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1 INTRODUCTION 
Cancer is a serious disease which in many cases is lethal. Treatment of cancer may involve 

chemotherapy, surgery, radiotherapy or combinations of these modalities. The use of 

radiotherapy has been increasing in Norway the last 20 years, from covering only half of 

the needs around 1990 to almost 80% in 2007 (Jetne et al 2009, Lote et al 1991). It is 

expected that around 30% of all patients diagnosed with cancer should need initial 

radiotherapy (ACRO 2009), while over half of the patient population with cancer should 

receive radiation during the period of illness (Delaney et al 2005, WHO 1980). 

Radiation as treatment of cancer was taken into use immediately after ionizing 

radiation from x-ray tubes and radioactive isotopes were discovered over a century ago. 

From the relatively simple use of x-ray tubes and radioactive materials to treat cancer, 

radiation therapy is now a highly sophisticated modality for treatment. Traditionally, 

radiotherapy has been performed using radioactive isotopes (e.g., 60Co, 226Ra, 192Ir and 
137

The technological developments in radiotherapy are mainly focused around better 

field shaping, high precision delivery techniques and devices, and better imaging 

modalities, but also new accelerator principles are being introduced. In addition to 

electron and photon beam radiotherapy, neutrons (Barth et al 2005), protons and heavier 

ions or hadrons (Durante & Loeffler 2010) have been used. Using hadrons, less normal 

tissue receives high radiation doses compared to conventional photon therapy, due to the 

localized energy deposition by these particles as compared to photons.  

Cs), x-ray tubes or high energy electron or photon generators. The radiation may be 

delivered externally or internally. The latter, called brachytherapy, is performed by 

introducing radioactive sources into, or close to, the tumour, while external beam therapy 

today usually is provided by x-ray tubes or high energy x-ray and electron generators 

called linear accelerators. Superficial tumours may be treated with low energy x rays, 

tumours at shallow or medium depths in the patient can benefit from linear accelerator 

electron treatment, while deep seated tumours and tumours with a difficult or non-

localized position are normally treated with high energy photons, also from a linear 

accelerator. 

Ionizing radiation is radiation capable of ionizing atoms or molecules, i.e., 

releasing electrons from their bound states. When a medium is exposed to ionizing 
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radiation, energy is transferred through ionizations. In radiotherapy, the energy transfer 

from the radiation field to tissue molecules is the principal interaction of interest. Such 

interactions may cause cell damage or cell killing. The purpose of radiotherapy is to 

transfer enough energy to the tumour and, at the same time, as little as possible to the 

surrounding normal and healthy tissue. The absorbed dose resulting from irradiation is 

measured in terms of the energy imparted per mass of tissue, with unit Gray (1 Gy = 1 

J/kg). Different kinds of radiation show distinctly different interactions with tissue. These 

differences result in characteristic energy deposition patterns for different types of 

radiation in biological matter, e.g., water (figure 1).  

The art of estimating radiation doses is called dosimetry. Different approaches for 

measuring the dose may be applied. A direct measure of dose is provided by calorimetry, 

where the temperature change in a medium, e.g., water or graphite, is measured while 

exposed to radiation. This method is difficult for practical measurements in radiotherapy, 

and other procedures are needed.  

Recommendations of the minimum and maximum doses which should be 

delivered to a tumour, is normally within only a few per cent from the prescribed tumour 

dose (IAEA 2001, ICRU 1993, ICRU 1999, ICRU 2004, ICRU 2010, Wambersie 2001), and 

hence accurate dosimetry is crucial. The reference method for measurements of 

absorbed radiation dose in radiotherapy is ionometry, that is, measurements with 

ionization chambers. Such chambers collect ionizations in air or another medium and 

measure the electric current when the radiation induced ions are released under a high 

voltage. High precision dosimetry performed worldwide requires standardized methods 

and equipment, and dosimetry protocols are available (Almond et al 1999, IAEA 2001). In 

addition, national and international standardized dosimetric calibration laboratories are 

established, among other purposes; to ensure a common dosimetry practice in hospitals 

using ionizing radiation.  
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Figure 1: Percent depth dose curves for different types of radiation used in radiation 
therapy as a function of penetrating depth in water (Orecchia et al 1998). Typical beam 
qualities of photons (60

 

Co and 8 MV from a linear accelerator), electrons (20 MeV from 
a linear accelerator), neutrons and protons are displayed. The 200 MeV proton beam 
displays the characteristic ‘Bragg-peak’ at the end of the beam track, which is similar for 
all monoenergetic ion beams interacting with matter. 

There are several dosimetry systems available, and normally each system has its 

advantages and disadvantages compared to other systems. Important characteristics are 

sensitivity, reproducibility, adequate size and minor or well known dependence on 

radiation beam quality. Some ionization chambers fulfil all these requirements, which 

make them recommendable. But ionization chambers have some limitations, like the 

need for cables and inappropriate sizes to be used for measuring inside a patient – in vivo 

– or a phantom, or for high resolution 2D or 3D measurements of dose distributions. High 

resolution measurements could e.g., be performed with films or gels, while point 

measurements within a phantom could be provided by thermoluminescence (TL) 



4 
 

dosimeters or electron paramagnetic resonance (EPR) dosimeters. Films, gels, TL and EPR 

dosimeters are all offline dosimetry systems because a readout has to be performed after 

the irradiation takes place, while electrometers collect the responses of ionization 

chambers (or semiconductor diodes) online. 

The positive and negative ions produced in matter following ionizations are in 

most cases highly unstable species. A chain of chemical reactions usually follow the 

primary charge separation, often involving the formation of free radicals (or simply 

radicals), which are molecules with one or more unpaired electrons. In some crystalline 

lattices, large amounts of stable (or quasi-stable) radicals may be induced following 

irradiation. In EPR (Electron Paramagnetic Resonance) dosimetry, the irradiated 

dosimeter, containing radiation induced radicals, is placed in a strong magnetic field while 

exposed to microwaves. Scanning the microwave frequency (at a fixed magnetic field 

strength) or the magnetic field (at a fixed microwave frequency) results in a resonance 

spectrum. The spectrum intensity may be related to the amount of radiation induced 

radicals in the dosimeter, which again is a function of the absorbed dose. Examples of EPR 

dosimeters range from solid state dosimeters to biological or organic dosimeters like 

tooth enamel and food (Fattibene & Callens 2010, Kleinerman et al 2006, Mladenova et al 

2010). The process of EPR dosimetry is schematically illustrated in figure 2. 

The amino acid L-�-alanine (alanine) was first proposed as an EPR dosimeter in 

1962 (Bradshaw et al 1962), and the practical use of alanine EPR dosimetry has been 

reported for some decades (Regulla 2000, Regulla & Deffner 1982). When irradiated, 

large amounts of stable radicals are formed in this crystalline dosimeter material (Heydari 

et al 2002, Malinen et al 2003a, Malinen et al 2003b, Miyagawa & Gordy 1960, Sagstuen 

et al 1997), which is clearly an advantage for EPR spectroscopy. In alanine EPR dosimetry, 

many different dosimeter shapes have been used. Commercial dosimeters are typically 

cylindrical (diameter ~5 mm), made of a mixture of alanine and paraffin (with the latter 

acting as binder). Minidosimeters with diameter and height ~1 mm (Abrego et al 2007, 

Mack et al 2002) and thin alanine films (Furre et al 1999, Helt-Hansen et al 2005, Olsson 

et al 2002, Xie et al 2002, Xie et al 1993, Østerås et al 2006) have also been employed.  
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Figure 2: The process of EPR dosimetry. (a) Dosimeters are irradiated with a radiation 
source and radicals are produced. (b) A dosimeter is placed in a strong magnetic field in 
an EPR spectrometer. (c) Scanning the magnetic field, a spectrum is recorded. (d) From 
the EPR spectrum, the peak-to-peak amplitude is found, being a function of the 
absorbed dose. (e) Combining readings from all dosimeters given known doses 
(symbols), a calibration regression may be performed (straight line). Using the 
calibration relation, the dose to dosimeters given unknown doses may be estimated.     

 

The EPR signal from the radicals in irradiated alanine detectors is very stable, with 

a reported signal fading of commercial dosimeters of less than 1% per year (FWT 2010). 

EPR readout is a non-destructive type of measurement, and because of their high stability 

the dosimeters may be stored for long periods (months or years).  Alanine dosimeters 

have very low dependence on irradiation temperature (Desrosiers et al 2009, Nagy et al 

2000, Sharpe et al 2009), and the radical formation is nearly independent of dose rate at 

doses below 10 kGy (Desrosiers et al 2008). Furthermore, the EPR signal shows only a 

very weak dependence on factors like temperature, environmental humidity and time 

span between irradiation and measurement (Nagy et al 2000, Sleptchonok et al 2000, 

Wieser et al 1989).   
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The use of alanine has previously been recommended for high dose 

measurements (typically over 100 Gy) by the International Atomic Energy Agency, IAEA 

(Mehta & Girzikowsky 1996) because of its high radical stability and good properties for 

dosimetry in this dose region. Also, the alanine dosimetry system has been applied for 

mail-in and e-calibrated dosimetry (ASTM 1999, Desrosiers et al 2002). Additionally, it has 

been suggested as a high precision secondary standard (reproducibility below 0.5% in the 

5 – 50 Gy range) for absorbed dose to water (Anton 2005). 

Alanine has been used for dosimetry of radiotherapy beams like high energy 

electrons and photons (Chu et al 1989, Ciesielski et al 2003, Helt-Hansen et al 2009, 

Kudynski et al 1993, Mehta & Girzikowsky 2000, Onori et al 2006), and the dosimeter 

signal has also been studied after irradiation with other beam qualities (Hansen & Olsen 

1986, Hansen et al 1987, Olko 2002, Waligorski et al 1989). Regarding radiation 

absorption characteristics, alanine has properties quite similar to tissue or water, and 

thus shows a low energy dependence for high energy electron and photon beams (Anton 

et al 2008, Bergstrand et al 2005, Bergstrand et al 2003, Zeng et al 2004, Zeng et al 2005). 

However, for kilovoltage x-ray beams, significant energy dependence has been found 

(Alexandre et al 1992, Chen et al 2008, Coninckx et al 1989, Hansen et al 1989, Regulla & 

Deffner 1982).  

Applications of alanine dosimetry in radiotherapy require a thorough uncertainty 

analysis at relevant dose levels, which has been addressed in several studies (Anton 2006, 

Bartolotta et al 1993, Bergstrand et al 1998, Nagy et al 2002). Typical uncertainties 

reported are 1.5 – 4% for doses between 1 – 5 Gy (Nagy et al 2002). Furthermore, 

methods for performing high precision alanine dosimetry in radiotherapy have been 

reported (Hayes et al 2000). The methods which gives the highest precision seem 

somewhat time consuming and impractical for daily use. Alanine dosimetry has been used 

for numerous applications in radiotherapy, e.g., brachytherapy (Anton et al 2009, Olsson 

et al 2002), advanced radiotherapy techniques (Bailat et al 2009, Mack et al 2002, Rosser 

& Bedford 2009) and small field dosimetry (Abrego et al 2007). Alanine EPR dosimetry has 

been assessed as feasible for clinical dosimetry (Ciesielski et al 2003, Schultka et al 2006, 

Wagner et al 2008). 

Despite of its favourable properties, irradiated alanine has a relatively complex 

EPR spectrum of multiple resonances. As the common dosimetry procedure is to extract 
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the peak-to-peak amplitude of the central resonance line, this leads to reduced sensitivity 

of the alanine dosimeter compared to a dosimeter yielding a single-line resonance. For 

typical radiotherapy doses (< 5 Gy), accurate alanine dosimetry becomes time consuming 

when the goal is a high signal to noise ratio. Hence, more sensitive dosimeter materials 

are needed for EPR dosimetry in the radiotherapy and radiation protection dose ranges. 

Different dosimeter materials have been tested for EPR dosimetry (Lund et al 

2002, Vestad et al 2003). Among these materials, the formic acid lithium format 

monohydrate (lithium formate) is a compound with several favourable properties 

compared to alanine. For instance, lithium formate is 5-6 times more sensitive (Vestad et 

al 2003) and has an atomic composition closer to water (Vestad et al 2004b), which is the 

medium of interest in clinical dosimetry. This thesis presents work performed to 

investigate some of the properties of lithium formate that is needed to establish lithium 

formate EPR dosimetry as a suitable method for clinically relevant measurements. 
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2 BACKGROUND 

2.1 Dosimetry 

The dose D at a point of interest in matter with infinitesimal mass dm is given by 

 

        � = ��
�� ,      (1) 

 

where ��� is the energy imparted by ionizing radiation. The dose is given in Gray; 

[Gy]=J/kg. The absorbed dose depends on the material where the dose is deposited. For 

radiotherapy the human body is the medium of interest, and hence liquid water is chosen 

as the reference medium for dose measurements and comparisons in basic dosimetry 

(IAEA 2001). Normally, dose measurements are not performed using the medium of 

interest as dosimeter material, but by inserting a dosimeter with a different atomic 

composition into the medium. Cavity theory relates the absorbed dose in a dosimeter’s 

sensitive medium (cavity) to the absorbed dose in the surrounding medium in the 

absence of the cavity. In that way the dose calculated or measured in a specific material 

different from water may be related to the absorbed dose in water without any additional 

measurements. Regarding Eq. 1, for practical reasons and under certain assumptions the 

point of interest may be expanded to a finite volume. The resulting � is thus the sum of all 

the particles passing through the volume times the probability that these particles will 

impart energy times the expected amount of energy imparted per interaction process. 

For photons, this may be formulated as 

 

      � = � � �(�)	
��

 �

�,�
��

 
�  ,     (2) 

 

where � �(�) is the photon energy fluence spectrum, E the photon energy and Z the 

effective atomic number (Attix 1986). 	���
� �

�,�
 is the mass energy absorption coefficient, 

which is the probability per unit density for interactions resulting in imparted energy near 

the interaction site. The ratio of 	���
� � for three so-called water equivalent dosimeter 

materials to 	���
� � for water is displayed in figure 3 for clinical x-ray beams, normalized to 
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the ratio for 60

 

��� �-rays. The figure shows that, especially for low photon energies, 

differences in absorbed dose between water and different detectors may be expected, 

even when the detectors are exposed to the same radiation field. 

 

Figure 3: Mass energy absorption coefficients for the three water equivalent dosimeter 
materials. Coefficients for alanine (solid), lithium formate (dotted) and lithium fluoride 
(broken line), relative to that for water, are shown. Monoenergetic x rays are assumed. 
Note that the abscissa is plotted using a logarithmic scale. The values are normalized to 
the ratio obtained for 60

 

����-irradiation (1.25 MeV). 

Analytical calculations of radiation dose such as performed in eq. 2 may be useful, 

but have limitations when beam geometries and radiation fields are complex. The most 

recognized computerized method of calculating, or simulating, dose depositions is Monte 

Carlo simulations (Bousis et al 2008, Chetty et al 2007, Rogers 2006, Zaidi & Ay 2007). The 

Monte Carlo method for radiation transport calculations utilizes interaction probabilities 

together with a random number generator, so that each interaction of every particle is 
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simulated with the accompanying change in primary particle energy and generation of 

secondary particles. Also, specified radiation sources or treatment machines may be 

included in the input to the computer program, and statistical calculations of all the 

particles created, accelerated, scattered and deposited in a volume of interest may be 

calculated. Limitations of Monte Carlo simulations normally relate to the exactness of the 

physical modelling (e.g., interaction probabilities) and the variance reduction methods 

used to speed up the calculations. The processor speed of the computers applied also 

limits the use. Today Monte Carlo methods are able to perform huge calculations of very 

advanced systems, and they are to some extent implemented in radiotherapy for dose 

planning. The use of Monte Carlo calculations for accurate and independent calculations 

in dosimetry is expected to increase with continuously increasing processor speed of 

computers.  

In this thesis, absolute water-based dosimetry using ionization chambers have 

mainly been performed according to the International Atomic Energy Agency (IAEA) 

protocol TRS-398 (IAEA 2001). Measurements of absorbed dose in water, w, in a 

reference beam quality Q� (most often 60

 

����-rays) at reference environmental conditions 

(temperature, pressure and humidity) and in a specified reference set-up, is governed by 

the equation (IAEA 2001): 

        ��,�� =  �����,�,��          (3) 

 

���is the electrometer readout (given typically in units of nC) and ��,�,�� (given typically 

in units of Gy/nC) is the calibration coefficient of the ionization chamber. When the 

chamber is positioned in water, the calibration coefficient is the relation between 

measured charge from ionizations in the air cavity in the chamber and the dose to water 

in the same point without the chamber present. All experiments not performed in the 

reference beam quality �� require information about the response of the ionization 

chamber for the applied radiation quality, �. For high energy photons or electrons, the 

dose relation is described by introducing a quality factor ��,��: 
 

    ��,� =  ����,�,����,��           (4) 
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��is the corrected electrometer measurement for pressure and temperature conditions 

deviating from reference conditions. Absolute dose measurements in beam qualities 

which differ more in interaction nature and energy from the reference beam quality than 

high energy electrons and photons (e.g., low energy photons, neutrons, protons and 

other hadrons), need more corrections and the dose estimates have higher uncertainties 

(IAEA 1987, IAEA 1996, IAEA 2001). 

 

2.2 Beam quality characterization and LET 

There are various ways to characterize radiation beam qualities, but international 

protocols give some recommendations. In this thesis IAEA TRS-398 (IAEA 2001) has been 

followed for characterization of photons and electrons, while Linear Energy Transfer (LET) 

(ICRU 1970) was used for protons and nitrogen ions. 

Following TRS-398 (IAEA 2001), photons and electrons are described by the depth 

dose characteristics of the respective beams. For high energy photons, the beam quality 

should be described by the ratio of the dose measured in water at 20 cm depth to that at 

10 cm, TPR20,10, with constant distance between the source and the ionization chamber. 

For electrons, the half-value depth in water, R50

LET, also called restricted stopping power, is a measure of the energy deposited 

per unit track length in a specific volume when a particle is passing through matter (Attix 

1986, ICRU 1970). A limit � could be specified for which energy depositions are large 

enough to escape the volume, and which are not. If ��	, it means that the volume is 

large enough to include all energy depositions from secondary electrons released by 

interaction processes due to the primary particle. When using the term “LET” without 

specifying the limit, normally the unrestricted LET, or LET

, is applied. This is the depth in water at 

which the absorbed dose is 50% of its value at the absorbed-dose maximum. Low energy 

photons, or kV-photons, should be described by more than one parameter, normally the 

kilovoltage generating potential (kV), the filtration used and the half value layer (HVL) in 

Aluminium (Al) or Copper (Cu). 

	, is meant. High energy 

photons and electrons are low-LET beams, while high-LET beams are exemplified by 

protons, alpha particles and other heavy ions (or hadrons). Typical particle tracks 



12 
 

following low-LET and high-LET beams in a cell nucleus are illustrated in figure 4. As 

shown, high-LET particles have more or less a straight trajectory and are densely ionizing, 

while low-LET particles are more scattered and less densely ionizing. Examples of LET-

values for different radiation beams are listed in table 1.  

 

 

 
Figure 4: Illustration of typical low-LET and high-LET particle tracks in a cell nucleus 
(Nittman & Gargioni 2010). The small dots correspond to ionizations. 

 

Accelerated heavy ions do not have a unique LET-value because the LET is 

dependent on the kinetic energy and the charge of the particle. For instance, the LET-

value will be increasing at the end of the particle track, when the energy is rapidly 

decreasing. However, different ions with the same LET-value do not result in e.g. the 

same effect on a cellular level (Belli et al 1992, Goodhead et al 1992), which makes LET-

values suboptimal for beam quality specification. A solution for specifying an ion beam 

quality could be to specify average LET-values over the volume of interest, while 

additionally specifying particle type and incident energy.  
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Table 1: Example of LET-values for different beam qualities (ICRU 1970). 

Beam quality LET-value† (keV/μm) 
60 0.23 ��������	 

2 MeV electrons 0.20 

22 MV x rays 0.19 

200 kV x rays 1.7 

50 kV x rays 6.3 


���
����-particles (whole track) 43 
†

 

This is the track-average values of LET in water, with cut-off energy 0.1 keV. For more 
information, see ICRU report 16 (ICRU 1970). 

Following high-LET irradiation, the dose in the track core will be in the region 105-

107

 

 Gy. In solid state detectors, such extremely high doses cause a saturation, i.e., the 

energy deposition is so dense that it is impossible to detect all the energy absorbed in the 

form of radiation induced radicals (Waligorski et al 1989). Saturation may also occur when 

irradiating a detector with a low-LET beam to extremely high doses, although the 

microscopic processes causing this effect could be somewhat different (Hansen & Olsen 

1985, Nelson 2005, Snipes & Horan 1967, Waligorski et al 1989). So called dose saturation 

for low-LET beams results in dose response curves typically described by an exponential 

rise to maximum.     

2.3 Energy dependence and relative effectiveness 

The energy dependence, ��,��, of a dosimeter is the dosimeter reading per dose (in terms 

of dose to water) (� ��! ) in a user beam quality, �, relative to that for a reference beam 

quality ��. The energy dependence may be written as follows:  
 

        ��,�� = (" �#! )$
(" �#! )$�

      (5) 
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Introducing the dose to the dosimeter, ��%&, equation 5 may be written as 

 

      ��,�� = (" �#! )$
(" �#! )$�

= (" �'*+! )$
(" �'*+! )$�

(�'*+ �#! )$
(�'*+ �#! )$�

=  -�,��.�,��   (6) 

 

-�,�� = (" �'*+! )$
(" �'*+! )$�

 is the relative effectiveness (or relative radiation yield) of the 

dosimeter, which relates the dosimeter reading per dose to the dosimeter for a specific 

beam quality � to that for a reference beam quality ��. .�,�� = (�'*+ �#! )$
(�'*+ �#! )$�

 is the ratio of 

absorbed doses in the dosimeter and in water following irradiation with beam quality �, 

relative to the same ratio for a reference beam quality. This quantity may be obtained by 

cavity theory or Monte Carlo simulations. Furthermore, ��,�� is the reciprocal of ��,�� 

given for ionization chambers, as outlined above (cf. equation 4). For a constant yield of 

radicals per absorbed dose to the dosimeter for all beam qualities, -�,��equals unity and 

��,��thus equals .�,��. 

 

2.4 EPR spectroscopy 

Electron paramagnetic resonance (EPR) spectroscopy is a versatile method which may be 

used for many purposes, among them dosimetry. The method may be used to detect free 

radicals by microwave induction of electron spin transitions using a phase sensitive 

detection principle. Here, only the principles of continuous wave EPR spectroscopy are 

discussed. A more thorough description of the principle of EPR may be found in suitable 

textbooks (e.g., Atherton 1993).   

 

2.4.1 Resonance 

In an idealized sample containing radicals placed in an external magnetic field (with field 

strength B0), the unpaired electrons may take two different states due to their magnetic 

moment, with the electron spin either parallel (|/0 10) or anti-parallel (|20 10) to the external 

field. 2 denotes the state with the lowest energy. The ratio between electrons in the two 

states will follow a Boltzmann distribution, with the majority of unpaired electrons in the 

lower (|20 10) spin state (Atherton 1993).  
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To induce transitions between the two states, microwaves may be introduced 

using the magnetic component of a time dependent electromagnetic field of frequency 

3� applied perpendicular to the external field. Varying the magnitude of the external 

magnetic field, a resonance takes place when the microwave frequency satisfies the 

resonance condition, 43� = 5678�, which is a match of the energy separation between 

the two eigenstates of the unpaired electrons. g is the gyromagnetic ratio of the electron 

(free electrons have a value of approximately 2.0023). 4 is Planck’s constant divided by 2
 

and 67 is the Bohr magnetron. The induced transition probability, 9, between the two 

states is given by: 

 

      9;< = 9<; = >

4 |?/�.��2@|>�(� A ��)        (7) 

 

H’ is the perturbed Hamiltonian of the system, incorporating possible magnetic 

interactions when the spin is in a molecular environment, including electron and nuclear 

Zeemann terms and hyperfine and quadrupole couplings. Equation (7) states that induced 

transitions only happen at resonance, i.e., when � = ��, and the probability of induced 

transitions from |/0 10 to |20 10 is the same as from |20 10 to |/0 10. 
Under equilibrium (without external microwaves), in order for the Boltzmann 

distribution to prevail, spontaneous transitions are postulated so that: 

 

 B<C< = B;C�       (8) 

 

B; and B< are the number of spins in the two states. W is the probability of spontaneous 

transitions. The fact B; < B<, implies that C; > C<. The inverse total spontaneous 

transition probability ( F
GHIGJ

) is the spin-lattice relaxation time, T1, which is a measure of 

the time the spin population uses to recover from a state of non-equilibrium. In addition, 

a spin-spin relaxation time, T2

 In theory, the resonance conditions will only be fulfilled for a given microwave 

frequency (cf. eq. 7). Due to B< > B; net microwave energy will be absorbed by the spin 

system. Lifetime broadening and small energy perturbations give a resonance curve with 

, may be introduced to describe relaxation processes due to 

spin-spin interactions in the molecular surroundings. 



16 
 

maximum absorption at the resonance frequency. The absorption curve may be of 

Lorentzian, Gaussian or Voigtian line shape, where the latter is a convolution of the two 

first (Atherton 1993, Weil et al 1994). The Voigtian may be described by the relaxation 

times, T1 and T2

 

, in addition to the resonance frequency, the microwave power and a 

term describing inhomogeneous broadening (Lund et al 2009).  

2.4.2 Signal detection 

The resonance condition may be achieved by keeping the external magnetic field 

constant and varying the microwave frequency, or by varying the external magnetic field 

while the microwave frequency is kept constant. Continuous wave EPR spectroscopy  

commonly uses the latter method. To detect the absorption of microwave energy, a 

technique called phase-sensitive detection is applied. An oscillating modulating magnetic 

field (field strength Bm) is superimposed on the slowly increasing B0-field and hence the 


������
�������������������
�����
������������������!m accompanying Bm

 

. Normally, the 

modulation amplitude should be significantly smaller than peak-to-peak line width of the 

EPR signal, and the detected signal will closely approximate the first derivative of the 

absorption spectrum. Increasing the modulation amplitude leads to a distortion of the 

detected EPR signal and a line shape which deviates from the first derivative of the 

absorption spectrum. 

2.4.3 Microwave saturation 

For high microwave field powers, the EPR signal may be saturated, which is due to an 

overload of the spin relaxation mechanisms in the system studied. Saturation leads to a 

reduction in the signal increase with increasing microwave power. At increasing 

microwave power, the detected signal peaks at a given microwave power, and a decrease 

in the signal is commonly observed at higher powers.  Microwave saturation curves for 

lithium formate irradiated with gamma rays, neutrons, protons and nitrogen ions are 

shown in figure 5. 
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2.4.4 EPR Imaging 

Using a gradient field encoding technique, it is possible to study the radical distribution 

within a sample. This is called EPR imaging (EPRI). 1D and 2D EPRI studies have been 

performed successfully for dosimetric purposes (Gustafsson et al 2008a, Kolbun et al 

2010, Leveque et al 2009, Vanea et al 2009) but the techniques are still under 

development. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Microwave power saturation of lithium formate dosimeters irradiated with 
gamma rays (g), protons (p), neutrons (n) and nitrogen ions (N). The figure is from 
pellets used in paper I and II, and was published by Lund et al (2009). T2

 

 relaxation 
times derived from the saturation characteristics are displayed in the inset. 
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3 LITHIUM FORMATE EPR DOSIMETRY 
In the search for an EPR dosimeter material more sensitive than alanine, applicable to 

radiotherapy, lithium formate monohydrate was suggested (Lund et al 2002, Vestad et al 

2004a, Vestad et al 2003). This material was chosen among ammonium tartrate, salts of 

formic acids and dithionates by the groups in Oslo and Linköping because of its sensitivity, 

radical stability, atomic composition close to that of water and simple EPR spectrum (only 

one, albeit broad, resonance line). Further studies have also investigated and found other 

advantageous properties compared to alanine, like low energy dependence. This chapter 

will give an overview of the studies performed on lithium formate EPR dosimetry. 

 

3.1 Material, dosimeter production and stability of EPR signal 

Lithium formate EPR dosimeters have been produced manually in all published works. In 

the papers in this thesis, polycrystalline powder of lithium formate has been pressed into 

cylindrical pellets of different sizes using a hydraulic, pressure controlled pellet press. 

Reported dimensions range from the smallest pellets with diameter 3 mm, height 2 mm 

and weight of approximately 20 mg (paper VI) to the largest dosimeters with diameter 4.5 

mm, height and weight approximately 5 mm and 100 mg, respectively (Gustafsson et al 

2008b).  

Dosimeters consisting of pure lithium formate monohydrate have exclusively been 

used in the current thesis. Studies using paraffin wax (5 – 20% per weight) as binder 

together with lithium formate have also been performed (Adolfsson et al 2010, Antonovic 

et al 2009, Gjøvik 2010, Gustafsson et al 2008b). Regarding the use of binder, the results 

are not conclusive although the use of a binder is reported to make the dosimeters more 

robust (Adolfsson et al 2010). Including a binder in the dosimeter could also make the 

dosimeter more stable to varying environmental conditions. However, accurate Monte 

Carlo calculations might be more difficult due to the complex composition of powderous 

mixtures. Furthermore, the water equivalence, with respect to absorption properties, 

may be altered.  

The influence of temperature, humidity and light on the stability of the lithium 

formate EPR signal is not fully understood, although fading properties have been reported 

(Fetene 2007, Gjøvik 2010, Gustafsson 2008, Komaguchi et al 2007, Vestad et al 2003). 
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Vestad et al. (2003) found no changes in the signal shape or intensity during one week 

after irradiation and Gustafsson (2008) reported no significant changes in the signal 

during 28 days. However, Komaguchi et al. (2007) reported significant signal fading of 

pure irradiated lithium formate and lithium formate doped with 6

The dependence on irradiation temperature on the EPR signal of irradiated lithium 

formate was studied in paper III. A slight increase in signal with irradiation temperature 

was found, and the effect was similar to what was found for alanine dosimeters. 

Li, stored in sealed glass 

tubes or in air. This experiment was performed in Japan, and the results indicate that high 

temperature and high humidity could influence radical stability. This may partly be 

explained by the water content in lithium formate monohydrate (LiOOCH·H2O), which 

may depend on variations in atmospheric humidity. This is also supported by results of 

Fetene (2007) and Gjøvik (2010), which report a relatively high loss in EPR signal following 

high or low humidity and high temperatures. In this thesis a short time (normally within 

24 h) from irradiation to readout has been pursued, and the storing conditions have been 

in sealed containers in the dark at ambient temperature and humidity. 

 

3.2 EPR readout parameters 

EPR readout parameters, i.e., filter time constant, sampling time, modulation amplitude, 

microwave power, scan resolution and amplifying gain, influence the signal amplitude, 

the signal to noise ratio, the scan time (which is the product of the resolution and 

sampling time) and the line shape of the signal. Vestad et al. (2003) presented the 

dependence of lithium formate EPR intensity on microwave power for different 

modulation amplitudes. Also, the dependence of the peak-to-peak line width of the first 

derivative lithium formate EPR spectrum with modulation amplitude and microwave 

power was presented in paper I. The experience with EPR reading parameters in the 

current work has been that each experiment requires an optimized set of parameters, 

and previous publications have been useful to select appropriate parameters. 

For clinical EPR dosimetry, standardized setup, equipment and readout 

parameters should be employed. For experiments concerning basic research and 

advanced spectroscopy, the optimal parameters may vary for different issues studied, but 

they also depend on the spectrometer and cavity adopted. The effective microwave 
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power in a cavity is normally not the same as the nominal power. In the current thesis, 

the issues discussed in paper I and II (broadening of EPR resonances), required different 

and more time consuming readout parameters compared to paper VI, where a dosimetry 

study with small dosimeters were performed and quick readout times were needed. In 

paper III, the ‘softest’ parameters were employed, due to extremely high doses being 

used. 

 

3.3 LET effects 

One of the issues discussed in this thesis was to investigate the feasibility of using lithium 

formate EPR dosimeters to estimate the linear energy transfer (LET). In others words, it 

was of interest to look for an “LET fingerprint” in the EPR spectrum. This was mainly 

discussed in paper I and II, where lithium formate EPR dosimeters were irradiated with 

neutrons (paper I), protons and nitrogen ions (paper II), all of these particles normally 

having higher LET than the reference beam quality used, 60

The first observation indicating an LET-effect in the form a of broadening of the 

EPR resonance line of lithium formate for samples irradiated with neutrons compared to x 

rays was reported by Lund et al. (2004). The line broadening was attributed to increased 

dipolar spin-spin interactions in the dense tracks of high-LET neutrons. However, the 

effect was only briefly mentioned without showing any data to confirm the statement. In 

paper I, an increase in the line width of the EPR resonance line following high-LET neutron 

irradiation was described and quantified. In addition, differences in microwave power 

saturation characteristics were found between dosimeters irradiated with the low- and 

high-LET radiation. A more quantitative analysis of the influence of LET on the EPR line 

width, using a semi empirical line broadening model, was performed in paper II. The line 

width of the EPR resonance line of irradiated lithium formate as a function of LET, as 

found in paper II, is displayed in figure 6. Non-linear least squares regression using the 

semi empirical model is also shown. 

����-rays.  
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Figure 6: The EPR line width of irradiated lithium formate dosimeters as a function of 
LET-value of the incident radiation (protons and N-ions), as presented in paper II. Solid 
and dotted lines are regressions following a semi empirical model, also presented in 
paper II. 

  

3.4 Modifications of the dosimeter 

Different approaches have been tested to modify lithium formate dosimeters to enhance 

specific properties. This includes mixing lithium formate with other materials, exchanging 
7Li with 6

Malinen et al. (2004) mixed lithium formate and calcium formate and used the 

composite dosimeter for estimation of x-ray beam qualities. In that work, the different 

interaction properties and EPR properties of lithium formate and calcium formate were 

used to determine the effective energy of x-ray beam qualities used. 

Li and water with heavy water, and doping of lithium formate with nickel. 

Lund et al. (2004) explored the possibility to use 6Li enriched lithium formate for 

dosimetry in mixed radiation fields of photons and neutrons. They found that 6Li formate 

was approximately twice as sensitive as 7Li formate at the same spectrometer settings 

and x-ray dose. In a mixed photon/neutron field, the 6Li enriched samples gave 2.5 times 
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as high signal as regular lithium formate, but a tendency of non-linearity of the dose 

response was also noted. The increased sensitivity for neutrons was explained by the high 

capture cross-section of 6"�#�$��'3H reactions as compared to that for 7

Komaguchi et al. (2007) also used 

Li. 
6Li enriched lithium formate and exchanged the 

water of crystallization with D20, to increase the sensitivity of lithium formate. The impact 

of heavy water seemed to be negligible, while the 6Li enrichment resulted in an EPR line 

width of 0.92 mT, which is significantly less than that of regular lithium formate (~1.5 

mT). Dosimeters made of 6

Another approach to further increase the sensitivity of lithium formate was 

proposed by Danilczuk et al. (2007). They doped lithium formate with NiCl

Li enriched lithium formate were demonstrated to be around 8 

times as sensitive as alanine, with a linear dose response from around 0.1 Gy.  

2

 

 and 

demonstrated by this an approximate doubling of the dosimeter response. However, the 

modifications influence the water equivalence of the dosimeter, and necessitate further 

investigations before being applied in clinical dosimetry. 

3.5 High dose properties 

The dose response of lithium formate is shown to be linear from about 0.2 Gy (Vestad et 

al 2003) to approximately 20 kGy (paper III). In the latter work, a saturation dose (i.e., the 

dose at which 63% of the saturation level is reached) of 53 kGy was found. For 

comparison, alanine was found to have a saturation dose of 87 kGy in the same work. 

Thus, lithium formate appears to be applicable for high dose applications, with a 

somewhat lower saturation dose than alanine. Furthermore, no difference in EPR signal 

per dose was found upon irradiating dosimeters using dose rates of 5.5 kGy/h and 0.6 

kGy/h to doses between 100 Gy and 10 kGy. 

 

3.6 Energy dependence 

The energy dependence of lithium formate is described by comparing the variations in 

EPR signal when dosimeters are irradiated with clinical beam qualities to that resulting 

from irradiations with 60����-rays (cf. Ch. 2.3). Measured values for lithium formate, ��,��, 

found in paper V (medium energy x rays), Vestad et al. (2004b) (clinical photons) and 

paper IV (clinical electrons) are shown in figure 7. The Monte Carlo calculated energy 
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dependence, .�,��,  from paper IV and V in addition to unpublished results, are also 

included. Additionally, a recent paper discusses the energy dependence and relative 

effectiveness for lithium formate irradiated with kV photons (Adolfsson et al 2010), 

applying air kerma based dosimetry. 

 

 

Figure 7: Measured (black dots) and Monte Carlo calculated (red dots) energy 
dependence of lithium formate dosimeters irradiated with medium energy x rays, 
clinical photons and electrons. The results for clinical electrons and medium energy x 
rays are from paper IV and V, while measurements of clinical photons are from Vestad 
et al. (2004b). For the latter beam quality, unpublished Monte Carlo results are 
included.  

 

3.7 Clinical applications 

The first work using lithium formate EPR dosimetry in a clinical setting was published by 

Gustafsson et al. (2008b). Here, lithium formate was used for verification of intensity 

modulation radiation therapy (IMRT) planning by experimental point measurements. The 

dosimeters used were cylindrically shaped pellets (diameter 4.5 mm, height 5 mm) with 

paraffin binder (10% by weight). The authors reported that the method could be used for 

dose determination within 2.5% uncertainty (coverage factor 1.96) for doses above 3 Gy 

and dosimeter reading times less than 15 min, while an apparent precision of 0.5% was 

noted using these dosimeters. 
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Antonovic et al. (2009) used lithium formate EPR dosimetry to perform dose 

measurements around 192

The use of lithium formate EPR dosimetry in stereotactic radiosurgery (SRS) was 

explored in paper VI. In that work, measured 2D dose distributions of an SRS treatment 

plan were presented and compared to the dose plan. In addition, analyzes of random and 

systematic errors in the treatment chain were performed.  The feasibility of using small 

lithium formate dosimeters (diameter 3 mm and height 2 mm) and short readout times 

for 2D clinical dosimetry was demonstrated. A precision of 1.7% was reported.  

Ir brachytherapy sources. Cylindrical pellets with diameter 4.5 

mm and height 4.8 mm were employed and the irradiations were performed using both 

high dose rate (HDR) and pulsed dose rate (PDR) brachytherapy. Experimentally 

determined doses were within ±2.9% of treatment planning dose calculations. 

 

3.8 EPRI using lithium formate 

In two recently published studies (Kolbun et al 2010, Vanea et al 2009), the use of lithium 

formate in electron paramagnetic resonance imaging (EPRI) was investigated. Vanea et al 

(2009) used pellets of lithium formate with diameter 22 mm and height 10 mm to 

measure dose distributions from 125

  

I brachytherapy seeds. Holes were drilled in the 

centre of the pellets for insertion of the seeds. 2D dose distributions and comparisons 

with Monte Carlo simulations were presented. In conclusion, lithium formate was 

demonstrated to have several favourable properties compared to e.g., alanine, but the 

natural line width of lithium formate (1.5 mT) seemed to be too large compared to the 

desired spatial resolution.   
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4 SUMMARY OF PAPERS 

4.1 Paper I 

Malinen E, Waldeland E, Hole E O and Sagstuen E, LET effects following neutron 

irradiation of lithium formate EPR dosimeters. Spectrochimica Acta Part A 63 (2006) 861-

869 

 

Lithium formate EPR dosimeters were irradiated with fast neutrons from a 238Pu-Be 

source, and the EPR signal was compared to that of dosimeters irradiated with 60

The increase in peak-to-peak line width following neutron irradiation was 

suggested to originate from increased local radical density following high-LET irradiation. 

With high local radical density, T

��� �-

rays. The high-LET (neutron) irradiated dosimeters gave EPR spectra with a significant 

increase (4.4%) in peak-to-*��+� ����� ��
��� ��� ���*���
� ��� ����� ����� �-irradiated 

dosimeters. Additionally, microwave power saturation properties were found to be 

different for neutron- ��
� �-irradiated dosimeters. The dependence of EPR acquisition 

parameters (microwave power and modulation amplitude) on the peak-to-peak line 

width of the EPR spectrum was also elucidated. 

2

This work was the first to quantitatively show changes in the EPR spectrum 

following high-LET irradiation of lithium formate dosimeters, although the line 

broadening was briefly mentioned in an earlier work (Lund et al 2004). It was suggested 

that the LET effects found could be used as LET “fingerprints” and that these properties 

could be used for LET determination in beam qualities with an unknown LET value.  

 relaxation times will be shorter due to increased spin-

spin interactions, leading to the observed differences in microwave power saturation 

properties.  
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4.2 Paper II 

Waldeland E, Hole E O, Stenerlöw B, Grusell E, Sagstuen E and Malinen E, Radical 

formation in lithium formate EPR dosimeters following irradiation with protons and 

nitrogen ions. Radiation Research 174 (2010) 251-257 

 

The purpose of this work was to further investigate the LET dependence on the EPR 

spectrum of irradiated lithium formate. Proton beams having LETs of 0.7-3.9 keV/μm and 

nitrogen beams of 110-164 keV/μm were used to irradiate lithium formate dosimeters, 

��
� ���� ���������� >?@� �*������ ����� ���*���
� ��� ������ ���� �-irradiated dosimeters (LET 

0.2 keV/μm). Track structure theory and modelling of detector effectiveness was used to 

predict the detector response as a function of the LET of the incident beam. 

An increased peak-to-peak line width and reduced relative effectiveness with 

increasing LET value of the incident beam were found, although the range of LET values 

and types of particles were limited. The reduced relative effectiveness with increasing LET 

was explained by an increasing number of recombinations due to higher local ionization 

density. The increased line width was explained by increased local radical density, as in 

paper I, resulting in increased dipolar intra-track spin-spin relaxation following high LET 

irradiation.  

 

4.3 Paper III 

Waldeland E, Helt-Hansen J and Malinen E, Characterization of lithium formate EPR 

dosimeters for high dose applications – comparison with alanine. Radiation 

Measurements 46 (2011) 213-218 

 

This work comprised lithium formate and alanine dosimeters, and the main goal was to 

investigate high dose properties of lithium formate dosimeters and to compare these 

properties with those for alanine.  

Dosimeters were irradiated to doses from 100 Gy to 100 kGy, and the EPR response 

was evaluated. An exponential rise to maximum function was fitted to the experimental 
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data, and the D0-value1

Using the peak-to-peak value of the first derivative EPR spectrum as dose indicator, 

saturation doses (D

 (Katz 1978, Rotblat & Simmons 1963) was extracted. The EPR 

signal was also studied for different irradiation temperatures from 11°C to 40°C and two 

different dose rates (5.5 kGy/h and 0.6 kGy/h). 

0) of 53.5 kGy and 87.1 kGy were found for lithium formate and 

alanine, respectively. No estimates have previously been reported for lithium formate, 

while the result for alanine is within the range of reported D0

An increased line width of the EPR signal with absorbed dose was observed for both 

dosimeter materials. In contrast to paper I and II, where the line width increase was 

explained by high intra track radical density, this current observations were attributed to 

high inter track radical density when using extremely high doses.  

-values in the literature. No 

dose rate effect was observed neither for lithium formate nor alanine. A small 

dependence on irradiation temperature was seen for both dosimeter materials, with 

temperature coefficients, that is, the percentage change in dosimeter signal per °C 

change in irradiation temperature, of 0.154 and 0.161 for lithium formate and alanine, 

respectively. 

 

4.4 Paper IV 

Malinen E, Waldeland E, Hole E O and Sagstuen E, The energy dependence of lithium 

formate EPR dosimeters for clinical electron beams. Physics in Medicine and Biology 52 

(2007) 4361-4369  

 

The purpose of this work was to estimate the energy dependence of lithium formate 

dosimeters irradiated with clinical electron beams. Electron beams with a nominal energy 

of 6 to 20 MeV were used to irradiate lithium formate pellets in a PMMA phantom. The 

EPR signal of the dosimeters was compared to that for 60

  

����-irradiated dosimeters and 

the energy responses were thus found. Energy responses were compared to Monte Carlo 

simulations.  

                                                      
1 D0 is the characteristic ‘saturation dose’ of the detector, at which 63% of the saturation level is reached. 
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The average energy response for lithium formate was 0.99 ± 0.03, and the 

experimental results were in good agreement with those from the Monte Carlo 

calculations. The influence of the phantom material was studied by Monte Carlo 

simulations using PMMA, water and polystyrene as the medium in which the dosimeters 

were inserted.  The simulated energy response was virtually independent of phantom 

material, reflecting both the low energy dependence of lithium formate and the relatively 

high accuracy of the dosimetry procedure (IAEA 2001) used. 

The work demonstrated that lithium formate is nearly independent of electron 

beam energy for clinical electron beams, which is a clear advantage in clinical dosimetry. 

 

4.5 Paper V 

Waldeland E, Hole E O, Sagstuen E and Malinen E, The energy dependence of lithium 

formate and alanine EPR dosimeters for medium energy x rays. Medical Physics 37 

(2010) 3569-3575 

 

This work is a continuation of paper IV, but for medium energy x rays. Alanine was 

included for comparison. Eight different x-ray beam qualities were used, with nominal 

potentials from 50 to 200 kV. The dosimeter response was compared to that for 60

Energy responses ranging from 0.89 to 0.94 for lithium formate and 0.68 to 0.90 for 

alanine were found. Monte Carlo calculations were systematically higher, on average 4% 

and 6% for lithium formate and alanine, respectively. 

����-

rays. Experimental energy responses were compared to estimates from Monte Carlo 

simulations.  

In paper IV, good correspondence was found between measured and Monte Carlo 

simulated energy responses, indicating a relative effectiveness (cf. Equation 4) close to or 

identical to 1. In contrast, paper V showed a relative effectiveness systematically below 

unity, indicating a reduced radiation yield for dosimeters irradiated with x rays of medium 

�������������*���
����������������
�������-irradiated dosimeters. The results for alanine 

seemed to be in good agreement with the literature, where both experimental and 

theoretical works have been performed.  
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Lithium formate showed less dependence on medium energy x rays than alanine, 

and it was also indicated that a higher fraction of the radiant energy absorbed resulted in 

������� ��
������ ��� �������� �������� ���*���
� ��� �������� #������\�� ��� �-rays). The reduced 

relative effectiveness was explained by increased ion recombinations following x-ray 

irradiation, due to higher LET values of the secondary electrons as compared to the LET of 

�-rays. However, no line broadening as reported in paper I, II and III were observed. 

 

4.6 Paper VI 

Waldeland E, Hörling M, Hole E O, Sagstuen E and Malinen E, Dosimetry of stereotactic 

radiosurgery using lithium formate EPR dosimeters. Physics in Medicine and Biology 55 

(2010) 2307-2316 

 

The clinical use of lithium formate EPR dosimetry was explored in paper VI, applied to 

stereotactic radiosurgery. In this work a large number of dosimeters were employed. The 

size of these dosimeters is the smallest used to date for lithium formate EPR dosimetry. 

The pellets were placed in a 2D grid in an anthropomorphic head phantom, giving a 

spatial resolution of 4 mm.  

Three replicate measurements were performed with the phantom undergoing a 

realistic treatment chain of stereotactic radiosurgery. A dose deviation of 2.2% was seen 

between measurements and dose plan in the central region of the dose distribution and 

the measured dose profiles were slightly narrower than the planned dose profiles. The 

systematic and random positioning errors were also calculated. Systematic positioning 

errors were 1.0 mm and 0.4 mm in the vertical and lateral direction, respectively, and 

random positioning errors 0.9 mm and 0.5 mm in the vertical and lateral direction, 

respectively. This is well within recommended limits for stereotactic radiosurgery. 

Paper VI demonstrated the feasibility of lithium formate EPR dosimetry in a clinical 

setting, employing small and sensitive lithium formate dosimeters and fast dosimeter 

readout. The standard deviation of dosimeter readings was 1.7%, indicating that the 

precision of these small dosimeters was relatively high in the current work. 
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5 DISCUSSION OF RESULTS AND OUTLOOK 
Dose measurements by ionization chambers and diodes are in many cases the methods of 

choice for clinical dosimetry. However, offline systems like films, gel dosimetry, TL 

dosimetry and EPR dosimetry provide useful alternatives. These systems have pros and 

cons, and may be preferable in different situations. TL-dosimeters and EPR dosimeters are 

maybe the most similar dosimeters in their physical characteristics, being small rods or 

pellets which may be inserted into phantoms or used for in vivo dosimetry. However, 

when coming to water equivalence, interaction properties and sensitivity, there are 

differences. TL-dosimeter materials like LiF, which is one of the most used TL-materials 

for clinical purposes, are the more sensitive as compared to EPR materials like alanine and 

lithium formate. Lithium formate has an effective atomic number, Z, of 7.3 and is the 

most water equivalent material (Z of water is 7.5) of the dosimeters discussed, while 

alanine and lithium fluoride have effective Z-values of 6.8 and 8.3, respectively (Nowotny 

1998, Vestad et al 2004b). Figure 3 shows that lithium formate has the smallest energy 

dependence over a wide range of photon beam qualities.  

In this thesis, some properties of the lithium formate EPR dosimetry system 

related to high LET irradiation and high dose applications have been elucidated in 

addition to the determination of energy correction factors. In addition, one clinical 

application is presented. However, there are still missing steps on the path of bringing 

lithium formate dosimeters into routine clinical use.  

Papers I and II discussed the shape of the lithium format EPR signal when the 

dosimeters were irradiated with high-LET beam qualities (neutrons, protons and N-ions), 

as compared to the EPR signal following low-LET �-radiation. Among other topics, the 

possibility of using the peak-to-peak line width of lithium formate as an LET indicator was 

addressed. These two papers clearly demonstrate an LET-effect of the EPR signal, but the 

observed differences between the EPR signal following low and high-LET irradiation were 

not particularly large (up to 6% increase). Thus, measurements of line widths may not be 

sufficiently precise for LET determination. However, in paper I and in the paper by Lund et 

al. (2009), the microwave power saturation analysis gave larger differences, especially in 

the P0 parameter (microwave power at saturation). Few beam qualities (and LET values) 

were used in the experiments, due to low accessibility of beam sources and facilities. To 
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improve or confirm the modelling of detector effectiveness used to predict the detector 

response as a function of the LET, more beam qualities should be added in future 

experiments. However, as discussed in paper II, LET alone is not sufficient for explaining 

the detector effectiveness, as the track structure of the ionizing particles and the cross 

section for radical formation also play a role. Thus, both the type of particle and the LET 

value (or kinetic energy) should in principle be addressed when discussing effects from 

densely ionizing radiation beams. 

The measurements of energy dependence in papers IV and V were not performed 

at a Primary Standards Dosimetry Laboratory (PSDL), and hence the dosimetry has fairly 

large uncertainties (typically 2-3%). The measurements for electrons were also performed 

in PMMA, while the recommended measurement medium was water. This issue was 

discussed thoroughly in paper IV. For more accurate energy correction factors for the 

beam qualities discussed, measurements at a PSDL should be performed. 

In Paper VI, small lithium formate dosimeters were applied. This paper is to our 

knowledge the first work to perform 2D EPR dosimetry in a phantom using a large 

amount of dosimeters. The experimental setup may also be used for e.g., the 

determination of the dose distribution from intensity modulated radiotherapy (IMRT). 

However, the introduction of EPRI opens the potential for performing 2D or 3D 

measurements with even higher resolution and the method may add valuable 

information with respect to measuring dose distributions following high-LET irradiation. In 

any case, small lithium formate dosimeters may also be relevant for small field dosimetry, 

where the radiation beams have dimensions of typically less than 1 cm. 

For accurate dosimetry, standardized EPR readout parameters should be used, as 

addressed in chapter 3.2. Further studies should focus on deriving optimal EPR readout 

parameters for lithium formate EPR dosimetry. The results of this thesis show a relatively 

high precision in the dosimeter readings (typically 1 - 2%), even though different readout 

parameters and experimental set-up were applied in the different experiments. 

Dosimetry studies using standardized readout parameters and set-up are hence 

anticipated to yield an even higher precision. 

There is a lack of studies addressing signal fading of irradiated lithium formate 

dosimeter and the dependence on environmental conditions. Further manufacturing 

studies should also be done to improve the dosimeter composition and to elucidate the 
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impact of binder materials on the signal stability, dosimeter properties and sensitivity. It 

is also possible that the use of high-LET beam qualities may result in lower radical stability 

in lithium formate dosimeters as compared to that observed after irradiation with low-

LET beam qualities, in analogy with alanine (Hansen & Olsen 1989). 

Even though EPR dosimeters presently are rarely used for routine clinical 

dosimetry due to a rather low accessibility of EPR spectrometers and, to date, low 

sensitivity of the available clinical dosimetry system (alanine), feasibility studies have 

been performed (Ciesielski et al 2003, Schultka et al 2006, Wagner et al 2008). The non-

destructive readout and the resulting possibility to do cumulative dosimetry during the 

course of radiotherapy are attractive properties. Also, long-time storage of dosimeters for 

the documentation of consecutive treatment periods may be relevant. However, other 

convenient systems for clinical dosimetry are commonly available in most clinics, which 

reduce the need for EPR dosimetry. In spite of that, lithium formate EPR dosimetry could 

be a candidate for an independent dosimetry system used for quality assurance, 

complementary dose measurements to the routine systems and as mail-in dosimeter 

system for comparisons or as a service to clinics without their own readout equipment. 

Lithium formate EPR dosimetry could meet the requirements for dosimetry of doses from 

0.1 Gy. The combination of high sensitivity and the possibility to make dosimeters of 

different shapes, in addition to the low energy dependence over a wide range of clinical 

beam qualities makes lithium formate even more interesting and favourable compared to 

other dosimetry systems like alanine EPR dosimetry or LiF TL-dosimetry. 

In order to apply lithium formate in the dose region relevant to radiation 

protection (< 0.1 Gy), more work is certainly needed. For this purpose, systematic studies 

using both the technically most advanced equipment (in particular, microwave bridge, 

signal channel and cavity system) available as well as more routine equipment, an also 

optimized readout parameters should be performed for both pure lithium formate and 

manipulated lithium formate. A relevant issue is for instance to determine the lowest 

detectable dose. However, chemical and physical manipulations of lithium formate 

should not alter the other favourable properties of lithium formate (e.g., low energy 

dependence) to a large extent. 

In summary, the results of this thesis show that lithium formate EPR dosimetry is a 

method which may be used for estimating the LET of an unknown incident beam, for high 
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dose purposes, as a clinical in vivo dosimeter for x rays, electrons, protons and heavier 

particles and for quality assurance in the clinic. However, more research is needed to 

assess long term fading and to standardize the method. 
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