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Abstract

Electronic support is a subdivision of electronic warfare, which involves intercepting
and identifying radiated electromagnetic energy to identify the emitter and unveil the
associated platform’s presence. A pulsed radar is often the target of such activity,
where interception and measurement of the emitted radar pulses allow disclosure of
information about the emitter, further allowing its identification. Recognition of a key
attribute of the pulsed radar, called pulse repetition interval (PRI) is essential in the
identification process.

This thesis investigates whether it is possible to automate the classification of PRI
patterns formed by PRI values derived from a radar pulses’ time of arrival. The novelty
of this task lies in that classification is performed not on the general PRI modulation
types, but on a particular set of PRI patterns commonly used by navigation radars.
This provides a finer subdivision of the usual modulation types, better suited for
recognizing and tracking individual navigation radars.

From a sequence of PRI values, data points for a scatter plot is generated. The
plotted data points give a graphical pattern representing the particular PRI pattern of
the radar. The images of patterns were processed and employed as a development set
for training and evaluation of a deep learning based object detection and classification
model. The detection model reliably inferred the position and size of the PRI pattern
within the image, enabling the generation of new magnified image with improved
suitability for classification. This ensured that the classifier mostly received images
with optimally sized pattern.

The resulting classification gave near-flawless classification performance with a
total accuracy of 0.989. The optimistic outcome was likely attributed to overfitting
stemming from the employment of a powerful model, duplicate samples across the
training and evaluation sets, and lack of variations within each pattern class after
the image processing. While this does not render the model unusable, a careful
consideration should be given to its deployment environment.

Future work involves modification and refinement of the detection model to enable
precise inference of the lower and upper bounds of PRI values that constitute the PRI
pattern. Furthermore, a classifier capable of open set recognition should be developed
to mitigate misclassification caused by pattern class outside of the development set,
and additionally allow more timely discovery of new pattern classes.



Sammendrag

Elektronisk stotte er en underkategori av elektronisk krigfering, som blant annet har
som madl 4 fange opp og identifisere utstrdlt elektromagnetisk energi, i den hensikt
a identifisere emitteren og avdekke tilstedeveerelsen til den tilknyttede plattformen.
En pulsradar er ofte malet i denne aktiviteten, hvor maling av utstralt radarpuls gir
informasjon om senderen, og muliggjer identifisering. En nokkelegenskap ved en
pulsradar er pulsrepetisjonsintervall (PRI). Gjenkjenning av PRI spiller en sentral rolle
i identifiseringsprosessen.

Denne oppgaven underseker muligheten til 4 automatisere klassifisering av PRI-
menstre formet av PRI-verdier fra ankomsttidspunktene til radarpulser. Nytt i denne
oppgaven er at klassifiseringen ikke utferes pa de generelle PRI-modulasjonstypene,
men bestemte PRI-menster brukt av navigasjonsradarer. Dette gir en finere inndeling
av de generelle modulasjonstypene, som er bedre egnet for gjenkjenning og sporing av
individuelle navigasjonsradarer.

Ut i fra en sekvens med PRI-verdier, genereres datapunkter som plottes grafisk.
Dette skaper et bilde av et monster som representerer det bestemte PRI-mensteret
til radaren. Bildene ble prosessert, og inngikk i datasettet for trening og evaluering
av dypleeringbasert objektdeteksjon- og klassifiseringsmodell. Deteksjonsmodellen
predikerte posisjonen og sterrelsen til mensteret i bildet pa en pdlitelig mate, og
tilrettela for & generere et nytt bilde av forsterret monster egnet for klassifisering.
Dette sorget for at klassifikatoren for det meste mottok bilder med optimal sterrelse
pa mensteret.

Den endelige klassifiseringen var nesten feilfri, og oppnadde en total neyaktighet
(accuracy) pa 0,989. Det optimistiske resultatet var sannsynligvis forarsaket av
overtilpasning, med opphav i bruk av en kraftig modell, dupliserte bildesampler pa
tvers av trening- og evaluerinssett, samt manglende variasjoner innen hver klasse.
Dette gjor ikke modellen ubrukelig, men det ber dog utvises forsiktighet med hensyn
til miljeet hvor denne modellen skal anvendes.

Forslag til fremtidig arbeid er modifikasjon og forbedring av deteksjonsmodellen
for & muliggjere presis bestemmelse av nedre og evre grenser for PRI-verdier som
utgjor mensteret innenfor bildet. Videre ber det utvikles en Kklassifikator med
evne til 4 gjenkjenne monsterklasser utenfor klassene i treningssettet. Dette vil
minske feilklassifiseringer fordrsaket av ukjent mensterklasse, samtidig tilrettelegge for
betimelig oppdagelse av nye mensterklasser.
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Chapter 1

Introduction

Electronic Warfare (EW) is any military action with the objective of controlling the
electromagnetic spectrum (EMS). This objective is achieved through three interlocking
subdivisions of EW: Offensive electronic attack (EA), defensive electronic protection
(EP), intelligence gathering, and threat recognition through electronic support (ES) [1],
[2]. The latter is the focus of this thesis.

ES is a subdivision of EW, involving actions to search for, intercept, identify, and
locate or localize electromagnetic signals of interest. A central part of this activity is
immediately recognizing an emitter and providing information required for further
actions [3]. A type of radiated electromagnetic energy of interest in ES context is energy
emitted from radars. A key instrument in ES is a set of equipment called an electronic
support measure (ESM) system, which allows a military unit to detect the direction of
the intercepted signal and identify its emitter[1], [4].

The frigate HNoMS Fridtjof Nansen depicted in Figure 1.1 is an example of a naval
vessel equipped with an ESM system. The magnified section shows the antenna of its
radar-ESM system.

An ESM system needs to measure the intercepted radar pulses to identify a radar
emitter. The measured quantities, called radar pulse parameters, are compared to those
of known emitters [5]. The known emitters’ parameters reside in an ESM system’s
emitter database. Entries in the database are composed of information acquired from
signals from prior collections. These collected signals are processed, analyzed, and
verified before being stored in an emitter library, whence a database can be generated

[4].



Figure 1.1: HNoMS Fridtjof Nansen. Photo by Marthe Brendefur, Norwegian Armed
Forces

One of the most important pulse parameters for identifying a radar emitter is pulse
repetition interval (PRI) [6], [7]. PRI is the time interval between the leading edges
of two successive radar pulses. In other words, it is the interval between the start of
a pulse and the start of the next pulse. Furthermore, it is common that radars operate
with PRI that vary from pulse to pulse. The function that dictates this variation is called
PRI modulation. PRI modulation can disclose knowledge of a radar’s characteristics
and function, enabling its identification [8]. Therefore, the emitter database must
contain correct information regarding the PRI of radar that the ESM system seeks
to identify. Recognizing PRI and modulation is an important component in emitter
identification.

There are various methods of analyzing and verifying PRI modulation types.
Simple statistical techniques like histograms have been used [8]. Other methods include
visualizing the parameters with a scatter plot, which generates a graphical pattern
[9]. Each modulation type generates its characteristic pattern, which an analyst can
recognize and classify.
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Figure 1.2: Examples of graphical patterns of PRI

1.1 Problem

Recognizing the PRI by visualizing the PRI values is a manual process. For each
sequence of radar pulses, it is required to generate a suitable image that adequately
visualizes the pattern to be recognized. This involves adjusting the image parameters
to suitably depict the pattern for classification. Given the multiple operations that go
into this analysis, the process can be tedious and increasingly time-consuming with the
amount of data.

1.2 Purpose

This thesis aims to determine whether a deep-learning-based object detection and
image classification can automate the manual inspection of images containing PRI
patterns to recognize the particular type of pattern used. If successful, the result can
relieve a significant part of the workload involved in a post-collection analysis process
and prove to be a new method for PRI pattern classification.

1.3 Research Question

Is it possible to automate the manual process of inspecting PRI patterns to recognize
PRI pattern types using deep learning methods for computer vision?



Chapter 2

Background and Theory

2.1 Radar

Radar is an acronym for radio detection and ranging. It is a sensor system utilizing
electromagnetic waves for the detection and localization of objects [2]. This technology
operates by emitting electromagnetic waves that reflect off objects and return to the
radar. The range to the target is determined by measuring the time difference between
the emission of energy and the reception of reflections. A radar typically uses a
directional antenna to emit electromagnetic waves with directivity. The direction to
the detected object is determined by measuring the direction of the antenna at the time
when the reflection is received [10]. Emitted electromagnetic waves can be in the form
of either pulses or continuous waves. Radars that operate with pulsed energy are called
pulsed radars and are the most common [11].

Pulsed radars emit short bursts of electromagnetic waves called radar pulses. Each
pulse is emitted for some duration, called pulse length or pulse width. After the pulse
emission, there is a time period where radar waits for a possible return of a reflection
from an object before the next pulse is emitted. This waiting time is influenced by a
parameter called pulse repetition interval (PRI), which is the time interval between the
start of a radar pulse and the start of the next pulse. The magnitude of these parameters
can be in the order of tens of microseconds to a few milliseconds. PRI significantly
influence the design of radars and directly impact the operational specifications,
namely correct range determination or the ability to discern objects in close proximity
[12].

Radars have diverse applications ranging from adaptive cruise control to naviga-
tional aid and weather forecasting. It has quintessential military applications, such as
surveillance, target tracking, and weapon guidance. Each application imposes a distinct
set of requirements, distinguishing a radar for its specific purpose. Pulse parameters
are designed to meet the operational requirements of the radar’s application.



2.2 Electronic Warfare

Electronic warfare (EW) is any military action involving the use of electromagnetic
energy and directed energy to control the electromagnetic spectrum or to attack the
enemy. The three divisions of the EW are electronic attack, electronic protection, and
electronic support. The latter involves actions to search for, intercept, identify, and
locate or localize sources of intentional and unintentional radiated electromagnetic
energy for the purpose of immediate threat recognition, targeting, planning, and
conducting future operations [13].

Pulses emitted from radars are an example of radiated electromagnetic energy that
serves the purposes in the ES definition. These emissions can be intercepted and
measured with an ESM system. The measured parameters from the pulses can disclose
information about the radar, as they can be matched with the parameters of known
emitters. This allows identification of the specific radar whence pulses originated.
Furthermore, the identification can further associate the emitter with the platform
carrying the identified radar, such as a vessel, aircraft or even an incoming missile,
thereby disclosing information about the type of platform present and its intention [4].

For successful identification of radar type, the ESM system requires a storage of
parameters of all considered radar types in a table. This table is called an emitter
database and serves as a reference during the emitter identification process. When
radar pulses are intercepted, the measurements are compared to the values in the
parameter table. The applicable radar or signal type is reported upon a parametric
match. In case of no parametric match, the emitter is reported as unknown [14]. One
of the most critical parameters for successful identification is pulse repetition interval.
Determining the PRI values and the PRI modulation type is essential in recognizing
this pulse parameter. [6], [7].

2.3 Pulse Repetition Interval

PRI is the time interval between the emission of two successive radar pulses. This is
a parameter, which impacts the radar’s ability to correctly determine the range to an
object. For a radar pulse sequence with n pulses, an ESM system can measure n — 1 PRI
values as illustrated in Table 2.1.



Time of Arrival of radar pulses Pulse Repetition Interval

?"1‘21 PRI, = ToAs — ToA;
042 PRI, = ToAs — ToA,
TOA3
TOAi . ] )
ToA; 4 PRI; = ToA;11 — ToA;
TOAn_l . .
TOAH_H PRIn_l = TOAn TOAn_l

Table 2.1: Calculation of PRI from ToA of pulses

The calculated PRI values PRIy, PRI;, ..., PRI,_1 constitute what is referred to as
the PRI sequence.

2.3.1 Pulse Repetition Interval Modulations

In the context of a sequence of intercepted pulses, denoted by index 7, and correspond-
ing time of arrival denoted t;, the following expression is applicable when PRIs are
measured.

PRL‘ = TOAZ‘_H — TOAZ'

2.1
i € Ny @1)

However, it is important to mind that the determination of PRI values of emitting
radar is dictated by its PRI modulation, which follows a certain function.

PRI; = F(i) 2.2)

PRI modulations can be categorized into six different types. The following
descriptions of the modulations are accompanied by mathematical descriptions from
the thesis work of Eric Norgren [14], and figures which depict the PRI modulation in
two different methods. The first method is the PRI, index plot , where the x-axis is
the index of the PRI while the y-axis is the value of the PRI of the given index. This
illustrates the modulation in a temporal aspect. The second illustration method is PRI;,
PRI;,; plot , which illustrates distinct shifts in PRI values in the sequence. It illustrates
how the PRI value changes between each successive pulse pair. In this thesis, images
generated in the latter method is referred to as PRI image, and is the focus of the thesis.



Constant

Constant PRI, also known as fixed PRI, has no PRI modulation. With this modulation
type, the PRI between pulses remains unchanged [8].

PRI, =k (2.3)
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Figure 2.1: PRI, index plot (a) and PRI;, PRI;,; plot (b) of constant modulation

Sinusoidal

With the sinusoidal PRI modulation, the PRI changes in a sinusoidal fashion. This
modulation is also known as wobulated PRI [8].

PRI; = PRI + A = sin(w  x; + ) (2:4)
'0‘0' 'Q‘e‘ — Y
_ + L] L
E N - * - = .“ . .
*‘ " *‘ ‘* g ‘.
. .
Index PRI

(@) (b)

Figure 2.2: PRI, index plot (a) and PRI, PRI;4; plot (b) of sinusoidal modulation



Jitter

With jitter PRI modulation, the PRI values are random. The PRI values are sampled
from a uniform distribution with an upper and lower limit, or a Gaussian distribution

with some mean and standard deviation [8].

PRI; ~ U(min, max)
or
PRI; ~ N(u,0?)
-
. - .
- - . - - . - + . *
o = . -
(= - " —
. E gt e
-
. e L
Index PRI

Figure 2.3: PRI, index plot (a) and PRI;, PRI;,; plot (b) of jitter modulation
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(2.6)

A variant of the jitter modulation also exists, known as discrete jitter, where PRI

values are randomly sampled from a pool of predefined discrete values.



Stagger

With the stagger PRI modulation, the PRI takes a pattern, following an ordered
sequence of discrete values before repeating. The number of discrete values in the
ordered sequence is called elements, and the length of the sequence is called the number
of positions. This sequence, with the length equal to the number of positions, is referred
to as a frame [15].

PRL’ = ]/] (27)

Where j =i mod M.
j is the position in the sequence and M is the number of positions in the frame.

PRI
.
.
.
.
PRI i+1
'

Index PRI i
(@) (b)

Figure 2.4: PRI, index plot (a) and PRI;, PRI;4; plot (b) of stagger modulation

Depictions in Figure 2.4 are an example of countless variations within the stagger
modulation. Combinations of frame lengths and element values, and permutations of
arrangement order give a vast diversity to the resulting patterns.



Sliding

With sliding PRI modulation, the PRI increases or decreases monotonically until it
reaches a limit, followed by a switch to the opposite limit. The monotonic change in
PRI is not necessarily linear [8]. This modulation can be seen as a subset of stagger
modulation, where the ordered sequence contains monotonically changing values.

PRI; = PRIy+ 6% (i mod M) (2.8)

0 € Ris a value describing the rate of change.

PRI
-
L
-
L
PRI i+1

Index PRI i
(@) (b)

Figure 2.5: PRI, index plot (a) and PRI, PRIy plot (b) of linearly sliding down
modulation

PRI
PRIi+1

Index PRI i
(@) (b)

Figure 2.6: PRI, index plot (a) and PRI;, PRI, plot (b) of exponentially sliding up
modulation
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Dwell and Switch

In dwell and switch modulation, the PRI remains constant over a short duration. This
duration is called the dwell. After this period, PRI switches to the next PRI value.
Similar to the stagger modulation, there is an ordered list of PRI values. PRIs dwell on
a value, before switching to the next value in the list. The list repeats itself after the final
PRI value [15].

2! 0< (i mod xp) < x3

x1 < (i mod xp) < x
PRI, = { 7? 1= - M) < 32 2.9)

YM XM-1 < (Z mod XM) < Xm

y; represents the PRI value during the j-th dwell, given to the pulses indexed
between x;_1 and x;. The dwell and switch sequence resumes from y; after the pulse
number xj;, denoting the total number of pulses within the entire dwell and switch
sequence. This also implies that the sequence repeats itself after switching M — 1 times.

LR L LT

AL LLE ]

PRI
PRI i+1

LA L L L L]

LA L L LY

Index PRI |
(@) (b)

Figure 2.7: PRI, index plot (a) and PRI;, PRI;4; plot (b) of dwell and switch modulation

Like the stagger modulation, depictions in Figure 2.7 are a single example from
countless variations within the dwell and switch modulation. Varying frame lengths,
element values, and arrangement order give the resulting pattern a vast diversity.

2.3.2 Noise in PRI measurements

In related work regarding PRI measurement and modulation classification, two
noise categories in PRI measurements stand as notable concerns. The first category
is spurious pulses. This occurs when pulses not belonging to the radar under
measurement are included in the measured pulse sequence. This can happen when
an ESM system receives pulses from multiple radars simultaneously. In such scenarios,
the deinterleaving process, which is the process of correctly sorting pulses associated
with the same emitter, may fail to sort all pulses correctly [16].
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Another cause of spurious noise is the combination of elevated background noise
and heightened sensor sensitivity. This may cause the processing of random noise as
if it were a real radar pulse. Consequently, the PRI is measured between the genuine
pulse and a spurious (false) pulse, as depicted in Figure 2.8(a).

The second category of noise in PRI measurement is the missing pulses. This is
caused by pulses that fail to be processed and are consequently excluded from the
pulse sequence for the measured radar. This is caused by pulses simply not being
detected, or pulses erroneously sorted to another emitter in the deinterleaving process.
In such scenario, the measured PRI is erroneously greater than what it should have
been without the absence of the missing pulses.
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Figure 2.8: Spurious (a) and missing (b) pulse noise
Figure 2.8 illustrates how PRI noise manifests during the PRI measurement. Figures
in Figure 2.9 and 2.10 illustrate constant and sliding modulations with noise from the

described categories, and demonstrate how noise can disrupt the accurate perception
of the two modulation types.
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Figure 2.9: Impact of PRI noise on constant modulation
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2.4 Deep Learning

Deep learning is a field within machine learning. Machine learning is the study of
algorithms that can learn from experience. The algorithms are designed to gather ex-
perience from observed data, referred to as the training data. Its performance improves
with the accumulation of this experience, improving its ability to make correct infer-
ences [17]. The inferences, also known as predictions, can be numerical regression or
categorizing given input data into predefined categories, called classification [18].
Deep Learning is one of many techniques within the field of machine learning. It
is a particularly powerful technique which employs a data structure called a neural
network. Deep learning has made groundbreaking advances in several machine
learning applications, such as computer vision and natural language processing [17].

2.4.1 Artificial Neural Network

An artificial neural network is a data structure inspired by the functionalities of a
biological brain and nervous system. It is a data structure consisting of directionally
connected nodes, referred to as neurons, organized in layers. Among the many forms
of an artificial neural network, the densely connected feed-forward neural network,
also known as multi-layer perceptron (MLP), stands as the quintessential form [19].
The architecture of an MLP is characterized by three principal layers, known as the
input, hidden, and output, that are directionally and densely connected, as depicted in
Figure 2.11 [20]. Directionally connected refers to the unidirectional flow of information
in a feed-forward manner. There is no connection going in the reverse direction.
Densely connected, interchangeably known as fully connected, means that a neuron
has connections to every neuron in the subsequent layer. In other words, every neuron
in a given layer receives information from every neuron in the preceding layer and
subsequently transmits information to every neuron in the succeeding layer.

hidden layers

output layer

input layer

Figure 2.11: Principal layers of a multi-layer perceptron
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The number of neurons in input and hidden layers reflect the dimension of input
and output data, respectively. Hidden layers give depth to the network, facilitating
increased complexity. Each connection represents a linear function, where the output
from a neuron is multiplied by some weight designated to the connection. In the
receiving node, the inputs are summed. With an added bias, this weighted sum serves
as a signal that activates the neuron through a non-linear activation function. Notable
examples of the activation functions are rectified linear unit (ReLU) and sigmoid
functions [21].

The primary objective of a neural network is to approximate a desired function.
This is accomplished through a training process, where the weights associated with
each connection and the bias of each neuron are adjusted iteratively to push the output
for each input closer to the respective desired output [19].

Training ANN

Given an adequate network size, the parameter of each connection can be adjusted
to enable the network’s approximation to the desired function. This is accomplished
through an optimization procedure called gradient descent [19].

The concept of loss is a central part of the training process. Loss is a function of
both the network’s output (referred to as prediction) and the desired output (referred
to as target). The loss function quantifies the distance, or dissimilarity, between the
network’s prediction and the desired target. The training process seeks to decrease this
distance [22]. The idea is that decreasing loss minimizes the dissimilarity between the
prediction and the target. In other words, this process moves the predictions towards
the target.

The selection of an appropriate loss function is important and depends on the
network’s task. In instances involving regression tasks, commonly chosen loss
functions are mean absolute errors and mean square errors, also known as L1 and L2
loss, respectively. In classification tasks, where the network is tasked to correctly predict
the predefined category of the input data, the cross-entropy loss is widely chosen.

Gradient Descent

Within the context of deep learning, gradient descent is the optimization procedure
where the network parameters are incrementally adjusted to minimize the loss.
Following a prediction given by the forward pass of input data, the loss is calculated.
Subsequently, the gradient of the loss is calculated, which is a vector containing the
partial derivatives of the loss with respect to all tunable parameters of the network.

With the calculated gradient, every parameter of the network is adjusted in the
opposite direction of the gradients. This updates the parameters in the direction that
reduces the loss whence the gradient is computed. The scalar value of this update is
determined not only by the gradient values, but also by a small factor known as the
learning rate [22], [23].
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How the gradient descent is performed is dictated by the optimization algorithm,
simply known as the optimizer. An optimizer determines how the gradient is employed
for gradient descent. It also integrates various techniques, such as adaptive adjustments
to the learning rate. A popular optimizer is Adam (adaptive momentum), notable for its
incorporation of a momentum term in order to adaptively adjust the learning rate based
on the gradients calculated in the preceding iterations during the gradient descent [24].

Overtfitting

Overfitting is a well-known phenomenon in machine learning, where the trained model
performs well on the training data yet underperforms on new, unseen data. The goal
of machine learning is to train a model with the capacity to generalize well, not the
capacity to perfectly recall the data that is seen during training [25]. Two common
causes of this phenomenon are insufficient data and model complexity. The first cause,
insufficient data, refers to the lack of a sufficient number of distinct data samples in the
training data which the model is trained with. This deficiency can cause the model to
excessively conform to the data seen in training. The second cause, model complexity,
is a common cause of overfitting for neural networks. With a large number of trainable
parameters and thereby the ability to achieve a more complex model, a neural network
is more prone to overfitting, particularly when trained upon data lacking the same level
of complexity [26].

To detect overfitting, a common practice is to reserve a portion of the dataset
exempted from training. The dataset reserved from training is used to evaluate
the trained model’s performance on unseen data. This reserved dataset is often
further divided into two subsets; validation and test set. The validation set has two
roles. It serves to evaluate the model’s performance on data unseen during training.
Additionally, it serves to evaluate and select the model’s non-trainable parameters
(hyperparameters) [27]. The test set is typically employed in the final evaluation to
measure how the model, that is selected based on its performance on the validation set,
performs on a completely unseen dataset. The three subsets, training, validation, and
test set, constitute the development dataset [28].

2.4.2 Convolutional Neural Network

One of the most successful applications of deep learning is computer vision. Much
of its success owes credit to the convolutional neural network (CNN), which started
to achieve remarkably good results in image classification competitions in the period
between 2011 and 2015. Today, CNNs are ubiquitous in the field of computer vision
[29].

While an MLP can be applied to computer vision tasks, it has some significant
drawbacks. MLP treats each input (pixel) indifferently regardless of their adjacency
to one another. In other words, it disregards the spatial structure of an image.
Additionally, the input layer dimension must match the input image dimension, which
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increases the number of parameters that extends the training time and demands greater
memory [30].

CNN addresses these drawbacks through convolution operations and shared filter
weights. The operation performed in a convolutional layer of a CNN is a calculation of
dot products with a sliding convolution filter over the spatial dimensions of the input.
Each step calculates a dot product between the filter weights and a section of input.
This dot product is placed in the corresponding position in the resulting output and
represents multiple adjacent pixels from the input. The output from a convolutional
layer is commonly called a feature map, implying that this output contains features
extracted from the input image or an input feature map produced by a preceding
convolutional layer.

The application of the same filter across the entirety of the layer input gives the CNN
a property known as translational invariance . This property enables the detection of
relevant features regardless of their position in the image. Furthermore, shared weights
across the spatial input dimension reduce the number of parameters for training.
In practical instances, the spatial dimensions of the filters are significantly smaller
than those of the input features, giving a significantly smaller number of trainable
parameters compared to a fully connected layer [31].

The feature map derived from a convolutional layer is aggregated through a process
called pooling, which is performed by the pooling layer. This operation reduces the
spatial size of the feature map, giving a coarser feature map compared to the input.
The pooling layer has no parameters, as it is a fixed operation. The common pooling
operations are max pooling and average pooling.
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2.5 Applications of CNN in Computer Vision

2.5.1 Image Classification

Image classification is a quintessential computer vision task. This task aims to predict
the category, or the class, of the object in the input image. A classic example of an image
classification task is the recognition of handwritten digits, where there are ten known
classes (numbers zero to nine) [32].

Deep learning models designed for image classification are typically composed
of convolutional layers and dense layers. The convolutional layers function as
feature extractors, obtaining relevant information within the input image. The
extracted feature map is subsequently passed to the dense layers, which conduct the
classification. The number of neurons in the final dense layer reflects the number of
known classes in the task, where each output neuron represents one of the predefined
classes. The classification of the object within the input image belongs to the class
represented by whichever node that gives the highest output value [31].

2.5.2 Object Detection

Object detection is another field within the field of computer vision. The goal of object
detection is to detect all instances of objects from one or several predefined classes in
an image. Each detection produces some form of pose, which tells about the location
and scale of the object within the image [33].

The pose of an object within an image is commonly described through a bounding
box. A bounding box of a rectangular shape can be defined by four parameters: x, y, w
and h. Parameters x and y represent the position of the bounding box within the image,
with the reference point being the center or one of the corners of the box. Meanwhile,
parameters w and h represent the width and height of the bounding box [34].

Given the goal of object detection, a prediction of a model consists of both
classification and pose of the detected object. In a simplified scenario with a single
object that may belong to one of K different predefined classes, the prediction can be
expressed with Eq. 2.10

Co
C1

pred = |CK (2.10)

Where c; is the prediction score for object belonging to class i [35].
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Intersection over Union

Intersection over union (IoU) is a metric used for evaluating predicted bounding boxes
and is widely recognized as the de facto evaluation metric for object detection [36]. It
quantifies the ratio of the overlapping area between the target and predicted bounding
box (intersection), and the area covered by the prediction and target bounding box
(union) [37].

|AN B
|AUB]

IoU is a metric that considers both the position and size of the predicted bounding
box when comparing it to the target bounding box. Its value ranges from zero to
one, with a value of one indicating perfect overlap and a diminishing value indicating
decreasing overlap [38].

IoU =

2.11)

Generalized Intersection over Union

The generalized intersection of Union (GIoU) serves as both a performance metric and
a loss function. Introduced by Rezatofighi et al. in 2019, GIoU addresses issues with
traditional loss functions like L1 or L2 for training detection models [36]. The first
issue is the lack of scale invariance in said losses. Variation in image size affects the loss
value, even when the relative size and position of bounding boxes remain the same. The
second problem is that there is a disconnect between the loss function and performance
metric. Different predictions with varying IoU scores can give identical loss values.
From the perspective of loss, such predictions are equally good or poor predictions
despite the IoU scores telling otherwise, as shown in Figure 2.12 from their paper [36].
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Figure 2.12: Different IoU scores for predictions with equal L2 loss (denoted ||.||2).
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For this reason, it is desirable to use IoU as a loss function. However, a major
problem prevents the employment of IoU as a loss function. In case of no overlap
between the predicted and target bounding box, the resulting IoU is zero. This results
in zero gradients, which cannot be optimized [36].

GloU addresses this issue by producing a negative, non-zero value in cases with no
overlap between the target and predicted bounding boxes. The distance between the
target and the prediction increases the magnitude of the loss, providing a measure of
how inaccurate the predicted bounding box is in terms of position. This enables the use
of IoU as both a performance metric and a loss function[36].

The calculation of GIoU between two bounding boxes A and B is described in
Algorithm 1 [36].

Algorithm 1 Generalized Intersection over Union
Input: Two arbitrary convex shapes: A,B C S € R”
Output: GloU
1: For A and B, find the smallest enclosing convex object C, where C C S € R"

. __ |ANB|
2: JoU = [AUB|

3. GloU = IoU — %

A loss function, derived from GloU is given by in Eq. 2.12

£GIOLI =1-GIloU (212)
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The Figures 2.14 to 2.16, and accompanying calculations show examples of GloU
and GIoU loss for different bounding box pairs. The area of a grid cell in the
illustrations is equal to one. C is the smallest enclosing convex object involved in the
algorithm.

_ |AnB] _ 1
IoU = =7

- |AUB|
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Figure 2.13: GIoU Example 1
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Figure 2.14: GIoU Example 2
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Figure 2.15: GIoU Example 3
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2.6 Related Work

Extensive research has been conducted on the application of deep learning for PRI
recognition. In 1999, Noone introduced a neural method for classifying four PRI
modulation classes [8]. His approach extracts features from a pulse sequence of length
64. The feature extraction is based on using the second difference of ToA of pulses,
called D*ToAs. The vector of D?ToAs is used to form a signum vector through a
modified signum function, which supposedly gives distinct vector for each modulation
type. The architecture for the neural network was a multilayer perceptron with three
layers. Based on the simulation, this approach is shown to be both robust and reliable
even when classification is conducted on a rather short pulse sequence of only 64 pulses
[8].

Building upon Noone’s feature extraction, Liu and Zhang proposed an improved
PRI modulation classification in 2017 [39]. Based on Noone’s approach, their approach
extracts three features; stationarity, monotonic directionality, and symmetry. These
three features were passed to a three-layer MLP for classification. This approach
improved reliability and accuracy, and reduced computational complexity by limiting
the number of input features to three [39].

In 2018, Nguyen et al. [6] introduced an approach using deep learning on features
extracted with autocorrelation and symbolization, which are methods proposed by
Ahmadi et al. and Song et al., respectively [40], [41]. Subsequently, in 2019,
they proposed another approach employing CNN on raw PRI sequences, yielding
promising results while also eliminating the need for preprocessing and feature
extraction [42]

The Swedish aerospace and defense company Saab has hosted several theses
exploring deep learning methods for PRI modulation classification. In 2019, Norgren
compared Long Short-Term Memory (LSTM) against Liu and Zhang's method,
revealing that LSTM consistently outperformed the latter, albeit with increased
complexity [14]. Another thesis in 2022 by Svensson compared an attention-based
model (transformer) against a k-nearest neighbor (KNN) model. The attention-based
model demonstrated robust performance across realistic noise levels, while the KNN
model’s performance declined with rising noise levels [43].

The work of Barrios in 2021, also hosted by Saab, stands out as the closest related
work [9]. In her thesis, the PRI modulation classification is formulated as an image
classification problem. A PRI;, PRI;;; image is created from a simulated PRI sequence
with various levels of noise. The images depict the change of PRI values in the
sequence. The images are used as training data for a convolutional neural network
for image classification that classifies the images into one of the modulation types [9].

The novelty of my thesis lies in the exploration of what the host institute of the
thesis, Forsvarets Forskningsinstitutt (FFI), considers as detailed PRI classification,
which is classifying a particular PRI sequence pattern into finer categories than the six
categories typically used for modulation classifications. For instance, patterns derived
from stagger or dwell and switch modulations exist in many variants. Furthermore,
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a radar can operate with a composite of modulation types, as evident in the provided
data for this thesis. These factors give diversity to PRI patterns that extend beyond
the descriptions of PRI modulation types. Classification on a subset of patterns from
this diversity is what FFI considers as detailed classification. The ability to distinguish
pulse sequences from radars based on such finer detail is beneficial, as they can be more
closely attributed to a specific radar, thus narrowing down the search field during the
emitter identification process. This can eventually contribute to more robust emitter
recognition, and tracking them over time.
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Chapter 3

Method

This chapter describes the provided data, the data processing steps taken, and the
implementation of the deep learning methods employed to answer the research
question.

The data provided by FFI served to train and evaluate the deep learning models.
The provided data were sequences of PRI values and PRI;, PRI;,; images generated
from the sequences, referred to as PRI sequences and PRI images, respectively.
Processing and labeling the images were necessary to render them suitable for training
and evaluation.

Two types of deep learning models were implemented to fulfill the objective of
the thesis. The first model, an object detection model, was designed to detect and
localize a PRI pattern within an image for subsequent classification. The objective
of this model was to automate the manual work during the analysis process, which
involves detecting and focusing in on a PRI pattern. The prediction from detection,
which contains the position and size of the pattern within the image, could then be
translated into parameters for generating a new PRI image from the PRI sequence.
Generating a new image is necessary if the detected pattern has insufficient size for
classification. In such a case, a new image is generated, ideally containing a pattern
represented with optimal size for classification.

The second deep learning model was an image classifier, classifying the PRI pattern
class depicted in the image. This model seeks to automate the manual classification
task.

In contrast to the conventional object detection task, where the prediction contains
both the classification and pose of the detected object [33], a decision was made to
split these tasks into separate models. The decision is based on recognizing that the
pattern to be classified might be suboptimally represented in the image. Therefore, the
task was split into two stages, ensuring that the classification model received images
optimally representing the pattern. Pipelining the two models seeks to automate the
manual human process taking place during an analysis process, involving manually
focusing in on a pattern and classifying the pattern type.
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3.1 Data

FFI has provided two types of data: PRI sequences and PRI images. These data
originated from radar pulses emitted by real shipborne navigational radars and
were collected in Oslofjord. The original data containing ToA sequences and other
parameters were not provided. Only PRI sequences generated from these ToA
sequences (and PRI images) were given.

Data from a total of 65 unique pulse sequences was used, corresponding to an
equivalent number of 65 unique PRI sequences that were provided. Each PRI sequence
forms a PRI pattern associated with one of the 14 pattern classes. Notably, these 14
classes are among the most common navigation radar PRI patterns observed by FFI
(although not exhaustive), and represented a more finer division than the general PRI
modulations. The nomenclature for each pattern class is assigned based on the visual
representation they give in the resulting PRI image. The distribution of the classes is
illustrated in Table 3.1.

Number of Unique

Pattern Class PRI Modulation
PRI sequences

AntiDiag Stagger 4
Const Constant 5
LineDown Stagger and Sliding 5
LineUp Stagger and Sliding 5
LineUp+ Undetermined 5
LongLines Undetermined 5
Stg2 Stagger 5
Stg9 Stagger 5
Strange Undetermined 5
Three5Lines Stagger and Sliding 3
Three8Lines Stagger and Sliding 3
TwoLines Stagger and Sliding 5
TwoStairs Undetermined 5
X Stagger or Discrete Jitter 5

Table 3.1: PRI pattern classes
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3.1.1 PRI Sequences

PRI sequences were the first type of data provided by FFI. For each of the 65 unique
pulse sequences, a list of PRIs was generated, forming the provided PRI sequences

The original pulse sequence was presented in a Scan Description Word (SDW)
format, where radar pulses were organized into scans. A scan represents the duration
during which the receiving sensor is within the directivity of the emitting radar’s
antenna, enabling the sensor to receive the emitted pulses. Conversely, when the sensor
is outside of the scan, the radar continues to emit, but the sensor can no longer receive.

The SDW data format contains descriptions of up to 20 radar pulses from a single
scan. The provided PRI sequence was generated by calculating the difference in ToA
between successive pulses within each scan. The difference between the last pulse in
a scan and the first pulse in the next scan was not included in the PRI sequence, as
they were disjoint. For illustrative purposes, Table 3.2 shows an example of how a PRI
sequence is derived from SDWs.

ToAj PRI} = ToA} — ToA}

ToA} PRI} = ToA} — ToA}
Scan 1 : :

ToA} PRI} = ToA}, — ToA}

ToA;1 PRI;l_1 = TOA;1 - ToA;l_1

ToA? PRI? = ToA5 — ToA3

ToA3 PRIZ = ToA3 — ToA3
Scan 2 : :

ToA? PRI? = ToA? , — ToA?

ToAf72 PRI;L1 = ToA}z72 — ToA}%L1

ToAj PRE = ToA5 — ToAj

ToAj PRI = To A5 — To A}
Scan s : :

To A§ PRI} = ToAj | — ToA;

TOA;S PRI;S_1 = ToA;s — ToA;S_1

Table 3.2: Calculation of PRI from ToAs grouped in scans

The superscript denotes the index of the scan, while the subscript denotes the index
within the scan.
To A denotes ToA of i-th pulse in the s-th scan.
PRI} denotes the i-th calculated PRI in the s-th scan.
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p® denotes the number of pulses in the scan s. Note that this number is limited to 20.
In scan s, containing p® pulses, ToAj, denotes the ToA of the last pulse in the scan.

The calculated PRI values were gathered in a file, with separation between every scan.
This collection of PRI values constitutes a single PRI sequence.

3.1.2 PRI Images

PRI images were the second category of data provided by FFL. Images were generated
from PRI sequences. They served to visually represent the variations in PRI values
within a PRI sequence. It is noteworthy that the pattern cannot always determine the
PRI modulation. While the provided PRI images selected from 14 different PRI patterns
all have different appearances, it may, for instance, be impossible to determine whether
an image displays a discrete jitter modulation or a stagger modulation with a long
cyclicity. This highlights that most of the temporal aspect of the PRI sequence is lost in
these images.

A simple description of image generation is to consider a PRI image as a scatterplot.
Each data point characterizes the difference between two successive PRI values in the
PRI sequence. To elaborate further, a data point with an index i is plotted at a position
within the image given by x; and y; expressed with Eq. 3.1 and 3.2.

X; = PRL‘ (31)

yi = PRI (3.2)

A table with data points for scatter plotting can be generated from a PRI sequence
of length 1, shown by 3.3. Columns of the table represent the position where the data
point is plotted.

x-axis  y-axis

PRI;  PRDL
PRI, PRI
PRI, PRI,
PRI,_; PRI,

Table 3.3: PRI image data points

It is noteworthy that the above table assumes that there is no disconnect between
all successive PRI values, which is not the case for the provided PRI sequence derived
from SDW. Therefore, PRI values at the edges of each scan do not form a data point
with the PRI at the edge of the adjacent scan.
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For illustrative purposes, Table 3.4 shows how data points are derived from a PRI
sequence, which considers the disconnectivity between scans. Definitions of PRI} and

p° remain unchanged from subsection 3.1.1 x},y; denote the i-th data point derived
from within s-th scan.

PRI} xi,y} = (PRI}, PRL})

PRI} x3,y3 = (PRI}, PRI})
Scan 1 : :

PRI} x},y} = (PRI}, PRI}, )

.1 1 1 _ : 1 1
PRI, | xb v, = (PRIL_, PRI}, )

PRI x4,y7 = (PRI}, PRI3)

PRI3 x3,y5 = (PRI3, PRI3)
Scan 2 f f

PRI? x?,y? = (PRI?,PRI?,,)

.2 2 2 _ : 2 2
PRI% | | %%, ¥% , = (PRI%_,, PRI% )

PRI x5,y5 = (PRL, PRI3)
PRI x5, 5 = (PRI, PRI)
Scan s : :
PRI} i, y; = (PRI}, PRI, )
PRI,y | x5 5,3 5 = (PRI, _,, PRI )

Table 3.4: Calculation of data points from scans

29



To illustrate the generation of a PRI image deriving all the way from the time of
arrival of the radar pulses, consider an example of a radar pulse sequence with the
following time of arrival. It is assumed that they belong to the same scan.

ToA =[0,1,3,6,10,11,13, 16]
From these ToAs, PRI sequence is calculated.
PRI = [1,2,3,4,1,2,3]
Finally, data points are composed from the calculated PRIs.
(xy) =[(1,2),(23),(34),(4,1),(1,2),(2,3)]

Data points are plotted one by one, as illustrated in Figure 3.1
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— — —
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(d) (4,1) () (1,2) () (2,3)

Figure 3.1: Plotting calculated data points
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The figures in Figure 3.2 are PRI images of each pattern class provided by FFI. All
PRI images are depicted with x-axis representing PRI; and y-axis representing PRI;,.
This applies for all PRI images for the remainder of the document.

(a) AntiDiag (b) Const (c) LineDn

(d) LineUp (e) LineUp+ (f) LongLines

(g) Stg2 (h) Stg9 (i) Strange
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Some of the provided PRI sequences contain more PRI noise than others, which
is visible among the provided images. While the overall structure of the pattern
remains consistent, the impact of noise is visible in the scattered data points around
the points that constitute the pattern’s structure. The figures show patterns LineUp+
and ThreeLines with different amounts of noise.
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Figure 3.3: PRI pattern with low noise (a, c) and PRI pattern with higher noise (b,d)
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An important parameter when generating the image is the image PRI range. Figure
3.4 visualizes the image PRI range, defined by minimum and maximum image PRL
It also visualizes minimum and maximum pattern PRI, constituting the pattern PRI
range.
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Figure 3.4: Minimum and maximum image PRI (Image PRI range), and minimum and
maximum pattern PRI (Pattern PRI range).

Image PRI range dictates the position and size of the pattern within the image.
The examples in Figure 3.5 illustrate how varying image PRI ranges result in different
positions and sizes for the pattern from the same PRI sequence. The narrower range
gives a larger pattern size, while the wider range gives a smaller pattern size. The
images in Figure 3.2 illustrating the 14 classes, the image PRI range was manually
adjusted to fit each PRI pattern perfectly.
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(a) LineUp+, Image PRIrange 1 (b) LineUp+, Image PRIrange 2 (c) LineUp+, Image PRI range 3

Figure 3.5: Pattern LineUp+ with three different image PRI Ranges
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It is important that the image PRI range covers both the minimum and maximum
PRI values that form the pattern. Failure to do so may lead to the exclusion of a portion
of the pattern in the resulting image, which can potentially impact the subsequent
classification task.

(a) Three8Lines with misplaced image PRI range

(b) LineUp+ with too narrow image PRI range

Figure 3.6: Pattern Three8Lines and LineUp+ with erroneous image PRI range
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Note that in Table 3.3, every PRI value, excluding the first and the last, is employed
as both the x-axis and y-axis positions for the scatterplot. This gives two important
properties to the PRI image. The first property is that the center point of the resulting
pattern lies along the diagonal axis (from lower left to upper right corner) of the image.
The second is that the horizontal and vertical extents of the pattern are identical.

These two properties allow practical simplifications during the implementation of
the detection model. First, the model needs to predict only one value for the position.
The center of the pattern is along the diagonal axis, which means that the x-position
is equal to the y-position. Secondly, the model only needs to predict one value for
the size of the pattern, as the equal horizontal and vertical extent allows the use of a
square-shaped bounding box. The size of the square is described with a single value,
representing the common size of the sides of the square.

The PRI images provided by FFI are created from the 65 unique PRI sequences
described in 3.1.1. For every unique sequence, a set of 101 images was generated,
each with a different image PRI range. Each image PRI range covers the complete
pattern and ensures that no part of the pattern is excluded. The purpose of having
this diversity was to emulate that image PRI range will be unknown. For new data,
the visual inspection starts from a large image PRI range. This range is narrowed
down, possibly generating new PRI images that are better suited to the PRI range of
the pattern. To facilitate learning this process, variation in position and size of the PRI
pattern in the training set was required.

Each PRI image was labeled with the following labels in the image’s filename:

Pattern’s detailed class name

Minimum Pattern PRI
¢ Maximum Pattern PRI
¢ Minimum Image PRI
¢ Maximum Image PRI

The provided images were not directly employed in the implementation. However,
the image PRI ranges used for generating the provided images were repurposed for
generating images with the different method, as described in the next section.
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3.2 Image Processing

3.2.1 Generating PRI images as heatmap

The first step in the processing addresses the noise. Each point in the provided image
is visualized indifferently, implying that numerous data points concentrated in one
position had the same intensity as a single data point in another position. In other
words, a single noise value had the same intensity as each element that constitutes the
relevant PRI pattern. Figure 3.7 shows a sample of AntiDiag pattern affected by noise.
The image PRI range of this particular PRI image is wide and includes noise values far
outside the pattern.

Figure 3.7: AntiDiag with noise

To address this issue, PRI images were generated anew as heatmaps, also known
as 2D histograms. This method resembles a scatterplot, utilizing data points with the
same x and y positions. However, a key difference was that the value of the position
was incremented for each data point. This was different from the PRI images provided
by FFI, where the position value was set to a fixed value and not further increased when
the data point is repeated. The new method enabled the visualization of occurrence
volume, allowing viewers to differentiate between relevant data points and noise with
relatively fewer occurrences.

The produced heatmap was normalized by dividing it by the maximum value in
the heatmap. Given the method of heatmap generation, the noise values may persist
as very small numbers after normalization. Therefore, pixel values of the images were
thresholded to suppress noise values to zero. The threshold was set to 0.25, meaning
any pixel values below 0.25 were reduced to zero.

The image pair in Figure 3.8 compares the image provided by FFI, and the same
pattern with the same PRI range generated as a heatmap. The heatmap (b) has
effectively suppressed the noise depicted in the original image (a), leaving only the
relevant pattern visualized.
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(a) Original image (b) Heatmap
Figure 3.8: Original image (a) and heatmap (b)

It is important to note that this method is effective when each data point belonging
to the pattern is abundantly populated. However, in cases where a data point in the
pattern is sparsely populated compared to others, it may potentially be suppressed to
zero by this method. This could result in an image with a pattern missing that specific
data point. While it is possible to adjust the threshold to include every data point, the
process can be tedious. This issue was not prevalent within the scope of the provided
data. However, it should be considered if this method is selected to generate images
from other PRI sequences.

3.2.2 Image Augmentation

The generated heatmaps were augmented with two photometric augmentation tech-
niques: Gaussian blurring and random noise. These augmentations generated samples
with randomness and different image quality. Examples in Figure 3.9 show the results
of the implemented augmentation techniques.

Gaussian blurring

Gaussian blurring is often applied to reduce noise in images and smoothen the
image features. In this thesis, the Gaussian blurring was used to introduce samples
representing reduced image resolution. The goal was to have the blurring operation
magnify the non-zero pixels, thus giving them the appearance of a lower resolution.
The effect of this varied depending on the pattern size within the image. The pattern
stayed distinguishable for images where the pattern is relatively large, although each
pixel is scaled up. Conversely, for images with relatively small pattern, the pattern
became indistinguishable as it was reduced to a concentration of coarse pixels in a small
area.

A module within PyTorch library was utilized to implement the Gaussian blurring.
This module is one of many image transformation modules within the PyTorch library
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[44]. Gaussian blurring with filter size three and sigma three was chosen for this
augmentation.

Following the blurring operation, the image was normalized by dividing it by its
new maximum value post-blurring.

Background noise

The purpose of the background noise augmentation technique was to introduce
samples that work as regularization and overfitting prevention [45].

During training, a randomly generated noise was added to the background every
time a training image sample was loaded. The noise intensity was kept weak,
preventing the pattern from drowning in the noise. The noise gave variations to the
background, which the model cannot fit to, as the noise was randomly generated every
time the image was loaded [45]. In the implementation, the intensity of the noise map
was sampled from a uniform distribution from 0 to 0.125.

To ensure the reproducibility of the results, the noise map added to the samples
in the validation and test sets remains fixed. When evaluation samples are loaded, a
tixed random seed is placed, ensuring the generated noise map is the same for every
evaluation instance.
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Figure 3.9: Heatmap with augmentations

3.2.3 Distribution of Development Dataset

There were a total of 6565 images in the development dataset. These were distributed
into training, validation, and test datasets, with a ratio of 0.7-0.1-0.2, respectively. The
validation data was used to track performance on non-training data during training
and to select the best model. The test dataset was used only once to test the detection
and classification models.
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3.3 Implementation Overview

The implementation was divided into two parts, followed by a final evaluation. The
process is illustrated in Figure 3.10.

¢ Implementation and selection of the detection model.

— The detection model predicts the position and size of the pattern within a PRI
image. The predicted position and size can be translated to a new image PRI
range for generating a new image. The new image will be generated from
the predicted value if the predicted size is below a predetermined threshold.
The pattern will have an optimal scale for the classification in the new image.

¢ Implementation and selection of classification model

— This is a classic image classification model which predicts the class of the PRI
pattern.

¢ Pipelining the new models and final evaluation

- As the final evaluation of both models, unseen test data is passed through
selected detection and classifier models. Depending on the size predictions
of the detection model, a new image will be generated. The classifier
will receive the images, whether newly generated or not, and perform the
classification.
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Figure 3.10: Implementation Overview

3.4 Implementation of the Detection Model

3.4.1 Setting Training Targets
Setting the Bounding Box for the Pattern

Setting the ground truth bounding box for each image was a prerequisite before
employing the provided images as training data. Only two values were needed to
describe the square bounding box along the diagonal axis of the image; position and
size.

The position value is within the range [0, 1], and describes the relative position of
the pattern’s center point along the diagonal axis, which is identical for both the x- and
y-axis. The position can be calculated with Eq. 3.3

Pmin + Pmax . Imin
Z(Imax - Imin) Imax - Imin
Where P,,i, and Py denote minimum and maximum pattern PRI, respectively.
Furthermore, I,;, and I,;,x denote minimum and maximum image PRI, respectively.
The size value is also within the range [0, 1], and describes the size of the side of the
square bounding box. It was calculated with Eq. 3.4

Pos =

(3.3)
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Pmux - Pmin

Size =
Imax - Imin

(3.4)
With the bounding box’s calculated position and size, the bounding box’s ground
truth was a vector of two values as described with Eq. 3.5

Pos
GT = [Size] (3.5)

The vector GT in Eq. 3.5 was not employed as the training target during model
training. Instead, another vector, with augmented Size is employed as the target.
The GT vector was involved in calculating the evaluation metric described in the
subsequent subsection.

Target Size

The detection model should predict a bounding box slightly larger than the ground
truth. If the predicted bounding box is smaller than the extent of the pattern, a portion
of the pattern may be excluded as shown in Figure 3.6. Passing such images to the
classifier is undesirable and can impact the classification.

Even when the model attempts to predict the exact size of the ground truth
bounding box, any slight inaccuracy can cause the prediction to be smaller than the
ground truth. Additionally, even if the model correctly predicts the exact size, it relies
on an equally accurate position prediction to include the entire pattern. Inaccuracies
in both position and size prediction can cause a seemingly adequate prediction to not
include the entire PRI pattern, ultimately producing an image that misses a portion of
the pattern. It is unclear how impactful this can be for the classification task. However,
it should be avoided to eliminate an avoidable factor that can affect the classification.

To avoid this, the ground truth bounding box was scaled up with a factor m. This
larger bounding box was set as the training target, denoted as GT.;.

The bounding box was scaled up by extending both ends of each side of the
bounding box by factor m. In training, the factor m was fixed to 0.2. This implies that
each side of the original bounding box was extended by 20% on both ends, resulting in
a 40% increase in the size of each side.

(3.6)

GTum = [ Pos }

Size x (14 2m)

The following figures depict the original bounding box, denoted GT, and training
target bounding box GT,,
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Figure 3.11: Examples of GT and GT

The special case of the pattern class Const

Pattern class Const depicts constant PRI modulation where PRI values remain fixed.
This gives Pyiy = Puax , which leads to the size of the bounding, expressed in Eq. 3.4 to
be equal to zero. As a workaround, GT and GT,, for Const pattern were set to 0.05.

3.7)

Pos
GTconstant = |: :|

0.05
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Randomness to target size

As an augmentation method, randomness has been added to the target training size
during training. The randomness was added to the factor m and varies uniformly
between -0.05 and 0.05. This gave factor m to vary in the range [0.15, 0.25]. The enlarged
training target size with added randomness was denoted GT ¢,

GTimtr =

Pos ] (3.8)

[Size x(14+2(m+7))
r ~ U(]—0.05,0.05))

The randomness was set for Const pattern class so that the training target varies in
the range [0.05, 0.10].

(3.9)

Pos
GTconstant+r = |: :|

0.05 + Yconstant
Yeonstant ™~ U([O, 005])

3.4.2 Metrics for detection model performance and selection

Two different metrics were employed to evaluate the detection model’s performance.
The first metric was Intersection over Union. The second metric was Intersection over
Ground Truth, which is an ad hoc metric for the detection task in this thesis.

IoU, as described in the background chapter, is considered as the de facto
performance metric for detection [36]. However, IoU does not represent the purpose
of the detection model in this case. The goal of the detection model is to predict a
bounding box that, while precise, covers the entirety of the pattern. IoU between
prediction and GT;,, does not necessarily describe whether this goal is achieved. A
prediction may give a suboptimal IoU score if the predicted bounding box is not
precisely on top of the GT,,. However, the prediction is considered successful if the
predicted bounding box is placed to cover the entire PRI pattern. Conversely, in some
cases, the suboptimal IoU may represent that detection indeed is unsuccessful, which
leaves a part of the pattern outside of the predicted bounding box.

As shown in Figure 3.12, IoU between prediction and GT,, are equal for both
bounding box predictions. However, the prediction has failed in Figure 3.12(a), where
all graphical elements of the pattern are left outside of the predicted bounding box.
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Figure 3.12: IoU and IoGT of a failed (a) and a successful (b) detection

In other words, IoU between prediction and GT,, alone does not indicate whether
the predicted bounding box covers the pattern. To answer this, intersection over
ground truth (IoGT) was employed. IoGT is calculated by dividing the area of the
intersection by the area of the ground truth bounding box. The ground truth bounding
box (GT) is not to be confused with target bounding box (GT,)

|Pred N GT|
GT]|

IoGT is equal to one when the predicted bounding box has complete coverage over
the ground truth. If a portion of the ground truth is excluded, then IoGT will be below
1, indicating that the prediction has failed to include the entirety of the pattern. A
bounding box prediction with IoGT score one is considered successful detection.

In Figure 3.12(a), IoGT falls below 1, indicating a failed detection. In Figure 3.12(b),
the prediction that includes the entirety of the pattern receives IoGT 1.

IoGT was used as the primary metric for evaluating the detection model, while IoU
served as a secondary metric for the precision of the prediction. Following forwarding
the training samples through the detection model, the proportion of predictions with
successful detection was calculated. This proportion of successful detection is referred
to as IoGT score, and served as a performance metric for each epoch. The average score
of the last five validation epochs was used to select the best model.

I0GT = (3.10)
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3.4.3 Detection model training and selection

Five different models were tested for the detection task, each distinguished by the
number of convolutional and pooling layers, referred to as convolutional blocks. A
convolutional block for these models is composed of two convolutional layers and one
max pool layer. The model name corresponds to the number of convolutional blocks
the model contains, i.e., the model named 2Conv has two convolutional blocks.

The following models were tested.

e 1Conv

e 2Conv

2Conv with feature fusion
e 3Conv
e 4Conv

The model 2Conv with feature fusion was a variant 2Conv model. This variant
fuses feature maps from the first and second convolutional blocks, following methods
presented in the original Feature Pyramid Network paper by Lin et al. [46]. The feature
pyramid network proposes fusing feature maps from different levels in convolutional
layers to improve the detection of objects with varying sizes in the image [46]. The
purpose of testing this model was to assess whether such a technique would benefit
the detection task.

Appendix A provides diagrams detailing the structure of each model.

The last phase of the detection model selection tested different loss functions. The
model selection was conducted with L2 loss. Thereafter, L1 loss and GIoU Loss
was tested on the selected model to assess whether they could further improve its
performance.

Common hyperparameters for both model and loss function selections were:

¢ Optimizer: Adam
® Learning rate: 0.0005
¢ Number of Epochs: 200
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3.5 Implementation of the Classification model

This subsection describes the implementation of the classification model. The
implementation of the classification model was a relatively smaller task compared
to the implementation of the detection model. There was less requirement for
feature engineering, as images were already labeled with target classes. Furthermore,
candidate classification models were chosen from pre-existing classification models.

3.5.1 Training data

Training and validation data for the detection model was reused for the classifier.
However, in the case of the classifier, the images with a pattern size below 0.1
were excluded from the training set under assumption of that the classifier will
only receive images with optimal pattern size. If the detection model performs as
intended, the classifier should not encounter any images with such a small pattern size.
Augmentations remained unchanged; training and validation data contained images
without augmentation and images with blurring, noise, and both.

3.5.2 Metrics for classification model performance and selection

Accuracy was employed as the evaluation metric for classification performance.
Accuracy is expressed in Eq. 3.11

NCorrectPredictions (3 11)
NTotalPredictions

Accuracy =

In the same fashion as the evaluation and selection of the detection model,
the average score from the last five validation epochs was used to select the best
classification model.

3.5.3 Model selection

There were several image classification CNN models to choose from for the classifica-
tion task. Three candidate models were selected for this task.

AlexNet

Alexnet was proposed in 2012 by Alex et al. [47]. The network architecture is
relatively small, making it easier to comprehend than many modern state-of-the-art
models. AlexNet used in this thesis is based on Krizhevsky’s paper One weird trick
for parallelizing convolutional neural networks [48], not the original paper from 2012 [49].
The network has eight layers (five convolutional and three dense) [49]. Compared to
the next candidate model, AlexNet is smaller. The purpose of having AlexNet as a
candidate model was to test the performance of a compact modern deep CNN on our
data set.
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DenseNet121

DenseNet was presented by Huang et al. in 2016 [50]. The architecture employs dense
connections between layers, where all layers are connected. The variant used in the
thesis consists of 121 layers (hence the name) [48]. The purpose of having DenseNet as
a candidate model was to test the performance of a state-of-the-art model on our data
set.

Interestingly, its noteworthy that the depth of the DenseNet121, compared to
AlexNet, does not translate to more parameters. According to PyTorch documentation,
DenseNet121 used in this thesis has 7978856 parameters, whereas the number for
AlexNet is 61100840.

The model implemented in Barrios’ thesis work

The final candidate was the model implemented in the directly related thesis of Barrios
[9]. The purpose of including Barrios” model was to assess how well it performs on PRI
images involved in my thesis.

All models were slightly modified to suit the context of the task in this thesis. An
additional dense layer was added to AlexNet and DenseNet that matches our number
of classes. For Barrios” model, the last layer was modified to output 14 classes. All
classification models were trained for 100 epochs with cross-entropy loss function and
ADAM optimizer with a learning rate of 0.0005.

3.6 Pipelining Detection and Classification Models

The selected detection and classification models were pipelined together for final
evaluation on the test set. The flow of image samples through the pipelined models
is described in the following pseudocode.

1: Pass a PRI image to the detection model to infer the position and size of the pattern
within the image.

2: if The predicted pattern size is too small (size below 0.1) then
Generate a new PRI image from the PRI sequence with parameters of the
predicted bounding box and image PRI range of the original image.
The newly generated image becomes classifier input

else
Image passed to the detection model becomes classifier input

end if

Pass the classifier input to the classifier for classification

@
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3.6.1 Generating new images from the detection

If the size of the detected pattern is smaller than the threshold, a new image for
classification was generated from the PRI sequence belonging to the image. The image
was generated utilizing the parameters of the predicted bounding box. The new image
covered a smaller PRI range than the original image, so the depicted pattern received a
larger size.

The position and size of the predicted bounding box, with the PRI range of the
image, were involved in the calculation of the new PRI range given by minimum and
maximum Image PRI expressed in Eq. 3.12 and 3.13.

Al = Imux - Imz'n

—  Size
:1in = Lipin + AI(POS - T) (312)
. —  Size
II’VZIZX — Imin + AI(POS + T) (3.13)
I, and I, are the new minimum and maximum image PRI, respectively.

Pos and Size are the position and size of the predicted bounding box, respectively.

3.6.2 Evaluation of the pipelined models

The research question is about the possibility of automation of PRI inspection for the
classification of the PRI pattern. Therefore, the evaluation of the final pipelined models
emphasized the classification task. The same method for evaluating the standalone
classification model was utilized, using accuracy score as the metric.

Given that the detection model is a significant part of the thesis, evaluation will
also consider the impact of detection. For each sample that is passed through the
detection, its following outcomes were tracked. This involved whether a new image
was generated based on the detection, and if so, whether it was based on a successful
detection.
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Chapter 4

Results

4.1 Selection of the Detection Model

Figure 4.1 shows overview of the selection process for the detection model.

1 conv 2 conv 3 conv 4 conv
block blocks blocks blacks

Common

parameters:
-L2 Loss

- ADAM optimizer

-LR 5e-5 »| 2 conv blocks with
- 200 Epochs feature map fusion

Common L )
parameters:
—+2tess

- ADAM optimizer
- LR 5e-5

- 200 Epochs

L1 Loss GloU Loss

Y
Selected model:
Model with 2 conv
blocks, trained with
GloU Loss

Figure 4.1: Overview of detection model selection process
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Table 4.1 shows the performance metrics of the detection models involved in the
selection. All models performed similarly, as indicated by the metrics. The difference
between the lowest and highest scores was only a few hundredths. Furthermore, the
best model’s IoGT score surpassed the next-best score by only a few thousandths. This
pattern was also apparent across IoU scores, where the models showed no significant
differences. 2Conv, the model containing two convolutional blocks, achieved the
highest performance metrics based on the mean IoGT score of the last five validation
epochs. This model was selected for further testing with L1 and GIoU Loss functions.

2Conv with
feature fusion

1Conv 2Conv 3Conv 4Conv

Mean IoGT score
of last five epochs
Mean IoU

of last five epochs

0914  0.936 0.924 0931  0.926

0.800  0.831 0.807 0.814  0.819

Table 4.1: Performance metrics of different detection models

Table 4.2 shows the performance metrics of 2Conv model trained with different loss
functions. The differences in scores across the tested loss functions are slight. The scores
did not reveal any significant performance difference among the models. The Conv2
Model trained with GIoU loss emerged on top by a slight margin. The final selected
detection model was 2Conv model trained with GloU loss and hyperparameters
described in Figure 4.1.

2Conv, 2Convy, 2Conv,
L1Loss L2Loss GloU Loss

Mean IoGT score
of last five epochs 0943 0.936 0.949

Mean IoU
of last five epochs 0.846  0.838 0.848

Table 4.2: Performance metrics of detection models trained with different loss functions

Figures in Figure 4.2 demonstrate predicted bounding box by the selected model.
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4.1.1 Detection Model Classwise performance

Appendix B shows the IoU and IoGT score distribution of all predicted bounding boxes
by the tested models on the validation data set. For each class, the bar on the left in the
tigure shows the distribution of IoU scores of predicted bounding boxes. This bar gives
insight into the precision of the predictions. The bar on the right for each class shows
the distribution of IoGT for each class. In other words, this bar shows the proportion of
successfully detected samples.

For most classes in the validation set, the model successfully detected the patterns
in all samples. The scores on Const, Stg2 and Stg9 were slightly lower than the rest.
Furthermore, successful detections of Const and Stg2 have generally lower IoUs than
the rest. In the case of Const, the likely cause is that models are trained to infer a
size larger than the target size in the validation set, considering how the random size
variation during the training was implemented.

These figures also reveal some noticeable differences in performance despite the
similar evaluation metrics across the models and loss functions as shown in Table 4.1
and 4.2. Figures 4.3, 4.4 and 4.5 are from Appendix B. Comparing Figure 4.3 and 4.4, it is
apparent that the number of convolutional blocks affected successful detection on some
of the classes, namely Const and Stg2. Comparing Figures 4.3 and 4.5, it is apparent that
model trained with GIoU loss improved the rate of successful detections compared to
the L2 loss, where the model trained with the former successfully detected all samples
in most classes.
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Figure 4.3: Excerpt from Appendix B. Classwise performance metric distribution of
2Conv trained with L2 Loss
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4.2 Selection of the Classification Model

Table 4.3 shows the mean accuracy of each classification model’s last five validation
epochs.

Barrios’Model AlexNet DenseNetl121

Mean Accuracy,

last five epochs 0.934 0.975 0.993

Table 4.3: Accuracy of the classification models

Accuracy scores show that Barrios” model performed inferior to the other two
classification models. The confusion matrix of Barrios” model and AlexNet in Figures
4.6 and 4.7 reveal that the most significant inaccuracy in the two models lies in
confusion between the LongLines-TwoStairs and Antidiag-Stg2 pairs. As shown in
subsection 3.1.2, LongLines and TwoStairs share a strong visual resemblance. The same
can be said with Antidiag and Stg2 in the instances where the pattern size of the former
is suboptimally small, causing the pattern to take the for m of two diagonally placed
dots similar to the pattern of Stg?2.

DenseNet121 achieved near-perfect performance on the validation set with a total
accuracy of 0.993 and was selected as the final classification model for evaluation on
the test set. The validity of this overly optimistic performance is discussed in the next
chapter, as it is likely caused by overfitting.
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Figure 4.6: Confusion matrix of Barrios” model classification performance
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Figure 4.7: Confusion matrix of AlexNet classification performance
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Figure 4.8: Confusion matrix of DenseNet121 classification performance

4.2.1 Impact of pattern size on classification task

The Figures 4.9, 4.10 and 4.11 show classifiers” performance based on the pattern size.
In these figures, the bar on the left for each class shows the size distribution for the
correct classifications. The bar on the right shows the distribution of misclassifications.
Recall that the validation set does not contain images with a pattern size below 0.1, as
described in subsection 3.5.1. Therefore, the range (0, 0.2] contains patterns with size
within the range [0.1, 0.2]. Frequent misclassifications on smaller patterns are apparent
for Barrios” model and AlexNet.
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Figure 4.10: AlexNet model classwise distribution of image sizes of predictions
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4.3 Performance of the Pipelined Detection and Classification
Models

4.3.1 The flow of test samples through the pipeline

The Sankey diagram in Figure 4.12 illustrates the flow of samples in the test dataset
through the pipeline. The two nodes in the middle show the number of samples
directly forwarded to the classifier and the number of samples resulting in new image
generation, respectively. In other words, they represent how the detection model
inferred the size of the patterns. Out of the 2628 samples in the test set, the detection
model inferred that 551 of the images contained pattern too small (smaller than 0.1)
for classification. Consequently, new PRI images were generated with size parameters
inferred from the detections.

Flow of test samples through the pipeline

passed directly to classifier (2077)

test set (2628) correctly classified (2599)

Dﬂew image generated (5519
misclassified-(29)==

Figure 4.12: Flow of Test Samples Through the Pipelined Detection and Classification
Model

The Sankey diagram in Figure 4.13 focuses on the flow of samples that resulted
in new image generation. For these samples, the detection model predicted that the
pattern size is less than 0.1, which consequently prompted generating a new image.
The two nodes in the middle show whether it is based on successful detection. The final
nodes show whether images generated from these detections were correctly classified.
The detection model inferred that 551 samples have a pattern size below 0.1. 34 of
these samples had erroneous detection. Out of these failed detections, only seven were
misclassified.
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Figure 4.13: Flow of Test Samples Resulting in New Image Generation

4.3.2 Final classification on test set

Figure 4.14 shows confusion matrix of the pipelined model’s classification on the
test dataset. Similar to the performance during classification model selection, the
model attained an almost perfect prediction with total accuracy of 0.989 on the test
dataset passed through the detection model. This overly optimistic final classification
performance is likely caused by overfitting and is addressed in the discussion.
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Figure 4.14: Confusion matrix of pipelined models’ classification performance
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Chapter 5

Discussion

5.1 Model Performance

5.1.1 Impact of Detection Model

The classification accuracy of the pipelined model does not directly illustrate how
impactful the detection model and subsequent new image generation were for the
correct classifications. The near-flawless classification performance could be attributed
to the powerful DenseNet121 model. However, Figures 4.9, 4.10 and 4.11 showing
the impact of pattern size on classification indicate that misclassifications, albeit very
few, occur primarily on smaller patterns. Although it may not be the case for
the selected DenseNet121, it highlights the challenge of attempting classifications
on smaller patterns, necessitating a mechanism for detecting too small patterns and
subsequently generating a new image with optimal image PRI range.

Furthermore, Sankey diagrams in subsection 4.3.1 indicate that most of the newly
generated images are correctly classified. Notably, a significant portion of these
newly generated images belong to the pattern class Const, which inherently have a
small pattern size of 0.05. This implies that all images of Const pattern predicted
with accurate size underwent new image generation. Generating new images of all
successfully detected Const patterns might appear redundant. However, any pattern
that resembles Const pattern, i.e. a single dot, is ambiguous until it has been enlarged
in an image with a narrower image PRI range. Any pattern can appear as dot, given a
large enough image PRI range, thus justifying generating new images at instances with
Const-like patterns.

5.1.2 Overfitted Classification Model

The selected classification model achieved near-perfect classification on the validation
and test set. In many cases, high performance on the evaluation sets usually suggests
the model’s capacity to generalize to data unseen during training. Furthermore, as
shown by the loss curves in Appendix D, the validation loss does not start to increase
at any point during training except for few noisy spikes. These observations do not
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indicate that the model is overfitted to the training data. However, this near-perfect
performance is caused by our insufficient dataset, which contains numerous duplicates
spread across the data splits.

The dataset provided by FFI is generated by augmenting 65 unique samples of PRI
images. There were three to five individual samples in each class. Upon inspection,
the patterns were almost identical within each class. The only contributing factor was
PRI noise, which was later eliminated with the heatmap and thresholding presented in
section 3.2.1. This may have further exacerbated the issue of limited variance. These 65
samples were subjected to scale and translational augmentations. These geometrically
augmented images constitute the images provided by FFI, populating the original 65
unique samples to 6565 samples. Whether the provided geometric augmentations
contributed to increased variation in each pattern class is questionable. First, CNN
is translational invariant, as described in section 2.4.2. Generating several images of
the same pattern with similar size but in different positions does not contribute to the
variation in the representation of the pattern class. This will only duplicate the pattern
sample with some size and contribute to overfitting.

Whether the applied Gaussian blurring and random noise contributed to the
variation within the data set is questionable. The reason behind skepticism is that
the photometric augmentations were applied to a dataset that already contained
duplicates. It did not bestow any uniqueness or distinctiveness and merely created
photometrically altered versions of the duplicates.

According to FFI, the limited of variations within each pattern class are an inherent
nature of the PRIs of navigational radars provided in this thesis. While this is not a flaw,
it likely caused our model to overfit. Given the data that models are trained upon, the
viability and applicability of the model depend on the domain in which it is deployed.
It can be assumed that the model performs well if the input to the model is PRI images
depicting one of the 14 patterns that have undergone the same image processing as in
the thesis. Furthermore, given the limited variations within each class in our dataset,
a less powerful model or technique could suffice, as there is less need for a model that
can generalize to rich variations.

5.2 Model Evaluation And Selection

5.2.1 IoGT as ad hoc metric

For evaluating and selecting the detection model, successful detection was defined as
a model’s ability to predict a bounding box that covers the entire pattern to avoid
excluding part of the pattern. To quantify this, Intersection over Ground Truth was
employed, which assesses whether square A (predicted bounding box) has coverage
over square B (a square that covers the pattern). This metric was the deciding metric
used to select the best model. However, given the results from the training and
validation, the outcome of model selection would remain the same if IoU was solely
used for evaluation. Results show a connection between IoU and IoGT i.e., the model
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with the highest IoGT also had the highest IoU.

Furthermore, IoGT should only be employed as an evaluation metric and not be
incorporated into a loss function. The reason is that IoGT does not consider the
prediction’s precision. It only considers predicted bounding boxes” coverage over the
ground truth. To elaborate, a model can achieve an IoGT score of one (max score) only
by predicting an excessively large bounding box covering the ground truth bounding
box in all instances.

5.2.2 Model Selection

Different models and loss functions were tested under detection model selection. The
impact of the number of convolutions and pooling operations was coincidentally
discovered, which prompted the testing of different numbers of convolutional blocks.
The loss functions were chosen based on their relevance to the object detection problem.
This selection method does not adhere to any standardized system or principle for
model testing and selection. Simultaneously, exploring all possible combinations
of models, loss functions, and other training hyperparameters would result in an
overwhelming number of tests, thus leading to the limitation of testing procedures to
different models and loss functions.

Given the apparent issue of overfitting, there may be limited benefits to be
gained from exploring different classification models as they are likely to overfit to
the development data set. One area that could yield benefit is exploring models
and techniques that employ stronger learning regularization to tackle the overfitting
encountered. Furthermore, utilizing images provided by FFI, dotted with spurious and
missing pulse noise, could also contribute to tackling this problem.
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Chapter 6

Conclusion

Detection and classification models were developed to automate the PRI pattern
classification as an image classification task. The detection model was developed to
infer the size and location of the PRI pattern within the image. The predicted size and
location were used to generate a new image containing the same pattern with optimal
scale for the classification task. Classifications were made on these images with optimal
pattern size, resulting in a near-perfect performance.

The optimistic outcome was likely attributed to overfitting, caused by images with
insufficient variations and complexity within each pattern class. Utilizing a powerful
state-of-the-art classification model and noise suppression of images may have further
exacerbated the overfitting problem. The model will likely achieve similar performance
in a deployment environment that provides data with the same predefined classes
and processing techniques involved in the development of the model. The model is
confined to the closed set of the 14 classes in the training set, so it cannot recognize a
new unseen PRI pattern.

In light of these results and reflections, the following conclusion is drawn:
Automating the classification of PRI pattern types with deep learning methods
for computer vision is possible within the scope of the provided data. Careful
consideration should be given before the model’s deployment with respect to the
deployment environment and the development set employed for training the models.

6.1 Future Work

The first proposal of future work is to implement a classification model with open
set recognition. In the current configuration, the classification model will exclusively
recognize PRI image classes in the training set and will not recognize an unseen class as
unknown. FFI assesses that the the pattern classes involved in this thesis are among the
classes most frequently used by navigation radars, and together they cover the majority
of radars, at least in the recordings collected from the Oslofjord. However, a deployed
model could benefit from a mechanism that detects when an input image contains a
pattern that does not belong to any of the predefined classes involved in training. This
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mechanism will not only mitigate misclassification, but will also allow more timely
discovery of new pattern classes.

The second proposal is to modify and refine the implemented detection model so
that it can be employed to precisely determine the minimum and maximum PRI of the
pattern. A bounding box that precisely encloses the pattern can be translated to the
pattern PRI range (Pyqx and Py,;,). The precision of inferring pattern PRI range can be
further improved by an iterative approach, where the model iteratively focuses on the
pattern based on its predicted bounding boxes before splitting its focus to edges of the
bounding box for precisely determining P, and Py,,. This can potentially automate
the part of the analysis that seeks to determine the radar’s minimum and maximum
PRI, which is also an important part of the PRI analysis and parameterization of an
emitter, which contributes to building a reliable emitter database for ESM systems.
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Appendix A

Diagram of Detection Models
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Figure A.1: Diagram of Conv1l Model
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Figure A.2: Diagram of Conv2 Model
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Figure A.3: Diagram of Conv2 Model with feature fusion
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Figure A.4: Diagram of Conv3 Model
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Appendix B

Classwise Metric Distribution of
Detection Models on Validation Set
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Figure B.1: Classwise metric distribution of 1Conv trained with L2 Loss
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Figure B.2: Classwise metric distribution of 2Conv trained with L2 Loss
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Figure B.3: Classwise metric distribution of 2Conv with feature fusion trained with L2
Loss
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Figure B.4: Classwise metric distribution of 3Conv trained with L2 Loss
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Figure B.5: Classwise metric distribution of 4Conv trained with L2 Loss
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Figure B.6: Classwise metric distribution of 2Conv trained with L1 Loss
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Figure B.7: Classwise metric distribution of 2Conv trained with GloU Loss
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Appendix C

Training and Validation Curves of
the Detection Models
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Figure C.1: Training and validation curves of Convl, trained with L2 loss
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Loss (normalized)
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Figure C.2: Training and validation curves of Conv2, trained with L2 loss
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Figure C.3: Training and validation curves of Conv2 with feature fusion, trained with
L2 loss
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Loss (normalized)
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Figure C.4: Training and validation curves of Conv3, trained with L2 loss
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Loss (normalized)
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Figure C.5: Training and validation curves of Conv4, trained with L2 loss
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Loss (normalized)
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Figure C.6: Training and validation curves of Conv2, trained with L1 loss
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Figure C.7: Training and validation curves of Conv2, trained with GloU loss
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Appendix D

Training and Validation Curves of
the Classification Models
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Figure D.1: Training and validation curves of Barrios” model
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Figure D.3: Training and validation curves of DenseNet
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