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Abstract 

Bac kgr ound: Mac hine learning (ML) has gained significant attention for classifying immune states in adapti v e imm une r ece ptor 
r e pertoir es (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous 
benchmarking of AIRR-ML methods. Existing approaches to generating synthetic benchmarking datasets result in the generation 

of nai v e r e pertoir es missing the key featur e of many shar ed r ece ptor sequences (selected for common antigens) found in antigen- 
experienced r e pertoir es. 

Results: We demonstrate that a common approach to generating simulated AIRR benchmark datasets can introduce biases, which may 
be exploited for undesired shortcut learning by certain ML methods. To mitigate undesira b le access to true signals in simulated AIRR 

datasets, we devised a simulation strategy (simAIRR) that constructs antigen-experienced-like r e pertoir es with a r ealistic ov erlap of 
r ece ptor sequences. simAIRR can be used for constructing AIRR-level benchmarks based on a range of assumptions (or experimental 
data sources) for what constitutes r ece ptor-lev el imm une signals. This includes the possibility of making or not making any prior 
assumptions regarding the similarity or commonality of immune state–associated sequences that will be used as true signals. We 
demonstrate the real-world realism of our proposed simulation approach by showing that basic ML strategies perform similarly on 

simAIRR-generated and real-world experimental AIRR datasets. 

Conclusions: This study sheds light on the potential shortcut learning opportunities for ML methods that can arise with the state- 
of-the-art way of simulating AIRR datasets. simAIRR is available as a Python package: https://github.com/KanduriC/simAIRR . 

Ke yw ords: simulation of AIRR data, shortcut learning, benchmarking of machine learning methods, adapti v e imm une r ece ptor r e per- 
toires, AIRR, ML 
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Bac kgr ound 

High-throughput sequencing of adaptive immune receptor (AIR) 
r epertoir es (AIRRs), including B-cell and T-cell receptors (BCRs and 

TCRs), can provide a snapshot of ongoing and past immune re- 
sponses [ 1–7 ]. Decoding the information specific to various im- 
m une r esponses embedded in AIRRs has r ecentl y seen a sur ge in 

interest because of its potential to aid the de v elopment of immun- 
odiagnostics and therapeutics [ 1–7 ]. Receptor sequence sharing 
between r epertoir es in a population (so-called public responses) 
can be due to antigen selection or antigen-independent mecha- 
nisms (like conv er gent r ecombination and other recombination 

biases) [ 6–12 ] and can vary further depending on the species, cell 
types , cell subsets , chains , and pairedness of sequences [ 13 ]. Pre- 
vious studies have shown that sequences selected for a common 

antigen share similarities in sequence patterns and can be de- 
tected in multiple individuals who experienced the antigen (e.g.,
see Table 1 in r efer ence [ 7 ] for examples of public AIRs in various 
diseases in humans). Such public response sequences (defined by 
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equence identity or similarity [ 14 ]) have aided in the classifica-
ion of diseases or immune states [ 5 ]. 

The pattern recognition capacity of machine learning (ML) 
ethods has been incr easingl y utilized to learn the sequence

atterns associated with immune states [ 5 , 15 , 16 ]. Many studies
ontinue to de v elop and a ppl y classical ML (supervised and
nsupervised) and modern deep learning methods to learn 

omplex sequence patterns that can distinguish immune states 
 17–35 ]. The continued rise in the de v elopment and a pplication of
IRR-ML methods warrants rigorous benchmarking to compare 

he performance of methods . T his r equir es a combination of
uitable real-world experimental datasets and simulated bench- 
ark datasets with known true signals [ 36 , 37 ] (hereafter signal

efers to sequence patterns in AIRR-seq data that distinguish im-
 une states). Ther e ar e curr entl y onl y a fe w lar ge-scale datasets

f immune state–associated donor repertoires a vailable , and 

 v en these are of limited size ( < 1,000 donors) and offer limited
nowledge of true signals (onl y donor-le v el annotation, with no
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rue information at the individual r eceptor le v el) [ 19 , 38–40 ].
her efor e, sim ulated AIRR datasets with artificially introduced
iscriminative sequence patterns at the indi vidual rece ptor level
lay a central role in the rigorous evaluation of AIRR-ML methods
 36 , 41–46 ]. 

A principal observ ation r egarding the failur e of modern ML
ethods is that many are related to unintended “shortcut” strate-

ies adopted by ML methods [ 47 ]. Shortcuts can be defined as deci-
ion rules that work well on selected benchmark datasets but fail
o generalize to other real-world datasets [ 47 ]. In the context of
IRR-ML, the field will benefit not only b y av oiding shortcut strate-
ies in discriminative learning but also by generating synthetic
IRR datasets devoid of shortcut opportunities. Below we describe
 notable shortcut opportunity in simulated AIRR datasets that
rise as a result of the state-of-the-art sim ulation a ppr oac hes but
s absent in real-world experimental datasets. 

The AIRRs of a study cohort with a common immune state can
e categorized into 2 components: (i) private sequences, which
re seen only in one individual of the cohort, and (ii) public se-
uences, whic h ar e observ ed in mor e than one individual in the
ohort. Pr e vious studies have suggested 2 main mechanisms that
etermine the interindividual sharing of sequences: (i) conv er gent
 ecombination, wher e owing to the biases of current stochastic
(D)J recombination models [ 48 , 49 ], the probability of generating
ertain sequences is high and, thus, such sequences are observed
n multiple individuals [ 6 , 50–53 ], and (ii) selection/bias in recep-
or usa ge, wher e identical or similar sequences are observed in
 umerous indi viduals that shar e a common imm une state due to
eing selected for a common antigen [ 17 , 18 , 22 , 30 , 54 , 55 ]. The
bserved publicness of sequences in a cohort (how frequent they
re) is known to depend on the sampled cohort size and sequenc-
ng depth [ 55 , 56 ]. 

The probability of generating a specific CDR3 sequence (of-
en called generation probability in the AIRR context) is the sum
f the probabilities of all r ecombination e v ents that can gener-
te the specific sequence [ 57 ]. The gener ation pr obability distri-
utions of private sequences and public sequences in any sam-
led cohort differ consider abl y [ 55 ], wher e the population inci-
ence of sequences incr eases monotonicall y with an increase in
ener ation pr obability (Fig. 1 A). By comparing the population in-
idence and generation probability of sequences, it may be pos-
ible to identify sequences that are observed with unlikely high
opulation incidence given their generation probability (Fig. 1 A)
 20 , 30 ]. Such sequences can potentially be immune state associ-
ted and will be r eferr ed to as outlier sequences throughout this
rticle. Since antigen-experienced r epertoir es may carry se v er al
mmune state–associated receptor sequences accumulated over
ime (specific to distinct antigens), mining public sequences in
ntigen-experienced r epertoir e cohort may r e v eal se v er al outlier
equences irr espectiv e of an y particular imm une state (Fig. 1 B). In
 real-world setting, there is thus no trivial relation between the
resence of outlier sequences in a repertoire and a given immune
tate of interest. Ho w ever, constructing synthetic AIRR datasets by
ampling from known V(D)J recombination models alone [ 41 , 43–
5 ] will result in naive repertoires that have not experienced any
mm une e v ents and thus do not carry m ultiple outlier sequences
ike antigen-experienced r epertoir es do (Fig. 1 B). When a selected
roup of the simulated naive repertoires is enriched for sequence
atterns to r epr esent an imm une state for pr ediction methods,
he publicity versus generation probability relation can in itself

ak e these re pertoires stand out through being the only reper-
oires in the simulated dataset containing outlier sequences and
hus provide shortcut opportunities for ML methods. By learning
o dir ectl y connect the pr esence of outlier sequences to a particu-
ar immune state, a predictive method could perform very well on
 benchmark based on a prediction strategy that exploits simula-
ion artifacts instead of learning immune state–associated signals
hat ar e r ele v ant for r eal-world a pplications . T his issue , which is
 eferr ed to as shortcut learning in the machine learning field, is
nown to lead to a lack of generalization and unintuitive failures
f ML methods and has been suggested to be one of the main bar-
iers to robust, fair, trustworthy, and deplo y able machine learning
 47 ]. For the sake of con venience , we hereafter refer to the bias of
iscor dance betw een intr oduced signal and baseline r epertoir es

n simulated AIRR data as generation probability discordance bias . 
In this study, we investigate the shortcut opportunity arising

r om gener ation pr obability discordance bias in simulated AIRR
atasets and show that such shortcuts are absent in tested real-
orld experimental datasets. To mitigate the demonstrated short-

ut opportunity in AIRR datasets, we present the simulation strat-
gy, simAIRR. simAIRR provides a systematic approach for simu-
ating AIRR datasets according to the assumptions that immune
eceptor binding is determined either by (i) the full CDR3 se-
uences and is best addressed by learning appropriate similar-

ty metrics for full CDR3s or by (ii) subsequence patterns such as
 -mers. We also present case studies to demonstrate the utility
f simAIRR, wher e sim ulated AIRR datasets ar e gener ated using
oth full-CDR3 assumption and sub-CDR3 motif assumption ( k -
ers) and subsequently used for e v aluating suitable ML methods

s a function of different witness rates and sample sizes . Here ,
itness r ate r efers to the r ate at whic h signal occurs in the pos-

tive class examples . Note that the italicized term examples com-
only used in ML literature refers to repertoires throughout this

rticle. 

nalyses 

ener a tion probability discordance bias in 

imulated AIRR datasets leads to unintended 

hortcut opportunities for ML methods 

 hroughout the article , we refer to AIRs that ar e observ ed with
nlikely high population incidence in a study cohort given their
ener ation pr obability as outlier sequences. As an example of un-
ikely high population incidence given generation probability, con-
ider a case where an AIR has a very low probability of occurring
n > 1% of a population sample but is r ather observ ed in 10% of the
opulation sample. We refer to the disparity in generation prob-
bility distributions between true signals and remaining public
equences in synthetic AIRR datasets as generation probability
iscordance bias . Here , true signals refer to the sequences that
rom the outset are known to be immune state associated. In sim-
lated datasets, true signals are those sequences introduced into
he r epertoir es that distinguish the immune states. In the real-
orld experimental dataset used in this study, we refer to the
riginal stud y-re ported sequences as the true signals, for which
he rationale is provided further below. 

We hypothesized that, unlike real-world experimental datasets
f antigen-experienced r epertoir es, sim ulated AIRR datasets may
ot carry se v er al outlier sequences . T hus , the subsequent intro-
uction of true signals r epr esenting an imm une state will lead
o shortcut opportunities that ML methods can exploit. To inves-
igate whether generation probability discordance bias exists in
eal-world experimental and simulated AIRR datasets, we com-
uted an outlier score for each public sequence of the experimen-
al and simulated AIRR datasets irrespective of the immune state
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Figure 1: Rationale and simAIRR workflow. (A) The relation between the generation probability and population incidence of AIR sequences in a study 
cohort could be used to gauge outlier sequences that are observed with unlikely high population incidence given their generation probability. (B) (i) 
Because of accumulating multiple immune state–associated signals over time by being exposed to common antigens, repertoires in real-world 
experimental AIRR datasets may harbor many outlier public sequences. (ii) Ho w e v er, the same phenomenon is not natur all y occurring in synthetic 
AIRR datasets. Any label-associated signal introduced into synthetic repertoires as shown in ii may alone stand out as outlier sequences, unlike in 
experimental r epertoir es . T his pro vides unintended shortcut opportunities for AIRR-ML methods to detect the introduced signal. (C) To mitigate 
unintended shortcut learning opportunities, we devised a simulation approach that relies on empirically derived relation between generation 
probability and population incidence of AIRs calibrated separately for signal sequences and remaining public sequences. (D) (i) simAIRR assesses the 
feasibility of introducing the user-supplied signal into the repertoires at the desired witness rates and, if deemed feasible, generates AIRR datasets 
with realistic receptor sequence sharing between repertoires. If the signal introduction was deemed infeasible in (i), simAIRR provides descriptive 
information to the user to act as guidance in reconfiguring the simulation. simAIRR could be used to execute the whole w orkflo w (i, ii, iii, iv) in a 
sequence or exclusiv el y to perform (i) or (ii) or (iii). 
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Figure 2: Generation probability discordance bias in the naive simulation of AIRR datasets. (A) In a real-world experimental AIRR dataset ( n = 683 
r epertoir es; 307 positive class examples and 376 negative class examples , a verage unique number of TCR βs per repertoire ∼200,000), the outlier 
measure (y-axis) alone is a poor classifier of presumed true signals as reported in the original study. Here, each point represents a unique TCR β CDR3 
sequence and the colors r epr esent whether the sequence is a true signal e. Red points are the true signal sequences. (B) On the contrary, in a synthetic 
dataset generated through a naive but intuitive simulation approach as shown in Fig. 1 B.ii ( n = 683 repertoires; 310 positive class and 373 negative 
class examples), the outlier measure alone has a very high precision (99%). This behavior of the simulation approach can lead to shortcut learning 
opportunities for ML methods. (C) Our novel simulation approach that is intended to mitigate the shortcut learning opportunity makes the repertoires 
antigen-experienced-like to behave more like the real-world experimental data, where there can be many outlier sequences because of accumulating 
man y imm une state–associated sequences ov er the lifetime of r epertoir es. On a dataset with matc hed sample size ( n = 683 r epertoir es; 310 positiv e 
class and 373 negative class examples), our simulation approach reduces shortcut learning opportunities because thresholding on the outlier measure 
alone has a precision of 0.09%, which is comparable to the 0.16% precision of the real-world experimental data. 
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abel (see Methods). The outlier score that we computed is quali-
ativ el y similar to the methodology by Pogor el yy et al. [ 20 ]. In addi-
ion to the outlier score, we computed a likelihood ratio for each
ublic sequence (see Methods) that compares the probability of

ncidence of a sequence in contr asting imm une states (positive
nd negative class labels in ML terminology). For this analysis, we
pecifically used 3 different datasets: (i) a real-world experimen-
al T-cell r epertoir e dataset with known cytomegalovirus (CMV)
erostatus [ 19 ], (ii) a human TCR β sequence dataset simulated
sing a naive simulation approach (here, naive simulation refers
o sampling sequences from known V(D)J recombination models
o construct synthetic r epertoir es and subsequent introduction of
ignals in a fraction of the r epertoir es to r epr esent contr asting im-
une states; see Fig. 1 B for a depiction), and (iii) a human TCR β

equence dataset simulated using the simulation approach that
e de v eloped, simAIRR. 
In simulated datasets, w e kno w, b y construction, the true sig-

als that differ between immune states. In real-world experi-
ental data, we are aware that experimental artifacts and other

tudy design aspects could impact the selection of immune state–
ssociated signals, thus affecting what can be perceived as true
ignals. Ho w e v er, we consider ed the list of signals reported in the
riginal study [ 19 ] as true signals for this analysis, as the purpose
f this analysis is only to obtain an indication of the disparity be-
ween true signals and the remaining public sequences in terms
f the degree of being outliers. 

In the real-world experimental dataset [ 19 ], a decision rule
ased on thresholding the outlier measure that we computed
e.g., outlier measure > 35) is observed to have very low precision
0.16%) and 78% recall (Fig. 2 A) in retrieving the true signals . T his
ndicates that the outlier measure alone is a poor classifier of the
erceived true signals in real-world experimental data. On the
ontrary, in a naive-simulated AIRR dataset of TCRs, the same out-
ier measure-based decision rule is found to have 99% precision
nd 90% recall (Fig. 2 B) in retrieving the true signals . T his indicates
hat the outlier measure alone can ca ptur e a lar ge fr action of the
rue signals in naiv e-sim ulated data, whic h can be used for short-
ut learning by ML methods . T his trend of generation probability
iscordance bias persisted at sample sizes as low as 50 r epertoir es

n naiv e-sim ulated datasets, while subsampled real-world exper-
mental data were devoid of such bias ( Supplementary Fig. S1 ).
he phenomenon of the absence of gener ation pr obability discor-
ance bias in real-world experimental datasets was also observed
n TCR β data of a m uc h smaller sample size (compared to that
f [ 19 ]) of 79 cases and 13 controls with/without pediatric COVID-
9 from [ 58 ] ( Supplementary Fig. S2 ). We also observed a similar
henomenon in the CMV-negative cohort from [ 19 ] indicating the
ersistence of aforementioned findings in CMV-negative cohorts
 Supplementary Fig. S3 ). To overcome the gener ation pr obability
iscordance bias demonstrated in Fig. 2 B, we de vised a nov el sim-
lation a ppr oac h to construct benc hmark AIRR datasets for the

mmune state prediction problem. In AIRR TCR datasets simu-
ated based on our novel simulation approach, the same outlier

easure-based decision rule was found to have 0.09% precision
nd 83% recall (Fig. 2 C). Overall, the very low precision equivalent
o that observed in a real-world experimental dataset mitigates
he shortcut opportunities that can arise thr ough naiv e sim ula-
ion a ppr oac hes. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad074#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad074#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad074#supplementary-data
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Figure 3: Empirical distribution of population incidence for receptors within different generation probability intervals . T he relation between 
gener ation pr obability and population incidence of public AIR sequences was determined based on a pr e viousl y published lar ge cohort study of TCR 
r epertoir es [ 19 ] separ atel y for presumed signal sequences (A) and all the remaining public sequences (B). In both A and B, receptors are along the 
x-axis split into 3 distinct bins according to their generation probability. The stacked bars along the y-axis represent the proportion of receptors within 
a given generation probability interval that have population incidence falling within a particular range (with a distinct color representing each 
population incidence range). Note that the population incidence is the proportion of repertoires among a total of the 310 positive repertoires in A, 
while it is the proportion of repertoires among a total of 683 repertoires in B. Also, note that the bins of both generation probability and sample size 
pr oportions ar e half-open interv als that include the left endpoint but exclude the right endpoint. The stac ked bar c harts show that a lar ge fr action of 
the sequences among the nonsignal sequences is observed in a small proportion of the population irrespective of their generation probability 
(population incidence below 2%). A substantial fraction of the sequences in the higher intervals of generation probability was observed with increased 
population incidence in signal and nonsignal sequences . T he presumed signal sequences were observed with increased population incidence when 
compared to the remaining public sequences. 
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A novel simulation approach to mitigate shortcut 
opportunities for AIRR-ML methods 

To mitigate unintended shortcut opportunities for AIRR-ML, we 
de vised a nov el sim ulation a ppr oac h to gener ate AIRR datasets 
that r el y on the empirical r elation between gener ation pr obabil- 
ity and population incidence of public sequences calibrated from 

real-world experimental datasets separately for signal and other 
public sequences (Fig. 1 C). We her eafter r efer to this sim ulation 

a ppr oac h as simAIRR. Below we briefly describe the simAIRR ap- 
pr oac h (see also Fig. 1 D). 

simAIRR approach 

simAIRR accepts a user-supplied set of AIRs as a potential pool 
of immune state–associated signals and (i) determines whether 
it is feasible to introduce the signal sequences into the baseline 
r epertoir es at the user-desired witness rate (Fig. 1 D). Note that the 
feasibility of introducing signal sequences depends on the user- 
supplied set of AIRs, desired witness rate, and the learned models 
of realistic population incidence of AIR sequences . T here ma y be 
scenarios where the models of realistic population incidence of 
AIR sequences may not allow r eac hing a user-desired witness rate 
given the set of user-supplied signal sequences. If deemed feasible,
simAIRR proceeds to (ii) generate baseline repertoires and (iii) ad- 
just the proportion of public sequences (the sequences that will be 
shar ed acr oss r epertoir es in a dataset) and their population inci- 
dence le v els . T he public component correction is needed because 
datasets gener ated thr ough naiv e sampling lac k sequence sharing 
between r epertoir es to the degr ee that is observ ed in experimental 
datasets containing antigen-experienced r epertoir es (see Methods 
for details). In the r epertoir es gener ated with the corr ected pub- 
p  
ic sequence component, the relation between generation proba- 
ility and population incidence is respected. (iv) simAIRR further 

ntroduces signal components into the desired number of reper- 
oir es, wher e a gain the relation between generation probability
nd population incidence is respected. If the signal introduction 

as deemed infeasible in (i), simAIRR provides descriptive infor- 
ation to the user to act as guidance in reconfiguring the simu-

ation. simAIRR could be used to execute the whole w orkflo w (i, ii,
ii, iv) or exclusiv el y to perform (i) or (ii) or (iii). 

To determine the population incidence of public sequences 
including both signal sequences and other public sequences),
imAIRR relies on the empirical relation between generation prob- 
bility and the population incidence of AIRs. For this, the user
ould either calibrate the aforementioned relation based on a 
eal-world dataset of their choice and supply the learned rela-
ion to simAIRR or use the default choice that is supplied with
imAIRR. Hereafter, we refer to these as models of realistic popu-
ation incidence of AIR sequences. In simAIRR, the default mod-
ls of realistic population incidence of AIRs are based on a pre-
iously published large cohort study of TCR repertoires [ 19 ] cal-
br ated separ atel y for signal sequences (detected in the original
tudy) and other public sequences. See the Methods section for
etails on learning models of realistic population incidence of 
IR sequences. Figure 3 shows the empirical distribution mod- 
ls learned for the signal and other public sequences from the
ataset of Emerson et al. [ 19 ]. The empirical probability distribu-
ions differed between the presumed signal sequences (Fig. 3 A)
nd remaining public sequences (Fig. 3 B), wher e the pr esumed
ignal sequences (full AIRs) occurred in a r elativ el y higher fr ac-
ion of the sampled population, unlike a large majority of the
ublic sequences . T he stacked bars show that a lar ge fr action of
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he public sequences is present in a small fraction of the sam-
led population. A small fraction of the sequences with high gen-
r ation pr obability ar e unsur prisingl y observ ed in higher fr ac-
ions of the sampled population. A more granular representa-
ion of the learned empirical distribution models is shown in
upplementary Figures S4 and S5 . 

By analyzing the empirical probability distributions of popula-
ion incidence for receptors based on datasets of different sample
izes ( n = 50, 100, 200 r epertoir es), we observ ed that the a ppr ox-
mation of the true population estimates of r ealistic r eceptor se-
uence sharing impr ov ed with incr eased sample size. We also no-
iced that a smaller sample size can spuriously inflate the learned
opulation incidence of public sequences ( Supplementary Fig. S6 ).
 hus , when sim ulating moder ate to lar ge sim ulated datasets (e.g.,
 ≥ 200) that are typically used when developing/benchmarking
L methods, learning the models based on as large sample sizes

s possible can increase the realism of population incidence of
ublic sequences. 

ase Studies 

o demonstrate how simAIRR may be used to generate bench-
ark datasets for AIRR-ML predictions, we performed 2 separate

ase studies. 

ase study 1: Prior assumptions on the similarity
f immune sta te–associa ted sequences 

n the first case study, we made prior assumptions on how the
mmune state–associated sequences that differentiate the posi-
ive and negative class labels are similar. Specifically, we assumed
hat immune state–associated sequences share sequence similar-
ty in the form of shared contiguous amino acid subsequences of
ize 4 (4-mers). 

First, we generated independent AIRR datasets each contain-
ng 200 r epertoir es using simAIRR, where the average sequence
ount was 119,633 ± 1,313. The datasets were simulated in such a
ay that 100 r epertoir es carried condition-associated sequences,
ence labeled as a positive class, whereas the negative-labeled
 epertoir es did not r eceiv e an y condition-associated sequences,
lthough they were not checked for carrying those specific se-
uences just by chance. We varied the average witness rate in dif-
erent experiments to observe how the performance of the tested
L method varies depending on the average witness rate. We as-

umed that the signal sequences carry any one of the three 4-
ers: WKDY , YREV , and ERFY . For this, instead of the implanta-

ion of k -mers as in our pr e vious study [ 59 ], we selected sequences
nriched for these 4-mers by querying a large set of r efer ence se-
uences for matching patterns. To make such a pattern-matching
rocess easy for users if need be, we provide a simple Python script
nd a corresponding tutorial that shows how to generate a large
et of r efer ence sequences and r etrie v e the pattern-matched se-
uences of interest with minimal effort and with v ery fe w lines
f code specification [ 60 ]. Notably, we here did not exclude the
ow probability events of a signal sequence carrying 2 or all the 3
 -mers of interest by chance, but the users can impose such addi-
ional sanity c hec ks if need be . T he rationale behind the choice of
he selected k -mers was to compare the performance of ML meth-
ds on benchmark datasets with similar c har acteristics (witness
ates and sample sizes) in our pr e vious study that used the same
 -mers . T he signal sequences were added to the positive-class
 epertoir es using the simAIRR a ppr oac h, wher e the observ ed fr e-
uency of signal sequences in the dataset depends on the gener-
tion probability distributions calibrated based on real-world ex-
erimental data. Since the signal sequences are assumed to share
ny of the 3 chosen 4-mers, we used a suitable ML method that
atches the assumption that the signal is in the form of 4-mers

s in our pr e vious study [ 59 ]. Specificall y, we used a highl y r egu-
arized logistic r egr ession model that is well optimized for hyper-
arameters on a 4-mer encoded r epr esentation of the amino acid
equences. To compare with the reported performance metrics of
merson et al. [ 19 ], immuneML case studies [ 61 ], and Motifbooster
 62 ], we here chose to present the area under receiver operating
 har acteristic curv e (ROC AUC) obtained thr ough nested cr oss-
 alidation. We observ ed that the performance of the suitable ML
ethod was close to perfect when the witness rate was equal to

r above 10 sequences per 10 5 sequences (Fig. 4 A). When the wit-
ess rate was 5 sequences per 10 5 sequences, we observed an ROC
UC of around 0.8 on average (Fig. 4 A). The observed performance
etrics of the ML method at the r espectiv e witness r ates wer e in

trong alignment with our prior expectations . T his is because we
r e viousl y pr ofiled the performance of the same ML method on
atasets across a wide range of witness rates (including the wit-
ess r ates explor ed in this case study) and similar assumptions
f signal sequences ( k -mer sharing) [ 59 ] and thus knew before-
and which level of performance to expect. Notably, the perfor-
ance of ML methods that solely focus on the desired signal and

gnor e sim ulation artifacts does not necessarily have to be dif-
erent between simAIRR-generated data and data generated by
ther simulation approaches. We have elaborated on the compa-
able/similar performance of ML models on simAIRR-generated
ata vs data generated with other simulators in the Discussion
ection. 

ase study 2: No prior assumptions on the 

mmune sta te–associa ted sequences 

n the second case study, we did not make any prior assumptions
 egarding the imm une state–associated sequences, specificall y in
hat way they are similar. We r etrie v ed sequences that were re-
orted to be specific to the hepatitis C virus (HCV) from VDJdb
 54 ], thereb y av oiding making any prior assumptions regarding the
imilarity of signal sequences. We used a uniform random sample
f the HCV-associated sequences as the pool of signal sequences
ntroduced into the positive-labeled repertoires. 

Unlike in the first case study, we fixed the witness rate as con-
tant in all the experiments (to have on av er a ge 10 immune state–
ssociated sequences per a ppr oximatel y 10 5 sequences). Rather,
e varied the sample size (number of examples) of the class-
alanced AIRR datasets (200, 400, or 600 examples per dataset)
o observe how the performance of the tested ML method varies
epending on the sample size . T he class balance and signal intro-
uction were similar to case study 1, where 50% of the r epertoir es
arried signal sequences. Since we do not have prior knowledge
f the sequence similarity patterns of the signal sequences, we
sed a suitable ML method that assumes the full sequence iden-
ity as a potential signal r epr esentation [ 19 ]. Specificall y, we used a
robabilistic binary classifier based on phenotype burden [ 19 ] im-
lemented in imm uneML [ 61 ], wher e the hyper par ameters wer e
elected through nested cross-validation. To compare with the re-
orted performance metrics of Emerson et al. [ 19 ], immuneML
ase studies [ 61 ], and Motifbooster [ 62 ], we her e c hose to pr esent
OC AUC obtained through nested cross-validation. The findings
f the performance metrics align well with the known behavior of
he probabilistic binary classifier method [ 19 ], where prior studies
 eported a dr op in the performance of the method at lo w er sample

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad074#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad074#supplementary-data
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F igure 4: P erformance of ML methods on benc hmark datasets gener ated b y simAIRR. (A) P erformance estimates (R OC AUC) of a highly penalized 
logistic r egr ession model (on the y-axis) that is optimized well for hyper par ameters in a binary classification of balanced, labeled AIRR datasets 
(number of examples = 200) encoded as 4-mers, where the signal in positive class examples is composed of full sequences that share any of the three 
4-mers: WKDY , YREV , and ERFY. The r ationale behind the c hoice of the selected k -mers was to compar e the performance of ML methods on benc hmark 
datasets with similar c har acteristics (witness r ates and sample sizes) in our pr e vious study that used the same k -mers . T he full sequences sharing any 
of the 3 chosen 4-mers were obtained by generating a large number of sequences and retrieving only those sequences that carry the 4-mers through 
pattern matching. The subpanels represent witness rates, where we vary whether the positive-labeled repertoires carry 5, 10, or 20 immune 
state–associated sequences per a ppr oximatel y 10 5 sequences. In each subpanel, we simulated 3 independent datasets (named Dataset-1, Dataset-2, 
and Dataset-3) to gauge the variation in performance on similar dataset characteristics . T he spread of the performance metrics on the y-axis shows 
the variation of performance obtained through nested cross-validation. Overall, the findings indicate that when the witness rate is ≥10 sequences per 
10 5 receptor sequences, the performance of a suited ML method was close to perfect, while it dropped when the witness rate was smaller than 10 
sequences per 10 5 receptor sequences. A similar trend of performance drop was observed in our previous study at such low witness rate (see Fig. 3 a in 
[ 59 ]). (B) Performance estimates (ROC AUC) of a probabilistic binary classifier [ 19 ] implemented in immuneML [ 61 ] (on the y-axis) in a binary 
classification of balanced, labeled AIRR datasets (constant witness rate of 10 immune state–associated sequences per approximately 10 5 sequences). 
The signal in positive class examples is composed of full sequences that are reported to have specificity for HCV . The HCV-specific sequences were 
downloaded from VDJdb [ 54 ]. The subpanels represent datasets of different sample sizes of balanced AIRR datasets. In each subpanel, we simulated 3 
independent datasets (named Dataset-1, Dataset-2, and Dataset-3) to gauge the variation in performance on similar dataset characteristics . T he 
spread of the performance metrics on the y-axis shows the variation of performance obtained through nested cross-validation. Overall, the findings 
indicate that the performance dropped steadily with a decrease in sample size, and a similar trend was shown earlier by Pa vlo vi ́c et al. on datasets 
with similar study design c har acteristics (see Fig. 2 b in [ 61 ]). 
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izes [ 61 , 62 ]. When the sample size r eac hed a similar le v el as in
merson et al. [ 19 ] ( n = 600), the ROC AUC r eac hed a comparable
e v el as reported in the original study [ 19 ] and other studies that
 eanal yzed the same dataset [ 61 , 62 ] (Fig. 4 B). 

ethods 

utlier measure and likelihood r a tio 

e computed 2 different quantitative measures for each public
equence that could potentially aid in the identification of im-
une state–associated sequences independently. First, an out-

ier score is computed using a 2-ste p process: (i) gi ven the gen-
r ation pr obability ( p gen ) and the av er a ge unique number of se-
uences in a r epertoir e (number of trials), we computed the prob-
bility of observing a public sequence at least once in a reper-
oire ( p obs ) using the cum ulativ e density function of the bino-

ial distribution. (ii) Given the probability of observing a public
equence at least once in a r epertoir e ( p obs ) and the number of
ositiv e labeled r epertoir es, we further computed the probabil-

ty of observing a public sequence in the same or higher num-
er of r epertoir es as it was observed for a given dataset ( p count ). A
egative log 10 of p count is referred to as an outlier score through-
ut the article. Second, a likelihood ratio is computed as the ratio
f the empirical probabilities of incidence in positive class exam-
les (r epertoir es) to negativ e class examples. Giv en P positiv e class
xamples and N negative class examples, c P number of occur-
ences in positive class examples, and c N number of occurrences
n negative class examples, the likelihood ratio (LR) is defined as

R = 

c P 
P 

c N 
N 

. 

odels of realistic population incidence of AIR 

equences 

o learn the empirical relation between generation probability
nd population incidence of sequences from a real-world exper-

mental dataset [ 19 ], we first computed the r elativ e fr equencies
nd generation probabilities of each unique sequence, including V
nd J gene masks, in a public experimental dataset [ 19 ]. For count-
ng the population sequence frequencies, we used CompAIRR [ 35 ],
nd for computing gener ation pr obabilities, we used OLGA [ 44 ],
s described further below. The r elativ e fr equencies r efer to the
roportion of the population carrying a particular sequence. We
erived the relation between generation probability and popula-
ion incidence of sequences separ atel y for the perceived true sig-
al sequences reported by the original study [ 19 ] and for all the
emaining public sequences . For this , we discretized the entire
ange of generation probabilities and population incidences into
iscr ete interv als, and we placed eac h unique sequence into its
orresponding bin of generation probability and population inci-
ence. With that, we obtained empirical probability distributions
escribing what fraction of the total unique sequences with a cer-
ain gener ation pr obability distribution occurs at certain popula-
ion incidence le v els in a sample. 

orrection of population incidence of public 

equences and construction of 
ntigen-experienced-like repertoires 

ndividuals accumulate immune events over a lifetime . T hus ,
napshots of AIRRs, as acquired through targeted immune re-
eptor sequencing from donor blood samples, capture antigen-
xperienced r epertoir es that shar e not onl y public sequences
hat are easier to generate but also other pools of common im-
 une e v ent–associated sequences. Ho w e v er, in silico–gener ated
ynthetic r epertoir es fr om a method like OLGA behav e lik e nai ve
 epertoir es that did not experience any immune events. Synthetic
aiv e r epertoir es shar e fe wer unique sequences and thus tend to
arry a lo w er pr oportion of public sequences compar ed to r eper-
oir es fr om experimental datasets. To corr ect the pr oportion of
ublic sequences and their population incidence le v els, we used
he following pr ocedur e: we first gener ate a lar ge number of AIR
equences using the V(D)J recombination model chosen by the
ser and retain only unique sequences. Notably, the user can
 hoose fr om an y one of the V(D)J r ecombination models supplied
y default with OLGA [ 44 ]. We then make a user-desired propor-
ion of sequences public (10% of the sequences is the default op-
ion to match experimental datasets). The population incidence
e v els (how fr equent eac h unique sequence will be) for the public
equences follows the learned models of realistic population inci-
ence of AIR sequences based on a pr e viousl y published large co-
ort study of TCR r epertoir es [ 19 ]. As the publicness of sequences
an vary between different species , chains , cell type and their sub-
ets, and pairedness of sequences, the users need to calibrate the
 elation between gener ation pr obability and population incidence
f sequences when intending to simulate datasets other than hu-
an TCR β c hain sequences, whic h is the default models supplied
ith simAIRR ( RRID: SCR_023956). The user can supply custom
odels for the dependence between gener ation pr obability and

opulation incidence le v els calibr ated based on the experimental
atasets of their choice. 

ssessing the feasibility of a user-desired 

itness r a te 

ow simAIRR assesses the feasibility of a user-desired witness
ate is best explained with an example. For the sake of an illustra-
ive example, we use small numbers for simulation parameters.
f the user chooses a pool of 3 sequences as the signal that sepa-
 ates imm une state labels and wants them to be introduced into
he positiv e-labeled r epertoir es ( n = 100) of a r epertoir e dataset
 n = 200) such that each positively labeled repertoire carries a to-
al of 5 signal sequences on av er a ge (desir ed witness r ate), one
hould be able to introduce a total of 500 instances of the sig-
al (100 × 5) from the pool of 3 sequences. Based on the empiri-
al knowledge of dependence between gener ation pr obability and
opulation incidence, if each signal sequence cannot be seen in
ore than 30% of the total sample size, the pool of 3 sequences

ogether cannot be observ ed mor e than 180 times (3 × 200 × 0.3)
 v en if the sequences have a high gener ation pr obability. In suc h
 case, it is considered infeasible to meet the user-desired witness
ate (of 5 signal sequences per repertoire, amounting to a desired
otal of 500). simAIRR provides detailed statistics in such a case
o help the user in reconfiguring the simulation parameters . T his
ould mean that either the user supplies a larger pool of potential
ignal sequences or modifies the desired witness rate . To a void ex-
ensive computations, users could first use the feasibility assess-
ent mode to make sure that the simulations are feasible given

he user-supplied simulation parameters. 
Of particular note, the pool of potential signal sequences that

ne starts with plays a significant role in determining the feasibil-
ty of ac hie ving the desired witness rate of signal in the simulated
atasets using simAIRR’s a ppr oac h because of the reliance of pos-
ible incidence le v el of sequences on the gener ation pr obability
f the individual sequences . T hus , unlike in naive simulation ap-
r oac hes, the job of car efull y selecting a pool of signal sequences

s delegated to the user. 

https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:
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Construction of synthetic baseline repertoires 

When constructing synthetic baseline r epertoir es as a reason- 
able proxy for real-world experimental repertoires, we ensured 

the nativeness of the simulated AIR sequences in terms of po- 
sitional biases, amino acid usage, and sequence length distribu- 
tions . For this , w e generated AIR sequences accor ding to recom- 
bination models provided by OLGA [ 44 ]. Note that for the analy- 
ses of this article, we generated human T-cell beta chain recep- 
tor datasets, while for simAIRR simulations in general, any of the 
4 default V(D)J models supplied by OLGA [ 44 ] (humanTRB, hu- 
manTRA, humanIGH, mouseIGH) can be used. Future versions of 
simAIRR will also allow the usage of user-supplied AIR sequences 
to construct the synthetic baseline r epertoir es. 

Computation of generation probability 

The generation probabilities of AIR sequences are computed using 
OLGA [ 44 ] with the default gener ativ e models of the V(D)J recom- 
bination model while including both the masks for V and J genes 
for each sequence. For the analyses of this article, we computed 

the gener ation pr obabilities using the default V(D)J r ecombination 

model of the human T-cell beta chain receptor. Notably, any of the 
4 default V(D)J recombination models supplied with OLGA [ 44 ] can 

be used as mentioned abo ve . 

ML models, training, selection, and e v alua tion 

We used 2 different ML methods in the case studies. In the first 
case study, the signal sequences share any of the 3 chosen 4-mers.
For those datasets, where the signal can be ca ptur ed by 4-mers, we 
used an ML method that matches with the described at length in 

our pr e vious study [ 59 ]. Briefly, we used a highly regularized lo- 
gistic r egr ession model on a 4-mer encoded r epr esentation of the 
amino acid sequences . T he hyper par ameters for the model were 
c hosen thr ough nested cr oss-v alidation. For details on the imple- 
mentations and hyper par ameter optimizations, see r ele v ant de- 
scriptions in [ 59 ]. In the second case study, we did not have prior 
knowledge of the sequence similarity patterns of the signal se- 
quences . T her efor e, we used an ML method that assumes the full 
sequence identity as a potential signal r epr esentation [ 19 ]. Specif- 
ically, we used a probabilistic binary classifier based on pheno- 
type burden [ 19 ] implemented in immuneML [ 61 ]. We used 5-fold 

nested cr oss-v alidation and an exhaustiv e grid searc h for hyper- 
parameter optimization as in our previous study [ 59 ] for both ML 
methods. Balanced accuracy was used as the performance metric 
for optimization during training, and the ROC AUC was reported 

for the sake of comparison with pr e vious studies that used the 
same metric. 

Querying sequences enriched for k -mer-like 

patterns 

In the first case study, we assumed that the true signal sequences 
share a similarity in terms of shar ed k -mers. Specificall y, the sig- 
nal sequences were required to carry any 1 of the 3 chosen k -mers: 
WKDY , YREV , and ERFY. In our pr e vious study [ 59 ], we implanted 

k -mers in the central portion of the CDR3 amino acid sequences 
to obtain such signal sequences. Ho w ever, the implantation of k - 
mers can introduce additional artifacts by destroying the biolog- 
ical properties of the sequence, which the ML methods can ex- 
ploit as another way of shortcut learning. To avoid that, in this 
study, we queried a large set of r efer ence sequences to r etrie v e all 
those sequences that carry a k -mer of interest. To make such a 
pattern-matc hing pr ocess easy for the users if need be, we pro- 
vide a simple Python script based on the bionumpy library [ 63 ] 
nd a corresponding tutorial that shows how to generate a large
et of r efer ence sequences and r etrie v e the pattern-matched se-
uences of interest with minimal effort and with very few lines of
ython code [ 60 ]. We also provided corresponding examples using
nix grep. In the recipe, we have shown how to construct a com-
lex set of signal sequences enriched for multiple criteria like the
r esence of m ultiple subsequence patterns within the sequences
nd gene usage . T he code recipes not only require a minimal cod-
ng effort but are also efficient and have a minimal runtime. For
nstance, the wall time for generating 10 million sequences when
sing 40 processes was less than 1 minute. Similarly, the execu-
ion wall time for querying the 10 million sequences for selected
 -mer patterns was less than 1 minute. Note that the query time
an increase with the number of queried patterns for any pattern-
atching tool, including Unix gre p. A k e y benefit of the a ppr oac h

escribed here is that once a large number of reference sequences
r e gener ated and stor ed on disk, they can be queried m ultiple
imes. 

ustomiza ble sim ula tion par ameters 

ll simulation parameters of simAIRR are customizable. Some of 
he k e y customizable parameters include 1 of the 4 possible V(D)J
ecombination models, the number of repertoires and the pro- 
ortion of positive class-labeled r epertoir es , a v er a ge sequencing
epth, the proportion of public sequences, and witness rate. In ad-
ition, the users are required to supply a pool of sequences that
ill be considered true signal sequences. It is also possible to con-

rol the number of sequences that will be used as a true signal. 

oc k er container to improve reproducibility 

o ease the installation issues, allow quick testing, and improve
ortability, we supply a Docker image [ 64 ] with a predefined com-
uting environment maintaining all the dependencies r equir ed 

or the execution of simAIRR w orkflo ws with minimal overhead.
he Doc ker ima ge is hosted on Doc kerHub and can be accessed
t [ 64 ]. 

iscussion 

ne major challenge in using simulated datasets for benchmark- 
ng ML methods is to pr e v ent shortcut learning opportunities
 65 ]. Shortcut learning may lead to biased benchmarking of AIRR-

L methods, r educed gener alizability of the methods, and r e-
roducibility crisis [ 66 ]. Our study shows that an intuitive and
tate-of-the-art a ppr oac h to gener ating sim ulated AIRR benc h-
ark datasets can introduce signal artifacts that can be exploited

or undesired shortcut learning by AIRR-ML methods. We refer to
he introduced signal artifact as the generation probability discor- 
ance bias, where a large disparity exists in the generation prob-
bility distributions between the introduced true signals and the 
emaining public sequences . T his can allow ML methods to ex-
loit this bias and learn shortcuts instead of the true sequence
atterns associated with immune states in the data. An analogy 
f such shortcut learning from the image recognition domain is
n ML model trained to detect different types of animals in pic-
ures (like cats and dogs) identifying the animals based on the
ac kgr ound color of the images rather than learning the patterns
ssociated with animal objects. 

To mitigate this pr oblem, we de v eloped simAIRR, a nov el sim-
lation strategy that constructs antigen-experienced-like base- 

ine r epertoir es in the sense of the publicity-gener ation pr oba-
ility relation. It introduces signals in the repertoires by follow-

ng the models of realistic population incidence of AIR sequences
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alibr ated fr om r eal-world experimental datasets . T his a ppr oac h
nsures that the simulated datasets are not biased and are in-
tead r epr esentativ e of real-world scenarios. Our findings sug-
est that this novel simulation approach effectively mitigates the
hortcut opportunities that can arise through naive simulation
 ppr oac hes. 

One k e y benefit of simAIRR’s a ppr oac h is the possibility of not
aking any prior assumptions regarding the similarity or com-
onality of immune state–associated sequences that will be used

s true signals. By utilizing known antigen-specific sequences
rom public databases (e.g., VDJdb [ 54 , 67 , 68 ]) or other experimen-
ally determined antigen-specific sequences as the pool of signal
equences, users can r efr ain fr om making prior assumptions . T his
ill be useful in r epr esenting r eal-w orld scenarios w ell because

here is currently very limited knowledge of sequence similarity
atterns between sequences selected for a common antigen. Ex-

sting AIRR-ML methods make varying assumptions regarding the
imilarity patterns of sequences selected for a common antigen.

hile some methods assume that signal sequences share sub-
equence patterns ( k -mers) [ 21 , 23 , 29 , 59 , 69–71 ], other studies
ssume that immune receptor binding is determined by the full
DR3 sequence and is best a ppr oac hed by learning a ppr opriate
imilarity metrics for full CDR3s [ 19 , 38 , 72 ]. Using case studies,
e demonstrated the utility of simAIRR in generating benchmark
atasets for immune state prediction problems following varying
ssumptions regarding true signals: that is, it could be assumed
hat the true signal sequences share subsequence patterns ( k -

ers , gapped k -mers , hamming distance , etc.) or known antigen-
ssociated sequence pool could be used with no a priori assump-
ions. 

The cases presented in this study demonstrate that simAIRR
an generate AIRR benchmarking datasets for immune state pre-
iction problems that represent real-world scenarios well. The be-
avior of ML methods on the generated benchmarking datasets
atches the behavior of the same methods on real-world experi-
ental datasets at different sample sizes and witness rates . T his

uggests that the generated benchmarking datasets sufficiently
atc h the r eal-world experimental datasets in terms of signal

nd noise. Often, benchmarking of computational methods pub-
ished as part of articles presenting novel methods identifies the
r oposed nov el method(s) as a winner(s), lar gel y owing to benc h-
arking not being fully neutral [ 73 , 74 ]. Ho w ever, neutral bench-
arking is especially valuable for the scientific community to
ake the e v aluation of the methods more rational and to estab-

ish standards on a scientific basis [ 73 , 74 ]. We encour a ge AIRR-ML
 esearc hers to e v aluate the performance of novel ML methods on
eutr al benc hmarking datasets de v eloped by other r esearc hers to

mpr ov e the generalizability of methods. For instance, the bench-
arking datasets used in the case studies and similar simulation

arameters at smaller sample sizes and lo w er witness rates rep-
 esent suited benc hmarking datasets for unbiased performance
 v aluation of novel AIRR-ML methods. These scenarios also rep-
esent the cases where novel AIRR-ML method development is
eeded because the performance of state-of-the-art ML methods
r ops compar ed to easier scenarios. Notably, the empirical per-
ormance maps of baseline ML models across a wide range of
tudy design and ML challenges as profiled in our previous study
 59 ] need to be r ee v aluated with mor e r ealistic sim ulated datasets
such as the ones generated in this study) given the strong prior
ssumptions on what constitutes a signal. 

Machine learning models’ performance on AIRR data gener-
ted by different simulation approaches (including simAIRR) can
e comparable if the simulations avoid creating shortcut learn-
ng opportunities thr ough br oken r ealism. For a mac hine learn-
ng problem, the goal of any AIRR simulator, such as simAIRR, is
o introduce specific signals (e.g., sequence patterns) into certain
 epertoir es, but ther e is no consensus, to our knowledge, on what
onstitutes immune signals . T hus , simulation tools create coun-
erfactual worlds through various assumptions of immune signals
o enable the de v elopment of assumption-a gnostic ML methods.
L methods that focus on the desired signal and ignore simula-

ion artifacts should perform similarly on datasets generated by
imAIRR and pr e vious sim ulation a ppr oac hes. Ho w e v er, if a sim-
lation a ppr oac h intr oduces artifacts by de viating fr om r ealistic
iological properties, it can provide shortcut learning opportuni-
ies that certain ML methods may exploit. In conclusion, our view-
oint is that the performance of well-behaving ML methods does
ot necessaril y hav e to be differ ent between simAIRR-gener ated
ata and data generated by other sim ulation a ppr oac hes, but pr e-
ious a ppr oac hes should be open for shortcut learning opportuni-
ies, where it can be hard to know whether or not they have been
xploited by a complex ML model. Mor eov er, it is worth noting
hat simAIRR can serve as a corrective plug-in for other simula-
ion a ppr oac hes (e.g., [ 46 ]), effectiv el y mitigating shortcut learning
pportunities arising as a consequence of the perturbed degree of
ublicness of receptor sequences. 

An important aspect to k ee p in mind is that the default mod-
ls supplied with simAIRR with respect to the relation between
ener ation pr obability and the population incidence of public se-
uences are calibrated based on human TCR β chain sequences.
o w e v er, the ma gnitude of public r esponses can v ary for other
IRR loci depending on the species , cell types , cell subsets , chains ,
nd pairedness of sequences [ 13 ]. T hus , when intending to simu-
ate AIRR datasets of other AIRR loci, different species, cell types,
nd chains, users need to calibrate the relation between gener-
tion probability and population incidence of sequences on cor-
esponding experimental datasets and supply such custom mod-
ls to simAIRR. To make this process easier, we provided console
cripts through another add-on Python package [ 75 ]. The file for-
ats for the custom models are described in simAIRR’s documen-

ation. Note that the population incidence of sequences can be
omputed with CompAIRR [ 35 ], and the generation probability of
equences can be computed using OLGA [ 44 ] with minimal effort.

To learn models reflecting the realistic population incidence
of signal sequences and remaining public sequences), we used
he largest TCR β dataset currently publicly available [ 19 ] with the
ollowing desired properties: a case-control design in which there
ere no known protocol differences between the cases and con-

rols and an optimal sample size to maximize the exactness of
he estimates of population incidence of AIR sequences. We were
ot able to extend the testing to B-cell heavy chains because of
he lack of availability of public IGH repertoire datasets of the
forementioned criteria in public databases like immuneACCESS
 76 ] and iReceptor [ 77 ]. A limited number of datasets with a case-
ontr ol design, pr otocol differ ences between cases and contr ols
hen a vailable , small sample sizes , or larger portions of missing
ata were some of the problems that were encountered when try-

ng to extend the testing to IGH r epertoir es. Note that the a ppr ox-
mation of the true estimates of realistic population incidence of
IR sequences impr ov es with incr eased sample size, and models

earned on datasets of smaller sample size (e.g., 50 r epertoir es)
an spuriously inflate population incidence of public sequences
 Supplementary Fig. S6 ). IGH r epertoir es differ from TCR β reper-
oires in terms of diversity introduced through somatic hyper-

utations (SHMs). When considering the consequence of SHM-
nduced diversity for an ML problem, as compared to the pres-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad074#supplementary-data
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ence of identical public sequences in TCR βs within certain phe- 
notypes, IGH r epertoir es ar e known to be c har acterized by clonal 
lineages and thus a “public clonotype” definition for BCRs has 
to r el y on some form of similarity measure between sequences.
For instance, in recent studies that observ ed conv er gent B-cell 
clonotypes as a response to SARS-CoV-2 [ 78 , 79 ], 85% amino acid 

sequence similarity of CDR-H3 was used to identify conv er gent 
clonotypes. Preselection sequence generation tools (like OLGA [ 44 ] 
and its parent tool, IGoR [ 45 ]) can generate an arbitrary number 
of preselection sequences based on learned statistics of V(D)J re- 
combination and SHM, and simAIRR can gener ate IGH r epertoir es 
that are akin to naive BCR without the ad ditional di versity aris- 
ing because of SHM. To introduce SHM-induced diversity into the 
r epertoir es, an extension to simAIRR is needed in the future to 
have the possibility of public clonotypes not being identical but 
similar by some distance as stated abo ve . 

A plethora of studies have compared repertoires of a common 

immune state and found identical or similar sequences detected 

in many individuals [ 6–11 ]. AIRR-ML methods rely on this obser- 
vation that condition-associated sequences or similar sequences 
will be observed in a considerable fraction of the sample size that 
shares the immune state . T his o verlap of similar signal sequences 
acr oss r epertoir es is a post-V(D)J r ecombination phenomenon. Al- 
though r epertoir e gener ation models of B-cell r epertoir es hav e 
been suggested to be individual-specific [ 80 ] (moder atel y medi- 
ated by a high degree of polymorphisms in IGHV genes), condition- 
associated similar sequences can be shared among individuals 
of a common immune state [ 6–11 ]. simAIRR simulates this ex- 
act phenomenon of shared similar sequences across repertoires 
while not allowing the sharing pattern to exceed what can be 
possible given a rough indication of the generation probability of 
the sequences. Pr e vious r esearc h has suggested a high degr ee of 
concordance in r epertoir e gener ation models acr oss individuals 
[ 45 , 57 , 81 , 82 ], but recent observations provided evidence that the 
gener ation pr obability of sequences, in some cases, can vary up 

to or more than 3 orders of magnitude due to individualized re- 
combination models [ 80 ]. It remains to be investigated how the 
individualized recombination models affect the overlap of pub- 
lic sequences at a population le v el and subsequently the pattern 

r ecognition ca pacity of ML models. If deemed necessary, futur e 
impr ov ements of simAIRR should use individualized recombina- 
tion models. 

An important consideration for AIRR data simulation for ML- 
based prediction problems in the context of individualized reper- 
toir e gener ation models is what is the exact consequence of in- 
di vidualized re pertoire general models at a population le v el. Al- 
though there exists limited knowledge on this aspect, we are 
allowing ourselves to speculate on the possible consequences. 
As indi vidualized re pertoire generation models and the gen- 
er ation pr obability of sequences ar e tightl y r elated, some se- 
quences that can be thought to be generated with high prob- 
ability, in general, might not be occurring in individual reper- 
toires with the same probability, leading to less overlap of se- 
quences between r epertoir es at a population le v el. In simAIRR,
users can customize the degree of sharing of public sequences 
acr oss r epertoir es, meaning that the proportion of unique se- 
quences in a r epertoir e dataset that is public can be controlled. A 

suitable default for this customizable parameter can be estimated 

from experimental datasets as a post-VDJ recombination model 
c har acteristic. 

To minimize the effort needed to construct a complex set of sig- 
nal sequences, if needed, we provided simple but efficient Python 

recipes in the documentation of simAIRR. The provided tutorials 
ho w ho w to generate a large set of r efer ence sequences and query
hem to r etrie v e a complex set of signal sequences enriched for

ultiple criteria like the presence of multiple subsequence pat- 
erns within the sequences (e.g., k -mers) and gene usage. A major
dv anta ge of the described a ppr oac h is that once a large num-
er of r efer ence sequences ar e gener ated and stor ed on disk, they
an be queried many times. Ho w ever, in some cases (e.g., when
 v aluating a particular behavior of a de v eloped ML method), one
ight need to construct signal sequences enriched for very rare

equence patterns. To obtain a sufficiently large number of se-
uences sharing such rare sequence patterns, one may have to
enerate and query many millions of sequences. In this article,
e did not measure the execution time for mining r ar e sequence
atterns from a set of r efer ence sequences. If the execution time is
low to mine r ar e sequence patterns, an alternative solution may
e to implant sequence patterns (e.g., k -mers) while avoiding the
ositional biases using existing tools [ 41 ] or as we did in our pre-
ious study [ 59 ]. Ho w e v er, note that the implantation of sequence
atterns may lead to another type of shortcut learning opportu-
ities, and thus it is important to thor oughl y assess the potential
itfalls before using implantation, particularly in benchmarking 
ompetitions. 

simAIRR curr entl y does not support the simulation of paired
 hain r epertoir es and clonal frequencies of receptors in reper-
oir es. Notabl y, the clonal frequencies of AIRs have been suggested
o follow a power law distribution [ 83 ]. Future improvements of
imAIRR should also simulate clonal frequencies. Ho w ever , fur -
her empirical evidence from independent studies on the useful- 
ess of po w er law in describing clonal frequency distributions in
ultiple cell types , subsets , and species is needed in this connec-

ion. Also note that simAIRR focuses only on simulating datasets
or immune state prediction problems at the repertoire level but
oes not focus on receptor–specificity prediction problems. An- 
ther notable unmodeled aspect of simAIRR is the possible de-
endence between AIR sequences in real-world repertoires. Par- 
icularly in the context of this study, there may be dependence
etween outlier sequences in r eal-world r epertoir es because of a
ossible association with the same immune stimulus . T here ma y
lso be dependence between outlier and signal sequences where,
or example, a particular antigen experienced in the past primes
or a specific response to the condition being in vestigated. T he
ack of such dependence between public AIR sequences within 

imAIRR-gener ated r epertoir es does not impact simAIRR’s objec-
ive of mitigating shortcut learning opportunities for ML methods 
hen sim ulating r epertoir es of contr asting imm une states. How-
 v er, understanding and subsequent modeling of the dependence
etween AIR sequences within r epertoir es of real-world experi-
ental AIRR datasets is warranted in future studies. 

onclusion 

n summary, the contribution of this study is bringing to light
ot only the potential shortcut learning opportunity that can 

rise with the state-of-the-art way of simulating AIRR datasets 
ut also a nov el sim ulation a ppr oac h implemented as a Python
ac ka ge that can help avoid potential shortcut learning opportu-
ities for ML methods. Unlike state-of-the-art naive simulation 

 ppr oac hes, a k e y benefit of simAIRR’s a ppr oac h is the possibil-
ty of not making any prior assumptions regarding the similar-
ty or commonality of immune state–associated sequences that 
ill be used as true signals . T he AIRR datasets simulated using

imAIRR were similar to real-world experimental datasets based 

n the performance of ML methods on both types of datasets. We
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uggest testing new ML methods on neutr al benc hmark datasets
ike simAIRR’s to aid unbiased e v aluation. 

raphics 

gplot2 version 3.3.6 [ 84 ] was used for gr a phs, and Inksca pe v er-
ion 1.0.1 [ 85 ] was used for illustrations. 

vailability of Source Code and 

equirements 

� Project name: simAIRR 

� Pr oject homepa ge: https:// github.com/ KanduriC/ simAIRR
[ 86 ] 

� Operating system(s): Platform independent 
� Pr ogr amming langua ge: Python 

� Other r equir ements: Python 3.8 or higher 
� License: GNU AGPL version 3 
� Resear ch Resour ce Identification Initiative ID (RRID):

SCR_023956 
� biotoolsID: biotools:simairr 

a ta Av ailability 

napshots of the frozen codebase with a permanent DOI are avail-
ble on Zenodo database [ 87 ]. 

A Doc ker ima ge of simAIRR is av ailable on doc ker hub at [ 64 ],
nd configuration files to r epr oduce the sim ulations and ML mod-
ls of the use cases ar e av ailable on a separ ate r epository on
itHub at [ 75 ]. Simulated datasets used in the case studies with
ermanent DOI ar e av ailable on the NIRD database at [ 88 ]. A sim-
le Python recipe and tutorial for generating sequences enriched
or k -mer-like sequence patterns to be used as true signal are
vailable on the simAIRR documentation at [ 60 ]. An archival copy
f the code and supporting data is available via the GigaScience
epository, GigaDB [ 89 ]. 

dditional Files 

upplementary Fig. S1. Gener ation pr obability discordance bias
n the naive simulation of AIRR datasets at different sample sizes.

e r andoml y subsampled r epertoir es of differ ent sample sizes
 n = 50, 100, 200) with balanced labels from a real-world experi-

ental AIRR dataset ( n = 683 r epertoir es; 307 positiv e class exam-
les and 376 negative class examples , a verage unique number of
CR βs per r epertoir e ∼200,000) [1] and repeated the experiments
hown in Fig. 2 of the main text. For comparison, we also included
imilar-sized data from naive simulations . T he findings at differ-
nt sample sizes are shown in different rows of the chart. Similar
o the observations of Fig. 2 , the outlier measure (y-axis) alone is
 poor classifier of presumed true signals e v en in the subsampled
eal-world experimental data at different sample sizes (charts on
he left column). On the contrary, the outlier measure alone has
ery high precision in synthetic datasets generated through the
aiv e sim ulation a ppr oac h described in Fig. 1 B.ii of the main text.
upplementary Fig. S2. Absence of generation probability discor-
ance bias in a real-world experimental dataset of a small sam-
le size . T he phenomenon of the absence of gener ation pr obabil-

ty discordance bias in real-world experimental data was also ob-
erved on another TCR β dataset with a m uc h smaller sample size
compared to [1]) of 79 cases and 13 controls with/without pe-
iatric COVID-19 from [2]. Sacco et al. assayed TCR β data from
ediatric patients with COVID-19 who either pr ogr essed to de-
 elop m ultisystem inflammatory syndr ome or not (together 79
ases) and matched healthy controls (13 controls). In the origi-
al article of Sacco et al., TCR β data of COVID-19–positive cases
ere not compared against healthy controls to identify poten-

ial public clones. Ho w e v er, her e, for the sake of investigating the
resence/absence of generation probability discordance bias in
 dataset of as large a sample size as possible, we included all
9 cases and 13 controls in the analysis. Since the condition-
ssociated public clones are not reported in the original study, we
ooked at the distribution of likelihood ratio (on the x-axis) and
laced an arbitr ary thr eshold to call sequences as presumed sig-
als. Irr espectiv e of the presumed signal sequences, the main ob-
erv ation fr om this anal ysis is that similar to the observations of
ig. 2 and Supplementary Fig. S1, in the real-world experimen-
al datasets, many public sequences are observed with increased
opulation incidence than what is expected based on their gener-
tion probability. In other w or ds, thresholding based on the com-
uted outlier score alone will be a poor classifier of signal se-
uences. 
upplementary Fig. S3. Presence of many receptor sequences
t an unlikely high population incidence than what is expected
ased on their gener ation pr obability in the CMV-negative co-
ort of Emerson et al. [1]. We used the real-world experimen-
al AIRR dataset with CMV-positive and CMV-negative repertoires
hat were used for the analyses in Fig. 2 A ( n = 683 r epertoir es; 307
MV-positive examples and 376 CMV-negative examples , a verage
nique number of TCR βs per r epertoir e ∼200,000). Instead of com-
uting the outlier measure (y-axis) based on CMV-positive exam-
les, we repeated the same experiment on a CMV-negative cohort
s a control experiment to demonstrate that antigen-experienced
 epertoir es carry man y outlier sequences that occur at an unlikely
igh population incidence than what is expected based on their
ener ation pr obability. Similar to the observ ations of Fig. 2 A, e v en
n the CMV-negative cohort, many sequences were observed with
igh outlier scores (on the y-axis). Here, each point represents a
nique TCR β CDR3 sequence. When computing the likelihood ra-
io (on the x-axis) as described in the Methods section of the main
ext, we treated the CMV-negative examples as a positive class
nd used the CMV-positive cohort as a negative class . T he data
oints in red as shown in Fig. 2 are absent in this figure because
e did not consider any sequences as condition-associated or true

ignals. Ne v ertheless, the main messa ge fr om this anal ysis is the
bservation of many AIR sequences in antigen-experienced reper-
oires that occur at an unlikely population incidence le v el than
hat is expected given their generation probability as measured

hrough the outlier score on the y-axis. 
upplementary Fig. S4. Empirical relation between generation
robability and population incidence of public AIR sequences . T he
 elation between gener ation pr obability and population incidence
f public AIR sequences was determined based on a pr e viousl y
ublished large cohort study of TCR repertoires [1] separately for
ignal (3.b) and all the remaining public sequences (3.a). In both a
nd b, the x-axis r epr esents the sample size proportion bins and
he y-axis r epr esents gener ation pr obability distribution bins in
he −log 10 scale. Note that the bins on both axes are half-open
ntervals that include the left endpoint but exclude the right end-
oint. To explain one cell of the heatmaps, consider the top-left
ell in panel a. The cell corresponding to the generation proba-
ility bin [8, 2) and sample size proportion bin [0.2, 0.4) tell that
8% of the total unique public sequences with a generation prob-
bility between [8, 2) (in −log 10 scale) occurs between [0.2, 0.4) %
f total r epertoir es in the sample (dataset). The row-sums of the
eatmaps should sum to 1. 

https://github.com/KanduriC/simAIRR


simAIRR: AIRR data simulation with realistic population incidence of sequences | 13 

 

 

 

 

 

A
C  

a  

m
t  

c  

q  

p
f  

t

A
S  

m  

o  

S

R
1

 

2  

 

3  

 

 

4
 

 

5  

 

6  

7  

8  

 

 

9  

 

1  

 

 

1  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad074/7319582 by guest on 21 February 2024
Supplementary Fig. S5. Empirical cum ulativ e distribution of pop- 
ulation incidence (sample size percentages on the x-axis) for dif- 
fer ent gener ation pr obability bins (subpanels) for presumed sig- 
nal sequences (b) and all the remaining public sequences (a) in a 
pr e viousl y published large cohort study of TCR repertoires [1]. 
Supplementary Fig. S6. Empirical distribution of population inci- 
dence for receptors within different generation probability inter- 
v als at differ ent sample sizes (r ows of the c hart). The r elation be- 
tween generation probability and population incidence of public 
AIR sequences was determined based on a pr e viousl y published 

large cohort study of TCR repertoires [1] separately for presumed 

signal sequences (a) and all the remaining public sequences (b) 
at different sample sizes (rows of the chart) . In both a and b, re- 
ceptors along the x-axis are split into 3 distinct bins according 
to their generation probability. The stacked bars along the y-axis 
r epr esent the pr oportion of r ece ptors within a gi v en gener ation 

pr obability interv al that hav e population incidence falling within 

a particular range (with a distinct color r epr esenting eac h popula- 
tion incidence range). A full sample size of n = 683 repertoires with 

a ppr oximatel y balanced labels (same chart as Fig. 3 ) was shown 

for comparison with other investigated sample sizes of n = [200,
100, 50 r epertoir es] with balanced labels. Note that the bins of 
both generation probability and sample size proportions are half- 
open intervals that include the left endpoint but exclude the right 
endpoint. If the distribution of sequences at different population 

incidence le v els (colors) within eac h gener ation pr obability inter- 
val (on the x-axis) at the full sample size of 683 r epertoir es (top 

row in the chart) is assumed as a proxy for the true population 

estimates, we notice that the true population estimates are well 
a ppr oximated with an increase in sample size (rows 2–4 in the 
chart). 
Supplementary_Information.docx . 
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tor r epertoir e; BCR: B-cell r eceptor; CDR3: complementarity de- 
termining region 3; CMV: cytomegalovirus; HCV: hepatitis C virus; 
IMGT: immunogenetics; LR: likelihood ratio; ML: machine learn- 
ing; SHM: somatic hypermutation; TCR: T-cell receptor; TCR β: T- 
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