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Preface

The work presented in this thesis has been focused on understanding en-
tanglement and entangled states in quantum physics. Entanglement is a
fundamental property of quantum mechanics which leads to many difficult
interpretational and philosophical problems. It appears counterintuitive to
our everyday understanding of how things work and is therefore highly in-
teresting in and of itself.

Although conceptually challenging and philosophically interesting, there
are also several motivating factors for the study of entanglement in applica-
tions of quantum theory. Entanglement is considered a resource in quantum
information theory, and is used in quantum computers which may be used
to outperform classical computers in various applications of interest, and for
secure communication by ways of quantum cryptography. The problem how-
ever, is that entanglement is a fragile resource still. Despite our best efforts,
it is difficult to remove the danger of losing the entanglement in practical im-
plementations. If not kept completely isolated, quantum systems will interact
with the environment around them, which leads to loss of entanglement in
the total system itself.

In order to deal with loss of entanglement in practice, methods such
as entanglement distillation have been invented in order to distill the less
entangled states to more entangled ones, but with one caveat. The existence
of the qualitatively different types of entanglement called free and bound
entanglement. The type referred to as bound entanglement has been shown
to be impossible to distill [1]. This means that states that initially contained
free entanglement, but who evolved in time through interactions with the
environment in such a way that the entanglement in the state became bound,
are useless at that point as a resource. This is another aspect that motivates
the study of bound entangled states.

For a general overview of the current state of affairs regarding the study
of entanglement, see for instance [2]. In 1996 a criterion for determining
whether or not a state was entangled, based on the partial transposition
map, was presented [3]. It appeared to clearly distinguish separable and
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entangled states in the sense that it formulated an easily testable condition
which separable states satisfied, but which entangled states did not. How-
ever, in 1997 there was provided an example of an entangled state that that
satisfied this condition [4].

The study of bipartite bound entanglement has since been focused some-
what on generating examples of states or classes of states with special sym-
metries in addition to being bound entangled [5, 6, 7, 8, 9, 10, 11]. Some
of these examples have been constructed directly, while others have come
by way of studying entanglement witnesses that detect certain states. This
is also true today, though the activity has shifted a bit from bipartite to
multipartite systems.

One particular approach to the study of entanglement is through geome-
try [12, 13, 14, 15]. The geometrical aspects of entanglement is interesting in
itself, and it might lead to new insight. A geometric approach to the study
of entanglement was developed in [14], on which the work presented in this
thesis is built upon. The idea was that while developing explicit examples
has been both important and fruitful, it becomes necessary to try to obtain a
larger picture by studying the entire set of states, as well as subsets of states
with special properties. The approach is concerned with the convex nature of
various sets of matrices in quantum mechanics, called density matrices, and
exploiting the fact that convex sets are described entirely by their extreme
points.

Analytic studies regarding the geometry of entanglement is in general
quite hard, especially since the dimensions of the systems grow so rapidly.
In hopes of gaining new information and analytical starting points, we have
therefore developed and used numerical tools to aid in the study of entan-
glement.

The work in this thesis builds on the work in [14, 16, 17]. It is there that
many of the concepts and tools we have used in this work were discussed for
the first time, and really my work has to be seen in context with the work pre-
sented there. In [14] many of the underlying ideas were explored, and in [16]
an operational criterion for detecting a particular type of bound entangled
states, extremal positive partial transpose states, was given together with
numerically obtained examples. These results motivated the work presented
here.

Thesis structure

The thesis is organized in two parts. The first part consists of an introduction
to the main topics that are the underpinnings of the work presented in the
four papers that constitute the second part of the thesis. The first part is
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organized as follows.
In chapter 1 we give a short historical overview of some important aspects

of the development of quantum mechanics and the role played by entangle-
ment. It showcases some reasons why entanglement is both unintuitive and
interesting. It also gives a short description of entanglement as a resource in
areas of quantum information theory.

In chapter 2 we give a short introduction to the formal description of
quantum systems and present concepts vital to the work in this thesis such as
partial transposition and special linear product transformations on quantum
systems.

In chapter 3 we give an introduction to the geometrical aspects of density
matrices and entanglement.

In chapter 4 we present four of the numerical methods that have been
developed and used in the work presented in this thesis.

In chapter 5 we give short summaries of the papers and end with some
conclusions and remarks.
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Chapter 1

Introduction

Quantum mechanics is a framework or set of laws that we use to describe
some of the smallest systems in Nature. It was developed in a burst of
activity in the beginning of the twentieth century as a series of attempts to
describe several experimental observations that should have been impossible
according to the physics at the time. Quantum mechanics has since been able
to give predictions that are in amazing agreement with later experiments and
led to discovery of a whole plethora of particles and effects which form our
understanding of Nature today.

Classical physics is mostly concerned with the macroscopic world, where
we are used to deterministic properties of Nature. If we perform a measure-
ment on a large object, check the color of a ball, say, and find that the ball
is red, then our intuition tells us that the ball was also red before we looked
at it. This is a philosophical question, regarding the nature of reality, and
something that quantum mechanics seemed to challenge our understanding
of. The tradeoff that quantum mechanics makes is that it describes outcomes
of measurements by probabilities. Say that we have a quantum version of the
ball, and we know before we check that the ball could be either blue or red,
but once we check we find that the ball is red. Classically we said that well
then the ball was also red before we checked, but quantum mechanics says
that before we checked, the ball was blue with a certain probability p and
red with probability 1 − p. By looking at the ball we apparently somehow
collapse the state of the ball to be a red ball.

This counterintuitive way of describing things has led to many philosoph-
ical debates on what is considered to be real, discussions about whether or
not quantum mechanics can be considered a complete theory and how one
is supposed to understand this apparent collapse of the state of the system
during a measurement. At the heart of many of these problems and arguably
the defining property of quantum mechanics is the concept of entanglement.
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4 Chapter 1. Introduction

Entanglement manifests itself as correlations between results of measure-
ments on different systems that cannot be explained classically. When such
correlations are observed, the systems measured are said to be entangled.

The philosophical aspects and counterintuitive nature of quantum me-
chanics has been and is still a large part of the motivation for studying
entanglement and its properties. Another central motivation is found in the
field of quantum information theory, which is a collective term that encom-
passes such things as quantum computation and quantum cryptography. As
quantum mechanics developed, it became apparent that entanglement is a
fundamental property of the theory, and that it could be used as a resource.
Information was understood to be a physical quantity, and the particular
kind of information stored in entanglement could possibly be harnessed for
tasks where it can be shown to theoretically outperform classical analogues
significantly. This has led to theories of quantum computers and other quan-
tum systems where a key aspect is to be able to control quantum systems.
This is a very hard thing to do, because entanglement is very sensitive to
interactions between the quantum system and the environment.

1.1 Quantum mechanics and entanglement

In the late 1800s physicists made several observations that seemed at odds
with the predictions at the time. Even worse, with new insight from ground-
breaking experiments the physical laws predicted absurdities. An idealized
black body at thermal equilibrium was for instance predicted to apparently
emit radiation with infinite power. This was clearly unphysical and was never
observed.

Another set of strange predictions of the time involved the atom, and
specifically the structure of the atom. Rutherford had proposed his model of
the atom analogous to the solar system model with the nucleus in the center
and electrons as orbiting the nucleus. According to the Rutherford model,
each electron could follow any one of an infinite number of different orbits
around the nucleus, and the orbit could be at any distance from the nucleus.
A big problem with this was that classical physics predicted that since the
electrons constantly change direction or momentum or both, they should
constantly emit radiation. By emitting radiation they would lose energy,
and when losing energy they would have to spiral towards the nucleus and
be absorbed in the end. Thus, all atoms would have to be unstable, and we
should not exist. This, clearly, was wrong.

The third and final problem we will mention might be the one that lead
to some of the most counterintuitive and imaginative explanations of the
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three, the problem with the photoelectric effect and the nature of light. The
photoelectric effect concerns the fact that shining light on metals causes
electrons to be ejected. According to classical physics electrons should be
ejected at any frequency of the light, but this was not observed. Instead, the
frequency had to be raised above a specific point at which electrons suddenly
were ejected. This frequency gap was impossible to reconcile with classical
electromagnetic theory.

All of the problems mentioned above were resolved with the introduction
of quanta in physics. In order to explain the black body radiation problem,
Planck proposed in 1900 that the radiated energy E of the black body could
only be emitted in quantized form, En = nhν, proportional to the frequency ν
of the radiation with n the number of quanta. The proportionality constant h
was dubbed Planck’s constant and was obtained through experiments. Bohr
introduced the concept of quanta in relation to the orbits of electrons around
the nucleus, by proposing that the orbits themselves should be treated as
quantized. Hence, the electrons could not continuously move from one orbit
to another, the only possibility were for them to spontaneously jump from
one orbit to another. This explained both the never observed instability of
all atoms and also the already experimentally observed frequency bands of
emitted light from atoms.

Albert Einstein explained the photoelectric effect when he proposed the
novel idea that light may be mathematically treated as quanta. These quanta
would later be called photons. The idea that light was somehow consisting
of light particles seemed very counterintuitive at the time, but was a nice
explanation for the observed properties of the photoelectric effect. Even
though he later presented his well known special and general theories of
relativity, it was the photoelectric effect that garnered him the Nobel Prize
in physics in 1921. Some three years later Louis de Broglie proposed, based
on the theory that light could be viewed as particles, that particles also could
be described as waves. The theory was built on special relativity and initially
concerned only a single particle.

The explanations involving quanta in physics were at first very phe-
nomenological, in the sense that they explained the phenomena but there was
no framework, no set of tools, to use in describing the physical implications
of the theories. In 1925, building on de Broglie’s work, Erwin Schrödinger
invented wave mechanics while Werner Heisenberg and Max Born invented
matrix mechanics, two seemingly different approaches to quantum mechanics.
Later Schrödinger showed that the two approaches actually are equivalent.
Now equipped with a formalized framework for quantum mechanics, the field
has only continued to grow since.
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1.1.1 The EPR paradox

Although the explanatory power of quantum mechanics was strong, some of
the questions it raised were rather eye popping. Some of the initial criticism
towards quantum mechanics was formulated as a famous thought experi-
ment by Albert Einstein, Boris Podolsky and Nathan Rosen in their paper
titled ¨Can Quantum-Mechanical Description of Physical Reality Be Consid-
ered Complete?¨ from 1935 [18]. In the paper they point to counterintuitive
properties of quantum mechanics such as the act of one system instanta-
neously affecting another system infinitely far away and the completeness of
the information content in quantum mechanics. Does a quantum mechanical
description contain all the information in a system, or is it lacking something?

Completeness in the sense of EPR means that in a complete theory of
Nature, there exists an element in the theory corresponding to every element
of reality. They argued that a sufficient condition for a quantity to be an
element of reality is that it is possible to predict the value of the quantity
with absolute certainty without disturbing the system in any way. This is
known as the principle of reality. In addition they argued that a physical
theory should respect the principle of locality, which says that if two systems
are sufficiently separated no action on one of the systems can influence the
other in any physical way.

The paradox arises from the fact that it appears as though arguing that
quantum mechanics is a complete theory leads to consequences that are in
strict contradiction with the theory itself. In order to illustrate the paradox,
we will look at an example concerning the spin of two spin-1/2 particles in
the form of an electron and a positron created from the decay of a pion. The
pion was initially at rest so the electron and positron shoot off in opposite
directions. The pion has spin zero, so conservation of angular momentum
requires that the electron and the positron are in what is known as the
singlet configuration where their spins are anti-correlated. If the spin of the
electron is measured to point upwards along a chosen axis, the spin of the
positron will point downwards along the same axis, and vice versa. Both of
the particles are in a state which is a superposition of their state pointing
up or down, with equal probability for measuring either on any one of the
particles by themselves. The situation is illustrated in figure 1.1.

We want to measure the spin of the electron along the z-axis. In accor-
dance with the locality principle we assume that the electron and positron
are separated by a large enough distance before performing the measurement
such that the act of measuring the electron cannot affect the positron in any
real sense.

If performing the measurement of the spin of the electron yields the re-
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Figure 1.1: Illustration of the EPR thought experiment. A pion π0 decays
into an electron e− and a positron e+. Since the pion has spin zero, the spin
of the electron and the spin of the positron will be anti-correlated. The two
particles shoot off in opposite directions before the electron passes through a
spin measuring device represented by the solid frame. We are assuming here
that the particles are sufficiently far apart when the measurement occurs that
the measurement cannot affect the positron in any physical way. After the
measurement the spin of the electron is known to be pointing up along the
measuring axis (the thick line in the frame), and since the two particles are
entangled we know that the spin of the positron along the same axis points
downward. The act of measuring the spin of the electron can then be seen
as an effective measurement of the spin of the positron, represented by the
dashed frame.

sult that it points up, because the spins are anti-correlated we now know
with certainty that the spin of the positron points down along the z-axis. In
this sense, measuring the electron is effectively equivalent to measuring the
positron. But we have assumed locality, which means that the electron mea-
surement cannot influence the positron in a physical way. Thus, according
to the principle of reality the z-component of the positron spin must be an
element of reality and must therefore have been pointing down all along.

But we can consider having chosen to measure along the x-axis rather
than the z-axis, and then we would know with certainty the component of
the spin of the positron in the x-direction without disturbing it in any way.
But then by the same argument, the spin of the positron along the x-axis is
also an element of reality and must have had a fixed value all along as well.

The paradox now arises when realizing that this means that if quantum
mechanics is complete, it must be able to predict with absolute certainty the
value of the spin of the positron along both the x- and z-axis simultaneously,
and quantum mechanics states that this is not possible. The two components
of the spin of the positron are represented by non-commuting operators in
quantum mechanics, which means that they are incompatible observables and
cannot be known with certainty simultaneously. Therein lies the paradox.

According to EPR quantum mechanics cannot be complete, because if it is
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then it is inconsistent. The alternative is that one or both of the assumptions
that any physical theory must respect locality and reality is false. This
seems to imply that there exists no objective reality other than that revealed
through experiments.

The crux of the problem seems to lie with the fact that the electron and
positron are entangled. In other words, entanglement is responsible for the
paradox. Before the measurement of the electron, both particles were in
states that were superpositions of having spin up and spin down. When we
measure the electron it seems as if there is an instantaneous action affecting
the positron as well, since we suddenly know with certainty what the outcome
of a measurement of its spin will be.

However, there is no way to detect the correlation of the positron mea-
surement with the electron measurement without consulting the results from
the electron measurement. If someone measures the spin of the positron right
after the electron measurement is performed by someone else far away, they
will have to assume that they have a fifty percent chance of getting spin up
and fifty percent chance of spin down. Therefore the change produced in the
total system of the electron plus positron is not detectable at the positron
measurement, and thus there is no violation of causality for instance. A
change has occurred, but it is undetectable.

1.1.2 The Bell inequality

The claim was that quantum mechanics was, at best, incomplete. In order to
fix this, several theories were created where hidden variables were introduced
that were supposed to carry the extra information quantum mechanics did
not. They were called hidden variables because nobody knew how to measure
them if they existed. In 1964 though, John S. Bell proved that there were no
local hidden variable theories that were compatible with quantum mechanics.

Bell proposed studying correlations between measurements of the spin
components on both the positron and the electron where the measurement
axes for the electron and the positron were independently oriented. We will in
the following examine such a situation and see that hidden variable theories
and quantum mechanics are in fact incompatible.The description of the Bell
inequality given here is based on [19].

Suppose we have a source that prepares pairs of anti-correlated electrons
and positrons that shoot off in opposite directions before they pass through
detectors, and that the detector for the electrons is oriented along an axis
defined by the unit vector �a while the detector for the positrons is oriented
along the unit vector �b. This situation is illustrated in figure 1.2.

We introduce the locality principle when we assume that the detectors
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Figure 1.2: Illustration of the setup in a Bell type experiment. A source
S produces anti-correlated pairs of electrons e− and positrons e+ which fly
off in opposite directions before they pass through a measurement device
indicated by the frames. The measurement device that the electrons pass
through measure their spin along an axis represented by the vector �a, while
the positron detector measures the spin of the positrons along an axis �b. The
orientations of �a and �b are assumed to be independent of each other.

are sufficiently separated so that the outcome of the electron measurement
cannot influence the orientation �b of the positron measurement.

The average value of the product of the spins will depend on the detector
orientations, and we will denote it by P (�a,�b). When the detectors are aligned

in parallel, �a = �b, we recover the EPR setup discussed previously, where the
spin of one of the particles points down and the other points up. Let us for
simplicity denote the spins as +1 for up and −1 for down, then the product
in the EPR setup is always −1, and so then is the average

P (�a,�a) = −1 (1.1)

In the case the detectors are oppositely aligned, �a = −�b, we would get
P (�a, �−a) = +1. For arbitrary detector directions quantum mechanics pre-
dicts

P (�a,�b) = −�a ·�b (1.2)

We assume now that there exists a hidden variable λ that together with
standard quantum mechanics gives the complete description of an electron/positron
pair. Since we have assumed locality, there must exist a function Fe(�a, λ) that
with certainty tells us the result of the electron measurement even before
the measurement takes place. Similarly, there should exist such a function
Fp(�b, λ) for the positron measurement.

In accordance with the known results of quantum mechanics we will fur-
ther assume that the above mentioned functions can only take values between
−1 and +1, i.e.

Fe(�a, λ) = ±1 and Fp(�b, λ) = ±1 (1.3)
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We also know then that when the detectors are aligned, we have anti-correlation
between the functions in the sense that

Fe(�a, λ) = −Fp(�a, λ) (1.4)

which must be true for any value of λ.
We then introduce a probability distribution ρ(λ) for the hidden variable

λ which satisfies ∫
ρ(λ)dλ = 1 (1.5)

and make no assumptions about it other than as any probability density it
is positive. The correlation between the electron and positron spin can then
be written as

P (�a,�b) =

∫
ρ(λ)Fe(�a, λ)Fp(�b, λ)dλ (1.6)

From eq. (1.4) we can get rid of Fp(�b, λ) in order to write the above expression
as

P (�a,�b) = −
∫
ρ(λ)Fe(�a, λ)Fe(�b, λ)dλ (1.7)

We can then compare correlation functions in the following way:

P (�a,�b) − P (�a,�c) = −
∫
ρ(λ)

[
Fe(�a, λ)Fe(�b, λ) − Fe(�a, λ)Fe(�c, λ)

]
dλ (1.8)

From eq. (1.3) it follows that F 2
e (�b, λ) = 1 which we insert in the second term

above to get

P (�a,�b) − P (�a,�c) = −
∫
ρ(λ)Fe(�a, λ)Fe(�b, λ)

[
1 − Fe(�b, λ)Fe(�c, λ)

]
dλ (1.9)

Then from eq. (1.4) we find that this can be written as

P (�a,�b) − P (�a,�c) = −
∫
ρ(λ)Fe(�a, λ)Fp(�b, λ)

×
[
1 + Fe(�b, λ)Fp(�c, λ)

]
dλ (1.10)

From eq. (1.3) we have Fe(�a, λ)Fp(�b, λ) = ±1, and since

ρ(λ)
[
1 − Fe(�b, λ)Fe(�c, λ)

]
≥ 0 (1.11)
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it follows that∣∣∣P (�a,�b) − P (�a,�c)
∣∣∣ ≤ ∫

ρ(λ)
[
1 − Fe(�b, λ)Fe(�c, λ)

]
dλ = 1 + P (�b,�c) (1.12)

And thus we arrive at one version of the Bell inequality:∣∣∣P (�a,�b) − P (�a,�c)
∣∣∣ ≤ 1 + P (�b,�c) (1.13)

which must hold for any hidden variable theory and for arbitrary directions �a,
�b and �c. The only assumptions we made were the ones in eqs. (1.3) and (1.4).

Quantum mechanics strictly breaks this inequality. This is best observed
by choosing a particular value for the measurement axes. Assume that all
three vectors lie in a two-dimensional plane, that �a and �b are orthogonal and
that �c points in a 45◦ angle between them. Using eq. (1.2) we then have

P (�a,�b) = 0 and P (�a,�c) = P (�b,�c) = − 1√
2

(1.14)

which gives

1√
2
�≤ 1 − 1√

2
(1.15)

clearly in violation of the inequality in eq. (1.13).
This is a very important result, because it shows that quantum mechanics

and hidden variable theories are incompatible. It is not possible to extend
quantum mechanics by hidden variables. The natural next step was to do
experiments testing these inequalities, in order to find out once and for all
which was the correct description of physical reality.

In the early 1980s Aspect, Grangier and Roger succeeded, and their re-
sults were in excellent agreement with quantum mechanics [20, 21, 22]. Since
then though, there have been pointed out several loopholes in the experiments
of Aspect et al., particularly with regards to faults in the experimental setup,
procedure or behavior of the equipment. Groups around the world have been
working hard at constructing and performing experiments that close these
loopholes [23, 24, 25, 26, 27, 28], and so far all results seem to favor quan-
tum mechanics as the correct description of reality. There are still loopholes
to be filled and proposals for loophole-free experiments are currently being
presented [29, 30, 31].

1.2 Entanglement as a resource

Clearly entanglement represents some information content that we can’t ac-
cess directly, but could there be any way of exploiting it nonetheless? Such
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questions have led to the development of quantum information theory and
quantum computation, scientific areas where entanglement is used as a re-
source in order to perform tasks that would not be possible with classical
systems.

1.2.1 Quantum computing

Classical computing is based on using classical bits. A bit is a unit of infor-
mation, and characterizes the total information content in a system that can
be in one of two distinct states. Bits are usually defined as variables that
can take two distinct values, for instance 0 or 1. Bits can be implemented in
many ways, for instance as electrical switches that can be either on or off, or
electrical circuits that permit two distinct levels of a current or voltage.

In quantum computing one uses quantum bits. Quantum bits, or qubits,
are units of quantum information, and characterize the total information
content in a quantum system that can be in a superposition of two distinct
states. The superposition aspect is very important, and it means that if we
denote the two distinct states of the quantum system as 0 and 1, the qubit is
a superposition of these values when represented as a variable. This variable
is the state vector of a two-level system.

Qubits contain more information than a classical bit, as it takes more
information to characterize a superposition or two states rather than an
either/or situation such as for the classical bits.

Entanglement between systems represent a type of extra information that
is contained in the total system. Since the two-level quantum systems rep-
resenting the qubits can be entangled, a set of qubits can contain even more
information than already discussed relative to a classical set of bits. This
extra information is entirely nonclassical and a very important feature in
quantum computing.

In order to make use of the qubits we need to be able to manipulate
quantum systems in a controlled way, a difficult task indeed. In addition to
accessing each qubit individually, we have to be able to do two-particle oper-
ations. It has been shown that in order to reproduce the abilities of a classical
computer, which is a reasonable first criterion for a quantum computer, one
must be able to perform a set of one-particle operations on each single qubit
that together can approximate unitary operations. Taken together with two-
qubit operations on any two qubits, this is enough to reproduce classical
computational abilities, and in addition we have the possibilities in exploit-
ing the quantum properties such as entanglement.

These days such finely-tuned control over quantum systems is possible
through various methods. Atomic force microscopy for instance can be used
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to identify, image and manipulate individual atoms. Shining lasers on atoms
can be used to trap the atoms in a very small space and then one can use
other lasers to manipulate these trapped atoms in various ways. Such control
over quantum systems can then be used as the machinery in a quantum
computer.An example of a realized quantum computer is the NMR quantum
computer, based on nuclear magnetic resonance [32]. The qubits in such a
computer are the spin states of molecules. These can be manipulated by
varying a magnetic field which interacts with the spins of the molecules.
It has been used to factor the number 15 into 3 and 5 using 7 qubits, an
experimental demonstration of the principle of the quantum algorithm known
as Shor’s algorithm, which exploits quantum systems to factor numbers a lot
faster than classical computers could.

The motivation behind quantum computers can among other places be
found in these quantum algorithms that have been developed over the years.
A quantum computer will not be able to outperform a classical computer in
all imaginable computations, but in some areas it may outperform its classical
counterparts significantly. The benefit is in most cases due to an exponential
speed up in computational time and/or reduction in the amount of storage
needed. A simulation of N two-level systems on a classical computer requires
2N bits, while a quantum computer requires only N qubits. As N increases
this becomes a substantial gain in required storage, which means that a
quantum computer can simulate a substantially larger system than a classical
computer.

1.2.2 Quantum communication

The realization that information is physical has tremendous consequences
when considering the information content in physical systems that are de-
scribed by quantum mechanics. Entanglement becomes an important infor-
mation theoretical resource that can be used to perform tasks in quantum
information theory that is impossible in classical information theory. In or-
der to illustrate some of the power of entanglement in communication tasks,
we will look at some examples. The first example is encoding two bits in a
single qubit, the second is what is known as quantum teleportation and the
third is quantum key distribution.

In classical communication, if we want to send two bits of information,
we can accomplish this by sending two physical bits to the receiver. Because
of entanglement we can accomplish sending the same amount of information
by only sending one quantum particle between the parties. That is, we can
communicate two bits of information by physically transporting only one
quantum two-level system between the two parties in the communication.



14 Chapter 1. Introduction

This is what is known as dense coding and was first treated in [33].
Two physical bits can be used to communicate one of four different mes-

sages. Each bit can have the value 0 or 1, so the four possible messages with
two physical bits available are 00, 01, 10 and 11.

Dense coding is entirely reliant on entanglement. We will illustrate the
concept by considering an entangled pair of spin-1/2 particles, like an elec-
tron and a positron as in the EPR setup. To each of the particles is associated
a qubit. Two parties, Alice and Bob, want to communicate a message con-
sisting of two bits by physically sending only one qubit. They each have one
of the particles in the pair, Alice has the electron and Bob the positron.

Alice then performs one of four specific unitary transformations on the
electron before sending it to Bob. The four operations are equivalent to doing
nothing, or rotating the spin about the x-, y- or z-axis by 180◦. Quantum
mechanics tells us that this local transformation that Alice performs on the
electron affects the entire system in a way that is not detectable by measuring
any of the particles by themselves, but by measuring the particles jointly, Bob
can determine which of the four operations Alice performed.

Since Bob has received one of four possible messages, he has obtained
two bits of information. But here only one physical object, the electron, was
transmitted between the parties. In this way two bits of information has
been encoded in one qubit, but it would not have worked unless the particles
were entangled.

The advantage in quantum dense coding lies in that some of the exchanged
physical objects can be exchanged ahead of time of the actual communication.
The scheme is no more efficient than encoding the two bits of information in
one particle each and sending the two particles with respect to the number
of particles used and the number of exchanges of particles necessary. But it
enables Alice and Bob to perform some of the exchange of particles whenever
they want, irrespective of when they choose to send a message at a later time,
which might be very convenient.

The second example we will look at in terms of illustrating the power of
entanglement is quantum teleportation. Classical teleportation schemes in
science fiction seems to present no problems. It could be considered working
in the following way. We just measure the state of every atom in the object
that is to be teleported, transmit that information and then the receiver can
reconstruct the object as many times as he wants based on that information.
Quantum mechanics, however, puts severe limits on the accuracy of any such
operation.

The reason is that one cannot experimentally determine an unknown
state. The best one can do experimentally is distinguish between a set of
N orthogonal states, if one knows what they are. When measuring the un-
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known particle we change the state of the particle to one of those N states
and so we can know nothing about the unknown state before the measure-
ment. Exactly copying, or cloning, an unknown quantum state is therefore
impossible. It would require being able to exactly measure all the prop-
erties of the unknown state simultaneously, including the non-commuting
ones, which quantum mechanics expressly forbids because of the uncertainty
principle.

What we can do however, is transfer an unknown quantum state from
one particle to another, which is what is known as quantum teleportation
and was originally described in [34]. It works as follows. Assume as before
that Alice and Bob share an entangled pair of spin-1/2 particles with Alice
having the electron and Bob the positron. In addition, Alice has another
particle in an unknown state ψ which is the state that she wants to teleport
to Bob.

Alice then proceeds to bring this particle and the electron together and
performs a specific joint measurement on those two particles. This is the same
measurement that Bob performed in the final stage of the two-bit commu-
nication scheme discussed above. There are four outcomes of this measure-
ment, but by performing this measurement Alice destroys the entanglement
between her electron and Bob’s positron.

Alice then proceeds to send Bob this information in a classical way, for
instance by calling him up on the phone. Based on the information he re-
ceives, Bob can perform one of the four unitary operations mentioned in the
dense coding scheme on his particle, with the end result being that the state
of his positron is identical to the state ψ of Alice’s original particle. Note
that the state is still unknown for both Alice and Bob, but now Bob is in
possession of a particle with the unknown state while Alice is not.

A third application of quantum communication is found in quantum cryp-
tography, a form of communication where the signal is encrypted using quan-
tum techniques in such a way that it is secure against eavesdropping. An
application of quantum cryptography that is already commercially available
today is quantum key distribution [35, 36, 37, 38].

The idea is the following. Assume that Alice and Bob share a key. A key
in this sense is a list that relates measurement outcomes to numbers and/or
letters. Using the key, Alice encodes a message in a set of qubits by preparing
her particles in such a way that when Bob performs measurements on them
he can compare his results with the key/list and translate the message.

Alice then sends her particles to Bob. Eavesdropping on this communi-
cation would imply performing measurements on the particles being sent to
Bob. If some third party, Eve, is eavesdropping, Bob should be able to detect
this because quantum mechanics says that any measurement will disturb the
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system. Bob can then just discard the key and inform Alice that someone
is eavesdropping. Despite this, a group at NTNU has shown that a certain
type of attack called intercept-resend attack can be performed undetectably
in some implementations of quantum key distribution [39].

1.2.3 Decoherence

An important property of any full-fledged quantum computer that we have
yet to mention is scalability. The number of quantum bits, two-level systems
or particles in a quantum computer will have to be of a significant size.
The problem with this is that entanglement is a rather unstable resource at
present, because quantum states are highly susceptible to what is known as
decoherence.

Decoherence is basically the loss of entanglement in a state. It is a result
of the quantum state interacting with the environment. In most applications
in quantum computation, the states used are pure, entangled states, but as
they interact with the environment they will become more and more mixed.
In practice this leads to severe problems. If we start with a batch of en-
tangled pure states and start using them for whatever purpose we have in
mind, after a while they will decohere and the resource, entanglement, has
been diminished. All is not lost, since there exists several ways of dealing
with the problem after it has occurred, such as entanglement distillation and
quantum error correcting [40]. Quantum distillation in a process where a
number of mixed entangled states can be converted into a smaller number
of pure entangled states. This helps in order to be able to use more of the
entanglement, but ideally we would want to keep the entangled states from
interacting with the environment.

Even though we have become increasingly good at controlling quantum
systems, being able to isolate them over a long period of time is incredibly
hard. This puts limits on the implementations of quantum computers and
quantum communication. For instance, it makes it difficult to send quantum
signals over long distances with high fidelity. Using fibreoptic cables and
entangled photons communication distances of 147.8 km have been demon-
strated [41]. Fibreoptics are fine for joining local computers together, but
in order to perform worldwide quantum communication it would be nice to
be able to use satellites. Thus we would have need of free-space quantum
communication in order to send the signal to a satellite relay and back down
to the receiver. The current distance record for free-space quantum commu-
nication is 144 km, sending entangled photons from La Palma to Tenerife
[42, 43]. Recently the possibility of extending the distance to 300 km was
proposed and deemed feasible [44].
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Describing quantum systems

In quantum mechanics a state is represented by a state vector ψ in a complex
vector space H called the Hilbert space. One of the properties of a vector
space is that adding two vectors produces another vector, which is the formal
representation of the superposition principle. Given two states ψ1 and ψ2 of
some system, the system may also be in the state ψ = αψ1 +βψ2 with α and
β as complex numbers.

We can also multiply a state vector ψ by a complex number c to produce
cψ. One of the postulates of quantum mechanics is that ψ and cψ represent
the same physical state as long as c �= 0. In this sense only the direction in
the vector space is of real significance, and so the space of physical states is
actually a projective space consisting of lines in the Hilbert space.

A system that has N distinct states is called an N -level system. The state
vectors describing the states of the system are then N -component complex
vectors, that is, vectors in C

N . Operators acting on an N -level system are
represented as N ×N complex matrices.

Observables are the common name for the quantities that one can mea-
sure. Energy is an observable, angular momentum is another. To every
observable in quantum mechanics there is associated a Hermitian, linear op-
erator which acts on the state space of the system. A Hermitian matrix A is
a matrix for which A† = (AT )� = A. It follows that a Hermitian matrix has
real eigenvalues. To each Hermitian operator F corresponds a set of eigen-
vectors φk with associated real eigenvalues λk with the property that when
F acts on φk it returns λkφk such as

Fφk = λkφk (2.1)

In a given basis {ek} the components of F are given by

Fkl = e†kFel (2.2)

17
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Assume that the system is in some state ψ. A postulate in quantum
mechanics says that when measuring an observable F , the result will be
one of the eigenvalues λk of F with the probability of getting that specific
eigenvalue given by the overlap |φ†

kψ|2. After the measurement, the system
will be in the state described by φk. This is the effect dubbed as the collapse
of the state. Before the measurement the system was in the state ψ, but the
measurement collapsed it into the state φk. This is an idealized situation and
the type of measurement performed is a special kind of measurement called
a projective measurement.

The average value of the measurement is given by the expectation value
of the observable F in the state ψ of the system

〈F 〉 = ψ†Fψ (2.3)

A matrix F is said to be normal if it commutes with its adjoint, that is, if
FF † = F †F . There is a remarkable result regarding the representation of
normal matrices called the spectral theorem [40]. Clearly, Hermitian matrices
are also normal. As the observables are represented by Hermitian matrices,
the spectral theorem tells us that any observable operator can be written in
terms of its eigenvalues and eigenvectors as

F =
∑

k

λkφkφ
†
k (2.4)

and thus we get

〈F 〉 = ψ†Fψ =
∑

k

∣∣∣φ†
kψ

∣∣∣2 λk (2.5)

which is the weighted sum of possible outcomes λ with the weight being the
probability of that particular outcome.

For a system in a state described by a single state vector, the uncer-
tainty about the outcome of any particular measurement on the system is
not attributed to a lack of information of the system. A state described by
a single state vector is referred to as a pure state, and in the standard in-
terpretation of quantum mechanics it represents a system for which we have
maximal knowledge. In order to know more about the system, we must per-
form measurements on the system which will irrevocably change the state of
the system.

In general we may have less than maximal knowledge of a system. For
instance it could be that a system is prepared in one of several states in an
ensemble {ψk} with a probability distribution {pk} describing the probability
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for the final state to be ψk. The average value of a measurement on an
observable F in an ensemble such as this is

〈F 〉 =
∑

k

pkψ
†
kFψk =

∑
k

pk〈F 〉k (2.6)

which is a weighted sum of each possible average value weighted by the
probability of the system being in the given state.

This motivates the introduction of density operators ρ defined as a prob-
ability distribution of projections onto the possible state vectors ψk

ρ =
∑

k

pkψkψ
†
k, pk ≥ 0,

∑
k

pk = 1 (2.7)

The coefficients pk are all real and sum up to one, as they define a probability
distribution. Even though there is a formal difference between the operator
and its matrix representation, it is common in physics to use the terms
interchangeably.

It follows from the above definition of a density matrix that it is a Her-
mitian positive semidefinite matrix. The Hermiticity is evident from the
definition since all the coefficients pk are real. The positivity follows from
the fact that all the coefficients pk are greater than or equal to one. If we
take the expectation value of a density matrix in any vector ψ we find

ψ†ρψ =
∑

k

pk

∣∣ψ†ψk

∣∣2 ≥ 0 (2.8)

which proves the positive semidefiniteness of density matrices. This implies
that all the eigenvalues λk of ρ are positive or equal to zero which we write
as

ρ ≥ 0 ⇔ λk ≥ 0 (2.9)

Taking the trace of the density matrix we get

Tr (ρ) =
∑

k

pkTr
(
ψkψ

†
k

)
=
∑

k

pk(ψ†
kψk) =

∑
k

pk = 1 (2.10)

where we have assumed that the state vectors ψk are normalized to unit
length. Thus, all density matrices have trace equal to one.

The average value of a measurement on F can now be expressed in terms
of the density matrix ρ as

〈F 〉 = Tr (Fρ) =
∑

k

pkψ
†
kFψk =

∑
k

pk〈F 〉k (2.11)
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Density matrices are referred to as being either mixed or pure. If the
number of terms in the decomposition (2.7) is one we say that we have a
pure state, since the ensemble consists of only a single state vector. If the
number of terms is larger than one we say we have a mixed state, and the
ensemble consists of two or more state vectors. For a general density matrix
we have

ρ2 =
∑

k

p2
kψkψ

†
k → Tr

(
ρ2
)

=
∑

k

p2
k > 0 (2.12)

Only for a pure state is ρ2 = ρ since then ρ is a projection onto a single pure
state, and then the trace of the square of ρ is equal to one. If ρ is mixed,
we see from the above equation that the trace of the square of ρ is less than
one. Thus, the trace of the square of the density matrix is a measure of how
mixed it is in the sense that

0 < Tr
(
ρ2
) ≤ 1 (2.13)

which is equal to one only if ρ represents a pure state. This is called the
degree of mixing.

The standard description of the degree of mixing of a quantum state is
given by the von Neumann entropy S, defined as

S = −Tr (ρ log ρ) (2.14)

In the eigenbasis of ρ where it is diagonal, the von Neumann entropy is
expressed as

S = −
∑

k

λk log λk (2.15)

Since all eigenvalues λk have values between 0 and 1, it follows that the von
Neumann entropy is positive or zero. It is equal to zero when ρ is a pure
state and increases as the probability is distributed among more and more
states, that is it increases the more mixed the state is.

The trace of the square of the density matrix is equal to the sum of the
square of its eigenvalues, therefore the lower bound of eq. (2.13) is found
when all the eigenvalues are nonzero and equal. If ρ is represented by an
N × N matrix, the minimum is found when all the eigenvalues are equal
to 1/N . This yields the degree of mixing equal to 1/N , and corresponds
to us having minimal knowledge of the system, since all states are equally
probable. The density matrix corresponding to this,

ρ =
�

N
(2.16)
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is referred to as the maximally mixed state. Here � is the identity operator,
represented as the N × N identity matrix. In conclusion, for any density
matrix ρ acting on a Hilbert space of dimension N we have

1

N
≤ Tr

(
ρ2
) ≤ 1 (2.17)

This is also the state that maximizes the von Neumann entropy, since the
probabilities are equally distributed among all states.

It is important to note that the expansion of a density matrix in terms
of state vectors in eq. (2.7) is not unique. There are several ensembles {ψk}
of state vectors that give rise to the same density matrix. So even though
we consider the density matrix to contain all the information available in the
system in the sense that it gives the correct expectation value in eq. (2.11),
there may be additional information required to specify the specific physical
ensemble for the particular system under consideration.

It is tempting to consider the probability distribution {pk} has as having a
purely classical origin, as in the case where the system is prepared in a state
in an ensemble with certain probabilities. But the distribution {pk} can
also arise from a purely quantum mechanical effect, when the system under
consideration is entangled with another system. We will see in the next
sections how entanglement can give rise to mixed states when we consider
composite systems.

2.1 Composite systems and entanglement

When we have a system composed of two or more subsystems, we have a
composite system. An example of such a system could be a system of two
particles, as in the EPR case with an electron, a positron and their respective
spins. We will mostly be considering systems involving two subsystems, and
we call such composite systems bipartite.

As we have seen, entanglement is a property that manifests itself as cor-
relations between measurements. In other words, studying entanglement is
equivalent to studying correlations between measurements. Such correlations
can be expressed in terms of correlation functions. Given two systems A and
B and two observables FA and FB each acting independently on their respec-
tive systems, the correlation function C(FA, FB) describing the correlations
between measurements on FA and FB can be expressed as

C(FA, FB) = 〈FA ⊗ FB〉 − 〈FA〉〈FB〉 (2.18)
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If the correlation function is equal to zero, there are no correlations between
the systems. In the following we will look at how these correlations can be
described in composite quantum systems.

To each subsystem we associate a Hilbert space HA and HB, and the
Hilbert space of the composite system is described as the tensor product of
the two subspaces, H = HA⊗HB. Let the dimensions of the two subsystems
be NA and NB respectively. The dimension of the full Hilbert space is then
N = NANB. We will at times refer to such a system as a system of dimension
NA ×NB in order to make it clear what type of system we are considering.

Any vector ψ in H can be expressed using a complete set of product
vectors, in the sense that the set of product vectors span the entire Hilbert
space H. Let {ei} be a basis for HA and {fj} a basis for HB, then a complete
set of basis vectors for H can be found by taking tensor products of vectors
from the two sets. We then express the vector ψ as

ψ =
∑
ij

ψijei ⊗ fj (2.19)

with the components obtained by multiplication with the basis vectors:

ψij = (ei ⊗ fj)
†ψ (2.20)

The full Hilbert space will contain state vectors ψ which are tensor prod-
ucts of state vectors from each of two subsystems. If the coefficients in
eq. (2.20) factor as ψij = φiχj we get

ψ =
∑
ij

φiχjei ⊗ fj =

(∑
i

φiei

)
⊗
(∑

j

χjej

)
= φ⊗ χ (2.21)

which is a product vector in H.
The components of ψ are then

ψk = φiχj = ψij,
i = 1, ..., NA

j = 1, ..., NB

k = 1, ..., N
(2.22)

On the left hand side ψ is indexed as a vector in H while using the double
index on the right hand side explicitly implies the product structure of H.
As an example, consider two 2-level systems. Then we have two components
for φ and two for χ and we get

ψ =

⎛⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞⎟⎟⎠ = φ⊗ χ =

(
φ1

φ2

)
⊗
(
χ1

χ2

)
=

⎛⎜⎜⎝
φ1χ1

φ1χ2

φ2χ1

φ2χ2

⎞⎟⎟⎠ (2.23)
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The product structure extends to operators on H as well. If FA is an
operator on HA and FB an operator on HB, a product operator on H will
be F = FA ⊗ FB. The elements of matrices representing operators acting
on bipartite Hilbert spaces can be expressed in terms of four indices with
two referring to subsystem A and the other two to subsystem B. Let any
operator F act on the total system HA ⊗HB. In the product basis {ei ⊗ fj}
we define the components of F as

Fijkl = (ei ⊗ fj)
† F (ek ⊗ fl) (2.24)

The expectation value of an operator F in a product vector ψ = φ ⊗ χ is
then

(φ⊗ χ)†F (φ⊗ χ) =
∑
ijkl

φ�
iχ

�
jFijklφkχl (2.25)

The expectation value of such a product operator in a product state
ψ = φ⊗ χ gives

〈FA ⊗ FB〉 =
(
φ† ⊗ χ†) (FA ⊗ FB) (φ⊗ χ)

=
(
φ†FAφ

)⊗ (
χ†FBχ

)
= 〈FA〉〈FB〉 (2.26)

From eq. (2.18) we observe that then C(FA, FB) = 0 which means that there
are no correlations present. For product vectors this is always the case, and
thus we say that they are separable.

An ensemble of product vectors gives rise to a type of density matrix
which we refer to as a separable state. Consider an ensemble {ψkl = φk ⊗χl}
together with a probability distribution {pkl}. This gives rise to a density
matrix

ρ =
∑
kl

pklψklψ
†
kl =

∑
kl

pklρ
A
k ⊗ ρB

l (2.27)

where

ρA
k = φkφ

†
k and ρB

l = χlχ
†
l (2.28)

A separable density matrix can also be expressed as a convex combination
of projections onto vectors that are not product states. For example, the
eigenvectors of a separable density matrix are not necessarily product vectors.
The defining property of a separable density matrix is that it is possible
to find an ensemble of product states such that it can be expressed as in
eq. (2.27).
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A system described by a separable density matrix will in general contain
correlations. This can be seen as follows. The expectation value of a product
operator in a separable density matrix is

〈FA ⊗ FB〉 = Tr (ρ(FA ⊗ FB)) =
∑
kl

pkl〈FA〉k〈FB〉l (2.29)

with

〈FA〉k = Tr
(
ρA

k FA

)
and 〈FB〉l = Tr

(
ρB

l FB

)
(2.30)

With the local probability distributions {pA
k } and {pB

l } obtained by pA
k =∑

l pkl and pB
l =

∑
k pkl we find that the product of the expectation values

of the operators separately is

〈FA〉〈FB〉 =

(∑
k

pATr
(
ρA

k FA

))(∑
l

pB
l Tr

(
ρB

l FB

))
=
∑
kl

pA
k p

B
l 〈FA〉k〈FB〉l (2.31)

Comparing this with eq. (2.29) we see that only in the special case that the
probabilities factor as pkl = pA

k p
B
l do we have no correlations between the

systems A and B for separable systems.
There are in a sense three levels of correlations in a bipartite quantum

system. The first is when we have no correlations. In that case the system
can be described by a separable density matrix as in eq. (2.27) but with
factoring probabilities. The second level is when the system is described by
a separable density matrix with non-factoring probabilities. These kinds of
correlations are referred to as classical correlations.

The third and final level is when the system cannot be described by a
separable density matrix. In this case it is not possible to find an ensemble of
product vectors such that the density matrix can be expressed as in eq. (2.27).
Instead the system is described by an ensemble of state vectors {ψk} and
probabilities {pk} so that the density matrix for the full system can be written
as

ρ =
∑

k

pkψkψ
†
k (2.32)

where not all the vectors ψk can be product vectors. Such density matrices
are referred to as entangled, as opposed to separable. The correlations in
systems described in this way can be considered purely quantum mechanical,
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or they may have both classical and quantum mechanical origin, as we will
see in the next section.

A particular feature of separable density matrices is that there must exist
a set of product vectors that span their image. This can be seen as follows.
Any separable density matrix can be written as

ρ =
∑

k

pkρ
A
k ⊗ ρB

k =
∑

k

pk(φk ⊗ χk)(φk ⊗ χk)† =
∑

k

pkψkψ
†
k (2.33)

simply by taking eq. (2.27) and defining p1 ≡ p11, p2 ≡ p12, ... and renaming
the product vectors. Note that this sum runs over more terms than the sums
in eq. (2.27). If i and j take m and n different values respectively, k in
eq. (2.33) runs over at most mn terms. The image is defined as Img(ρ) =
{ψ ∈ H |ψ = ρθ for some θ ∈ H} while the kernel is defined as Ker(ρ) =
{ψ ∈ H | ρψ = 0}. For a vector ψ in Ker(ρ) it follows that ψ†ρψ = 0. Let
ψ be any vector in Ker(ρ) and we get

ψ†ρψ =
∑

k

pk

∣∣∣ψ†
kψ

∣∣∣2 = 0 (2.34)

Since the sum only contains positive terms, it follows that ψ†
kψ must be equal

to zero for every ψk. Since this must hold for any ψ in the kernel of ρ, it
follows that all ψk lie in the image of ρ.

The fact that the image, also known as the range, of a separable density
matrix is spanned by a set of product vectors is known as the range criterion.
It was first developed in [4], and we have used it to check the separability of
various density matrices in Paper I. Note that the implication only works one
way, in the sense that if a density matrix is separable its image is spanned
by product vectors, while the converse is not necessarily true.

2.2 Partial trace, entanglement and decoher-

ence

For composite systems the partial trace is a trace operation with respect to
a subset of the systems. That is, it is the contraction of a subset of indices
for the matrix representation of a composite operator. Consider a bipartite
system H = HA⊗HB and let ρ be a density matrix acting on H. The partial
trace with respect to subsystem B is defined as

ρA
ik =

∑
j

ρijkj (2.35)
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where we sum over the indices of subsystem B. The result is a reduced
density matrix ρA that acts on HA,

ρA = TrB (ρ) (2.36)

Equivalently one may obtain the reduced density matrix acting on HB by
taking the partial trace with respect to subsystem A as

ρB = TrA (ρ) (2.37)

The ranks rA and rB of the reduced density matrices ρA = TrB (ρ) and
ρB = TrA (ρ) respectively, we call the local ranks of ρ. They are important,
among other things because if ρ appears to be belong to a system of dimension
NA ×NB and rA < NA or rB < NB, then ρ can be viewed as belonging to a
composite system of smaller dimension.

Consider a situation where we have a system A which interacts with
another system that we label system B. Performing measurements of ob-
servables FA acting on system A means we need to know the density ma-
trix ρA which describes system A in order to find the expectation values
〈FA〉 = Tr

(
FAρ

A
)
. The total state of the system is ρ, and in order to get

the density matrix ρA we have to take the partial trace of ρ with respect to
system B.

Assume that the state of system A is prepared in a pure state described
by a state vector ψA and let system B be modeled at time of preparation by
some density matrix ρB. Then initially the state of our system is

ρ0 = (ψAψ
†
A) ⊗ ρB (2.38)

After a while the system has changed according to some unitary time evolu-
tion operator on the whole system

ρ = Uρ0U
† (2.39)

If the two systems evolve independently of each other, the unitary evo-
lution would be a product operator U = U1 ⊗ U2 and then we would have a
final state that is still a product state

ρ =
(
U1ψAψ

†
AU

†
1

)
⊗
(
U2ρ

BU †
2

)
(2.40)

Tracing out the system B we would get a density matrix for system A that
is still a pure state

ρA = TrB (ρ) = U1ψAψ
†
AU

†
1 ≡ ψ̂Aψ̂

†
A (2.41)
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On the other hand, if the two systems interact with each other, the time
evolution of the system will be described by a non-product operator U , and
then the reduced operator ρA will in general not be a pure state. This is a
formal description of entanglement. Even if we know exactly the state of the
full system AB after the time evolution, that is the full state ρ is described
by a non-product vector ψ, the reduced density matrix

ρA = TrB

(
ψψ†) (2.42)

will be a mixed state.
We can see this by using eq. (2.19) and expanding the above expression

as

ρA = TrB

(∑
ijkl

ψijψ
�
kl (ei ⊗ fj) (ek ⊗ fl)

†
)

=
∑
ijkl

ψijψ
�
kl

(
f †

l fj

)(
eie

†
k

)
=
∑
ijk

ψijψ
†
kjeie

†
k (2.43)

where {ei} and {fi} are orthonormal bases in subsystem A and B respec-
tively. Define a new set of vectors {φj} in HA as

njφj =
∑

i

ψijei (2.44)

where nj are normalization coefficients so that the φj are unit vectors. Then
we can write eq. (2.43) as

ρA =
∑

j

n2
jφjφ

†
j (2.45)

which shows that ρA is a mixed state. Only in the case that A and B evolve
independently will we end up with a pure state.

The partial trace allows us to shed some further light on the origin of the
uncertainty in a quantum state. In the most general case the total system
is described by an ensemble {ψk} and probabilities {pk} so that the density
matrix ρ is

ρ =
∑

k

pkψkψ
†
k (2.46)

Following the example of the pure state description, we end up with a reduced
density matrix for system A given by

ρA =
∑
kj

pkn
2
jφkjφ

†
kj (2.47)
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where the index k refers to the original ensemble while the index j refers to
the chosen basis for the environment. But this we can rewrite as

ρA =
∑

i

p̃iφ̃iφ̃
†
i (2.48)

by a simple reordering and renaming the terms in the sum. Now we see
that the probabilities p̃k in general can have contributions from both the
ensemble probabilities pj of the total system and the probabilities n2

j . The
latter arise from the entanglement between the systems, and in this sense
are of quantum origin. Thus, it is not in general clear whether the ensemble
probabilities for a given system can be regarded as purely classical or purely
quantum mechanical.

If system B is completely inaccessible to us, the evolution of the state
of system A from a pure state to a mixed state is called decoherence. The
most common way to think about this is that system B is a model of the
environment, with an infinite number of degrees of freedom. Since we have
no control over the environment, we cannot invert the effect of time evolution
on the total system in order to regain a pure state description of system A.

If system A is itself a composite system consisting of system C and D,
A = CD, and system B is a model of the environment, the decoherence leads
to loss of entanglement in system A. This is the crucial problem in practical
implementation of quantum systems. The interactions between system A and
the environment B will in general destroy correlations between subsystems
C and D that make up system A, and will in this sense lead to leakage of
entanglement in system A to the environment. Since we cannot control the
environment, the entanglement is lost to us.

In the above discussion we assumed at a point that we knew everything
there was to know about the total system, but showed that we still may have
uncertainties related to the subsystems. This is a fascinating quantum me-
chanical feature. A striking example of this is the case two spin-1/2 particles
with spin pointing up or down, as in the EPR example. The Bell states are
maximally entangled states of two qubits. Let ψ+ and ψ− be single-particle
vectors describing whether the spin points up or down. The four Bell states
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are then written as

ψ1 =
1√
2

(ψ+ ⊗ ψ+ + ψ− ⊗ ψ−)

ψ2 =
1√
2

(ψ+ ⊗ ψ+ − ψ− ⊗ ψ−)

ψ3 =
1√
2

(ψ+ ⊗ ψ− + ψ− ⊗ ψ+)

ψ4 =
1√
2

(ψ+ ⊗ ψ− − ψ− ⊗ ψ+) (2.49)

Assume that the spins are anti-correlated and that the spin of the total
system is zero. Then the state of the system is described by the Bell state
ψ4, called the singlet. Taking the partial trace with respect to the second
subsystem we find then

ρA = TrB

(
ψ4ψ

†
4

)
=

1

2

(
ψ+ψ

†
+ + ψ−ψ

†
−
)

=
1

2
�2 (2.50)

which is the maximally mixed state in subsystem A. Taking the partial trace
with respect to system A leads to the maximally mixed state in subsystem
B. In fact, this is true for all the Bell states. This tells us that even though
we have maximal knowledge of the full state (it is a pure state), we have
minimal knowledge of each of the particles by themselves. The spin of a
single particle has 50% chance of pointing up and 50% of pointing down.

2.3 Partial transposition and positive maps

To determine whether a given density matrix is separable or entangled is in
general a very difficult problem. Although the definition of separability gives
a necessary and sufficient condition, it is in general hard to test. On the
other hand, some easily testable necessary conditions have been found. One
particularly important one is the positive-partial-transpose criterion [3, 45].
It is related to positive maps between matrices, and we will present it in the
following.

A positive map is a map Φ which maps positive semidefinite complex n×n
matrices to positive semidefinite complex m×m matrices, Φ : C

n×n → C
m×m.

An example of such a map is the transposition map τ which maps a n × n
positive matrix B to a n × n positive matrix τ(B) = BT . Positive maps
in bipartite systems are classified according to k-positivity. Let Ik be the
identity map Ik(B) = B on k × k matrices, then the map

Ik ⊗ Φ : C
k×k ⊗ C

n×n → C
k×k ⊗ C

m×m (2.51)



30 Chapter 2. Describing quantum systems

is a natural map on the product space in the sense that

(Ik ⊗ Φ)(B ⊗ A) = B ⊗ Φ(A) (2.52)

A positive map Φ for which Ik ⊗Φ is also positive is called a k-positive map.
If Ik ⊗ Φ is positive for any k, then the map Φ is said to be completely
positive.

An example of a positive map that fails to be 2-positive is the transposi-
tion map τ . In a composite system of dimension 2 × 2 the matrix⎛⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞⎟⎟⎠ (2.53)

is positive semidefinite. After acting on it with I2 ⊗ τ and thus transposing
each 2 × 2 block we get ⎛⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ (2.54)

which is clearly not positive. The action of the composite operator Ik ⊗ τ is
known as partial transposition.

For any matrix F acting on a bipartite space, the elements of the partial
transpose F P is given by

(F P )ijkl = Filkj (2.55)

which is simply interchanging the indices referring to the subsystem we take
the transpose of in the partial transposition, in this case subsystem B.

All separable density matrices remain positive semidefinite under partial
transposition. This can be seen by taking a separable density matrix ρ and
applying the partial transpose to get.

(I ⊗ τ)(ρ) ≡ ρP = (I ⊗ τ)

(∑
k

pkρ
A
k ⊗ ρB

k

)
=
∑

k

pkρ
A
k ⊗ τ(ρB

k ) (2.56)

and the transposition on the density matrices in the second subsystem pre-
serves their positivity so that the partial transpose of a separable density
matrix is another separable density matrix. States that are positive under
partial transposition we refer to as PPT for short.
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Partial transposition is very important, since any state that is not PPT
is necessarily entangled. This follows from the above discussion in that sep-
arable density matrices are always PPT. This can be phrased as a condition
for separability and we refer to it as the PPT criterion. It was developed in
[3, 45] and it was shown that the criterion is both necessary and sufficient to
determine separability in systems of dimension 2×2 and 2×3. The implica-
tion in the PPT criterion only works one way, however. If a state is separable
it must be PPT, but the converse is not true in general. The first example
of entangled PPT states (PPTES) was given in [4].

Another important aspect of partial transposition is that it marks a sep-
aration of entanglement into two qualitatively different types. It was shown
in [1] that states from which entanglement can be distilled cannot be PPT.
Thus, the entanglement contained in PPTES is impossible to access in a
sense. Because of this, entanglement contained in PPTES is usually referred
to as bound, while non-PPT states contain free entanglement. Later it has
been shown that bound entangled states can be used as catalysts in distilla-
tion protocols in multipartite settings [46, 47, 48, 49, 50, 51, 52, 53]. This is
often referred to as either activation or superactivation of bound entangle-
ment, depending on the protocol.

The study of positive maps is intrinsically linked with the study of entan-
glement witnesses. An entanglement witness is an operator A which satisfies

Tr (AρS) ≥ 0 (2.57)

for all separable states ρS, while for some entangled state or set of entangled
states we would get Tr (Aρ) < 0. In this way, the operator A identifies, or
witnesses, the state as entangled.

By the Choi-Jamiolkowski isomorphism [54, 55] every positive map Φ :
C

n×n → C
m×m has a representation as an operator on C

m×m⊗C
n×n. Assume

that we have two matrices A and B in C
m×m and C

n×n respectively, and that
they are related by a linear map, A = Φ(B). For some complete set of basis
matrices {Ejl} in C

n×n and bjl as the components of B in this basis, we can
write this as

A = Φ(B) = Φ(
∑

jl

bjlEjl) =
∑

jl

bjlΦ(Ejl) (2.58)

Now Φ(Ejl) is a matrix in C
m×m, so any component of A can be written as

Aik =
∑

jl

bjlΦ(Ejl)ik ≡
∑

jl

Pikjlbjl (2.59)



32 Chapter 2. Describing quantum systems

The matrix P can be represented as a mn×mn matrix in C
m×m⊗C

n×n with
indices Pijkl obtained by expectation values in a product vector basis as in
eq. (2.24).

Because of the product structure we can think of the matrix represen-
tation of F as a block matrix, Fijkl ≡ (Gjl)ik, that is an NB × NB matrix
where each element Gik is an NA ×NA matrix. For example, let NA = 2 and
NB = 3, then we could represent F as the block matrix

F =

⎛⎝ G11 G12 G13

G21 G22 G23

G31 G32 G33

⎞⎠ (2.60)

where each element Gjl is a 2× 2 matrix, so that the above matrix is a 6× 6
matrix.

The block representation of P will look like

P =

⎛⎜⎝ Φ(E11) . . . Φ(E1n)
...

. . .
...

Φ(En1) . . . Φ(Enn)

⎞⎟⎠ (2.61)

where each element Φ(Ejl) is an m × m matrix, similar to the case in
eq. (2.60). The matrix P in this form is often referred to as the Choi-matrix
of the map Φ.

The entanglement witnesses are the matrix representations of positive
maps, and the reason why they fulfill eq. (2.57) for all separable states is the
following. All positive n×n matrices can be written as convex combinations
of rank one projectors. Thus, consider a rank one projector

B = yy†, Bjl = yjy
�
l (2.62)

Inserting this into eq. (2.59) we get

Aik =
∑

jl

Pijklyjy
�
l (2.63)

The expectation value of A in some vector x can then be written as

x†Ax =
∑
ik

x�
iAikxk =

∑
ijkl

x�
i yjPijklxky

�
l (2.64)

Introduce the vector ȳ whose elements are the complex conjugated of the
elements of y in the basis we are working in, ȳi = y�

i , then we also have
ȳ�

i = yi and can rewrite the above expression as

x†Ax =
∑
ijkl

x†i ȳ
�
jPijklxkȳl (2.65)
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Comparing with eq. (2.25) we see that this is in fact equal to the expectation
value of P in the product vector z ≡ x ⊗ ȳ. Since we are assuming that P
represents a positive map and B is positive, we know that A is as well and
therefore the expectation value of A in any vector is positive. In particular
x†Ax ≥ 0, and therefore

x†Ax = (x⊗ ȳ)†P (x⊗ ȳ) = z†Pz = Tr
(
Pzz†

) ≥ 0 (2.66)

Expanding a separable state ρS in terms of a set of product vectors zk we get

Tr (PρS) = Tr

(
P
∑

k

pkzkz
†
k

)
=
∑

k

pkTr
(
Pzkz

†
k

)
≥ 0 (2.67)

because the trace is linear. In this sense, the entanglement witnesses P are
said to be dual to the separable states.

2.4 SL⊗SL transformations and SLOCC equiv-

alence

In the work presented in this thesis we have made extensive use of the prop-
erties of linear transformations and their actions on state vectors and density
matrices. The reason for this is that it greatly simplifies our efforts in char-
acterizing density matrices since it allows us to focus on properties of density
matrices that are invariant with respect to a particular type of linear trans-
formations. We will in the following review such transformations and their
properties.

In quantum information theory a situation of particular interest is when
several spatially separate parties share a composite system in an entangled
state. They can then perform local operations on the particle they possess
and communicate classical information to each other. This will in general
lead to modifications in the entanglement properties of the state, and in par-
ticular they can try to transform one entangled state into another. Trans-
formations using local operations and classical communication is known as
LOCC transformations.

One can then define equivalence relations between states. Two states ψ
and ψ̃ are said to be equivalent under LOCC if they can be transformed into
each other with certainty using only local operations and classical commu-
nication. This is a desirable property, for instance because then the parties
can regard the two states as indistinguishable and use them for exactly the
same task, and we say that they contain the same entanglement.
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But this also means that we are restricting the class of transformations
from all LOCC transformations to those that are invertible. Thus, in the
following, when we write LOCC transformations, it is always implied that
we are talking about invertible product transformations.

It turns out that two states are LOCC equivalent if and only if they are
related by local unitary operators [56, 57]. Specifying in the following to a

bipartite system H = HA ⊗HB, and with ψ and ψ̃ in H, this means that ψ
and ψ̃ are LOCC equivalent if and only if

ψ = Uψ̃ with U = UA ⊗ UB and U †
A/B = U−1

A/B (2.68)

so UA and UB are elements in the groups U(NA) and U(NB) respectively. For
an ensemble of states {ψk} we may then consider it to be LOCC equivalent

to an ensemble {ψ̃k} if and only if there exists a unitary product operator
U = UA ⊗ UB such that

ρ =
∑

k

pkψkψ
†
k =

∑
k

pkUψ̃kψ̃
†
kU

† = Uρ̃U † (2.69)

for some associated probability distribution {pk}.
We may extend the equivalence class by allowing the transformations be-

tween the two states ψ and ψ̃ to succeed with some nonzero probability. This
is a broader class of transformations known as stochastic LOCC, or SLOCC
for short. They are interesting because states equivalent under SLOCC may
still be used for the same task, it just means that the probability of success
for the task depends on which state one uses.

Mathematically, ψ and ψ̃ are considered SLOCC equivalent if and only if
there exists linear invertible local operators VA and VB such that

ψ = V ψ̃ with V = VA ⊗ VB (2.70)

We no longer require that V is a unitary product matrix, only that VA and
VB are elements in the groups GL(NA) and GL(NB) of nonsingular linear
operators respectively. In the following, as with LOCC transformations,
when we write SLOCC transformations, it is implied that we are talking
about invertible product transformations.

Analogously to the LOCC case, we may consider two ensembles {ψk}
and {ψ̃k} to be SLOCC equivalent if and only if there exists local invertible
operators VA and VB such that

ρ =
∑

k

pkψkψ
†
k =

∑
k

pkV ψ̃kψ̃
†
kV

† = V ρ̃V † with V = VA ⊗ VB (2.71)
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for some associated probability distribution {pk}.
Without loss of generality we may write the SLOCC transformations on

state vectors ψ and density matrices ρ on the following form:

ψ̃ 
→ ψ = cV ψ̃, c ∈ C (2.72)

ρ̃ 
→ ρ = aV ρ̃V †, a ∈ R (2.73)

Here c and a are positive normalization factors and V = VA ⊗ VB, with
VA and VB elements of the special linear groups SL(NA,C) and SL(NB,C)
respectively. That is, they are linear nonsingular NA × NA and NB × NB

complex matrices respectively, with determinants equal to 1.
In our work we refer to such transformations as SL⊗SL transformations,

and we say that states that can be transformed into each other by such
transformations are SL⊗SL equivalent, or just SL equivalent for short when
it is clear from the context that we are considering product transformations.

Our interest in SL ⊗ SL transformations stems from the fact that such
transformations conserve several key properties of density matrices, including
the rank, positivity and separability. The rank is conserved because we are
only considering invertible transformations. To see that the positivity is
conserved, let ρ̃ be expanded in a suitable ensemble of state vectors as

ρ̃ =
∑

k

pkψ̃kψ̃
†
k (2.74)

Then take the expectation value of the transformed density matrix in any
vector ψ to get

ψ†ρψ = ψ† (aV ρ̃V †)ψ
= a

∑
k

pk

(
ψ†V ψ̃k

)(
ψ̃†

kV
†ψ
)

= a
∑

k

pk

∣∣∣ψ†V ψ̃k

∣∣∣2 ≥ 0 (2.75)

which is true since a > 0 and pk ≥ 0, and since ψ is arbitrary it follows that
the transformed density matrix is also positive semidefinite.

To see that SL ⊗ SL transformations preserve separability, observe that
if we transform a separable state vector ψ̃ = φ̃⊗ χ̃ we get

ψ̃ 
→ ψ = cV ψ̃ = c (VA ⊗ VB)
(
φ̃⊗ χ̃

)
= c

(
VAφ̃

)
⊗ (VBχ̃) = cφ⊗ χ (2.76)

which is also a product vector. This means in particular that SLOCC trans-
formations preserve the number of product vectors in any subspace of H,
like the image and kernel of a density matrix for instance. Then note that
a separable density matrix can be written as in eq. (2.74) but with all ψ̃k
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as product vectors. Then it follows that the transformed state is a convex
sum of projections on transformed vectors V ψk which themselves are product
vectors, and hence the transformed density matrix is also separable.

SL ⊗ SL transformations also preserve the positivity of the partial trans-
pose, regardless of whether the state is separable or entangled. To see this,
let ρ̃ be a PPT state and consider the components of the transformed state
ρ:

ρijkl = a
∑
mnrs

(VA)im (VB)jn ρ̃mnrs (VA)�
kr (VB)�

ls (2.77)

The components of the partial transpose are given by ρP
ijkl = ρilkj, so we get

ρP
ijkl = a

∑
mnrs

(VA)im (VB)ln ρ̃mnrs (VA)�
kr (VB)�

js

= a
∑
mnrs

(VA)im (VB)ln ρ̃
P
msrn (VA)�

kr (VB)�
js

= a
∑
mnrs

(VA)im (VB)�
js ρ̃

P
msrn (VA)�

kr (VB)ln (2.78)

Now introduce a new matrix V B with coefficients
(
V B

)
jl

= (VB)�
jl and rewrite

the above expression as

ρP
ijkl = a

∑
mnrs

(VA)im

(
V B

)
js
ρ̃P

msrn (VA)�
kr

(
V B

)�

ln
(2.79)

Comparing with eq. (2.77) it follows that we get

ρP = aV̂ ρ̃P V̂ † with V̂ = VA ⊗ V B (2.80)

Since SL ⊗ SL transformations preserve positivity, it follows that if ρ̃P is
positive semidefinite, so is ρP .

The study of equivalence under deterministic transformations (LOCC)
between pure states was initiated in [58], and the extension to SLOCC equiv-
alence was proposed in [59]. The study of equivalence under LOCC and
SLOCC has been largely focused on means of classifying the entanglement
contained in both pure and mixed states. The classifications are based on
identifying entanglement monotones, that is, quantities E(ρ) that do not
increase under LOCC or SLOCC. For an overview of various entanglement
monotones see [2].

SLOCC transformations have been studied also in relation to represen-
tations of states, mixed and pure. That is, efforts directed at identifying
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particularly useful representations of density matrices obtainable through
SLOCC transformations. For multipartite states one such representation is
the normal form introduced in [60] where it is shown that any state ρ can be
transformed using SLOCC transformations to a form where all but one of the
reduced density matrices computable from ρ is proportional to the identity
operator on the reduced system.

For bipartite systems of dimension 2 × 2 it was shown in [14] that any
state ρ can be transformed by SL ⊗ SL transformations to a standard form
which enables a particularly nice, simple and geometric proof of the necessity
and sufficiency of the PPT criterion in 2 × 2. In other words, it is shown
that all PPT states in 2 × 2 are SLOCC equivalent to separable states with
a particular representation.

In Paper II and III we have extensively studied entangled PPT states
of rank 4 with respect to a standard form for such states. In Paper II we
present a standard form parametrized by SL ⊗ SL invariants for such rank
4 entangled PPT states. This standard form enables an explicit analytical
construction of all states equivalent to this representation. We also present
numerical evidence supporting our claim that all rank 4 entangled PPT states
can be transformed by SL⊗SL transformations to this standard form, which
we base on the fact that it is true for all known explicit examples of such
states found in the literature and all numerical examples we have obtained.
In Paper III we discuss a possible generalization of the standard form to
states of higher rank in higher dimensional systems.





Chapter 3

Geometrical aspects of
entanglement

The set of density matrices, which we denote D, consists of all positive
semidefinite Hermitian matrices with trace equal to one. When referring
to the set we usually have density matrices representing systems of a specific
size in mind, which should be clear from the context. For instance, we could
be considering the set of density matrices that describe any bipartite system
consisting of two two-level systems. In that case the set D consists of all
4 × 4 positive semidefinite Hermitian matrices with trace equal to one.

The set of density matrices is convex. This follows from the positivity of
the density matrices, and we will show this later. As we will see, the PPT
and separable density matrices form convex subsets, P and S respectively,
of D as well.

The set of Hermitian matrices has a natural structure as a real vector
space. This leads to a representation of the density matrices as real vectors
instead of Hermitian matrices, and this is a very useful tool when studying
the sets. This is one of the key concepts that we have used in our work.

The material in this chapter is based on [14, 16, 17]. The ideas and
concepts presented in the following lays the foundation for the work presented
in this thesis.

3.1 The geometry of density matrices

The geometry of sets of density matrices is important. The study of the
geometry of density matrices is interesting in itself, but it is particularly mo-
tivated by the study of entanglement. Determining whether a given density
matrix is separable can be rephrased as determining where in the set D the

39
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density matrix lies. Specifically, it is separable if it lies in the set of separable
states. But there is in general no easy way of checking this. Thus, studying
the geometry of the set D and its subsets is both interesting and important.

3.1.1 The real vector space of Hermitian matrices

An unspecified Hermitian N × N -matrix contains N2 real parameters in
total. This can be seen by observing that since the matrix is Hermitian,
the elements on the upper half of the matrix are repeated on the lower half
(excluding the diagonal) and, counting from the lower right, there are 1+2+
...+(N−1) = N(N−1)/2 complex elements on the upper half of the matrix
which equals N(N − 1) real elements. Add to this the N real elements on
the diagonal, and we get N2 − N + N = N2. This tells us that the set of
Hermitian N × N -matrices is of dimension N2, and we can expand such a
matrix in a set of N2 Hermitian basis matrices as

A =
N2∑
k=1

akDk (3.1)

with N2 real parameters ak.
We can think of the ak as the elements of an N2-dimensional real vector

A =
∑N2

k=1 akek and in this sense the N×N Hermitian matrices define a real

N2-dimensional vector space R
N2

. In particular, we can take two Hermitian
matrices A and B, represent them as vectors A and B in R

N2
and add them

to obtain a new vector C = A + B. This vector can then be represented as
a Hermitian matrix C.

The set D of density matrices does not form a real vector space. This can
most easily be seen by the fact that the addition of two density matrices does
not produce a new density matrix. This follows from the requirement that
the trace of a density matrix is equal to one. Let ρ1 and ρ2 be two density
matrices, then

ρ = ρ1 + ρ2 has Tr (ρ) = Tr (ρ1) + Tr (ρ2) = 2 (3.2)

It is a required property for a vector space that the addition of two vectors
produces a new vector in the set. The above matrix is not a density matrix,
even though it is a sum of two density matrices. Thus, D cannot directly be
regarded as a vector space.

It turns out however, that D can still be described entirely by an asso-
ciated vector space together with the requirement on the positivity of the
density matrices. The trace requirement on the density matrices is an addi-
tional real constraint that they must satisfy, which means that the number
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of free parameters in an unspecified N ×N density matrix is N2−1. We can
use this freedom to specify one of the coefficients in eq. (3.1). This allows us
to represent any density matrix as

ρ =
�

N
+

N2−1∑
k=1

xkDk ≡ �

N
+ σ(x) (3.3)

where {Dk} is a set of traceless Hermitian matrices and forms a basis for all
traceless N×N Hermitian matrices. The coefficients xk are not entirely free,
in the sense that they must be chosen so that ρ is positive semidefinite.

The set of traceless N×N Hermitian matrices forms a real vector space of
dimension N2 − 1 and entirely describes the set D when the positivity of the
density matrices is taken into account. The latter follows from eq. (3.3) since
all the variation sits in the traceless part of ρ. To see the former, observe
that the traceless Hermitian matrices can be represented as real vectors in
R

N2
. Given any two traceless Hermitian matrices σ1 and σ2 we have

σ = σ1 + σ2 and Tr (σ) = Tr (σ1) + Tr (σ2) = 0 (3.4)

so that σ is also a traceless Hermitian matrix. Thus, the set of traceless
Hermitian matrices also forms a vector space. In fact, this is just R

N2−1, since
there are N2−1 linearly independent Dk in eq. (3.3) and we can choose them
such that they are orthonormal with respect to the Hilbert-Schmidt-metric
described below.

3.1.2 Inner product

In the matrix representation the Euclidean inner product in R
N2

is recognized
as the Hilbert-Schmidt inner product. It is defined for complex matrices as

〈A,B〉 ≡ Tr
(
A†B

)
(3.5)

Let A and B be Hermitian. Then the Hilbert-Schmidt inner product can be
written as

〈A,B〉 = Tr (AB) (3.6)

To see the equivalence between the Euclidean inner product in R
N2

and
the Hilbert-Schmidt inner product we employ the representation in eq. (3.1)
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for the matrices A and B to get

〈A,B〉 = Tr (AB) = Tr

(
(

N2∑
k=1

akDk)(
N2∑
l=1

blDl)

)

=
N2∑

k,l=1

akblTr (DkDl) (3.7)

If we choose the basis in such a way that the matrices Dk are orthogonal in
the sense Tr (DkDl) = δkl we get

〈A,B〉 =
N2∑
k=1

akbk (3.8)

which we recognize as the Euclidean inner product in R
N2

.
We now immediately have access in the matrix space to familiar concepts

in the vector space such as angles and distances. Analogous to the vector
space we get the angles from

cos θ =
Tr (AB)√

Tr (AA)
√

Tr (BB)
(3.9)

and the distances from

|A−B|2 = Tr
(
(A−B)2

)
(3.10)

For density matrices there is a natural choice of origin in the set D. From
eq. (3.1) we immediately see that setting all the parameters xk to zero gives

ρ(x = 0) =
�

N
(3.11)

which makes the maximally mixed state on the right hand side the natural
choice of origin in D. All the information in the density matrix is now encoded
in the traceless matrix σ(x). For instance, given two density matrices ρA and
ρB we see that

|ρA − ρB|2 = Tr
(
(ρA − ρB)2

)
= Tr

(
(σA − σB)2

)
= |σA − σB|2 (3.12)

The distance to the maximally mixed state can be expressed as∣∣∣∣ρ− �

N

∣∣∣∣2 = Tr
(
σ2
)

=
N2−1∑
k=1

x2
k (3.13)
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There is a close connection between the degree of mixing of a state ρ and
its distance to the maximally mixed state. One expression for the degree of
mixing was given in eq. (2.13) as the trace of the square of ρ. We can express
the distance to the maximally mixed state for any ρ as

|ρ− �

N
|2 = Tr

(
ρ2
)− 1

N
(3.14)

This shows the connection to the degree of mixing. The larger the distance to
the origin, the less mixed the state. The pure states ρ = ψψ† have maximal
distance to the origin, since for the pure states ρ2 = ρ. In this case the
distance is therefore always equal to∣∣∣∣ψψ† − �

N

∣∣∣∣ =

√
N − 1

N
(3.15)

The inner product can be used to calculate the components of the matrix
representation of a map Φ obtained by the Choi-Jamiolkowski isomorphism
[54, 55]. We mentioned the Choi-Jamiolkowski isomorphism in section 2.3 as
a map that allows us to take any map Φ that maps m×m complex matrices
to n × n complex matrices and represent it as an mn ×mn matrix PΦ. In
the following, assume that m = n = N , and that we have two Hermitian
matrices A and B both in H. We can then represent them as in eq. (3.1) in
the following way

A =
N2∑
k

akDk, B =
N2∑
l

blDl (3.16)

Assume further that there is a map Φ that maps B to A, that is A = Φ(B).
We can write this in the following way

A =
∑

k

akDk = Φ(B) =
∑

l

blΦ(Dl) (3.17)

where the last equality follows because we only consider linear maps. Using
the inner product to find the component ar of A we get the following

ar = Tr (DrA) =
∑

l

blTr (DrΦ(Dl)) (3.18)

Now define a matrix PΦ with components

(Pφ)rl ≡ Tr (DrΦ(Dl)) (3.19)

Inserting this into eq. (3.18) we get

ar =
∑

l

(PΦ)rlbl ⇒ a = PΦb (3.20)

which is a vector equation in R
N2

. The matrix PΦ is real and symmetric.
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3.2 Convex sets

In the following we will be considering sets with underlying structure of
a vector space, such that we have access to properties such as addition,
multiplication by scalars and so on. A set of points is convex if every point
on a line between two points in the set, also is contained in the set. That is
to say, if a and b are two points in our set, then all points c = λa+(1−λ)b for
λ ∈ [0, 1] are also in the set. This is illustrated in figure 3.1a. There are many

CONVEX CONCAVE

a) b)

Figure 3.1: Illustration of a convex set in a) and a concave set in b). In
a convex set all points along a line between two points in the set are also
contained in set (green line), while in a concave set it is possible to choose a
line between two points in the set such that some of the points on the line
lie outside the set (red line).

examples of convex sets, such as a circle, a triangle, a rectangle, a pyramid
and so on. These examples are all easy for us to visualize of course, since
they are three-dimensional or lower, but the general concept extends to any
dimension. If a set is not convex, it is said to be concave. An example of a
concave set is shown in figure 3.1b. For a convex set S, n points a1, a2, ..., an

in S and nonnegative coefficients λ1, λ2, ..., λn such that
∑n

k=1 λk = 1, the
point b defined as

b =
n∑

k=1

λkak (3.21)

is also contained in the set S.
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The convex hull of a set X is the smallest convex set that contains X. A
nice analogy can be made in two dimensions. Imagine having a planar object,
and the set X is the set of points that this object consists of. Take a rubber
band, expand it and place it such that the object is clearly inside of the
rubber band, and then let go. The rubber band will snap into place around
the object, and the set Y of points inside the rubber band will constitute the
convex hull of X. If X itself is convex we will have Y = X and the rubber
band hugging the object at all points along the circumference. Should X
be concave then the rubber band will now define a convex set of points
Y that is larger than the set X. In higher dimensions this analogy is not
necessarily valid. The rubber band assumes the shape that minimizes its
potential energy. In two dimensions this is the same shape that minimizes
the length of the rubber band and corresponds to the convex hull. But in
three dimensions it assumes the shape that minimizes its surface, which is
not necessarily equivalent to the convex hull.

3.2.1 Extreme points of convex sets

So why is convexity such a useful property? Probably the nicest feature of
convex sets has to do with its extreme points. An extreme point of a convex
set is a point that does not lie on a line between two other points in the
set. Think of the triangle. The extreme points of the triangle are its corner
points. More formally, a point c = λa + (1 − λ)b is extremal if the only
solution for λ is either λ = 1 in which case c = a and a is an extreme point,
or λ = 0 and c = b and b is an extreme point.

There is a nice way of visualizing how to obtain an extreme point of a
set. Imagine starting from a point inside a pyramid, then choose a random
direction and start moving in that direction. After a while we will most likely
reach one of the sides of the pyramid, unless we just so happened to walk in
one of the very specific directions that would take us to one of the corners.
If we now restrict ourselves to only move along the side of the pyramid, we
can again choose a random direction along the side and start moving. Then
we will end up in a corner, from which we cannot move anywhere except out
into one of the sides or the interior of the pyramid. This is illustrated in
figure 3.2. In a sense, it is the inverse of this process that makes the extreme
points so useful. Simply speaking, once we know them we can reconstruct
the entire set of points, since all we have to do is draw lines between them to
obtain the sides, and then draw lines between the sides to obtain the interior
points, effectively constructing the convex hull of the set. Therefore, if we
can identify the extreme points of a convex set, we know the entire set.

There is an alternative way of defining convex sets rather than using
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Figure 3.2: Illustration of the usefulness of the convexity of a set in obtaining
extreme points of the set exemplified using a triangle. Start at a point ρ0 and
choose a random point σ0 which defines a line between ρ0 and itself. Move
along the line until the edge is reached at the point ρ1, and choose another
random point σ1 on the edge which again defines a direction from ρ1. Follow
this line until the corner is reached at the extreme point ρ2.
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extreme points. This is by use of inequalities defining the interior points
of the set, with equally at the boundary. Whether one uses extreme points
or inequalities can often depend on what appears easiest for the given set
one is studying. For instance, it turns out to be rather easy to define both
extreme points and inequalities for the full set of density matrices, while for
the set of separable states it is still easy to determine the extreme points
while inequalities appear difficult to obtain.

3.2.2 D, the convex set of density matrices

That the set D of density matrices is convex, follows from eq. (2.7). We
repeat here for convenience that any density matrix can be expressed as

ρ =
∑

k

pkψkψ
†
k, pk ≥ 0 ∀ k (3.22)

Since the coefficients pk are all positive or zero, it follows that the above is a
convex sum of pure states. Thus, it also follows that the extreme points of
D are the pure states ψψ†. As we saw in eq. (3.15) the pure states also have
maximal distance to the origin, another indication that they are extreme
points in the set.

The dimension of the full set D is larger than the dimension of the set of
pure states. If the dimension of H is N , a pure state is a one dimensional
projection in the Hilbert space H onto a normalized vector in C

N which
has N complex components. When we normalize the vector we get one real
constraint, so we are left with 2N − 1 real free parameters in a normalized
vector in C

N . In addition we can multiply the vector ψk with a phase factor,
ψk → eiαkψk, and the pure state ψkψ

†
k would remain unchanged. Removing

the phase factor gives one more real constraint, so that the total number of
free parameters in a pure state is 2(N − 1). The dimension of the full set of
density matrices is N2 − 1, larger than the set of pure states for all N > 1.

For any convex set, the dimension of its boundary is always one less than
the dimension of the interior. In particular this means that the boundary
of D has dimension N2 − 2. For N = 2 the dimension of the set of density
matrices is 3, while the dimension of the boundary exactly coincides with the
dimension of the pure states, which is 2. This is why the entire boundary of
D consists of the pure states in this case, as can be seen in the Bloch sphere
representation of density matrices in systems of dimension 2× 2 (also shown
in fig. 3.8).

Complementary to the extreme points, we can identify the boundary of
D by inequalities for the interior points. Remember that the density matri-
ces are positive semidefinite, meaning that their eigenvalues are nonnegative.
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Thus, for any N × N density matrix in the interior of D we have N in-
equalities λk ≥ 0 for the eigenvalues λk. On the boundary, at least one of
these equations are satisfied with equality. This means that on the boundary,
the determinant of ρ is equal to zero. Thus, the Nth-degree characteristic
polynomial in the eigenvalues identifies the boundary.

3.2.3 S, the convex set of separable density matrices

Just as the full set of density matrices is a convex set, so is the set S of
separable density matrices in a bipartite system, as evident from equation
(2.33). S is a proper subset of D, and the extreme points of S are the pure
product states ψψ†, ψ = φ ⊗ χ. Again we can count the number of free
parameters in a pure product state in order to determine the dimension of the
set of such states. The pure product state is a projection in H = HA ⊗HB

onto a normalized product vector in C
NA ⊗ C

NB . For a general product
vector ψ = φ ⊗ χ, the vector φ has 2NA real elements while χ has 2NB

real elements, where NA and NB are the dimensions of the two subsystems
respectively. In total we therefore have 2(NA+NB) real parameters before we
apply any restrictions. For the product vector to be normalized we require
both φ and χ to be normalized, therefore the normalization condition leads
to two real equations which together reduces the number of real parameters
by two. In addition we may remove the phase from both φ and χ, subtracting
another two real parameters. In the end we are left with 2(NA + NB − 2)
real parameters for the set of pure product states. The set S has the same
dimension as D, since any state close enough to the maximally mixed state
is separable.

It is unfortunately much more difficult to obtain inequalities defining the
boundary for S than for D. This is in a sense one of the main reasons that
the separability problem is so difficult. Had we been able to obtain such
inequalities, one could simply check whether a given density matrix violated
any of them in order to determine whether it is separable or not.

3.2.4 P, the convex set of PPT density matrices

The set of partially transposed density matrices, which we will call DP , can
be obtained by taking the partial transpose of every point in the set D of
density matrices. Since the partial transposition map is reversible and linear,
it maps extreme points to extreme points.

If the map is reversible and linear, it maps line segments to line segments.
This is because any point c on a line segment can be written as as a sum of
other points, i.e. c = xb + (1 − x)a), and when the linear map acts on c it



3.2 Convex sets 49

gives c′ = xb′ + (1 − x)a′ with c′, b′ and a′ as mapped points, which again is
a line segment. In this way the extreme points a and b of a line segment is
mapped to extreme points a′ and b′ of a new line segment. This is illustrated
in figure 3.3.

maps to

Figure 3.3: Illustration of the action of a reversible linear map on a line
section in a convex set. The line segment is defined by the extreme points a
and b and gets mapped to a new line segment defined by new extreme points
a′ and b′.

Thus the extreme points of DP must be the partially transposed extreme
points of D. From eq. (2.56) we see that the partially transposed density
matrix is just a convex combination of partially transposed pure states, ρP =∑

k pk

(
ψkψ

†
k

)P

. This shows that DP is also a convex set.

In order to get the set P of states that are positive under partial trans-
position (the PPT states), we need now only take the intersection between
the sets D and DP , that is to say we have P = D ∩ DP . In general, the
intersection between two convex sets is itself a convex set, so that the set P
is also a convex set, as illustrated in figure 3.4. In section 2.3 we mentioned
that the partial transposition map is a very useful tool to distinguish between
separable and entangled states in systems of dimension 2× 2 and 2× 3 since
there the states that remain positive under partial transposition are known
to be separable. In higher dimensions there were found examples of states
that were PPT but still entangled [4]. This means that in 2 × 2 and 2 × 3
we have S = P ⊂ D, while in general the set P is larger than S so that we
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Figure 3.4: In general the intersection of two convex sets is another convex
set. The set D of density matrices and the set DP are both convex, and thus
the Peres set P = D ∩ DP of states positive under partial transposition is
also a convex set.

have S ⊂ P ⊂ D. This is illustrated in figure 3.5.
For the set D we know both the extreme points, namely the pure states,

and the inequalities identifying the boundary, ρ ≥ 0. For the separable states
S we know the extreme points, the pure product states, but we do not know
of any inequalities identifying the boundary. For the PPT states the situation
lies somewhere in between these cases. We know some of the extreme points,
namely the pure product states that are shared with S, but we also know that
there has to be other ones. On the other hand, we do know the inequalities
identifying the boundary of P . They are the intersection of the inequalities
ρ ≥ 0 and ρP ≥ 0.

3.2.5 The positive convex cone

If we ignore the normalization condition, that is, we allow matrices which
are simply density matrices multiplied by a positive scalar, aρ, the visual
representation changes from a planar convex set to a positive convex cone as
shown in figure 3.6. The points in the set of density matrices now become
rays in the convex cone, with the ray in the center of the cone corresponding
to the scaled maximally mixed state. The set of density matrices will then
be the intersection of the positive cone and the hyperplane of Hermitian
matrices with trace equal to one.

The convex cone is also useful as a visual representation of the density
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a) b)

Figure 3.5: a) For the 2×2 and 2×3 systems the set S of separable states is
equal to the set P of states positive under partial transposition, and contained
in the set D of all states. b) In systems of larger dimension the set P is strictly
larger than S and we have the inclusions S ⊂ P ⊂ D.

matrix decomposition in eq. (3.3). We observe that all the information in
the density matrix can be encoded in the projection of D onto the floor of
the cone, where a = 0. In this projected set, the traceless matrices σ(x) form
the points of the set, and in order to obtain the density matrix one just adds
the maximally mixed state, as illustrated in figure 3.6. The projection of D
onto the floor of the cone is then the underlying vector space that completely
describes D, as previously discussed.

As we in general have the inclusions S ⊂ P ⊂ D, the set of separable
states and the set of PPT states will form nested cones within the full cone
of density matrices, as illustrated in figure 3.7.

3.3 Simplexes and unitary transformations

A density matrix acting on a Hilbert space H of dimension N is characterized
by N2 − 1 free parameters. Since all Hermitian matrices are diagonalizable
by unitary matrices, a general density matrix can be described by an N ×N
diagonal matrix D and a special unitary transformation U in SU(N). The
number of free parameters in the diagonal matrix D is N − 1 since the sum
of the diagonal elements must equal 1. The dimension of SU(N) is N2 − 1,
but there are N − 1 of these that give rise to a unitary transformation that
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Figure 3.6: Illustration of the convex cone of density matrices obtained when
ignoring the trace equal to one restriction on the density matrices. The set D
of true density matrices, with trace equal to one, is found in the intersection
of the cone and the plane defined by the trace condition. The inside of the
cone consists of all Hermitian matrices of full rank with positive eigenvalues,
while on the edge of the cone we have the Hermitian matrices of less than
full rank and with nonnegative eigenvalues. In the center lies the maximally
mixed state , which in the set D is a point, but in the cone defines a ray
in the middle. The set D can be projected down onto the plane where the
trace equals zero, in the following referred to as the floor of the convex cone.
Here all the information in the density matrices is contained in the traceless
matrices σ, as indicated.
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Figure 3.7: Illustration of the nested convex cones of the full set D of density
matrices, the set P of PPT density matrices and the set S of separable
density matrices. Since we have the set inclusions S ⊂ P ⊂ D we get a
similar inclusion for the cones as represented here.

commutes with diagonal matrices, hence they do not change the D. In terms
of the extreme points of D, the diagonal matrix D is a convex combination of
the orthogonal projections onto the N basis vectors of H. In the case N = 2,
we get

D = x

(
1 0
0 0

)
+ (1 − x)

(
0 0
0 1

)
(3.23)

where we have used the projections onto the vectors (1, 0)T and (0, 1)T . The
eigenvalues are completely determined by x, and any unitarily equivalent
density matrix can be obtained by a suitable unitary transformation on D.
We can visualize the diagonal matrix as a point on a line between the two
pure states, as in figure 3.8a. We can then use the unitary transformations
to rotate this line in the two remaining dimensions into the full set of density
matrices in two dimensions as shown in figure 3.8b and c, visualized as a
three-dimensional ball known as the Bloch sphere. The pure states are then
the points on the surface of the sphere, while the points in the interior of the
ball are mixed states and in the centre we find the maximally mixed state.

In three dimensions, N = 3, the diagonal matrix D can be represented
by two parameters x and y, and the pure states that project onto the three
basis states. D can then be visually represented as a triangle, which will be
rotated into six other dimensions to represent the entire eight dimensional
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a) b) c)

Figure 3.8: Illustration of the Bloch sphere for a two-dimensional system.
In a) we have the two extreme points (cyan), all diagonal states as convex
combinations of these (red line) and the maximally mixed state in the center
(black). In b) we have rotated the figure in a) into a second dimension. We
get a filled circle with extreme points (cyan) as the circumference, the interior
(red) as mixed states and the maximally mixed state in the center (black).
In c) we have rotated the figure in b) into the third dimension. We then get a
ball with the extreme points as the surface (cyan), the interior ball as mixed
states and the center of the ball as the maximally mixed state. This Bloch
sphere contains all states in a two-dimensional system. Note that the sizes
of points are enlarged for illustrative purposes, for instance the maximally
mixed state is a point and not an actual ball in the center of the Bloch sphere.
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set of density matrices. Generalizing to dimension N , the diagonal matrix D
can be represented by an N -simplex, which is a generalized triangle with N
vertices in N − 1 dimensions. As we have seen, in two and three dimensions
the simplex is a line and a triangle respectively, while a 4-simplex is a pyramid
and so on, as shown in figure 3.9.

N=2 N=3 N=4

Figure 3.9: Graphical representation of the diagonal states in a Hilbert space
of dimension N as simplexes for N = 2, 3, 4. The corners correspond to the
pure projections onto the vectors indicated in the figure, while all interior
points of the simplex are convex combinations of these.

3.4 Two-dimensional cross sections

Because of the rapid increase in dimension as N grows, the set of density
matrices is in general difficult to visualize. Restricting to the diagonal states
helps a little, and we can visualize them up to N = 4, but for larger systems
that also becomes difficult. What we can do however, is find ways of taking
low dimensional slices through the different sets. Such visualizations may be
helpful in illustrating various properties of the set.

For any set of points, once we have three points in the set, we can define
a two-dimensional plane. In the case if density matrices, this means that if
we have three of them, they define a two-dimensional plane through D. Let
one of the three density matrices be the maximally mixed state ρ0 = �/N ,
and denote the other two by ρ1 and ρ2 respectively. Immediately we see that
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a combination like

ρ̂ = ρ0 + xρ1 + yρ2 (3.24)

is not a density matrix, since it fails the unit trace requirement unless x = −y.
We have seen however, that all the information content in a density matrix
can be stored in a traceless matrix by the expansion (3.3). Using this we find
that the proper density matrix in the two-dimensional plane is given by

ρ = ρ0 + xσ1 + yσ2 =
�

N
+ σ(x, y) (3.25)

where we have defined σ(x, y) ≡ xσ1 + yσ2. If we want, we may introduce
orthogonal unit matrices in the cross section analogous to unit vectors. Let
the x-axis be defined by ρ1, then we may take

σx =
σ1√

Tr (σ2
1)

(3.26)

so that Tr (σ2
x) = 1. We then take the component of ρ2 orthogonal to ρ1 as

defining the y-axis

σy =
σ̃y√

Tr
(
σ̃2

y

) (3.27)

where

σ̃y = σ2 − Tr (σxσ2)σx (3.28)

Thus, using these as unit directions and switching to polar coordinates we
can write any density matrix ρ in the cross section as

ρ =
�

N
+ r(cos θσx + sin θσy) =

�

N
+ rσ(θ) (3.29)

where we have defined σ(θ) ≡ cos θσx + sin θσy. In this way the traceless
matrix σ (suppressing the angle in the notation) defines a direction, while
the distance r will be limited by the boundary.

The inequalities that identify the boundary of D are ρ ≥ 0, meaning
that the eigenvalues λk of ρ satisfy λk ≥ 0 ∀ k. Since the determinant is
just the product of the eigenvalues, det ρ = Πkλk, the inequalities imply
that det ρ ≥ 0 for all interior points and in particular that det ρ = 0 on the
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boundary. Let ρ be a point on the boundary of D in a two-dimensional cross
section, then the determinant can be written

det ρ = det

(
�

N
+ rσ

)
= r det

(
σ −

(
− 1

Nr

)
�

)
≡ r det (σ − λ�) = 0 (3.30)

which we recognize as the eigenvalue equation for σ with the eigenvalues λ
related to the distance r by

r ≡ − 1

Nλ
(3.31)

The eigenvalues λ of σ thus determine at which points along a line in the
two-dimensional cross section the determinant equals zero. When we move
away from the maximally mixed state towards the boundary of D, we know
that as soon as we cross the boundary one or more of the eigenvalues will
become negative. As we continue past this point we may get to a point at
which another eigenvalue becomes zero while the first one is still negative.
This is also a valid solution to det ρ = 0, but lies outside the set D. This
means that we are really only interested in the smallest r for any given angle,
since this is a point on the actual boundary of D. This corresponds to the
largest eigenvalue of σ. The boundary of D is shown in fig. 3.10a in a two-
dimensional cross section between two orthogonal Bell states and in 3.10b
between two random states on the boundary in the 2 × 2 system.

If the two states that we use in addition to the maximally mixed states
commute with each other, we will get straight lines when plotting the bound-
ary in the cross section. This is because when they commute, they can be
diagonalized simultaneously. Take an example with two 2×2 matrices. When
adding two matrices which can be diagonalized simultaneously we would get
something like

Ax+By =

(
0.46 0

0 0.54

)
x+

(
0.25 0

0 0.75

)
y

=

(
0.46x + 0.25y 0

0 0.54x + 0.75y

)
(3.32)

Taking the determinant and requiring it to be equal to zero, we find that it
factors to

(0.46x+ 0.25y)(0.54x+ 0.75y) = 0 (3.33)
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Figure 3.10: Two-dimensional cross sections with the maximally mixed state
�/N in the middle in the 2×2 system (N = 4). The blue line is the boundary
∂D of the set D of density matrices. a) The cross section is defined by
two orthogonal Bell states. Since they are orthogonal they commute, which
is why the lines are all straight. b) The cross section is defined by two
randomly chosen states on the boundary which both are of rank 3. They do
not commute, which is why the lines are all curved.
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which means that one or both of the two factors are zero independently, and
those are equations for straight lines.

When adding non-commuting matrices we will instead get curved lines.
This is readily observed from the fact that when taking the determinant we
in general get a polynomial of degree equal to the rank of the matrix. In the
above example, if A and B did not commute, we would get a polynomial in
x and y of second order which would not factor. Thus the lines would be
curved.

We can identify the boundary of DP , the set of states which are the
partial transposes of the states in D, in the two-dimensional cross section in
the same way as for D. The boundary of DP is identified by ρP ≥ 0, and on
the boundary we have det ρP = 0. The identity � is invariant under partial
transposition, so analogous to eq. (3.30) we get

rP det
(
σP − λP

�
)

= 0 (3.34)

with the distance rP to the boundary of DP related to the eigenvalues λP of
σP , the partially transposed of σ, by

rP ≡ − 1

NλP
(3.35)

Again we are interested in the smallest rP , and thus the largest eigenvalue
λP of σP .

If we now wanted to identify the boundary of P , the density matrices
that remain positive under partial transposition, we will find them in the
cross section between D and DP . In fig. 3.11 we have plotted the same two-
dimensional cross sections as in fig. 3.10, but now with both the boundary of
D and the boundary of DP . The boundary of P is the intersection of these,
which, since we are in the 2 × 2 system, is equal to S. In fig. 3.11a both
the matrices themselves as well as their partial transposes commute, thus we
get straight lines for both boundaries. We also see in fig. 3.11b that the two
randomly chosen rank 3 states happen to lie outside the boundary of DP ,
which means that they are not positive under partial transposition. In addi-
tion, neither the states themselves nor their partial transposed counterparts
commute, therefore the lines are all curved. We can also have situations
where for example the matrices commute, while their partial transposes do
not. A nice example of this is the cross section with a Bell state and a pure
product state, as shown in fig. 3.12. The Bell state is a pure state and as
such maximally entangled, and we observe from the figure that it also has
the largest distance to the separable states.

If we consider a PPT state with ranks lower than N for both the state
and its partial transpose, it will satisfy both det ρ = 0 and det ρP = 0 at
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Figure 3.11: Plot of the same cross sections as in figure 3.10, but now includ-
ing the boundary of DP . a) The cross section is defined by two orthogonal
Bell states A and B. Since they are orthogonal they commute, which is why
the lines are all straight. The points inside the blue and red parallelogram in
the middle are the states which are positive under partial transposition, that
is the set P , and also separable since we are in the 2 × 2 system. The two
Bell states are both pure nonproduct states, so they lie outside P = S and
have equal distance to the separable states. b) The cross section is defined
by two randomly chosen states A and B on the boundary of D which both
are of rank 3. They do not commute, which is why the lines are all curved.
They lie outside the boundary of DP , so neither of them are positive under
partial transposition.
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Figure 3.12: Two-dimensional cross section defined by a Bell state A and a
pure product state B with the maximally mixed state �/N in the middle in
the 2 × 2 system (N = 4). The blue line is the boundary ∂D of the set D
of density matrices, while the red line is the boundary ∂DP of the set DP

of partially transposed states. The Bell state and the pure state commute,
which is why the blue lines are all straight, while their partially transposed
counterparts do not, which is why the red line is curved.
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the same time, and therefore lie on an intersection of the two boundaries. In
figure 3.13 is shown a two-dimensional cross section between two rank (8,8)
states in the 3 × 3 system. Note that even though points may appear as
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Figure 3.13: Two-dimensional cross section defined by two (8, 8) states A and
B with the maximally mixed state �/N in the middle in the 3 × 3 system
(N = 9). Since both states have two eigenvalues equal to zero, one for the
state itself and one for its partial transpose, each of them lie on the boundary
of both D and DP , and as shown here will lie on intersections between the
two boundaries.

extreme points in the two-dimensional cross sections, they might not be. It
is just that the directions in which the points are not extreme lie outside of
the cross section. Much the same as taking a plane and cutting a pyramid in
the middle, where the midpoints on the sides would seem like extreme points
in the triangle of intersection points in the plane.

3.5 Flat faces and extremality in D
Up to unitary transformations, the boundary of D consists of faces, analogous
to the faces of a pyramid or a cube. We will here define the faces, and in
the end show that we regain the entire boundary when we include unitary
transformations that rotate the faces in the full space.
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Given any density matrix ρ, we define a face FD(ρ) on D as the set of
density matrices with the same image as ρ. The face FD(ρ) will in particular
contain ρ as an interior point. This is illustrated in fig. 3.14. Note that
the boundary of set D consists of both flat and curved surfaces, because of
the unitary transformations that must be included in addition to the faces
in order to describe D. The faces are flat in the sense that they can be

Figure 3.14: Illustration of the face FD(ρ) on D. The face is defined by the
set of density matrices with the same image as ρ.

associated with real vector spaces, as we will see in the following.
Let ρ be a given density matrix which defines the face FD(ρ) on D and

let P be the projection on the image of ρ. The condition for any Hermitian
matrix σ̃ to have the same image as ρ can be expressed as

Pσ̃P = σ̃ (3.36)

But this is a map ΦP between matrices

ΦP : σ̃ 
→ Pσ̃P (3.37)

and as such has a representation as a matrix P acting on R
N2

by the Choi-
Jamiolkowski isomorphism. In R

N2
eq. (3.36) is expressed as

Pσ̃ = σ̃ (3.38)

which shows that the condition that σ̃ has the same image as ρ can be recast
as that the vector representation σ̃ is an eigenvector of P with corresponding
eigenvalue equal to one. The matrix P is real and symmetric. It is also a
projection operator since

ΦP (ΦP (σ̃)) = ΦP (Pσ̃P ) = P 2σ̃P 2 = Pσ̃P = ΦP (σ̃) ⇒ P 2 = P (3.39)
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Thus, the number of linearly independent solutions to eq. (3.36) is just the
rank of P .

The rank of P will depend on the rank of ρ. Assume that ρ has rank
m ≤ N . Then we can find a basis where the representation of ρ in block
form is (

ρ̂ 0
0 0

)
(3.40)

where ρ̂ is an m × m Hermitian matrix. But then we know that ρ̂ can be
represented as an m2 × 1 vector in R

m2
, an m2-dimensional subspace of R

N2
.

Since P is a projection operator which projects onto this subspace, it follows
that it has rank m2.

Let {σ̃k} be the set of m2 eigenvectors of P . We may then represent the
set as a set of Hermitian matrices {σ̃k} and define a set {σk} of traceless
Hermitian matrices as

σk ≡ σ̃k − Tr (σ̃k) ρ (3.41)

Since ρ is obviously a solution to eq. (3.36) it is eliminated in the set {σk}.
The latter therefore consists of m2 − 1 traceless matrices which, together
with ρ, form a basis for the face FD(ρ). We may then represent any density
matrix ρ′ in FD(ρ) as

ρ′ = ρ+
m2−1∑
k=1

xkσk (3.42)

implying that the dimension of FD(ρ) is m2 − 1. A two-dimensional cross
section through D showing two density matrices lying in the same face on D
is given in fig. 3.15.

The face FD(ρ) does not form a vector space itself. However, analogous
to the case with D, FD(ρ) is entirely described by a vector space together
with the positivity condition on the density matrices. The vector space in
question is the one spanned by the set {σk} which, together with ρ, form a
basis for R

m2
. Since this is a vector space, we say that FD(ρ) is a flat face.

Another way of looking at it is to say that the face has a traceless projection
on the floor of the convex cone.

Let ρ̂′ be the m × m Hermitian matrix in a block representation of ρ′

similar to eq. (3.40). Then the boundary of FD(ρ) is found by the condition

det ρ̂′ = 0 (3.43)
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Figure 3.15: Two-dimensional cross section through D in the 3 × 3 system
showing two density matrices A and B, both of rank 7, lying in the same
face on D. Neither A nor B are PPT, hence they lie outside the boundary
of DP .
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and identified by the mth-degree characteristic polynomial. Note the sim-
ilarity between the description of the faces and the full set D. This is no
coincidence. Starting with a density matrix of full rank (m = N) we find
that eqs. (3.3) and (3.42) are equivalent, only differing by the choice of basis.
In that case the face is identical to the full set itself.

When a face has dimension zero it corresponds to a single point, and this
point is an extreme point of D. This is completely analogous to the intuitive
case with a three-dimensional pyramid. It has two-dimensional faces as sides,
each of which has one-dimensional lines as boundaries. Each of the lines end
up in zero-dimensional corner points. From the fact that the extreme points
of a convex set defines zero-dimensional faces, we recover that the extreme
points of D are the pure states. We have m2−1 = 0 for m = 1, which means
that the corresponding density matrix is a rank one projection operator, also
known as a pure state.

To recover the boundary of D from the faces, we must include unitary
transformations. A density matrix ρ on the boundary of D with rank m de-
fines a face of dimension m2−1. We can then perform U(N)-transformations
on all the density matrices in the face to rotate the face in the full space.
However, the subgroups U(m) and U(N − m) that act on the image and
kernel of the density matrices respectively do not change the orientation of
the face. They just rotate within the image and kernel separately. Thus, the
transformations that actually change the orientation of the face are the ones
belonging to U(N)/U(m) × U(N −m), the number of which are

N2 −m2 − (N −m)2 = 2Nm− 2m2 (3.44)

Combining the dimension of the face with the number of unitary transfor-
mations that change the face, we get

m2 − 1 + 2Nm− 2m2 = 2Nm−m2 − 1 (3.45)

which is equal to the dimension of the surface of density matrices of rank m.
The boundary of D is reached when the rank of the density matrix is

reduced from N to N − 1. Thus, the dimension of the boundary should be
equal to the dimension of the surface of density matrices with rankm = N−1.
Inserting this into eq. (3.45) we find that the dimension of the surface of such
states is

2N(N − 1) − (N − 1)2 − 1 = N2 − 2 (3.46)

which is exactly the dimension of the boundary of D. Notice also that if we
set m = 1 in eq. (3.45) we find that the dimension of the surface of pure states
is 2N − 2, agreeing with the previous parameter counting of pure states.
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3.6 Flat faces and extremality in P
A density matrix which has a positive partial transpose defines a flat face
on P which is an intersection of two hypersurfaces, as we will see in the
following. Recall that we defined the set P of density matrices with positive
partial transpose as the intersection of the set D of density matrices and the
set DP of partially transposed density matrices.

A given PPT state ρ by itself defines a flat face FD(ρ) on D. Similarly,
the partial transpose ρP defines a flat face FD(ρP ) also on D. Let FDP (ρ) be
the hyperplane obtained by taking the partial transpose of all of the points in
FD(ρP ). It is then a face on DP . Since we know that ρP is an interior point
in FD(ρP ), it follows that ρ is an interior point in FDP (ρ). But then FD(ρ)
and FDP (ρ) share a point, and so they must intersect. This is illustrated in
figure 3.16. The intersection of the two hyperplanes defines a new hyperplane

Figure 3.16: Illustration of the relation between faces on D and P . A PPT
density matrix ρ defines a face FD(ρ) on D while the partial transpose ρP

defines a face FD(ρP ). Taking the partial transpose I ⊗ τ of all points in the
latter, we get a face FDP (ρ) on DP that intersects FD(ρ). The intersection of
the faces defines a face FP(ρ) = FD(ρ) ∩ FDP (ρ) on P with ρ as an interior
point.

FP(ρ) = FD(ρ) ∩ FDP (ρ), which we will see is a flat face of P .
As before we can express the conditions for a Hermitian matrix σ̃ to lie

in a face FD(ρ) as vector equations in R
N2

. Let P be the projection on the
image of ρ. Then the conditions on σ can be expressed as in eq. (3.38). If ρ
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is a PPT state, we can perform exactly the same analysis for ρP and obtain
expressions for states in the face defined by ρP similar to eq. (3.38) for ρ.

Let P̃ be the projection on the image of ρP . Then the condition for a given
Hermitian matrix σ̃P to lie in the face FD(ρP ) can be expressed as

P̃ σ̃P = σ̃P (3.47)

with σ̃P as the vector representation of σP in R
N2

.
A matrix σ which lies in the face defined by ρ, and whose partial trans-

pose σP lies in the face defined by ρP , must fulfill both sets of equations in
eq. (3.38) and eq. (3.47). By the Choi-Jamiolkowski isomorphism the partial
transpose map I ⊗ τ can be represented as an operator Π acting on R

N2
,

in the sense that applying Π to the vector representation of σ̃ returns the
vector representation of σ̃P as follows

Πσ̃ = σ̃P (3.48)

The matrix Π is its own inverse in the sense that Π2 = � where � is the
identity on R

N2
because taking the partial transposition twice reproduces

the original matrix, (σ̃P )P = σ̃. Defining a new projection operator

P̂ ≡ ΠP̃Π, P̂ 2 = ΠP̃Π2P̃Π = ΠP̃ 2Π = ΠP̃Π = P̂ (3.49)

allows us to express eqs. (3.38) and (3.47) as a single vector equation

PP̂P σ̃ = σ̃ (3.50)

In detail, what happens when we let the operator PP̂P act on some
vector w is the following. First w is projected onto the hyperplane defined
by P with the result being the projected vector x = Pw. Then P̂ first
maps x to DP by Πx = xP , before projecting xP onto hyperplane defined
by P̃ with the result yP = QxP . This vector is then mapped back to D by
y = ΠyP , where finally the resulting vector is projected back down to the
hyperplane defined by P by z = Py. This would correspond to

PP̂Pw = z (3.51)

Any vector w for which z = w in the above equation and that represents a
density matrix, represents a density matrix which lies in FD(ρ) and whose
partial transpose lies in FD(ρP ).

The number of eigenvalues of PP̂P equal to one is not the same as the
rank of the matrix, since it is not a projection operator. This can easily be
verified by applying the operator twice

(PP̂P )2 = PP̂P 2P̂P (3.52)
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which in general is not equal to PP̂P . However, we can take the eigenvectors
of PP̂P that correspond to eigenvalues equal to one, and form a projection
operator B that projects onto the subspace spanned by these eigenvectors.
The conditions in eq. (3.50) can then be written as

Bσ = σ (3.53)

and the rank r of B is then the number of linearly independent solutions.
Let {σ̃k} be the set of r linearly independent solutions to the above equa-

tion. Then as before we can construct a traceless set of Hermitian matrices
by

σk = σ̃k − Tr (σk) ρ (3.54)

Since ρ is one of the solutions to eq. (3.53) it is not included in the new set
{σk}.

Any density matrix in the face FP(ρ) can be expressed in terms of the
new set as

ρ′ = ρ+
r−1∑
k=1

xkσk (3.55)

The set {σk} thus forms an (r − 1)-dimensional vector space that together
with the condition on the positivity of density matrices completely describes
the face FP(ρ). It follows that the dimension of FP(ρ) is r − 1. A two-
dimensional cross section through D showing two density matrices on the
same face of P is given in fig. 3.17.

The rank r of B depends on more than just the rank of ρ and is in
general hard to predict. But we can derive a lower limit on r in the following
way. Equation (3.38) implies that the matrix σ̃ must satisfy N2 − m2 real
constraints. Similarly, eq. (3.47) implies that the partial transpose σ̃P must
satisfy N2−n2 real constraints. If all the constraints are linearly independent
we have a a maximum of 2N2 −m2 − n2 real constraints in total. The rank
r of B is the number of free parameters left after subtracting the number of
constraints from the total of N2 free parameters. It thus follows that

r ≥ N2 − (2N2 −m2 − n2) = m2 + n2 −N2 (3.56)

This also implies that the dimension d = r− 1 of the face FP(ρ) has a lower
bound given by

d ≥ m2 + n2 −N2 − 1 (3.57)
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Figure 3.17: Two-dimensional cross section through D showing two density
matrices A and B, both of rank (7, 7), lying in the same face on P .
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The lower bound on the dimension of FP(ρ) implies an upper bound
on the ranks (m,n) of ρ for ρ to be an extreme point of P . As discussed
previously, the dimension of the face defined by an extreme point is zero.
Thus, by eq. (3.57), we get

d = 0 ≥ m2 + n2 −N2 − 1 (3.58)

implying that for an extreme point we have

m2 + n2 ≤ N2 + 1 (3.59)

The lower bound on the rank of B implies that generic PPT states with
ranks (m,n) that satisfy eq. (3.59) are extremal in P . For sufficiently generic
PPT states ρ we would expect a minimal intersection of the faces FD(ρ) and
FDP (ρ). This corresponds to the maximum number of constraints on σ̃ or
equivalently the lower bound on the rank of B. Then we see from eq. (3.57)
that we get a series of negative values for the rank of B as m and n become
smaller. But since we know that ρ lies in the intersection, we know that the
rank of B is at least one. Thus, if we know that ρ is a sufficiently generic
PPT state with ranks that satisfy eq. (3.59), we expect that the rank of B
is one and that ρ is extremal in P .

Take a system of dimension 3× 3 as an example. The upper limit is then
given by

m2 + n2 ≤ 82 (3.60)

For a PPT state of rank (4, 4) we get m2 + n2 = 32, so in the generic case,
where we can expect the constraints on ρ and ρP to be independent, we
expect that the (4, 4) states are extremal. For a PPT state of rank (7, 6) we
find that the relevant numbers are m2 + n2 = 85 and the lower limit on the
rank of B is four. Such states can then not be extremal PPT states.

The fact that low rank PPT states are typically expected to be extremal
in P implies that low rank PPT states typically are entangled. This follows
from the fact that any extremal PPT state that is not a pure product state
must be entangled. If it were separable it could be written as a convex
combination of projections on pure product states and thus would not be
extremal. In fact we can use the lower bound in eq. (3.57) on the face FP(ρ)
to say something about the separability of sufficiently generic states.

Combining the lower limit on the dimension of a face on P with the range
criterion yields an upper bound on the ranks (m,n) of PPT states that can
be separable, providing they are sufficiently generic. Let ρ be a separable
density matrix of rank (m,n) and without loss of generality assume that
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m ≥ n. The range criterion states that a separable density matrix ρ of rank
m must have at least m linearly independent product vectors in its image.
Consider a separable state that can be expressed as

ρ =
m∑

k=1

pkψkψ
†
k =

m∑
k=1

pkρk, ψk = φk ⊗ χk (3.61)

Then each ρk = ψkψ
†
k lies in the face FP(ρ) which means that the face must

at least be m-dimensional. In other words, if the face has dimension lower
than m, it cannot contain the necessary number of pure product states to
express ρ as a separable state. In that case ρ must be entangled.

Thus it follows that a sufficiently generic PPT state with ranks (m,n)
that satisfy

d < m ⇒ m(m− 1) + n2 < N2 + 1 (3.62)

is entangled. Either the lower bound on d is negative and ρ is extremal, or
the lower bound is positive but less than m and ρ cannot be expressed as
a convex combination of the minimum required number of separable pure
states.

A class of entangled PPT states closely related to the extremal PPT states
are the so-called edge states. The concept of edge states was introduced and
further studied in [61, 62, 63, 64, 65, 66]. As stated in [11], an edge state
ρ is an entangled PPT state such that for all ε ≥ 0 and any product vector
ψ = φ⊗ χ, the matrix

ρ′ = ρ− εψψ† (3.63)

is not positive or does not have a positive partial transpose. In light of this,
we see that the extremal PPT states are also edge states. The set of edge
state constitutes a set which is larger than the set of extremal PPT states.
For example, a convex combination of two low rank extremal PPT states
can be a higher rank edge state. If a PPT state is an edge state and not
extremal, then it must be a convex combination of extremal PPT states.

3.7 Surfaces of density matrices with speci-

fied ranks

In the above discussion we have seen that when keeping the images of ρ and
ρP fixed, the resulting set of density matrices with the same images form faces
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on D and P . The structure of S in terms of faces has also been investigated
[67].

A natural next step is to study surfaces of density matrices with specific
ranks (m,n) embedded in R

N2
. It is reasonable to assume that these sur-

faces may be curved and twisted in the embedding space. What we can do,
however, is to study the tangent space of a surface at given points. This will
in particular allow us to calculate the local dimension of the surface. If we
choose sufficiently generic points on the surface, the local dimension should
correspond to the dimension of the whole surface.

Let ρ be a PPT state of rank m acting on a Hilbert space of dimension N .
In the following we will work in a basis for H where the matrix representation
of ρ is as in eq. (3.1). For a general Hermitian matrix A, we can then represent
it as (

B C†

C D

)
(3.64)

With P and Q projecting on the image and kernel of ρ respectively, we have

PAP = B (3.65)

QAQ = D (3.66)

QAP = (QAP )† = C (3.67)

Consider a perturbation σ̃ which perturbs the state ρ as

ρ′ = ρ+ εσ̃, |ε| � 1 (3.68)

We want to ensure that the rank of ρ′ is the same as the rank of ρ in order to
stay on the surface of rank-m density matrices. If m < N the zero-eigenvalues
of ρ are degenerate, so we need degenerate perturbation theory. To first order
in ε the zero-eigenvalues of ρ are perturbed into ε times the eigenvalues of
Qσ̃Q. In order to not increase the rank of ρ′ beyond m to first order in ε, it
follows that σ̃ must satisfy

Qσ̃Q = 0 (3.69)

Thus σ̃ will have the matrix representation(
B C
C† 0

)
(3.70)

The number of independent columns in this matrix is the same as for ρ,
which means that the rank of ρ and ρ′ are equal for small perturbations.
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We can perform the same analysis with respect to the partially transposed
matrices ρP and σ̃P and arrive at similar conditions for σ̃P . Let P̃ and Q̃ be
the projections on the image and kernel of ρP respectively. In order for σ̃P ,
to not increase the rank of ρ′P = ρP + εσP to first order in ε, it must obey

Q̃σ̃P Q̃ = 0 (3.71)

Since Q = I − P and Q̃ = I − P̃ , we can rewrite eqs. (3.70) and (3.71) as

σ̃ = Pσ̃ + σ̃P − Pσ̃P ≡ ΘP (σ̃) (3.72)

σ̃P = P̃ σ̃P + σ̃P P̃ − P̃ σ̃P P̃ ≡ Θ
eP (σ̃P ) (3.73)

By using the Choi-Jamiolkowski isomorphism we can represent the maps ΘP

and Θ
eP as matrices R and R̃ in R

N2
and rewrite the above expressions as

vector equations

Rσ̃ = σ̃ (3.74)

R̃σ̃P = σ̃P (3.75)

It follows from applying the maps twice that both R and R̃ are projection
operators. We can now define a new matrix R̂ ≡ ΠR̃Π and combine the
two sets of equations into a single vector equation

RR̂Rσ̃ = σ̃ (3.76)

where RR̂R is not a projection operator. As before we can define a pro-
jection operator K as the sum of projections on the eigenvectors of RR̂R
with corresponding eigenvalue equal to one. The vector equation can then
be expressed as

Kσ̃ = σ̃ (3.77)

Let {σ̃k} be the set of s solutions to the above equation where s is the
rank of K. We can then define a set {σk} of s−1 traceless Hermitian matrices
given by

σ = σ̃ − Tr (σ̃) ρ (3.78)

Since ρ is contained in {σ̃k} it follows that it is not included in {σk} and
thus we have reduced the number of elements in the set from s to s− 1. The
set {σk} then spans the local tangent space at ρ which implies that the local
dimension of the surface of density matrices with rank (m,n) at ρ is equal
to s− 1.
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By themselves, eqs. (3.74) and (3.75) define the tangent space to the
surface of rank-m density matrices at ρ and rank-n density matrices at ρP

respectively. Equation (3.77) represents the local intersection of these two
spaces at ρ. This intersection is thus the tangent space to the surface of PPT
density matrices with rank (m,n) on which ρ sits.

We can derive a lower bound for the number of solutions to eq. (3.76) in
the following way. Equations (3.69) and (3.70) imply that a (N−m)×(N−m)
Hermitian submatrix of σ is equal to zero. This means that the number of
constraints from eq. (3.69) is equal to (N −m)2. Similarly we get (N − n)2

constraints from eq. (3.71). If all the constraints are independent we have a
total of (N −m)2 + (N − n)2 constraints. The rank s of K is the number
of free parameters left after subtracting the actual number of constraints
from the total of N2 free parameters. It follows that the dimension d of the
tangent space to the surface of PPT density matrices with rank (m,n) at ρ
is

d = s− 1 ≥ 2N(m+ n) −N2 −m2 − n2 − 1 (3.79)

We find numerically that the lower bound is satisfied with equality for
generic PPT states ρ in systems of dimension 3× 3, 3× 4, 3× 5, 3× 6, 4× 4
and 4 × 5 when the rank (m,n) satisfies

m,n > NA +NB − 2 (3.80)

while for generic states with

m = n = NA +NB − 2 (3.81)

the dimension appears to be larger.





Chapter 4

Numerical methods

In this chapter we will review the most important numerical methods devel-
oped and used by us during the work with this thesis. There are mainly four
tools we have used, and in the next chapter we will elaborate in more detail
how and why they were implemented, and the results obtained.

The first is a method for obtaining density matrices of a specific rank
with or without specific restrictions on the nonzero eigenvalues, and with
the option of demanding similar conditions on the partial transpose. This
method lies at the heart of all of the work in this thesis, as it has allowed us
to obtain a large amount of density matrices of various ranks that we have
studied. This method is presented in Paper I.

The second is a method used for examining possible SL⊗ SL equivalence
between a given density matrix and a projector. This method has been
instrumental in our extension of the results in Paper II to the results in
Paper III, and is presented in Paper III.

The third is a method used for checking for possible SL equivalence be-
tween two sets of vectors, and by extension, SL ⊗ SL equivalence between
two sets of product vectors. This method is presented in Paper II, and is the
basis for the results there.

The fourth and final is a method used for obtaining product vectors in a
given subspace. The method has been instrumental in the work presented in
this thesis, as we in Paper II, III and IV have focused in particular on the
relationship between low rank PPT states and product vectors.

To fix the context, assume in the following that we are studying the set
of density matrices that act on a bipartite Hilbert space H = HA ⊗ HB

with total dimension N = NANB with NA and NB the dimensions of the
respective subsystems.

77
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4.1 Obtaining density matrices with specified

rank

We will here present an iterative method for obtaining density matrices with
specific rank based on expanding the eigenvalues in a set of variables, re-
stricting to first order in the expansion and show that each iteration reduces
to solving a set of linear equations.

The eigenvalues λk of a density matrix ρ are functions of a set of variables.
The variables are the coefficients xi in eq. (3.3) which we restate here for
convenience

ρ =
�

N
+

N2−1∑
i=1

xiDi (4.1)

The eigenvalues λk must thus be functions of the xi, λk = λk(x), where x is
an (N2 − 1)-component vector with the xi as components. Since the partial
transpose, ρP is uniquely defined by ρ, and thus by the xi, the eigenvalues
λP

k of ρP are also functions of the same variables, λP
k = λP

k (x).
Demanding a specific rank of ρ and ρP introduces conditions on some of

their eigenvalues. Assume that we want ρ to have rank m and ρP to have
rank n, that is, we want ρ to be a rank (m,n) state. Then m̃ = N −m of
the eigenvalues of ρ and ñ = N − n of the eigenvalues of ρP must be equal
to zero. Ordering the eigenvalues such that the m̃ first of ρ and the ñ first
of ρP are zero, we can write this as

λk = 0, k = 1, ..., m̃

λP
k = 0, k = 1, ..., ñ (4.2)

We are also free to put conditions on the nonzero eigenvalues of ρ and
ρP . We could specify exactly what we would like all or some of the nonzero
eigenvalues to be by equations like

λk = ηk k ∈ {m̃+ 1, ..., N}
λP

k = ηP
k k ∈ {ñ+ 1, ..., N} (4.3)

where the ηk are explicitly chosen by us. In particular we could choose
ηk = 1/m for all nonzero eigenvalues λk in order to obtain a density matrix
proportional to a rank m projection operator. Simultaneously choosing all
ηP

k = 1/n for all nonzero eigenvalues λP
k would lead to the final density matrix

being proportional to a rank m density matrix while its partial transpose
would be proportional to a rank n projection operator.
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We can collect all the conditions from eqs. (4.2) and (4.3) on the eigen-
values of ρ and ρP in a single vector relation

μ(x) = ν (4.4)

where the components of the vector μ(x) are the eigenvalues λk(x) and λP
k (x)

on which we are putting restrictions, and the components in ν are the chosen
conditions. As an example, if we only want to restrict the rank, the vectors
μ and ν would be (m̃+ ñ)-components vectors

μ =
[
λ1, ..., λem, λ

P
1 , ..., λ

P
en

]T

ν = [0, ..., 0, 0, ...., 0]T (4.5)

where we have suppressed the x-dependence of μ in the notation.
Assume that we start with a value of x that does not satisfy our condi-

tions. We write the deviation from the exact solution x′ as Δx = x′−x and
treat this as a perturbation. Expanding to first order in Δx we obtain the
following on component form

νk = μk(x + Δx) ≈ μk +
∑

i

Δxi
∂μk

∂xi

(4.6)

with the terms in the approximation being evaluated at the starting point x.
The previous equation can be rewritten as a set of linear equations

AΔx = b (4.7)

with A a square, positive and real matrix. To see this, note first that the
second term in the approximation in eq. (4.6) is exactly the expression for
a matrix B with components Bki = ∂μk/∂xi acting on a vector Δx with
components Δxi. We can then write eq. (4.6) as∑

i

BkiΔxi = νk − μk (4.8)

Since the components of B are derivatives of the eigenvalues of ρ and
ρP which are all real, B is a real matrix. The components can be obtained
via ordinary first order perturbation theory, which says that if ψk is the
eigenvector of ρ associated with eigenvalue λk, then the change in λk to first
order can be computed as

∂λk

∂xi

= ψ†
k

∂ρ

∂xi

ψk (4.9)
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From eq. (4.1) we get a nice and easy expression for the right hand side of
the above equation. Since ρ is linear in the xi, we get the following easily
evaluated expression for the change in the eigenvalues

Bki =
∂λk

∂xi

= ψ†
kDiψk (4.10)

In order to obtain a square, positive and real matrix, multiply eq. (4.6)
with BT from the left and define

A ≡ BTB

b ≡ Bν −Bμ (4.11)

Thus we obtain the expression in eq. (4.7). This equation is suitable to solve
with the conjugate gradient method, and we obtain a vector Δx with which
to update our original vector x.

Since the expansion of eq. (4.4) to first order in general will not be a good
approximation unless we are really close to the true solution, the updated
vector x + Δx will typically not be a solution either. But it should be closer
than x, and thus we may iterate the procedure to obtain better and better
solutions until the method converges.

It is important to note that the above procedure does not by itself secure
that the density matrix we obtain in the end is positive semidefinite, nor that
it is positive under partial transposition. It is however, possible to implement
these conditions when constructing the vectors μ and ν.

The way to do this is to manually insert one dummy eigenvalue equal
to zero in each of the sets of eigenvalues of ρ and ρP in each iteration, and
then order the two sets independently from the largest negative to the largest
positive number before constructing the vectors μ and ν. To illustrate the
point, assume for simplicity that we only want to constrain the ranks of ρ
and ρP in the end so that they are m and n respectively. The vector ν is
then constructed as an (m̃ + ñ + 2)-component vector consisting entirely of
zeros. The additional two zeros we have added compared to eq. (4.5) are
inserted as component 1 and m̃+ 2.

Assume further that the eigenvalues of ρ and ρP at the beginning of an
iteration are

{λ1, ...λN} and
{
λP

1 , ..., λ
P
N

}
where they are sorted so that λ1 ≤ λ2 ≤ ... ≤ λN and similarly for λP

k . Then
insert one zero in both of the sets to obtain

{0, λ1, ...λN} and
{

0, λP
1 , ..., λ

P
N

}
(4.12)
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Assume that the only negative eigenvalues are λ1 and λP
1 . When we reorder

the sets now we would then get

{λ1, 0, λ2, ...λN} and
{
λP

1 , 0, λ
P
2 , ..., λ

P
N

}
(4.13)

When we now construct the vector μ it would look like

μ =
[
λ1, 0, λ2, ..., λem, λ

P
1 , 0, λ

P
2 , ..., λ

P
en

]
(4.14)

and have m̃+ ñ+ 2 components. In this way, the largest negative eigenvalue
of ρ in each iteration will be placed as element 1 in μ and thus by ν be
required to be zero. Similarly, the largest negative eigenvalue of ρP will be
placed as element m̃ + 2 in μ, and by ν be required to be equal to zero.
This will force the procedure to search for a solution where neither ρ nor ρP

contain any negative eigenvalues.

Since the zeros we have added are only dummy eigenvalues, they should
not contribute to the solution and therefore the dummy eigenvectors associ-
ated with them are simply the N-component zero-vector. Then they do not
contribute to the matrix B in eq. (4.10).

The introduction of the dummy eigenvalues ensures that regardless of the
rank we choose, even if we choose full rank for ρ and/or ρP , that is m̃ = 0
and/or ñ = 0, they will always be positive semidefinite. In practice this
could be implemented in such a way that we may choose whether to restrict
ρ and/or ρP to be positive semidefinite in the end by inserting a dummy
eigenvalue for ρ and/or ρP , but we have in the work presented in this thesis
always required positive semidefiniteness of both ρ and ρP .

In short the method looks like the following:

• Construct the constraint vector ν and choose a random starting point
x0.

• Use the current x0 to calculate ρ, ρP , their eigenvalues and correspond-
ing eigenvectors.

• Insert dummy eigenvalues and order the eigenvalues independently
from the largest negative to the largest positive and construct the vec-
tor μ.

• Use μ and the corresponding eigenvectors to calculate the components
of B according to eq. (4.10), then use B, μ and ν to calculate A and
b according to eq. (4.11), and solve eq. (4.7) to obtain an update Δx.
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• Update the original vector to obtain x1 = x0 +Δx1. If x1 is not a true
solution to eq. (4.4), iterate the procedure with the updated vector in
order to obtain a better approximation. Continue to iterate until the
method converges.

Note that the method does not ensure that the target ranks (m,n) are the
ranks the final density matrix will have, since the method does not detect
whether or not the rank is smaller than m or n respectively. Both when
the ranks are equal to (m,n) and when one or both of them are smaller,
the density matrix satisfies the conditions that N − m and N − n of the
eigenvalues are equal to zero. Thus, in practice, one may end up with a
final density matrix with smaller ranks than intended. This turns out to be
especially true if the ranks are highly asymmetric, for example rank (9, 5) in
systems of dimension 3 × 3. The common result when looking for density
matrices with this rank using the method outlined here is a density matrix
with rank (7, 5) or (6, 5).

The performance of the method is good for N ≤ 20 and passable up to
N = 25 with results obtained in seconds in the simplest cases and a couple
of days for the most difficult cases in the largest dimensions.

4.2 SL ⊗ SL equivalence to projectors

Here we present an iterative method to search for a linear product transfor-
mation of the form SL ⊗ SL that transforms a chosen density matrix into a
projection operator. This was useful in Paper II and III where we investi-
gated the relationship between projection operators and density matrices in
the context of obtaining methods for constructing low rank PPT states.

Assume that we have a density matrix ρ0 and that it is SL⊗SL equivalent
to a projection operator P , that is, there exists a complex product matrix
S = S1 ⊗ S2 such that

Sρ0S
† = P (4.15)

Since P is a projection operator we have

Sρ0S
†Sρ0S

† = P 2 = P = Sρ0S
† (4.16)

We are only considering nonsingular product transformations, therefore the
above equation implies

ρ0S
†Sρ0 = ρ0 (4.17)
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Assume that the rank of ρ0 is m, then we can write the above equation
as a vector equation

F = ρ0 (4.18)

where F and ρ0 are m2-component vectors in the real vector space of Her-
mitian m×m-matrices that have the same image as ρ0. This is so, because
whatever matrix A we have on the left hand side of eq. (4.17) is projected
down by ρ0 so that the matrix on the left hand side has the same image as
ρ0. Additionally, since ρ0 has rank m, the projected matrix on the left hand
side in eq. (4.17) has at most rank m. They can then both be represented as
Hermitian m×m-matrices, and thus also as m2 real vectors.

A particular choice of basis matrices for all m × m-matrices that share
image with ρ0 is given by the eigenvectors ψk of ρ0 corresponding to the m
nonzero eigenvalues. The orthogonal basis matrices can be chosen as

Dk = (1 − 1

2
δij)

(
ψiψ

†
j + ψjψ

†
i

)
, i, j = 1, ...,m (4.19)

Dk =
i√
2

(
ψiψ

†
j − ψjψ

†
i

)
, j > i, i = 1, ...,m (4.20)

There are m(m+1)/2 matrices of the type in eq. (4.19) and m(m+1)/2−m
of the type in eq. (4.20), so altogether m2 matrices. It is straight forward
to check that they constitute an orthogonal basis under the trace product,
Tr (DkDl) = δkl. In this basis the matrix ρ0 would be expressed as

ρ0 =
m2∑
k=1

dkDk (4.21)

with dk being the components of the vector ρ0. The components of F are
then given by

Fk = Tr
(
Dkρ0S

†Sρ0

)
(4.22)

We can restrict the transformations S1 and S2 to be Hermitian. This
is because any unitary product transformation on P will give another pro-
jection operator, and since we have not specified P other than that it is a
projection operator, the unitary part of the transformations S1 and S2 are
uninteresting here. We allow here S2 to be an element in GL(C, NB) for
convenience. We may fix the trace of S1 rather than the determinant, the
choice of normalization does not matter because of the relationship between
the determinant and trace. Thus, in the following we fix the trace of S1 to
be 1.
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Considering S1 and S2 as full rank NA × NA and NB × NB Hermitian
matrices respectively, they can now be represented as

S1 =
�

NA

+

N2
A−1∑

k=1

xkD
A
k and S2 =

N2
B∑

k=1

ykD
B
k (4.23)

where {DA
k } is a complete set of orthonormal basis matrices for NA × NA

traceless Hermitian matrices, and {DB
k } is a complete set of orthonormal

basis matrices for NB ×NB Hermitian matrices. In other words, {DA
k } and

{DB
k } are the generators of SU(NA) and U(NB) respectively. We can then

define a vector

z =
[
x1, ..., xN2

A−1, y1, ..., yN2
B

]T

(4.24)

which contains all the variables in the product matrix S. The vector F on
the left hand side of eq. (4.18) is then a function of these variables, and we
have

F (z) = ρ0 (4.25)

Assume that z is not an exact solution. Then we treat the deviation from
the true solution z′ as a perturbation which we write as Δz = z′ − z. To
first order in Δz we get on component form

Fk +
∑

i

Δzi
∂Fk

∂zi

= dk (4.26)

with the terms on the left hand side evaluated at z. This we can rewrite as
a set of equations

AΔz = b (4.27)

with

A ≡ BTB and b = BT ρ0 −BT F (4.28)

and where the components of the matrix B are given by

Bki =
∂Fk

∂zi

(4.29)

The calculation of the components of B can be a bit further elaborated.
From eqs. (4.17) and (4.18) we have that

Fk =
(
ρ0S

†Sρ0

)
k

(4.30)
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Since ρ0 is fixed, when taking the derivative in order to find the components
of B we see that this means that we get

Bki =
∂Fk

∂zi

=

(
ρ0
∂(S†S)

∂zi

ρ0

)
k

=

(
ρ0

[
∂S†

∂zi

S + h.c.

]
ρ0

)
k

(4.31)

From eq. (4.23) we see that the derivative of S is easily computed as

∂S

∂zi

=

{
DA

j ⊗ S2 if zi = xj

S1 ⊗DB
j if zi = yj

(4.32)

This allows us to calculate the components of B.
We can then solve eq. (4.27) in order to obtain a better approximation

to the true solution z′. If the updated vector z + Δz is not equal to z′, then
we iterate the procedure finding better and better approximations to the
solution until the method converges. In short the procedure is the following:

• Choose a density matrix ρ0 and a random initial starting vector z and
use ρ0 to define the basis according to eqs. (4.19) and (4.20).

• Use z to calculate S1, S2 and S = S1 ⊗ S2 according to eq. (4.23).

• Calculate F and B according to eqs. (4.22), (4.31) and (4.32), then
compute A and b according to eq. (4.28).

• Solve eq. (4.27) in order to obtain an update Δz to z, and check
whether or not z′ = z + Δz is a true solution to the original prob-
lem in eq. (4.15).

• If it is not, use z′ as the new starting vector and iterate the procedure
until the method converges.

The method appears to work well in cases where we know or expect that
there exists solutions, and the solutions are typically found within seconds.
Consider the number of free parameters in S and constraints from eq. (4.17).
From eq. (4.23) it follows that the number of free parameters in S is N2

A +
N2

B − 1. Equation (4.17) specifies m2 independent second order constraint
equations. Thus, we at least expect to find solutions if N2

A + N2
B − 1 ≥ m2.

In Paper III we present numerical evidence that we always find solutions for
generic states of rank m = 4 in systems of dimension 3 × 3. In this case we
indeed have

32 + 32 − 1 = 17 > 42 = 16 (4.33)

so we might expect that there is in fact a one-dimensional continuous set of
solutions. This is discussed in detail in Paper III.
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4.3 SL equivalence between sets of vectors

This method can be used to determine whether or not two sets of product
vectors are equivalent in the sense that one set can be transformed into the
other by SL transformations. In particular, for two sets of product vectors,
it can be used to determine such equivalence for the two sets of vectors
in each subsystem separately. This would allow us to determine whether
the two sets of product vectors could be transformed into each other by
SL⊗SL transformations. We have used it in Paper I to check such equivalence
between sets of product vectors in the kernel of (4, 4) states in systems of
dimension 3 × 3 and sets of real orthogonal product vectors parametrized in
a special way.

Consider two sets, {φk} and {uk}, of vectors φk and uk in C
N and let

each set contain d vectors. We may ask whether the sets are related by a
linear transformation in the following way:

uk = αkAφk (4.34)

where A is a nonsingular complex matrix and αk is some normalization fac-
tor. We include this factor to allow for different normalizations between the
vectors and so we can consider A ∈ SL(N,C). We will show here that this
can be formulated as an eigenvalue equation where A can be represented as
an eigenvector of a matrix C with corresponding eigenvalue equal to zero.

Let A be the complex N2 × 1 vector obtained by stacking the columns of
A such that

A = [A11, ..., A1N , A21, ..., ANN ]T (4.35)

Define a new set of vectors as the result of letting A act on φk as

vk = Aφk (4.36)

We then let v and u be the dN×1 vectors obtained by stacking the d vectors
vk and uk respectively, such that

v = [v11, ..., v1N , v21, ..., vdN ]T (4.37)

u = [u11, ..., u1N , u21, ..., udN ]T (4.38)

Now introduce a dN ×N2 matrix CT that transforms A to v as

v = CT A (4.39)
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It has the following matrix representation:

CT =

⎛⎜⎝ D11 . . . D1N
...

. . .
...

Dd1 . . . DdN

⎞⎟⎠ (4.40)

where Dki = φki�N and �N is the N ×N identity matrix.
We want to find an A such that vk and uk are proportional for each k. If

the two vectors are proportional, it follows that their exterior product will
be zero:

vk ∧ uk = 0 ⇔ vk = αkuk (4.41)

The dimension of the resulting vector obtained by the exterior product in
this case is N(N − 1)/2. We now introduce a matrix C∧ which acts on v in
the following way:

C∧v = [v1 ∧ u1, v2 ∧ u2, ..., vd ∧ ud]T (4.42)

The matrix C∧ is then a p × dN matrix with p = dN(N − 1)/2. It can
be viewed as a d× d block matrix where each element is an N(N − 1) ×N
matrix. In block form it is a diagonal matrix with diagonal elements

diag(C∧) = [E1, E2, ..., Ed] (4.43)

Let {ei} be a basis for C
N so that {ei ∧ ej | i < j } is a basis for C

N ∧ C
N .

Then the matrices Ek can be constructed from

(ei ∧ ej)
† (Ekvk) = vkiukj − vkjuki (4.44)

If vk = αkuk for all k it follows that

C∧v = C∧CT A = 0 (4.45)

We may multiply from the left by C†
T C†

∧ and define

C†
T C†

∧C∧CT ≡ C (4.46)

in order to obtain

CA = 0 (4.47)

where C is an N2 × N2 positive, possibly semidefinite, Hermitian matrix.
If it has any eigenvalues equal to zero, the corresponding eigenvectors are
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vector representations of different matricesA that satisfy eq. (4.34). However,
the solutions may be singular, in which case we are not interested in them.
Therefore, one must always check whether the solutions are nonsingular.

The rectangular matrix C∧CT has dN(N − 1)/2 ≡ r rows and N2 ≡ c
columns. It follows that the rank of C is

rank(C) ≤ min

(
dN(N − 1)

2
, N2

)
= min (r, c) (4.48)

To see this, observe that the maximal rank is N2, and if r < c the rank is
at most r. In the case that r < c it follows that C has at least one zero-
eigenvalue and thus there exists at least one solution to eq. (4.47). Thus, for
r < c there exists at least one A which satisfies eq. (4.34).

If we choose d ≤ N we immediately see that r < c, thus we always have at
least one solution. This is not surprising, as this means that {φk} and {uk}
are both sets of d (nonorthogonal) basis vectors of C

N , and we can always
perform a change of basis in order to go from one set to the other, which is
a linear transformation.

For d > N we in general expect no solution, and indeed we also then see
from eq. (4.48) that r > c which also indicates that there might not be a
solution in the generic case. If the two sets of vectors we have chosen are
somehow special in the sense that there does exist at least one solution, the
method outlined in this section should identify all possible solutions.

4.4 Obtaining product vectors in a given sub-

space

We present here a method to numerically obtain product vectors in a given
subspace, or equivalently, orthogonal to a given subspace. It is highly useful
as a tool in determining whether or not a state satisfies the range criterion
for instance. We have also used it in Paper I in order to check separability for
states with ranks within a given interval. Here we will present the method
in the context of obtaining product vectors that have zero expectation value
on a density matrix.

To this end, let ρ be a density matrix for which we want to find a product
vector ψ = φ⊗ χ such that

ψ†ρψ = 0 (4.49)

with the additional constraint that ψ, and therefore φ and χ are normalized
to one. In order to include these constraints, we introduce real Lagrange
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multipliers λ and μ, and define a function f as

f =
∑
ijkl

φ�
iχ

�
jρijklφkχl − λ

(∑
k

φ�
kφk − 1

)
− μ

(∑
k

χ�
kχk − 1

)
(4.50)

with f = f(φ, χ). We now want to find local minima of the first term in f
under the two constraints implemented through the Lagrange multipliers in
the other two terms. Thus, we need to extremalize f .

Taking the derivative with respect to the components of φ and χ and
demanding that the resulting equations are equal to zero, we get the equa-
tions that φ and χ must satisfy in order to extremalize f . The vectors are
both complex, which means that their components are complex. Normally
we would have to take the derivative with respect to both φk and φ�

k, but in
this case they are satisfied simultaneously. Since f is real valued it follows
that ∂f/∂φk = (∂f/∂φ�

k)�, and so when one of them is equal to zero it follows
that the other one is too.

The two equations that must be satisfied in order to extremalize f are
then

∂f

∂φ�
i

=
∑
jkl

χ�
jρijklχlφk − λφi = 0 (4.51)

∂f

∂χ�
j

=
∑
ikl

φ�
i ρijklφkχl − μχj = 0 (4.52)

From the first one we see that if we multiply from the left by φ�
i and sum

over i, we get∑
i

φ�
i

∂f

∂φ�
i

=
∑
ijkl

φ�
iχ

�
jρijklφkχl − λ

∑
i

φ�
iφi = ψ†ρψ − λφ†φ (4.53)

Under the assumption that φ and χ are normalized to one, and performing a
similar analysis of eq. (4.52) with χ�

j , we find that the values of the Lagrange
multipliers at an extremum are

λ = ψ†ρψ = μ (4.54)

Introducing the matrices B and C with components

Bik =
∑

jl

χ�
jρijklχl and Cjl =

∑
ik

φ�
i ρijklφk (4.55)
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we write eqs. (4.51) and (4.52) as vector equations

Bφ− λφ = 0 (4.56)

Cχ− μχ = 0 (4.57)

Consider having a product vector ψ = φ ⊗ χ that does not satisfy the
above equations. If we are somewhat close to a minimum, we can calculate
the gradients of φ and χ, add a bit of them to φ and χ respectively and get
a better approximation ψ′ = φ′ ⊗ χ′ to a true solution.

The gradients are given by

x ≡ Bφ− λφ (4.58)

y ≡ Cχ− λχ (4.59)

with λ given by eq. (4.54) using the starting vector ψ. Then we define new
vectors φ′ and χ′ as

φ′ = φ+ εx and χ′ = χ+ εy (4.60)

and we need to find the optimal step size ε along the gradients. To first order
in ε we then have

ψ′ = φ′ ⊗ χ′ ≈ ψ + εw ≡ s(ε) (4.61)

with

w ≡ φ⊗ y + x⊗ χ (4.62)

The step size ε we move along the gradients can be found by minimizing

g(ε) =
s†ρs
s†s

(4.63)

Taking the derivative of g with respect to ε and demanding that it is zero,
we get the following second order equation for ε:

ε2 + bε+ c = 0 (4.64)

with

b ≡ 2
(w†w)(ψ†ρψ) − (w†ρw)

(w†w)(ψ†ρw + w†ρψ)
and c ≡ − 1

w†w
(4.65)

In theory we would calculate the second order derivatives and figure out
which one of the two solutions to eq. (4.64) is the minimum, but in practice
we just calculate both solutions and choose the one that is the minimum.

The new vector ψ′ should be a better approximation to a true solution of
eq. (4.49), and if it is not a true solution, we can use the new vector as input
and iterate the procedure in order to get better and better approximations.
In short, the procedure is the following:
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• Given a density matrix ρ choose a random initial product vector ψ =
φ⊗ χ.

• Calculate the gradients x and y according to eqs. (4.55), (4.58) and (4.59).

• Solve eq. (4.64) with the help of eqs. (4.62) and (4.65) and choose the
solution that minimizes eq. (4.63).

• Update the product vector ψ according to eq. (4.60).

• If the new product vector ψ′ does not satisfy eq. (4.49), set ψ = ψ′ and
iterate the procedure until the method converges.

The method outlined above allows us to search for all product vectors in
a given subspace that are different in the sense that no one product vector
is proportional to any other. Since the method searches for local minima,
we can expect to find all the different minima by sufficiently varying the
initial product vector. Then it is just a matter of checking whether each new
product vector is proportional to the ones already obtained.

Since the density matrix ρ is a positive semidefinite matrix, it follows
that ψ lies in the kernel of ρ when it satisfies eq. (4.49). In fact, we may
replace ρ with any positive semidefinite matrix A in the above procedure, and
obtain product vectors in the kernel of A. In particular, we could use the
projections P and Q on the image and kernel of ρ respectively. Replacing ρ
with P accomplishes nothing new, the method will still be looking for product
vectors in the kernel of ρ. However, replacing ρ with Q allows us to look for
product vectors in the image of ρ instead of its kernel. Let Q̃ project on the
kernel of ρP . Then we can search for product vectors that are candidates in
a separable decomposition of ρ by replacing ρ in the above procedure with
Q+ Q̃P . The details of why this works is discussed in Paper I.





Chapter 5

Summary and outlook

In this chapter we will present short summaries of each paper included in
this thesis. The motivations behind the papers and the main results will be
discussed and related to the topics in the previous chapters. We end with
some conclusions and comments on possibilities for further research.

5.1 Paper I

In this paper we study states with positive partial transpose (PPT states) in
bipartite systems of low dimension. The work is a continuation of the effort
to characterize entanglement, with a particular focus on the geometry of the
sets of density matrices, started in [16]. As discussed in section 3.2 the set D
of density matrices is convex and contains convex subsets P and S of PPT
and separable states respectively, with S ⊂ P ⊂ D. Since states that are
not PPT are entangled, it follows that identifying the entangled PPT states
is of particular interest.

The set P is convex and thus defined by its extreme points. In [16]
the criterion for identifying extremal states of P discussed in section 3.6
was presented. In the same paper, by a numerical implementation of the
criterion, several examples of extremal PPT states were obtained, classified
by the ranks (m,n) of the state and its partial transpose.

In this paper we take a slightly different approach. We develop and use
the numerical method in section 4.1 to obtain PPT states of various ranks in
systems of dimension 2 × 2, 2 × 3, 2 × 4, 2 × 5, 3 × 3, 3 × 4, 3 × 5, 4 × 4 and
4 × 5. Since we only impose constraints on the ranks of these PPT states,
we consider them to be generic. We further calculate the dimension of the
face on P for each state and compare with the lower bound (section 3.6). We
also develop the method described in section 4.4 and use it to identify the
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number of product vectors in the image and kernel of each state respectively.
The main result is the information contained in the tables in Appendix

B of the paper, where we list the states we have obtained numerically in
the systems mentioned previously and their properties. As an alternative to
specific examples, the paper thus provides an overview of the properties of
generic PPT states of nearly every rank in several low dimensional systems.
In particular it shows that PPT states exist for almost all ranks. The results
are also diagrammatically represented in figures in section III in the paper.

The results show several regularities. In particular, PPT states with ranks
below the upper bound in eq. (3.59) are observed to be extremal, and hence
entangled, until the ranks reach a certain lower threshold. Using the method
described in section 4.4 we were also able to check the separability of some
PPT states with ranks above the limit in eq. (3.59), and find that also they
are typically entangled.

The lowest rank for which we find extremal PPT states is especially in-
teresting. We find generic PPT states to be extremal for ranks between the
upper limit in eq. (3.59) and the lower limit

NA +NB − 2 (5.1)

for all the systems we have examined. For states with rank lower than this
we typically find the generic states to be separable.

There is a known lower bound on the ranks of PPT states that can be
entangled given in [64]. There it was shown that PPT states in systems of
dimension NA ×NB with ranks lower than

max(NA, NB) + 1 (5.2)

will be separable, which is mirrored in our results. Only for systems of
dimension 3 × 3 do eqs. (5.1) and (5.2) coincide, and for systems of larger
dimension eq. (5.1) is larger than eq. (5.2).

As an example, the limit set by eq. (5.2) implies that rank 4 PPT states
in systems of dimension 4×4 are separable, but PPT states of rank 5 could in
principle typically be entangled. Our results show that generic rank 5 PPT
states are separable, while in some cases they may be entangled. When we
find them to be entangled, they are always convex combinations of extremal
states with less than full local ranks (section 2.2). Generic PPT states of
rank 6 and above however, are typically extremal and thus entangled. The
rank 6 is exactly the one given by eq. (5.1).

Thus, based on the structure and regularity observed in our numerical
results, we therefore conjecture that the lower limit on the rank of extremal
PPT states is given by eq. (5.1). We have unfortunately not been able to
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prove the conjecture analytically. Neither can we by our numerical methods
exclude that there exist special cases where PPT states with ranks between
the limits in eqs. (5.1) and (5.2) are extremal, but we do not know of any
examples.

5.2 Paper II

In this paper we study the PPT states of rank (4, 4) in systems of dimension
3×3. The results of Paper I indicated that the lowest rank of extremal PPT
states is given by eq. (5.1), and that such states always contain a finite set
of (nonorthogonal) product vectors in their kernel. Additionally, in [68] a
construction of specific examples of entangled PPT states of rank (4, 4) in
systems of dimension 3×3 was given using a set of orthogonal product vectors
that end up sitting in the kernel of the state. The state itself is proportional
to a projection operator.

The product vectors used in [68] are special in the sense that they are
orthogonal and that there does not exist any product vector orthogonal to
all members of the set. The set is therefore referred to as unextendible and
called an unextendible product basis (UPB). The idea in [68] is to create a
real and separable projection operator that projects on the space spanned by
the product vectors and consider the density matrix that is proportional to
the projection on the subspace orthogonal to the product vectors. Because
of the UPB requirement, the image of the density matrix cannot contain any
product vectors, hence the state is entangled. Since the projection operator
on the kernel of the state is real and separable it is invariant under partial
transposition, hence so too is the density matrix, and thus it is a PPT state.

In this paper we generalize this construction by parametrizing all possible
UPBs using four real parameters and show that these are SL⊗SL invariants
(see section 2.4). Since such transformations preserve separability, the entire
set of rank (4, 4) entangled PPT states obtainable through this construction
is divided into classes parametrized by the SL ⊗ SL invariants.

The main result of the paper is that all entangled PPT states of rank
(4, 4) that we have tested are SL ⊗ SL equivalent to states constructed by
the UPB method. This includes all entangled PPT states of rank (4, 4)
states obtained by us using the method described in section 4.1, but also all
examples of such states found in the literature. It is a highly nontrivial result
that all known entangled PPT states of rank (4, 4) are SL⊗SL equivalent to
the states constructed by the UPB method.

We arrive at the result in the following way. For each state we use the
method described in section 4.4 to obtain the product vectors in the kernel



96 Chapter 5. Summary and outlook

of the state. By use of special functions defined by determinants, which are
explained in the paper, we obtain the four real parameters that describe the
product vectors on the special UPB form. The fact that we find these real
parameters is the first nontrivial indication that the state is equivalent to a
state constructed by a UPB. We use the real parameters to construct the
corresponding UPB. We then use the method described in section 4.3 check
for SL ⊗ SL equivalence between the set of product vectors in the kernel of
the state and the UPB. By this we also obtain the product transformation
and can check that it actually transforms the original state to a state with
the UPB in question in its kernel. The fact that this works for all entangled
PPT states of rank (4, 4) that we have tested is highly nontrivial.

5.3 Paper III

In this paper we focus on a generalization of the construction in Paper II
of entangled PPT states of rank (4, 4) and a possible extension to entangled
PPT states with ranks given by eq. (5.1) in systems of higher dimensions.
The results from Paper I indicate strong similarities between the lowest rank
extremal states in the systems studied. In particular, they all contain a
finite number of product vectors in their kernel. However, the construction
presented in Paper II does not lend itself to a straight forward generalization
because of the orthogonality requirement on the UPB.

Instead, we focus on a generalization of the UPB construction where we
still consider unextendible sets of product vectors, but allow the product
vectors to be nonorthogonal and thus we extend the term UPB to cover also
these types of sets. The constructed density matrix will still be proportional
to a projection operator, however it will not necessarily be a real matrix since
we do not require the product vectors to be real. The projection operator on
the kernel of the state is considered as a linear combination of projections onto
the product vectors in the UPB and as such does not necessarily represent a
separable state.

We present the construction in the context of an explicit example in
systems of dimension 3× 3 where the UPB forms a regular icosahedron, and
show that there is a continuous one-parameter family of states on the same
form that correspond to a linear deformation of the icosahedron. As a special
case of this example, we obtain the state constructed in [68] for a particular
deformation of the icosahedron.

The main result of the paper is that all entangled PPT states of rank (4, 4)
in systems of dimension 3 × 3 that we have tested are SL ⊗ SL equivalent
to states constructed by the generalized UPB construction. We arrive at
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this result by taking generic states produced by the method described in
section 4.1 and applying the method described in section 4.2 to search for the
most general product transformation that transforms the state to projection
form. This is also done for all entangled PPT states of rank (4, 4) found
in the literature. We always find transformations that do not correspond to
those considered in Paper II, and we present numerical evidence indicating
that there is a continuous one-parameter family of such transformations for
a given state.

For generic states of the lowest rank in higher dimensional systems we are
not able to confirm whether it is possible to transform them to a projection
form using SL ⊗ SL transformations. Instead, we use the method described
in section 4.1 to search for PPT states on projection form with this same
lowest rank. We are always able to find such states, and obtaining them
appears to be no more difficult than to obtain generic PPT states of the
same rank. We also check to see whether these states fit into the generalized
UPB construction scheme, which they always seem to do. The fact that
these states exist, are easy to find and can be described by the generalized
UPB construction shows that there is at least the possibility of constructing
a subset of entangled PPT states with rank given by eq. (5.1) also in higher
dimensional systems.

5.4 Paper IV

In this paper we study the entangled PPT states of rank (5, 5) in systems of
dimension 3×3. We also consider an alternative approach to the construction
of entangled PPT states with ranks given by eq. (5.1). The study of the
(5, 5) states is a natural progression from the (4, 4) states, and in particular
we make use of our knowledge of the entangled PPT states of rank (4, 4) in
studying the (5, 5) states. The alternative approach to the construction of
entangled PPT states is motivated by the regularities discovered in Paper I
that also motivated Paper III, namely that the generic entangled PPT states
with ranks given by eq. (5.1) contain a finite set of product vectors in their
kernel.

The main results of this paper are twofold. The first is that we show how
to construct entangled PPT states of rank (5, 5) from the entangled PPT
states of rank (4, 4). We accomplish this by use of perturbation theory and
ideas similar to those described in section 3.7. Thus, we obtain entangled
PPT states of rank (5, 5) infinitesimally close to the (4, 4) states, which means
that they lie infinitesimally close to the boundary of the surface of (5, 5)
states.
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We calculate the dimension of the surface of PPT states of rank (5, 5) by
use of the ideas discussed in section 3.7, and find that this is the same as the
number of parameters involved in the perturbation scheme. In order to find
generic PPT states of rank (5, 5) that are not infinitesimally close to (4, 4)
states we present a method for doing numerical integration along curves on
the surface of (5, 5) states.

The second main result is that the number of product vectors in the kernel
of a PPT state needed to specify it is in general smaller than the dimension of
the kernel. We show for instance that while generic PPT states of rank (6, 6)
in systems of dimension 4 × 4 have 20 different product vectors in their 10
dimensional kernel (so only 10 of them are linearly independent), the number
of product vectors needed to specify such a state is 7. And even then, the 7
product vectors are not completely generic.

5.5 Concluding remarks

The work presented in this thesis has been focused on understanding en-
tanglement and entangled states in quantum physics. Entanglement is an
important and interesting theme both in itself and in the context of quan-
tum information theory. As a resource entanglement is quite fragile, in the
sense that interactions with the environment has a tendency to destroy the
entanglement contained in a composite system.

Both from a practical point of view and as part of the theoretical frame-
work of quantum mechanics, it is important to ask how one can determine
whether a given state is entangled or separable. A powerful tool in low di-
mensional bipartite systems for determining separability is given by the PPT
criterion, and while it is both necessary and sufficient in systems of dimen-
sion 2 × 2 and 2 × 3, it is no longer sufficient in higher dimensional systems.
Still, identifying the set of all PPT states is a worthwhile objective, as the
states that are not PPT are necessarily entangled.

Our approach has been of a geometric nature, where we exploit the convex
nature of the sets of density matrices. Since the set P of all PPT states is
convex, it is completely described by its extreme points, and so it becomes
important to identify the entangled extreme points of P .

As a complimentary approach to the construction of specific examples we
tried in Paper I to map out the properties of generic PPT states of nearly
every rank in several low dimensional bipartite systems. This should be of
interest to anyone working in the same field, as it presents a bigger picture
of the properties and geometric structure of generic PPT states.

In particular the regularities concerning the lowest rank extremal and
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entangled PPT states stands out in our results. We investigated these states
in systems of dimension 3 × 3, where they are of rank (4, 4) in Paper II and
III and also for higher dimensional systems in Paper III. In Paper IV we
exploited our knowledge of the states of rank (4, 4) to construct states of
rank (5, 5), and investigated the connection between lowest rank extremal
PPT states and product vectors in their kernel. From the results of the work
presented in Paper I through IV there emerges several interesting subjects
for further study.

One such subject is an analytical proof or disproof of our conjecture in
Paper I, that the lower bound on the rank of extremal PPT states is given
by NA +NB − 2. Although all our numerical results are consistent with this
conjecture, and there exists no counterexamples as far as we know, a formal
proof is obviously desirable.

In addition, a formal proof of SL⊗ SL equivalence between any extremal
PPT state of rank (4, 4) in systems of dimension 3 × 3 and a PPT state
obtained by the construction presented in Paper II is needed. Again all our
numerical results suggest that this is the case. Parameter counting indicates
that any state of rank 4 can be transformed by such transformations to a
form where it is proportional to a projection operator, but as we show in
Paper III, this does not necessarily imply that the transformed state is of the
form obtained through the UPB construction from Paper II.

However, as discussed, the UPB construction in Paper II is too limiting
in higher dimensional systems, and so an explicit construction is needed for
the lowest rank extremal PPT states in systems of higher dimension. In
Paper III we explored one possible generalization of the construction from
Paper II, but were unable to confirm SL ⊗ SL equivalence between generic
lowest rank extremal PPT states and states obtained through the generalized
construction. In addition, we were not able to give an explicit recipe for
constructing the states.

We were, however, able to numerically obtain generic lowest rank extremal
PPT states that are proportional to projection operators in higher dimen-
sional systems and show that they fit into the generalized UPB construction.
Parameter counting in higher dimensional systems seems to indicate that
generic lowest rank extremal PPT states are not SL ⊗ SL equivalent to pro-
jection operators, however we cannot exclude it. Whether or not such an
equivalence exists in general, and if it does, whether or not the states pro-
portional to projection operators fit into the generalized UPB construction,
might be further illuminated if analytical proofs for the case of systems of
dimension 3 × 3 .

Another subject for further study is the relationship between PPT states
and product vectors in the kernel of such states. This is interesting because
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a feature of generic lowest rank extremal PPT states seems to be that they
contain a finite number of product vectors in their kernel. We examined the
constraints product vectors place on the density matrix to which they are
orthogonal in the case of systems of dimension 3 × 3 and 4 × 4 in Paper IV,
but only in the 3 × 3 case are we able to explicitly identify the constraints
on the product vectors such that the density matrix is PPT.

With further analysis of product vectors in the kernel of PPT states we
might be able to solve some of the aforementioned problems. For instance,
PPT states of rank less than NA +NB − 2 will typically have an infinite set
of different product vectors in their kernel, and one can wonder whether this
is incompatible with extremality. At least so far as our results are concerned,
we have never observed an extremal PPT state with an infinite number of
different product vectors in their kernel except for the rank 1 states, but
these are separable.

Another topic for further research is the study of surfaces of PPT states
under various conditions. For instance, it gives us new means of studying the
properties of generic density matrices. By numerical integration we can move
along surfaces of PPT states with either specified ranks or specified ranks
and fixed image for the density matrix, as shown in Paper IV. The rank (5, 5)
states in systems of dimension 3×3 obtained through perturbations of states
of rank (4, 4) can be taken as starting points from which we might be able to
access all PPT states of rank (5, 5) by integrating along the surface of states
with this rank. Controlled perturbations such as these could possibly also
be used to extract more information about the constraints imposed on the
lowest rank extremal PPT states by product vectors in their kernel in higher
dimensional systems.

Lastly, it would be interesting to try to further optimize the numerical
tools we have already developed, in order to map out properties of generic
states in even more higher dimensional systems. This would for instance
allow us to further study numerically the increasing difference between the
lower bounds in eqs. (5.1) and (5.2). Optimization of the tools could imply
both optimization of the code in particular, but also recoding in C or C++.
Further analytical study might also reveal better algorithms that could be
used.

Describing physics in geometric terms is a time honored tradition and has
proven to be very useful, such as Einstein’s general theory of relativity and
gauge theories of particle physics. A geometrical approach to the study of
entanglement is a natural road to take, and will surely play a vital role in
improving our understanding of entanglement and entangled states.
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We report here on the results of numerical searches for PPT states in a series of bipartite quantum systems of
low dimensions. PPT states are represented by density matrices that remain positive semidefinite under partial
transposition with respect to one of the subsystems, and our searches are for such states with specified ranks for
the density matrix and its partial transpose. For a series of different ranks extremal PPT states and nonextremal
entangled PPT states have been found. The results are listed in tables and charted in diagrams. Comparison of
the results for systems of different dimensions reveals several regularities. We discuss lower and upper bounds
on the ranks of extremal PPT states.
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I. INTRODUCTION

In recent years the study of entanglement in composite
quantum systems has taken several different directions.One di-
rection is the study of entanglement froma geometrical point of
view [1–5]. This has led to questions concerning the relations
between different convex sets of Hermitianmatrices, where the
full set of density matrices is one of them. Themainmotivation
for the interest in these convex sets is the information they give
about the general question of how to identify entanglement
in a composite system. Unless the system is in a pure
quantum state, the knowledge of the corresponding density
matrix does not readily disclose the state as being entangled
or nonentangled, and the complexity of the corresponding
problem, known as the separability problem, increases rapidly
with the dimensionality of the quantum system [6].
The density operators are the normalized, positive semidef-

inite Hermitian operators that act on the Hilbert space of the
quantum system, and in the following we shall use the notation
D for this set. Another convex set is the set of nonentangled
states, usually referred to as separable states, and we use S
as notation for this subset of D. Since the set of entangled
states is the complement to the set of separable states, within
the full set of density matrices, the question of identifying the
entangled states can be reformulated as the question of finding
the boundaries of the convex set of separable states S.
For a bipartite system, there is furthermore a convex subset

of the density matrices, here referred to as P , which is closely
related to the set of separable matrices. This is the subset of
density matrices that remain positive semidefinite under the
operation of partial transposition of the matrix with respect
to one of the two subsystems of the composite system. In
short, these states are called PPT states. A necessary condition
for separability of a density matrix is that it remains positive
under partial transposition, and thus the set of separable states
is included in the set of PPT states, S ⊂ P [7]. For bipartite
systems of dimensions 2× 2 and 2× 3, the two sets are in fact
identical [8], but in higher dimensions the separable states form
a proper subset of the set of PPT states. However, numerical
studies have shown that for systems of low dimensions, such as
the 3× 3 system, the set P is only slightly larger than S [4,9].
The necessary condition that the separable density matrices

remain positive under partial transposition is important since
this condition is easy to check. It effectively reduces the

separability problem to a question of identifying the PPT
states that are entangled, that is, that do not belong to S.
These states are also interesting for a separate reason, since
they are known to carry bound entanglement, which means
that the entanglement is not available through entanglement
distillation, a process where entanglement of mixed states is
transferred to a set of pure quantum states [10].
In the literature, there are several studies of states with

bound entanglement, mostly based on the construction of
specific examples. One approach has been to construct
classes of PPT states with special symmetries [11–15]. Other
examples have been obtained through the study of positive
maps or entanglement witnesses, which on several occasions
has led to constructions of classes of entangled PPT states
witnessed by specific maps [16–18]. The violation of the
range criterion by entangled PPT states has also given rise to
several examples through the study of unextendible product
bases [19] and edge states [20].
In a previous publication [9] we focused particularly on

extremal PPT states. These are the states that define the full set
P of PPT states, in the sense that all other PPT states can be
expressed as convex combinations of these states. The set P
share with the set of separable states S the pure product states
as extremal states, but in addition, P has other extremal states
that are not fully known. These extremal states are special ex-
amples of entangled PPT states. In Ref. [9] we have presented
a criterion for identifying extremal PPT states, and we have
there described an algorithm to systematically search for such
states. By use of the method, a list of extremal PPT states was
found and presented for a series of low-dimensional systems.
In the present article we follow up the study of entangled

PPT states in [9] by use of numerical methods. The method
described here is different from that of the publication [9] in the
sense that it does not make use of direct searches for extremal
PPT states, but rather of searches for PPT states with specified
ranks for the density matrix and for its partial transpose.
It is therefore also different from most of the other papers
cited earlier in the sense that it does not aim at states with
particular properties, apart from specification of the ranks. By
systematically searching through matrices of different ranks,
we have obtained in this way, for a series of low-dimensional
systems, a list of low-rank PPT states, many of which are
identified as extremal and others as nonextremal entangled
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PPT states. These results supplement those of [9], where only a
limited set of different types of extremal states were identified.
The results we have obtained for different low-dimensional

systems show certain regularities. In particular we find
extremal PPT states for essentially all ranks of the density
operator and its partial transpose when these lie between
an upper and a lower limit. We suggest general expressions
for these limits and relate them to generic properties of the
image and kernel of the density matrices. A special focus is
on the properties of the extremal PPT states of lowest rank.
In a separate publication [21] we follow up these results by
a specific study of the lowest rank extremal PPT states of
the 3× 3 system, which are also identical to the lowest rank
entangled PPT states in any dimension [22] (see also [23]). As
discussed there, these states can be classified by a small number
of parameters, and an interesting question is whether a similar
classification can be given for other extremal PPT states.

II. THE METHOD

We consider a bipartite quantum system with Hilbert space
H = HA ⊗ HB , where A and B label the two subsystems,
and HA and HB are of dimensions NA and NB , respectively.
The density operators ρ satisfy the normalization condition
Tr ρ = 1, but often it is convenient to give up this condition
and rather consider all density operators that differ by a
normalization factor to be equivalent. The set of normalized
density operators we refer to as D, while K(D) is the
positive cone of nonnormalized density operators. A similar
notation is used for other subsets of Hermitian operators.
Partial transposition is the operation on density operators
that corresponds to transposition of indices of one of the
subsystems, ρB

ij → ρB
ji (here chosen as subsystem B). For

density operators of the full, composite system, we refer to
this operation as ρ → ρP , and it maps the convex set D into
another convex set denoted DP . The operation will depend on
the choice of subsystem (A or B) and on the choice of basis
in the corresponding Hilbert space. However, the distinction
between these different choices is of no importance for our
discussion. We note in particular that the mapping of sets
D → DP is independent of the choice. The set of PPT states
is defined as the section P = D ∩ DP , which means that it
consists of the positive semidefinite operators that remain
positive semidefinite under partial transposition.

A. Searching for density operators of given ranks

The Hermitian matrices define a real vector space, and it
is convenient to introduce a complete set of matrices that are
orthonormal with respect to the trace norm

Tr(MiMj ) = δij . (1)

A general Hermitian matrixM is then described as a vector x
with real components

xi = Tr(MMi). (2)

For a composite system of Hilbert space dimension N =
NANB , the vector space of Hermitian matrices is of dimension
N2 = N2

AN2
B .

The algorithm we use to find PPT states ρ with specified
ranks (m,n) for ρ and ρP is the following. We expand ρ as

ρ = ρ(x) =
∑

i

xiMi. (3)

The eigenvalues of ρ we write as λi = λi(x), with λP
i = λP

i (x)
as the eigenvalues of the partially transposed matrix ρP . The
eigenvalues of each matrix are listed in decreasing order,
and for the density matrix that we are searching for, a
certain number of the eigenvalues should vanish. Thus we
want to have λk = 0 for k = m + 1, . . . ,N and λP

k = 0 for
k = n + 1, . . . ,N . The eigenvalues that should vanish we treat
as components of a new vector μ so that

μ = [
λm+1,λm+2, . . . ,λN,λP

n+1,λ
P
n+2, . . . ,λ

P
N

]
, (4)

and the problem is then to find the point x which solves the
equation μ(x) = 0.
We choose a starting point x such that ρ = ρ(x) as well

as ρP are positive semidefinite matrices (it is not strictly
necessary that the positivity conditions hold to beginwith since
they will automatically hold for the solution we obtain in the
end). If the equation μ(x) = 0 is not already solved, we search
for a better approximate solution x′ = x + �x. The linear ap-
proximation to the Taylor expansion gives an equation for�x:

μ(x)+ (�x · ∇)μ(x) = 0. (5)

In matrix form the equation can be written as

B �x = −μ, (6)

with Bij = ∂μi/∂xj . It implies another equation,

A �x = b, (7)

where A = BT B is a positive, real symmetric matrix and
where b = −BT μ. We use the conjugate gradient method [24]
to solve the last equation for �x. The conjugate gradient
method is useful because it works even if A is singular.
Next, we replace x by x′ = x + �x and, if μ(x′) �= 0, iterate
in order to get successively better approximate solutions. If
the method converges, we reach a value of x where μ(x) = 0
within machine precision, where the iteration is stopped.
Thematrix B is computed in each iteration by the first-order

perturbation formula

∂λk

∂xj

= ψ
†
k

∂ρ

∂xj

ψk = ψ
†
k Mj ψk , k = m + 1, . . . ,NA, (8)

where ψk is the eigenvector of ρ with eigenvalue λk . A similar
formula is used for the derivatives of λP

k . Since these formulas
are valid in first-order nondegenerate perturbation theory, this
raises a question concerning convergence of the method at a
point of degeneracy. However, in practice, we find that the
method works well when the dimension of the system is not
too large.
Note that, by the way the method works, all the states we

find are PPT. That is the case since in the iterative search for a
state with a certain number of vanishing eigenvalues for ρ and
ρP , the eigenvalues are always ordered in such a way that the
lowest eigenvalues are forced to be zero. This means that both
the density matrix and its partial transpose will be positive
semidefinite.
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We have applied the method to a series of low-dimensional
systems, and the results are listed in Tables I–IV and in the
figures in the next section. The convergence of the method
slows down with increase of the Hilbert space dimension
N , and in the form we have implemented the algorithm, the
practical limit of the dimension is N <∼ 20. For the systems
we have studied, the method has been used repeatedly with
different starting points for each choice of ranks (m,n). In
most cases the iteration converges, but in some cases that does
not happen, and these iterations are then simply aborted. For
some values of m and n we do not find any density matrix
with the given ranks, and the method will then in most cases
converge to a density matrix with lower rank for either ρ or ρP ,
or both. We have not imposed any restriction to avoid that, so
in practice the method searches for density matrices of ranks
equal to or lower than the specified values (m,n).
Since we have made no particular effort to optimize

our code for speed, we do not discuss here details of the
implementation such as convergence rates and execution times.
One interesting detail, however, is the numerical accuracy of
the algorithm. For N <∼ 20 it is very good. In determining the
ranks of the density matrices and the dimensions of the facesF
(see later discussion), we need to decide whether eigenvalues
are equal to or different from either 0 or 1, and in general we
obtain these values within machine precision of 10−16. There
is most of the time several orders of magnitude difference
between small but nonzero eigenvalues, and eigenvalues that
are zero within the machine precision.

B. Determining the dimension of the face of K(P)

For each density matrix ρ found in the searches, we have
evaluated and listed certain properties. Among these are the
local ranks (rA,rB) of the density matrices, defined with
respect to the subsystems A and B. These are the ranks of
the reduced density matrices ρA and ρB . The most interesting
cases are those where the density matrices have full local ranks
(rA,rB) = (NA,NB ). If that is not the case the density matrix
can be viewed as belonging to a composite system of lower
dimension, which is embedded in the higher-dimensional
system.
We have also evaluated and listed the dimension of the

face F of the convex cone K(P) to which ρ belongs. The
extreme points of P correspond to one-dimensional, positive
rays in K(P) and are consequently characterized by dim F =
1. Therefore the extremal states can be identified in the tables as
the density matrices with this minimal value for the dimension
of the face.
The method we use to evaluate dimF has earlier been

described in [9]. It is based on the fact that the faceF to which
ρ belongs can be viewed as the section between a face (or
all) of K(D) and a face (or all) of K(DP ). This means that
ρ = ρ(x) satisfies two equations:

Px = x , Q̄x = x, (9)

with P as the orthogonal projection on the subspace in the
vector space of Hermitian matrices defined by the face of
K(D) and Q̄ as the projection on the subspace defined by the
face of K(DP ). Note that as orthogonal projections, P and
Q̄ are real and symmetric N2 × N2 matrices. The method for

computing these matrices for a given density operator ρ is
described in [9].
As follows from the preceding equations, the section

between the subspaces defined by P and Q̄ is spanned by
the eigenvectors of the composite, real symmetric matrix
P Q̄ P (or alternatively Q̄ P Q̄), with eigenvalues equal to
1. This implies that dim F can be determined simply by
diagonalizing the composite matrix and counting the number
of such eigenvalues.
Since we compute the eigenvalues with machine precision,

there is an unambiguous distinction between eigenvalues that
are equal to or different from 1. For example, an eigenvalue of
0.999 differs from 1 by about 13 orders of magnitude.
As a consequence of the way F is constructed, there is a

geometrical constraint on the possible values of dim F for
given ranks (m,n) of ρ and ρP [9]. Thus, the faces of K(D)
and K(DP ) are of dimensions m2 and n2, respectively, and
therefore the face of K(D) is specified by N2 − m2 linear
constraints, and similarly the face of K(DP ) is specified by
N2 − n2 linear constraints. If these sets of constraints are
independent, they determine the dimension of the section
F as dimF = m2 + n2 − N2. However, if the two sets
of constraints are not fully independent, the dimension of
the section is larger. Therefore the following inequality is
generally valid:

dimF � m2 + n2 − N2. (10)

For extremal PPT states with dim F = 1, this gives an upper
bound to the ranks of ρ and ρP :

m2 + n2 � N2 + 1 (extremality). (11)

C. Counting the number of product vectors

For each density matrix ρ, we have examined the image
(Im ρ) and kernel (Ker ρ) for the presence of product vectors,
and the numbers of such vectors are listed. The method we
use to search for product vectors in a given subspace of H is
described in some detail in Appendix A. To briefly outline the
approach, let us assume that we search for product vectors in
Im ρ, with P as the orthogonal projection on this subspace.
The vectors should satisfy the condition

(1 − P )(φ ⊗ χ ) = 0, (12)

and this can be reexpressed as a minimization problem, which
we in Appendix A refer to as a double eigenvalue problem.
The solutions of Eq. (12) are the minima of the function

f = (φ† ⊗ χ †)(1 − P )(φ ⊗ χ ), (13)

with f = 0, and such minima can be found by the iterative
approach described in Appendix A. By varying the starting
point of the iteration, different minima can be identified, and
by systematically searching for minima of f and of

1− f = (φ ⊗ χ )†P (φ ⊗ χ ), (14)

we have reproduced and counted the product vectors in Im ρ

and Ker ρ for every density matrix found in the numerical
searches. In the tables the number of product vectors and
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the number of linearly independent product vectors are listed
for Im ρ and Ker ρ. The same type of iterative method for
minimization over product vectors has been applied in the
separability test that is described in the next section.

III. DISCUSSION OF THE RESULTS

A. Diagrammatic representation

The results of the searches are tabulated in Appendix B and
are also included in condensed form in the subsequent text
as Figs. 1–4. The variables of the two axes of the figures are
the ranks m of ρ and n of ρP . The small open and filled
circles in the figures indicate the ranks for states that are
found in the numerical searches. As discussed earlier, all the
states produced in this way are PPT. The filled (red) circles
represent extremal PPT states with full local ranks, while the
open circles represent nonextremal PPT states, either separable
or entangled. Note that all diagrams are symmetric under the
interchange m ↔ n since in the search for PPT states there is
no intrinsic difference between ρ and ρP .
The states we find by use of our method we refer to as

typical for the chosen ranks (m,n). For some ranks, there will
exist states with untypical characteristics, which we do not
find in the searches, presumably due to low dimensionality of
the set of such states. We note, in particular, when we compare

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3
4
5

6
7

8
9

10
11

12

13
14
15

16

1 2 3 4 5 6 7 8 9

1

2

3
4
5

6
7

8
9

3x3 4x4
m

n

m

n

FIG. 1. (Color online) Diagrams for the ranks of PPT states in the
composite systems of dimensions 3× 3 and 4× 4. The coordinates
m and n on the axes are the ranks of the density matrix ρ and its partial
transpose ρP . States found by use of the numerical method discussed
in the text are indicated by small circles or dots (filled circles). The
green circles in the lower left corner indicate ranks for a special set of
separable states, the red dots correspond to extremal PPT states, and
the red circles in the upper right corner correspond to nonextremal
PPT states. Ranks (5,5) in the 4× 4 system is an exception; there we
find both separable states and a special type of entangled, nonextremal
PPT state. The unbroken, horizontal, and vertical straight red lines
show the lower bound for entangled PPT states with full local ranks,
the similar dashed red lines show our conjectured lower bound for
extremal PPT states with full local ranks, and the red circular arcs
show the upper bound for extremal PPT states. The dashed green
45◦ straight lines show the upper bound for the application of the
separability criterion described in the text. For all ranks indicated by
red circles up to and on this line (and above the circular arc), the
corresponding states are always found to be entangled PPT states.
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FIG. 2. (Color online) Diagrams for the ranks of PPT states in
the composite systems of dimensions 3× 4 and 3× 5. States found
by use of the numerical method discussed in the text are indicated by
the small circles or dots. Also here entangled PPT states are found
for all ranks indicated by red circles up to and on the dashed green
line. For further explanation of the diagrams, see Fig. 1.

the diagrams of the 3× 3 and 4× 4 systems, that most
of the states of the 3× 3 system are not seen in the diagram
of the 4× 4 system. However, we know that all the states of
the lower-dimensional system should be present in the form of
states with less than full local ranks.
For most choices of ranks (m,n) the density matrices that

we find in repeated searches with different initial conditions
are all found to have identical characteristics in the form
of the parameters listed in the tables. There is only a small
number of exceptions where density matrices with different
characteristics but equal ranks (m,n) have been found. These
are all listed in the tables.

B. Different groups of PPT states

There is a clear similarity between Figs. 1–4, with the states
for each figure being separated into groups with different
characteristics. One group consists of the low-rank states
with m = n � max{NA,NB}. These low-rank states, which
are represented by the series of green circles in the figures,
are all separable, with equal ranks for ρ and ρP . As shown in
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FIG. 3. (Color online) Diagrams for the ranks of PPT states in the
composite systems of dimensions 2× 4 and 2× 5. For explanations
of the diagrams, see Figs. 1 and 2. Note that the results for the 2× 4
system agree with the fact that the only possible ranks for extremal
states in 2× 4 are (5,5), (6,5), and (5,6) [9,25].

062329-4



NUMERICAL STUDIES OF ENTANGLED POSITIVE- . . . PHYSICAL REVIEW A 81, 062329 (2010)

1 2 3 4 5 6

1

2

3
4
5

6

2x3
1 2 3 4

1

2

3
4

2x2

FIG. 4. (Color online) Diagrams for the ranks of PPT states in
the composite systems of dimensions 2× 2 and 2× 3. For these
systems, all PPT states are separable, but the distinction between the
special set of states with low, symmetric ranks m = n and the set of
states with higher, asymmetric ranks is similar to what is found in the
higher-dimensional systems.

the tables, all the corresponding density matrices ρ contain a
number of product vectors in their imagewhich is equal to their
rankm. In fact, it is obvious that one can construct such states
by taking randomly a small number of pure product states and
forming a convex combination of these. Such a sequence of
separable states can be defined in all dimensions, and they are
not of further interest for our discussion.
The remaining states, with ranks m > max{NA,NB} and

n > max{NA,NB}, are restricted to the upper right corners of
the diagrams. For these values of the ranks, all states produced
in our searches, with one exception, have full local ranks. [The
exception is the case (m,n) = (5,5) of the 4× 4 system, where
in addition to full rank states, also states with less than full
rank are found.] The systems of dimension 2× 2 and 2× 3,
represented by the diagrams in Fig. 4, are special since for these
systems, all PPT states are separable. However, for the higher
dimensional systems we note that the preceding restriction on
the ranks of ρ and ρP coincides with a lower bound, found
by Horodecki et al. [22], on the rank of entangled PPT states
with full local ranks. (In the following we shall refer to this as
the HLVC bound.) In fact, with the exception of some of the
(5,5) states of the 4× 4 system, we find for all ranks above
and sufficiently close to this lower bound that the states are not
only entangled but extremal PPT states.
As displayed by the figures, there are a few intermediate

values of m, above the HLVC bound, where only symmetric
ranks m = n are found. We shall later discuss these states
separately and focus now on the states with ranks m �
NA + NB − 1 and n � NA + NB − 1. For almost all ranks
that satisfy these inequalities we find PPT states. The only
exceptions are some of the cases with the largest asymmetry
between the values of m and n. In fact we cannot rule out that
we miss these states as a consequence of the method we use.
We find that with large asymmetry in m and n the numerical
method seems preferably to pick up matrices with lower and
more symmetric ranks. Therefore a much larger number of
searches has to be performed in order to find density matrices
when the ranks are highly asymmetric.
With exception for the systems 2× 2 and 2× 3, all the

states we findwith ranks between the lower boundsm � NA +
NB − 1 and n � NA + NB − 1 and the upper bound m2 +
n2 � N2 + 1 are extremal (and hence entangled) PPT states.
The upper bound is the constraint [Eq. (11)] on extremality

that has already been discussed, and in the figures this bound
is displayed as the red circular arc. For ranks above this bound,
we have used a separability test [22] on the states, and this test
shows that for all ranks that satisfy the inequality m + n �
2N − NA − NB + 2, we find entangled PPT states. Beyond
this limit the test is not applicable.

C. Dimensions of faces and numbers of product vectors

The structure of the diagrams discussed earlier can to some
extent be related to simple regularities of the parameters in the
tables. We focus first on the list of the values of dimF . This
number is constrained by the geometric bound (10), dim F �
m2 + n2 − N2. We note that for all states where the ranks
are sufficiently large to give a positive number for this lower
bound, the constraint is satisfied with equality. This means
that the linear constraint equations [Eqs. (9)] that defineF as a
section between faces ofK(D) andK(DP ) are all independent.
For all ranksm,n � NA + NB − 1 that give negative values

for the bound, we find dimF = 1. This is the minimum value
consistent with the fact that the density operator ρ is located on
both faces. Other “accidental” relations between the two inter-
secting faces, therefore, seem not to be present. The fact that
dim F takes the minimal value consistent with this condition
gives an explanation for why all the states with ranks between a
lower and an upper bound are found to be extremal PPT states.
For sufficiently low ranks,m,n < NA + NB − 2,wefind states
where dim F does not take this minimum value. Therefore we
see these states as corresponding tomore special constructions.
The numbers of product vectors we find in Im ρ and Ker ρ

also showa simple regularity. For a long sequence of high ranks
m, all states have no product vector in Ker ρ and a complete
basis (in fact an overcomplete set) of product vectors in Im ρ.
When lowering the rank, there are in some of the lists a small
set of intermediate ranks where there is no product vector
in neither Im ρ nor Ker ρ, and below this there is a single
extremal state at m = n = NA + NB − 2 (not present in the
2× NB systems) with a complete set of product vectors in
Ker ρ and no product vector in Im ρ. For even lower ranks the
states are also here exceptional and do not fit into this picture.
When we exclude these lowest rank states, the numbers we

find in the lists are in fact identical to the numbers of product
vectors expected for generic subspaces of the given dimension.
To show this we consider the conditions for a product state φ ⊗
χ to be present in a randomly chosen subspace of dimension
d in the Hilbert space H = HA ⊗ HB . The product state will
satisfy a set of constraint equations of the form

ψ
†
k (φ ⊗ χ ) = 0 , k = 1,2, . . . ,N − d, (15)

where ψk is a linearly independent set of states that are all
orthogonal to the chosen d-dimensional space. The solutions to
the equation will generally depend on a number of continuous
parameters that can be determined by parameter counting.
Thus the product state will be specified by NA + NB − 2
complex parameters (when the complex normalization factors
are not included), and this number is reduced by the N − d

complex constraint equations to give for the solution a
remaining set of p complex parameters, with

p = NA + NB − 2− N + d. (16)
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We may then distinguish between three cases: (1) p > 0,
which means d > N − NA − NB + 2; the set of Eqs. (15) is
underdetermined, and there is an infinite set of product vectors
in the d-dimensional subspace, described by p complex free
parameters; (2) p = 0, which means d = N − NA − NB + 2;
the number of equations matches the number of parameters to
give a finite set of solutions; and (3) p < 0, which means d <

N − NA − NB + 2; the set of equations is overdetermined, and
there is in the generic case no solution. There may, however,
be solutions for specially selected subspaces.
For case 2, the number of product vectors is given by the

expression

nps =
(

NA + NB − 2
NA − 1

)
= (NA + NB − 2)!
(NA − 1)!(NB − 1)! . (17)

The problem of finding this number of product vectors can
be related to the problem in algebraic geometry of finding
the degree of the variety defined by the Segre embedding
between projective spaces P NA−1 × P NB−1 → P NANB−1 [26].
The number given in Eq. (17) is identical to this degree.
It is straightforward to check that all the numbers in the

tables are consistent with these results, except for the special
low-rank states. Apart from these states, the PPT states we
find in the numerical searches are therefore also in this respect
typical states for the given ranks (m,n).

D. The lowest rank extremal and entangled PPT states

For the systems with NA > 2 and NB > 2 the lowest rank
extremal PPT states with full local ranks seem to have a special
status. These states have symmetric ranksm = n, and for these
values of m (or n) we find no states with asymmetric ranks.
They are also special in the sense that they are the only ones
with no product vector in Im ρ and a finite, complete set of
product vectors in Ker ρ.
For the 3× 3 system these are rank (4,4) states, and

the presence of product vectors in Ker ρ but not in Im ρ

indicates that they are related to a special construction of low
rank entangled PPT states for this system, with the use of
unextendible product bases (UPB) [19]. The UPB is a set of
orthogonal product vectors that spans a subspace (Ker ρ) and
that cannot be extended with additional orthogonal product
vectors (in Im ρ). The (4,4) states that we find by our method
do not directly exemplify this construction since the product
vectors in Ker ρ are nonorthogonal, but there is a general
connection to the UPB construction that we discuss in detail
in a separate publication [21].
We find similar types of extremal PPT states in all the

systems we have studied with dimensions of the subsystems
larger than 2. This we take as an indication for the presence of
such lowest rank extremal states in all higher dimensional
systems. When we combine the assumption of a finite,
complete set of product vectors in Ker ρ and no product
vector in Im ρ with the expectations for the number of
product vectors in generic subspaces of a given dimension,
we find that these states should generally have ranks equal to
m = n = NA + NB − 2. We will phrase the assumption about
these states in the form of the following conjecture: The lowest
rank extremal PPT state with full local ranks in an NA × NB

system, with NA and NB larger than 2, is characterized by

symmetric ranks m = n for the density matrix and its partial
transpose, with value m = n = NA + NB − 2.
We write this as an inequality for the rank of extremal PPT

states with full local ranks,

m,n � NA + NB − 2 (conjecture), (18)

and compare it to the lower bound for entangled PPT states
with full local ranks:

m,n � max{NA,NB} + 1 (HLVC). (19)

For systems of dimension 2× NB we note that the HLVC
bound lies above the lower bound for extremality, and therefore
the bound of Eq. (18) cannot be saturated. That is in accordance
with the lack of the special type of lowest-rank extremal PPT
state for these systems. For systems of dimension 3× NB

(with NB � 3) the two bounds coincide, and the lowest rank
extremal states that we have found for these systems are indeed
also the lowest rank entangled states. For systems of dimension
4× NB (with NB � 4), there is a difference of 1 between the
two lower bounds, with the HLVC bound being the lowest. We
have examined only one example of such systems, namely,
the 4× 4 system. For this system we do find entangled PPT
states with lower rank than the lowest rank extremal PPT state.
For general systems NA × NB with NA � NB , the difference
between the two bounds is, according to our conjecture, equal
to NA − 3 and therefore increases linearly with the lowest
dimension of the two subsystems.
The entangled PPT states with lower ranks than the lowest

rank extremal PPT states with full local ranks will include only
extremal PPT states with less than full local ranks, when writ-
ten as convex combinations of extremal states. We have found
examples of such states with ranks (5,5) in the 4× 4 system. In
the table such a state ρ appears with dimF = 2, which means
that it is a convex combination of two extremal PPT states,

ρ = (1− x)ρe + xρp, (20)

with 0 < x < 1. One of these is a pure product state
ρp = ww†, where w = u ⊗ v is the single product vector
found in Im ρ. The other one is a rank (4,4) state ρe, which
we identify as an extremal PPT state of a 3× 3 subsystem.
We find this state by subtracting ρp with the value of the
coefficient x determined as discussed in [22]. To summarize,
the entangled rank (5,5) PPT state ρ has full local ranks and
saturates the HLVC bound but is a convex combination of two
extremal PPT states that both have less than full local ranks.
A closer look at the preceding decomposition of the

(5,5) state ρ motivates the following general construction of
states that saturate the HLVC bound in successively higher
dimensions. Assume that

HA = U1 ⊕ U2 , HB = V1 ⊕ V2, (21)

where dimU1 = dimV1 = 3 and dimU2 = dimV2 = 1. We
assume that U1 and U2 are complementary but not necessarily
orthogonal subspaces of HA and that V1 and V2 are comple-
mentary but not necessarily orthogonal inHB .
Let ρe be a rank (4,4) extremal PPT state on the 3× 3

dimensional subspace U1 ⊗ V1 ⊂ H. A property of ρe is that
there are no product vectors in Im ρe ⊂ U1 ⊗ V1. Let ρp be a
pure product state ρp = ww† with w = u ⊗ v, u ∈ U2 and
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v ∈ V2. Then define ρ = (1− x)ρe + xρp with 0 < x < 1.
The image of ρ is

Im ρ = Im ρe ⊕ Im ρp

= Im ρe ⊕ (U2 ⊗ V2) ⊂ (U1 ⊗ V1)⊕ (U2 ⊗ V2). (22)

Since U2 ⊗ V2 is one-dimensional, it follows that the rank of
ρ is one higher than the rank of ρe. Similarly, the rank of ρP

is one higher than the rank of ρP
e .

The only product vector in Im ρ is now w = u ⊗ v. To see
this, consider the most general product vector

w′ = (u1 + u2)⊗ (v1 + v2)

= (u1 ⊗ v1)+ (u1 ⊗ v2)+ (u2 ⊗ v1)+ (u2 ⊗ v2), (23)

with ui ∈ Ui and vj ∈ Vj . It is a sum of four vectors belonging
to four complementary subspaces Ui ⊗ Vj ⊂ H with i,j =
1,2. In order to have w′ ∈ Im ρ we must have

w′ ∈ (U1 ⊗ V1)⊕ (U2 ⊗ V2), (24)

but this requires that u1 ⊗ v2 = u2 ⊗ v1 = 0. Since we want
to have w′ �= 0, the only possibilities left are w′ = u1 ⊗ v1,
which is not in Im ρ, or w′ = u2 ⊗ v2, which is not new.
It should be clear from this analysis that the same

construction can be applied to higher dimensional systems.
For example, we may reinterpret ρe to be the (5,5) state ρ

of the 4× 4 system, as constructed earlier. We reinterpret
ρp to be a new pure product state that increases the local
ranks from 4 to 5, in a similar manner as discussed, so that
ρ = (1− x)ρe + xρp is a (6,6) state of the 5× 5 system.
The analysis of product vectors in Im ρ can be done in the
same way, with one exception. In this case there is already
one product vector in Im ρe, and therefore there are two
possible solutions for the product vectorw′, namely, the newly
added vector w = u ⊗ v and the previous product vector in
Im ρe. Since the number of product vectors is lower than
dim Im ρ, the state is entangled, and it saturates the HLVC
bound.
The construction can be continued to arbitrarily high dimen-

sion, and it will always create an entangled state that saturates
the HLVC bound. The state will be a convex combination of
extremal PPT states with less than full local ranks, but it will
itself have full local ranks. The construction is not restricted
to symmetric cases, NA = NB , since asymmetric systems can
be reached by introducing product vectors which increase the
dimension of only HA or HB . In this way it is possible to
saturate the HLVC bound in all higher dimensional systems.

E. Checking for entanglement at higher ranks

All the states with ranks above the upper limit for
extremality, that is, with

m2 + n2 > N2 + 1, (25)

we find to have a complete set of product vectors in their
image. This means that they satisfy the necessary condition
for separability given by the range criterion, which however,
does not exclude the possibility that they may be entangled.
To get some further information about this, we have made use
of a separability criterion introduced in [22]. This condition
for separability can be seen as a strengthened version of the

range criterion and is based on a relation that, for separable
states, exists between product vectors in Im ρ and in Im ρP .We
describe subsequently the basis for this criterion and further
describe themethodwe have applied for checking the criterion.
Assume ρ to be a separable density operator, which there-

fore can be written as a convex combination of product states,

ρ =
∑

k

pkψkψ
†
k , (26)

with ψk = φk ⊗ χk . The partially transposed density operator
can then be written as

ρP =
∑

k

pkψ̃kψ̃
†
k , (27)

with ψ̃k = φk ⊗ χ∗
k , where χ∗

k is the complex conjugate of χk

with respect to the same basis inHB that is used for the partial
transposition. Therefore, corresponding to the set of product
vectors {ψk}, which spans Im ρ, there is a set of product
vectors {ψ̃k}, which we will refer to as the conjugate set,
that spans Im ρP . This implies that a necessary condition for
separability of a density operator ρ is that the number of pairs
of product vectors in Im ρ and in Im ρP that are conjugate is
equal to or larger than the ranks of both ρ and ρP . We write
the condition as

K � max{m,n}, (28)

with K as the number of conjugate pairs of product vectors in
Im ρ and Im ρP .
The preceding condition for separability is effectively

restricted to cases where the ranks m and n of ρ and ρP

are not too large. This follows since if the dimensions of Im ρ

and Im ρP are sufficiently large, the number of such pairs will
necessarily be infinite. The condition for the number of pairs to
be finite can be determined by essentially the same method of
counting parameters as used to determine the typical number
of product vectors in a Hilbert space of given dimension, as
discussed in Sec. III C. Thus a conjugate pair of product vectors
(ψ,ψ̃), with ψ = φ ⊗ χ and ψ̃ = φ ⊗ χ∗, has to satisfy two
sets of equations:

θ
†
i ψ = 0 , ξ

†
i ψ̃ = 0, (29)

where {θi} is a basis of Ker ρ and {ξi} is a basis of Ker ρP .
The number of equations that ψ has to satisfy will be equal to
or will exceed the number of free parameters in this product
state, provided the following condition is satisfied [22]:

dimKer ρ + dimKer ρP � dimHA + dimHB − 2. (30)

If the condition is satisfied with proper inequality, there will
typically be no solution, and if it is satisfied with equality,
there will be a finite set of solutions. Expressed in terms of the
ranks m and n and the Hilbert space dimensions N , NA, and
NB , the inequality takes the form

m + n � 2N − NA − NB + 2, (31)

and this sets the limit for applications of the criterion. In the
diagrams this limit is indicated by the dashed green line.
For states that satisfy the preceding inequality, we have

found a practical method to check the separability condition
[Eq. (28)] by applying essentially the same double-eigenvalue
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method as used for detecting product vectors in Im ρ (and in
Ker ρ) and which is described in Appendix A. The outline of
themethod is the following. LetP be the orthogonal projection
on Im ρ and Q the orthogonal projection on Im ρP . We con-
sider the following bilinear function of the product state ψ =
φ ⊗ χ :

f (ψ) = ψ†(1 − P )ψ + ψ̃†(1 − Q)ψ̃, (32)

and search for the minima of the function where f = 0. Since
both terms in Eq. (32) are non-negative, such a solution will
give zero for each term separately, and from this follow the
relations Pψ = ψ and Qψ̃ = ψ̃ , which are equivalent to
the two sets of Eqs. (29). The second term in Eq. (32) can
be rewritten in the following way: ψ̃†(1 − Q)ψ̃ = ψ†(1 −
QP )ψ , withQP as the partial transpose ofQ. This gives

f (ψ) = ψ†(21 − P − QP )ψ, (33)

and written in this way the function f (ψ) has the same form
as the function that is minimized in the search for product
vectors in Im ρ (see Sec. II C). The only difference is that
the operator 1 − P is replaced by 21 − P − QP . The same
method to search for product vectors with vanishing value for
the function can therefore be used.
The result is that for all the states we have found with

m > NA + NB − 1, and where Eq. (31) is satisfied as a proper
inequality, there are no pairs of conjugate product vectors, and
the states are therefore entangled. In the diagrams these states
are located below the dashed green lines. For the states on the
dashed green line in the diagrams the condition (31) is satisfied
with equality, and for these states we find a finite number K

of pairs of conjugate product vectors that is sufficiently large
to satisfy the separability condition of Eq. (28). This means
that just counting the number of pairs of conjugate product
vectors is insufficient to determine if the states are entangled.
However,with only afinite number of product vectors available
it is possible to check whether the density operator can be
reconstructed as a convex combination of these product states.
The result is that for all ranks where Eq. (31) is satisfied with
equality, we find entangled states. However, in a small number
of cases, we find both separable and entangled states with the
same set of ranks (m,n). That happens for the (6,6), (5,7), and
(7,5) states of the 2× 4 system.

IV. CONCLUDING REMARKS

The results presented in this article are based on the use
of a numerical method to search for density matrices ρ of a
composite, bipartite system with specified values for the ranks
of ρ and its partial transpose ρP . The method works well for
systems where the Hilbert space dimensionN is not too large,
in our calculations, with N <∼ 20. In higher dimensions the
main problem is a too-slow convergence of the iteration proce-
dure. Additional methods to find the number of product vectors
in the image and kernel of the densitymatrices and to determine
the dimension of the corresponding face of the set of PPT states
have been described. The results based on the use of these
methods are listed in the tables and displayed in the figures.
The results obtained for the low-dimensional systems that

we have studied reveal several regularities. For sufficiently low
ranks we find only separable states of a specific form. Above a

certain value for the ranks ofρ andρP the stateswefind are typ-
ically extremal PPT states, until the ranks reach an upper limit.
In our discussion we suggest that there are in fact two lower
bounds, one for entangled states with full local ranks and an-
other, generally more restrictive, for extremal PPT states with
full local ranks. The first we identify as the bound on entangled
PPT states discussed in [22], and we show, by an explicit con-
struction, how this bound can be saturated. On the basis of cer-
tain properties of the extremal states with minimal ranks that
are found in our searches, we conjecture a specific value for the
second, the lower bound on the ranks of extremal PPT states.
The property we focus on is the number of product vectors in
the image and in the kernel of this state, which makes these
states different from the higher rank extremal states. Assuming
this property to be present for the lowest rank extremal states
in general, we draw the conclusion about the lower bound.
Above this lower bound we find in our search a large set of

ranks (m,n) of ρ and ρP where the states are extremal. There
is an upper limit to the ranks of these states, which can be
understood as following from a geometrical constraint on the
face of the set P to which an extremal PPT state belongs. It
is of interest to note that all the states we find for sufficiently
low ranks are limited to the symmetric cases m = n, whereas
for m and n above this limit we find in addition states for
essentially all the asymmetric values of the ranks. However,
as we have stressed, the states we find by our method should
be considered as typical states for the given ranks (m,n). This
means that we cannot exclude the presence of untypical states
also for ranks for which we have not identified any PPT state.
Concerning this last point, it is of interest to relate the

results for the properties of the PPT states found in our
searches with those of other entangled and extremal PPT states
referred to in the literature [11,12,17–19,27]. These states are
based on special constructions which lead to certain classes
of extremal PPT states. Among the states presented by these
special constructions, we have found no example of states
with ranks different from those referred to in our tables and
figures. The main difference, however, is that these specially
constructed states are not necessarily typical in the meaning
used here, and in particular the number of product vectors in
the image and kernel may be larger than the minimal values
that we find in our searches.
In the discussion of our results we have put some emphasis

on the properties of the lowest rank extremal PPT states. For
all the systems we have studied they are special in the sense
that they have no product state in their image but a complete,
finite set of product vectors in their kernel. In a separate
publication [21] we have made a detailed study of these states
for the 3× 3 system, where they have ranks (4,4). We show
there that these states can be related to states constructed from
unextendible product bases, and the set of such states can
be given an explicit parametrization. We do not know how
to generalize this construction to higher dimensions, and the
question of a general parametrization of extremal PPT states
remains as an interesting problem for future work.
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APPENDIX A: THE MINIMUM DOUBLE EIGENVALUE
PROBLEM

Given the Hermitian matrix A, the problem considered
here is to minimize the expectation value ψ†Aψ over product
vectors ψ = φ ⊗ χ , with the normalization conditions
φ†φ = χ †χ = 1. The problem is equivalent to a set of
coupled eigenvalue problems for the two subsystems, shown
in Eq. (A2), which we have previously analyzed and applied
in Ref. [28]. We present here a modified iteration method,
used for solving certain subproblems discussed in this article.
The motivation for the new iteration method is that it may
converge to different local minima, depending on the starting
point for the iterations. It is important for our purposes here
to be able to find all local minima.
We introduce Lagrange multipliers λ,μ and define

f =
∑
i,j,k,l

φ∗
i χ

∗
j Aij ;klφkχl − λ

(∑
i

φ∗
i φi − 1

)

−μ

⎛
⎝∑

j

χ∗
j χj − 1

⎞
⎠ . (A1)

The following equations must hold at the minimum, or more
generally at an extremum,

∂f

∂φ∗
i

=
∑
j,k,l

χ∗
j Aij ;klφkχl − λφi = 0 ,

(A2)
∂f

∂χ∗
j

=
∑
i,k,l

φ∗
i Aij ;klφkχl − μχj = 0 ,

with ∑
i

φ∗
i φi =

∑
j

χ∗
j χj = 1 ,

(A3)
λ = μ =

∑
i,j,k,l

φ∗
i χ

∗
j Aij ;klφkχl .

Note that λ = μ is the desired minimal (or extremal) value of
the expectation value ψ†Aψ .
In each iteration, given an approximate solution ψ =

φ ⊗ χ , we compute the next approximation ψ ′ = φ′ ⊗ χ ′
as follows. We compute x = Bφ − λφ, y = Cχ − λχ , with
λ = ψ†Aψ and

Bik =
∑
j,l

χ∗
j Aij ;klχl , Cjl =

∑
i,k

φ∗
i Aij ;klφk . (A4)

In practice, we compute z = Aψ , ui = ∑
j χ∗

j zij , vj =∑
i φ

∗
i zij , λ = φ†u = χ †v, x = u − λφ, and y = v − λχ . We

define φ′ = N1(φ + εx) and χ ′ = N2(χ + εy), where N1,N2

are normalization factors andwhere ε is determined as follows.
To first order in ε, we have

(φ + εx)⊗ (χ + εy) = ψ + εw , (A5)

with w = φ ⊗ y + x ⊗ χ . Note that ψ†w = 0 since φ†x =
χ †y = 0. The vector s = ψ + εw is used as a trial vector, and
the parameter ε is determined by minimizing s†As/s†s. This
is an eigenvalue problem in the two-dimensional subspace
spanned by ψ and w, and it can be solved analytically.

This iteration method is based on the linear approximation
in Eq. (A5), which should be good when the starting point
for an iteration is close to a local minimum so that ε will be
small. By minimizing s†As/s†s, we get successively smaller
values of ψ†Aψ , and the iterations will converge to the local
minimum.

APPENDIX B: TABLES

TABLE I. Numerical results for the 2× 4 and the 2× 5 systems.
The first column lists the ranks of ρ and ρP where PPT states have
been found. The second column lists the lower limit for the value of
the dimension of the face ofK(P) for the given ranks (m,n), while the
third column lists the actual values of the dimensions for the states we
have found. The fourth column lists the values of the local ranks with
respect to subsystems A and B. The fifth and sixth columns give the
number of product vectors in Im ρ and Ker ρ, respectively. In each
of these columns, two numbers are given, with the number to the left
as the total number and the one to the right as the number of linearly
independent product vectors. Symbol ∞ indicates that we find no
upper limit to the number of product vectors that can be generated.
In the present tables the extremal PPT states with no product state
in Im ρ and a complete set in Ker ρ, which we find in all the other
tables, are missing.

(m,n) m2 + n2 − N 2 dim F (rA,rB ) #pv [Im ρ] #pv [Ker ρ]

2× 4
(8,8) 64 64 (2,4) ∞/8 0
(8,7) 49 49 (2,4) ∞/8 0
(8,6) 36 36 (2,4) ∞/8 0
(7,7) 34 34 (2,4) ∞/7 0
(8,5) 25 25 (2,4) ∞/8 0
(7,6) 21 21 (2,4) ∞/7 0
(7,5) 10 10 (2,4) ∞/7 0
(6,6) 8 8 (2,4) ∞/6 0
(6,5) −3 1 (2,4) ∞/6 0
(5,5) −14 1 (2,4) ∞/5 0
(4,4) −32 4 (2,4) 4/4 4/4
(3,3) −46 3 (2,3) 3/3 ∞/5
(2,2) −56 2 (2,2) 2/2 ∞/6
(1,1) −62 1 (1,1) 1/1 ∞/8

2× 5
(10,10) 100 100 (2,5) ∞/10 0
(10,9) 81 81 (2,5) ∞/10 0
(10,8) 64 64 (2,5) ∞/10 0
(9,9) 62 62 (2,5) ∞/9 0
(10,7) 49 49 (2,5) ∞/10 0
(9,8) 45 45 (2,5) ∞/9 0
(9,7) 30 30 (2,5) ∞/9 0
(8,8) 28 28 (2,5) ∞/8 0
(9,6) 17 17 (2,5) ∞/9 0
(8,7) 13 13 (2,5) ∞/8 0
(8,6) 0 1 (2,5) ∞/8 0
(7,7) −2 1 (2,5) ∞/7 0
(7,6) −15 1 (2,5) ∞/7 0
(6,6) −28 1 (2,5) ∞/6 0
(5,5) −50 5 (2,5) 5/5 5/5
(4,4) −68 4 (2,4) 4/4 ∞/6
(3,3) −82 3 (2,3) 3/3 ∞/7
(2,2) −92 2 (2,2) 2/2 ∞/8
(1,1) −98 1 (1,1) 1/1 ∞/9
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TABLE II. Numerical results for the 3× 3 and the 3× 4 systems.
For explanations, see Table I. Except for one case in the 3× 4 system,
we find only one type of state, characterized by the listed properties,
for each set of ranks (m,n). The exception is the case (4,4), where
we find both extremal PPT states with less than full local ranks and
separable states of the same construction as those of lower ranks.

(m,n) m2 + n2 − N 2 dim F (rA,rB ) #pv [Im ρ] #pv [Ker ρ]

3× 3
(9,9) 81 81 (3,3) ∞/9 0
(9,8) 64 64 (3,3) ∞/9 0
(9,7) 49 49 (3,3) ∞/9 0
(8,8) 47 47 (3,3) ∞/8 0
(9,6) 36 36 (3,3) ∞/9 0
(8,7) 32 32 (3,3) ∞/8 0
(8,6) 19 19 (3,3) ∞/8 0
(7,7) 17 17 (3,3) ∞/7 0
(8,5) 8 8 (3,3) ∞/8 0
(7,6) 4 4 (3,3) ∞/7 0
(7,5) −7 1 (3,3) ∞/7 0
(6,6) −9 1 (3,3) ∞/6 0
(6,5) −20 1 (3,3) ∞/6 0
(5,5) −31 1 (3,3) 6/5 0
(4,4) −49 1 (3,3) 0 6/5
(3,3) −63 3 (3,3) 3/3 ∞/6
(2,2) −73 2 (2,2) 2/2 ∞/7
(1,1) −79 1 (1,1) 1/1 ∞/8

3× 4
(12,11) 121 121 (3,4) ∞/12 0
(12,10) 100 100 (3,4) ∞/12 0
(11,11) 98 98 (3,4) ∞/11 0
(12,9) 81 81 (3,4) ∞/12 0
(11,10) 77 77 (3,4) ∞/11 0
(12,8) 64 64 (3,4) ∞/12 0
(11,9) 58 58 (3,4) ∞/11 0
(10,10) 56 56 (3,4) ∞/10 0
(11,8) 41 41 (3,4) ∞/11 0
(10,9) 37 37 (3,4) ∞/10 0
(11,7) 26 26 (3,4) ∞/11 0
(10,8) 20 20 (3,4) ∞/10 0
(9,9) 18 18 (3,4) ∞/9 0
(11,6) 13 13 (3,4) ∞/11 0
(10,7) 5 5 (3,4) ∞/10 0
(9,8) 1 1 (3,4) ∞/9 0
(10,6) −8 1 (3,4) ∞/10 0
(9,7) −14 1 (3,4) ∞/9 0
(8,8) −16 1 (3,4) ∞/8 0
(9,6) −27 1 (3,4) ∞/9 0
(8,7) −31 1 (3,4) ∞/8 0
(8,6) −44 1 (3,4) ∞/8 0
(7,7) −46 1 (3,4) 10/7 0
(7,6) −59 1 (3,4) 10/7 0
(6,6) −72 1 (3,4) 0 0
(5,5) −94 1 (3,4) 0 10/7
(4,4) −112 1 (3,3) 0 ∞/8

4 (3,4) 4/4 ∞/8
(3,3) −126 3 (3,3) 3/3 ∞/9
(2,2) −136 2 (2,2) 2/2 ∞/10
(1,1) −142 1 (1,1) 1/1 ∞/11

TABLE III. Numerical results for the 3× 5 system. For expla-
nations, see Table I. We here find two types of states with ranks
(5,5).

(m,n) m2 + n2 − N 2 dim F (rA,rB ) #pv [Im ρ] #pv [Ker ρ]

3× 5
(15,14) 196 196 (3,5) ∞/15 0
(15,13) 169 169 (3,5) ∞/15 0
(14,14) 167 167 (3,5) ∞/14 0
(15,12) 144 144 (3,5) ∞/15 0
(14,13) 140 140 (3,5) ∞/14 0
(15,11) 121 121 (3,5) ∞/15 0
(14,12) 115 115 (3,5) ∞/14 0
(13,13) 113 113 (3,5) ∞/13 0
(14,11) 92 92 (3,5) ∞/14 0
(13,12) 88 88 (3,5) ∞/13 0
(14,10) 71 71 (3,5) ∞/14 0
(13,11) 65 65 (3,5) ∞/13 0
(12,12) 63 63 (3,5) ∞/12 0
(14,9) 52 52 (3,5) ∞/14 0
(13,10) 44 44 (3,5) ∞/13 0
(12,11) 40 40 (3,5) ∞/12 0
(14,8) 35 35 (3,5) ∞/14 0
(13,9) 25 25 (3,5) ∞/13 0
(14,7) 20 20 (3,5) ∞/14 0
(12,10) 19 19 (3,5) ∞/12 0
(11,11) 17 17 (3,5) ∞/11 0
(13,8) 8 8 (3,5) ∞/13 0
(12,9) 0 1 (3,5) ∞/12 0
(11,10) −4 1 (3,5) ∞/11 0
(13,7) −7 1 (3,5) ∞/13 0
(12,8) −17 1 (3,5) ∞/12 0
(11,9) −23 1 (3,5) ∞/11 0
(10,10) −25 1 (3,5) ∞/10 0
(12,7) −32 1 (3,5) ∞/12 0
(11,8) −40 1 (3,5) ∞/11 0
(10,9) −44 1 (3,5) ∞/10 0
(11,7) −55 1 (3,5) ∞/11 0
(10,8) −61 1 (3,5) ∞/10 0
(9,9) −63 1 (3,5) 15/9 0
(10,7) −76 1 (3,5) ∞/10 0
(9,8) −80 1 (3,5) 15/9 0
(9,7) −95 1 (3,5) 15/9 0
(8,8) −97 1 (3,5) 0 0
(8,7) −112 1 (3,5) 0 0
(7,7) −127 1 (3,5) 0 0
(6,6) −153 1 (3,5) 0 15/9
(5,5) −175 1 (3,4) 0 ∞/10

5 (3,5) 5/5 ∞/10
(4,4) −193 4 (3,4) 4/4 ∞/11
(3,3) −207 3 (3,3) 3/3 ∞/12
(2,2) −217 2 (2,2) 2/2 ∞/13
(1,1) −223 1 (1,1) 1/1 ∞/14
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TABLE IV. Numerical results for the 4× 4 system. For explana-
tions, see Table I. The pattern of the listed properties is much like
that of the other tables, but here with more low-rank states below the
lowest rank (m = n = 6) extremal PPT state with full local ranks.

(m,n) m2 + n2 − N 2 dim F (rA,rB ) #pv [Im ρ] #pv [Ker ρ]

4× 4
(16,16) 256 256 (4,4) ∞/16 0
(16,15) 225 225 (4,4) ∞/16 0
(16,14) 196 196 (4,4) ∞/16 0
(15,15) 194 194 (4,4) ∞/15 0
(16,13) 169 169 (4,4) ∞/16 0
(15,14) 165 165 (4,4) ∞/15 0
(16,12) 144 144 (4,4) ∞/16 0
(15,13) 138 138 (4,4) ∞/15 0
(14,14) 136 136 (4,4) ∞/14 0
(16,11) 121 121 (4,4) ∞/16 0
(15,12) 113 113 (4,4) ∞/15 0
(14,13) 109 109 (4,4) ∞/14 0
(15,11) 90 90 (4,4) ∞/15 0
(14,12) 84 84 (4,4) ∞/14 0
(13,13) 82 82 (4,4) ∞/13 0
(15,10) 69 69 (4,4) ∞/15 0
(14,11) 61 61 (4,4) ∞/14 0
(13,12) 57 57 (4,4) ∞/13 0
(15,9) 50 50 (4,4) ∞/15 0
(14,10) 40 40 (4,4) ∞/14 0
(15,8) 33 33 (4,4) ∞/15 0
(13,11) 34 34 (4,4) ∞/13 0
(12,12) 32 32 (4,4) ∞/12 0
(14,9) 21 21 (4,4) ∞/14 0
(15,7) 18 18 (4,4) ∞/15 0
(13,10) 13 13 (4,4) ∞/13 0
(12,11) 9 9 (4,4) ∞/12 0
(14,8) 4 4 (4,4) ∞/14 0

TABLE IV. (Continued.)

(m,n) m2 + n2 − N 2 dim F (rA,rB ) #pv [Im ρ] #pv [Ker ρ]

(13,9) −6 1 (4,4) ∞/13 0
(14,7) −11 1 (4,4) ∞/14 0
(12,10) −12 1 (4,4) ∞/12 0
(11,11) −14 1 (4,4) ∞/11 0
(13,8) −23 1 (4,4) ∞/13 0
(12,9) −31 1 (4,4) ∞/12 0
(11,10) −35 1 (4,4) ∞/11 0
(13,7) −38 1 (4,4) ∞/13 0
(12,8) −48 1 (4,4) ∞/12 0
(11,9) −54 1 (4,4) ∞/11 0
(10,10) −56 1 (4,4) 20/10 0
(12,7) −63 1 (4,4) ∞/12 0
(11,8) −71 1 (4,4) ∞/11 0
(10,9) −75 1 (4,4) 20/10 0
(11,7) −86 1 (4,4) ∞/11 0
(10,8) −92 1 (4,4) 20/10 0
(9,9) −94 1 (4,4) 0 0
(10,7) −107 1 (4,4) 20/10 0
(9,8) −111 1 (4,4) 0 0
(9,7) −126 1 (4,4) 0 0
(8,8) −128 1 (4,4) 0 0
(8,7) −143 1 (4,4) 0 0
(7,7) −158 1 (4,4) 0 0
(6,6) −184 1 (4,4) 0 20/10
(5,5) −206 1 (4,3) 0 ∞/11

2 (4,4) 1/1 ∞/11
5 (4,4) 5/5 ∞/11

(4,4) −224 1 (3,3) 0 ∞/12
4 (4,4) 4/4 ∞/12

(3,3) −238 3 (3,3) 3/3 ∞/13
(2,2) −248 2 (2,2) 2/2 ∞/14
(1,1) −254 1 (1,1) 1/1 ∞/15
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Low-rank extremal positive-partial-transpose states and unextendible product bases
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It is known how to construct, in a bipartite quantum system, a unique low-rank entangled mixed state with
positive partial transpose (a PPT state) from an unextendible product basis (UPB), defined as an unextendible set
of orthogonal product vectors. We point out that a state constructed in this way belongs to a continuous family of
entangled PPT states of the same rank, all related by nonsingular unitary or nonunitary product transformations.
The characteristic property of a state ρ in such a family is that its kernel Ker ρ has a generalized UPB, a basis of
product vectors, not necessarily orthogonal, with no product vector in Im ρ, the orthogonal complement of Ker ρ.
The generalized UPB in Ker ρ has the special property that it can be transformed to orthogonal form by a product
transformation. In the case of a system of dimension 3× 3, we give a complete parametrization of orthogonal
UPBs. This is then a parametrization of families of rank 4 entangled (and extremal) PPT states, and we present
strong numerical evidence that it is a complete classification of such states. We speculate that the lowest rank
entangled and extremal PPT states also in higher dimensions are related to generalized, nonorthogonal UPBs in
similar ways.

DOI: 10.1103/PhysRevA.81.062330 PACS number(s): 03.67.Mn, 02.40.Ft, 03.65.Ud

I. INTRODUCTION

For a composite quantum system, with two separate parts
A and B, the mixed quantum states are described by density
matrices that can be classified as being either entangled
or separable (nonentangled). However, there is in general
no easy way to classify a given density matrix as being
separable or not. This problem is referred to as the separability
problem, and it has been approached in the literature in
different ways over the past several years [1]. As a part of this
discussion there has been a focus on a subset of the density
matrices which includes, but is generally larger than, the set
of separable states. This is the set of the so-called positive
partial transpose (PPT) states, the density matrices that remain
positive under a partial matrix transposition, with respect to
one of the subsystems, either A or B [2].
Since it is straightforward to establish whether a density

matrix is a PPT state, the separability problem is reduced to
identifying the subset of entangled PPT states.We refer here to
the set of separable states as S and the set of PPT states as P ,
with S ⊂ P . These are both convex subsets of the full convex
set of density matrices, which we denote asD, and in principle
the two sets are therefore defined by their extremal states. The
extremal separable states are the pure product states, and these
are also extremal states of the set P . Since P is in general
larger than S, it has additional extremal states, and these states
are not fully known. The problem of finding and classifying
these additional extremal states is therefore an important part
of the problem to identify the PPT states that are entangled.
We have in two previous publications studied, in different

ways, the problem of finding extremal PPT states in systems
of low dimensions. In [3] a criterion for extremality was
established and a method was described to numerically search
for extremal PPT states. This method was applied to different
composite systems, and several types of extremal states were
found. In a recent paper [4] this study has been followed up by
a systematic search for PPT states of different ranks. Series of
extremal PPT states have there been identified and tabulated
for different bipartite systems of low dimensions.

The study in [4] seems to show that the extremal PPT states
with lowest rank are somehow special compared to the other
extremal states. In particular we have found that these density
matrices have no product vectors in their image but do have a
finite, complete set of product vectors in their kernel. This was
found to be a common property of the lowest rank extremal
PPT states studied there, for all systems with subsystems of
dimensions larger than two. This property relates these states
to a particular construction, where unextendible product bases
(UPBs) are used in a method to construct entangled PPT
states [5–7].
The motivation for the present paper is to follow up this

apparent link between the lowest rank extremal PPT states
and the UPB construction. Our focus is particularly on the
rank 4 states of the 3× 3 system. The rank 4 extremal PPT
states that we find numerically by the method introduced in [4]
are related by product transformations to states constructed
directly from UPBs. We discuss this relation and use it to give
a parametrization of the rank 4 extremal PPT states.
Although a direct application of the (generalized) UPB

construction to the lowest rank extremal states is restricted
to the 3× 3 system, the similarity between these states and the
lowest rank extremal states in higher dimensions indicates
that there may exist a generalization of this construction
that is more generally valid. We include at the end a brief
discussion of the higher dimensional cases and only suggest
that a construction method, and thereby a parametrization, of
such states may exist.

II. AN EXTENSION OF THE UPB CONSTRUCTION
OF ENTANGLED PPT STATES

We consider in the following a bipartite quantum system
with a Hilbert space H = HA ⊗ HB of dimension N =
NANB . By definition, a separable state can be written as a
density operator of the form

ρ =
∑

k

pkψkψ
†
k , (1)
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with pk � 0,
∑

k pk = 1, and with ψk = φk ⊗ χk as normal-
ized product vectors. The image of ρ, Im ρ, is spanned by these
vectors. The fact that Im ρ must be spanned by product vectors
if ρ is separable is the basis for the UPB construction, which
was introduced in Ref. [5] and used there to find low-rank
entangled PPT states of the 3× 3 system. We review here this
construction and discuss a particular generalization.
Consider U to be a subspace of H that is spanned by a set

of orthonormal product vectors

ψk = φk ⊗ χk, k = 1,2, . . . ,p, (2)

which cannot be extended further inH to a set ofp + 1 orthog-
onal product vectors. This defines the set as an unextendible
product basis. Let U⊥ be the orthogonal complement to U . The
state proportional to the orthogonal projection onto U⊥,

ρ1 = a1

(
1 −

∑
k

ψkψ
†
k

)
, (3)

with a1 = 1/(N − p) as a normalization factor, is then an
entangled PPT state. It is nonseparable because Im ρ1 = U⊥
contains no product vector, and it is a PPT state because ρP

1 ,
the partial transpose of ρ1 with respect to subsystem B, is
proportional to a projection of the same form,

ρP
1 = a1

(
1 −

∑
k

ψ̃kψ̃
†
k

)
, (4)

with ψ̃k = φk ⊗ χ∗
k . The vector χ∗

k is the complex conjugate
of χk , in the same basis in HB as is used for the partial
transposition.
The set of product vectors {ψ̃k = φk ⊗ χ∗

k } is a new
orthonormal UPB, which generally spans a different subspace
than the original set {ψk = φk ⊗ χk}. However, it may happen
that there exists a basis for the Hilbert spaceHB of the second
subsystem in which all the vectors χk have real components.
In such a basis the two UPB sets are identical and the state ρ1
is a PPT state for the simple reason that it is invariant under
partial transposition, ρP

1 = ρ1. All the states given as examples
in Ref. [5] are of this special kind.
An entangled PPT state ρ1 defined by this UPB construction

is a rather special density operator. Ker ρ1 is spanned by
product vectors, while Im ρ1 contains no product vector.
Since ρ1 is proportional to the orthogonal projection onto
the subspace Im ρ1, it is the maximally mixed state on this
subspace. There is also a symmetry between ρ1 and ρP

1 , such
that ρP

1 shares with ρ1 all the properties just mentioned and
has the same rankN − p, whereN = NANB is the dimension
of the Hilbert space and p is the number of product vectors in
the UPB.
Implicitly the construction implies limits to the rank of ρ1.

Thus, for a given Hilbert space of dimensionN = NANB there
is a lower limit to the number of product vectors in a UPB,
which follows from the requirement that there should exist no
product vector in the orthogonal space U⊥. The corresponding
upper bound on the rank m of ρ1, as discussed in Ref. [4], is
given bym < N − NA − NB + 2. There is also a lower bound
m > max{NA,NB}, which is the general lower bound on the
rank of entangled PPT states with full local rank [8]. In some

special cases there exist more restrictive bounds than the ones
given here [9].
For the 3× 3 system these two bounds allow only one value

m = 4 for the rank of a state ρ1 constructed from a UPB, and
for this rank explicit constructions of UPBs exist [5]. Also in
higher dimensions a few examples of UPB constructions have
been given [6].
The extension of the UPB construction that we shall

consider here is based on a certain concept of equivalence
between density operators previously discussed in [10]. The
equivalence relation is defined by transformations between
density operators of the form

ρ2 = a2Vρ1V
†, (5)

where a2 is a positive normalization factor, and V = VA ⊗ VB ,
with VA and VB as nonsingular linear operators on HA and
HB , respectively. The operators ρ1 and ρ2 are equivalent in the
sense that they have in common several properties related to
entanglement. In particular, the form of the operator V implies
that separability as well as the PPT property is preserved under
the transformation (5). Preservation of separability follows
directly from the product form of the transformation, while
preservation of PPT follows because the partially transposed
matrix ρP

1 is transformed in a similar way as ρ1,

ρP
2 = a2Ṽ ρP

1 Ṽ †, (6)

with Ṽ = VA ⊗ V ∗
B . If ρ1 and ρP

1 are both positive then the
transformation equations show explicitly that the same is
true for ρ2 and ρP

2 . Furthermore, since the operators V and
Ṽ are nonsingular, the ranks of ρ1 and ρ2 are the same, and so
are the ranks of ρP

1 and ρP
2 . The same is true for the local ranks

of the operators, which are the ranks of the reduced density
operators, defined with respect to the subsystems A and B.
Finally, if ρ1 is an extremal PPT state, so is ρ2.
Let us again assume ρ1 to be given by the expression

(3). Since the product operator V is an invertible mapping
from Im ρ1 to Im ρ2, and since Im ρ1 contains no product
vector, there is also no product vector in Im ρ2, and hence
ρ2 is entangled. Similarly, the product operator (V †)−1 is an
invertible mapping fromKer ρ1 to Ker ρ2, and it maps the UPB
in Ker ρ1, Eq. (2), into a set of product vectors in Ker ρ2,

ψ ′
k = [(V †

A)
−1φk]⊗ [(V †

B)
−1χk], k = 1,2, . . . ,p. (7)

If the operators VA and VB are both unitary, then this is another
UPB of orthonormal product vectors, and ρ2 is proportional
to a projection, just like ρ1. More generally, however, we may
allow VA and VB to be nonunitary. Then the product vectorsψ ′

k

in Ker ρ2 will no longer be orthogonal, but ρ2 is nevertheless
an entangled PPT state. It has the same rank as ρ1, but it is not
proportional to a projection.
Since the normalization of the density operators ρ1 and

ρ2 is taken care of by the normalization factors a1 and a2, we
may impose the normalization condition detVA = detVB = 1,
which defines the operators as belonging to the special linear
(SL) groups on HA and HB . We will say then that the two
density operators ρ1 and ρ2, related by a transformation of the
form (5), are SL⊗ SL equivalent, or simply SL equivalent.
This construction motivates a generalization of the concept

of a UPB, where we no longer require the product vectors to
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be orthogonal. This generalization has also previously been
proposed in the literature [7]. In the following we will refer
to an unextendible product basis of orthogonal vectors as an
orthogonal UPB. A more general UPB is then a set of product
vectors that need not be orthogonal (need not even be linearly
independent) but still satisfies the condition that no product
vector exists in the subspace orthogonal to the set. The UPB
defined by (7) is a special type of generalized UPB, since it
is SL equivalent to an orthogonal UPB. More general types
of UPBs exist, and they are in fact easy to generate, since
an arbitrarily chosen set of k product vectors is typically a
generalized UPB, in the above sense, when k is sufficiently
large. However, if it is not SL equivalent to an orthogonal UPB,
thenwe have no guarantee that there will be any entangled PPT
state in the subspace U⊥ orthogonal to the generalized UPB.

III. PARAMETRIZING THE UPBS OF THE 3 × 3 SYSTEM

We focus now on the orthogonal UPBs in the 3× 3 system,
which must have precisely five members. In fact, for any given
set of four product vectors φk ⊗ χk , there exists a product
vector φ ⊗ χ orthogonal to all of them, for example with
φ1 ⊥ φ ⊥ φ2 and χ3 ⊥ χ ⊥ χ4. And with six members in an
orthogonal UPB, it would define a rank 3 entangled PPT state,
which is known not to exist [8].
The general condition for five product vectors to form an

orthogonal UPB in the 3× 3 system was discussed in Ref. [5].
The condition implies that for any choice of three product
vectors from the set, the first factorsφk are linearly independent
and so are the second factors χk . The orthogonality condition
further implies that if the product vectors are suitably ordered,
there is a cyclic set of orthogonality relations between the
factors of the products of the form

φ1 ⊥ φ2 ⊥ φ3 ⊥ φ4 ⊥ φ5 ⊥ φ1,
(8)

χ1 ⊥ χ3 ⊥ χ5 ⊥ χ2 ⊥ χ4 ⊥ χ1.

In Fig. 1 the situation is illustrated by a diagram composed
of a pentagon and pentagram, where each corner represents
a product vector. Each pair of vectors is interconnected by a
line showing their orthogonality. A solid (blue) line indicates
orthogonality between φ states (of subsystem A) and a dashed
(red) line indicates orthogonality between χ states. As shown
in the diagram, precisely two A lines and two B lines connect
any given corner with the other corners of the diagram.
Introducing a complete set of orthonormal basis vectors αj

inHA, we write

φk =
3∑

j=1
ujkαj , k = 1,2,3,4,5. (9)

We may choose, for example, α1 proportional to φ1 and α2
proportional to φ2. If we multiply each basis vector αj by a
phase factor ωj , and each vector φk by a normalization factor
Nk , we change the 3× 5matrix ujk intoω−1

j Nkujk . It is always
possible to choose these factors so as to obtain a standard form

u =

⎛
⎜⎝
1 0 a b 0

0 1 0 1 a

0 0 b −a 1

⎞
⎟⎠ , (10)

1

2

3 4

5

FIG. 1. (Color online) Diagrammatic representation of the or-
thogonality relations in a five-dimensional UPB of the 3× 3 system.
The corners of the diagram represent the product vectors of the UPB,
and the lines represent orthogonality between pairs of states. There
are two types of orthogonality, represented by the solid (blue) lines
and the dashed (red) lines. The solid lines represent orthogonality
between the vectors of the products that belong to subsystemA and the
dashed lines represent orthogonality between the vectors belonging
to subsystem B.

with a and b as real and strictly positive parameters, and
with the vectors φk not normalized to length 1. A similar
parametrization of the vectors of subsystem B with orthonor-
mal basis vectors βj gives

χk =
3∑

j=1
vjkβj , k = 1,2,3,4,5, (11)

and a standard form

v =

⎛
⎜⎝
1 d 0 0 c

0 1 1 c 0

0 −c 0 1 d

⎞
⎟⎠ , (12)

with two more positive parameters c and d. Thus, an arbitrary
orthogonal UPB is defined, up to unitary transformations in
HA andHB , by four continuous, positive parameters a,b,c,d.
Note that, for a given UPB, the parameter values are not

uniquely determined, since this prescription does not specify a
unique ordering of the five product vectors within the set. Any
permutation that preserves the orthogonality relations pictured
in Fig. 1 will generate a new set of values of the parameters
that define the same UPB. These permutations form a discrete
group with ten elements, generated by the cyclic shift k →
k + 1, and the reflection k → 6− k.
Given the orthonormal basis vectors αj in HA and βj in

HB , we may think of the four positive parameters a,b,c,d as
defining not only one single orthogonal UPB but a continuous
family of generalized UPBs that are SL equivalent to this
particular orthogonal UPB. The parameter values defining one
such family may be computed from any UPB in the family via
SL invariant quantities, in the followingway.Given the product
vectors φk ⊗ χk for k = 1,2,3,4,5, not necessarily orthogonal,
we introduce expansion coefficients as in (9) and arrange them
as column vectors

uk =

⎛
⎜⎝

u1k

u2k

u3k

⎞
⎟⎠ . (13)
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Then we introduce the following quantities:

s1 = −det(u1u2u4) det(u1u3u5)
det(u1u2u5) det(u1u3u4)

= a2,

(14)

s2 = −det(u1u2u3) det(u2u4u5)
det(u1u2u4) det(u2u3u5)

= b2

a2
,

where the values to the right are determined from the
parametrization (10) of the orthogonal UPB defining the
family. Similarly, we define

s3 = det(v1v2v3) det(v1v4v5)

det(v1v2v5) det(v1v3v4)
= c2,

(15)

s4 = det(v1v3v5) det(v2v3v4)

det(v1v2v3) det(v3v4v5)
= d2

c2
.

The quantities s1,s2,s3,s4 defined in terms of 3× 3 determi-
nants are useful because they are invariant under SL trans-
formations as in (7), and in addition they are independent of
the normalization of the column vectors uk and vk . Obviously,
manymore similar invariants may be defined from five product
vectors, but these four invariants are sufficient to characterize
a family of UPBs that are SL equivalent to an orthogonal UPB.
There exists a less obvious further extension of the set of

invariants. In fact, there are always six vectors that can be
used to define invariants, since in addition to the five linearly
independent product vectors of the UPB, the space spanned
by these will always contain a sixth product vector. In the
case of an orthogonal UPB, given by the parameters a,b,c,d,
we have found (by means of a computer algebra program)
explicit polynomial expressions for the components of the one
extra product vector. We have checked, both analytically and
numerically, that the existence of exactly six product vectors is
a generic property of a five-dimensional subspace of the 3× 3
dimensional Hilbert spaceH. This number of product vectors
is also consistent with the formula discussed in [4], which
specifies more generally, as a function of the dimensions,
the number of product vectors in a subspace of H. For an
orthogonal UPB in the 3× 3 system the sixth vector is singled
out because it is not orthogonal to the other vectors, but for
a nonorthogonal UPB there is no intrinsic difference between
the six vectors of the set, which should therefore be treated on
an equal footing.
For a UPB that is SL equivalent to an orthogonal UPB

there are strong restrictions on the values of invariants of
this kind, since they are all rational functions of the four
real parameters a,b,c,d. In particular, they must all take
real values. A given choice of four invariants, as in (14)
and (15), is sufficient to define the parameter space for the
equivalence classes of these UPBs. But since the six product
vectors listed in any order define the same UPB, and the
same PPT state, there is a discrete set of 6! = 720 symmetry
transformations that introduce identifications between points
in the corresponding parameter space. As we shall see in the
following, the requirement that all four invariants s1,s2,s3,s4
should be positive allows 60 different orderings from the total
of 720.
One should note that for a generalized UPB consisting of

five randomly chosen product vectors the invariants will in
general be complex rather than real, and it is not a priori

clear that four invariants are sufficient to parametrize the
equivalence classes of random UPBs.

IV. CLASSIFYING THE RANK 4 ENTANGLED PPT STATES

We have in [4] described a method to generate PPT states
ρ for given ranks (m,n) in low-dimensional systems, with
m = rankρ and n = rankρP . By repeatedly using this method
with different initial data we have generated a large number
of different PPT states of rank (4,4) in the 3× 3 system. They
are all entangled PPT states, and as a consequence they are
extremal PPT states. This follows from the fact that if they
were not extremal they would have to be convex combinations
involving entangled PPT states of even lower ranks, and such
states do not exist.
The remarkable fact is that every one of these states has a

UPB in its kernelwhich is SL equivalent to an orthogonalUPB,
and the state itself is SL equivalent to the state constructed
from the orthogonal UPB. We regard our numerical results as
strong evidence for our belief that the four real parameters
which parametrize the orthogonal UPBs give a complete
parametrization of the rank 4 entangled PPT states of the 3× 3
system, up to the SL (or more precisely SL⊗ SL) equivalence.
We will describe here in more detail the numerical methods
and results that lead us to this conclusion.
Assume ρ to be an entangled PPT state of rank (4,4), found

by the method described in [4]. The question to examine is
whether it is SL equivalent to an entangled PPT state defined
by the orthogonal UPB construction. We therefore make the
ansatz that it can be written as ρ ≡ ρ2 = a2Vρ1V

†, where ρ1 is
defined by a so far unknown orthogonalUPB, parametrized as
in (10) and (12), and where the transformation V is of product
form, V = VA ⊗ VB . We consider how to compute the product
transformation V , assuming that it exists. The fact that we are
able to find such a transformation for every (4,4) state is a
highly nontrivial result.
Given ρ, the first step is to find all the product vectors in

Ker ρ. We solve this as a minimization problem: A normalized
product vector ψ = φ ⊗ χ with ρψ = 0 is a minimum point
of the expectation value ψ†ρψ . Details of the method we use
are given in Ref. [4]. Empirically, we always find exactly six
such product vectors ψk = φk ⊗ χk , k = 1,2, . . . ,6, any five
of which are linearly independent and form a UPB, typically
nonorthogonal.
Although the numbering of the six product vectors is

arbitrary at this stage, we compute the invariants s1,s2,s3,s4,
substituting φk for uk and χk for vk , with k = 1,2, . . . ,5. As
shown by the previous discussion all four invariants have to be
real, for otherwise no solution can exist. A random UPB has
complex invariants, and the empirical fact that the invariants
are always real for a UPB in Ker ρ, where ρ is a rank (4,4)
entangled PPT state, is a nontrivial test of the hypothesis that
such a UPB can be transformed into orthogonal form.
It is not sufficient that the invariants are real. As shown by

the expressions (14) and (15) there has to exist an ordering
of the product vectors where all four invariants take positive
values. The signs of the invariants will depend on the ordering
of the product vectors, and most orderings produce both
positive and negative invariants. For the rank (4,4) density
matrices that we have constructed, it turns out that it is always
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possible to renumber the five first vectors in the set in such a
way that all four invariants become positive. This is a further
nontrivial test of our hypothesis.
There are in fact, in all the cases we have studied, precisely

10 of the 5! permutations of the five vectors that give positive
values of the four invariants. This means that such an ordering
is unique up to the symmetries noticed for the diagram in Fig. 1.
However, there is a further symmetry, since the reordering
which gives positive invariants works for any choice of the
sixth vector of the set. The possible reorderings of all six
product vectors which preserve the positivity of the invariants
therefore define a discrete symmetry group with altogether
6× 10 = 60 elements, which defines mappings between
different, but equivalent, representations of theUPB in terms of
the set of four real and positive invariants. The corresponding
parameter transformations are given in the Appendix.
Assume now, for a given rank (4,4) state, that a “good”

numbering has been chosen for the six product vectors ψk =
φk ⊗ χk in the corresponding UPB, so that the four invariants
defined by the first five vectors are all real and positive. The
problem to be solved is then to find the transformation that
brings the UPB into orthogonal form. This means finding
3× 3 matrices C and D such that φk = N ′

kCuk and χk =
N ′′

k Dvk for k = 1,2, . . . ,5, with unspecified normalization
constants N ′

k and N ′′
k . Here the vectors uk and vk belong

to an orthogonal UPB as given by the Eqs. (10) and (12),
and these vectors are all known at this stage, because the
invariants s1,s2,s3,s4 determine the parameters a,b,c,d. The
transformation matrices C and D correspond to V

†
A and

V
†
B in (7). The condition for two vectors φk and Cuk to
be proportional is that their antisymmetric tensor product
vanishes; hence we write the following homogeneous linear
equations for the matrix C:

φk ∧ (Cuk) = φk ⊗ (Cuk)− (Cuk)⊗ φk = 0,
(16)

k = 1,2, . . . ,5.

Since the antisymmetric tensor product φk ∧ (Cuk) has, for
given k, three independent components, there are altogether
fifteen linear equations for the nine unknown matrix elements
Cij . We may rearrange the 3× 3 matrix C as a 9× 1 matrix
C and write a matrix equation

MC = 0, (17)

where M is a 15× 9 matrix. This equation implies
that (M†M)C = 0. The other way around, the equation
(M†M)C = 0 implies that (MC)†(MC) = C†(M†M)C = 0
and hence MC = 0. Thus we may compute the matrix C as
an eigenvector with zero eigenvalue of the Hermitean 9× 9
matrixM†M . The matrix D is computed in a similar way.
It is a final nontrivial empirical fact for the (4,4) states we

have found that solutions always exist for the matrices C and
D, whenever the ordering of the six product vectors ψk =
φk ⊗ χk is such that the invariants s1,s2,s3,s4 are positive.
The result is that every rank (4,4) state of the 3× 3

system which we have found in numerical searches [4] can be
transformed into a projection operator with an orthogonal UPB
in its kernel. We have also checked the published examples of
entangled PPT states of rank (4,4), which are based on special

constructions [5,6,11,12], and have obtained the same result
for these states. The explicit transformations have been found
numerically by the method discussed here, and in all cases the
four parameters a,b,c,d have been determined, with values
that are unique up to arbitrary permutations of product vectors
from the 60-element symmetry group.

V. SUMMARY AND OUTLOOK

The main result of this paper is a classification of the rank 4
entangled PPT states of the 3× 3 system. We find empirically
that every state of this kind is equivalent, by a product
transformation of the form SL⊗ SL, to a state constructed
from an orthogonal unextendible product basis. We refer to
this type of equivalence as SL equivalence. We have shown
how to parametrize the orthogonal UPBs by four real and
positive parameters, and we have described how permutations
of the vectors in the UPB give rise to identifications in the
four-parameter space.
The concept of SL equivalence of states and of product

vectors leads to a generalization of the concept of unextendible
product bases so as to include sets of nonorthogonal product
vectors, and further to the concept of equivalence classes of
generalized UPBs that are SL equivalent to orthogonal UPBs.
Thus, the parametrization of the orthogonal UPBs by four
positive parameters is at the same time a parametrization of
the corresponding equivalence classes of generalized UPBs.
We have described a method for checking whether a given

rank 4 entangled PPT state in the 3× 3 system is equivalent,
by a product transformation, to a state constructed from an
orthogonal UPB. It is a highly nontrivial result that all the rank-
four entangled states that we have produced numerically, and
all states of this kind that we have found in the literature, are SL
equivalent to states that are generated from orthogonal UPBs.
This we take as a strong indication that the parametrization
of the UPBs in fact gives also a parametrization of all the
equivalence classes of rank 4 entangled PPT states of the 3× 3
system.
Apart from the pure product states, the rank 4 entangled

PPT states are the lowest rank extremal PPT states among
the 3× 3 states that we have found in numerical searches, as
reported on in [4]. The property of such a state—that it has a
nonorthogonal UPB in its kernel, which means that there is a
complete set of product vectors in Ker ρ and no product vector
in Im ρ—is shared with the lowest rank extremal PPT states of
the other systems that we have studied, of dimensions different
from 3× 3. This has led us to conjecture that this is a general
feature of the lowest rank extremal PPT states, valid also in
higher dimensional systems [4], and to speculate that theremay
exist a generalization of the construction used for the 3× 3
system in terms of orthogonal UPBs and SL transformations,
which can be applied in the higher dimensional systems.
In higher dimensions the orthogonality condition is harder

to satisfy, and therefore another condition may take its place
as the defining characteristic of a special subset of extremal
states from each SL equivalence class. This hypothetical new
condition may involve the full set of product vectors in the
subspace, rather than an arbitrarily selected subset as in the
definition of the orthogonal UPBs. We consider examining
this possibility, with the aim of parametrizing the lowest rank
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extremal PPT states more generally, an interesting task for
further research, andwe are currently looking into the problem.
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APPENDIX: EQUIVALENT ORDERINGS OF THE
SIX PRODUCT VECTORS

Assume that the sequence of product vectorsψk = φk ⊗ χk ,
k = 1,2,3,4,5, in this order, is characterized by parameter
values a,b,c,d, as computed from the invariants s1,s2,s3,s4.
It is convenient here to replace the parameters a,b,c,d by
α = a2, β = b2, γ = c2, δ = d2.
Then the cyclic permutation ψk �→ ψ̃k with ψ̃1 = ψ5 and

ψ̃k = ψk−1 for k = 2,3,4,5 corresponds to the following
parameter transformation, which is periodic with period 5:

α̃ = β

1+ α
,

β̃ = β

α(1+ α)
,

(A1)
γ̃ = 1

γ + δ
,

δ̃ = γ (1+ γ + δ)

δ(γ + δ)
.

The inversion ψ1 �→ ψ̃1 = ψ1, ψk �→ ψ̃k = ψ7−k for k =
2,3,4,5 corresponds to the parameter transformation α̃ = α,
γ̃ = γ ,

β̃ = α(1+ α)

β
,

(A2)
δ̃ = γ (1+ γ )

δ
.

Let ψ6 = φ6 ⊗ χ6 be the sixth product vector in the five-
dimensional subspace spanned by these five product vectors.
Then the sequence ψ̃1 = ψ6, ψ̃2 = ψ5, ψ̃3 = ψ3, ψ̃4 = ψ4,
ψ̃5 = ψ2 corresponds to the parameter transformation α̃ = γ ,
γ̃ = α,

β̃ = β(1+ γ )[(α + β)(γ + δ)+ δ]

α(1+ α + β)δ + (1+ α)(α + β)(1+ γ )
,

(A3)
δ̃ = (1+ α)[βδ + (α + β)γ (1+ γ + δ)]

[1+ α + (1+ α + β)(γ + δ)]δ
.

It is not easy to see by looking at the formulas that this
parameter transformation is its own inverse.
Altogether, these transformations generate a transformation

group of order 60 (with 60 elements), isomorphic to the
symmetry group of a regular icosahedronwith opposite corners
identified. Equivalently, it is the group of proper rotations of
the icosahedron, excluding reflections. The icosahedron has
twelve corners, and we may associate the six product vectors
with the six pairs of opposite corners.
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Abstract

In bipartite quantum systems of dimension 3× 3 the lowest rank entangled states that are positive under

partial transposition (PPT) can be related, by product transformations, to states that are constructed by

the use of unextendible product bases (UPB) in the Hilbert space of the system. Here we consider a possible

generalization of the product bases, which can be related in a similar way to low-rank entangled density

matrices in higher dimensions. The idea is to give up the condition of orthogonality of the product vectors,

while keeping the relation between the density matrix and the projection on the associated UPB. We examine

first this generalization for the 3 × 3 system where numerical studies indicate that one-parameter families

of such generalized states can be found. Similar numerical searches in higher dimensional systems show

the presence of extremal PPT states of the same form. Based on these results we indicate that the UPB

construction of the lowest rank entangled states in the 3×3 system can be generalized to higher dimensions,

with the use of non-orthogonal UPBs of the suggested form.

PACS numbers:
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INTRODUCTION

One of the most striking features of quantum mechanics is found in the concept of entanglement.

Considerable efforts have been made in understanding its properties and usefulness, with several

different approaches taken [1]. One approach has been to study the geometrical structure of

different convex sets of hermitian matrices that are related to subsets of quantum states with

entanglement [2–7]. There are two convex subsets of the full set of density matrices, denoted D,

that are particularly important in this discussion. One is the set S of non-entangled, or separable,

states, and the other the set P of density matrices that remain positive under partial transposition

with respect to a subsystem. The states of P are commonly referred to as PPT states. The non-

entangled states are PPT by default, so we have the following set-theoretical relations S ⊂ P ⊂ D.

In two previous papers we have examined the properties of entangled density matrices that

are PPT, which means that they are contained in P but not in S [8, 9]. These states which are

known to have bound entanglement are intrinsically interesting [10], but they are also interesting

through the information they give about the full set of entangled states. In fact, the difficult part

of establishing whether quantum states in general are entangled or separable is to do so for states

that are PPT. This is so, since any state which is not PPT - a property that can easily be verified

- is entangled.

The states studied in [8, 9] were found by performing systematic numerical searches for PPT-

states with specified ranks for the density matrix ρ and for its partial transpose ρP . Such searches

were performed for several bipartite systems of low dimensions, and in all cases, when the ranks

were sufficiently low, the states were not only entangled but were typically extremal PPT states.

An interesting result was that the lowest rank states of this type, with full local ranks, were found

to have very similar properties, independent of their dimension. In particular they were all found

to be extremal PPT states with a complete set of product states in their kernel, and no product

states in their image.

For a bipartite system of dimension 3×3 there is a special subset of these lowest rank entangled

PPT states that can be constructed by the use of unextendible product bases (UPB) [11]. The

method provides a way to combine vectors in the two subsystems to form an orthogonal product

basis that spans a five-dimensional subspace in the full Hilbert space, and which cannot be extended

to include other product vectors orthogonal to the five states. The corresponding density matrix

is constructed, up to a normalization, as the projection on the space orthogonal to the product

vectors of the UPB. With the use of the numerical method described in [8] a large number of more
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general entangled PPT states of rank 4 were generated, and it was shown that all of them, in a

specific sense, were equivalent to density matrices that could be produced by the UPB construction.

The equivalence classes were further shown to be parameterized by four real parameters, and the

results were interpreted as evidence for the conclusion that all entangled PPT states of rank 4 in

the 3 × 3 system are covered by this parametrization.

These results have motivated the present work, where we investigate a possible generalizion of

the UPB construction which makes it applicable to systems of dimensions higher than 3 × 3. A

simple copy of the UPB construction seems not possible, since in higher dimensions the orthog-

onality requirement is too demanding. Instead we focus on other properties of the construction.

In the 3 × 3 system the projection on the five-dimensional subspace spanned by the orthogonal

product vectors of the UPB can be written as a sum of one-dimensional projections defined by the

product vectors, and the corresponding density matrix is defined as the projection on the orthogo-

nal subspace. The partial transpose of the density matrix takes the same form, when expressed in

terms of a related, conjugate UPB. In the present paper we study density matrices of the similar

projection form, but without the requirement of orthogonality. Such states can be found in the

3×3 system, and we examine these states in some detail. We further focus on the question whether

such generalized states can be found in systems of dimension higher than 3 × 3.

The result is that we find such states in all the bipartite systems we have been able to examine.

In addition to the 3 × 3 system this applies to systems of dimensions 3 × n with n taking values

up to 6, and we have further examined the 4 × 4, 4 × 5 and 5 × 5 systems. The matrices we find

are all of the projection form referred to above, with generalized, non-orthogonal UPBs in their

kernel, and the partial transposed matrices are all found to have the same form.

The organization of the paper is as follows. We first discuss in some detail the generalized UPB

construction for the lowest rank PPT states of the 3× 3 system. These states have rank 4 for both

for the density matrix ρ and its partial transpose ρP , and we thus refer to them as (4, 4) states. We

first illustrate the generalization by examining a special, symmetric case where the vectors of the

UPB form a regular icosahedron, and find a one-parameter set of equivalent states that correspond

to a linear deformation of the icosahedron. One of these states has an orthogonal UPB in its kernel,

while for the general case the UPB is non-orthogonal.

We next describe a numerical method to search for more general matrices, with less symmetric

UPBs. The method specifies these density matrices ρ to be projections with rank equal to 4 and

to have a positive partial transpose. All matrices that we find in this way are quite remarkably not

only projections, but have the form we refer to in the generalized UPB construction. Furthermore,
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the partial transpose ρP has the same form when expressed in terms of the associated, conjugate

UPB. All density matrices found in this way are extremal PPT states.

For the 3× 3 system we have previously found numerically that generic extremal PPT states of

rank (4, 4), found by the method described in [8], can be transformed by product transformations to

a projection form with orthogonal UPBs in their kernels [9]. Here we further investigate whether

such states can be transformed to a projection form with more general UPBs in their kernels,

dropping the orthogonality requirement on the transformed UPBs. The results show that this is

the case, and furthermore strongly indicate that the projections belong to one-parameter classes

of equivalent matrices, where density matrices defined by the orthogonal UPB construction are

special cases.

For the higher-dimensional systems the method we use to generate density matrices of projection

form with specified ranks also works well. When the rank is chosen to coincide with the rank of

the generalized lowest rank extremal PPT states, as discussed in [8], we find matrices with the

same properties as in the 3 × 3 system. The projection can thus be expressed in terms of a UPB

in the kernel of the matrix, and the partial transpose has the same rank and structure when

expressed in terms of its associated UPB. However, the method used to check equivalence under

product transformations between generic extremal PPT states (of the given rank) and matrices of

the correct projection form does not work so well in higher dimensions, and we have not been able

to confirm that such an equivalence is present in dimensions higher than 3 × 3.

We end with a summary and with a discussion of some of the questions that are left for further

research.

LOWEST RANK EXTREMAL PPT STATES IN THE 3 × 3 SYSTEM

The construction of entangled PPT states of rank 4 in the 3 × 3 system, with the help of

orthogonal UPBs, was originally discussed in [11]. A condition was there given for choosing a set

of five vectors {φk} in subsystem A and a corresponding set of vectors {χk} in subsystem B so

that the set of product vectors {ψk = φk ⊗ χk} would define an orthogonal UPB. From this set

of product vectors a density operator of rank 4 could be constructed as a (normalized) projection

operator in the following way

ρ =
1
4

(�−
5∑

k=1

ψkψ
†
k) (1)
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This form for ρ implies that the partial transpose ρP will have the same form when expressed in

terms of a conjugate UPB, defined as {ψ̃k = φk ⊗ χ∗
k}, which is also a set of orthogonal product

vectors. The complex conjugation of the second factor means that the partial transposition is

performed with respect to subsystem B.

The important point is that the density matrix ρ, defined by the above expression, is necessarily

entangled and PPT. It is entangled since there is no product state in the image of the matrix, and

it is positive since it is proportional to a projection, which has only non-negative eigenvalues. For

the same reason also the partial transpose is positive, and thus follows the PPT property of ρ.

The density matrices defined by this construction form a proper subset of the entangled PPT

states of rank 4 since the generic state of this type, according to our previous studies, will have a

non-orthogonal UPB in its kernel [8].

The idea is now to relax the condition of orthogonality, but to keep other properties of the

UPB construction. We examine this generalization first in the 3× 3 system, but will subsequently

examine the corresponding generalization for higher dimensional systems. The main condition is

that the rank 4 density operator should be proportional to a projection operator, which we write

as

ρ =
1
4

(�− Q) , Q2 = Q (2)

where Q is assumed to be of the form

Q = 5
6∑

k=1

pkψkψ
†
k (3)

with {ψk = φk ⊗ χk} as a set of product vectors that defines a generalized UPB. The coefficients

pk define an unspecified set of real parameters, not necessarily all positive, with
∑6

k=1 pk = 1.

Note that the sum over the product vectors now runs from 1 to 6. The reason for this is the

following. The five dimensional subspace spanned by the UPB will always include a total of 6

product vectors [8]. When five of the product vectors are orthogonal, the 6th product state which

is a linear combination of the other 5, is simply not included in the definition of ρ. We may view

this as a special case of (2) and (3), with p6 = 0. However, when there is no subset of the product

vectors that is orthogonal it seems natural to define the generalization so that all product vectors

in the five dimensional subspace are included, as we have done above.

The density matrix ρ defined by (2) and (3) is clearly entangled, since it has no product vector
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in its image. Furthermore, the partial transpose ρP has the same form as ρ, when the product

vectors ψk are replaced by the conjugate vectors ψ̃k = φk ⊗ χ∗
k, so that

ρP =
1
4

(�− QP ) (4)

with QP given by

QP = 5
6∑

k=1

pkψ̃kψ̃
†
k (5)

Also in this case the vectors ψ̃k form a generalized UPB, however, the rank of QP is not necessarily

the same as the rank of Q and neither is positivity of ρP obvious from the above expressions.

If all the coefficients pk are positive and the operator Q thus is separable, this will imply that

ρP is positive and of the same rank as ρ. However, since studies of higher dimensional systems

seem to show that this is a too restrictive requirement, we instead make the assumption that QP ,

like Q, is a projection operator, so that (QP )2 = QP . This also secures that ρP is positive and of

the same rank as ρ, and consequently that ρ is an entangled PPT state.

For the generalization of the UPB construction we thus assume both the density matrix ρ and

its partial transpose ρP to satisfy conditions of the form given by (2) and (3). At this point we

lack a prescription for choosing vectors φk and χk of the subsystems so that the product vectors

ψk = φk⊗χk define density matrices ρ and ρP that satisfy thse conditions. For this reason we have

instead focussed on the question if we can find, by numerical searches, states that satisfy these

criteria, first in the 3 × 3 system and then in higher dimensional systems. In the 3 × 3 system we

can, however, make an explicit construction of such states as a special case, and we shall discuss

that case in the next section.

A SPECIAL CASE: THE ICOSAHEDRON

An especially symmetric case, with non-orthogonal product states, is formed by the icosahedron

construction described here. The vectors φk and χk of the subsystems that combine into the product

vectors of the generalized UPB are in this case all chosen to be real. The six vectors φk define

the six symmetry axes of a regular icosahedron that pass through its twelve corners. A particular

choice of (non-normalized) vectors is specified by the following sets of Cartesian coordinates

φ1 = (−φ, 0, 1) , φ2 = (−1, φ, 0) , φ3 = (1, φ, 0) ,
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φ4 = (φ, 0, 1) , φ5 = (0,−1, φ) , φ6 = (0, 1, φ) (6)

with φ = (
√

5 + 1)/2 as the golden ratio. These are also the coordinates of six of the corners of the

icosahedron, when the center is located at the origin.

The second set of vectors, {χk}, is chosen as the same set (6), but in order to form the correct

combinations ψk = φk ⊗ χk, the φk and χk vectors have to be differently ordered. A particular

choice is χk = φ(2k+4)mod5 for k = 1, ..., 5 and χ6 = −φ6, but in total there are 60 acceptable

orderings, related to the 60 rotational symmetries of the icosahedron. With all these orderings the

six product vectors span a five-dimensional subspace of the Hilbert space.

The vectors (6) define six equiangular lines, which means that the scalar product between all

pairs of vectors are equal up to a sign. With normalized vectors the scalar products are

gA
kl ≡ φ†

kφl = ± 1√
5

, gB
kl ≡ χ†

kχl = ± 1√
5

, k �= l (7)

For the product vectors ψk = φk ⊗ χk the scalar products are also equal up to a sign, and by

choosing the particular ordering of the χk, referred to above, we obtain

gkl = gA
kl g

B
kl = −1

5
∀ k �= l, k, l = 1, ..., 6 (8)

We now consider the following operator

Q =
5
6

6∑
k=1

ψkψ
†
k (9)

which is of the form (3) with all six coefficients equal, pk = 1/6. The condition that it should

define a projection, Q2 = Q, can be written as

ψk = 5
∑
l �=k

glkψl , glk = ψ†
l ψk (10)

and this should be satisfied for all k. When gkl is chosen as in (8) it gives the symmetric condition

6∑
k=1

ψk = 0 (11)

and it is straight forward to check that this is equation is satisfied for the product vectors of the

regular icosahedron.
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The product vectors {ψk} define a generalized UPB. Thus, there is no product vector orthogonal

to the set, as can easily be checked, and the vectors are non-orthogonal. The set defines an entangled

PPT state in the form of the density operator

ρ =
1
4

(�− 5
6

6∑
k=1

ψkψ
†
k) (12)

It is entangled since there is no product vector in its image, and it is PPT since the vectors are all

real, and the partial transposition thus leaves the density operator invariant, ρP = ρ.

FIG. 1: The icosahedron construction. A regular icosahedron, shown to the left, defines a set of six equian-
gular lines through the twelve corners. A corresponding set of six vectors along these lines are shown in the
figure. Tensor products of six pairs of such vectors define the vectors of the UPB, as explained in the text,
and all of these appear with equal weight in the construction of the corresponding entangled PPT state. To
the right a stretched icosahedron is shown where five of the vectors are used to define an orthogonal UPB.
These vectors point along edges of a regular pyramid with a pentagon as base, which appears upside down
in the figure. This construction has previously been referred to as the Pyramid [11]. The corresponding
UPB defines an entangled PPT state where the five product states appear with equal weight, and where the
sixth vector does not appear.

States that are related by non-singular product transformations

ρ′ = SρS† , S = SA ⊗ SB (13)

where A and B refer to the two subsystems, all have the same characteristics as being separable or

entangled. They also share the property of being positive or not under partial transposition and

they have the same rank. This is trivially the case for unitary product transformations, but it is

also true for non-unitary transformations, in which case the transformed matrix ρ′ should further
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be normalized to unity. The operators SA and SB can be restricted, without loss of generality,

to be unimodular, and for this reason we refer to the relation as SL ⊗ SL-equivalence (or simply

SL-equivalence) [9]. For the density operator (12) there is a subset of such SL-equivalent states

that can be written in the form of projections (3). Clearly unitary product transformations will

leave this form invariant, but it is of interest to note that there is a one-parameter set of non-

unitary transformations that also leaves the projection form invariant. As opposed to the unitary

transformations these transformations will change the coefficients pk in the expansion (3).

The non-unitary SL-transformations are of the symmetric form S = SA ⊗ SB with SA = SB,

where SA rescales the length in the direction of one of the symmetry axes of the icosahedron. In the

following we choose this to be the direction of φ6, so that the transformation squeezes or elongates

the icosahedron along this axis. This can be described in terms of a streching parameter λ, so that

the unit vectors pointing towards the corners of the deformed icosahedron are

φk(λ) = N(λ)
(
φk + (λ − 1)(φ†

6φk) φ6

)
, k �= 6 ; φ6(λ) = φ6 (14)

with N(λ) as a normalization constant. For symmetry reasons, the coefficients pk(λ) are all equal

for k �= 6. It is straight forward to show that

p6(λ) =
4 + 2λ2 − λ4

20 + 10λ2
; pk(λ) =

(1 − p6(λ))
5

∀ k �= 6 (15)

The stretching parameter is chosen with λ = 1 for the regular icosahedron with pk = 1/6

for k = 1, ..., 6, in which case all product vectors contribute equally. When λ = 0 the squeezed

icosahedron collapses to a plane, at which point the set of product vectors cease to be a UPB

since the vectors φk for k = 1, ..., 5 all lie in the two-dimensional plane orthogonal to φ6. For the

particular value λ =
√

2φ the five product vectors, with k = 1, 2, ..., 5, become orthogonal, and

thereby define an orthogonal UPB. This is the Pyramid construction discussed as a particular case

of a UPB construction in [11]. In this case the coefficients are pk = 1/5 for k �= 6 and p6 = 0. The

relation between this set and the stretched icosahedron is illustrated in Fig.1.

THE GENERAL CASE OF RANK (4, 4) ENTANGLED PPT STATES

We focus now on general entangled PPT states of rank (4, 4) in the 3 × 3 system, which are

necessarily also extremal PPT states. In a previous study [8] we have numerically produced a

large number of such states, and we have found that they all can be transformed, by product
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transformations, to states of the special form given by (1), with an orthogonal UPB in the kernel

of the density matrix [9]. The question that we now discuss is whether these are only special cases,

and that more general states on the projection form given by (2) and (3) can be found. In order

to examine this we have applied two different numerical methods to search for density matrices of

the desired form.

The first method applies search criteria which do not directly refer to the conditions (2) and

(3). Instead the search is for density matrices ρ with the correct rank 4, which are PPT and of

projection form. This means that all the non-vanishing eigenvalues should be equal. The method is

essentially the same as used in [8] to search for PPT states of rank (4, 4). Here however, we impose

no restriction on the rank of ρP , only that det ρP ≥ 0. It is a linearized, iterative method which

specifies a certain number of the eigenvalues of ρ to vanish, and in this case also the remaining

eigenvalues to be equal. We refer to [8] for details concerning the iterative method. A similar

approach is also used in the second method, to be discussed below.

The result is that the numerical method works well, and a large number of states which satisfy

the search criteria have been found. Even if we do not introduce any explicit constraint on ρP ,

only the conditions that ρ is PPT and is proportional to a projection, we find always ρP also to

be proportional to a projection. Thus, both ρ and ρP satisfy the conditions (2) and (3).

To gain some more information about the type of density matrices we want to obtain, we have

applied a second numerical method. It introduces a search for a product transformation which

maps, if possible, a chosen rank (4, 4) extremal PPT state into the form of a projection. We do

not, in this search either, impose any condition on how this projection is expressed in terms of

product vectors. Also this method applies a linearized, iterative approach to determine the product

transformation, which we now outline.

Let us denote the initial density matrix by ρ0 and the final density matrix by ρ. Their relation

should then be of the form

ρ = Sρ0S
† , S = SA ⊗ SB (16)

and the condition that the transformed density matrix is a projection gives

Sρ0S
†Sρ0S

† = Sρ0S
† (17)

(Note that the density matrix ρ is then not normalized to unity.) The transformation S is assumed
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to be non-singular, and the condition can then be simplified to

ρ0S
†Sρ0 = ρ0 (18)

The unknown transformation matrix S we parametrize by expressing SA and SB as linear

combinations of a complete set of 3 × 3 hermitian matrices. The corresponding product transfor-

mations are parametrized by 17 real parameters μk, which we interpret as components of a vector

μ. Furthermore we express the rank 4 matrices as 16-component vectors in the space of hermitian

operators within the image of ρ0. Written as a vector equation, Eq. (18) has the form

F (μ) = ρ0 (19)

Assume now that μ′ is a trial vector that gives an approximate solution to Eq. (19). We write

the deviation from the true solution as Δμ = μ − μ′, and treat this as a perturbation. To first

order in Δμ the equation reads in matrix form

BΔμ = ρ0 − F (20)

with B as a real, non-quadratic 16 × 17 matrix with elements Bkn = ∂Fk/∂μn, and where both

F and B are evaluated with the trial vector μ′. By multiplying with the transposed matrix BT

and introducing the positive, real symmetric matrix A = BT B, as well as a = BT (ρ0 − F ), the

equation can be written in the form

AΔμ = a (21)

where a and A are determined by the trial vector μ′ and Δμ is the unknown to be determined by

the equation. Written in the form (21) the equation is well suited to be solved numerically by the

conjugate gradient method [12].

An iterative approach is used to find a solution of the original problem. A starting point

μ1 is chosen for the trial vector, and this determines the initial versions of a and A. Eq. (21)

is then solved numerically to give a first solution Δμ1. The trial vector is then updated with

μ2 = μ1 + Δμ1, this vector is used to improve a and A, and a new improved solution Δμ2 of (21)

is found. If repeated iterations of this procedure leads to convergence, in the sense Δμ → 0, the

limit value of μ gives a solution to the original problem (19) and (18).
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A possible problem with this method is that the solution we find may correspond to a singular

transformation matrix S, which will not give a density matrix ρ with correct properties. However,

for the 3 × 3 system, by repeatedly applying the method with different starting points, we have

found that usually the convergence of the method is quite rapid, and the solution that we find

corresponds to a non-singular product transformation.

The result from applying the above method to the rank (4, 4) states of the 3× 3 system is that

for a large number of initial density matrices that we have used, we can in all cases transform the

density matrix by a non-singular product transformation to a matrix with the form of a projection.

Also, in all cases, we find density matrices ρ that have the form specified by (2) and (3), when

expressed in terms of the (non-orthogonal) UPB in the kernel of the density matrix. Furthermore,

the partially transposed density matrices ρP are, in all cases, proportional to projections, and can

be written in the form given by (2) and (3). This happens even if only ρ is required to have the

form of a projection in the numerical search.

By keeping ρ0 in (18) fixed and choosing repeatedly different starting points μ1 in (19) for

the first iteration, we get different results for the the density matrix ρ determined by the above

method. This indicates that there is a large number of different states on projection form within

a given set of SL-equivalent (4, 4) states. In fact there are several indications that there is a one

parameter set of such states, which can be related by non-unitary product transformations, within

any given equivalence class of extremal PPT states with this rank. The first indication is simply

based on parameter counting. As already discussed the number of equations that determine a

product transformation that transforms a state of rank 4 to the projection form is 16 while the

number of parameters to be determined by the equations is 17.

The second indication is found by listing the parameter sets {pk, k = 1, 2, ..., 6} for SL-equivalent

states on projection form that we generate by our method. As shown in Fig.2a a large set of different

distribution is found, consistent with the assumption that there is a continuum of equivalent states.

If one of the parameters is restricted to a very limited interval, the corresponding sets {pk} seem

either to be identical (up to the limitation set by the fixed parameter), or to divide into a small

number of distinct groups, each of which are essentially identical. This is illustrated in Fig.2b. This

is consistent with the assumption that the full set is specified, up to a discrete set of possibilities,

by a single continuous parameter.

All this seems to show that the picture is similar to that of the icosahedron case, so that any

extremal PPT state of rank (4, 4) is SL-equivalent to a one parameter set of states on the projection

form given by (2) and (3). And for each of these the partial transposed density matrices has the
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same projection form. (Note that the trivial equivalence under unitary product transformations is

not included in this parameter counting.)
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FIG. 2: a) The figure shows the distribution of the smallest coefficient in the set {pk} for approximately 9500
SL-equivalent states on projection form, all of which are SL-equivalent to a generic rank (4, 4) extremal
state. We observe that we find a large distribution that seems to cover all possible values from 0 up to
an upper limit which is smaller than 1/6, which is the upper limit of the icosahedron states. This implies
that such generic rank (4, 4) extremal states are less symmetric than the icosahedron-class of states. The
continuous nature of the distribution also supports the one-parameter family theory, while we do not have
an explanation for the particular profile of the distribution. b) These plots show some of the sets {pk} where
the smallest parameter is specified within a very limited interval. With this limitation the rest of the set is
found to be uniquely defined within essentially the same limitation. In one case, however (the dashed blue
curve), there are two distinct groups of parameter sets with the same smallest coefficient. These obervations
support the claim that the SL-equivalent states on projection form defines a continuous one-parameter set
of states.

HIGHER DIMENSIONS

The lowest rank extremal PPT states in the 3 × 3 system have their counterparts in higher

dimensional systems. Thus, in previous numerical studies of PPT states in several systems of

dimension NA ×NB, with NA and NB larger than 2, we have found such states with rank given by

r = NA + NB − 2 (22)

for both ρ and ρP [8]. These PPT states are typically extremal, all with a UPB with a finite

number of (non-orthogonal) product vectors in their kernel. This is a situation which is different

from what we find for entangled PPT states with other values of the rank. Based on these results
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we have conjectured that, quite generally for higher dimensional systems, the number (22) gives

the lowest rank of extremal PPT states with full local ranks for a bipartite system of dimension

NA × NB. The number of product states for a UPB associated with any of these states is [8]

p =
(NA + NB − 2)!

(NA − 1)! (NB − 1)!
(23)

and the number of linearly independent product states is

d = NANB − NA − NB + 2 (24)

In Table 1 we have listed the relevant number of product states for the systems which we have

studied numerically in this work. The table also includes a list of dimensions for the sets of PPT

states with the relevant ranks in these systems, as well as the number of parameters needed to

specify the classes of SL-equivalent matrices of this type. These numbers are based on numerical

studies that we have now performed, and which are described below.

system ranks p/d dimensions

3 × 3 (4, 4) 6/5 36/4
3 × 4 (5, 5) 10/7 55/9
3 × 5 (6, 6) 15/9 77/13
3 × 6 (7, 7) 21/11 102/16
4 × 4 (6, 6) 20/10 75/15
4 × 5 (7, 7) 35/13 96/18
5 × 5 (8, 8) 70/17 119/23

TABLE I: Ranks and numbers of product states in the kernel of lowest rank extremal PPT states (with full
local rank) in a series of bipartite systems of low dimensions. The first column gives the dimensions of the
two subystems, the second column the ranks of the density matrices and their partial transpose (which are
equal for all these states), the third column gives the total number of product states in the kernel of the
density matrices as well as the number of linearly independent product vectors, and the fourth column gives
the dimension of the set of the density matrices and the number of parameters needed to parameterize the
classes of SL-equivalent density matrices.

The method used to determine the dimensions of the sets of PPT states is based on the counting

of different ways to make small perturbations away from a density matrix ρ of a given rank (m, n),

in such a way that the ranks of the matrix and its partial transpose are preserved. Consider then

ρ0 to be an extremal PPT state, and (m, m) to be the (symmetric) ranks of the density matrix

and its transpose. A perturbation of this state we write as

ρ = ρ0 + εσ, ε << 1 (25)
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Further, let P be the projector onto the image of ρ0 and Q the projector onto the image of ρP
0 .

The following conditions, (I − P )σ(I − P ) = 0 and (I − Q)σP (I − Q) = 0, secures that the ranks

(m, m), to first order in ε, do not change under the perturbation. We rewrite the conditions as

σ = Pσ + σP − PσP ≡ φP (σ), σP = QσP + σP Q − QσP Q ≡ φQ(σP ) (26)

The maps φP and φQ define linear operators P and Q that act as projectors on the real vector

space of hermitian matrices. The previous equations can therefore be written as

Pσ = σ, QσP = σP (27)

with σ and σP viewed as vectors. The partial transpose can further be expressed as a linear

operator Π in this space, so that Πσ = σP [13]. With the definition Q̄ ≡ ΠQΠ, the two

equations in (27) can be combined in the single equation

PQ̄Pσ = σ (28)

and the number of linearly independent matrices σ that obey this equation will then be precisely

the dimension of the set of matrices with rank (m, m) in which ρ0 sits.

The number of linearly independent matrices σ can be found by calculating the matrix PQ̄P

and counting the number of its eigenvalues that are equal to 1. As we are interested in the

dimension of the set of extremal density matrices, with the specified rank, we have also checked

whether the states close to ρ0 are typically extremal. This has been done by repeatedly perturbing

ρ0 in different directions and checking the perturbed states for extremality. Since the rank, for a

finite perturbation, will generally increase as a higher order effect in ε, we have in each perturbation

corrected for this by including a second search, if necessary, for a closeby density matrix with correct

rank, before checking for extremality.

The result is that for all the states listed in Table 1, we find that the density matrices with the

correct ranks (m, m) in the neighborhood of a chosen extremal density matrix are typically also

extremal. This we take as a clear indication that the dimension we calculate is also the dimension

of the set of extremal states with the given rank.

To determine from this dimension the number of parameters that is needed to parametrize

the classes of SL-equivalent states, we have subtracted the number of parameters that specify a

product transformation of the form SL(NA, C) × SL(NB, C). Each factor is specified by 2N2 − 2
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real parameters, and the total number of parameters is therefore 2(N2
A + N2

B) − 4. The numbers

given in Table 1 are obtained by such subtractions. In particular the number of parameters found

in this way for the (4, 4) states of the 3 × 3 system is 4. This agrees with the conclusion reached

in [9].

PROJECTION OPERATORS IN HIGHER DIMENSIONS

The same numerical methods that have been used to study the (4, 4) states of the 3× 3 system

we have also applied to the extremal PPT states in higher dimensional systems. A specific case is

the 4 × 4 system, where the relevant states are of rank (6, 6). These density matrices have a UPB

with 20 product vectors in their kernel, 10 of these being linearly independent. As shown in Table

1 we find that these states form a 75-parameter subset within the 255-parameter set of density

matrices of the 4 × 4 system. The number of parameters determining a product transformation

in the 4 × 4 system is 60, which leaves us with 15 parameters with which to parameterize the

equivalence classes.

The method we use to search for PPT states of the correct rank and on projection form, works

well also for this system, and we have by use of the method generated a large number of density

matrices with these characteristics. We find, precisely as in the 3 × 3 system, that the density

matrices always have a diagonal form, similar to (3), when expressed in terms of the product

vectors of the UPB. In the 4 × 4 system the correct expressions for the density matrix ρ and the

corresponding projection Q is

ρ =
1
6

(�− Q) , Q = 10
20∑

k=1

pkψkψ
†
k , Q2 = Q (29)

with ψk = φk ⊗ χk as the product states of the UPB. Precisely as in the 3× 3 system we also here

find that the partially transposed operator QP is a projection with the same rank as Q, so for the

density matrices that we find there is complete symmetry between ρ and ρP ,

ρP =
1
6

(�− QP ) , QP = 10
20∑

k=1

pkψ̃kψ̃
†
k , (QP )2 = QP (30)

where ψ̃k = φk ⊗ χ∗
k are the product vectors of the conjugate UPB.

The states we find have generally pk �= 0 for all k = 1, 2, ..., 20. However, while most of these

coefficients are positive, a small number of them will usually be negative. This is different from
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what we find in the 3 × 3 system, where the typical situation is that all pk are positive, but where

we occasionally find one of them to be negative.

Also for the 4×4 system we have investigated the possibility of transforming a generic extremal

PPT state of rank (6, 6) to the projection form. The method we use is the same as for the 3 × 3

system, where we search for solutions to Eq. (18), with ρ0 as a density matrix with the correct

rank, which is generated by the method described in [8]. However, as opposed to the case with

the (4, 4) states of the 3 × 3 system, we have only for special choices of matrices ρ0 been able to

find product transformations that transform ρ0 to the projection form. In the general case the

iterative method that we use does not converge to an acceptable solution. Instead it shows a slow

convergence towards a singular transformation matrix.

The lack of convergence in this case may be a consequence of the increase in the number of

variables in the problem, and therefore to a a decrease in the efficiency of the iterative procedure.

But a clear possibility is that in the 4 × 4 system a generic extremal PPT state of rank (6, 6)

cannot be transformed by a product transformation to the form of a projection. In fact, the form

of the equation (18) that we seek solutions for may indicate that this is the case. By counting the

variables of the equation we find that the set of equations is underdetermined in the 3× 3 system,

but it is overdetermined in the 4× 4 system as well as in other higher dimensional systems. (That

does not, however, exclude the possibility that for the special density matrices that we consider

there should exist solutions to the equation.)

The other higher-dimensional systems that are listed in Table 1 have been studied by the same

methods as the 3 × 3 and 4 × 4 systems, and the results are essentially the same as for the 4 × 4

system. This means that the searches for PPT states ρ with rank m as specified in Table 1, which

are proportional to projection operators, are in most cases successful. By varying the initial value

in the search we have therefore been able, for most of the listed systems, to generate a large number

of different solutions. For systems of dimension N = NANB ≥ 20 the iterative methods become

rather slow, so the number of solutions we have found for them is somewhat smaller, though we

find solutions also there. In all cases we find density matrices of the same form as shown in (29).

We also find in all cases that the partially transposed matrix ρP is of the same rank as ρ. It is also

a projection, and therefore we have a complete symmetry between ρ and ρP , similar the one given

by (29) and (30) for the 4 × 4 system.

For comparison we have also made searches for PPT states that are proportional to projections

with ranks higher than those indicated in Table 1, in which case there is typically no UPB in the

kernel of the matrix. The result is that we are able to find also such density matrices, but now the
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situation is different. In these cases the typical solution ρ has a partial transpose ρP with a higher

rank and which is not proportional to a projection.

We have for all the listed higher dimensional systems also performed searches for product

transformations that transform a generic extremal PPT state, with the specified rank, to projection

form. For these systems the result is the same as for the 4 × 4 system, that the searches in most

cases are unsuccessful. Thus, only for the 3 × 3 system do we find that we are able to transform

the generic extremal PPT states of the given rank into the projection form.

CONCLUSIONS

The motivation for the present work has been to examine the possibility of generalizing the

method of constructing entangled PPT states with the use of unextendible product bases (UPB).

The established form of this construction is to use a set of orthogonal product states, with no

product states in the orthogonal subspace, and to define the corresponding density matrix as a

projection operator with the UPB in its kernel. The method applies particularly to rank (4, 4) states

in bipartite quantum systems of dimension 3× 3, and as previously shown in numerical studies all

entangled PPT states with this rank seem to be equivalent under product transformations to the

states constructed in this way [9].

In higher dimensional bipartite systems there are states that share many of the properties with

the (4, 4) states of the 3× 3 system. They have all a complete set of product states in their kernel

and no product state in their image, and they all seem also to share the property of being the

lowest rank extremal PPT states in the system under consideration. The idea is to extend the

UPB construction to these states. It seems not to be possible to extend the construction with

orthogonal product states to higher dimensions, and we have focussed on the possibility of using

non-orthogonal UPBs which keep some of the other properties of the original construction. Our

assumption is that we can define these density matrices more generally as projections which can

be expressed in a particular way in terms of product vectors of the non-orthogonal UPB.

We have first examined this generalization for rank (4, 4) extremal PPT states of the 3 × 3

system. In this case an explicit example can be found, with the vectors of the generalized UPB

defined by the symmetry axes of an icosahedron. All the six product vectors of this UPB appear

with equal weight in the definition of the corresponding extremal PPT state. We can further show,

by a linear deformation of the icosahedron, that a one-parameter set of different density matrices

on projection form exists, where the matrices are equivalent under product transformations.
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To study more general states we have applied numerical methods. The first method is to search

for PPT states which have rank 4 and which are proportional to projections. The searches have

been used to generate a large set of such states and these states have been found always to be on

the form suggested by the generalized UPB construction, where ρ and ρP have equal ranks, are

both proportional to projections and have the same form when expressed in terms of the product

vectors of the UPBs associated with the two matrices.

A second method has been used to check whether generic extremal PPT states of rank (4, 4)

are equivalent under product transformations to density matrices of the form suggested for the

generalized UPB construction. This has been demonstrated numerically and the numerical studies

suggest that each state is equivalent to a one-parameter set of density matrices of this form where

the matrices associated with an orthogonal UPB constitute a discrete subset.

To examine the relevance of the generalized UPB construction in bipartite systems of higher

dimensions, we have first studied numerically the dimensions of the sets of extremal PPT states

of the corresponding ranks. We have then applied the same numerical methods as used for the

3 × 3 system to search for density matrices of the suggested form. The search is thus for PPT

states on projection form, with the specified rank, and the result are similar to those found in the

3 × 3 system. For all the systems a large number of states which satisfy the search criteria have

been found, and they all show a complete symmetry between the density matrix and its partial

transpose. They have the same rank, are both projections and can be expressed in terms of the

product vectors of the associated UPBs in the same way. This demonstrates that the requirements

suggested for a generalized UPB construction are satisfied for a large set of states in all these

systems.

We have however observed a difference between the 3×3 system and higher-dimensional systems

when performing searches for states of projection form that are equivalent under product transfor-

mations to a randomly generated extremal PPT state of the correct rank. As we mentioned, in the

3× 3 system the results indicate that any extremal PPT state with the specified rank is equivalent

to a one-parameter set of states on projection form, where the states associated with orthogonal

UPBs form a discrete subset. In higher dimensions similar searches have been unsuccessful in

most cases. This may suggest that the density matrices in higher dimensions that are of the form

specified in the searches form a proper subset of the full set of extremal PPT states with the given

rank. However, we do not exclude that the search method itself may be responsible for the result,

due to a slower convergence for systems of higher dimensions.

Based on these results we suggest that the generalized UPB construction may be relevant for
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construction of low-rank extremal PPT states in higher dimensions. Our study thus shows that

extremal PPT states of the suggested form exist in all the higher-dimensional systems we have been

able to examine. However, we still lack a concrete prescription for constructing generalized UPBs

which define density matrices with the right properties. This problem, to find such a prescription,

and also the question about how general the density matrices of this form are, we shall therefore

have to leave as interesting questions for further studies.
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Abstract

It is known that entangled mixed states that are positive under partial transposition (PPT states)
must have rank at least four. In a previous paper we presented a classification of rank four entan-
gled PPT states which we believe to be complete. In the present paper we continue our investiga-
tions of the low rank entangled PPT states. We use perturbation theory in order to construct rank
five entangled PPT states close to the known rank four states, and in order to compute dimensions
and study the geometry of surfaces of low rank PPT states. We exploit the close connection be-
tween low rank PPT states and product vectors. In particular, we show how to reconstruct a PPT
state from a sufficient number of product vectors in its kernel. It may seem surprising that the
number of product vectors needed may be smaller than the dimension of the kernel.

1 Introduction

Quantum entanglement between subsystems of a composite physical system is a phenomenon which
clearly distinguishes quantum physics from classical physics [1]. Entangled quantum states show
correlations between measurements on the subsystems which can not be modelled within classical
physics with local interactions. A classical model would have to be a joint probability distribution
of quantitities that are incompatible in the quantum theory, and the existence of such a joint proba-
bility distribution, consistent with locality, implies so called Bell inequalities [2], or even equalities
as in the three particle states known as GHZ states, introduced by Mermin, Greenberger, Horne, and
Zeilinger [3, 4]. The correlations in entangled quantum states violate Bell inequalities and GHZ
equalities.

A pure classical state of a composite system has no correlations between measurements on subsys-
tems, since classical measurements are deterministic. A statistical ensemble of pure classical states,
what we may call a mixed classical state, can have correlations, but these correlations can not violate
Bell inequalities, by definition.

The only pure quantum states that are not entangled are the pure product states, which resemble
pure classical states in that they have no correlations at all. By definition, a mixed quantum state is a
statistical ensemble of pure quantum states, and it is said to be separable if it can be mixed entirely
from pure product states. The separable mixed states are not entangled, since they can not violate Bell
inequalities. The entangled mixed states are precisely those that are non-separable. For this reason,
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the mathematical distinction between separable and non-separable mixed states is important from the
physical point of view.

The separability problem, how to characterize the set S of separable mixed states and decide
whether a given mixed state is separable or not, is known to be a difficult mathematical problem [5].
It motivates our work presented here and in previous papers, although we have not studied so much
the separable states directly as the larger class of mixed states called PPT states [6, 7, 8, 9].

The separable mixed states have the property that they remain positive after partial transposition,
they are PPT states, for short. The set P of PPT states is in general larger than the set S of separable
states, but the difference between the two sets is surprisingly small in low dimensions, and in the very
lowest dimensions, 2 × 2, 2 × 3, and 3 × 2, there is no difference [10].

The condition of positive partial transpose is known as the Peres separability criterion [11]. It is a
powerful separability test, especially in low dimensions where the difference between the two sets P
and S is small. It can be used for example to prove that any pure quantum state is either entangled or
a pure product state.

We study especially the lowest rank entangled PPT states, on the assumption that they are the
easiest ones to understand. In the present paper we discuss in particular how to construct PPT states
of rank 4 and 5 in 3×3 dimensions, and rank 6 in 4×4 dimensions. A central theme is how the states
are constrained by the existence of product vectors in the kernel. Another central theme is perturbation
theory, which we use to contruct rank 5 PPT states close to rank 4 states, and to study surfaces of PPT
states of fixed low rank. We compute numerically the dimensions of such surfaces, and we show how
to follow a surface by numerical integration of an equation of motion.

The relation between PPT states and product vectors

The close connection between PPT states and product vectors has been used earlier, for example to
prove the separability of sufficiently low rank PPT states [12].

Bennett et al. [13, 14] introduced a method for constructing low rank mixed states that are ob-
viously entangled PPT states, using what they called Unextendible Product Bases (UPBs). ¿From a
UPB, defined as a maximal set of orthogonal product vectors which is not a complete basis of the
Hilbert space, one constructs an orthogonal projection Q and the complementary projection P =
�− Q. Then ρ = P/(Tr P ) is an entangled PPT state.

The UPB construction is most successful in the special case of rank 4 PPT states in 3 × 3 di-
mensions. In Ref. [9] we argued, partly based on evidence from numerical studies, that an extended
version of the UPB construction, including nonunitary but nonsingular product transformations on the
states, is general enough to produce all rank 4 entangled PPT states in 3 × 3 dimensions.

Unfortunately, attempts to apply the UPB method directly in higher dimensions fail, even when
the kernel contains product vectors, because there can not exist a sufficient number of orthogonal
product vectors. The orthogonality is essential in the construction by Bennett et al. of the PPT state as
a projection operator. We would like to generalize the construction in such a way that it works without
the orthogonality condition.

One possible generalization is to construct projection operators as more general convex combina-
tions, or even as non-convex linear combinations, of pure product states. This idea is explored in a
separate paper [15].

In the present paper we discuss in general the constraints imposed on a PPT state ρ by the existence
of product vectors in its kernel, and we show that these constraints are so strong that they actually
determine the state uniquely. A surprising discovery is that in cases where the kernel contains a finite
overcomplete set of product vectors, the state ρ can be reconstructed from only a subset of the product
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vectors, and the number of product vectors needed may even be smaller than the dimension of the
kernel.

¿From this point of view, the important question is exactly what conditions the product vectors
must satisfy in order for the constraint equations to have a solution for ρ. We can answer this question
in the familiar special case of rank 4 PPT states in 3 × 3 dimensions, but not in other cases. We
consider this an interesting problem for future research.

Outline of the paper

The contents of the present paper are organized as follows. First we review some linear algebra, in
particular degenerate perturbation theory, in Sections 2, 3, and 4. The main purpose is to introduce
notation and collect formulas for later reference.

In Section 5 we discuss the rank 4 PPT states in 3×3 dimensions. We review the UPB construction,
based on orthogonal product vectors in the kernel, before we describe an approach which is different
in that the product vectors need not be orthogonal. The new approach also throws some new light on
a set of reality conditions that limit the selection of product vectors to be used for constructing rank 4
PPT states.

In Section 6 we discuss the rank 5 PPT states in 3 × 3 dimensions. We find an 8 dimensional
surface of rank 5 PPT states in every generic 5 dimensional subspace, but we have not found any
general method to construct such states. However, we show how to construct rank 5 PPT states by
perturbing rank 4 PPT states. Again, the product vectors in the kernel of the rank 4 state play an
important role in our construction of the rank 5 states.

In Section 7 we discuss rank 6 PPT states in 4 × 4 dimensions. The kernel of such a state has
dimension 10, and contains 20 product vectors. The remarkable result we find is that the state can be
constructed from only 7 product vectors in the kernel. An arbitrary set of 7 product vectors does not
produce a rank 6 PPT state, but we do not know how to select sets of product vectors that can be used
in such a construction.

In Section 8 we discuss briefly how to determine numerically the dimensions of surfaces of PPT
states of fixed rank. We find that the dimensions are given by a simple counting of independent
constraints, except for the very lowest rank states, for which the constraints are not independent.

Finally, we discuss in Section 9 how to study a surface of PPT states by numerical integration of
equations of motion for curves on the surface. In this way one may study for example the curvature
of the surface, or how a curve on the surface approaches the boundary of the surface.

2 Some basic linear algebra

2.1 Density matrices

Let HN be the set of Hermitean N × N matrices. It has a natural structure as a real Hilbert space of
dimension N2 with the scalar product

(X, Y ) = Tr(XY ) . (1)

A mixed state, or density matrix, is a positive Hermitean matrix of unit trace. We define

D = DN = { ρ ∈ HN | ρ ≥ 0 , Tr ρ = 1 } . (2)
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Because it is Hermitean, a density matrix ρ has a spectral representation in terms of a complete set of
orthonormal eigenvectors ψi ∈ �N with real eigenvalues λi,

ρ =
N∑

i=1

λi ψiψi
† with ψi

†ψj = δij , � =
N∑

i=1

ψiψi
† . (3)

The rank of ρ is the number of eigenvalues λi �= 0. The pseudoinverse of ρ is defined as

ρ+ =
∑

i,λi �=0

λi
−1 ψiψi

† , (4)

it is equal to the inverse ρ−1 if ρ is invertible. The matrices

P = ρ+ρ = ρρ+ =
∑

i,λi �=0

ψiψi
† , Q = �− P =

∑
i,λi=0

ψiψi
† (5)

are Hermitean and project orthogonally onto two complementary orthogonal subspaces of �N , P
onto Img ρ, the image of ρ, and Q onto Ker ρ, the kernel of ρ. The relations Pρ = ρP = PρP = ρ
and Qρ = ρQ = QρQ = 0 will be used in the following.

We say that ρ is positive, or positive semidefinite, and we write ρ ≥ 0, when λi ≥ 0 for i =
1, 2, . . . , N . An equivalent condition is that ψ†ρψ ≥ 0 for all ψ ∈ �N . It follows from the last
inequality and the spectral representation of ρ that ψ†ρψ = 0 if and only if ρψ = 0.

The definition of positive Hermitean matrices by inequalities of the form ψ†ρψ ≥ 0 implies that
D is a convex set. That is, if ρ is a convex combination of ρ1, ρ2 ∈ D,

ρ = λρ1 + (1 − λ)ρ2 with 0 < λ < 1 , (6)

then ρ ∈ D. Furthermore, since Ker ρ = {ψ | ψ†ρψ = 0} when ρ ≥ 0, it follows that

Ker ρ = Ker ρ1 ∩ Ker ρ2 , (7)

independent of λ, when ρ is a convex combination as above. Since Ker ρ is independent of λ, so is
Img ρ = (Ker ρ)⊥.

A convex set is defined by its extremal points: those points that are not convex combinations of
other points. The extremal points of D are the pure states of the form ρ = ψψ† with ψ ∈ �N . Thus,
the spectral representation in eq. (3) is an expansion of ρ as a convex combination of N or fewer
extremal points of D.

Finite perturbations

In the following, let ρ be a density matrix and define the projections P and Q = � − P as in eq. (5).
Consider a perturbation

ρ′ = ρ + εA , (8)

where A �= 0 is Hermitean, and Tr A = 0 so that Tr ρ′ = Tr ρ. The real parameter ε may be finite or
infinitesimal, we will first consider the case when ε is finite.

We observe that if Img A ⊂ Img ρ, or equivalently if PAP = A, then there will be a finite range
of values of ε, say ε1 ≤ ε ≤ ε2 with ε1 < 0 < ε2, such that ρ′ ∈ D and Img ρ′ = Img ρ. This
is so because the eigenvectors of ρ with zero eigenvalue will remain eigenvectors of ρ′ with zero
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eigenvalue, and all the positive eigenvalues of ρ will change continuously with ε into eigenvalues of
ρ′.

The other way around, if ρ′ ∈ D for ε1 ≤ ε ≤ ε2 with ε1 < 0 < ε2, then ρ′ is a convex combination
of ρ + ε1A and ρ + ε2A for every ε in the open interval ε1 < ε < ε2. Hence Img ρ′ is independent of
ε in this interval, implying that Img A ⊂ Img ρ and PAP = A.

This shows that ρ is extremal in D if and only if there exists no A �= 0 with Tr A = 0 and
PAP = A. Another formulation of the condition is that there exists no ρ′ ∈ D with ρ′ �= ρ and
Img ρ′ = Img ρ. A third equivalent formulation of the extremality condition is that the equation

PAP = A (9)

for the Hermitean matrix A has A = ρ as its only solution (up to proportionality). In fact, if PBP = B
and Tr B �= 0, then we have PAP = A and Tr A = 0 when we take

A = B − (Tr B) ρ . (10)

Infinitesimal perturbations

Assume now that Img A �⊂ Img ρ. The question is how an infinitesimal perturbation affects the zero
eigenvalues of ρ. When ρ is of low rank we need degenerate perturbation theory, which is well known
from any textbook on quantum mechanics.

To first order in ε, the zero eigenvalues of ρ are perturbed into eigenvalues of ρ′ that are ε times
the eigenvalues of QAQ on the subspace Ker ρ. Similarly, to first order in ε, the positive eigenvalues
of ρ are perturbed into positive eigenvalues of ρ′, in a way which is determined by how ρ and PAP
act on Img ρ.

It is clear from this that, to first order in ε, the condition

QAQ = 0 (11)

is necessary and sufficient to ensure that the rank of ρ′ equals the rank of ρ, and that ρ′ ≥ 0 both for
ε > 0 and for ε < 0.

More generally, to first order in ε, the rank of ρ′ equals the rank of ρ plus the rank of QAQ. For
example, if we want to perturb ρ in such a way that the rank increases by one, then we have to choose
A such that

QAQ = α φφ† , (12)

where φ ∈ Ker ρ is a normalized eigenvector of QAQ with α �= 0 as eigenvalue. Since QAQ is
Hermitean, α must be real. If α > 0, then ρ′ ≥ 0 for ε > 0 but not for ε < 0.

Projection operators on HN

Using the projections P and Q defined above we define projection operators on HN , the real Hilbert
space of Hermitean N × N matrices, as follows,

PX = PXP ,

QX = QXQ = X − PX − XP + PXP , (13)

RX = (I − P − Q)X = PX + XP − 2PXP .
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Here I is the identity on HN . It is straightforward to verify that these are complementary projections,
with P2 = P, Q2 = Q, PQ = QP = 0, and so on. They are symmetric with respect to the natural
scalar product on HN , for example,

(X,PY ) = Tr(XPY P ) = Tr(PXPY ) = (PX, Y ) . (14)

Hence they project orthogonally, and relative to an orthonormal basis of HN they are represented by
symmetric matrices.

Relative to an orthonormal basis of �N with the first basis vectors in Img ρ and the last basis
vectors in Ker ρ, a Hermitean matrix X takes the block form

X =
(

U V
V † W

)
, (15)

with U † = U and W † = W . In this basis we have

P =
(

I 0
0 0

)
, Q =

(
0 0
0 I

)
, (16)

and hence,

PX =
(

U 0
0 0

)
, QX =

(
0 0
0 W

)
, RX =

(
0 V

V † 0

)
. (17)

2.2 Composite systems

Product vectors

If N = NANB then the tensor product spaces �N = �NA ⊗ �NB (a complex tensor product) and
HN = HNA

⊗ HNB
(a real tensor product) may describe a composite quantum system with two

subsystems A and B of Hilbert space dimensions NA and NB .
A vector ψ ∈ �N then has components ψI = ψij , where

I = 1, 2, . . . , N ↔ ij = 11, 12, . . . , 1NB, 21, 22, . . . , NANB . (18)

A product vector ψ = φ ⊗ χ has components ψij = φiχj . We see that ψ is a product vector if and
only if its components satisfy the quadratic equations

ψijψkl − ψilψkj = 0 . (19)

These equations are not all independent, the number of independent complex equations is

K = (NA − 1)(NB − 1) = N − NA − NB + 1 . (20)

For example, if ψ11 �= 0 we get a complete set of independent equations by taking i = j = 1 and
k = 2, 3, . . . , NA, l = 2, 3, . . . , NB .

Since the equations are homogeneous, any solution ψ �= 0 gives rise to a one parameter family of
solutions cψ with c ∈ �. A vector ψ in a subspace of dimension n has n independent complex com-
ponents. Since the most general nonzero solution must contain at least one free complex parameter,
we conclude that a generic subspace of dimension n will contain nonzero product vectors if and only
if

n ≥ K + 1 = N − NA − NB + 2 . (21)
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The limiting dimension

n = N − NA − NB + 2 (22)

is particularly interesting. In this special case a nonzero solution will contain exactly one free param-
eter, which has to be a complex normalization constant.

Thus, up to proportionality there will exist a finite set of product vectors in a generic subspace of
dimension n = N − NA − NB + 2. The number of product vectors is [8]

p =
(

NA + NB − 2
NA − 1

)
=

(NA + NB − 2)!
(NA − 1)! (NB − 1)!

. (23)

A generic subspace of lower dimension will contain no nonzero product vector, whereas any subspace
of higher dimension will contain a continuous infinity of different product vectors (different in the
sense that they are not proportional).

Partial transposition

The following relation between matrix elements,

(XP )ij;kl = Xil;kj , (24)

defines XP , the partial transpose of the Hermitean matrix X with respect to the second subsystem.
A density matrix ρ is called separable if it is a convex combination of tensor product matrices,

ρ =
∑

k

pk σk ⊗ τk , (25)

with σk ∈ DNA
, τk ∈ DNB

, pk > 0,
∑

k pk = 1. We denote by S the set of separable matrices.
The partial transpose of the above separable matrix is

ρP =
∑

k

pk σk ⊗ (τk)T ≥ 0 . (26)

The positivity of ρP is known as the Peres criterion, it is an easily testable necessary condition for sep-
arability. For this reason it is of interest to study the set of PPT (Positive Partial Transpose) matrices,
defined as

P = { ρ ∈ D | ρP ≥ 0 } = D ∩DP . (27)

We may call it the Peres set. A well known result is that P = S for N = NANB ≤ 6, whereas P is
strictly larger than S in higher dimensions [10].

We will classify low rank PPT states by the ranks (m, n) of ρ and ρP , respectively. Note that ranks
(m, n) and (n, m) are equivalent for the purpose of classification, because of the symmetric roles of
ρ and ρP .
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Product transformations

A product transformation of the form

ρ 
→ ρ′ = aV ρV † with V = VA ⊗ VB , (28)

where a is a normalization factor and VA ∈ SL(NA,�), VB ∈ SL(NB,�), preserves positivity,
rank, separability, and other interesting properties that the density matrix ρ may have. For example, it
preserves positivity of the partial transpose, because

(ρ′)P = aṼ ρP Ṽ † with Ṽ = VA ⊗ V ∗
B . (29)

The image and kernel of ρ and ρP transform in the following ways,

Img ρ′ = V Img ρ , Ker ρ′ = (V †)−1 Ker ρ , (30)

and

Img (ρ′)P = Ṽ Img ρP , Ker (ρ′)P = (Ṽ †)−1 Ker ρP . (31)

All these transformations are of product form and hence preserve the number of product vectors in a
subspace.

We say that two density matrices ρ and ρ′ related in this way are SL ⊗ SL equivalent, or simply
SL equivalent. The concept of SL equivalence is important to us here because it simplifies very much
our efforts to classify the low rank PPT states.

3 Restricted perturbations

We have seen that eq. (9) ensures that the perturbation ρ′ = ρ + εA preserves the image of ρ, so that
Img ρ′ = Img ρ for infinitesimal values of the perturbation parameter ε, and Img ρ′ ⊂ Img ρ even for
finite values of ε. The weaker condition in eq. (11) ensures only that the rank of ρ′ equals the rank of
ρ for infinitesimal values of ε.

We want to discuss how to use perturbations with similar restrictions in order to study, for example,
the extremal points of the convex set P . In particular, we are interested in perturbations that either
preserve the ranks (m, n) of ρ, or else change these ranks in controlled ways.

In a similar way as we did for ρ, we define P̃ and Q̃ = �− P̃ as the orthogonal projections onto
Img ρP and Ker ρP . Then we define

P̃X = (P̃XP P̃ )P ,

Q̃X = (Q̃XP Q̃)P = X − (P̃XP )P − (XP P̃ )P + (P̃XP P̃ )P , (32)

R̃X = (I − P̃ − Q̃)X = (P̃XP )P + (XP P̃ )P − 2(P̃XP P̃ )P .

These are again projections on the real Hilbert space HN , like P, Q and R, again symmetric with
respect to the natural scalar product on HN .

We may now use the projection operators on HN to impose various restrictions on the perturbation
matrix A.
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Testing for extremality in P
The extremality condition for P is derived in a similar way as the extremality condition for D based
on eq. (9). Clearly ρ is extremal in P if and only if there exists no ρ′ ∈ P , ρ′ �= ρ, with both
Img ρ′ = Img ρ and Img(ρ′)P = Img ρP . Another way to formulate this condition is that A = ρ is
the only solution of the two equations PA = A and P̃A = A.

Since P and P̃ are projections, the equations PA = A and P̃A = A together are equivalent to
the single eigenvalue equation

(P + P̃)A = 2A . (33)

They are also equivalent to either one of the eigenvalue equations

PP̃PA = A , P̃PP̃A = A . (34)

Note that the operators P + P̃, PP̃P, and P̃PP̃ are all real symmetric and therefore have complete
sets of real eigenvalues and eigenvectors. In fact, the eigenvalues are all non-negative, because the
operators are positive semidefinite.

When we diagonalize P + P̃ we will always find A = ρ as an eigenvector with eigenvalue 2. If it
is the only solution of eq. (33), this proves that ρ is extremal in P . If A is a solution not proportional to
ρ, then we may impose the condition Tr A = 0 (replace A by A−(Tr A)ρ if necessary), and we know
that there exists a finite range of both positive and negative values of ε such that ρ′ = ρ + εA ∈ P ,
hence ρ is not extremal.

It should be noted that in our numerical calculations we may find eigenvalues of P+ P̃ that differ
from 2 by less than one per cent. However, since eigenvalues are calculated with a precision close
to the internal precision of the computer, which is of order 10−16, there is never any ambiguity as to
whether an eigenvalue is equal to 2 or strictly smaller than 2.

Perturbations preserving the PPT property and ranks

The rank and positivity of ρ is preserved by the perturbation, to first order in ε, both for ε > 0 and
ε < 0, if and only if QA = 0. Similarly, the rank and positivity of ρP is preserved if and only if
Q̃A = 0. These two equations together are equivalent to the single eigenvalue equation

(Q + Q̃)A = 0 . (35)

Again Q + Q̃ is real symmetric and has a complete set of real eigenvalues and eigenvectors.
In conclusion, the perturbations that preserve the PPT property, as well as the ranks (m, n) of ρ

and ρP , to first order in ε, are the solutions of eq. (35).
We may want to perturb in different ways, for example such that Img ρ′ = Img ρ, but not neces-

sarily Img(ρ′)P = Img ρP , we only require (ρ′)P and ρP to have the same rank. Then the conditions
on A are that PA = A and Q̃A = 0, or equivalently,

(I − P + Q̃)A = 0 . (36)

4 Product vectors in the kernel

Assume that ρ ∈ P . Recall that the equations w†ρw = 0 and ρw = 0 for w ∈ �N are equivalent, and
so are the equations w†ρP w = 0 and ρP w = 0, because ρ ≥ 0 and ρP ≥ 0. Taken together with the
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identity

(x ⊗ y)†ρ (u ⊗ v) = (x ⊗ v∗)†ρP (u ⊗ y∗) (37)

this puts strong restrictions on ρ when we know a number of product vectors in Ker ρ.
Assume from now on that w is a product vector, w = u ⊗ v. Defining w̃ = u ⊗ v∗ we have the

general relation

w†ρw = w̃ †ρP w̃ . (38)

Assume furthermore that w ∈ Ker ρ, this is equivalent to the condition that w̃ ∈ Ker ρP . For any
z ∈ �N we have the condition on ρ that z†ρw = 0. In particular, when z is an arbitrary product
vector, z = x ⊗ y, we have the two conditions on ρ that

(x ⊗ y)†ρ (u ⊗ v) = 0 (39)

and

(x ⊗ v)†ρ (u ⊗ y) = (x ⊗ y∗)†ρP (u ⊗ v∗) = 0 . (40)

Assume that wi = ui ⊗ vi ∈ Ker ρ for i = 1, 2, . . . , n. Then for arbitrary values of the indices
i, j, k we have the following constraints on ρ,

(ui ⊗ vj)†ρ (uk ⊗ vk) = (ui ⊗ vk)†ρ (uk ⊗ vj) = 0 . (41)

Let us introduce matrices

Aklij = (uk ⊗ vl)(ui ⊗ vj)† , (42)

and Hermitean matrices

Bklij = Aklij + (Aklij)† , Cklij = i (Aklij − (Aklij)†) , (43)

then the constraints on ρ are of the form

Tr(ρBkkij) = Tr(ρCkkij) = Tr(ρBkjik) = Tr(ρCkjik) = 0 . (44)

Each equation Tr(ρB) = 0 with B �= 0 or Tr(ρC) = 0 with C �= 0 is one real valued constraint. Of
course, the constraints in eq. (44) are not all independent, we have for example that Ckkkk = 0.

5 Rank (4, 4) PPT states in 3 × 3 dimensions

5.1 The UPB construction of entangled PPT states

We will review briefly the construction of a rank (4, 4) entangled and extremal PPT state ρ in 3 × 3
dimensions from an unextendible orthonormal product basis (a UPB) of Ker ρ [13]. The UPB consists
of five orthonormal product vectors wi = Niui ⊗ vi with the property that there exists no product
vector orthogonal to all of them. We include real normalization factors Ni here because we want to
normalize such that w †

i wj = δij without necessarily normalizing the vectors ui and vi.
The orthogonality of the product vectors wi follows from the orthogonality relations u1 ⊥ u2 ⊥

u3 ⊥ u4 ⊥ u5 ⊥ u1 and v1 ⊥ v3 ⊥ v5 ⊥ v2 ⊥ v4 ⊥ v1. There is the further condition that any three
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vectors ui and any three vi are linearly independent. The five dimensional subspace spanned by these
product vectors is the kernel of the density matrix

ρ =
1
4

(
�−

5∑
i=1

wiw
†
i

)
, (45)

which is proportional to a projection operator. The partial transpose of ρ is

ρP =
1
4

(
�−

5∑
i=1

w̃iw̃
†
i

)
, (46)

with w̃i = Niui ⊗ v ∗
i . Thus we have both ρ ≥ 0 and ρP ≥ 0 by construction. Note that if all the

vectors vi are real, v ∗
i = vi, then ρ is symmetric under partial transposition, ρP = ρ.

By a unitary product transformation as in eq. (30) we may transform the above orthogonal UPB
into the standard unnormalized form [9]

u =

⎛⎝ 1 0 a b 0
0 1 0 1 a
0 0 b −a 1

⎞⎠ , v =

⎛⎝ 1 d 0 0 c
0 1 1 c 0
0 −c 0 1 d

⎞⎠ , (47)

with a, b, c, d as positive real parameters. The following quantities determine these parameters,

s1 = −det(u1u2u4) det(u1u3u5)
det(u1u2u5) det(u1u3u4)

= a2 ,

s2 = −det(u1u2u3) det(u2u4u5)
det(u1u2u4) det(u2u3u5)

=
b2

a2
, (48)

and

s3 =
det(v1v2v3) det(v1v4v5)
det(v1v2v5) det(v1v3v4)

= c2 ,

s4 =
det(v1v3v5) det(v2v3v4)
det(v1v2v3) det(v3v4v5)

=
d2

c2
. (49)

These ratios of determinants are invariant under general SL⊗SL transformations, as well as indepen-
dent of the normalization of the vectors.

In Ref. [9] we presented numerical evidence that every entangled rank (4, 4) PPT state is SL⊗SL
equivalent to some state of the form of eq. (45) with real product vectors as given in eq. (47).

This means that the surface of all rank (4, 4) entangled PPT states has dimension 36. We count 32
degrees of freedom due to the SL(3,�)⊗SL(3,�) transformations, plus the 4 real SL⊗SL invariant
parameters a, b, c, d in eq. (47).

5.2 A different point of view

We will present here the construction of an entangled PPT state ρ of rank (4, 4) as seen from a different
point of view. When ρ has rank 4 it means that Ker ρ has dimension 5. A generic 5 dimensional
subspace in �9 = �3 ⊗ �3 has a basis of product vectors. In fact, it contains exactly 6 product
vectors, any 5 of which are linearly independent. By eq. (22), 5 is the limiting dimension for which
the number of product vectors is nonzero and finite, and the number 6 is consistent with eq. (23).
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Any set of 5 product vectors wi = ui ⊗ vi, orthogonal or not, may be transformed by an SL ⊗ SL
transformation to the standard unnormalized form

u =

⎛⎝ 1 0 0 1 1
0 1 0 1 p
0 0 1 1 q

⎞⎠ , v =

⎛⎝ 1 0 0 1 1
0 1 0 1 r
0 0 1 1 s

⎞⎠ , (50)

with p, q, r, s as real or complex parameters. We impose here again the condition that any three ui and
any three vi should be linearly independent. There is always a 6th product vector which is a linear
combination of the above 5,

u6 =

⎛⎜⎜⎜⎜⎝
s − r

ps − qr
1 − s
q − s
r − 1
r − p

⎞⎟⎟⎟⎟⎠ , v6 =

⎛⎜⎜⎜⎜⎝
p − q

ps − qr
q − 1
q − s
1 − p
r − p

⎞⎟⎟⎟⎟⎠ . (51)

The values of the above invariants as functions of the new parameters are

s1 = −p

q
, s2 = q − 1 , s3 =

r − s

s
, s4 =

r

1 − r
. (52)

The parameters p, q, r, s are actually new invariants, they can not be changed by SL⊗ SL transforma-
tions.

If the values of p, q, r, s are such that the invariants s1, s2, s3, s4 are all real and strictly positive,
then we may use eq. (48) and eq. (49) to find corresponding values of a, b, c, d, and we may transform
from the non-orthogonal standard form in eq. (50) to the orthogonal standard form in eq. (47), which
in turn defines the rank (4, 4) state in eq. (45).

We see from eq. (52) that the invariants are all strictly positive if and only if p, q, r, s are all real,
and p < 0, q > 1, 0 < r < 1, 0 < s < r. These inequalities define the regions marked 1 in the (p, q)
and (r, s) planes as plotted in Fig. 1.

As discussed in ref. [9] there are 10 permutations of the product vectors wi for i = 1, 2, . . . , 5
which preserve the positivity of the invariants. These permutations form a group G which is the
symmetry group of a regular pentagon, exemplified by the rotation, or cyclic permutation, wi 
→ w̃i

with

w̃1 = w5 , w̃2 = w1 , w̃3 = w2 , w̃4 = w3 , w̃5 = w4 , (53)

and the reflection

w̃1 = w4 , w̃2 = w3 , w̃3 = w2 , w̃4 = w1 , w̃5 = w5 . (54)

For short, we write the rotation as 51234 and the reflection as 43215.
There are altogether 5! = 120 permutations of the 5 product vectors wi, and they fall into 12

classes (left cosets of the group G as a subgroup of the permutation group S5) which are not trans-
formed into each other by G. We number the classes from 1 to 12, and pick one representative from
each class as follows,

1 : 12345 2 : 13245 3 : 21345 4 : 23145 5 : 31245 6 : 32145
7 : 12435 8 : 14235 9 : 21435 10 : 24135 11 : 13425 12 : 14325

(55)
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Figure 1: Regions for the parameters p, q, r, s defined in eq. (50) such that the product vectors ui ⊗ vi

for i = 1, 2, . . . , 5 are in the kernel of a rank (4, 4) extremal PPT state. The (p, q) plane is divided
into 12 regions, with 12 corresponding regions in the (r, s) plane. The numbers 1 to 12 refer to the
permutations of product vectors given in eq. (55). For example, if (p, q) is in region 7, (r, s) must also
be in region 7.

Each of these 12 classes defines a positivity region in each of the two parameter planes, where all 4
invariants s̃1, s̃2, s̃3, s̃4 computed from the permuted product vectors are positive. The 12 regions are
disjoint and fill the planes completely, as shown in Fig. 1. On the border lines between the regions the
condition of linear independence between any three u vectors and any three v vectors is violated.

To summarize, we have learned how to test whether a set of 5 product vectors wi = ui⊗vi, which
is generic in the sense that any three u vectors are linearly independent and any three v vectors are also
linearly independent, span the kernel of a rank (4, 4) PPT state. We transform to the standard form
defined in eq. (50), by a product transformation and normalization. Then the necessary and sufficient
condition is that the parameters p, q, r, s are all real, and that the parameter pairs (p, q) and (r, s) lie
in corresponding regions in the parameter planes, as shown in Figure 1.

It should be stressed that these conclusions are based in part on numerical evidence, and we have
no analytical proof which is complete in every detail.

We will discuss next how to reconstruct a PPT state from the product vectors in its kernel.

5.3 Matrix representation relative to a non-orthonormal basis

Consider a basis {ei} consisting of vectors that need not be orthonormal. The scalar products

gij = e †
i ej (56)

define the metric tensor g as a Hermitean matrix. In the usual way, we write the inverse matrix g−1

with upper indices, so that ∑
j

gijgjk = δi
k . (57)
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We define the dual vectors ej such that

ei =
∑

j

gjiej , (ei)† =
∑

j

gije †
j . (58)

They satisfy the orthogonality relations

(ei)†ej = e †
j ei = δi

j , (59)

and the completeness relation

� =
∑
i,j

eig
ije †

j =
∑

j

eje †
j =

∑
i

ei(ei)† . (60)

Using the dual basis vectors and the completeness relation we may write any matrix A as

A =
∑
i,j

eiÃij(ej)† with Ãij = e †
i Aej . (61)

5.4 Conditions on ρ from product vectors in Ker ρ

It is possible to construct the rank (4, 4) PPT state ρ directly from 5 product vectors in Ker ρ without
transforming first the product vectors to the orthogonal form. We now describe this construction.

Given three product vectors wi = ui ⊗ vi in Ker ρ, with the restriction that all three ui and all
three vi are linearly independent. Then we have the following product basis of �9, not necessarily
orthonormal,

eij = ui ⊗ vj , ij = 11, 12, 13, 21, 22, 23, 31, 32, 33 . (62)

With respect to this basis we may define matrix elements of ρ like in eq. (61),

ρ̃ij;kl = e †
ij ρ ekl . (63)

In order to count the independent constraints, it is convenient use the standard form of the product
vectors defined in eq. (50). Now all the constraints from eq. (44) imply that

ρ̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 a1 b1 0 0 0 0 b2 0
0 b∗1 a2 0 0 b3 0 0 0
0 0 0 a3 0 b4 b5 0 0
0 0 0 0 0 0 0 0 0
0 0 b∗3 b∗4 0 a4 0 0 0
0 0 0 b∗5 0 0 a5 b6 0
0 b∗2 0 0 0 0 b∗6 a6 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (64)

with real diagonal elements a1, a2, . . . , a6 and complex off-diagonal elements b1, b2, . . . , b6. This
Hermitean 9×9 matrix contains 18 real parameters, which means that there are altogether 81−18 = 63
independent real constraints.
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Including the fourth product vector from eq. (50) gives additional constraints ρ̃w4 = 0, or explic-
itly written out,

a1 + b1 + b2 = 0 ,

b∗1 + a2 + b3 = 0 ,

a3 + b4 + b5 = 0 ,

b3 + b4 + a4 = 0 , (65)

b∗5 + a5 + b6 = 0 ,

b2 + b6 + a6 = 0 .

Here we have simplified slightly by complex conjugating the 4th and the 6th equation. These are com-
plex equations, to be split into real and imaginary parts. The real parts are 6 independent equations,
whereas the complex parts are only 5 independent equations. However, we get another independent
equation as the imaginary part of, for example, the complex equation

(u1 ⊗ v4)† ρ (u4 ⊗ v2) = a1 + b∗1 + b2 = 0 . (66)

The end result is that all the off-diagonal matrix elements bi have to be real. Altogether, we get 12
independent real constraints, 6 from the real parts and 6 from the imaginary parts of the equations.

Thus, including the 4th product vector in Ker ρ increases the number of independent real con-
straints from 63 to 75, and reduces the number of real parameters in ρ from 18 to 6.

The generic case with 5 product vectors is that there are 81 independent constraints, leaving only
the trivial solution ρ = 0. In order to end up with one possible solution for ρ we have to choose the
parameters p, q, r, s to be real.

When we choose real values for p, q, r, s, there is always (generically) exactly one solution for ρ,
that is, there are 80 independent constraints. The problem is that this uniquely determined matrix ρ,
or its partial transpose, has in general both positive and negative eigenvalues.

The condition to ensure that both ρ ≥ 0 and ρP ≥ 0 (with the proper choice of sign for ρ), when
the parameters p, q, r, s are real, is that the pair (p, q) and the pair (r, s) must lie in corresponding
parameter regions, as shown in Fig. 1.

5.5 Separable states of rank (4, 4)

A separable state of rank 4 has the form

ρ =
4∑

i=1

λi ψiψ
†
i , (67)

with λi > 0,
∑4

i=1 λi = 1, ψ †
i ψi = 1, and ψi = Ci φi ⊗ χi with Ci as a normalization constant. In

the generic case when any three vectors φi and any three χi are linearly independent, we may perform
an SL ⊗ SL transformation and obtain the standard form

φ =

⎛⎝ 1 0 0 1
0 1 0 1
0 0 1 1

⎞⎠ , χ =

⎛⎝ 1 0 0 1
0 1 0 1
0 0 1 1

⎞⎠ . (68)

In this standard form the χ vectors are real, and hence ρP = ρ.
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The kernel Ker ρ consists of the vectors that are orthogonal to all 4 product vectors ψi, and it
contains exactly 6 product vectors wi = Ni ui ⊗ vi, as follows,

u =

⎛⎝ 0 0 0 1 1 1
0 1 −1 0 0 −1
1 0 1 0 −1 0

⎞⎠ , v =

⎛⎝ 1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1

⎞⎠ . (69)

Note that the product vectors in the kernel of a separable rank (4, 4) PPT state are not generic, in
that there are subsets of three linearly dependent vectors both among the u vectors and among the v
vectors.

The surface of separable states of rank 4 has dimension 35 = 32 + 3, where 32 is the number of
parameters of the group SL(3,�) ⊗ SL(3,�) and 3 is the number of independent coefficients λi in
eq. (67).

6 Rank (5, 5) PPT states in 3 × 3 dimensions

6.1 The surface of rank (5, 5) PPT states

Since we believe that we understand completely the rank (4, 4) entangled states in dimension 3× 3, a
natural next step is to try to understand the (5, 5) states in the same dimension.

As discussed in the previous section, a generic 5 dimensional subspace in 3 × 3 dimensions con-
tains exactly 6 product vectors, which can be transformed by SL⊗ SL transformations, as in eqs. (30)
and (31), into the standard form given in eqs. (50) and (51), with SL⊗SL invariant complex parameters
p, q, r, s. Thus, each such subspace belongs to an equivalence class under SL ⊗ SL transformations,
and the equivalence classes are parametrized by 8 real parameters. There is a discrete ambiguity in
the parametrization, since it depends on the ordering of the 6 product vectors.

In one given generic 5 dimensional subspace we may construct a 5 dimensional set of rank (5, 5)
separable states as convex combinations of the 6 product vectors in the subspace. However, we find
numerically that the dimension of the surface of rank (5, 5) PPT states with the given subspace as
image is not 5 but 8. We compute this dimension in the following way.

We search numerically for one rank (5, 5) state ρ, for example by the methods described in [8].
The state we find will typically be entangled and extremal in P . From this state ρ we compute the
projections P,Q, P̃ , Q̃ as described in Sections 2 and 3, and we look for perturbations ρ′ = ρ + εA,
with Tr A = 0, where A satifies both equations PA = PAP = A and Q̃A = (Q̃AP Q̃)P = 0, or
equivalently eq. (36),

(I − P + Q̃)A = 0 . (70)

The number of linearly independent solutions for A is the dimension of the surface of rank (5, 5) PPT
states at the point ρ.

We believe that the dimension 8 can be understood as follows. We may fix both subspaces Img ρ
and Img ρP , this means that we fix the projections P and P̃ and determine ρ as a solution of the
equation

(2I − P − P̃)ρ = 0 , (71)

with Tr ρ = 1. Then there is typically no solution at all for ρ, solutions exist only for special pairs of
subspaces. If now the two 5 dimensional subspaces are chosen in such a way that a solution exists,
then the solution is (typically) unique, and the uniqueness means that ρ is an extremal point of P .
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We may fix instead Img ρ but not Img ρP , only the rank of ρP . Then there is a set of solutions for
ρ described by 8 real parameters. It is a natural guess that the role of these 8 parameters is to specify
the SL ⊗ SL equivalence class to which the 5 dimensional subspace Img ρP belongs.

In fact, when we fix Img ρ there is no degree of freedom left corresponding to SL ⊗ SL transfor-
mations. This is so because the set of product vectors in Img ρ is discrete and can not be transformed
continuously within the fixed subspace Img ρ. Hence, the only way to vary the subspace Img ρP

without varying Img ρ is to vary the equivalence class of Img ρP .
Figure 2 shows a two dimensional section through the set of density matrices. The section is

defined by the maximally mixed state, by a randomly selected rank (5, 5) entangled and extremal PPT
state ρ, and by a direction A through ρ such that the perturbed state ρ′ = ρ + εA is a rank (5, 5) PPT
state for infinitesimal positive and negative ε, and has Img ρ′ = Img ρ even for finite ε. The figure
illustrates the fact that the difference between the sets P and S is small. It also illustrates that the
difference between P and S is largest close to extremal entangled PPT states.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 2: Two dimensional section through D, the set of density matrices in 3×3 dimensions. The boundaries
of S, the set of separable states, and of P , the set of PPT states, are both drawn as thick lines. The boundaries
of D and of DP , the set of partially transposed density matrices, cross at two points, they are drawn as thin lines
where they do not coincide with the boundary of P . The origin, marked by a small circle, is the maximally
mixed state. The point marked by a small square is an extremal rank (5, 5) PPT state. The boundary of D is
drawn through this point as a thin straight line. The boundary of DP is drawn thick at this point, beacause it is
also the boundary of P . The lightly shaded region around the origin is S. The small and more darkly shaded
region close to the (5, 5) state is the difference between P and S. Away from this small region, the boundaries
of P and S are indistinguishable in the plot.
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If we want to allow both Img ρ and Img ρP to vary, but still require the ranks of ρ and ρP to be 5,
the equation to be solved for the perturbation A is

(Q + Q̃)A = 0 . (72)

In this case the number of linearly independent solutions for A is 48, and this is the dimension of the
surface of all rank (5, 5) PPT states.

We understand the dimension 48 as follows. There are 8 + 8 = 16 parameters for the SL ⊗
SL equivalence classes of the subspaces Img ρ and Img ρP . And there are 32 parameters for the
SL(3,�) ⊗ SL(3,�) transformations.

To summarize, an extremal (and hence entangled) rank (5, 5) PPT state ρ is uniquely determined
by eq. (71), as soon as we specify the 5 dimensional subspaces Img ρ and Img ρP . Each subspace
Img ρ and Img ρP is determined by 8 real SL⊗SL invariant parameters and an SL⊗SL transformation.

According to our understanding, based on numerical studies, which is so far only a plausible
hypothesis, the 8 invariant parameters can be chosen independently for Img ρ and Img ρP , but the
SL⊗SL transformations can not be chosen independently. However, we do not know the relation that
clearly exists between Img ρ and Img ρP .

In other words, we do not know any explicit procedure for constructing the most general rank
(5, 5) PPT states. Therefore we turn next to a more restricted problem.

6.2 Perturbing from rank (4, 4) to rank (5, 5)

We will see now how to construct (5, 5) states that are infinitesimally close to (4, 4) states.
Consider once more an infinitesimal perturbation ρ′ = ρ + εA, this time with ρ as the rank (4, 4)

state defined in eq. (45), involving the standard real product vectors defined in eq. (47). The most
general case is equivalent to this special case by some SL ⊗ SL transformation.

An extra bonus of this special choice of ρ is that ρP = ρ. In the notation we have used above, we
have projections P = P̃ on Img ρ = Img ρP and Q = Q̃ on Ker ρ = Ker ρP .

Conditions on the perturbation matrix A

By eq. (12), the condition for ρ′ to have rank 5 is that

QAQ = α ww† , (73)

where α is a real number, α �= 0, and

w =
5∑

i=1

ciwi , (74)

with complex coefficients ci such that

w†w =
5∑

i=1

|ci|2 = 1 . (75)

Similarly, the condition for (ρ′)P to have rank 5 is that

Q̃AP Q̃ = QAP Q = β zz† , (76)
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where β is real, β �= 0, and

z =
5∑

i=1

diwi with z†z =
5∑

i=1

|di|2 = 1 . (77)

Note that the possibilities that ρ′ has rank either (4, 5) or (5, 4) are included if we allow either α or β
to be zero.

By eq. (23), there is one extra product vector in Ker ρ = Ker ρP , it may be written as

w6 =
5∑

i=1

aiwi , (78)

this time with real coefficients ai. Since wi = Niui ⊗ vi with Ni real and vi real for i = 1, 2, . . . , 6,
we have for any Hermitean matrix A that

w †
i Awi = w †

i AP wi . (79)

By the definition of the projection Q we have that Qwi = wi for i = 1, 2, . . . , 6. It follows then from
eq. (73) that

w †
i Awi = w †

i QAQwi = α |w †
i w|2 , (80)

and from eq. (76) that

w †
i AP wi = w †

i QAP Qwi = β |w †
i z|2 . (81)

Together with eq. (79) this gives the equations

α |ci|2 = β |di|2 (82)

for i = 1, 2, . . . = 5, and the 6th equation

α

∣∣∣∣∣
5∑

i=1

aici

∣∣∣∣∣
2

= β

∣∣∣∣∣
5∑

i=1

aidi

∣∣∣∣∣
2

. (83)

It follows further that

α =
5∑

i=1

α |ci|2 =
5∑

i=1

β |di|2 = β , (84)

and that

|ci| = |di| for i = 1, 2, . . . , 5 . (85)

Thus, the coefficient di can differ from ci only by a phase factor. The total of 5 phase factors are
reduced to 4 independent phase factors by the extra equation∣∣∣∣∣

5∑
i=1

aici

∣∣∣∣∣ =

∣∣∣∣∣
5∑

i=1

aidi

∣∣∣∣∣ . (86)
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For infinitesimal values of ε, both ρ′ and (ρ′)P will have four eigenvalues infinitesimally close to
1/4 and one eigenvalue close to zero, which is εα for ρ′ and εβ for (ρ′)P . This eigenvalue is the same
for ρ′ and (ρ′)P , since α = β. With α > 0 this means that both ρ′ ≥ 0 and (ρ′)P ≥ 0 for ε > 0, but
not for ε < 0. Thus, we get automatically a PPT state of rank (5, 5), we never get rank (5, 4) or (4, 5).
Also it never happens that ρ′ is not a PPT state for the reason that one of ρ′ or (ρ′)P has a negative
eigenvalue.

For a more general rank (4, 4) state ρ, which is obtained by some SL ⊗ SL transformation from a
state of the special type discussed here, the smallest positive eigenvalues of ρ′ and (ρ′)P are no longer
equal. But they are still tied together in such a way that they go to zero simultaneously when we move
along the surface of (5, 5) states and approach its boundary. The boundary must therefore consist of
(4, 4) states.

Computing A

Define W = ww† and Z = zz†, in the same notation as above. These are both projections, W 2 = W
and Z2 = Z, with QW = WQ = W and QZ = ZQ = Z. It follows from eq. (73) and eq. (76) that

WAW = WQAQW = αW 3 = αW = QAQ ,

ZAP Z = ZQAP QZ = βZ3 = βZ = QAP Q . (87)

Like in eq. (13) and eq. (32) we define

PX = PXP , QX = QXQ , P̃X = (PXP P )P , Q̃X = (QXP Q)P , (88)

and furthermore,

WX = WXW , Z̃X = (ZXP Z)P . (89)

We may also define S = Q − W and S̃ = Q̃ − Z̃, these are again orthogonal projections on HN .
The least restrictive conditions we may impose on A are now that both SA = 0 and S̃A = 0, or

equivalently,

(S + S̃)A = 0 . (90)

To compute A from this equation we introduce an orthonormal basis in the real Hilbert space HN .
Relative to this basis, the operator S + S̃ is represented by a real symmetric positive semidefinite
matrix, which has a complete set of real eigenvectors with real eigenvalues. We choose A as an
eigenvector of S + S̃ with eigenvalue zero.

Apart from the trivial solution A = ρ, we find 37 linearly independent solutions of eq. (90). 36
out of these 37 are perturbations that do not depend on either vector w or z, and that give ρ′ = ρ + εA
as a rank (4, 4) state both for ε > 0 and ε < 0. They satisfy the conditions QA = 0 and Q̃A = 0, but
because W = WQ and Z̃ = Z̃Q̃ they also satisfy the conditions

WA = WQA = 0 , Z̃A = Z̃Q̃A = 0 , (91)

and hence eq. (90). The number 36 is the dimension of the surface of rank (4, 4) extremal PPT states,
as noted in Subsection 5.1. The 37th independent solution is the one giving a rank (5, 5) extremal
PPT state.
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A more restricted class of perturbations consists of those where we fix the 5 dimensional subspace
Img ρ′ to be the direct sum of the 4 dimensional subspace Img ρ and the one dimensional subspace of
the vector w. The projection on Img ρ′ is then

P5 = P + W , (92)

and the partial condition on A is that P5A = A, when we define

P5X = P5XP5 . (93)

The full condition on A is that

(P5 − S̃)A = A . (94)

Again apart from the trivial solution A = ρ, we find 5 linearly independent solutions of eq. (94),
of which 4 give ρ′ as a rank (4, 4) state both for ε > 0 and ε < 0. The 5th independent solution is the
one giving ρ′ as a rank (5, 5) extremal PPT state.

The 4 directions that only give new (4, 4) states are easily identified, since they do not depend on
the vector z. To find them we simply repeat the calculation with a “wrong” z, violating the condi-
tions (85) and (86). In this way we find no (5, 5) state, but we find the same set of perturbations into
(4, 4) states. The number 4 is the dimension of the surface of (4, 4) states with image within the fixed
5 dimensional subspace projected out by the projector P5.

There is a natural explanation of why this surface has dimension 4. In fact, when we fix P5 and
look for (4, 4) states with image within this fixed 5 dimensional subspace, we eliminate all degrees of
freedom corresponding to SL⊗SL transformations. But we still allow variations of the 4 real SL⊗SL
invariant parameters that are needed to define a rank (4, 4) state.

We conclude that for fixed vectors w and z there is one direction away from the surface of rank
(4, 4) extremal PPT states and into the surface of rank (5, 5) extremal PPT states.

For a fixed vector w there is a 4 parameter family of acceptable vectors z. Recall that these 4 pa-
rameters determine the 5 relative phases between the coefficients ci in eq. (74) and the corresponding
coefficients di in eq. (77).

The vector w is an arbitrary vector in the 5 dimensional kernel of the unperturbed state ρ, hence
it contains 4 complex parameters, or 8 real parameters, after we take out an uninteresting complex
normalization factor. Altogether, there are 8 + 4 = 12 independent directions away from the 36
dimensional surface of rank (4, 4) PPT states and into the surface of rank (5, 5) PPT states.

When we perturb an arbitrary rank (5, 5) PPT state in such a way that we preserve the ranks of
the state and its partial transpose, we find numerically that the surface of rank (5, 5) PPT states has
dimension 48. The fact that 48 = 36 + 12 is consistent with the hypothesis that we can reach every
rank (5, 5) PPT state if we start from a rank (4, 4) PPT state and move continuously along the surface
of rank (5, 5) PPT states.

7 Rank (6, 6) entangled PPT states in 4 × 4 dimensions

We will discuss in some detail one more example of the relation between PPT states and product
vectors. According to eq. (22), the rank (6, 6) PPT states in 4 × 4 dimensions represent just the
limiting case with a finite number of product vectors in the kernel, in this respect they are similar to
the rank (4, 4) states in 3 × 3 dimensions.
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The kernel of a rank 6 state in 16 dimensions has dimension 10, and the generic case, according
to eq. (23), is that it contains exactly 20 product vectors, any 10 of which are linearly independent.
We will see here that the product vectors in the kernel put such strong restrictions on the state that the
rank (6, 6) PPT state may be reconstructed uniquely from only 7 product vectors in its kernel.

To see how it works, take a set of product vectors in 4 × 4 dimensions. We may take random
product vectors, or else a set of product vectors with the special property that they belong to Ker ρ
where ρ is a rank (6, 6) PPT state. We find numerically that the number of constraints generated by
fewer than 7 product vectors is the same in both cases. We find the following numbers.

¿From 4 product vectors assumed to lie in Ker ρ for an unknown ρ, or actually lying in Ker ρ for
a known ρ, we get 172 independent constraints on ρ of the form given in eq. (44). These constraints
leave 84 free real parameters in ρ, before we normalize and set Tr ρ = 1.

¿From 5 product vectors in Ker ρ we get 205 independent constraints, leaving 51 parameters in ρ.
¿From 6 product vectors in Ker ρ we get 234 independent constraints, and 22 parameters in ρ.
Finally, 7 product vectors in Ker ρ give either 255 or 256 independent constraints, and either 1 or

0 real parameters in ρ. If there is one parameter left, it is a proportionality constant, to be fixed by the
normalization condition Tr ρ = 1.

The standard form of 7 product vectors in 4×4 dimensions, generalizing eq. (50), is the following,

u =

⎛⎜⎜⎝
1 0 0 0 1 1 1
0 1 0 0 1 p1 p4

0 0 1 0 1 p2 p5

0 0 0 1 1 p3 p6

⎞⎟⎟⎠ , v =

⎛⎜⎜⎝
1 0 0 0 1 1 1
0 1 0 0 1 p7 p10

0 0 1 0 1 p8 p11

0 0 0 1 1 p9 p12

⎞⎟⎟⎠ . (95)

There are 12 complex parameters p1, p2, . . . , p12, that is, 24 real parameters. These are invariant in
the sense that we can not change them by SL(4,�) ⊗ SL(4,�) transformations.

Not just any arbitrary set of 7 product vectors defines a rank (6, 6) PPT state. We arrive at this
conclusion not only because we find numerically that 7 generic product vectors allow only ρ = 0 as
solution of all the constraint equations, but also because a dimension counting shows that we need
less than 24 invariant parameters in order to parametrize the rank (6, 6) PPT states.

Take one known rank (6, 6) PPT state ρ and perturb it into another rank (6, 6) PPT state ρ′ =
ρ + εA with ε infinitesimal. Here A must be a solution of eq. (35), with operators Q and Q̃ defined
relative to ρ as explained. The number of linearly independent solutions for A, found numerically, is
76, including the trivial solution A = ρ. This shows that the surface of rank (6, 6) PPT states has 75
real dimensions.

Of these 75 dimensions, 60 dimensions result from product transformations ρ 
→ V ρV † with
V = VA⊗VB and VA, VB ∈ SL(4,�). The remaining 15 dimensions must correspond to 15 SL⊗SL
invariant parameters of the 7 product vectors.

It is also worth noting that, by the counting explained in the next section, the set of 6 dimensional
subspaces of �16 has real dimension 162 − 62 − 102 = 120, much larger than the dimension 75 of
the surface of (6, 6) states. Thus, not every 6 dimensional subspace of �16 is the host of a rank (6, 6)
PPT state, as one would expect from the analogy to the case of the rank (4, 4) PPT states in �9.

8 Dimension counting

We will describe in this section how to compute numerically the dimensions of surfaces of PPT states
of given ranks. We list some numerical results, and discuss how they may be understood in most cases
by a simple counting of constraints, assuming the constraints to be independent.
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We start with a useful exercise. We want to compute the real (as opposed to complex) dimension
of the set of all r dimensional subspaces of an N dimensional complex Hilbert space.

First note that the unitary group U(k) has k2 real dimensions. Take an orthonormal basis of the
Hilbert space. The first r basis vectors define an r dimensional subspace, the orthogonal complement
of which is defined by the last s = N − r basis vectors. A U(N) transformation transforms this basis
into another orthonormal basis, but the U(r) transformations within the first r basis vectors, and the
U(s) transfomations within the last s basis vectors, do not change either subspace. It follows that the
dimension of the set of r dimensional subspaces, equal to the dimension of the set of s dimensional
subspaces, is

d = N2 − r2 − s2 = 2rs . (96)

Assuming that we have found a PPT state ρ of rank (m, n), it lies on a surface of rank (m, n) PPT
states. We compute the dimension of the surface at this point by counting the number of independent
solutions A of eq. (35),

(Q + Q̃)A = 0 , (97)

equivalent to the two equations

QA = QAQ = 0 , Q̃A = (Q̃AP Q̃)P = 0 . (98)

We have to throw away the trivial solution A = ρ. We get a lower bound for the dimension if we
assume that the constraints on A from the two equations in eq. (98) are independent. The equation
QAQ = 0 represents (N − m)2 real constraints, since Q is the orthogonal projection on the N − m
dimensional subspace Ker ρ. Similarly, the equation Q̃AP Q̃ = 0 represents (N −n)2 real constraints,
since Q̃ is the orthogonal projection on the N − n dimensional subspace Ker ρP . Because the con-
straints are not necessarily independent, we get the following lower bound for the dimension,

d ≥ N2 − (N − m)2 − (N − n)2 − 1 . (99)

Take N = 3 × 3 = 9 as an example. We find numerically that eq. (99) holds with equality for
all ranks from the full rank (m, n) = (9, 9) down to (m, n) = (5, 5). In particular, for rank (5, 5) the
dimension of the surface is

d = 92 − 42 − 42 − 1 = 48 . (100)

By eq. (96) the set of 5 dimensional subspaces has dimension 40, hence we should expect to find an
8 dimensional surface of rank (5, 5) PPT states in every 5 dimensional subspace. And that is actually
what we find.

For rank (4, 4) the constraints are not all independent, and we have the strict inequality

d = 36 > 92 − 52 − 52 − 1 = 30 . (101)

The set of 4 dimensional subspaces has again dimension 40, hence there can not exist rank (4, 4)
PPT states in every 4 dimensional subspace. There are 40 − 36 = 4 constraints restricting the 4
dimensional subspaces supporting rank (4, 4) PPT states, and in each 4 dimensional subspace there
can exist at most one unique such state. The 4 constraints are the conditions that the 4 parameters
a, b, c, d in eq. (47), or p, q, r, s in eq. (50), have to be real.
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If we want to compute the dimension of the surface of rank (m, n) PPT states with fixed image
space, we have to count the independent solutions of eq. (36),

(I − P + Q̃)A = 0 , (102)

equivalent to the two equations

PA = PAP = A , Q̃A = (Q̃AP Q̃)P = 0 . (103)

The equation PA = A leaves m2 real parameters in A and represents N2 −m2 real constraints, as is
visualized in eq. (17). The lower bound on the dimension is therefore

d ≥ N2 − (N2 − m2) − (N − n)2 − 1 = m2 − (N − n)2 − 1 . (104)

In the above example with N = 9 and (m, n) = (5, 5) we find numerically d = 8, as already
mentioned, so that the inequality in eq. (104) holds as an equality. With (m, n) = (4, 4), on the other
hand, we get

d = 0 ≥ 42 − 52 − 1 = −10 . (105)

9 Numerical integration

In this section we will describe a numerical method for tracing curves on a surface of PPT states of
fixed ranks (m, n). This is a tool for studying the geometry of the surface, for example by tracing
geodesics to see how they curve, or studying how the surface approaches a boundary consisting of
states of lower ranks.

9.1 Equations of motion

The perturbation expansion ρ(t+ε) = ρ(t)+εA for ρ = ρ(t) is equivalent to the differential equation

ρ̇ = A . (106)

We use the notation

ρ̇ =
dρ

dt
, ρ̇+ =

dρ+

dt
. (107)

We defined the pseudoinverse ρ+ in eq. (4), in order to define P = ρ+ρ = ρρ+ and Q = � − P ,
the orthogonal projections on Img ρ and Ker ρ, respectively. There are similar relations for P̃ , the
projection on Img ρP , and Q̃ = � − P̃ , the projection on Ker ρP . We defined orthogonal projections
on HN , the space of Hermitean matrices, in eq. (13) and eq. (32).

If X is a Hermitean matrix with Img X ⊂ Img ρ then X = PX = XP , or equivalently, QX =
XQ = 0. Assuming that these relations hold at any “time” t we may differentiate and get that

Ẋ = ṖX + PẊ = ẊP + XṖ . (108)

Equivalently,

QẊ = ṖX , ẊQ = XṖ . (109)
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Multiplication by Q from the left and from the right gives that

QẊQ = 0 . (110)

It follows further that

Ẋ = (P + Q)Ẋ(P + Q) = PẊP + XṖ + ṖX . (111)

The special case X = ρ gives the equation

QAQ = 0 (112)

as a consistency condition for eq. (106) with the relations ρ = Pρ = ρP . Eq. (112) is the same as
eq. (11), the condition for the rank of ρ to be constant. We may want to replace it with the stronger
condition that Img ρ should be constant, eq. (9),

PAP = A . (113)

Setting X = ρ in eq. (109) gives the equations

QA = Ṗ ρ , AQ = ρṖ , (114)

and multiplication by ρ+ gives that

QAρ+ = ṖP , ρ+AQ = PṖ . (115)

Differentiating the equation P = P 2 gives that Ṗ = ṖP + PṖ , hence

Ṗ = QAρ+ + ρ+AQ . (116)

Differentiating the relation ρ+ = ρ+ρρ+ we get that

ρ̇+ = ρ̇+P + ρ+Aρ+ + P ρ̇+ . (117)

When we left and right multiply here by P we obtain the relation

P ρ̇+P = −ρ+Aρ+ . (118)

Hence, using eq. (111) with X = ρ+, together with eq. (116), we get that

ρ̇+ = QA(ρ+)2 + (ρ+)2AQ − ρ+Aρ+ . (119)

The equations (106), (116), and (119) may be integrated together, as soon as we specify how to
calculate A as a function of ρ. There are, of course, equations similar to (116) and (119) that hold for
the projection P̃ related to the partial transpose ρP , and for the pseudoinverse (ρP )+.

As a specific example, consider how to generate a curve ρ = ρ(t) lying on the 48 dimensional
surface in HN of rank (5, 5) PPT states in 3 × 3 dimensions passing through a given state ρ(0). We
then have to satisfy the two conditions on A that

QA = QAQ = 0 , Q̃A = (Q̃AP Q̃)P = 0 . (120)

Or equivalently eq. (35),

(Q + Q̃)A = 0 . (121)

Alternatively, we may want to generate a curve that follows the 8 dimensional surface in HN of
rank (5, 5) PPT states such that the 5 dimensional subspace Img ρ is kept fixed, but the 5 dimensional
subspace Img ρP is allowed to change. This means that we replace the condition QAQ = 0 by the
condition PAP = A. The single condition to be satisfied is then eq. (36),

(I − P + Q̃)A = 0 . (122)

In this case P is constant but Q̃ = Q̃(t) may vary as a function of t.
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9.2 Geodesic equations

Both conditions (121) and (122) are of the form

TA = 0 . (123)

Differentiating this equation gives that

TȦ + ṪA = 0 . (124)

It follows that

Ȧ = B − T+ṪA , (125)

where T+ is the pseudoinverse of T, and B is an arbitrary Hermitean matrix with TB = 0.
By definition, a geodesic on an embedded surface (think of a great circle on the surface of a

sphere as an example) is a curve which does not change its direction on the surface. Hence, it changes
direction in the embedding space only as much as it has to in order to stay on the surface. This would
mean that we choose B = 0 in eq. (125). Or if we normalize A to unit length, fixing Tr A2 = 1, we
set B = αA and choose α such that Tr(ȦA) = 0.

9.3 Numerical results

We have done numerical integrations by a standard fourth order Runge–Kutta method. With ρ and A
of order one and time steps of order 10−4 this gives a precision of order 10−16, which is the machine
precision.

Figure 3 shows a geodesic curve ρ(t) on the 8 dimensional curved surface of rank (5, 5) PPT
states with Img ρ(t) constant. Figure 4 shows the 5 nonzero eigenvalues of ρ and ρP . The condition
that one eigenvalue of either ρ or ρP goes to zero defines the boundary of the surface. We see that the
curve approaches the boundary twice, but turns around each time and continues in the interior. The
eigenvalue spectra of ρ and ρP are remarkably similar, yet they are not identical. When both ρ and ρP

simultaneously get one dominant eigenvalue, we interpret it as an indication that ρ approaches a pure
product state.

It is quite natural that a geodesic chosen at random will not hit the boundary, since the boundary
consists of rank (4, 4) PPT states and has dimension 4, while the surface itself has dimension 8. In
order to hit the boundary we can not follow a geodesic, we have to integrate the equation ρ̇ = A and
choose the direction A in such a way that the smallest positive eigenvalue of ρ goes to zero. When we
do so, the smallest eigenvalue of ρP goes to zero simultaneously with the eigenvalue of ρ, although
the ratio between the two eigenvalues goes to a value different from one. Hence the curve ends at a
(4, 4) state on the boundary. The explanation for this coupling of eigenvalues of ρ and ρP was given
in Subsection 6.2.

10 Summary

The work presented here is part of an ongoing programme to study quantum entanglement in mixed
states. We have studied here low rank entangled PPT states using perturbation theory and the close
relation between PPT states and product vectors.

One result obtained is an understanding of how to construct rank (5, 5) PPT states in 3 × 3 di-
mensions by perturbing rank (4, 4) states. We use perturbation theory to study surfaces of PPT states
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of given ranks, and in particular to compute dimensions of such surfaces, for example the surface of
(5, 5) states. However, it is still an unsolved problem how to construct general rank (5, 5) PPT states
that are not close to rank (4, 4) states. We are even farther from a full understanding of higher rank
PPT states in 3 × 3 dimensions, or in higher dimensions.

A special class of PPT states are those of special ranks so that their kernel is spanned by product
vectors and contains a finite number of product vectors. We have shown that these states may be
reconstructed uniquely from a subset of the product vectors in the kernel, and the number of product
vectors needed may be smaller than the dimension of the kernel. This result raises new interesting
questions to be answered by future research, for example, how to identify finite sets of product vectors
that define PPT states with these product vectors in their kernel.
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Figure 3: A projection of a geodesic curve on the 8 dimensional surface of rank (5, 5) PPT states with a fixed
image space. We have made a principal component analysis and plotted the two largest principal components.
The curve starts middle right and ends lower left.
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Figure 4: Variation along the curve in Fig. 3 of the 5 nonzero eigenvalues of the density matrix (full drawn
lines) and its partial transpose (broken lines). The abscissa is the arc length along the curve.
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