(Gl A)n GigaScience, 2023, 12, 1-16
gCIEN‘Q; E

DOI: 10.1093/gigascience/giad074
Technical Note

OXFORD

simAIRR: simulation of adaptive immune repertoires
with realistic receptor sequence sharing for
benchmarking of immune state prediction methods

Chakravarthi Kanduri ~ %%* Lonneke Scheffer 12, Knut Dagestad Rand
4 Victor Greiff 3 and Geir K. Sandve *~ 12*

1, Milena Pavlovi¢ 1, Maria Chernigovskaya 3,

Oz Pirvandy 4, Gur Yaari

Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway

2UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway

3Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway

“Faculty of Engineering, Bar-Ilan University, 5290002, Israel

*Correspondence address. Chakravarthi Kanduri, Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway. E-mail:
skanduri@uio.no; Geir K. Sandve, Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway. E-mail: geirksa@ifi.uio.no

Abstract

Background: Machine learning (ML) has gained significant attention for classifying immune states in adaptive immune receptor
repertoires (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous
benchmarking of AIRR-ML methods. Existing approaches to generating synthetic benchmarking datasets result in the generation
of naive repertoires missing the key feature of many shared receptor sequences (selected for common antigens) found in antigen-
experienced repertoires.

Results: We demonstrate that a common approach to generating simulated AIRR benchmark datasets can introduce biases, which may
be exploited for undesired shortcut learning by certain ML methods. To mitigate undesirable access to true signals in simulated AIRR
datasets, we devised a simulation strategy (simAIRR) that constructs antigen-experienced-like repertoires with a realistic overlap of
receptor sequences. sSimAIRR can be used for constructing AIRR-level benchmarks based on a range of assumptions (or experimental
data sources) for what constitutes receptor-level immune signals. This includes the possibility of making or not making any prior
assumptions regarding the similarity or commonality of immune state-associated sequences that will be used as true signals. We
demonstrate the real-world realism of our proposed simulation approach by showing that basic ML strategies perform similarly on
simAIRR-generated and real-world experimental AIRR datasets.

Conclusions: This study sheds light on the potential shortcut learning opportunities for ML methods that can arise with the state-
of-the-art way of simulating AIRR datasets. sSimAIRR is available as a Python package: https://github.com/KanduriC/simAIRR.
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Background

High-throughput sequencing of adaptive immune receptor (AIR)
repertoires (AIRRs), including B-cell and T-cell receptors (BCRs and
TCRs), can provide a snapshot of ongoing and past immune re-
sponses [1-7]. Decoding the information specific to various im-
mune responses embedded in AIRRs has recently seen a surge in
interest because of its potential to aid the development of immun-
odiagnostics and therapeutics [1-7]. Receptor sequence sharing
between repertoires in a population (so-called public responses)
can be due to antigen selection or antigen-independent mecha-
nisms (like convergent recombination and other recombination
biases) [6-12] and can vary further depending on the species, cell
types, cell subsets, chains, and pairedness of sequences [13]. Pre-
vious studies have shown that sequences selected for a common
antigen share similarities in sequence patterns and can be de-
tected in multiple individuals who experienced the antigen (e.g.,
see Table 1 in reference [7] for examples of public AIRs in various
diseases in humans). Such public response sequences (defined by

sequence identity or similarity [14]) have aided in the classifica-
tion of diseases or immune states [5].

The pattern recognition capacity of machine learning (ML)
methods has been increasingly utilized to learn the sequence
patterns associated with immune states [5, 15, 16]. Many studies
continue to develop and apply classical ML (supervised and
unsupervised) and modern deep learning methods to learn
complex sequence patterns that can distinguish immune states
[17-35]. The continued rise in the development and application of
AIRR-ML methods warrants rigorous benchmarking to compare
the performance of methods. This requires a combination of
suitable real-world experimental datasets and simulated bench-
mark datasets with known true signals [36, 37] (hereafter signal
refers to sequence patterns in AIRR-seq data that distinguish im-
mune states). There are currently only a few large-scale datasets
of immune state-associated donor repertoires available, and
even these are of limited size (<1,000 donors) and offer limited
knowledge of true signals (only donor-level annotation, with no
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true information at the individual receptor level) [19, 38-40].
Therefore, simulated AIRR datasets with artificially introduced
discriminative sequence patterns at the individual receptor level
play a central role in the rigorous evaluation of AIRR-ML methods
[36, 41-46].

A principal observation regarding the failure of modern ML
methods is that many are related to unintended “shortcut” strate-
gles adopted by ML methods [47]. Shortcuts can be defined as deci-
sion rules that work well on selected benchmark datasets but fail
to generalize to other real-world datasets [47]. In the context of
AIRR-ML, the field will benefit not only by avoiding shortcut strate-
gles in discriminative learning but also by generating synthetic
AIRR datasets devoid of shortcut opportunities. Below we describe
a notable shortcut opportunity in simulated AIRR datasets that
arise as a result of the state-of-the-art simulation approaches but
is absent in real-world experimental datasets.

The AIRRs of a study cohort with a common immune state can
be categorized into 2 components: (i) private sequences, which
are seen only in one individual of the cohort, and (ii) public se-
quences, which are observed in more than one individual in the
cohort. Previous studies have suggested 2 main mechanisms that
determine the interindividual sharing of sequences: (i) convergent
recombination, where owing to the biases of current stochastic
V(D)J recombination models [48, 49], the probability of generating
certain sequences is high and, thus, such sequences are observed
in multiple individuals [6, 50-53], and (ii) selection/bias in recep-
tor usage, where identical or similar sequences are observed in
numerous individuals that share a common immune state due to
being selected for a common antigen [17, 18, 22, 30, 54, 55]. The
observed publicness of sequences in a cohort (how frequent they
are) is known to depend on the sampled cohort size and sequenc-
ing depth [55, 56].

The probability of generating a specific CDR3 sequence (of-
ten called generation probability in the AIRR context) is the sum
of the probabilities of all recombination events that can gener-
ate the specific sequence [57]. The generation probability distri-
butions of private sequences and public sequences in any sam-
pled cohort differ considerably [55], where the population inci-
dence of sequences increases monotonically with an increase in
generation probability (Fig. 1A). By comparing the population in-
cidence and generation probability of sequences, it may be pos-
sible to identify sequences that are observed with unlikely high
population incidence given their generation probability (Fig. 1A)
[20, 30]. Such sequences can potentially be immune state associ-
ated and will be referred to as outlier sequences throughout this
article. Since antigen-experienced repertoires may carry several
immune state-associated receptor sequences accumulated over
time (specific to distinct antigens), mining public sequences in
antigen-experienced repertoire cohort may reveal several outlier
sequences irrespective of any particular immune state (Fig. 1B). In
a real-world setting, there is thus no trivial relation between the
presence of outlier sequences in a repertoire and a given immune
state of interest. However, constructing synthetic AIRR datasets by
sampling from known V(D)J recombination models alone [41, 43—
45] will result in naive repertoires that have not experienced any
immune events and thus do not carry multiple outlier sequences
like antigen-experienced repertoires do (Fig. 1B). When a selected
group of the simulated naive repertoires is enriched for sequence
patterns to represent an immune state for prediction methods,
the publicity versus generation probability relation can in itself
make these repertoires stand out through being the only reper-
toires in the simulated dataset containing outlier sequences and
thus provide shortcut opportunities for ML methods. By learning

to directly connect the presence of outlier sequences to a particu-
lar immune state, a predictive method could perform very well on
a benchmark based on a prediction strategy that exploits simula-
tion artifacts instead of learning immune state-associated signals
that are relevant for real-world applications. This issue, which is
referred to as shortcut learning in the machine learning field, is
known to lead to a lack of generalization and unintuitive failures
of ML methods and has been suggested to be one of the main bar-
riers to robust, fair, trustworthy, and deployable machine learning
[47]. For the sake of convenience, we hereafter refer to the bias of
discordance between introduced signal and baseline repertoires
in simulated AIRR data as generation probability discordance bias.

In this study, we investigate the shortcut opportunity arising
from generation probability discordance bias in simulated AIRR
datasets and show that such shortcuts are absent in tested real-
world experimental datasets. To mitigate the demonstrated short-
cut opportunity in AIRR datasets, we present the simulation strat-
egy, sSimAIRR. simAIRR provides a systematic approach for simu-
lating AIRR datasets according to the assumptions that immune
receptor binding is determined either by (i) the full CDR3 se-
quences and is best addressed by learning appropriate similar-
ity metrics for full CDR3s or by (ii) subsequence patterns such as
k-mers. We also present case studies to demonstrate the utility
of sSimAIRR, where simulated AIRR datasets are generated using
both full-CDR3 assumption and sub-CDR3 motif assumption (k-
mers) and subsequently used for evaluating suitable ML methods
as a function of different witness rates and sample sizes. Here,
witness rate refers to the rate at which signal occurs in the pos-
itive class examples. Note that the italicized term examples com-
monly used in ML literature refers to repertoires throughout this
article.

Analyses

Generation probability discordance bias in
simulated AIRR datasets leads to unintended
shortcut opportunities for ML methods

Throughout the article, we refer to AlRs that are observed with
unlikely high population incidence in a study cohort given their
generation probability as outlier sequences. As an example of un-
likely high population incidence given generation probability, con-
sider a case where an AIR has a very low probability of occurring
in >1% of a population sample but is rather observed in 10% of the
population sample. We refer to the disparity in generation prob-
ability distributions between true signals and remaining public
sequences in synthetic AIRR datasets as generation probability
discordance bias. Here, true signals refer to the sequences that
from the outset are known to be immune state associated. In sim-
ulated datasets, true signals are those sequences introduced into
the repertoires that distinguish the immune states. In the real-
world experimental dataset used in this study, we refer to the
original study-reported sequences as the true signals, for which
the rationale is provided further below.

We hypothesized that, unlike real-world experimental datasets
of antigen-experienced repertoires, simulated AIRR datasets may
not carry several outlier sequences. Thus, the subsequent intro-
duction of true signals representing an immune state will lead
to shortcut opportunities that ML methods can exploit. To inves-
tigate whether generation probability discordance bias exists in
real-world experimental and simulated AIRR datasets, we com-
puted an outlier score for each public sequence of the experimen-
tal and simulated AIRR datasets irrespective of the immune state
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cohort could be used to gauge outlier sequences that are observed with unlikely high population incidence given their generation probability. (B) (i)
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Because of accumulating multiple immune state-associated signals over time by being exposed to common antigens, repertoires in real-world

experimental AIRR datasets may harbor many outlier public sequences. (ii) However, the same phenomenon is not naturally occurring in synthetic
AIRR datasets. Any label-associated signal introduced into synthetic repertoires as shown in ii may alone stand out as outlier sequences, unlike in

experimental repertoires. This provides unintended shortcut opportunities for AIRR-ML methods to detect the introduced signal. (C) To mitigate
unintended shortcut learning opportunities, we devised a simulation approach that relies on empirically derived relation between generation

probability and population incidence of AlRs calibrated separately for signal sequences and remaining public sequences. (D) (i) simAIRR assesses the
feasibility of introducing the user-supplied signal into the repertoires at the desired witness rates and, if deemed feasible, generates AIRR datasets
with realistic receptor sequence sharing between repertoires. If the signal introduction was deemed infeasible in (i), SimAIRR provides descriptive

information to the user to act as guidance in reconfiguring the simulation. simAIRR could be used to execute the whole workflow (i, ii, iii, iv) in a

sequence or exclusively to perform (i) or (ii) or (iii).
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Figure 2: Generation probability discordance bias in the naive simulation of AIRR datasets. (A) In a real-world experimental AIRR dataset (n = 683
repertoires; 307 positive class examples and 376 negative class examples, average unique number of TCRBs per repertoire ~200,000), the outlier
measure (y-axis) alone is a poor classifier of presumed true signals as reported in the original study. Here, each point represents a unique TCRB CDR3
sequence and the colors represent whether the sequence is a true signal e. Red points are the true signal sequences. (B) On the contrary, in a synthetic
dataset generated through a naive but intuitive simulation approach as shown in Fig. 1B.i (n = 683 repertoires; 310 positive class and 373 negative
class examples), the outlier measure alone has a very high precision (99%). This behavior of the simulation approach can lead to shortcut learning
opportunities for ML methods. (C) Our novel simulation approach that is intended to mitigate the shortcut learning opportunity makes the repertoires
antigen-experienced-like to behave more like the real-world experimental data, where there can be many outlier sequences because of accumulating
many immune state-associated sequences over the lifetime of repertoires. On a dataset with matched sample size (n = 683 repertoires; 310 positive
class and 373 negative class examples), our simulation approach reduces shortcut learning opportunities because thresholding on the outlier measure
alone has a precision of 0.09%, which is comparable to the 0.16% precision of the real-world experimental data.

label (see Methods). The outlier score that we computed is quali-
tatively similar to the methodology by Pogorelyy et al. [20]. In addi-
tion to the outlier score, we computed a likelihood ratio for each
public sequence (see Methods) that compares the probability of
incidence of a sequence in contrasting immune states (positive
and negative class labels in ML terminology). For this analysis, we
specifically used 3 different datasets: (i) a real-world experimen-
tal T-cell repertoire dataset with known cytomegalovirus (CMV)
serostatus [19], (ii) a human TCRpB sequence dataset simulated
using a naive simulation approach (here, naive simulation refers
to sampling sequences from known V(D)J] recombination models
to construct synthetic repertoires and subsequent introduction of
signals in a fraction of the repertoires to represent contrasting im-
mune states; see Fig. 1B for a depiction), and (iii) a human TCRB
sequence dataset simulated using the simulation approach that
we developed, simAIRR.

In simulated datasets, we know, by construction, the true sig-
nals that differ between immune states. In real-world experi-
mental data, we are aware that experimental artifacts and other
study design aspects could impact the selection of immune state-
associated signals, thus affecting what can be perceived as true
signals. However, we considered the list of signals reported in the
original study [19] as true signals for this analysis, as the purpose
of this analysis is only to obtain an indication of the disparity be-
tween true signals and the remaining public sequences in terms
of the degree of being outliers.

In the real-world experimental dataset [19], a decision rule
based on thresholding the outlier measure that we computed
(e.g., outlier measure >35) is observed to have very low precision

(0.16%) and 78% recall (Fig. 2A) in retrieving the true signals. This
indicates that the outlier measure alone is a poor classifier of the
perceived true signals in real-world experimental data. On the
contrary,in a naive-simulated AIRR dataset of TCRs, the same out-
lier measure-based decision rule is found to have 99% precision
and 90% recall (Fig. 2B) in retrieving the true signals. This indicates
that the outlier measure alone can capture a large fraction of the
true signals in naive-simulated data, which can be used for short-
cut learning by ML methods. This trend of generation probability
discordance bias persisted at sample sizes as low as 50 repertoires
in naive-simulated datasets, while subsampled real-world exper-
imental data were devoid of such bias (Supplementary Fig. S1).
The phenomenon of the absence of generation probability discor-
dance bias in real-world experimental datasets was also observed
on TCRB data of a much smaller sample size (compared to that
of [19]) of 79 cases and 13 controls with/without pediatric COVID-
19 from [58] (Supplementary Fig. S2). We also observed a similar
phenomenon in the CMV-negative cohort from [19] indicating the
persistence of aforementioned findings in CMV-negative cohorts
(Supplementary Fig. S3). To overcome the generation probability
discordance bias demonstrated in Fig. 2B, we devised a novel sim-
ulation approach to construct benchmark AIRR datasets for the
immune state prediction problem. In AIRR TCR datasets simu-
lated based on our novel simulation approach, the same outlier
measure-based decision rule was found to have 0.09% precision
and 83% recall (Fig. 2C). Overall, the very low precision equivalent
to that observed in a real-world experimental dataset mitigates
the shortcut opportunities that can arise through naive simula-
tion approaches.
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Figure 3: Empirical distribution of population incidence for receptors within different generation probability intervals. The relation between
generation probability and population incidence of public AIR sequences was determined based on a previously published large cohort study of TCR
repertoires [19] separately for presumed signal sequences (A) and all the remaining public sequences (B). In both A and B, receptors are along the
x-axis split into 3 distinct bins according to their generation probability. The stacked bars along the y-axis represent the proportion of receptors within
a given generation probability interval that have population incidence falling within a particular range (with a distinct color representing each
population incidence range). Note that the population incidence is the proportion of repertoires among a total of the 310 positive repertoires in A,
while it is the proportion of repertoires among a total of 683 repertoires in B. Also, note that the bins of both generation probability and sample size
proportions are half-open intervals that include the left endpoint but exclude the right endpoint. The stacked bar charts show that a large fraction of
the sequences among the nonsignal sequences is observed in a small proportion of the population irrespective of their generation probability
(population incidence below 2%). A substantial fraction of the sequences in the higher intervals of generation probability was observed with increased
population incidence in signal and nonsignal sequences. The presumed signal sequences were observed with increased population incidence when

compared to the remaining public sequences.

A novel simulation approach to mitigate shortcut
opportunities for AIRR-ML methods

To mitigate unintended shortcut opportunities for AIRR-ML, we
devised a novel simulation approach to generate AIRR datasets
that rely on the empirical relation between generation probabil-
ity and population incidence of public sequences calibrated from
real-world experimental datasets separately for signal and other
public sequences (Fig. 1C). We hereafter refer to this simulation
approach as simAIRR. Below we briefly describe the simAIRR ap-
proach (see also Fig. 1D).

simAIRR approach

SimAIRR accepts a user-supplied set of AIRs as a potential pool
of immune state-associated signals and (i) determines whether
it is feasible to introduce the signal sequences into the baseline
repertoires at the user-desired witness rate (Fig. 1D). Note that the
feasibility of introducing signal sequences depends on the user-
supplied set of AIRs, desired witness rate, and the learned models
of realistic population incidence of AIR sequences. There may be
scenarios where the models of realistic population incidence of
AIR sequences may not allow reaching a user-desired witness rate
given the set of user-supplied signal sequences. If deemed feasible,
simAIRR proceeds to (ii) generate baseline repertoires and (iii) ad-
just the proportion of public sequences (the sequences that will be
shared across repertoires in a dataset) and their population inci-
dence levels. The public component correction is needed because
datasets generated through naive sampling lack sequence sharing
between repertoires to the degree that is observed in experimental
datasets containing antigen-experienced repertoires (see Methods
for details). In the repertoires generated with the corrected pub-

lic sequence component, the relation between generation proba-
bility and population incidence is respected. (iv) simAIRR further
introduces signal components into the desired number of reper-
toires, where again the relation between generation probability
and population incidence is respected. If the signal introduction
was deemed infeasible in (i), sSimAIRR provides descriptive infor-
mation to the user to act as guidance in reconfiguring the simu-
lation. simAIRR could be used to execute the whole workflow (i, ii,
iii, iv) or exclusively to perform (i) or (ii) or (iii).

To determine the population incidence of public sequences
(including both signal sequences and other public sequences),
simAIRR relies on the empirical relation between generation prob-
ability and the population incidence of AlRs. For this, the user
could either calibrate the aforementioned relation based on a
real-world dataset of their choice and supply the learned rela-
tion to simAIRR or use the default choice that is supplied with
simAIRR. Hereafter, we refer to these as models of realistic popu-
lation incidence of AIR sequences. In simAIRR, the default mod-
els of realistic population incidence of AlRs are based on a pre-
viously published large cohort study of TCR repertoires [19] cal-
ibrated separately for signal sequences (detected in the original
study) and other public sequences. See the Methods section for
details on learning models of realistic population incidence of
AIR sequences. Figure 3 shows the empirical distribution mod-
els learned for the signal and other public sequences from the
dataset of Emerson et al. [19]. The empirical probability distribu-
tions differed between the presumed signal sequences (Fig. 3A)
and remaining public sequences (Fig. 3B), where the presumed
signal sequences (full AIRs) occurred in a relatively higher frac-
tion of the sampled population, unlike a large majority of the
public sequences. The stacked bars show that a large fraction of
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the public sequences is present in a small fraction of the sam-
pled population. A small fraction of the sequences with high gen-
eration probability are unsurprisingly observed in higher frac-
tions of the sampled population. A more granular representa-
tion of the learned empirical distribution models is shown in
Supplementary Figures S4 and S5.

By analyzing the empirical probability distributions of popula-
tion incidence for receptors based on datasets of different sample
sizes (n = 50, 100, 200 repertoires), we observed that the approx-
imation of the true population estimates of realistic receptor se-
quence sharing improved with increased sample size. We also no-
ticed that a smaller sample size can spuriously inflate the learned
population incidence of public sequences (Supplementary Fig. S6).
Thus, when simulating moderate to large simulated datasets (e.g.,
n > 200) that are typically used when developing/benchmarking
ML methods, learning the models based on as large sample sizes
as possible can increase the realism of population incidence of
public sequences.

Case Studies

To demonstrate how simAIRR may be used to generate bench-
mark datasets for AIRR-ML predictions, we performed 2 separate
case studies.

Case study 1: Prior assumptions on the similarity
of immune state-associated sequences

In the first case study, we made prior assumptions on how the
immune state-associated sequences that differentiate the posi-
tive and negative class labels are similar. Specifically, we assumed
that immune state-associated sequences share sequence similar-
ity in the form of shared contiguous amino acid subsequences of
size 4 (4-mers).

First, we generated independent AIRR datasets each contain-
ing 200 repertoires using simAIRR, where the average sequence
count was 119,633 + 1,313. The datasets were simulated in such a
way that 100 repertoires carried condition-associated sequences,
hence labeled as a positive class, whereas the negative-labeled
repertoires did not receive any condition-associated sequences,
although they were not checked for carrying those specific se-
quences just by chance. We varied the average witness rate in dif-
ferent experiments to observe how the performance of the tested
ML method varies depending on the average witness rate. We as-
sumed that the signal sequences carry any one of the three 4-
mers: WKDY, YREV, and ERFY. For this, instead of the implanta-
tion of k-mers as in our previous study [59], we selected sequences
enriched for these 4-mers by querying a large set of reference se-
quences for matching patterns. To make such a pattern-matching
process easy for users if need be, we provide a simple Python script
and a corresponding tutorial that shows how to generate a large
set of reference sequences and retrieve the pattern-matched se-
quences of interest with minimal effort and with very few lines
of code specification [60]. Notably, we here did not exclude the
low probability events of a signal sequence carrying 2 or all the 3
k-mers of interest by chance, but the users can impose such addi-
tional sanity checks if need be. The rationale behind the choice of
the selected k-mers was to compare the performance of ML meth-
ods on benchmark datasets with similar characteristics (witness
rates and sample sizes) in our previous study that used the same
k-mers. The signal sequences were added to the positive-class
repertoires using the simAIRR approach, where the observed fre-
quency of signal sequences in the dataset depends on the gener-

ation probability distributions calibrated based on real-world ex-
perimental data. Since the signal sequences are assumed to share
any of the 3 chosen 4-mers, we used a suitable ML method that
matches the assumption that the signal is in the form of 4-mers
as in our previous study [59]. Specifically, we used a highly regu-
larized logistic regression model that is well optimized for hyper-
parameters on a 4-mer encoded representation of the amino acid
sequences. To compare with the reported performance metrics of
Emerson et al. [19], immuneML case studies [61], and Motifbooster
[62], we here chose to present the area under receiver operating
characteristic curve (ROC AUC) obtained through nested cross-
validation. We observed that the performance of the suitable ML
method was close to perfect when the witness rate was equal to
or above 10 sequences per 10° sequences (Fig. 4A). When the wit-
ness rate was 5 sequences per 10° sequences, we observed an ROC
AUC of around 0.8 on average (Fig. 4A). The observed performance
metrics of the ML method at the respective witness rates were in
strong alignment with our prior expectations. This is because we
previously profiled the performance of the same ML method on
datasets across a wide range of witness rates (including the wit-
ness rates explored in this case study) and similar assumptions
of signal sequences (k-mer sharing) [59] and thus knew before-
hand which level of performance to expect. Notably, the perfor-
mance of ML methods that solely focus on the desired signal and
ignore simulation artifacts does not necessarily have to be dif-
ferent between simAIRR-generated data and data generated by
other simulation approaches. We have elaborated on the compa-
rable/similar performance of ML models on simAIRR-generated
data vs data generated with other simulators in the Discussion
section.

Case study 2: No prior assumptions on the
immune state-associated sequences

In the second case study, we did not make any prior assumptions
regarding the immune state-associated sequences, specifically in
what way they are similar. We retrieved sequences that were re-
ported to be specific to the hepatitis C virus (HCV) from VDJdb
[54], thereby avoiding making any prior assumptions regarding the
similarity of signal sequences. We used a uniform random sample
of the HCV-associated sequences as the pool of signal sequences
introduced into the positive-labeled repertoires.

Unlike in the first case study, we fixed the witness rate as con-
stantin all the experiments (to have on average 10 immune state-
associated sequences per approximately 10° sequences). Rather,
we varied the sample size (number of examples) of the class-
balanced AIRR datasets (200, 400, or 600 examples per dataset)
to observe how the performance of the tested ML method varies
depending on the sample size. The class balance and signal intro-
duction were similar to case study 1, where 50% of the repertoires
carried signal sequences. Since we do not have prior knowledge
of the sequence similarity patterns of the signal sequences, we
used a suitable ML method that assumes the full sequence iden-
tity as a potential signal representation [19]. Specifically, we used a
probabilistic binary classifier based on phenotype burden [19] im-
plemented in immuneML [61], where the hyperparameters were
selected through nested cross-validation. To compare with the re-
ported performance metrics of Emerson et al. [19], immuneML
case studies [61], and Motifbooster [62], we here chose to present
ROC AUC obtained through nested cross-validation. The findings
of the performance metrics align well with the known behavior of
the probabilistic binary classifier method [19], where prior studies
reported a drop in the performance of the method at lower sample
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(A) Datasets with prior assumptions on signal sequences: signal sequences are assumed to share certain k-mers.
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(B) Datasets with no prior assumptions on the similarity of signal sequences: sequences with known specificity to HCV are used as signal.
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Figure 4: Performance of ML methods on benchmark datasets generated by simAIRR. (A) Performance estimates (ROC AUC) of a highly penalized
logistic regression model (on the y-axis) that is optimized well for hyperparameters in a binary classification of balanced, labeled AIRR datasets
(number of examples = 200) encoded as 4-mers, where the signal in positive class examples is composed of full sequences that share any of the three
4-mers: WKDY, YREV, and ERFY. The rationale behind the choice of the selected k-mers was to compare the performance of ML methods on benchmark
datasets with similar characteristics (witness rates and sample sizes) in our previous study that used the same k-mers. The full sequences sharing any
of the 3 chosen 4-mers were obtained by generating a large number of sequences and retrieving only those sequences that carry the 4-mers through
pattern matching. The subpanels represent witness rates, where we vary whether the positive-labeled repertoires carry S, 10, or 20 immune
state-associated sequences per approximately 10° sequences. In each subpanel, we simulated 3 independent datasets (named Dataset-1, Dataset-2,
and Dataset-3) to gauge the variation in performance on similar dataset characteristics. The spread of the performance metrics on the y-axis shows
the variation of performance obtained through nested cross-validation. Overall, the findings indicate that when the witness rate is >10 sequences per
10° receptor sequences, the performance of a suited ML method was close to perfect, while it dropped when the witness rate was smaller than 10
sequences per 10° receptor sequences. A similar trend of performance drop was observed in our previous study at such low witness rate (see Fig. 3a in
[59]). (B) Performance estimates (ROC AUC) of a probabilistic binary classifier [19] implemented in immuneML [61] (on the y-axis) in a binary
classification of balanced, labeled AIRR datasets (constant witness rate of 10 immune state-associated sequences per approximately 10° sequences).
The signal in positive class examples is composed of full sequences that are reported to have specificity for HCV. The HCV-specific sequences were
downloaded from VDJdb [54]. The subpanels represent datasets of different sample sizes of balanced AIRR datasets. In each subpanel, we simulated 3
independent datasets (named Dataset-1, Dataset-2, and Dataset-3) to gauge the variation in performance on similar dataset characteristics. The
spread of the performance metrics on the y-axis shows the variation of performance obtained through nested cross-validation. Overall, the findings
indicate that the performance dropped steadily with a decrease in sample size, and a similar trend was shown earlier by Pavlovi¢ et al. on datasets
with similar study design characteristics (see Fig. 2b in [61]).
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sizes [61, 62]. When the sample size reached a similar level as in
Emerson et al. [19] (n = 600), the ROC AUC reached a comparable
level as reported in the original study [19] and other studies that
reanalyzed the same dataset [61, 62] (Fig. 4B).

Methods
Outlier measure and likelihood ratio

We computed 2 different quantitative measures for each public
sequence that could potentially aid in the identification of im-
mune state-associated sequences independently. First, an out-
lier score is computed using a 2-step process: (i) given the gen-
eration probability (pgen) and the average unique number of se-
quences in a repertoire (number of trials), we computed the prob-
ability of observing a public sequence at least once in a reper-
toire (pops) Using the cumulative density function of the bino-
mial distribution. (ii) Given the probability of observing a public
sequence at least once in a repertoire (pgps) and the number of
positive labeled repertoires, we further computed the probabil-
ity of observing a public sequence in the same or higher num-
ber of repertoires as it was observed for a given dataset (Pcount). A
negative logig of peount is referred to as an outlier score through-
out the article. Second, a likelihood ratio is computed as the ratio
of the empirical probabilities of incidence in positive class exam-
ples (repertoires) to negative class examples. Given P positive class
examples and N negative class examples, cp number of occur-
rences in positive class examples, and ey number of occurrences
in negative class examples, the likelihood ratio (LR) is defined as

IR = +.
Models of realistic population incidence of AIR
sequences

To learn the empirical relation between generation probability
and population incidence of sequences from a real-world exper-
imental dataset [19], we first computed the relative frequencies
and generation probabilities of each unique sequence, including vV
and] gene masks, in a public experimental dataset [19]. For count-
ing the population sequence frequencies, we used CompAIRR [35],
and for computing generation probabilities, we used OLGA [44],
as described further below. The relative frequencies refer to the
proportion of the population carrying a particular sequence. We
derived the relation between generation probability and popula-
tion incidence of sequences separately for the perceived true sig-
nal sequences reported by the original study [19] and for all the
remaining public sequences. For this, we discretized the entire
range of generation probabilities and population incidences into
discrete intervals, and we placed each unique sequence into its
corresponding bin of generation probability and population inci-
dence. With that, we obtained empirical probability distributions
describing what fraction of the total unique sequences with a cer-
tain generation probability distribution occurs at certain popula-
tion incidence levels in a sample.

Correction of population incidence of public
sequences and construction of
antigen-experienced-like repertoires

Individuals accumulate immune events over a lifetime. Thus,
snapshots of AIRRs, as acquired through targeted immune re-
ceptor sequencing from donor blood samples, capture antigen-
experienced repertoires that share not only public sequences
that are easier to generate but also other pools of common im-
mune event-associated sequences. However, in silico-generated

synthetic repertoires from a method like OLGA behave like naive
repertoires that did not experience any immune events. Synthetic
naive repertoires share fewer unique sequences and thus tend to
carry a lower proportion of public sequences compared to reper-
toires from experimental datasets. To correct the proportion of
public sequences and their population incidence levels, we used
the following procedure: we first generate a large number of AIR
sequences using the V(D)J recombination model chosen by the
user and retain only unique sequences. Notably, the user can
choose from any one of the V(D)J recombination models supplied
by default with OLGA [44]. We then make a user-desired propor-
tion of sequences public (10% of the sequences is the default op-
tion to match experimental datasets). The population incidence
levels (how frequent each unique sequence will be) for the public
sequences follows the learned models of realistic population inci-
dence of AIR sequences based on a previously published large co-
hort study of TCR repertoires [19]. As the publicness of sequences
can vary between different species, chains, cell type and their sub-
sets, and pairedness of sequences, the users need to calibrate the
relation between generation probability and population incidence
of sequences when intending to simulate datasets other than hu-
man TCRp chain sequences, which is the default models supplied
with simAIRR (RRID: SCR_023956). The user can supply custom
models for the dependence between generation probability and
population incidence levels calibrated based on the experimental
datasets of their choice.

Assessing the feasibility of a user-desired
witness rate

How simAIRR assesses the feasibility of a user-desired witness
rate is best explained with an example. For the sake of an illustra-
tive example, we use small numbers for simulation parameters.
If the user chooses a pool of 3 sequences as the signal that sepa-
rates immune state labels and wants them to be introduced into
the positive-labeled repertoires (n = 100) of a repertoire dataset
(n = 200) such that each positively labeled repertoire carries a to-
tal of 5 signal sequences on average (desired witness rate), one
should be able to introduce a total of 500 instances of the sig-
nal (100 x 5) from the pool of 3 sequences. Based on the empiri-
cal knowledge of dependence between generation probability and
population incidence, if each signal sequence cannot be seen in
more than 30% of the total sample size, the pool of 3 sequences
together cannot be observed more than 180 times (3 x 200 x 0.3)
even if the sequences have a high generation probability. In such
a case, it is considered infeasible to meet the user-desired witness
rate (of 5 signal sequences per repertoire, amounting to a desired
total of 500). sSimAIRR provides detailed statistics in such a case
to help the user in reconfiguring the simulation parameters. This
could mean that either the user supplies a larger pool of potential
signal sequences or modifies the desired witness rate. To avoid ex-
pensive computations, users could first use the feasibility assess-
ment mode to make sure that the simulations are feasible given
the user-supplied simulation parameters.

Of particular note, the pool of potential signal sequences that
one starts with plays a significant role in determining the feasibil-
ity of achieving the desired witness rate of signal in the simulated
datasets using sSimAIRR’s approach because of the reliance of pos-
sible incidence level of sequences on the generation probability
of the individual sequences. Thus, unlike in naive simulation ap-
proaches, the job of carefully selecting a pool of signal sequences
is delegated to the user.
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Construction of synthetic baseline repertoires

When constructing synthetic baseline repertoires as a reason-
able proxy for real-world experimental repertoires, we ensured
the nativeness of the simulated AIR sequences in terms of po-
sitional biases, amino acid usage, and sequence length distribu-
tions. For this, we generated AIR sequences according to recom-
bination models provided by OLGA [44]. Note that for the analy-
ses of this article, we generated human T-cell beta chain recep-
tor datasets, while for simAIRR simulations in general, any of the
4 default V(D)J] models supplied by OLGA [44] (humanTRB, hu-
manTRA, humanIGH, mouselGH) can be used. Future versions of
simAIRR will also allow the usage of user-supplied AIR sequences
to construct the synthetic baseline repertoires.

Computation of generation probability

The generation probabilities of AIR sequences are computed using
OLGA [44] with the default generative models of the V(D)J recom-
bination model while including both the masks for V and J genes
for each sequence. For the analyses of this article, we computed
the generation probabilities using the default V(D)J] recombination
model of the human T-cell beta chain receptor. Notably, any of the
4 default V(D)] recombination models supplied with OLGA [44] can
be used as mentioned above.

ML models, training, selection, and evaluation

We used 2 different ML methods in the case studies. In the first
case study, the signal sequences share any of the 3 chosen 4-mers.
For those datasets, where the signal can be captured by 4-mers, we
used an ML method that matches with the described at length in
our previous study [59]. Briefly, we used a highly regularized lo-
gistic regression model on a 4-mer encoded representation of the
amino acid sequences. The hyperparameters for the model were
chosen through nested cross-validation. For details on the imple-
mentations and hyperparameter optimizations, see relevant de-
scriptions in [59]. In the second case study, we did not have prior
knowledge of the sequence similarity patterns of the signal se-
quences. Therefore, we used an ML method that assumes the full
sequence identity as a potential signal representation [19]. Specif-
ically, we used a probabilistic binary classifier based on pheno-
type burden [19] implemented in immuneML [61]. We used 5-fold
nested cross-validation and an exhaustive grid search for hyper-
parameter optimization as in our previous study [59] for both ML
methods. Balanced accuracy was used as the performance metric
for optimization during training, and the ROC AUC was reported
for the sake of comparison with previous studies that used the
same metric.

Querying sequences enriched for k-mer-like
patterns

In the first case study, we assumed that the true signal sequences
share a similarity in terms of shared k-mers. Specifically, the sig-
nal sequences were required to carry any 1 of the 3 chosen k-mers:
WKDY, YREV, and ERFY. In our previous study [59], we implanted
k-mers in the central portion of the CDR3 amino acid sequences
to obtain such signal sequences. However, the implantation of k-
mers can introduce additional artifacts by destroying the biolog-
ical properties of the sequence, which the ML methods can ex-
ploit as another way of shortcut learning. To avoid that, in this
study, we queried a large set of reference sequences to retrieve all
those sequences that carry a k-mer of interest. To make such a
pattern-matching process easy for the users if need be, we pro-
vide a simple Python script based on the bionumpy library [63]

and a corresponding tutorial that shows how to generate a large
set of reference sequences and retrieve the pattern-matched se-
quences of interest with minimal effort and with very few lines of
Python code [60]. We also provided corresponding examples using
Unix grep. In the recipe, we have shown how to construct a com-
plex set of signal sequences enriched for multiple criteria like the
presence of multiple subsequence patterns within the sequences
and gene usage. The code recipes not only require a minimal cod-
ing effort but are also efficient and have a minimal runtime. For
instance, the wall time for generating 10 million sequences when
using 40 processes was less than 1 minute. Similarly, the execu-
tion wall time for querying the 10 million sequences for selected
k-mer patterns was less than 1 minute. Note that the query time
canincrease with the number of queried patterns for any pattern-
matching tool, including Unix grep. A key benefit of the approach
described here is that once a large number of reference sequences
are generated and stored on disk, they can be queried multiple
times.

Customizable simulation parameters

All simulation parameters of simAIRR are customizable. Some of
the key customizable parameters include 1 of the 4 possible V(D)J
recombination models, the number of repertoires and the pro-
portion of positive class-labeled repertoires, average sequencing
depth, the proportion of public sequences, and witness rate. In ad-
dition, the users are required to supply a pool of sequences that
will be considered true signal sequences. It is also possible to con-
trol the number of sequences that will be used as a true signal.

Docker container to improve reproducibility

To ease the installation issues, allow quick testing, and improve
portability, we supply a Docker image [64] with a predefined com-
puting environment maintaining all the dependencies required
for the execution of simAIRR workflows with minimal overhead.
The Docker image is hosted on DockerHub and can be accessed
at [64].

Discussion

One major challenge in using simulated datasets for benchmark-
ing ML methods is to prevent shortcut learning opportunities
[65]. Shortcut learning may lead to biased benchmarking of AIRR-
ML methods, reduced generalizability of the methods, and re-
producibility crisis [66]. Our study shows that an intuitive and
state-of-the-art approach to generating simulated AIRR bench-
mark datasets can introduce signal artifacts that can be exploited
for undesired shortcut learning by AIRR-ML methods. We refer to
the introduced signal artifact as the generation probability discor-
dance bias, where a large disparity exists in the generation prob-
ability distributions between the introduced true signals and the
remaining public sequences. This can allow ML methods to ex-
ploit this bias and learn shortcuts instead of the true sequence
patterns associated with immune states in the data. An analogy
of such shortcut learning from the image recognition domain is
an ML model trained to detect different types of animals in pic-
tures (like cats and dogs) identifying the animals based on the
background color of the images rather than learning the patterns
associated with animal objects.

To mitigate this problem, we developed simAIRR, a novel sim-
ulation strategy that constructs antigen-experienced-like base-
line repertoires in the sense of the publicity-generation proba-
bility relation. It introduces signals in the repertoires by follow-
ing the models of realistic population incidence of AIR sequences
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calibrated from real-world experimental datasets. This approach
ensures that the simulated datasets are not biased and are in-
stead representative of real-world scenarios. Our findings sug-
gest that this novel simulation approach effectively mitigates the
shortcut opportunities that can arise through naive simulation
approaches.

One key benefit of simAIRR’s approach is the possibility of not
making any prior assumptions regarding the similarity or com-
monality of immune state-associated sequences that will be used
as true signals. By utilizing known antigen-specific sequences
from public databases (e.g., VD]db [54, 67, 68]) or other experimen-
tally determined antigen-specific sequences as the pool of signal
sequences, users can refrain from making prior assumptions. This
will be useful in representing real-world scenarios well because
there is currently very limited knowledge of sequence similarity
patterns between sequences selected for a common antigen. Ex-
isting AIRR-ML methods make varying assumptions regarding the
similarity patterns of sequences selected for a common antigen.
While some methods assume that signal sequences share sub-
sequence patterns (k-mers) [21, 23, 29, 59, 69-71], other studies
assume that immune receptor binding is determined by the full
CDR3 sequence and is best approached by learning appropriate
similarity metrics for full CDR3s [19, 38, 72]. Using case studies,
we demonstrated the utility of sSimAIRR in generating benchmark
datasets for immune state prediction problems following varying
assumptions regarding true signals: that is, it could be assumed
that the true signal sequences share subsequence patterns (k-
mers, gapped k-mers, hamming distance, etc.) or known antigen-
associated sequence pool could be used with no a priori assump-
tions.

The cases presented in this study demonstrate that simAIRR
can generate AIRR benchmarking datasets for immune state pre-
diction problems that represent real-world scenarios well. The be-
havior of ML methods on the generated benchmarking datasets
matches the behavior of the same methods on real-world experi-
mental datasets at different sample sizes and witness rates. This
suggests that the generated benchmarking datasets sufficiently
match the real-world experimental datasets in terms of signal
and noise. Often, benchmarking of computational methods pub-
lished as part of articles presenting novel methods identifies the
proposed novel method(s) as a winner(s), largely owing to bench-
marking not being fully neutral [73, 74]. However, neutral bench-
marking is especially valuable for the scientific community to
make the evaluation of the methods more rational and to estab-
lish standards on a scientific basis [73, 74]. We encourage AIRR-ML
researchers to evaluate the performance of novel ML methods on
neutral benchmarking datasets developed by other researchers to
improve the generalizability of methods. For instance, the bench-
marking datasets used in the case studies and similar simulation
parameters at smaller sample sizes and lower witness rates rep-
resent suited benchmarking datasets for unbiased performance
evaluation of novel AIRR-ML methods. These scenarios also rep-
resent the cases where novel AIRR-ML method development is
needed because the performance of state-of-the-art ML methods
drops compared to easier scenarios. Notably, the empirical per-
formance maps of baseline ML models across a wide range of
study design and ML challenges as profiled in our previous study
[59] need to be reevaluated with more realistic simulated datasets
(such as the ones generated in this study) given the strong prior
assumptions on what constitutes a signal.

Machine learning models’ performance on AIRR data gener-
ated by different simulation approaches (including simAIRR) can
be comparable if the simulations avoid creating shortcut learn-

ing opportunities through broken realism. For a machine learn-
ing problem, the goal of any AIRR simulator, such as simAIRR, is
to introduce specific signals (e.g., sequence patterns) into certain
repertoires, but there is no consensus, to our knowledge, on what
constitutes immune signals. Thus, simulation tools create coun-
terfactual worlds through various assumptions of immune signals
to enable the development of assumption-agnostic ML methods.
ML methods that focus on the desired signal and ignore simula-
tion artifacts should perform similarly on datasets generated by
simAIRR and previous simulation approaches. However, if a sim-
ulation approach introduces artifacts by deviating from realistic
biological properties, it can provide shortcut learning opportuni-
ties that certain ML methods may exploit. In conclusion, our view-
point is that the performance of well-behaving ML methods does
not necessarily have to be different between simAIRR-generated
data and data generated by other simulation approaches, but pre-
vious approaches should be open for shortcut learning opportuni-
ties, where it can be hard to know whether or not they have been
exploited by a complex ML model. Moreover, it is worth noting
that simAIRR can serve as a corrective plug-in for other simula-
tion approaches (e.g., [46]), effectively mitigating shortcut learning
opportunities arising as a consequence of the perturbed degree of
publicness of receptor sequences.

An important aspect to keep in mind is that the default mod-
els supplied with simAIRR with respect to the relation between
generation probability and the population incidence of public se-
quences are calibrated based on human TCRA chain sequences.
However, the magnitude of public responses can vary for other
AIRR loci depending on the species, cell types, cell subsets, chains,
and pairedness of sequences [13]. Thus, when intending to simu-
late AIRR datasets of other AIRR loci, different species, cell types,
and chains, users need to calibrate the relation between gener-
ation probability and population incidence of sequences on cor-
responding experimental datasets and supply such custom mod-
els to simAIRR. To make this process easier, we provided console
scripts through another add-on Python package [75]. The file for-
mats for the custom models are described in sSimAIRR’s documen-
tation. Note that the population incidence of sequences can be
computed with CompAIRR [35], and the generation probability of
sequences can be computed using OLGA [44] with minimal effort.

To learn models reflecting the realistic population incidence
(of signal sequences and remaining public sequences), we used
the largest TCRB dataset currently publicly available [19] with the
following desired properties: a case-control design in which there
were no known protocol differences between the cases and con-
trols and an optimal sample size to maximize the exactness of
the estimates of population incidence of AIR sequences. We were
not able to extend the testing to B-cell heavy chains because of
the lack of availability of public IGH repertoire datasets of the
aforementioned criteria in public databases like immuneACCESS
[76] and iReceptor [77]. A limited number of datasets with a case-
control design, protocol differences between cases and controls
when available, small sample sizes, or larger portions of missing
data were some of the problems that were encountered when try-
ing to extend the testing to IGH repertoires. Note that the approx-
imation of the true estimates of realistic population incidence of
AIR sequences improves with increased sample size, and models
learned on datasets of smaller sample size (e.g., 50 repertoires)
can spuriously inflate population incidence of public sequences
(Supplementary Fig. S6). IGH repertoires differ from TCRB reper-
toires in terms of diversity introduced through somatic hyper-
mutations (SHMs). When considering the consequence of SHM-
induced diversity for an ML problem, as compared to the pres-
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ence of identical public sequences in TCRAs within certain phe-
notypes, IGH repertoires are known to be characterized by clonal
lineages and thus a “public clonotype” definition for BCRs has
to rely on some form of similarity measure between sequences.
For instance, in recent studies that observed convergent B-cell
clonotypes as a response to SARS-CoV-2 [78, 79], 85% amino acid
sequence similarity of CDR-H3 was used to identify convergent
clonotypes. Preselection sequence generation tools (like OLGA [44]
and its parent tool, IGoR [45]) can generate an arbitrary number
of preselection sequences based on learned statistics of V(D)J re-
combination and SHM, and simAIRR can generate IGH repertoires
that are akin to naive BCR without the additional diversity aris-
ing because of SHM. To introduce SHM-induced diversity into the
repertoires, an extension to simAIRR is needed in the future to
have the possibility of public clonotypes not being identical but
similar by some distance as stated above.

A plethora of studies have compared repertoires of a common
immune state and found identical or similar sequences detected
in many individuals [6-11]. AIRR-ML methods rely on this obser-
vation that condition-associated sequences or similar sequences
will be observed in a considerable fraction of the sample size that
shares the immune state. This overlap of similar signal sequences
across repertoires is a post-V(D)J recombination phenomenon. Al-
though repertoire generation models of B-cell repertoires have
been suggested to be individual-specific [80] (moderately medi-
ated by a high degree of polymorphisms in IGHV genes), condition-
associated similar sequences can be shared among individuals
of a common immune state [6-11]. simAIRR simulates this ex-
act phenomenon of shared similar sequences across repertoires
while not allowing the sharing pattern to exceed what can be
possible given a rough indication of the generation probability of
the sequences. Previous research has suggested a high degree of
concordance in repertoire generation models across individuals
[45,57, 81, 82], but recent observations provided evidence that the
generation probability of sequences, in some cases, can vary up
to or more than 3 orders of magnitude due to individualized re-
combination models [80]. It remains to be investigated how the
individualized recombination models affect the overlap of pub-
lic sequences at a population level and subsequently the pattern
recognition capacity of ML models. If deemed necessary, future
improvements of simAIRR should use individualized recombina-
tion models.

An important consideration for AIRR data simulation for ML-
based prediction problems in the context of individualized reper-
toire generation models is what is the exact consequence of in-
dividualized repertoire general models at a population level. Al-
though there exists limited knowledge on this aspect, we are
allowing ourselves to speculate on the possible consequences.
As individualized repertoire generation models and the gen-
eration probability of sequences are tightly related, some se-
quences that can be thought to be generated with high prob-
ability, in general, might not be occurring in individual reper-
toires with the same probability, leading to less overlap of se-
quences between repertoires at a population level. In simAIRR,
users can customize the degree of sharing of public sequences
across repertoires, meaning that the proportion of unique se-
quences in a repertoire dataset that is public can be controlled. A
suitable default for this customizable parameter can be estimated
from experimental datasets as a post-VDJ recombination model
characteristic.

To minimize the effort needed to construct a complex set of sig-
nal sequences, if needed, we provided simple but efficient Python
recipes in the documentation of simAIRR. The provided tutorials

show how to generate a large set of reference sequences and query
them to retrieve a complex set of signal sequences enriched for
multiple criteria like the presence of multiple subsequence pat-
terns within the sequences (e.g., k-mers) and gene usage. A major
advantage of the described approach is that once a large num-
ber of reference sequences are generated and stored on disk, they
can be queried many times. However, in some cases (e.g., when
evaluating a particular behavior of a developed ML method), one
might need to construct signal sequences enriched for very rare
sequence patterns. To obtain a sufficiently large number of se-
quences sharing such rare sequence patterns, one may have to
generate and query many millions of sequences. In this article,
we did not measure the execution time for mining rare sequence
patterns from a set of reference sequences. If the execution time is
slow to mine rare sequence patterns, an alternative solution may
be to implant sequence patterns (e.g., k-mers) while avoiding the
positional biases using existing tools [41] or as we did in our pre-
vious study [59]. However, note that the implantation of sequence
patterns may lead to another type of shortcut learning opportu-
nities, and thus it is important to thoroughly assess the potential
pitfalls before using implantation, particularly in benchmarking
competitions.

simAIRR currently does not support the simulation of paired
chain repertoires and clonal frequencies of receptors in reper-
toires. Notably, the clonal frequencies of AIRs have been suggested
to follow a power law distribution [83]. Future improvements of
simAIRR should also simulate clonal frequencies. However, fur-
ther empirical evidence from independent studies on the useful-
ness of power law in describing clonal frequency distributions in
multiple cell types, subsets, and species is needed in this connec-
tion. Also note that simAIRR focuses only on simulating datasets
for immune state prediction problems at the repertoire level but
does not focus on receptor-specificity prediction problems. An-
other notable unmodeled aspect of simAIRR is the possible de-
pendence between AIR sequences in real-world repertoires. Par-
ticularly in the context of this study, there may be dependence
between outlier sequences in real-world repertoires because of a
possible association with the same immune stimulus. There may
also be dependence between outlier and signal sequences where,
for example, a particular antigen experienced in the past primes
for a specific response to the condition being investigated. The
lack of such dependence between public AIR sequences within
simAIRR-generated repertoires does not impact sSimAIRR’s objec-
tive of mitigating shortcut learning opportunities for ML methods
when simulating repertoires of contrasting immune states. How-
ever, understanding and subsequent modeling of the dependence
between AIR sequences within repertoires of real-world experi-
mental AIRR datasets is warranted in future studies.

Conclusion

In summary, the contribution of this study is bringing to light
not only the potential shortcut learning opportunity that can
arise with the state-of-the-art way of simulating AIRR datasets
but also a novel simulation approach implemented as a Python
package that can help avoid potential shortcut learning opportu-
nities for ML methods. Unlike state-of-the-art naive simulation
approaches, a key benefit of sSimAIRR’s approach is the possibil-
ity of not making any prior assumptions regarding the similar-
ity or commonality of immune state-associated sequences that
will be used as true signals. The AIRR datasets simulated using
siImAIRR were similar to real-world experimental datasets based
on the performance of ML methods on both types of datasets. We
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suggest testing new ML methods on neutral benchmark datasets
like sSimAIRR’s to aid unbiased evaluation.

Graphics
goplot2 version 3.3.6 [84] was used for graphs, and Inkscape ver-
sion 1.0.1 [85] was used for illustrations.

Availability of Source Code and
Requirements

® Project name: simAIRR

® Project homepage: https://github.com/KanduriC/simAIRR
[86]

® Operating system(s): Platform independent

® Programming language: Python

® Other requirements: Python 3.8 or higher

® License: GNU AGPL version 3

® Research Resource Identification Initiative ID (RRID):
SCR_023956

® biotoolsID: biotools:simairr

Data Availability

Snapshots of the frozen codebase with a permanent DOI are avail-
able on Zenodo database [87].

A Docker image of simAIRR is available on docker hub at [64],
and configuration files to reproduce the simulations and ML mod-
els of the use cases are available on a separate repository on
GitHub at [75]. Simulated datasets used in the case studies with
permanent DOI are available on the NIRD database at [88]. A sim-
ple Python recipe and tutorial for generating sequences enriched
for k-mer-like sequence patterns to be used as true signal are
available on the simAIRR documentation at [60]. An archival copy
of the code and supporting data is available via the GigaScience
repository, GigaDB [89].

Additional Files

Supplementary Fig. S1. Generation probability discordance bias
in the naive simulation of AIRR datasets at different sample sizes.
We randomly subsampled repertoires of different sample sizes
(n = 50, 100, 200) with balanced labels from a real-world experi-
mental AIRR dataset (n = 683 repertoires; 307 positive class exam-
ples and 376 negative class examples, average unique number of
TCRBs per repertoire ~200,000) [1] and repeated the experiments
shown in Fig. 2 of the main text. For comparison, we also included
similar-sized data from naive simulations. The findings at differ-
ent sample sizes are shown in different rows of the chart. Similar
to the observations of Fig. 2, the outlier measure (y-axis) alone is
a poor classifier of presumed true signals even in the subsampled
real-world experimental data at different sample sizes (charts on
the left column). On the contrary, the outlier measure alone has
very high precision in synthetic datasets generated through the
naive simulation approach described in Fig. 1B.i of the main text.
Supplementary Fig. S2. Absence of generation probability discor-
dance bias in a real-world experimental dataset of a small sam-
ple size. The phenomenon of the absence of generation probabil-
ity discordance bias in real-world experimental data was also ob-
served on another TCRB dataset with a much smaller sample size
(compared to [1]) of 79 cases and 13 controls with/without pe-
diatric COVID-19 from [2]. Sacco et al. assayed TCRB data from
pediatric patients with COVID-19 who either progressed to de-

velop multisystem inflammatory syndrome or not (together 79
cases) and matched healthy controls (13 controls). In the origi-
nal article of Sacco et al.,, TCRB data of COVID-19-positive cases
were not compared against healthy controls to identify poten-
tial public clones. However, here, for the sake of investigating the
presence/absence of generation probability discordance bias in
a dataset of as large a sample size as possible, we included all
79 cases and 13 controls in the analysis. Since the condition-
associated public clones are not reported in the original study, we
looked at the distribution of likelihood ratio (on the x-axis) and
placed an arbitrary threshold to call sequences as presumed sig-
nals. Irrespective of the presumed signal sequences, the main ob-
servation from this analysis is that similar to the observations of
Fig. 2 and Supplementary Fig. S1, in the real-world experimen-
tal datasets, many public sequences are observed with increased
population incidence than what is expected based on their gener-
ation probability. In other words, thresholding based on the com-
puted outlier score alone will be a poor classifier of signal se-
quences.

Supplementary Fig. S3. Presence of many receptor sequences
at an unlikely high population incidence than what is expected
based on their generation probability in the CMV-negative co-
hort of Emerson et al. [1]. We used the real-world experimen-
tal AIRR dataset with CMV-positive and CMV-negative repertoires
that were used for the analyses in Fig. 2A (n = 683 repertoires; 307
CMV-positive examples and 376 CMV-negative examples, average
unique number of TCRBs per repertoire ~200,000). Instead of com-
puting the outlier measure (y-axis) based on CMV-positive exam-
ples, we repeated the same experiment on a CMV-negative cohort
as a control experiment to demonstrate that antigen-experienced
repertoires carry many outlier sequences that occur at an unlikely
high population incidence than what is expected based on their
generation probability. Similar to the observations of Fig. 2A, even
in the CMV-negative cohort, many sequences were observed with
high outlier scores (on the y-axis). Here, each point represents a
unique TCRB CDR3 sequence. When computing the likelihood ra-
tio (on the x-axis) as described in the Methods section of the main
text, we treated the CMV-negative examples as a positive class
and used the CMV-positive cohort as a negative class. The data
points in red as shown in Fig. 2 are absent in this figure because
we did not consider any sequences as condition-associated or true
signals. Nevertheless, the main message from this analysis is the
observation of many AIR sequences in antigen-experienced reper-
toires that occur at an unlikely population incidence level than
what is expected given their generation probability as measured
through the outlier score on the y-axis.

Supplementary Fig. S4. Empirical relation between generation
probability and population incidence of public AIR sequences. The
relation between generation probability and population incidence
of public AIR sequences was determined based on a previously
published large cohort study of TCR repertoires [1] separately for
signal (3.b) and all the remaining public sequences (3.a). In both a
and b, the x-axis represents the sample size proportion bins and
the y-axis represents generation probability distribution bins in
the —logyo scale. Note that the bins on both axes are half-open
intervals that include the left endpoint but exclude the right end-
point. To explain one cell of the heatmaps, consider the top-left
cell in panel a. The cell corresponding to the generation proba-
bility bin [8, 2) and sample size proportion bin [0.2, 0.4) tell that
18% of the total unique public sequences with a generation prob-
ability between [8, 2) (in —logio scale) occurs between [0.2, 0.4) %
of total repertoires in the sample (dataset). The row-sums of the
heatmaps should sum to 1.
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Supplementary Fig. S5. Empirical cumulative distribution of pop-
ulation incidence (sample size percentages on the x-axis) for dif-
ferent generation probability bins (subpanels) for presumed sig-
nal sequences (b) and all the remaining public sequences (a) in a
previously published large cohort study of TCR repertoires [1].
Supplementary Fig. S6. Empirical distribution of population inci-
dence for receptors within different generation probability inter-
vals at different sample sizes (rows of the chart). The relation be-
tween generation probability and population incidence of public
AIR sequences was determined based on a previously published
large cohort study of TCR repertoires [1] separately for presumed
signal sequences (a) and all the remaining public sequences (b)
at different sample sizes (rows of the chart). In both a and b, re-
ceptors along the x-axis are split into 3 distinct bins according
to their generation probability. The stacked bars along the y-axis
represent the proportion of receptors within a given generation
probability interval that have population incidence falling within
a particular range (with a distinct color representing each popula-
tion incidence range). A full sample size of n = 683 repertoires with
approximately balanced labels (same chart as Fig. 3) was shown
for comparison with other investigated sample sizes of n = [200,
100, 50 repertoires] with balanced labels. Note that the bins of
both generation probability and sample size proportions are half-
open intervals that include the left endpoint but exclude the right
endpoint. If the distribution of sequences at different population
incidence levels (colors) within each generation probability inter-
val (on the x-axis) at the full sample size of 683 repertoires (top
row in the chart) is assumed as a proxy for the true population
estimates, we notice that the true population estimates are well
approximated with an increase in sample size (rows 2—4 in the
chart).

Supplementary_Information.docx.

Abbreviations
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