associated with OAE
2. However, statistical appraisals of the available
ages shows that volcanic activity initially peaked in
northern Madagascar and spanned 3 Myr between
93 and 90 Ma (Cucciniello et al. 2022), slightly post-
dating OAE 2. Thus, it is unlikely that the Madagas-
can LIP played a major role in triggering environ-
mental change associated with that OAE.

The Deccan–Traps and the Cretaceous–
Paleogene interval

Major eruptions associated with the Deccan Traps
(western India) commenced during the latest
Maastrichtian, 300–400 kyr prior to the end of the
Cretaceous Period (66.04 Ma; Gale et al. 2020) and
continued into the earliest Paleogene (Schoene
et al. 2019; Sprain et al. 2019 and references therein).
It has been suggested that a smaller-scale phase of
Deccan eruptions occurred earlier in the Cretaceous
(68–67 Ma; see Chenet et al. 2007; Parisio et al.
2016). However, subsequent data have cast doubt
on the occurrence of major eruptions significantly
prior to the main-phase of Deccan volcanism
(Schoene et al. 2015). By far the most intensely stud-
ied part of the Deccan Traps is the Western Ghats
region, which comprises a cumulative thickness of
c. 3000 m of tholeiitic basalts in multiple flood basalt
units stratigraphically separated by oxidized ‘red-
bole’ palaeosols (Widdowson et al. 1997, and refer-
ences therein). Magnetostratigraphic studies of the
Western Ghats basalts show that the main phase of

Deccan volcanism began just prior to the start of
the C30n–C29r chron reversal (66.38 Ma), and con-
cluded just after the C29r–C29n reversal at 65.7 Ma
(Courtillot et al. 1986, 2000; Chenet et al. 2009).
This ,1 Myr duration is supported by numerous
recent geochronological investigations utilizing
both 40Ar/39Ar ages of Deccan basalts (66.31–
65.72 Ma; e.g. Renne et al. 2015; Sprain et al.
2019) and U–Pb dating of zircons preserved in the
red boles interbedded between with them (66.26–
65.63 Ma; e.g. Schoene et al. 2015, 2019; Eddy
et al. 2020). Recent modelling of eruption rates in
the Western Ghats, based on 40Ar/39Ar geochronol-
ogy, highlighted a pronounced rise in eruption vol-
ume between the Bushe and Poladpur formations,
around the time of the Cretaceous–Paleogene
(KPg) transition and Chicxulub impact (Renne
et al. 2015; Sprain et al. 2019). An acceleration in
volcanism beginning with Poladpur eruptions is
also shown by U–Pb-based modelling, but manifest-
ing as a series of discrete pulses that began 50–
100 kyr prior to the KPg event and bolide impact
(Schoene et al. 2019). However, U–Pb geochronol-
ogy of red-bole zircons from the Malwa plateau indi-
cate that there were highly voluminous Deccan
eruptions occurring in the northern part of the prov-
ince up to 350 kyr prior to the KPg event (Eddy
et al. 2020). Additionally, some of the Deccan mag-
mas are preserved offshore from the Indian coast and
may comprise a volume significantly greater than the
well-studied onshore volcanics, with little known
regarding their eruptive history (Mittal et al. 2022).

The last 300–400 kyr of the Cretaceous were
marked by up to 2–3°C of climate warming (the
Late Maastrichtian Warming Event), which has
been documented in shallow and deep marine set-
tings around the world by both oxygen-isotope and
TEX86 data (e.g. Li and Keller 1998a; Westerhold
et al. 2011; Esmeray-Senlet et al. 2015; Vellekoop
et al. 2016; Barnet et al. 2018; Woelders et al.
2017, 2018; Hull et al. 2020). Cyclostratigraphic
and magnetostratigraphic age models across a num-
ber of these sites demonstrate that the warming com-
menced coevallywith the onset ofDeccan volcanism,
supporting a causal link between the two phenomena
(Barnet et al. 2018; Woelders et al. 2017; Hull et al.
2020; Gilabert et al. 2022). Intriguingly, tempera-
tures then declined around 100–200 kyr before the
end of the Cretaceous, despite continuing Deccan
activity (Vellekoop et al. 2016; Barnet et al. 2018;
Woelders et al. 2017, 2018; Hull et al. 2020). A
rise in SO2 contents of Deccan basalts from 750 to
1800 ppm, and thus of assumed volatile emissions,
just prior to the end of the Cretaceous may have
aided this cooling pulse (Callegaro et al. 2023). A
second (geologically brief ) warming pulse in the
final 10 s kyr of the period has been postulated,
although evidence for this second temperature
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increase has been reported from only a few locations
(Stüben et al. 2003; Keller et al. 2020; O’Connor
et al. 2023; cf., Vellekoop et al. 2016; Woelders
et al. 2017; Barnet et al. 2018; Hull et al. 2020). It
is assumed that these temperature changes occurred
in response to carbon cycle disturbances following
Deccan CO2 emissions (e.g. Li and Keller 1998a;
Robinson et al. 2009; Esmeray-Senlet et al. 2015;
Vellekoop et al. 2016; Hull et al. 2020). However,
there is no clear δ13C excursion in upper Maastrich-
tian strata comparable in magnitude with those of
the Cretaceous OAEs (Woelders et al. 2017; Barnet
et al. 2018). The lack of a negative isotopic shift
may result from Deccan carbon output being primar-
ily magmatic in origin, rather than thermogenic,
although whether magmatic volatiles alone could
have caused the warming is unclear (Self et al.
2006; see also Ganino and Arndt 2009).

The KPg boundary, which marks the most recent
of the ‘Big Five’ Phanerozoic mass extinctions
(Raup and Sepkoski 1982), also overlapped in time
with Deccan volcanism. This extinction has been
compellingly linked to the coeval Chicxulub impact
by global enrichment of iridium and other platinum
group elements in the extinction horizon, together
with documented microspherules, shocked-quartz
grains and tsunami sediments (e.g. Alvarez et al.
1980; Schulte et al. 2010; Goderis et al. 2021).
Nonetheless, it has been hypothesized that Deccan
eruptions contributed towards causing this bio-
spheric crisis, either in combination with the Chicxu-
lub impact or independently (e.g. Courtillot and
Renne 2003; Keller 2012; Font et al. 2016; Petersen
et al. 2016; Callegaro et al. 2023; Cox and Keller
2023). The different hypotheses proposed regarding
the links between the Chicxulub impact, Deccan
Traps and the extinction event are outlined in more
detail elsewhere (see e.g. Schulte et al. 2010; Hart
et al. 2012, 2019; Richards et al. 2015; Punekar
et al. 2016; Leighton et al. 2017; Schoene et al.
2019; Hull et al. 2020; Callegaro et al. 2023; Cox
and Keller 2023; Senel et al. 2023), and are not fur-
ther discussed here.

The link between LIP volcanism and
environmental change

Many major environmental perturbations during the
Cretaceous were marked by pronounced climate
warming on a global scale (with the Weissert
Event and parts of OAE 1b the likely exceptions),
and LIP-related emissions of carbon dioxide are
widely accepted to have been a key trigger of these
temperature rises (e.g. Weissert and Erba 2004; Jen-
kyns 2010; Bond and Wignall 2014; Bodin et al.
2015). Carbon outgassing of LIP basalts remains
poorly constrained, however, and it is uncertain

whether magmatic emissions would have been suffi-
cient to greatly impact atmospheric CO2 levels (see
Self et al. 2006, 2014; Black et al. 2021). As noted
above, thermogenic carbon emissions associated
with the heating of organic-rich sediments by intrud-
ing magmas have been proposed as an additional/
alternative trigger of climate warming during OAE
1a (Polteau et al. 2016; Deegan et al. 2022). This
mechanism has also been suggested for the Late
Maastrichtian Warming Event (Eddy et al. 2020;
Hernandez Nava et al. 2021), although the limited
evidence for organic-rich sediments that were
intruded by Deccan magmas and the lack of a δ13C
negative excursion in uppermost Cretaceous strata
do not support this hypothesis. Regardless of the spe-
cific carbon source, any episode of Cretaceous cli-
mate warming probably resulted in acceleration of
the global hydrological cycle, enhancing continental
weathering and nutrient runoff to the oceans, and
consequently stimulating eutrophication and sea-
water oxygen depletion, aided by ocean stratification
and stagnation directly caused by oceanic tempera-
ture increase (see Jenkyns 2010; Bond and Sun
2021, and references therein). The carbon emissions
themselves could also have directly resulted in ocean
acidification and associated environmental stress, at
least during some events (Erba et al. 2010).

Establishing better constraints on the timing of
volcanic activity from sedimentary records that docu-
ment surface temperature fluctuations and/or
changes in environmental and biospheric conditions
is key to resolving the complex relationships between
LIP emplacement and their impact on Earth’s climate
and environment. In recent years, the development of
several geochemical proxies of volcanism has
enabled reconstruction of the timing of LIP activity
in the stratigraphic archives that record episodes of
environmental and/or biota perturbation. Osmium-
isotope compositions (specifically 187Os/188Os)
and mercury (Hg) concentrations represent two
such proxies (see reviews by Grasby et al. 2019;
Dickson et al. 2021; Percival et al. 2021a). Differ-
ences in the compatibility of osmium and rhenium
(Re) within silicates result in mantle rocks and LIP
basalts derived from mantle-plume volcanism typi-
cally being enriched in primitive osmium compared
with rhenium, giving them an unradiogenic
Os-isotope composition (187Os/188Os ≈ 0.13; Allè-
gre et al. 1999). Thus, intense LIP volcanism and/
or the weathering (or submarine alteration) of juve-
nile basalts should cause a geologically rapid increase
in the flux of unradiogenic Os to the global ocean rel-
ative to the comparatively constant background input
from mid-ocean ridges and extraterrestrial material,
lowering seawater 187Os/188Os ratios (e.g. Peucker-
Ehrenbrink andRavizza 2000). Conversely, the felsic
crust is marked by higher Re/Os ratios, with decay of
187Re to 187Os over long geological timescales,
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eventually resulting in a more radiogenic
osmium-isotope composition of continental material
and the riverine runoff derived from its erosion (aver-
age 187Os/188Os ≈ 1.4 today; Peucker-Ehrenbrink
and Jahn 2001). Thus, seawater 187Os/188Os ratios
can also increase if continental weathering rates
increase. Because osmium has a seawater residence
time of tens of thousands of years, any significant
change in the oceanic 187Os/188Os composition
should be recorded in the hydrogenous phase of sedi-
mentary rocks deposited throughout the global
ocean, apart from hydrographically restricted basins
where local sources may dominate (e.g. Paquay and
Ravizza 2012; Dickson et al. 2015).

Mercury is emitted to the atmosphere as a volca-
nic volatile, with this source acting as a major natural
source of the element to the Earth’s surface today
(Pyle andMather 2003). In the stratosphere, mercury
has a residence time of 0.5–2 years, enabling it to be
distributed over a hemispherical–global scale before
being deposited in sediments (Schroeder and
Munthe 1998; Selin 2009). Hence, numerous studies
have utilized Hg contents as a proxy for volcanic
activity in Earth’s past, normalizing against total
organic carbon (TOC) to account for the element typ-
ically being bound to organic compounds during
deposition (see reviews by Grasby et al. 2019;
Shen et al. 2020; Percival et al. 2021a). Under highly
euxinic conditions where free sulfides precipitate in
the water column, Hg may be associated with that
phase (Shen et al. 2019, 2020). Mercury may be
adsorbed onto clay minerals if neither organic carbon
or sulfides are present (Kongchum et al. 2011; Shen
et al. 2020). Adsorption onto iron–manganese
oxides or hydroxides has also been reported in oxi-
dized settings, particularly for some riverine, lacus-
trine and estuarine environments (e.g. Quémerais
et al. 1998; Driscoll et al. 2013; Maher et al.
2020), although studies of other sites have reported
preferential binding onto organic compounds (e.g.
Feyte et al. 2010; Cossa et al. 2021).

Any or all of remobilization of sedimentary mer-
cury related to water-column and/or sediment redox
changes, input from wildfires or enhanced terrige-
nous runoff, variation in organic matter type (from
marine to terrestrial) and diagenetic removal of sedi-
mentary TOC can alter sedimentary Hg contents and
Hg/TOC ratios independently of volcanism (e.g.
Hammer et al. 2019; Them et al. 2019; Charbonnier
et al. 2020a; Frieling et al. 2023). Thus, reconstruct-
ing a volcanically triggered perturbation to the global
mercury cycle depends on documenting stratigraph-
ically correlative Hg enrichments in multiple sites
distributed across the world and considering any
potential local inputs of the element. Moreover, sub-
marine volcanic activity may have a very limited dis-
persal range of mercury owing to the rapid
scavenging and transformation of mercury species

in hydrothermal vents, resulting in an apparent near-
field drawdown of Hg emitted directly into seawater
(within hundreds of kilometres; Bowman et al. 2015;
see also Scaife et al. 2017; Percival et al. 2018,
2021b).

Despite the advances in tracking LIP volcanism
in stratigraphic records of major climate/environ-
mental change, relatively few studies have combined
geochemical proxies of volcanism and surface tem-
perature in the same site (but see Robinson et al.
2009; Bottini et al. 2015; Schoene et al. 2019; Per-
cival et al. 2020). Thus, questions remain regarding
the extent to which volcanic activity triggered cli-
mate warming and consequent environmental degra-
dation during the Cretaceous. These questions
particularly pertain to OAE 1a, with magmatic
CO2, thermogenic carbon, and methane clathrate
release all suggested as a cause of climate warming
during the onset of the event (e.g. Jahren et al.
2001; Méhay et al. 2009; Naafs et al. 2016; Adloff
et al. 2020; Deegan et al. 2022). Moreover, hydro-
thermal nutrient (e.g. Fe, V, Cu) output from subma-
rine G-OJP volcanism may have directly enhanced
primary productivity and triggered widespread
marine anoxia during OAE 1a independently of
global temperature change (see Erba et al. 2015).
Here, the record of LIP volcanism during OAE 1a
is investigated at two sites that have been previously
studied for palaeotemperature trends (Fig. 2): DSDP
Site 398 (Vigo Seamount, Atlantic Ocean) and
Alstätte-1 (Lower Saxony Basin, NW Germany).
The documented relationship between volcanism
and environmental change during OAE 1a is placed
into the wider context of how LIP activity impacted
the global climate during that event. This scenario is
then discussed in a broader overview of the geo-
chemical records and environmental and biotic
impacts of large igneous provinces during the Creta-
ceous Period.

Study sites

The expanded Early Aptian stratigraphic record
recovered from DSDP Site 398 consists of repeating
dark grey-green turbiditic sedimentary sequences
spanning several tens of metres in thickness. The
strata are composed primarily of dark mudstones
and claystones with some layers of calcareous sand-
stones and graded quartz-based sandstones–mud-
stones, deposited on the southern flank of the Vigo
Seamount, just off the Iberian Margin (Ryan et al.
1979; Sigal 1979). Preservation of terrigenous mate-
rial (including terrestrial organic matter) indicates
that the sediments were probably deposited as part
of a submarine fan, potentially related to deltaic pro-
gradation (Arthur 1979). However, a generally low
BIT (branched and isoprenoid tetraether) index of
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organic matter studied from the sediments suggests
that terrestrial organics do not dominate the setting
(Naafs and Pancost 2016). There is no black-shale
layer at this locality comparable with those typically
associated with Lower Aptian stratigraphic records
(Arthur 1979). Instead, OAE 1a strata have been
identified by trends in the δ13C composition of
organic matter, in combination with calcareous nan-
nofossil biostratigraphy (Bralower et al. 1994; Li
et al. 2008). Palaeoenvironmental reconstructions
from this site, based on TEX86, have highlighted
warm sea-surface temperatures prior to OAE 1a,
which rose slightly during the event but significantly
declined after it (Naafs and Pancost 2016).

The Alstätte-1 section represents a boreal record
of OAE 1a, and primarily consists of organic-rich
laminated mudstones and marlstones that were
deposited into the epicontinental Lower Saxony
Basin during the Early Aptian (Hoffmann and Mut-
terlose 2011). Palaeogeographic reconstructions,
geochemical data, palaeontological findings and
the preservation of organic-rich sediments deposited
under anoxic conditions all indicate that the basin

was probably hydrographically restricted to some
degree during Barremian–Aptian times, potentially
including the OAE 1a interval (Pauly et al. 2013).
However, Aptian fauna recovered from strata
below and in the OAE 1a interval are mainly of Bor-
eal endemic composition and co-occur with cosmo-
politan taxa (ammonites, belemnites), with the
earliest cosmopolitan species documented a few
metres below the OAE 1a level. Highly distinctive
Tethyan belemnites are preserved directly above
OAE 1a strata, suggesting strong sea-way connectiv-
ity and faunal exchange with the NW Tethys imme-
diately following the event (Mutterlose 1998;
Mutterlose and Böckel 1998). Lower Aptian strata
and the OAE 1a interval have been identified from
a combination of belemnite, ammonite and nanno-
fossil biostratigraphy, integrated with δ13C studies
(Bottini and Mutterlose 2012). TEX86-derived sea-
surface temperature reconstructions highlight a
sharp rise from,30°C prior to OAE 1a to 33°C dur-
ing the event, but mild cooling during the middle of
the OAE and after it had concluded (Mutterlose et al.
2014). The initial warming is potentially supported

Fig. 2. Palaeogeographic map of the Barremian–Aptian interval, adapted from Percival et al. (2021b), after van
Breugel et al. (2007) and Giraud et al. (2018). The reconstructed locations of the HALIP and G-OJP are shown in
red. Sites investigated in this study for mercury and osmium data shown by white circles: (a) DSDP Site 398; (b)
Alstätte-1. Sites previously investigated using both proxies are shown by black circles (c–e), just for osmium isotopes
with black squares (f–g), and just for mercury by black triangles (h–o).
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by a negative excursion in belemnite δ18O correla-
tive with the shift in TEX86 (Mutterlose et al. 2014).

Methodology

Osmium-isotope analysis

Osmium abundances and isotopic values were deter-
mined by isotope dilution and negative thermal ion-
ization mass spectrometry on a Thermo Fisher
Scientific TRITON at the Japan Agency for Marine-
Earth Science and Technology (JAMSTEC), Japan.
Sample preparation followed the protocol described
in Ishikawa et al. (2014) and Matsumoto et al.
(2020), and broadly follows the procedures devel-
oped by Cohen and Waters (1996) and Birck et al.
(1997). Briefly, powdered samples were spiked
with a 185Re- and 190Os-rich solution and sealed in
quartz glass tubes with 4 ml of inverse aqua regia.
After being heated at 230°C for 48 h, osmium was
separated and purified by CCl4 extraction, HBr back-
extraction and standard micro-distillation tech-
niques. Rhenium was purified from the aqua regia
phase through anion chromatography, with Re con-
centrations determined via quadrupole inductively
coupled plasma mass spectrometry (Thermo Fisher
Scientific iCapQ) at JAMSTEC. Procedural blanks
averaged 0.10+ 0.08 pg Os and 22+ 10 pg Re,
with a 187Os/188Os ratio of 0.166 + 0.004 (1 SD,
n = 3). Analytical uncertainty and precision were
monitored through repeated measurements of the
JMC Os standard, giving 187Os/188Os values of
0.10691+ 0.00008 (1 SD, n = 3), consistent with
previously reported values (187Os/188Os =
0.106838+ 0.000015; Nozaki et al. 2012). The
past seawater Os-isotope composition at the time
of deposition (187Os/188Os(i)) is calculated from
the modern-day measured 187Os/188Os and
187Re/188Os compositions of a sedimentary rock
sample and its age in order to account for the post-
depositional decay of 187Re to 187Os (Cohen et al.
1999). The initial sedimentary Os concentration at
the time of deposition [Os(i)] is determined by utiliz-
ing the determined 187Os/188Os(i) ratio together with
the measured 187Os/188Os composition and Os and
192Os concentrations of a rock sample, assuming a
192Os/188Os of 3.08271 (Percival et al. 2021b).

Mercury concentrations

Mercury concentrations were determined on an
Advanced Mercury Analyser 254.7 at the Vrije Uni-
versiteit Brussel (VUB), Belgium, following the pro-
cedure outlined in Liu et al. (2021). The limit of
detection for the Advanced Mercury Analyser
based on repeated blank analyses (n = 33 across
the two sample sets) was 0.09 ng, calculated as 3
times the standard deviation on the blank

measurements, one to two orders of magnitude
below the content in a measured sample. A 100+
2 mg aliquot of powdered sample was used per anal-
ysis, with repeatability of the results monitored
through at least two measurements for each sample.
Analytical accuracy was further tested through
repeated measurements of the certified reference
materials MESS-3 (marine sediment) and JP-1 (peri-
dotite), yielding average concentrations of 89.51+
1.89 ng/g (1 SD, n = 25) and 4.86+ 0.38 ng/g
(1SD, n = 13), respectively, across analysis of the
two sample sets, consistent with established com-
piled values (MESS-3 = 91 + 9 ng/g; JP-1 =
5.3 ng/g).

Total organic carbon and total sulfur
contents

Total organic carbon and total sulfur (TS) contents
were determined on a Nu Instruments Horizon 2 iso-
tope ratio mass spectrometer coupled to a Eurovector
elemental analyser, EuroEA3000, at the VUB. Prior
to TOC analyses, the samples were decarbonated
with 10% HCl following the procedure outlined in
Liu et al. (2021), in order to remove inorganic carbon
(assumed to be entirely in carbonate form). Carbon
content calibration was performed using the certified
reference material IAEA-CH-6 (sucrose). Data
accuracy and reproducibility were monitored
through repeated analyses of international standards
IVA33802151 (organic-rich sediment) and
IVA33802153 (organic-poor soil), with analytical
uncertainty typically better than +0.1 wt% (1 SD).
The measured carbon content in decarbonated ali-
quots of each sample was converted to a bulk rock
TOC value by accounting for the percentage sample
mass lost following decarbonation. The TS contents
were measured on bulk-rock powder samples with-
out any chemical pre-treatment. Sulfur content cali-
bration on the isotope ratio mass spectrometer was
performed using the certified reference material
IAEA-S-1 (silver sulfide), with data accuracy and
reproducibility again better than +0.1 wt% (1 SD)
based on repeated analyses of international stan-
dards: IVA33802151 and MESS-2 (estuarine
sediment).

Results

Early Aptian strata from DSDP Site 398 record a
shift in 187Os/188Os(i) ratios from a mean back-
ground of c. 0.60 to a highly unradiogenic composi-
tion of c. 0.20 across the OAE 1a level, before a
return towards more radiogenic pre-event values
above it (Fig. 3a). The sample with the most unradio-
genic Os-isotope composition is also marked by a
large enrichment in [Os](i) (1323 pg/g, compared
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(a)

(b)

Fig. 3. Stratigraphic trends in δ13C, total organic carbon (TOC) and sea-surface temperature (SST) based on TEX86,
187Os/188Os(i), [Os](i), Hg, Hg/TOC and Hg/TS for (a)

DSDP Site 398 and (b) Alstätte-1. Vertical scales are in metres. The stratigraphic extent of the OAE 1a level (here defined as strata spanning the C3–C6 segments) is marked by
the horizontal grey bars. TS, Total sulfur. Sources: For DSDP Site 398, the lithological column is from Jenkyns (2018), the biostratigraphic and δ13C information are from Li
et al. (2008); the SST trends are from Naafs and Pancost (2016); all other data from this study. For Alstätte-1, the lithological, biostratigraphic, δ13C, TOC and SST information
are from Mutterlose et al. (2014); all other data are from this study. Sea-surface temperature trends based on both the widely applied TEX86

H calibration of Kim et al. (2010) and
the deep-time analogue outlined by Tierney and Tingley (2014) are presented, as calculated by Naafs and Pancost (2016). A lower reliability limit of 0.2 wt% for TOC follows
the protocol of Grasby et al. (2016), and is also applied here for TS.
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with a mean of 173 pg/g for the rest of the record). A
transient rise in 187Os/188Os(i) up to 0.69 in basal
OAE1a strata is superimposed onto the initial unra-
diogenic signal. Mercury concentrations show sig-
nificant variation, ranging from 18 to 100 ng/g
(mean 49 ng/g) below the OAE 1a level and in
basal OAE strata, before rising slightly to an average
of 63 ng/g with a peak of 129 ng/g in the upper part
of the OAE level, and further still above it (averaging
86 ng/g with spikes up to 220 ng/g). While TOC
and TS contents also vary considerably at DSDP
Site 398 (between 0.19–2.09 and 0.10–1.25 wt%,
respectively), there is no clear stratigraphic trend.
Thus, the Hg enrichments are largely mirrored by
peaks in Hg/TOC and Hg/TS ratios. There is a
clear Hg/TOC peak in the middle part of the OAE
1a level between 1563 and 1557 mbsf (average
Hg/TOC = 197 ng/g/wt%; average Hg/TS =
342 ng/g/wt%), and additional spikes of up to
394 ng/g/wt% and 1054 ng/g/wt%, respectively,
above it (Fig. 3a). There is no clear linear relation-
ship between Hg and either TOC or TS (R2 values
of 0.09 and 0.07, respectively).

The 187Os/188Os(i) trends documented at
Alstätte-1 differ markedly from those of DSDP Site
398, rising from a background average of c. 0.77 to
over 0.9 at the base of the OAE 1a level, but with val-
ues remaining high (187Os/188Os(i) .0.7) through-
out the OAE strata (Fig. 3b). A shift to more
unradiogenic Os-isotope compositions of c. 0.34
(and slight increase in [Os](i) concentrations from
95 to 173 pg/g) only takes place above OAE 1a
strata. Mercury concentrations at Alstätte-1 are also
elevated around the OAE 1a level (mean 49 ng/g)
with three spikes to c. 100 ng/g or more, compared
with background contents of 27 ng/g (Fig. 3b).
However, the TOC and TS contents also rise in
OAE strata; thus, there is no systematic increase in
Hg/TOC or Hg/TS in basal OAE 1a strata. There
is an increase in Hg/TS from c. 32 to 100 ng/g/wt
% in the upper part of the OAE level, but this rise
is not correlative with any increase in Hg concentra-
tions, rather with a fall to very low TS contents.
Some small spikes in Hg/TOC (up to 109 ng/g/wt
% compared with a background of 29 ng/g/wt%)
do correlate with the three peaks in Hg concentra-
tions; however, those samples also have very high
sulfur contents. Indeed, there is a strong linear corre-
lation between Hg and TS concentrations at
Alstätte-1 (R2 = 0.73; compared with R2 = 0.05
between Hg and TOC), potentially suggesting that
local drawdown with sulfide was the main control
on Hg deposition under the highly oxygen-depleted
conditions in the Lower Saxony Basin. OAE 1a
black shales from Alstätte-1 are known to yield
abundant pyrite, suggesting that sulfide sorption
was the main control on Hg contents in this
oxygen-depleted setting.

Discussion

OAE 1a as a case study of how LIPs
impacted the Cretaceous global
environment

The 187Os/188Os(i) and [Os](i) trends recorded at
DSDP Site 398 closely resemble those from previous
studies of OAE 1a. Very low 187Os/188Os(i) values
recorded in middle–upper OAE 1a strata support a
major influx of unradiogenic osmium to the global
ocean during that event, probably linked to G-OJP
activity (Tejada et al. 2009; Bottini et al. 2012; Adl-
off et al. 2020; Martínez-Rodríguez et al. 2021; Per-
cival et al. 2021b). Recorded Os-isotope trends from
several other sites also document a volcanically trig-
gered shift towards a more unradiogenic seawater
composition immediately prior to OAE 1a, with
this change also potentially documented at DSDP
Site 398 by a single data point (1171.33 mbsf).
Basal OAE 1a strata only show a clear mercury
enrichment at a single site very close to that LIP (Per-
cival et al. 2021b). This non-dispersal of mercury is
consistent with the short residence time of volcanic
Hg emitted directly into seawater (see Bowman
et al. 2015), and supports submarine volcanism on
the G-OJP as the main source of unradiogenic Os
to the global ocean during OAE 1a.

The shift to more radiogenic 187Os/188Os(i) com-
positions across OAE 1a strata at Alstätte-1 repre-
sents a markedly different trend from that recorded
at all other sites. This disparity probably indicates
that the Lower Saxony Basin was too hydrographi-
cally restricted for significant water–mass exchange
with the global ocean, despite having enough con-
nection to permit faunal migration. In this context,
the shift to higher 187Os/188Os(i) values across the
OAE 1a level at Alstätte-1 may highlight a rise in
local riverine runoff to the Lower Saxony Basin
from enhanced continental weathering in response
to elevated atmospheric CO2 and global tempera-
tures, given that this flux typically represents the
main source of radiogenic osmium to seawater.
Notably, the radiogenic shift at Alstätte-1 begins at
the base of C3 (3.8 m), and age-equivalent C3 strata
at DSDP Site 398 (1169.8–1164.54 mbsf) and other
locations are also marked by a transient rise in
187Os/188Os(i) values between the unradiogenic
pulses (Fig. 4). This stratigraphic correlation sup-
ports previous interpretations that the transient radio-
genic Os-isotope shift recorded in C3 strata at DSDP
Site 398 and elsewhere probably reflects a weather-
ing pulse superimposed on an overarching signal
of submarine LIP activity, rather than a spell of
volcanic quiescence between two distinct pulses of
volcanism (e.g. Tejada et al. 2009; Bottini et al.
2012; Martínez-Rodríguez et al. 2021). Strontium-,
calcium- and lithium-isotope studies of OAE 1a
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also support a rise in global weathering rates during
the onset of the event (Jones and Jenkyns 2001; Blät-
tler et al. 2011; Lechler et al. 2015).

When stratigraphic trends in 187Os/188Os(i) are
compared with temperature proxies from records of
OAE 1a, it is clear that the highest temperatures indi-
cated by δ18O or TEX86 data are documented above
the radiogenic osmium shift and the C3 excursion,
stratigraphically correlative with the most unradio-
genic 187Os/188Os(i) compositions recorded in
OAE 1a strata (upper C3–lower C4; see also Bottini
et al. 2015). These trends support an intensification
in LIP volcanism and associated carbon emissions
as the main driver of this further rise in global tem-
peratures during OAE 1a. A pronounced increase
in Hg contents and Hg/TOC enrichments across
upper C3–lower C4 strata at DSDP Site 398 and
some (although not all) other sites across the globe
might reflect a potential intensification in volcanic
activity or switch to subaerial eruptions after the
start of OAE 1a (see Charbonnier and Föllmi 2017;
Percival et al. 2021b; Vickers et al. 2023). The latter
possibility is consistent with a scenario in which the
G-OJP was initially emplaced through submarine
volcanism (enabling worldwide dispersal of unradio-
genic Os but only nearfield Hg enrichment), before
becoming emergent above the sea surface and lead-
ing to more global distribution of mercury from sub-
aerial eruptions. However, it should be noted that the
C3–C4 Hg enrichments could also reflect localized
environmental perturbations such as redox changes
or enhanced wildfires/runoff of terrestrial organic
matter (see Percival et al. 2021b). A not exclusively
volcanic cause of the C3–C4 mercury enrichments is
supported by the enhanced Hg and Hg/TOC values
recorded above the OAE 1a level at DSDP Site
398, in strata that post-date the time of LIP volcanism
reconstructed from 187Os/188Os(i) trends. Unless
subaerial eruptions occurred later than and entirely
separately from submarine volcanism (which is
implausible if both were related to the same LIP), it
is highly unlikely that these post-event Hg peaks
were volcanically derived. Instead, the post-OAE
Hg enrichments may have been caused by variability
in the input of terrestrial organic matter from the
nearby palaeoshoreline (Hammer et al. 2019), or
redox fluctuations/the return to a more oxygenated
water column (Frieling et al. 2023), although there
is no direct evidence of major redox change at
DSDP Site 398.

There is also a potential correlation between an
initial shift towards more unradiogenic Os-isotope
values and possible higher sea-surface temperatures
below the C3 negative δ13C excursion at DSDP
Site 398. This earlier temperature rise is less pro-
nounced than the later one during the OAE itself,
and the fall in 187Os/188Os(i) values is based on
one data point. Nonetheless, an unradiogenic shift
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in the marine Os-isotope composition and rise in sur-
face temperatures just prior to the C3 excursion and
onset of OAE 1a is supported by data from other
stratigraphic archives in the NWTethys and the Sub-
betic margin (e.g. Tejada et al. 2009; Keller et al.
2011; Bottini et al. 2012, 2015; Lorenzen et al.
2013; Castro et al. 2021; Martínez-Rodríguez et al.
2021; Fig. 4). A crisis in nannoconid fauna is also
recorded below the base of OAE 1a strata sensu
stricto in several sites (see the section on the biotic
response to Cretaceous LIP formation). Lead-isotope
and trace-element datasets further support an onset of
volcanic activity that was coevalwith the nannoconid
crisis but prior to the C3 excursion (Kuroda et al.
2011; Erba et al. 2015; Figure 4). Assuming that
there was a single prolonged pulse in G-OJP activity
recorded by the unradiogenic shifts in 187Os/188Os(i),
which began before and continued after a transient
increase in continental weathering rates, the new
and previously published geochemical and palaeon-
tological datasets both suggest that magmatic carbon
emissions associated with submarine LIP volcanism
probably triggered the initial warming and nannoco-
nid crisis immediately prior to the onset of OAE 1a.

These datasets also support a non-volcanic car-
bon source, probably related to thermogenic emis-
sions or methane clathrate release, as the driver of
the C3 δ13C negative excursion. Osmium-isotope
trends in those strata primarily record enhanced con-
tinental weathering rather than LIP activity. Further-
more, there is no clear global mercury signal of
volcanism at that time. Both methane clathrates and
thermogenic carbon are isotopically lighter than
magmatic CO2, with the latter potentially sourced
from intrusive magmatism related to the HALIP
(see above; also Polteau et al. 2016). Thus, either car-
bon source could potentially have caused the δ13C
negative shift without greatly changing atmospheric
CO2 levels or affecting global temperatures (Méhay
et al. 2009; Naafs and Pancost 2016; Adloff et al.
2020). This scenario is consistent with the geochem-
ical and palaeontological evidence for volcanism as
the main driver of climate warming and biota stress
prior to and during OAE 1a, but with a non-volcanic
carbon source as the driver of the C3 negative excur-
sion (Méhay et al. 2009; Adloff et al. 2020). How-
ever, it is less clear which carbon source (if either)
played the dominant role in initiating the widespread
marine anoxia that characterized the OAE.

Overview of geochemical evidence for the
(variable) links between LIP volcanism
and Cretaceous episodes of major
environmental change

The entirety of Cretaceous stratigraphic history has
been investigated for trends in oceanic strontium-

isotope compositions (see reviews by Jones and Jen-
kyns 2001; McArthur et al. 2020), and large parts
also for seawater 187Os/188Os(i) reconstructions
(see e.g. Peucker-Ehrenbrink and Ravizza 2000;
Matsumoto et al. 2022; and Fig. 5). Reconstructed
187Os/188Os(i) trends for most Cretaceous episodes
of environmental change are similar to OAE 1a,
showing pronounced unradiogenic shifts that are
assumed to result from one or more of submarine
volcanism, the weathering of juvenile LIP basalts
or some other form of basalt–seawater interaction
(Fig. 5a, and references therein). Some more local-
scale episodes of environmental perturbation are
also marked by unradiogenic shifts of a smaller
magnitude (Matsumoto et al. 2021b). Thus,
osmium-isotope stratigraphy strongly supports the
link between LIP emplacement and Cretaceous cli-
mate/environmental change. Additionally, a more
gradual 187Os/188Os(i) trend towards more unradio-
genic compositions in the Late Cretaceous following
OAE 2, an interval not coeval with environmental
change, has been linked with weathering of Carib-
bean and Madagascan LIP basalts (Matsumoto
et al. 2023a). Interestingly, clear shifts towards
primitive-mantle compositions of strontium isotopes
are only documented for OAE 1a and OAE 2
(Fig. 5b), albeit with less sharp stratigraphic trends
owing to the longer residence time of strontium in
seawater (.2 Myr; Palmer and Edmond 1989).
Those intervals are also associated with the highest
magnitude unradiogenic Os-isotope shifts in the Cre-
taceous. Collectively, the strontium and osmium
trends may suggest that LIP activity, or at least the
flux of mafic elements to seawater, was greater dur-
ing those intervals than for other Cretaceous events.
In addition to strontium and osmium datasets, evi-
dence for some form of magmatic activity during
OAEs 1a and 2 has also been inferred on the basis
of lead-, neodymium-, chromium- and zinc-isotope
studies, and trace-element enrichments (Larson and
Erba 1999; Snow et al. 2005; Kuroda et al. 2007;
Zheng et al. 2013; Erba et al. 2015; Holmden et al.
2016; Sweere et al. 2018).

Stratigraphic mercury records of Cretaceous
events also yield information on the style and/or
provenance of magmatic activity. Like OAE 1a,
where mercury enrichment in basal C3 strata was
only documented at a site proximal to the G-OJP,
there is limited global evidence for peaks in Hg
and Hg/TOC in OAE 2 strata, with small enrich-
ments at some records deposited relatively proxi-
mally to LIPs (Scaife et al. 2017, Percival et al.
2018). This pattern of a more localized mercury
enrichment proximal to a LIP source is consistent
with largely submarine volcanism during both events
(Scaife et al. 2017; Percival et al. 2018, 2021b).
Mercury records associated with OAE 1b are more
limited, but spikes have been reported from the
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. (a) compiled 187Os/188Os and (b) 87Sr/86Sr trends from Cretaceous stratigraphic records. The
strontium-isotope trend is redrawn from the compilation in McArthur et al. (2020). Osmium-isotope data sourced as
shown. Changes in biospheric genera throughout the Cretaceous as compiled by Steuber et al. (2023) shown for (c)
larger benthic forams, (d) rudists, and (e) corals, (f) planktonic taxa. Age models for the Os datasets are taken from
the respective studies where possible (accounting for updated Stage boundary absolute ages); where no age model
exists, a constant sedimentation rate relative to the start and end of the event is assumed.
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NW Tethys (Sabatino et al. 2018). If these Hg
enrichments were indeed volcanically derived, it
may indicate that some Kerguelen Plateau volcanism
at that time was subaerial. Albian-age mercury
enrichments have also been reported from a lacus-
trine record in North China (Zhao et al. 2022),
although stratigraphic uncertainties hinder a clear
correlation with the Tethys record or a connection
to Kerguelen volcanism.

Interestingly, mercury records of Paraná–Eten-
deka and Deccan volcanism show considerable var-
iability across different sites, despite both LIPs
forming through subaerial eruptions (e.g. Percival
et al. 2018; Fendley et al. 2019; Charbonnier et al.
2020b). Hg enrichments have been reported from
strata that record the onset of the Weissert Event
(Charbonnier et al. 2017, 2020b), but because the
duration of Paraná–Etendeka volcanism was at
least 2–3 Myr (see the section introducing the
Paraná-Etendeka LIP; also Dodd et al. 2015;
Gomes and Vasconcelos 2021; Bacha et al. 2022),
those peaks cannot reflect the entire eruptive history
of that LIP. It is possible that the less clear global
mercury signals of the Paraná–Etendeka LIP reflect
a generally lower volatile output or slower eruption
rate than for other subaerial provinces (see Callegaro
et al. 2014; Dodd et al. 2015). In this case, the Hg
enrichments reported by Charbonnier et al. (2017,
2020b) in basal Weissert Event strata could record
a peak in the intensity of Paraná–Etendeka volca-
nism coeval with the onset of the crisis, consistent
with the geochronological models of Gomes and
Vasconcelos (2021) and Bacha et al. (2022). How-
ever, local environmental or sedimentological causes
for those Hg peaks cannot be ruled out, particularly if
significant Paraná–Etendeka volcanism post-dated
the onset of the Weissert event, as suggested by
Rocha et al. (2020). Similarly, uppermostMaastrich-
tian Hg peaks have been associated with Deccan
eruptions (Keller et al. 2020), most notably just
below the KPg boundary (e.g. Font et al. 2016; Kel-
ler et al. 2018; Percival et al. 2018; Fendley et al.
2019). This peak stands in contrast to a comparative
lack of evidence for a global-scale systematic enrich-
ment in mercury at the onset of Deccan volcanism
300–400 kyr prior to the end of the Maastrichtian
(Percival et al. 2018). Thus, it may reflect an intensi-
fication of volcanism immediately prior to the
extinction, consistent with the U–Pb geochronologi-
cal model of Deccan eruptions (Schoene et al. 2019).
However, given that this Hg enrichment is not
recorded globally, a non-volcanic cause cannot be
excluded (which would be potentially consistent
with the Deccan 40Ar/39Ar geochronology of
Renne et al. 2015, and Sprain et al. 2019). Mercury
enrichments have also been reported for more minor
episodes of environmental change, such as OAE 1d
and the Faraoni Event (Charbonnier et al. 2018;

Yao et al. 2021), but the possible existence and
nature of any causal relationship between those cri-
ses and volcanism remains unclear.

Cyclostratigraphic and magnetostratigraphic cor-
relation of KPg records clearly shows that the main
phase of Deccan volcanism commenced coevally
with the onset of late Maastrichtian climate warming
(Schoene et al. 2019; Hull et al. 2020), as appears to
have been the case for LIP activity and global tem-
perature increases during OAE 1a. Geochemical evi-
dence for a causal link between volcanism and
climate warming during OAE 2 is also well docu-
mented at the stratigraphically condensed record of
ODP Site 1260 (Forster et al. 2007; Turgeon and
Creaser 2008). More expanded OAE 2 records,
with better temporal resolution, show that LIP activ-
ity began prior to the onset of the OAE sensu stricto,
leaving the exact chronology of volcanism v. climate
warming at that time unclear (e.g. Du Vivier et al.
2014). However, evidence of transient cooling
pulses during both OAE 1a and OAE 2, such as
the Plenus Cold Event (see the section introducing
the Caribbean LIP and OAE 2), is recorded in strata
which also record Os-isotope evidence of intense
LIP activity (Bottini et al. 2015; Jenkyns 2018; Per-
cival et al. 2020). The late Maastrichtian climate
warming was also alleviated while Deccan volca-
nism was ongoing (e.g. Sprain et al. 2019; Hull
et al. 2020). There are two possible explanations
for these transient falls in temperature during times
of LIP volcanism. The first model is that the LIP
eruptions associated with those events featured
spells during which volcanic carbon emissions
were reduced (e.g. Sprain et al. 2019; Hull et al.
2020; Hernandez Nava et al. 2021). Alternatively,
and more plausibly for the OAEs, magmatic CO2

output may have been offset by one or both of
enhanced organic-carbon burial and an increase in
global silicate weathering rates (Pogge von Strand-
mann et al. 2013; Jenkyns et al. 2017; Jenkyns
2018; Robinson et al. 2019; Percival et al. 2020;
Papadomanolaki et al. 2022). While the latter sce-
nario might be expected to increase the input of
radiogenic osmium to the ocean, apparently at odds
with the low 187Os/188Os values documented during
the Plenus Cold Event and other transient intervals
of cooling during OAEs 1a and 2, it is possible that
any continental weathering signal was overprinted
by the unradiogenic Os flux from volcanism, or
that primitive LIP basalts were the main lithology
being eroded.

Climate cooling associated with the Weissert
Event may have been caused by carbon sequestration
during weathering of newly erupted Paraná–
Etendeka basalts, based on stratigraphic correlations
between unradiogenic Os-isotope shifts and evi-
dence of surface temperature decrease in Valangi-
nian strata (Percival et al. 2023). Elevated
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organic-matter burial in the terrestrial realm may
have further drawn down carbon at that time (West-
ermann et al. 2010). Alternatively, volcanic SO2

emissions might have caused the cooling by leading
to the formation of stratospheric sulfate aerosols,
which may also have helped cause transient temper-
ature falls during the latest Maastrichtian (see Self
et al. 2006; Schmidt et al. 2016; Callegaro et al.
2023). However, the short atmospheric residence
time of those compounds and the slow eruption
rate and potentially low sulfur content of Paraná–
Etendeka basalts do not support this link (Callegaro
et al. 2014; Dodd et al. 2015). Alternatively, the
surface-temperature warming reconstructed from
some NW Tethyan and proto-Atlantic records of
the Weissert Event could suggest significant volca-
nic emission of CO2 and other volatiles to the atmo-
sphere, which may be supported by Hg enrichments
in sedimentary records of that time (Charbonnier
et al. 2017, 2020b). Direct stratigraphic comparisons
between global temperature and volcanic activity are
currently lacking for other Cretaceous events. None-
theless, it is clear that at least some Cretaceous LIPs
had a pronounced impact on global climate, through
volcanic CO2 emissions and/or weathering of newly
formed basalts.

Aside from changes in global climate, the envi-
ronmental perturbations associatedwith the emplace-
ment of Cretaceous LIPs were highly variable.
Evidence of ocean acidification has been reported
from stratigraphic records of OAEs 1a and 2, and
potentially the lateMaastrichtian, with this fall in sea-
water pH probably resulting chiefly from the same
carbon emissions that triggered climatewarming dur-
ing those time intervals (e.g. Erba et al. 2010; Dam-
eron et al. 2017; Jones et al. 2023). To date, these
postulated episodes of ocean acidification have
largely been inferred from sedimentological and
palaeontological evidence (see the section on the
biotic response toCretaceous LIP formation), with lit-
tle geochemical information regarding seawater pH.

While the rises in global temperature during
OAEs 1a and 2 were marked by the development
of widespread marine anoxia/euxinia in both epi-
continental shelf basins and across the global
ocean, evidence for similar oceanic redox changes
during the Late Maastrichtian warming or Weissert
Event is limited. For example, numerous sedimen-
tary records of OAEs 1a and 2 from both epiconti-
nental shelf basins and open-ocean sites are
marked by the appearance of organic-rich shales
and changes in organic biomarker data, iron specia-
tion and variations in sedimentary elemental con-
tents (particularly P, V, Mn, Mo, U and TOC/P
and I/Ca ratios) and N-, S-, Fe-, Mo-, Tl- and U-
isotope compositions, all of which are redox-
sensitive proxies (e.g. Sinninghe-Damsté and Köster
1998; Kuypers et al. 2004; Pancost et al. 2004;

Jenkyns et al. 2007, 2017; Junium and Arthur
2007; Mort et al. 2007; van Bentum et al. 2009;
Lu et al. 2010; Montoya-Pino et al. 2010; Föllmi
2012; Owens et al. 2012, 2013; Ruvalcaba Baroni
et al. 2015; Dickson et al. 2016; Ostrander et al.
2017; Clarkson et al. 2018; Siebert et al. 2021; see
also a review by Jenkyns 2010). In the case of the
Weissert Event, the limited expansion of anoxic
water masses (and lithological/geochemical evi-
dence thereof) may be attributed to the apparent
lack of a clear temperature increase and associated
seawater stratification/nutrient runoff and eutrophi-
cation in many parts of the world. However, the
Late Maastrichtian Warming Event featured a tem-
perature rise of 2°C (Hull et al. 2020); thus, an
increase in seawater deoxygenation and evidence
of this phenomenon might be expected. It is possible
that the continued break-up of Pangaea through the
Cretaceous caused evolution in the global palaeo-
geography, shelf-basin extent and ocean circulation,
potentially decreasing the propensity of marine envi-
ronments to become oxygen depleted by the Maas-
trichtian. This mechanism has been proposed to
explain the far greater extent of marine anoxia during
OAEs 1a and 2 than the Paleocene–Eocene Thermal
Maximum (56 Ma), despite the latter event being
marked by climate warming of a similar or greater
magnitude and at a faster rate than for the Cretaceous
events (e.g. Jenkyns 2010; Dickson et al. 2014;
Clarkson et al. 2021).

Another hypothesized trigger of marine anoxia
during OAEs 1a and 2 is the enhanced output of
trace-metal micronutrients from submarine ocean-
plateau volcanism directly into seawater, elevating
primary productivity and the consumption of oxygen
from the water-column (Sinton and Duncan 1997;
Kerr 1998; Snow et al. 2005; Erba et al. 2015; see
Fig. 6). As a mechanism that depends on submarine
LIP activity instead of continental volcanism, rather
than global temperature increase, this model is con-
sistent with the lack of widespread marine anoxia
during the Weissert and Late Maastrichtian events,
and is supported by enriched abundances of micro-
nutrient metals in sedimentary records of OAEs 1a
and 2, particularly those proximal to the G-OJP
and Caribbean LIP (Larson and Erba 1999; Snow
et al. 2005; Erba et al. 2015). However, OAE 1b
also coincided with submarine volcanism during
emplacement of the Kerguelen Plateau, and has
also been associated with climate warming, yet
anoxic sediments are largely found in Atlantic and
NW Tethyan sites (see the section introducing the
Kerguelen Plateau and OAE 1b). It is possible that
this distribution may reflect the relative paucity of
OAE 1b sites studied thus far. However, the
Os-isotope record of OAE 1b documents a much
lower magnitude unradiogenic shift than those
recorded for OAEs 1a and 2 (see Fig. 4). Thus,
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submarine LIP volcanism and associated trace metal
output was probably more intense at the time of
OAEs 1a and 2 than during OAE 1b (or any other
time in the Cretaceous, see above). OAE 2 was
also coeval with enhanced seasonality related to a
peak in orbital eccentricity, which might have
increased the susceptibility of the Earth system to
the development of marine anoxia (Batenburg
et al. 2016). Furthermore, the relatively protracted
nature of environmental change during OAE 1b
(∼4 Myr; Gale et al. 2020; Ait-Itto et al. 2023), com-
pared with the geologically rapid onset of OAEs 1a
and 2, may have mitigated the severity of environ-
mental change during the Aptian–Albian transition.

The biotic response to Cretaceous LIP
formation

Fossil evidence of biotic changes during times of LIP
formation during the Cretaceous highlights consider-
able variation in the response of the marine biosphere
to these major volcanic episodes. Furthermore,
diversity patterns of the main planktonic and benthic
carbonate producers in the Cretaceous, evaluated at
the generic level, document disjunct trends for the
two groups (Steuber et al. 2023). These differences
suggest the importance of distinct environmental

parameters in controlling the radiation and decline
of marine groups, following different ecological
strategies. The terrestrial biosphere was also
impacted to some degree by different Cretaceous
LIPs, with indications of at least regional vegetation
changes during the Weissert Event (Kujau et al.
2013) and OAE 1a (e.g. Cors et al. 2015; Galloway
et al. 2022). A rise in terrestrial organic-matter burial
associated with the Weissert Event δ13C positive
excursion may also reflect changes in the continental
biosphere (Westermann et al. 2010). Furthermore,
charcoal preservation in Aptian–Albian and OAE 2
strata suggest increased wildfire activity during
parts of the Cretaceous (Brown et al. 2012; dos San-
tos et al. 2016; Wang et al. 2019; Baker et al. 2020;
Xu et al. 2022), potentially resulting from climate
warming and elevated atmospheric oxygen levels
following enhanced primary productivity in the
case of the latter time interval (Baker et al. 2020).
However, Heimhofer et al. (2004) reported relatively
stable terrestrial vegetation during and after OAE 1a.
Overall, the comparative paucity of the continental
stratigraphic record compared with that of the marine
realm means that the ocean biosphere is much more
studied and better understood, and is the focus of this
section hereafter.

A pronounced impact of environmental change
associated with Cretaceous LIPs has been

(a)

(b)

Fig. 6. Simplified schematic of the climatic and environmental influence, and output of elements used as proxies of
LIP activity, during the Cretaceous for (a) continental flood basalts and (b) oceanic plateaus, OMZ, Oxygen
Minimum Zone.

L. M. E. Percival et al.



documented for benthic carbonate platform dwellers
(dasycladales, larger benthic foraminifera, corals,
rudists; see overview by Steuber et al. 2023; Figs
5c–e). Shortly before or during the onset of OAE
1a, carbonate platforms and their benthic biota expe-
rienced a substantial decline, particularly in the mid
latitudes. Dasycladacean algae and large benthic
foraminifera are marked by significant diversity
declines across OAE 1a and (especially) OAE 2,
with aragonitic taxa chiefly affected. Rudist genera
disappeared during OAE 1a from higher latitudes
but survived in more equatorial settings. This abrupt
decline of aragonitic taxa is thought to be related to
the major increases in atmospheric CO2 and very
high sea-surface temperatures caused by LIP erup-
tions, resulting in a shallowing of the carbonate-
compensation depth (e.g. Ridgwell 2005; Foster
et al. 2017), reduced seawater carbonate saturation
and a subsequent calcification crisis (Bauer et al.
2017).

The same mechanism could have caused the
retreat of shallow-water carbonate platforms to low
latitudes in the aftermath of OAEs 1a and 2. Coral
diversity was significantly reduced in the aftermath
of OAE 2, and to a lesser extent after OAE 1a
(Fig. 5e), with high sea-surface temperatures and
presumably low seawater pH probably reducing the
photosymbiotic activity of zooxanthellid corals and
large benthic forams (Kiessling and Kocsis 2015;
Reddin et al. 2021; Steuber et al. 2023). This inter-
pretation is supported by an increase of azooxanthel-
late coral genera after OAE 1a, potentially reflecting
a bleaching effect. Corals living in symbioses with
dinoflagellates were thus partly replaced by corals
missing these symbionts, supporting a decline of
photosymbiosis owing to high temperatures (e.g.
Kiessling and Kocsis 2015). Carbonate platform
drowning has also been documented during several
intervals in the Early Cretaceous, particularly in the
NWTethys, and is often linked with increased volca-
nic activity on one or both of the G-OJP or Kerguelen
Plateau (e.g. Föllmi et al. 1994; Weissert et al. 1998;
Föllmi 2012; Charbonnier et al. 2018; Matsumoto
et al. 2020, 2021b, 2022). A spread of warm-water
scleractinian corals has been documented in upper-
mostMaastrichtian strata of Belgium and the Nether-
lands, and is correlative with evidence for rising
seawater temperatures (Leloux 1999; O’Hora et al.
2022). This relationship supports some benthic
response to rising global temperatures associated
with early Deccan volcanism. However, the extent
of biospheric changes during the Late Maastrichtian
Warming Event remains debated (see e.g. Witts et al.
2016; Tobin et al. 2017 regarding high-latitude
molluscs).

The diversity of planktonic carbonate producers
(calcareous nannofossils, calcispheres, planktonic
foraminifera) was apparently less impacted by

environmental change related to Cretaceous LIP vol-
canism. A major turnover in planktonic carbonate
producers did occur during the KPg mass extinction
(e.g. Smit 1982; Olsson and Liu 1993; Pospichal
1996), but no specific declines in diversity have
been recorded at the generic level for other intervals
coeval with Cretaceous LIPs (Steuber et al. 2023).
Rather, planktonic taxa diversity increased consis-
tently throughout the Cretaceous, reaching a broad
maximum between the Albian and Maastrichtian
stages, peaking around the Campanian (Suchéras-
Marx et al. 2019; Steuber et al. 2023; Fig. 5f). In
general, this trend towards increased diversity
applies to both calcareous nannofossils and plank-
tonic foraminifera (Suchéras-Marx et al. 2019;
Steuber et al. 2023), despite their disparate trophic
levels. However, phytoplanktonic organisms show
some change in records of the Late Maastrichtian
warming, with warm-water species tending to spread
in favour of cold-water taxa, together with blooms in
both dinoflagellate and calcareous nannoplankton
highlighting stressed ecosystems in response to the
rise in global temperatures caused by Deccan volca-
nism at that time (e.g. Thibault and Gardin 2007;
Sheldon et al. 2010; Vellekoop et al. 2019). Plank-
tonic foraminifera show a more locally variable
response to Maastrichtian warming, possibly related
to local controls such as nutrient levels and/or fresh-
water runoff as well as temperature changes (e.g.
Abramovich and Keller 2002; Woelders et al. 2017).

Slightly elevated rates of turnover (extinction and
speciation) in planktonic foraminifers, and to a lesser
extent in calcareous nannofossils, have also been
documented for OAEs 1a, 1b, and 2 (Leckie et al.
2002), and potentially the Late Maastrichtian (e.g.
Li and Keller 1998b; Dameron et al. 2017; cf, Hart
et al. 2019). In particular, pronounced changes in
the abundance patterns of calcareous nannofossils
are recorded in stratigraphic records of the Creta-
ceous OAEs, particularly OAE 1a, as well as the
Weissert Event and OAE 2 (Erba 1994, 2004; Mut-
terlose and Böckel 1998; Erba et al. 2010; Bottini
and Mutterlose 2012; Faucher et al. 2017; Erba
et al. 2019). This change is most prominently
shown by a significant decline in the heavily calci-
fied nannoconids just prior to OAE 1a (Erba 1994;
Erba et al. 2010; Erba et al. 2019) and around the lat-
est Aptian OAE 1b (nannoconid final collapse:
Herrle and Mutterlose 2003; Bottini et al. 2015). A
nannoconid decline slightly preceeded the Weissert
Event, also characterized by a general decrease in
micrite production at pelagic and hemipelagic sites
associated with an increase in abundance of higher-
fertility taxa (Erba et al. 2004; Bornemann and Mut-
terlose 2008; Gréselle et al. 2011; Barbarin et al.
2012; Pauly et al. 2012; Duchamp-Alphonse et al.
2014; Mattioli et al. 2014; Möller et al. 2015,
2020; Erba et al. 2019; Shmeit et al. 2022).

Cretaceous large igneous provinces and their global impact



Extensive study of the nannoconid crisis associ-
ated with OAE 1a has shown it to be synchronous
at a global scale, and apparently representing the cul-
mination of a decrease in nannofossil calcite produc-
tion that commenced in the latest Barremian (Erba
1994, 2004; Bottini and Mutterlose 2012; Aguado
et al. 2014; Erba et al. 2015; Bonin et al. 2016;
Giraud et al. 2018; Mahanipour et al. 2019). In addi-
tion to major changes in nannofossil abundance,
species-specific decreases in size have been detected
for both OAE 1a and OAE 2. Specifically, Biscutum
constans shows a marked reduction in coccolith size
across OAE 1a at global scale (Erba et al. 2010;
Lübke et al. 2015; Lübke and Mutterlose 2016; Bot-
tini and Faucher 2020). Coccolith dwarfism of B.
constans during OAE 2 has also been documented
globally, alongside a fall in nannofossil abundance
and species richness worldwide (Nederbragt and
Fiorentino 1999; Hardas and Mutterlose 2007; Lin-
nert et al. 2010, 2011; Corbett and Watkins 2013;
Faucher et al. 2017). It should be noted that these
changes did not result in extinctions, with species
recovering following the alleviation of environmen-
tal changes, and some nannofossil taxa actually
increasing in abundance (Erba and Tremolada
2004; Erba et al. 2019). Nonetheless, the transient
net decrease in carbonate producers reduced the
availability of nannofossil micrite and was reflected
as a biocalcification crisis, since nannoconids were
the main rock-forming nannofossils during the
Early Cretaceous (Erba and Tremolada 2004; Weis-
sert and Erba 2004). This interpretation has been
challenged recently by Slater et al. (2022), who
argued that the apparent decrease in nannoplankton
preservation results from post-depositional removal
of carbonate from the rock record and that diversity
increased during OAEs. However, while both of
these phenomena did indeed occur, they do not
explain the geologically rapid loss of heavily calci-
fied nannoconids compared with other calcifiers
(Erba et al. 2010), which is more consistent with a
biocalcification crisis. Furthermore, fossil evidence
of reduced biocalcification during OAE 2 is sup-
ported by sedimentological changes consistent with
a shallowing of the seawater carbonate compensation
depth in response to ocean acidification at that time
(Erba 2004; Faucher et al. 2017; Jones et al. 2023).

While ocean acidification caused by volcanic
CO2 emissions from LIP eruptions is considered to
be the main driver of reduced biocalcification during
OAEs 1a, and OAE 2 (Erba 2004; Erba et al. 2010),
alternative processes may also have played a role.
Enhanced seawater fertility and subsequent eutrophi-
cation have also been proposed as a cause of nanno-
plankton stress and reduced species richness that
favoured smaller taxa (Bersezio et al. 2002; Gréselle
et al. 2011; Aguado et al. 2014; Duchamp-Alphonse
et al. 2014; Mattioli et al. 2014; Giraud et al. 2018;

Shmeit et al. 2022). At open oceanic sites, fertiliza-
tion was potentially driven by the hydrothermal out-
put of biolimiting trace metals from G-OJP or
Caribbean LIP activity (Snow et al. 2005; Bottini
et al. 2015; Erba et al. 2015; Faucher et al. 2017;
Bottini and Erba 2018; Bottini and Faucher 2020).
Increased runoff of terrestrial material and nutrients
caused by volcanically triggered climate warming
could have produced the same effect in continental
shelf settings, while potentially also reducing light
availability in the photic zone (Lübke et al. 2015;
Lübke and Mutterlose 2016). Alternatively, output
of toxic volcanic elements may have suppressed
biocalcification.

A more progressive decline in nannoconid bio-
calcification also occurred during OAE 1b, but has
been linked with cold conditions (McAnena et al.
2013). Alternatively, volcanic CO2 output during
the formation of the Kerguelen Plateau may have
lowered seawater pH enough to reduce carbonate
saturation, even if the carbon emissions were insuffi-
cient to cause prolonged global temperature rise.
Longer-term cooling in the Late Aptian may have
been linked to enhanced absorption of CO2 in sea-
water, lowering its pH (Bottini et al. 2015). The
reduction in size, decrease in abundance and species
turnover of planktonic foraminifers (Huber and
Leckie 2011) might reflect the response of calcare-
ous zooplankton to volcanically triggered ocean
acidification (Bottini et al. 2015; Bottini and Erba
2018). Analogous changes in the abundance, test
size and evolutionary rates of calcareous zooplank-
ton were documented for OAE 1a and OAE 2 (Pre-
moli Silva et al. 1989, 1999; Coccioni et al. 1992;
Leckie et al. 2002) and are also consistent with
ocean acidification (Kump et al. 2009; Hönisch
et al. 2012). The cause of a nannoconid decline asso-
ciated with the Weissert Event is less clear, although
it has also been linked to increased fertility and sea-
water acidification related to volcanic CO2 emissions
(Erba and Tremolada 2004; Weissert and Erba
2004). However, there is no independent evidence
for decreased seawater pH during that crisis, and as
noted above, possible climate warming signals
have only been reported for NW Tethyan and proto-
Atlantic records of the Weissert Event thus far (see
compilations by Charbonnier et al. 2020c; Caval-
heiro et al. 2021). At present, the limited evidence
for global-scale temperature rise at that time (Meiss-
ner et al. 2015; Price et al. 2018; Cavalheiro et al.
2021) hinders argument for a clear causal link
between nannoconid stress and climate warming or
CO2 release comparable with that of OAEs 1a and 2.

It is clear that while rapid climate warming itself
apparently impacted some marine groups during the
Cretaceous, biospheric stress during intervals of LIP
volcanism may not have been dependent on
increased temperatures (Erba 2006). Nonetheless,
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aside from the KPg mass extinction (for which the
influence of Deccan Trap volcanism was compli-
cated by the coeval climatic effects of the Chicxulub
impact), OAEs 1a and 2 were the intervals associated
with LIP emplacement that featured the most severe
perturbations to Earth’s biosphere. Both OAEs
featured significant climate warming, unlike the
Weissert Event or OAE 1b. Moreover, the environ-
mental change during OAEs 1a and 2 was also less
protracted in nature and had a more rapid onset
(probably owing to the more intense LIP activity
coeval with those intervals), which may have helped
drive a more severe biotic response.

Remaining questions and future
perspectives for understanding
Cretaceous LIPs

Previous overviews of LIPs and mass extinctions/
environmental change have largely focused on con-
tinental provinces. It has been hypothesized that
the impact of oceanic LIPs was somewhat muted
owing to the potentially lower degassing efficiency
of submarine eruptions occurring under high sea-
water pressure (e.g. Courtillot and Renne 2003;
Ganino and Arndt 2009; Green et al. 2022). How-
ever, submarine oceanic-plateau volcanism was
probably the main driver of both OAEs 1a and 2,
which were marked by the most severe climatic,
environmental and biotic changes during the Creta-
ceous prior to the KPg extinction. Even if the wide-
spread marine anoxia, ocean acidification and
biocalcifcation crises during those events were
driven by the output of trace-metal micronutrients
and volcanic CO2 and/or halogens into seawater
(e.g. Kerr 1998; Erba et al. 2004, 2015; Snow
et al. 2005), both events also featured significant cli-
mate warming that was apparently driven by mag-
matic carbon emissions (Larson and Erba 1999;
Jenkyns 2003; Forster et al. 2007; Méhay et al.
2009; Adloff et al. 2020; this study; Fig. 6). Thus,
submarine LIPs were capable of raising global tem-
peratures as well as triggering oceanic anoxia and
acidification, three key processes thought to have
helped cause major extinctions.

Recent studies have emphasized that the rate of
eruptions (and, consequently, the assumed rate of
magmatic CO2 output) plays a key role in determin-
ing the environmental and biotic impact of a LIP
(Green et al. 2022; Jiang et al. 2022). Constraining
this CO2 flux depends on both precise geochronol-
ogy and robust estimates of the magmatic carbon
content. Currently, reconstructed eruption histories
vary greatly in terms of detail and precision for dif-
ferent LIPs, both from the Cretaceous and other
time intervals (see reviews by Kasbohm et al.
2021; Jiang et al. 2023). Additionally, the CO2

content of tholeiitic basalts remains relatively poorly
constrained. Current estimates for LIP magma car-
bon contents range between 0.1 and 2 wt%, based
on the study of analogous modern basaltic systems
(e.g. Self et al. 2006; Saunders 2016), rare olivine
melt inclusions (Black et al. 2014) and volatile/non-
volatile elemental ratios, particularly CO2/Nb and
CO2/Ba (Black and Gibson 2019; Hernandez Nava
et al. 2021; Boscaini et al. 2022). Thus far, these
efforts have only focused on a few continental
LIPs, with the Deccan Traps the only Cretaceous
province investigated (Hernandez Nava et al.
2021). Future studies refining both the eruptive his-
tory of Cretaceous LIPs, and their magmatic carbon
content, are needed in order to better constrain the
rate of CO2 emissions from LIP volcanism and its
importance in determining their impact on Earth’s
environment/biosphere. Such data are especially
required for oceanic LIPs, which have been investi-
gated by relatively few geochronological or geo-
chemical studies thus far (but see compilations by
Coffin et al. 2002; Kasbohm et al. 2021; Davidson
et al. 2023; Jiang et al. 2023). Additional studies
of trace-metal and micronutrient distribution from
oceanic plateaus are also needed in order to better
understand the potential impact of this process in
triggering marine anoxia during times of submarine
LIP volcanism. In particular, it is unclear whether
the distribution of volcanic micronutrients directly
into seawater could have enhanced primary produc-
tivity and water-column deoxygenation on a global
scale. If this effect was largely limited to regions
close to the LIP source, anoxia at more distal sites
may have depended on terrestrial runoff, upwelling
of deepwater nutrients, and/or the development of
marine stratification (see Jenkyns 2010; Föllmi
2012).

Finally, the sheer number of Cretaceous LIPs
remains something of a mystery. As outlined at the
start of this chapter, there were at least seven highly
voluminous LIPs during the Cretaceous Period,
which have been associated with intervals of pro-
found environmental and/or biosphere disturbance.
This represents a significantly higher total than for
any other geological period in the last 300 Myr
since the formation of Pangaea, even accounting
for the longer duration of the Cretaceous v. other
periods (Fig. 7). Moreover, seven major Cretaceous
LIPs represents a conservative estimate. Some
authors have proposed that other extensive igneous
formations emplaced geologically rapidly during
the Cretaceous represent additional LIPs, or that
magmatic areas considered here to be part of the
Kerguelen or Greater Ontong–Java plateaus were
actually distinct provinces (see compilations by
Torsvik 2019; Ernst et al. 2021). It may also be note-
worthy that the Cretaceous featured the most oceanic
LIPs of any known time in the Phanerozoic. This
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peak may result partly from preservation bias given
the absence of most pre-Cretaceous ocean crust,
but there was no comparable level of oceanic LIP
formation in the Cenozoic, for which the available
geological record is also good.

Why the Cretaceous was apparently ‘a time of
LIPs’ is unclear. The middle part of the period was
also marked by a long interval without magnetic
reversals (the Cretaceous Normal superchron), and
it has been hypothesized that both the LIPs and the
superchron resulted from atypical mantle dynamics,
such as the formation of a superplume or significant
changes in subduction rates (e.g. Larson 1991;
Courtillot and Olson 2007; Yoshimura 2022). Alter-
natively, this superplume may have been an inevita-
ble consequence of the formation and subsequent
break-up of the Pangaean supercontinent (Vaughan
and Storey 2007). While these models are specula-
tive, the fact that the Cretaceous was marked by an
unusually high number of LIPs, extensive and fast-
spreading mid-ocean ridges, enhanced kimberlite
emplacement and even the formation of komatiites
(the only clear Phanerozoic example of this lithol-
ogy), suggest that Earth’s mantle conditions were
highly abnormal during that time (e.g. Kerr 2005;
Seton et al. 2009; Heaman et al. 2019). Given that

numerous supercontinent cycles have taken place
in the Proterozoic and Phanerozoic eras, it is highly
unlikely that there has been only one such spell of
high LIP formation in Earth’s history. This conclu-
sion raises the tantalising possibility that the Creta-
ceous Period marked the most recent example of a
key mantle phenomenon inherent in Earth’s long-
term tectonic cycling, which subsequently resulted
in profound disturbances to Earth’s surface climate,
environment, and biosphere.

Summary

Large igneous province volcanism has been hypoth-
esized to be the primary trigger of several intervals of
environmental perturbation during the Cretaceous
Period, both through eruption of continental flood
basalts and the submarine emplacement of oceanic
plateaus. This study has generated new mercury-
concentration and osmium-isotope datasets to recon-
struct the temporal relationships between volcanism,
climate warming and environmental change during
the Early Aptian oceanic anoxic event (OAE 1a).
By incorporating these results into an overview of
sedimentary, geochemical and palaeontological evi-
dence of episodes of environmental and biotic
change, and the geological, geochronological and
geochemical records of LIP activity, the following
conclusions are drawn:

(1) Climate warming associated with OAE 1a was
probably initiated by magmatic CO2 emissions
prior to the onset of the OAE sensu stricto,
although volcanic activity and global tempera-
tures did not reach their maximum until the
middle part of OAE 1a. The initial carbon
was probably sourced from submarine volca-
nism during formation of the Greater
Ontong–Java Plateau. As well as potentially
initiating climate warming, this magmatic
CO2 drove biotic stress amongst benthic
fauna (dasycladalean algae, larger benthic
foraminifera, corals, rudists) and dwarfism in
calcareous nannoflora. An additional non-
magmatic source such as methane clathrate or
thermogenic emissions associated with the
High Arctic LIP probably played a key role
in further perturbing the global carbon cycle
at the onset of the OAE.

(2) The Early Aptian and latest Cenomanian
OAEs (OAEs 1a and 2, respectively) repre-
sented the episodes of most severe climatic,
environmental, and biota stress during the Cre-
taceous apart from the end-Cretaceous mass
extinction (for which the role of volcanism is
contested). OAEs 1a and 2 were also coeval
with the times of most intense LIP activity
and output of mafic trace metals (potentially

Fig. 7. Summary of the number of mafic LIPs
(continental flood basalt provinces or oceanic plateaus)
emplaced during each geological period since
c. 300 Ma, the onset of the Permian. For each period,
the total number of mafic LIPs spanning an area of
c. 0.5 Mkm2 or more is shown (based on the recent
compilation of Ernst et al. 2021), together with the ratio
between the number of LIPs and proportional duration
of the Period relative to the 79 Myr long Cretaceous,
i.e. the Jurassic (56.3 Myr) is 0.71 times the duration of
the Cretaceous, whereas the Neogene (23.03 Myr) is
only 0.29 times that timespan. This compilation
includes the Triassic Wrangellia LIP, despite its
preservation as relatively small areas of accreted
igneous material obducted on to the western margin of
North America, since it was probably a large oceanic
plateau originally (Kerr 2014, and references therein).
Silicic LIPs (see Bryan and Ferrari 2013) are not
included, as they are thought to form over very long
time intervals, and are less clearly linked to mantle
plume activity. LIP, Large igneous province.

L. M. E. Percival et al.



including key micronutrients) to the global
ocean from oceanic plateaus. Thus, while
severe environmental change and mass extinc-
tions are more typically linked with continental
LIPs, oceanic plateaus also had the capacity to
profoundly impact Earth’s surface environ-
ment and ecosystems during the Cretaceous
Period.

(3) The more limited biosphere impact of some
Cretaceous LIPs, such as the Paraná–Etendeka
and Kerguelen Plateau, may have resulted
from their more protracted formation and
lower eruption rate. Kerguelen volcanism
was apparently less intense than that of the
Greater Ontong–Java and Caribbean/High
Arctic LIPs associated with OAEs 1a and 2,
potentially leading to lower carbon and trace-
metal micronutrient output. Paraná–Etendeka
magmas may also have been volatile depleted
and did not intrude carbon-rich country
rocks. Further work is needed to precisely con-
strain the eruptive histories and carbon outputs
of Cretaceous LIPs (especially oceanic pla-
teaus), and the potential dispersal of micronu-
trients from submarine volcanism.

(4) The high number of LIP events in the Creta-
ceous compared with times before or after-
wards resulted in Earth’s carbon cycle and
surface environment being frequently per-
turbed to an extent not documented for any
other geological period in at least the last
300 Myr. Why there was such a high rate of
LIP formation (and magmatism in general)
during the Cretaceous remains unclear. Further
work is needed to determine the cause, and
whether there were earlier intervals in Earth’s
history featuring enhanced Large Igneous
Province emplacement, or if the Cretaceous
represented a unique ‘Age of LIPs’.
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