
Master’s thesis

Achieving Data-efficient Neural
Networks with Hybrid
Concept-based Models

Tobias Aanderaa Opsahl

Data Science, Specialisation Statistics and Machine Learning
60 ECTS study points

Department of Mathematics
Faculty of Mathematics and Natural Sciences

Autumn 2023

Tobias Aanderaa Opsahl

Achieving Data-efficient Neural
Networks with Hybrid

Concept-based Models

Supervisors:
Vegard Antun

Riccardo de Bin

Abstract

Most datasets used for machine learning consist of a single label per data
point, which is used to optimise the model. However, in cases where more
information than just the class label is available, would it be possible to
train models more efficiently? We introduce two novel neural network
architectures that train with both class labels and additional information
in the dataset, referred to as concepts. We call these models hybrid concept-
based models, since they use both concept predictions and information not
interfering with the concepts to predict the class. In order to thoroughly
explore their performance, we introduce ConceptShapes, an open and flexible
class of datasets with concept labels. Through various experiments, we
show that the hybrid concept-based models outperform standard computer
vision models and previously proposed concept-based models with respect
to performance, especially in sparse data settings. We also introduce an
algorithm for performing adversarial concept attacks, where an image is
perturbed in a way that does not change a concept-based model’s concept
predictions, but changes the class prediction. We argue that this puts
the interpretable qualities promised from previously proposed concept-based
models into question.

i

ii

Contents

1 Introduction . 1
1.1 The Issues with Data Hungry Algorithms 3
1.2 Our Contributions . 5
1.3 Thesis Structure . 7

2 Deep Learning . 9
2.1 The Deep Learning Framework 9
2.2 Adversarial Attacks . 11
2.3 Explainable Artificial Intelligence 12

3 The Rise and Fall of Saliency Maps 15
3.1 Saliency Maps. 15
3.2 The Lack of Explanations from Saliency Maps 16

4 Concept-based Explanations and Models 21
4.1 Post-hoc Concept-based Explanations. 21
4.2 Interpretable Models 22

4.2.1 Concept-based Models 23
4.2.2 Pitfalls of Concept-based Models 25

5 Datasets. 29
5.1 Shortcomings of Existing Concept Datasets. 29

5.1.1 Caltech-USCD Birds-200-2011 (CUB). 29
5.1.2 Osteoarthritis Initiative (OAI) 30

5.2 Introducing the ConceptShapes Datasets 31
5.2.1 Description of the Concepts 32
5.2.2 Correlation Between Classes and Concepts 34
5.2.3 Further Details 35

6 Novel Model Architectures . 37
6.1 Concept Bottleneck Models with Skip Connection 37
6.2 Sequential Bottleneck Model (SCM). 39
6.3 Training . 39
6.4 Further Details. 40

7 Adversarial Concept Attacks 41
7.1 The Adversarial Concept Attack Algorithm 42
7.2 Testing the Algorithm on the CUB and ConceptShapes Datasets . . . 43
7.3 Are Adversarial Concept Examples a Problem for CBM’s Trustworthi-

ness? . 46
8 Experimental Setup for Performance Evaluation 49

8.1 Performance Evaluation Setup. 49
8.2 CUB Experiments . 51

8.2.1 CUB Subsets 51
8.2.2 CUB Models 52

iii

Contents

8.3 ConceptShapes Experiments 52
8.3.1 Datasets . 52
8.3.2 ConceptShapes Models 53

9 Results of the Models’ Performances 55
9.1 CUB Results . 55

9.1.1 Hybrid Concept Models Perform the Best on CUB 55
9.1.2 None of the Models Learn the Concepts Properly 55

9.2 ConceptShapes . 57
9.2.1 Results with No Correlation Between Concepts and Classes . 57
9.2.2 Hybrid Concept-based Models Perform Better than the Bench-

mark Models 57
9.2.3 All the Models Learn to Predict the Concepts 59
9.2.4 Similar Results can be Observed on All of the Dataset Variations 59

9.3 Summary of Performances 65
10 Conclusion and Future Work 67

10.1 Conclusion . 67
10.2 Future Work . 67

A Appendix . 75
A.1 ConceptShapes Dataset Details 75
A.2 Results Details . 80
A.3 Adversarial Concept Attacks 80
A.4 Hyperparameter Optimization Details 80

iv

Chapter 1

Introduction

Understanding model behaviour is a crucial challenge in deep learning (DL) and artificial
intelligence (AI) [1]–[4]. DL models are inherently chaotic, and give little to no insight
into why a prediction was made. In order to use AI in high risk settings [5] and to
get insight into the shortcomings of current models [6]–[9], it has been argued that
understanding model behaviour is critical. In computer vision, early attempts for
explaining a model’s prediction consisted of assigning pixel-wise feature importance [10]–
[13]. Even though these methods gained popularity and were visually appealing, they
have been shown to perform a poor job at actually explaining model behaviour [2], [3],
[14]–[18]. A more recent approach is to globally inspect if a model has learned human
understandable concepts related to the predictions [19]–[21]. Concepts can also be used
to attempt to construct models that are inherently interpretable [22]–[27]. However,
despite many proposals for interpretable DL models, various experiments show that
their interpretable qualities may not hold [28]–[30].

We define concepts in the context of machine learning (ML) as human meaningful
features in the data that is different from the main target we try to predict. For a
computer vision model that classifies bird species, a concept may be if the bird has a
small size or if it has orange eyes [23], [31] (see Figure 1.1). For a chess computer that
predicts the next best move given a board position, a concept may be whether or not
the player to move is in check, or if they have a material advantage [21].

Datasets labelled with concepts have been used to attempt to make interpretable
models [23]–[27]. The main feature of these models is that they are first used to
predict the concepts, and then the concept predictions are used to predict the label
(see Figure 1.2). The target prediction is made solely from the concept predictions.
This way, one can interpret why a target prediction was made by inspecting the concept
predictions.

Although such concept-based models intuitively seem interpretable, experiments have
shown that this may not be the case in practice [28]–[30]. The main limitation for
interpretability is that the concept predictions encode more information than just the
concepts, referred to as concept leakage. In tasks where the concepts are uncorrelated
and useless to predict the target, using the concept predictions may achieve substantially
better performance than an oracle using the true concept labels [28], [29]. It has also
been shown that concept-based models are susceptible to adversarial attacks [30]. One
can find images that look identical, have the same target prediction, but different concept
predictions. As one of the contributions in this thesis, we will add evidence to their lack
of interpretability. We propose an algorithm that perturb an image so that it looks
identical to the original image, the concept predictions are unchanged, but makes the

1

Chapter 1. Introduction

Figure 1.1: Example of concepts. Images are labelled both with
concepts and classes. Images are taken from the Caltech-USCD
Birds-200-2011 (CUB) dataset [31].

2

1.1. The Issues with Data Hungry Algorithms

Figure 1.2: Overview of a concept model. The model first
predicts the concepts in the dataset, and then uses those predictions
to predict the target. This is figure 1 from [23].

target prediction change (see Figure 1.3).

1.1 The Issues with Data Hungry Algorithms

We will deviate from the goal of interpretability and use the framework of concept-based
models to create models that tackle another crucial challenge in AI, namely large dataset
requirements. ML models require vast dataset sizes in order to reach good performance.
This results in large computational requirements [32], high energy usage [33], [34], and
challenges in gathering the data [35], [36].

The need for a large dataset also demonstrates that modern AI learns differently than
humans and animals. For instance, large language models (LLMs) fail on fundamental
reasoning and planning [37]. This is expressed in a recent quote from Turing award
laureate Yann LeCun [9]:

‘Animals and humans get very smart very quickly with vastly smaller amounts
of training data than current AI systems. Current LLMs are trained on text
data that would take 20,000 years for a human to read. And still, they haven’t
learned that if A is the same as B, then B is the same as A. . . . My money is
on new architectures that would learn as efficiently as animals and humans.’

Furthermore, gathering the datasets is a crucial bottleneck for many applications. In
tasks like medical image processing, gathering data may require specialised equipment,
domain expert knowledge, many human patients and carefully designed experiments. As
it is put in Deep Learning for Medical Image Processing: Overview, Challenges and the
Future [36]:

3

Chapter 1. Introduction

Figure 1.3: Adversarial Concept Attack. Images are perturbed in a way that does not change
a concept bottleneck model’s (CBM) [23] concept predictions, but change the class prediction.
We suggest that this questions the interpretable qualities of CBMs.

‘Deep learning requires immense training datasets to establish the accuracy
of deep learning classifiers; the lack [of] suitable datasets is one of the biggest
barriers to the success of deep learning in medical imaging. ’

and in Advances in Deep Learning-Based Medical Image Analysis [38]:

‘Although deep learning models have achieved great success in medical image
analysis, small-scale medical datasets are still the main bottleneck in this
field.’

It is easy to imagine problems with dataset sizes in other areas as well, such
as satellite and aerial imaging, wildlife monitoring, microscopic imaging, underwater
imaging and industrial inspection. Even in applications where gathering training data
does not require immediate expenses, datasets may limit model performance. Consider
for example the task of predicting housing prices. Datasets may consist of previous house
sales in the region. Although collecting the existing data might not be expensive, the
amount of existing house sales in a region might not be large enough to train accurate ML
models. Additionally, researchers might in some cases be limited to predefined datasets,
without being able to collect more data.

Motivated by the arguments presented above, we propose the following question to
investigate in this thesis:

How can we make high performing ML algorithms that require less data?

4

1.2. Our Contributions

1.2 Our Contributions

We tackle the problem of large dataset requirements in computer vision by proposing
new models that train with both concept labels and target labels. The models do not
receive the concept labels as inputs, but uses them to train concept predictions in hidden
layers, which is then used to predict the class. In order to evaluate their performance,
we have also developed a new class of concept datasets (datasets with concept labels),
as one of the contributions in this thesis.

Our models differ from existing concept-based models in that they are motivated
by performance, not interpretability. Therefore, we construct the models without the
limitation of making the final target prediction solely from the concept predictions. Our
models use both concept predictions and information that has not interfered with the
concepts in order to make the target prediction. An overview of one of the architectures
can be seen in Figure 1.4.

Figure 1.4: Architecture of a Concept Bottleneck Model with Residual Connection
(CBM-Res), one of the novel hybrid concept-based models proposed. The intermediary
bottleneck layer predicts the concepts in the dataset. The final class prediction is made both
with the concept predictions and with information just going through a normal convolutional
neural network (CNN). This differs from earlier proposed concept-based models, which only use
the concept predictions to predict the target class. The difference is rooted in that our models
are motivated by performance, not interpretability.

By using the concept labels to add additional information to the dataset, one may
perform better on a given dataset, or save expenses by requiring less data. For instance,
assume a group of researchers wish to further develop models on a previously proposed
medical dataset, but the amount of data was not sufficient to train accurate ML models.
The researchers may not be able to gather more data, since that would require a new
comprehensive study. However, they might have sufficient domain expertise to add
additional labels to the images. This could give the model sufficient extra information
to become satisfactorily accurate. If adding concept labels is cheaper than creating more
training data, one might save time and money by using concept-based models.

In some cases, concept labels are already available, or can be easily inferred. In
the context of developing a chess computer, it is trivial to calculate concepts such
as material balance and opponents threats for a given game position. Reinforcement
learning algorithms that operate in physical space may use orientation, velocity and
coordinates as concepts, and use the concept predictions to predict the next best action.

5

Chapter 1. Introduction

We propose models that are able to efficiently train with the information given by the
concept labels.

Our models are compatible with existing methods for training with small datasets.
Instead of training an ML model from scratch, one can start with a large pre-trained
model. The last layer of the pre-trained model can be changed and trained on the
prediction task of interest. This is referred to as transfer learning. One can also augment
the training data in ways one might expect data outside the given dataset to look like,
called data augmentation. In computer vision, this may consist of horizontally flipping
an image, slightly altering the colours or cropping it. Both transfer learning and data
augmentation are popular methods in DL, and in the experiments we will use both of
them combined with our proposed models.

In addition to proposing our novel concept-based model architectures and concept
datasets, we explore limitations of interpretability in current concept-based models. We
develop an algorithm that, given an image and a concept-based model, produces an
identically looking image with the exact same concept predictions, but with different
class predictions (see Figure 1.3). We refer to this as adversarial concept attacks. This
is a different approach than in [30], which changes the concept predictions, but keeps
the class predictions the same. Since our method demonstrates that identical concept
predictions on almost similar images can produce completely different output, we argue
that this further questions if concept-based models can be considered interpretable.

Our contributions are as follows:

• Novel model architectures: We propose novel DL architectures that use
concept labels in addition to the class labels to train. Unlike previously proposed
concept models that were created with the purpose of being interpretable, ours are
motivated by achieving better performance when the amount of data is limited.
We refer to the models as hybrid concept-based models, since they use concept
predictions in addition to information not related to concepts to predict the class.
To the best of our knowledge, these are the first concept-based models that are
motivated by performance.

• New flexible concept datasets: We argue that datasets that are currently being
used to benchmark concept-based models have limitations or are inaccessible, and
therefore present a class of openly available synthetic datasets with concept labels
called ConceptShapes. The framework for creating the datasets is generic, so the
user can control the difficulty by the amount of classes, and decide the correlation
between the classes and the concepts.

• Experimental results: We show that the novel models can outperform both
previously proposed concept-models and standard convolutional neural networks
(CNN) with respect to test-set accuracy, especially when the amount of training
data is low. This is done on both a wide variety of the ConceptShapes datasets,
in addition to the popular CUB dataset [31].

• Adversarial Concept Attacks: We propose an algorithm for generating
adversarial examples for concept models. The adversarial examples look identical
to the original images, produce the exact same concept predictions, but change the
class prediction. We argue that this makes the interpretable qualities in existing
concept-based models even more questionable.

6

1.3. Thesis Structure

1.3 Thesis Structure

The structure of the thesis is as follows: First, we cover the background of relevant
topics in AI in Chapter 2, 3 and 4. We start by giving a brief overview of the DL
framework in Chapter 2. We describe adversarial attacks, in order to present our own
adversarial algorithm later. Because previous concept-based models have been motivated
by understanding model behaviour, we explore why this is an important issue and discuss
explainable artificial intelligence (XAI) and interpretability. We then give an overview of
an existing class of popular methods for explaining model behaviour by making saliency
maps in Chapter 3, along with comprehensive evidence for their lack of explainable
power. Chapter 4 covers concept-based explanations and some interpretable models
based on them, along with their shortcomings.

After the background, we continue with our contributions. Chapter 5 provides
an overview of the issues in current concept datasets, and a comprehensive overview
of the synthetic concept datasets ConceptShapes that we propose. Novel concept-
based model architectures are covered in Chapter 6. We present our algorithm for
performing adversarial concept attacks, along with corresponding experimental results
and discussion in Chapter 7. We describe the experimental setup for evaluating the
hybrid concept-based models’ performance in Chapter 8, with results in Chapter 9.
Chapter 10 summarises the results and discusses possible directions for future work.

7

Chapter 1. Introduction

8

Chapter 2

Deep Learning

2.1 The Deep Learning Framework

DL methods started the AI revolution when AlexNet won the Imagenet competition in
2012 [39]. Soon after, DL began to dominate areas such as speech recognition [40], [41],
game intelligence [42], [43] and natural language processing [37], [41]. Deep learning
consists of automatically learning multiple representations of input data, usually by
utilising neural networks with many hidden layers.

In this introduction we consider the framework of supervised machine learning on a
classification task. We are given N data points, {xi}i=1,...,N , along with corresponding
class labels {yi}i=1,...N . The data is d dimensional, and we have p classes, meaning each
xi ∈ Rd and yi ∈ {1, 2, ..., p} for every i. Given yi = j, we write the one-hot-encoding as
yi = [0, 0, . . . , 1, . . . , 0] ∈ Rp, a p dimensional vector with zeros at every element, except
input j, which is 1.

In computer vision, where the input data is images, d is the number of pixels. Our
goal is to find a function fθ : Rd → Rp that will accurately predict which class an image
belongs to. Here θ is the vector of parameters for the model fθ, which we will sometimes
omit for simplicity and write f instead. In practice, fθ will be a deep neural network.

The output of the model is denoted by ŷi = fθ(xi). It is a p dimensional probability
vector, where all entries lie in the interval [0,1], and the sum of them is 1. In
order to achieve the probability vector, one can use the softmax function, defined as
s(z)j = ezj /(

∑p
r=1 ezr) for each j ∈ [1, ..., p]. The values before they are passed through

the softmax function are called logit values.
We want fθ to generalise beyond the dataset which is used to train the model and

find θ. In order to do that, it is customary to partition our dataset in a training set,
validation set and test set. We let Itrain, Ival, Itest ⊂ {1, 2, . . . , N} be the sets of indices to
the data points that belongs to the training set, validation set and test set, respectively.
We use the training set to train models and find the parameters θ, and chose the best
model according to how well they perform on the validation set. Finally, we report the
performance on the test-set, which has not been used to train or select the models. The
performance can be measured by the accuracy, 1

|Itest|
∑

i∈Itest I(argmax(ŷi) = yi), where
where argmax(ŷi) returns the index of the element in ŷi with the largest scalar value,
and I is the indicator function, defined as

I(x = y) =
{

1 if x = y,

0 otherwise.
(2.1)

9

Chapter 2. Deep Learning

In order to find suitable parameters for our model, we chose a loss function
L : Rp×Rp → R that we want to minimise. Its inputs are the predicted value ŷi = fθ(xi)
and the one-hot-encoded true label yi. The loss function is low when the model assigns a
high probability to the true class, and high otherwise. When using the softmax function
to achieve ŷi, it is computationally efficient to also use the categorical cross entropy loss
function, defined as:

L(ŷi, yi) = −
p∑

j=1
yi,j log(ŷi,j) (2.2)

where yi,j and ŷi,j are scalar values corresponding to the j’th elements of the vectors
yi and ŷi. Note that exactly one element in the sum will be non-zero, since yi is the
one-hot-encoding of yi.

We use stochastic gradient descent (SGD) to iteratively update the parameters θ. Let
{D1, D2, . . . , DM} be a partition of the training data {(xi, yi)}i∈Itrain . We refer to each
Dm as a minibatch, and let the minibatches be of approximately equal sizes. For each
minibatch Dm, we calculate the average gradient of the loss function with respect to the
parameters. The gradient is calculated with backropagation [44]. Then, the parameters
are updated in the direction of the negative gradient, multiplied with a learning rate η.
For a minibatch Dm at step t, the equation for calculating θt+1, the parameters at the
next step, then becomes:

θt+1 = θt − η · 1
|Dm|

∇θt

∑
(x,y)∈Dm

L(fθt(x), y)

In practice, we often use a variation of SGD. Instead of directly going in the direction
of the current gradient, one can use momentum to average over previous gradients [45].
The method RMS-prop [46] divides the learning rates for parameters elementwise by
an exponential running average of the squared gradient for that parameter. Combining
momentum and RMS-prop, in addition to bias correcting, yields the popular optimizer
Adam [47].

In order for deep learning models to work well, various other methods are also used.
We use the rest of this section to describe some of them. The layers in the network
are passed through an activation function, which achieves a non-linear relationship
between the input and output. The most popular activation function is ReLU, defined
as ReLU(x) = max(x, 0). The sigmoid function σ(x) = 1

1+e−x may also be used. The
activation functions are applied elementwise.

In computer vision, the images are often processed and augmented before being
passed through the network. The raw pixel values consist of a three dimensional vector,
where every element is in {0, 1, ..., 255}. The three values represent the red, green and
blue channels of the image, and the number represents the colour intensity. The values
are often scaled down to [0, 1], and then normalised with respect to each channel’s
average pixel value in the dataset. Data augmentation, like random cropping or flipping,
may be applied to the training images. This artificially emulates more training data.
Data augmentation can reduce overfitting, which is when the validation-loss starts to
increase during training, despite the training-loss further decreasing. Another popular
regularisation technique is dropout [48], which randomly sets elements from hidden layer
outputs to 0 during training.

10

2.2. Adversarial Attacks

+ .007× =

x sign(∇xL(fθ(x), y)) x + α ·
sign(∇xL(fθ(x), y))

“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 %
confidence

Figure 2.1: Demonstration of adversarial attack with fast gradient sign method (FGSM),
performed on GoogLeNet [56] trained on imagenet [57]. Left: The original test image of a
panda. Middle: The signed loss of the gradient with respect to the image. Right: The
perturbed image, with α = 0.007. The neural network predicts gibbon for the perturbed image,
even though it still resembles a panda. This is Figure 1 from [54].

2.2 Adversarial Attacks

Soon after the DL revolution started, it was discovered that it was possible to easily
fool the models by producing slightly perturbed inputs that resulted in vastly different
outputs. This was coined as adversarial attacks [6]. For computer vision models, one can
produce images that are only slightly changed, and look identical to humans. However,
they could still produce completely different predictions from a DL model. This is
illustrated in Figure 2.1.

The existence of adversarial examples limits AI’s trustworthiness [49], and the
presence of such examples have been documented in many domains. This includes
image reconstruction [8], image classification [50], voice recognition [51], natural language
processing [52] and tools for automating diagnosis in medicine [53].

Many methods for obtaining adversarial examples have been proposed. The fast
gradient sign method (FGSM) was introduced as a fast and reliable algorithm to produce
adversarial examples [54]. It differed from the original method that was computationally
expensive [6]. Given a neural network fθ, image x, true label y and loss function L, the
method alters x by adding α · sign(∇xL(fθ(x), y)), where α is an adjustable step size.
This means that it takes a single step in the direction where the loss for the true class
increases the most.

The FGSM proved that DL models were highly susceptible to adversarial attacks
that were easy to generate, but did not always produce images that looked similar to the
original. This is because it takes one big step in the direction of the gradient of the loss,
which is usually a highly non-linear function. It was later generalised to the basic iterative
method [55], which takes many small steps with updated gradient calculations. At step
t, perturbed image number t + 1 is generated by xt+1 = xt + α · sign(∇xt

L(fθ(xt), y)),
with x0 = x. Additionally, the images are clamped to be within the range of possible
pixel values. This method more consistently generates adversarial examples that only
change the original image slightly.

Further generalisations consist of targeting the attacks to a specific class, and
projecting the perturbed images close to the original images. Instead of simply
misclassifying, one can decrease the loss of a target class yk ̸= y, with xt+1 =
xt−α·sign(∇xt

L(fθ(xt), yk)). It is also possible to increase the raw class logit output for

11

Chapter 2. Deep Learning

yk, instead of minimising the signed loss. An additional improvement was with projected
gradient descent (PGD) [58]. In addition to the iterative method, every image xt is
projected down on an epsilon ball around x, such that the perturbed images do not
move away from the original input image with more than epsilon. One can do this with
respect to any distance metric, but one often uses the ℓ2 or ℓ∞ norm. Another popular
method for generating adversarial examples is DeepFool [59], which iteratively updates
images to move them closer to the model’s decision boundary.

The reason for DL methods being susceptible to adversarial attacks, referred to as
being unstable, partly stems from the high dimensionality of the data. Computer vision
inputs often have hundreds of thousands of dimensions, which makes it easy to find a
direction that increases the loss of the true class rapidly [54]. A small change in many of
the input features can result in a big change overall, since the number of input features
is high. It also means that there is no way to obtain a dataset that densely covers
a grid of possible input images. It is argued that restricted models are easier to fool
than complex ones, due to them not being able to make sufficiently flexible decision
boundaries [54], [58]. Paradoxically, there exist theoretical results showing that stable
and accurate neural networks do exist for some problems, but training algorithms are
not able to find them [60].

The existence of adversarial examples prove that DL models do not learn what they
are intended to do. If a computer vision model truly understood the contents a human
sees in an image, it would not be fooled by very similar looking images. It is conjectured
that the models learn false structures instead of the intended task [7], [61]. Since the DL
models work arithmetically with the raw pixel values, the false structures may be any
structure in the pixels that correlates well with the intended task, thus allowing for high
accuracy. However, the false structure is not stable with respect to small perturbations
in the pixel values, yielding the unstable results.

2.3 Explainable Artificial Intelligence

DL models give no valuable insight into why a prediction was made, and are therefore
referred to as black boxes. One can give the models input and observe the outputs, but
not decipher the process of what happened in between. This has led to a great demand
from policy makers and users of the models to develop methods that give insight and
transparency into the decision making processes.

For instance, consider medical imaging. If a model only predicts the presence of
a disease, without giving any reason for why, it may not convince medical experts,
especially if they do not agree with the conclusion [35], [36]. Regarding law, transparency
in the model behaviour is necessary to make sure it does not act biassed and unfairly
with respect to gender and ethnicity [3], [62].

Additionally, understanding how models work, and why they may perform poorly, is a
useful step towards improving them. Although DL models often give impressive accuracy,
this comes at the cost of non-human behaviour, which often gives unsatisfactory
performance. As discussed in the previous section, they are sensitive to small
perturbations in the input that humans do not notice. This suggests that they learn
different structures than intended. They also require vast amounts of training data and
computational power [32], [63]. If one had a better understanding of how the models
work, then it would be easier to work with their limitations.

Furthermore, in high-risk applications, the use of DL will be restricted. The
European Union newly developed a legal framework to regulate AI based on risk-level

12

2.3. Explainable Artificial Intelligence

Figure 2.2: High-level overview of EU’s Artificial Intelligence Act. The regulations increase with
the risk of the applications. The image is taken from [64].

[5], [65]. If the application is deemed to be of higher risk, like in medicine and law, more
restrictions will apply (see Figure 2.2). Model transparency is one of the requirements,
which will not be possible without being able to explain the models’ behaviour.

The approaches to understanding model behaviour are mainly divided into
explainability and interpretability. Explainable Artificial Intelligence (XAI) aims to
do post-hoc analyses of pre-trained models in order to understand their behaviour.
A common strategy consists of ranking the importance of individual input features.
Feature importances can be quantified with Shapley values [66], while saliency maps [10]
may determine the importance of pixels for computer vision models. Another approach
is through concept-based explanations, which globally inspect the model’s behaviour
through vectors aligned with human meaningful concepts [19]. On the other hand,
interpretability is often used to describe models that are understandable by design.
A classical example is linear regression, where the computed coefficients themselves
can be interpreted as feature importances. DL models have mostly been constructed
without this objective, but recent contributions have been aimed towards the goal of
interpretability [3], [22], [23].

13

Chapter 2. Deep Learning

14

Chapter 3

The Rise and Fall of Saliency Maps

Original Image Manipulated Image

Figure 3.1: The explanation produced by a saliency map on an image of a dog and a slightly
altered image of a dog. The model prediction is the same for both images. The upper right
image has been altered so that the explanation will significantly change, while looking similar to
the original image. This is figure 1 from [15].

3.1 Saliency Maps

In an attempt to understand the behaviour of DL computer vision models, various
methods for producing pixel-wise explanations have been proposed. The produced
output is called saliency maps, which attempts to answer how important each pixel
of an image was for the model’s prediction.

Early versions consisted of differentiating the class probability prediction with respect
to the pixels [10]. If a pixel received a high absolute value of this derivative, it means
that the model’s behaviour was sensitive to changes in that pixel. This is then assumed
to partly explain how the model has behaved. In order to also consider the actual input
for the pixels, the method gradient times input multiplies the gradient with the pixel
input values [13].

A more recent version of a saliency map is integrated gradients [11], which sums
the average gradient over a series of images. It starts with a baseline image, often a
completely black image, and then uses images that are gradually more similar to the

15

Chapter 3. The Rise and Fall of Saliency Maps

Figure 3.2: We have no idea why this image is labelled as either a dog or a musical instrument
when considering only saliency. The explanations look essentially the same for both classes.
Credit: Chaofen Chen, Duke University. This is Figure 2 from [3].

original image. For each of these images, one computes the gradient of the output
with respect to the input pixels. The final saliency map is created by averaging over
the gradients from the images. Another influential visualisation method is Grad-CAM
[12]. Instead of solely using input gradients, Grad-CAM examines the feature maps of
chosen convolutional layers. For a given class prediction, it calculates the gradient of
this prediction relative to these feature maps, generating a heatmap. This heatmap is
upscaled to the image size, highlighting key regions influencing the model’s decision for
that class.

3.2 The Lack of Explanations from Saliency Maps

While these kinds of saliency maps have been widely used in practice, it is unlikely that
they describe the underlying reasons of how the models predict [2], [14], [18]. Although
the images seem appealing as they often highlight the object that is being classified,
there is no unified agreed way to quantify this. This issue is rooted in the difficulty
of actually defining what an explanation is. For an explanation to be useful, it has to
sufficiently convince a human why the model made a decision. The medical community
has shown considerable demand for understanding model decisions [35], but it is reported
that current explainability methods fail to do this [18]. It is written that:

‘Explainability methods cannot yet provide reassurance that an individual
decision is correct, increase trust among users, nor justify the acceptance
of AI recommendations in clinical practice. ’

— From The false hope of current approaches to explainable artificial intelligence in
healthcare [18]

One of the biggest limitations of current explainability methods is that there is no
method of quantifying how good an explanation is. A main driver for the justification
of the saliency maps have been that they produce images that are visually appealing.
However, why should this mean that they actually capture the reasons why a model
predicted in a certain way? Making a heatmap for why a model correctly predicted a
Siberian husky seems to capture the important parts of the image, but the heatmap
looks similar when asked why the image might depict a musical instrument instead (see
Figure 3.2). Moreover, there are an abundance of different saliency maps to choose from.
With no quantitative metric to determine which one that performs the best, how do you
choose which one to represent the model behaviour (see Figure 3.3)?.

16

3.2. The Lack of Explanations from Saliency Maps

Figure 3.3: Which explanation is correct? Saliency maps produced by various popular
explanation methods. Do one simply choose the heatmap that looks the best? The rows show
different types of adversarial perturbations. Even though the perturbed images make the model
misclassify the images, the explanations look similar. This Figure 2 from [18].

There is also evidence that saliency methods are not robust with respect to what
one would expect from an explanation. Since there is no quantified way of explaining,
the methods propose different metrics to represent an explanation. Most revolve around
what happens to the class prediction if some small perturbation to the input pixels or
feature maps take place. Although the sensitivity of a model’s behaviour for inputs
seems like an intuitive measure for how it behaves, does it really capture the rationale
behind the decisions? From a proper explanation, it would be reasonable that:

1. Dependence on models and data: The explanation method should explain
the model. Therefore, it should be highly dependent on the model’s weights.
Subsequently, since the data that were used to train the model is crucial for how
the model ended up, the explanation method should be sensitive to changes in the
data.

2. Robustness when model behaviour does not change: If some change
occurs that does not change the models behaviour, they should not change the
explanation.

In the next paragraphs we refer to experiments showing that neither of these hold
for saliency-based explanations.

Experiments randomising data model-weights show that some saliency maps are
not particularly sensitive to the models and data [14]. In Figure 3.4, we see the
results from various popular saliency maps given a randomised effect on the weights
in a pretrained network. From left to right, the layers of the network are gradually
cumulatively randomised. Despite large changes in the network’s weights, some of the
explanations seem rather similar. A similar experiment was also conducted where the
labels of training images were completely randomised. The networks were trained to
a 95% accuracy on the training set, but performed equally to random guessing at the
test set. Since this network had completely memorised the training instances and did

17

Chapter 3. The Rise and Fall of Saliency Maps

no generalisation at all, one would expect that the saliency maps look close to random.
However, as one can see in Figure 3.5, the heat-maps do not appear to be random at
all. If the explanation methods are partly invariant to the model and data it is trying
to explain, does it perform any job explaining at all?

Gradient

SmoothGrad

Gradient Input

Guided
Back-propagation

GradCAM

Integrated Gradients

Integrated Gradients-SG

lo
gi

ts

co
nv

2d
_1

a_
3x

3

m
ix

ed
_7

c

m
ix

ed
_7

b

co
nv

2d
_2

a_
3x

3

co
nv

2d
_2

b_
3x

3

co
nv

2d
_4

a_
3x

3

m
ix

ed
_7

a

m
ix

ed
_6

e

m
ix

ed
_6

d

m
ix

ed
_6

c

m
ix

ed
_6

b

m
ix

ed
_6

a

m
ix

ed
_5

d

m
ix

ed
_5

c

m
ix

ed
_5

b

co
nv

2d
_3

b_
1x

1

O
rig

in
al

 E
xp

la
na

tio
n

Guided GradCAM

Cascading randomization
from top to bottom layersOriginal Image

Figure 3.4: The following columns show the explanations when layers in the model have been
randomised one by one. The column to the right corresponds to a completely randomised
network. Despite this randomisation, some of the explanations seem rather unaffected. How
can the explanation be useful if it is not truly dependent on the models’ learned parameters?
This is Figure 2 from [14].

The saliency maps may also change explanation even though the model does not
change its behaviour. In [17], experiments were conducted on two networks that differed
only by a bias term. The data used was only changed by a constant vector shift. The
changed bias term was designed so that the constant vector added to the images was
cancelled out by the bias term, and the network predicted exactly the same. However,
the explanation methods did not. In Figure 3.6, one can see the results of a hand drawn
cat added upon images from MNIST [67], and how the heatmaps differ for two networks
with the exact same predictions.

Finally, we refer to experiments showing that saliency maps can be arbitrarily altered
to any target explanation of choice. Just as DL models are unstable and show chaotic
changes in behaviour from small perturbation of input images [54], [59], the pixel-wise
explanations show similar signs of instability [15]. By adding small perturbations to
input images that are unnoticeable to humans, one can use a weighted loss function to
find images that the model predicts similarly, but the explanation can be arbitrarily
chosen. This can be seen in Figure 3.1.

We argue that these limitations and shortcomings of saliency based explanation
methods make them unsuitable for actually explaining how the model works. Although
one might argue that there are methods that pass certain tests, like gradients actually
being dependent on data in Figure 3.5, those methods fail in other tasks. Given the
abundance of different saliency maps, the task of thoroughly exploring all of them are
outside the scope of this thesis. Furthermore, all of the methods are based on pixel by
pixel feature importance for a single image. Humans do not think pixel-wise, and this
fact alone limits the explanatory powers of the saliency maps. Additionally, since every

18

3.2. The Lack of Explanations from Saliency Maps

Figure 3.5: Explanation for a model trained with the correct labels and a model trained
with random labels. Many explanations look similar for the model trained with correct labels
and the model trained on random labels, even though they behave completely differently. Left:
Absolute value visualisation of masks for digit 0 from the MNIST test set for a CNN. Right:
Saliency masks for digit 0 from the MNIST test set for a CNN shown in diverging color. This is
figure 6 from [14].

explanation is done image by image, it does not capture the global model behaviour.
Next, we will look into concept-based ways of seeking understanding of model behaviour,
along with their limitations.

19

Chapter 3. The Rise and Fall of Saliency Maps

Figure 3.6: Evaluation of attribution method sensitivity using MNIST. Gradient times
input, integrated gradient with both a black and zero reference point and two other saliency map
methods do not display invariance and produce different attributions for each of the networks.
This is figure 14.2 from [17].

20

Chapter 4

Concept-based Explanations and Mod-
els

4.1 Post-hoc Concept-based Explanations

Another method of understanding model behaviour is with global concept-based
explanations. A concept is a human understandable and meaningful feature, different
from the class label. For a computer vision model, a concept may be whether or not there
are stripes in an image. For a chess computer that predicts the next best move, a concept
can be whether or not the player is in check. In order to use this to explain the model’s
behaviour, one can first examine if the model shows signs of knowing the concept. One
can then further explore how the presence or absence of a concept influences the model’s
predictions. Unlike saliency maps, concept-based explanations are global, meaning they
examine the model’s behaviour on sets of images, as opposed to an image at a time.
Furthermore, they are rooted in human understandable concepts, as opposed to pixel-
wise explanations.

We quantify how a concept is learned by how well a simple linear classifier is able to
distinguish between the latent representation of inputs having the concept and inputs
that do not have it. For each concept C, we acquire a set of images that contains the
concept (for example images with stripes), and a set with images that does not contain
the concept (for example images without stripes). We call these the positive set PC and
negative set NC , respectively. Given a model f to explain, let ql : Rd → Rk be the
function that transforms images to the latent activation in hidden-layer l in f . We pass
all images through ql and achieve our dataset {ql(x) |x ∈ (PC ∪NC)}, with labels yi = 1
if xi ∈ PC , and yi = 0 if xi ∈ NC . We then train a simple linear classifier on this dataset.
The classifier creates a hyperplane in Rk that tries to distinguish between the activations
of images from PC and images from NC . We let vl

C be the vector perpendicular on this
hyperplane. This is defined as the concept activation vector (CAV) [19] for concept C
in layer l. If the classifier is able to achieve a high validation accuracy, we assume that
the model has learned about the concept. This is outlined in Figure 4.1.

We can further check the model’s prediction sensitivity to the CAVs, introduced by
a method called testing with concept activation vectors (TCAV) [19]. For example, we
might want to explore if the concept stripes was important for the class prediction zebra.
This is done by moving the latent space of zebra-images slightly in the direction of the
concept-vector. One can then calculate the proportion of images that increased the
zebra-logit output. This score can then be compared to scores calculated with different
classes or concepts, to get a sense of which concepts the model uses.

21

Chapter 4. Concept-based Explanations and Models

... ...

l: Rk

ql : Rd → Rk f : Rk → Rp

Ll
C : Rk → [0, 1]

Latent
representations

of images, Rk

vl
C

Figure 4.1: Overview of CAV. We inspect a hidden layer l in a neural network. Given a concept
C, here stripes, we calculate the hidden layer activation in layer l of various images. Then we use
this to train a simple linear model Ll

C , which gives the CAV vl
C perpendicular on the hyperplane

that differentiates the activations of the striped images and the non-striped images. The upper
part of the illustration corresponds to the neural networks layers, from the input (left) to the
output (right). The bottom box represents the images represented as their activation in hidden
layer l.

This method has been applied at scale when examining the properties of the chess
AI AlphaZero [21]. They investigated when concepts were learned during training,
and in which hidden layers. They introduced what-when-where plots, which plots
the CAV accuracies on the hidden layer-number and training step (see Figure 4.2).
These experiments show that AlphaZero gradually learned concepts during training.
Furthermore, simple concepts (such as "in-check") are learned in early latent spaces as
well as later ones, but more complex concepts (such as "has-mate-threat") do better in the
later hidden layers. The authors also introduce continuous concepts, as a generalisation
of the binary concepts.

Extensions of the CAV framework have been actively proposed. Automated concept-
based explanation (ACE) [20] finds concepts automatically, by clustering various crops
of images. Conceptual counterfactual explanations [68] looks into how we can use CAVs
to understand a model’s mistakes. Given a wrongly classified image, CCE perturbs
the latent space representation in various CAV directions to examine the relationship
between the concepts and the prediction. The output is a negative or positive score
for each concept, representing how much more of that concept would influence the class
prediction. Yet another method, concept whitening (CW) [69], transforms a latent space
of a pre-trained model into a space consisting of decorrelated human understandable
concepts. This usually consists of training another epoch with the new concept layer.
As a result, the model maps images into a space aligned by concepts, and then to the
predictions.

4.2 Interpretable Models

Given the chaotic nature of DL, it is unlikely that they will become explainable with
post-hoc methodology. The models are unstable and probably pick up false structures

22

4.2. Interpretable Models

Training steps
0 103

104 105 106Block

Input
5

10
15

20

Test accuracy 0.0
0.2
0.4
0.6
0.8
1.0

in_check

Training steps
0 103

104 105 106Block

Input
5

10
15

20

Test accuracy 0.0
0.2
0.4
0.6
0.8
1.0

has_mate_threat

Figure 4.2: Plots showing how two concepts are learned in the chess AI
AlphaZero. They show how the test-accuracy for the CAVs increase in various
layers during training. The concepts are as follows: Left: Is the playing side
in check? Right: Could the opposing side checkmate the playing side in one
move? This is a part of Figure 2 from [21].

[7], [61], and it is reasonable to assume that their explanations are unstable as well.
Therefore, a community aimed towards attempting to design powerful models that are
inherently explainable has been growing [3].

Self Explaining Neural Networks (SENN) [22] are a class of neural networks,
restricted to behave linearly in local regions. They are based on the premise of linear
regression being inherently interpretable. The signs of the coefficients from linear
regression are a direct measure of the direction a feature influences the target, and
their absolute values show the magnitude of the influence. If no interaction terms
are used, then the features are also additively separable, not influencing each other.
SENN attempts to locally mimic this behaviour. The input is transformed into a
vectorspace spanned by vectors representing human meaningful concepts. Then a
weighted interpretable sum of vectors is computed. A key limitation is that the proposed
model does not guarantee that the new concept space consists of anything human
meaningful, which could become a bottleneck for the interpretable qualities.

4.2.1 Concept-based Models

Another approach towards interpretable models is concept bottleneck models (CBMs)
[23]. They use concepts defined in the same manner as with CAVs, but now use concept
labels during training time. A CBM consists of a neural network with a bottleneck layer,
where every node represents a human meaningful concept (see Figure 4.3). The training
data have both concept labels and class target labels, and the model is trained using
both a concept loss function and a target loss function. The bottleneck layer restricts the
final target predictions to be done entirely based on the concept predictions. This way,
one can transparently see the concept predictions that lead to each target prediction.
When the model makes mistakes, this will hopefully extend to being able to insightfully
examine which wrong concept predictions lead to the mistake.

To formalise, consider a classification task where we train to predict class targets yi

from input images xi. Each input xi is equipped with a binary concept label vector ci

of length k. This gives us the dataset {xi, ci, yi}i=1,...,N , with N input images xi ∈ Rd,

23

Chapter 4. Concept-based Explanations and Models

Figure 4.3: Overview of the CBMs. The models first predict an
intermediary layer of human-specified concepts c, and then use these
to predict the output y. The upper part shows application on knee
x-ray grading, and the lower shows classification of birds. This is
figure 1 from [23].

binary concept labels ci ∈ {0, 1}k and class target labels yi ∈ {1, 2, . . . , p}. A CBM [23]
is a neural network h : Rd → Rp that can be decomposed into functions g : Rd → Rk

and f : Rk → Rp, such that f(g(x)) = h(x). We refer to g as the concept model and f
as the target model. In other words, the CBM h is a neural network with a hidden latent
layer l of k nodes. We call this the bottleneck layer.

The authors provide different ways to train the CBMs. We define two loss functions,
one for measuring how well the concepts are predicted, and one for the targets. Let
LC : Rk × Rk → R be the concept loss function, and LY : Rp × Rp → R be the class
target loss function. Also let yi be the one-hot encoding of the class label yi. The three
different proposed ways of training a CBM are as follows:

1. Independent bottleneck: Here f and g are learned independently. The concept
model g are first learned by minimising

∑N
i=1 LC(g(xi), ci), and then the target

model f is learned by using the true concept labels, minimising
∑N

i=1 LY (f(ci), yi)

2. Sequential bottleneck: The sequential bottleneck is made in the same manner
as the independent, but the target model is found by using the concept model’s
predictions, instead of using the true concept labels. In other words, f minimises∑N

i=1 LY (f(g(xi)), yi).

3. Joint bottleneck: The joint bottleneck finds g and f jointly be minimising a
weighted loss function

∑N
i=1 [LY (f(g(xi)), yi) + λLC(g(xi), ci)].

A key argument for the interpretability of CBMs is the possibility to intervene during
testing when the model makes mistakes [23], [27], [70]. When a CBM predicts the target

24

4.2. Interpretable Models

wrongly, one can look at the bottleneck layer and find out which concepts that were also
predicted wrong. By correcting a few of the concept predictions, the models achieve
better target performance. This means that the insight that the bottleneck layer gives
us can be meaningfully used to understand and improve the model. For example, if a
radiologist assumes the prediction of a bone spur concept on an x-ray image is wrong,
they can update the concept value and achieve better target performance. This process
is outlined in Figure 4.4. There have also been introduced algorithms to efficiently query
human experts for concept intervention, by weighting uncertainty, importance and cost
to intervene [27].

Figure 4.4: Successful examples of intervention during testing, where intervening on a single
concept corrects the model’s prediction. The models are trained as independent bottleneck
models. This is Figure 3 from [23].

While the CBM has a simple architecture, several extensions have been proposed.
Concept-based model extraction (CME) [24] also uses concepts to predict the target.
However, for every concept, they use the hidden layer that best predicts that concept.
Post-hoc concept bottleneck models (PCBM) [71] first learns the CAVs of several concepts.
Then, embeddings are projected down on the concept space spanned by the CAVs, which
is then used by a linear classifier to predict the target. An interesting property of PCBMs
is that one can globally edit the model at testing time to improve performance, by finding
spurious correlations between concepts and targets. Concept bottleneck models with
additional unsupervised concepts (CBM-AUC) [25] improves the performance of CBMs
by adding a SENN architecture in addition to the CBM. Finally, concept embedding
models (CEM) [72] produces latent spaces of concepts that are different for presence
and absence of the concept. The parameters are also used to predict the probability
of presence or absence of the concepts, and use this to calculate a weighted sum of the
latent spaces, which is passed forward in the network. This way, they achieve better
performance with respect to accuracy and intervention during testing.

4.2.2 Pitfalls of Concept-based Models

Although the nature of CBMs intuitively seem interpretable, experiments show that
they might not live up to this promise. Several papers have examined the interpretable
qualities of CBMs, and it is concluded:

25

Chapter 4. Concept-based Explanations and Models

‘We have called into question CBMs trained using the joint objective, as they
seem to fall short on all three of our desiderata: (1) they do not provide
concept interpretability: post hoc analysis shows that the importance of
individual concepts does not correspond to their true importance in predicting
the targets; (2) they do not always predict target values based on concepts,
thus violating predictability; and (3) they may not intervenable, as the
concepts are learned at concept layer.[28].’

— From Do Concept Bottleneck Models Learn as Intended? [28].

A core aspect of a CBMs’ interpretability comes from them only being able to use the
concept predictions to make its final prediction. However, it can easily be demonstrated
that more information than just the concepts are embedded into the bottleneck layer,
referred to as concept leakage. In [28], it was demonstrated that training a CBM on just
one concept led to far better accuracy than an oracle model that could access the true
concept label directly. Additionally, the saliency maps of the concepts gave attention to
the whole object, rather than the part that the concept represented, as seen in Figure 4.5.

Figure 4.5: The saliency maps from the concept predictions in a CBM do not highlight the specific
concept, but rather the whole image. Left: CBM trained jointly. This is Figure 3 from [28].
Right: CBM trained independently. This is Figure 4 from [28].

Concept leakage was further emphasised in a series of experiments in [29]. A CBM
was trained to predict parity on the MNIST dataset (whether a number was even or odd),
and the only concepts were whether the input was a 4 or a 5. As an extreme example,
the model was trained and tested without any 4s and 5s in the dataset. During testing,
one would assume such a model to have accuracy similar to random guessing, at around
50%. However, it reached 69%, showing that a substantial amount of concept leakage
was happening. This was done when the concept model and target model were trained
independently. This was also recreated with similar results when the concepts were truly
random, and had no semantic overlap with the targets. Attempts to solve the leakage
by adding unsupervised concepts or decorrelating was done without success.

CBMs have also been shown to be susceptible to adversary attack [30]. Specifically,
the authors show that it is possible to perturb images so that the CBM concept prediction
changes, while the target prediction stays the same. They manage to both introduce the
prediction of concepts, remove them, and do both for the same image.

We further build upon the evidence of the limited interpretable qualities of CBMs
by designing adversarial concept attacks. We design an algorithm that given a CBM,
perturb an image such that it is identical to the original image, produce identical concept
predictions, but different class predictions. The details are described in Chapter 7. How

26

4.2. Interpretable Models

can a CBM provide meaningful interpretations if two different predictions are interpreted
identically? Our algorithm differs from [30] which designed their adversarial examples
to produce equal target predictions, but different concept predictions.

27

Chapter 4. Concept-based Explanations and Models

28

Chapter 5

Datasets

5.1 Shortcomings of Existing Concept Datasets

Having suitable concept datasets is required for doing proper analyses of concept-based
models, but we argue that popular concept datasets exhibit substantial shortcomings.
Here are some features we would like to see in a good concept dataset:

• Accurate concept labelling: The dataset should be equipped with concept
labels as well as target labels. The labelling should be accurate, with as little
mislabelling as possible.

• Concepts should be present in each image: An image should only be labelled
with a concept if it is evident from the image alone. For instance, if a bird has a
red belly, but it is facing away from the camera so the belly is not visible in the
image, it should not be labelled with the red belly concept. Otherwise, the model
will not train to predict the concept, but to infer the concept from correlations
between other concepts and classes. This could make the concept essentially act
as noise in the dataset.

• Concepts should be relevant for the task: The concepts should be relevant
for the downstream target. If not, the concepts will just act as noise, and standard
DL models will probably outperform the concept-based models.

• Open source and availability: The dataset should be openly available for
anyone to do further research. Not only should it be available, but the process of
downloading and using the dataset should be made as easily as possible. Ideally,
it is not very big, so that several experiments can be conducted without requiring
vast computational resources.

We now review some of the most popular datasets used for concept-based models.

5.1.1 Caltech-USCD Birds-200-2011 (CUB)

The Caltech-USCD Birds-200-2011 (CUB) [31] is the most widely used concept dataset,
and is used in [23]–[27], [30], [71], [72]. It consists of N = 11788 images of birds, where
the target is labelled among 200 bird species. The original dataset contains 28 categorical
concepts, which makes 312 binary concepts when one-hot-encoded.

However, the concept labels are noisy. The labelling was outsourced to non-
bird experts, making some labels differ between the crowdworkers. For example, the

29

Chapter 5. Datasets ���������		
�����������������	�	�������������	������������������������	����������	�������� ��!���	�
��"�� � #$%�&���%$�'��������(��
�)� *� ��
��� � �)� *� ��
�������)� *� ��
��	��

Figure 5.1: Examples of ambiguous cases in the existence of concepts from the CUB dataset.
Images have diverse visual contexts, where partial concepts may become invisible and unclear.
This is Figure 1 from [26].

crowdworkers might disagree on where the line for red and rufous (reddish-brown) goes.
Therefore, the dataset was pre-processed with majority voting and the removal of sparse
concepts [23]. If over 50% of the images of a class had a concept, all images of that
species got assigned the concept. Concepts that were present in less than 10 classes were
removed. In the processed dataset, 112 binary concepts are present.

Even with the preprocessing, there is still noise and problems with the dataset.
The concepts in the dataset are class-wise, meaning all birds in the same species got
assigned the same concept labels. However, the dataset features species that actually
have different concepts within a class. For instance, the species black tern has been
majority voted to have black underparts, but there are actually some birds of the species
that have white [70].

Furthermore, concepts may not be evident from the image alone. Several of the
images contain ambiguity of the concepts. Consider Figure 5.1. The bottom three images
do not display the presence of the concepts for the species, but by majority voting, they
are still labelled with them. This results in the concept-based models trying to predict
concepts that are not present in the image. Thereby, they will infer this by correlations
with the class or other information in the image, which overshadows the point of using
concepts predictions as an interpretable intermediary step.

Due to these shortcomings, we do not think the CUB dataset is sufficient to rank
concept-based models. However, due to its popularity, we still use it to benchmark our
proposed models.

5.1.2 Osteoarthritis Initiative (OAI)

Another popular concept dataset is Osteoarthritis Initiative (OAI) [73], used in [23], [27],
[30]. The preprocessed version [23] consists of N = 36369 x-ray images of knees, where
the target is to predict the Kellgren-Lawrence grade (KLG), which is a 4-level severity
grade of osteoarthritis assessed by radiologists. The images are from 4172 different
patients, where x-rays are conducted at different timepoints. The preprocessed concepts
consist of 10 clinical variables, such as bone spurs and calcification.

The main limitation with the OAI dataset is the lack of availability. Due to privacy
issues of the sensitive medical data, the dataset is not publicly available. Although
access can be gained easily on request, the main challenge lies in the preprocessing. The
correct images and labels need to be queried from the provider of the database, and
then preprocessed. The CBM paper’s [23] GitHub links to [74] for preprocessing, which
states:

30

5.2. Introducing the ConceptShapes Datasets

‘Data was processed on a computer with several terabytes of RAM and
hundreds of cores.’

The computational specifications of several terabytes of memory are very high, even
for computers made for scientific computations. The resources available for this thesis
had 256GB of RAM [75], and were shared among many users. Therefore, carrying out
the preprocessing is not feasible for researchers that do not have access to expensive
computational resources. Even then, the process for setting up the dataset would be
tedious and time consuming. We therefore argue that the unavailability of the dataset
makes it unsuitable to develop concept-based models as a community effort.

5.2 Introducing the ConceptShapes Datasets

Figure 5.2: Images from two different ConceptShapes datasets. The datasets with 5 concepts
all have black backgrounds, while the 9-concept datasets have 4 additional concepts in the
background. Left: 9 different images from the 10-class 5-concept dataset, all from the “triangle-
triangle” class. Right: 9 Different images from the 21-class 9-concept dataset, all from the
“hexagon-wedge” class.

As one of the main contributions of the thesis, we created a flexible class of synthetic
concept datasets called ConceptShapes (see Figure 5.2 and Figure 5.3). By flexible,
we mean that one can create new datasets where one controls the amount of classes,
concepts, and relation between them. All of the images in the dataset depict two shapes,
and the downstream task is to classify which two shapes that are present. There are also
concepts present in the images. The concepts are clearly visual cues, relating to colour,
texture and the sizes of the shapes, outline and background. The position and rotation
of the shapes are decided randomly. The code used for creating the datasets are openly
available at https://github.com/Tobias-Opsahl/TobiasaoThesis.

There are six main variations of the ConceptShapes datasets, resulting from three
different choices for the amount of classes, and two choices for the amount of concepts
(see Table 5.1). One can choose to include four, five or six different shapes, leading to
ten, fifteen and twenty one different pair combinations. The shapes have five concepts
related to them. The background has four additional concepts, making a total of nine
concepts. This means one can use either five or nine concepts in the datasets. While

31

https://github.com/Tobias-Opsahl/TobiasaoThesis

Chapter 5. Datasets

Figure 5.3: Images from different classes of two ConceptShapes datasets. Left: 9 different images
from the 10-class 5-concept dataset, all from different classes. Right: 9 different images from
the 21-class 9-concept dataset, all from different classes.

it is possible to produce datasets with other numbers of classes and concepts, we have
conducted experiments based on these numbers.

5 Concepts 9 Concepts
10 Classes Dataset 1 Dataset 4
15 Classes Dataset 2 Dataset 5
21 Classes Dataset 3 Dataset 6

Table 5.1: The six variations of the ConceptShapes dataset used in this thesis.

5.2.1 Description of the Concepts

The crucial feature of the datasets are the concepts. All of them are binary and
independent, meaning any combination of concepts are possible for each image. The
five first concepts are based on the two shapes in the image, while the last four optional
concepts are based on the background. The datasets are created with binary concept
label vectors that represent the true value of each concept in each image. We now
describe the concepts one-by-one, and visualisations are available in Table 5.2 and
Table 5.3. We start with the five concepts regarding the shapes:

1. Big shapes. Every shape had two intervals of sizes to be randomly drawn from.
One interval corresponded to the small figures, and the other to big ones.

2. Thick outlines. The outlines of the shapes were drawn from one of two intervals.
One corresponded to a thin outline, and the other to a thick one.

3. Facecolor. There were two possible colours for the shapes, blue and yellow.

4. Outline colour. The shapes had two possible outline colours, red and white.

5. Stripes. Some shapes were made with stripes, and some were not. The stripes
were in the same colour as the outline.

32

5.2. Introducing the ConceptShapes Datasets

With Concept Without Concept
St

ri
p

ed
F

ig
ur

es
B

ig
F

ig
ur

es
B

lu
e

F
ig

ur
es

T
hi

ck
O

ut
lin

e
R

ed
O

ut
lin

e

Table 5.2: Overview of the 5 concepts regarding the shapes. Each row corresponds to
one concept. The two leftmost columns of images have the concept, and the two rightmost
columns do not have the concept. All of the images are from a 5-concept dataset, hence the
black background. These five concepts are also present in the 9-concept datasets.

All of the concepts apply to the whole image. For instance, if the image gets the
thick outline concept, both shapes in the image get a thick outline.

The datasets that use nine concepts have all five of the concepts above, in addition
to four more. While all of the five-concept datasets have black backgrounds, the nine-
concept datasets split the background in two and use the colour and presence of stripes
as concepts.

6. Upper background colour. The upper-half of the background would either be
magenta or pale-green.

7. Lower background colour. The lower-half of the background would be either
indigo or dark-sea-green.

8. Upper background stripes. This represented whether there were black stripes
present in the upper background or not.

33

Chapter 5. Datasets

With Concept Without Concept

St
ri

p
ed

U
pp

er
B

ac
kg

ro
un

d

St
ri

p
ed

L
ow

er
B

ac
kg

ro
un

d

M
ag

en
ta

U
pp

er
B

ac
kg

ro
un

d

In
di

go
L

ow
er

B
ac

kg
ro

un
d

Table 5.3: Overview of the 4 concepts that relate to the background. These four
concepts are only present in the 9-concept datasets. Each row corresponds to one concept.
The two leftmost columns of images have the concept, while the two rightmost columns have
not. Note that the five concepts regarding the shapes are also present in the 9-concept datasets,
like thickness of the outlines and shape-sizes.

9. Lower background stripes. This represented whether there were black stripes
present in the lower background or not.

To summarise, some of the image’s visuals are determined by the concepts, some by
the classes and some by randomness. The two shapes (from triangle, square, pentagon,
hexagon, circle and wedge) are determined by the class. The shapes’ size, colour and
outline are determined by the concepts. If the dataset uses nine concepts, the background
colour and stripes are also made from the concepts. The shapes’ position and rotation
are determined randomly, regardless of which class or concepts they have.

Note that the size of the shapes and the thickness of the outline are partially random.
The concept determines one of two intervals to draw the size and thickness from, but
each image draws randomly from the interval chosen. For example, thick outlines are
drawn uniformly on the interval (1, 1.2), and thin outlines are drawn uniformly from
(0.2, 0.5). The details are covered in Appendix A.1.

5.2.2 Correlation Between Classes and Concepts

The correlation between the concepts and classes are made with a table that determines
which concepts that are related to which class, and a tunable hyperparameter that
determines the strength of the relationship. A table of the relationship for the 10 class
setting is available in Table 5.4, and the 15 class and 21 class setting are explained

34

5.2. Introducing the ConceptShapes Datasets

Classes
Concept 0 1 2 3 4 5 6 7 8 9
Thick Outline X X X X X
Big Figures X X X X X
Blue Facecolor X X X X X
Red Outline X X X
Stripes X X X
Magenta Upper Bg. X X X X X
Indigo Lower Bg. X X X X X
Upper Bg. Stripes X X X
Lower Bg. Stripes X X X

Table 5.4: Overview of which classes that get assigned a high probability for which concepts, in
the 10-class ConceptShapes datasets. Given a hyperparameter s ∈ [50, 100], an X indicates high
probability (s%), while the absence of an X represents a low probability ((100 - s)%).

similarly in Appendix A.1. For example, in the 10-class setting, images in class 0 (two
triangles) have a high probability of getting a thick outline, big figures, red outline and
magenta lower background colour, while the rest of the concepts have a low probability.

The quantity of “high” and “low” probability is determined by a hyperparameter we
call s ∈ [50, 100]. This value is defined before the creation of each dataset. For each
image, if the class has a high probability of receiving a concept, it gets that concept
with a s% chance. If it is low, it gets a (100 − s)% chance of receiving that concept.
For instance, for datasets made with s = 98, about 98% of images in class 0 have thick
outlines, while about 2% have stripes. This is because class 0 has a “high” probability
for thick outline, and a “low” probability for stripes. Setting s = 50 means that every
concept for every class is drawn with a 50% chance, making the concepts and classes
uncorrelated. Conversely, setting s = 100 means that each image of a given class has
the exact same concepts.

This hyperparameter is included so that one can explore model behaviour on different
concepts and class correlations. Real world concept datasets are unlikely to have no
variance in the concepts. This can be seen with the black tern class in the CUB
dataset, which could have both black and white underparts [70]. Experimenting with
different values of s means that one can explore how models behave given different
correlations between the concepts and classes, which can give valuable insight to the
models’ behaviour. This is only possible with a synthetic dataset.

The predictive power from the concept labels alone depend on the hyperparameters
of the dataset. In the experiments and results, we will look at oracle models that use
the concept labels to predict during testing. We will see that their accuracy varies all
the way from 10% to 100%, depending on the value of s, the number of classes and the
number of concepts.

5.2.3 Further Details

In order to conduct thorough experiments, the images were made in a low resolution of
3 × 32 × 32 pixels, so that one can easily train models with different settings multiple
times. They are equipped with an alpha channel that gets removed when processing
the images in the data-loader. The difficulty of the classification task was adapted so
one can easily train accurate models on an ordinary laptop without GPU support, but

35

Chapter 5. Datasets

difficult enough so that one does not easily get over 99% test-set accuracy. To make the
datasets have a suitable difficulty, some of the figures overlap considerably, and some
of them are partly outside the border of the image. By experimenting with different
settings for the amount of classes, concepts, overlap and resolution, we were able to
achieve a satisfactory difficulty.

We will explore how models perform on different subsets of the dataset. We made
1000 images for each class in each dataset, except for the 10-class 5-concept s-98 dataset,
which had 2000. This was split in a 50%-30%-20% train-validation-test global split. The
experiments explored subsets where 50, 100, 150, 200 or 250 images were drawn randomly
from each class, in a 60%-40% training and validation split. For example, the 15-class
100-subset dataset had 60 training images and 40 validation images drawn from the
global training and validations split for each class. This makes a total of 900 training
and 600 validation images. The test set was the same for all the subset, which was 20%
of all of the images created.

The class of datasets we created fulfils our desiderata of concept datasets. They
are never mislabeled, openly available for anyone to do experiments on, do not
require expensive computational resources and can be altered to one’s needs. The
hyperparameter s controls the concepts’ influence on the classes. The amount of classes
and subset of data used controls the difficulty of the classification task. Furthermore,
resolution, concepts, colours, and concept-class relationships can be easily altered if
desired. Versions of the dataset with different hyperparameters are available, and
creating a dataset of 10 000 images only takes about 15 minutes with an ordinary laptop
CPU.

36

Chapter 6

Novel Model Architectures

In this section, we propose two novel concept-based neural network architectures. The
models are based on a CBM [23] with additional skip connections. Both of the models
contain a bottleneck layer, which has as many nodes as there are concepts in the dataset.
During the backward pass, the output from the bottleneck layer is used together with
the concept labels from the dataset to calculate the concept loss. The loss function is a
weighted sum between the concept loss and a normal class loss.

In short, we propose one model that acts like a CBM [23] with an additional skip
connection, and one that learns concepts sequentially during the layers. Since the models
use both the concept predictions and the skip connection to predict the target class, we
refer to the models as hybrid concept models.

We will now introduce the notation. The framework we work with is computer
vision classification tasks, where the dataset is equipped with concept labels. We have
N data points, k different concepts and p different classes. The dataset is given by
{xi, ci, yi}i=1,...,N , where xi ∈ Rd are the input images, ci ∈ Rk are the binary concept
label vectors, and yi ∈ {1, 2, . . . , p} are the target class labels, for every i ∈ {1, 2, . . . , N}.
The concepts are binary, meaning that every element ci,j in the concept labels ci is in
{0, 1}.

6.1 Concept Bottleneck Models with Skip Connection

The first model acts as a CBM with an additional skip connection, and we introduce
two variants of it. The models pass information through a bottleneck layer, in addition
to information that jumps over the bottleneck layer with a skip connection. The first
variant, Concept Bottleneck Model with Residual Connection (CBM-Res), implements
the skip connection as a residual connection [76]. The second variant, Concept Bottleneck
Model with Skip Connection (CBM-Skip), implements it as a concatenation step [77].
The models are illustrated in Figure 6.1 and Figure 6.2, and we now explain the
structures in detail.

For both of the variations, we have a CNN g : Rd → Rq, that we refer to as the
base-CNN. The base-CNN can be any neural network, where its complexity should be
adapted to suit the difficulty of the classification task. We then have a bottleneck layer
bk : Rq → Rk that is connected to the base-CNN g. The bottleneck layer has as many
nodes as concepts present in the dataset. While training, the output from the bottleneck
layer and the concept labels will be put in a concept loss function that will be used to
train the model. While predicting, the bottleneck layer behaves as an ordinary linear

37

Chapter 6. Novel Model Architectures

Figure 6.1: Architecture of a Concept Bottleneck Model with Residual Connection
(CBM-Res). The intermediary bottleneck layer predicts the concepts in the dataset. The class
prediction is made both with the concept predictions and with information not going through
the bottleneck layer. At training time, a weighted sum between the concept loss and the class
loss is used as the loss function. The base-CNN can be any model, pre-trained or not.

layer. After the bottleneck layer, we have another linear layer l : Rk → Rr, and a final
classification layer lc : Rs → Rp.

The CBM-Res implements the skip connection as a residual connection [76] (see
Figure 6.1). The output from the linear layer l after the bottleneck layer is added
elementwise to the output of the base-CNN g. In order for this to work, the dimension
r must be equal to q. In other words, we get g(x) + l(bk(g(x))), which is then passed as
input to the final classification layer. This also makes the dimension s be the same size
as q.

The CBM-skip is similar to the CBM-Res, but instead of using residual skip
connections, it concatenates [77] (see Figure 6.2). The output of the linear layer l is
concatenated with the output of the base-CNN g, so that we get cat(g(x), l(bk(g(x)))).
Now, r does not have to be the same dimension as q. Consequently, we get that s = q+r.

Figure 6.2: Architecture of a Concept Bottleneck Model with Skip Connection (CBM-
Skip). This model works similarly to the CBM-Res model, but the outputs going through the
bottleneck layer and skip connection are concatenated, rather than added.

38

6.2. Sequential Bottleneck Model (SCM)

6.2 Sequential Bottleneck Model (SCM)

The SCM divides the bottleneck layer into multiple concept layers that are connected to
various layers in the model (see Figure 6.3). We have a similar base-CNN g : Rd → Rq,
but now some of the concept layers are connected to intermediary layers in g. The
maxpooled output from the convolutional layers are flattened, and concept layers
bi : Rpi → Rki are connected to them. We also have concept layers connected to the fully
connected linear layers after g. In the end, the concept layers’ outputs are concatenated
to become the full bottleneck layer. The nodes of the concept layers combined should
therefore be equal to the number of concepts, which with M concept layers becomes∑M

i=1 ki = k. Finally, this concatenation is then concatenated with the output from the
last linear layer.

Figure 6.3: Architecture of a Sequential Bottleneck Model (SCM). Concepts are predicted
sequentially along the network’s layers. There are multiple concept layers. The input to the
concept layers can either be flattened output from convolutional blocks or output from linear
layers. The output from the concept layers are then concatenated to make the bottleneck layer.
When making class predictions, the concept predictions are concatenated with information not
going through the concept layers. At training time, a weighted sum between the concept loss
and class loss is used as the loss function.

6.3 Training

The models are trained jointly on a weighted sum between the concept loss and the class
loss. Let LC : Rk×Rk → R be the concept loss function, and LY : Rp×Rp → R be the
target class loss function. Our models output ŷ, ĉ, the predicted probability distribution
over the classes and the probability values for the binary concepts, respectively. We
minimise

∑N
i=1 [LY (ŷi, yi) + λLC(ĉi, ci)]. Here, λ is the concept weight, a tunable

hyperparameter that determines the weighting between the concept loss and the class
loss. This is the same training setup as the joint bottleneck from [23].

The concept weight λ can be held constant or be reduced over time. When we set
it to be constant, we can find a suitable size during hyperparameter optimization. If we
chose to not set it to a constant value, we initially set λ0 to a high number. After each
epoch, it is exponentially decayed by a parameter γ ∈ (0, 1), so that epoch number i will

39

Chapter 6. Novel Model Architectures

have a concept weight of γiλ0. In this scenario, we can include γ in our hyperparameter
search instead of λ. The intuition behind this method is to make the model focus on
learning the concepts in the early stages of training, before gradually moving over to
focus on predicting the downstream class.

6.4 Further Details

An important feature of the proposed models is the compatibility with transfer learning.
As with many DL tasks, one often wants to use a big pre-trained model as a base for
the specific task. With CBM-Res and CBM-Skip, this is as easy as just overwriting the
output layer of any pre-trained model and replacing it with the respective architecture.
For the SCM, one also has to connect concept layers to some of the hidden layers in the
pre-trained model. In Chapter 8 and Chapter 9, we demonstrate transfer learning and
training from scratch for both model architectures.

There are many choices for the activation function used after the bottleneck layer.
Most importantly, we differentiate between soft and hard bottlenecks. In a soft
bottleneck, the values have not been rounded off to binary values, but are continuous.
They can still go through ReLU or sigmoid activation functions. A hard bottleneck
rounds off to the binary concept predictions, and passes forward a binary vector. In this
thesis, we experiment both with soft sigmoid bottlenecks and hard bottlenecks.

The models presented are motivated by performance and not interpretability. The
vanilla CBM is promoted as interpretable, since every class prediction can be explained
by the corresponding concept predictions. With the skip connections, we no longer know
whether the final prediction was made due to the concepts or due to the skip connection
that does not interfere with the concepts. However, recent results [28], [29] show that
the assumption of interpretability in CBMs may not hold, since the bottleneck layer
encodes more information than just the concept predictions. We further question the
interpretability when we perform adversarial concept attacks Chapter 7. Therefore, we
do not think that the lack of interpretable qualities in our hybrid concept-based models
is a drawback. On the contrary, we believe that using the concepts while training can
be motivated by performance alone.

Even though we have presented the models in the classification framework, they can
easily be adapted to regression. In that case, the output layer consists of one node, and
the target loss function is chosen accordingly.

40

Chapter 7

Adversarial Concept Attacks

Concept bottleneck models (CBMs) are motivated by interpretability [23], but we will
show that their interpretations suffer from the common problem of instability. The
promise of interpretability comes from that a CBM’s predictions can be interpreted
by its concept predictions. What would then happen if identical concept predictions
resulted in different model behaviour? We will construct an algorithm to demonstrate
instability and lack of interpretability in CBMs, and argue why this is a bigger problem
for interpretable models than for other DL models.

Given an image and a CBM, we want to create a perturbation of the image that looks
identical to the original, such that the model predicts the exact same concepts for both
images, but predicts different classes. We refer to this as adversarial concept attacks. In
order to carry out adversarial concept attacks, we propose a new algorithm for creating
adversarial examples. We construct these experiments because we suggest that existence
of such adversarial examples further questions the interpretability of CBMs. The central
question then is:

If two images with identical concept predictions have different class predictions, how
can the concept predictions provide an explanation of the model’s behaviour?

A recent paper [30] has done adversarial attacks on CBMs with the opposite goal.
An algorithm was constructed such that similar looking images would give the same class
prediction, but different concept predictions. This was done in a way that could remove
predicted concepts, introduce concepts that were not predicted, or both at the same time.
The algorithm consisted of a weighted loss function balancing equal class prediction and
different concept predictions. This allowed the researchers to do thorough analyses of
the robustness of CBMs, and develop another algorithm to increase the robustness.
However, one might expect inputs with different class labels and the same class label
in the dataset, as seen in the example of the black tern in Section 5.1.1. Therefore,
we believe that our approach better demonstrates the questionable interpretability of
CBMs.

The algorithm for adversarial concept attacks can be summarised as the following:
We iteratively update our perturbed image to increase the loss of the prediction for the
true class, similarly to PGD [58]. We refer to the perturbation this gives us at every
step as the initial perturbation. Additionally, we want to mitigate the chance of concept
predictions changes. Therefore, we elementwise check if the concept prediction logits are
close to 0, and refer to these as sensitive concepts. For each pixel, we check if the initial
perturbation brings any of the sensitive concepts closer to 0. If they do, we multiply
them with a number in [−1, 0]. This essentially flattens out or reverses the change in

41

Chapter 7. Adversarial Concept Attacks

sensitive concept predictions. We terminate with success if the class prediction changes
without the concept predictions changing, and terminate with negative results if the
concept predictions change, or if we reach the maximum number of iterations. In the
next section, we will present the algorithm in detail.

7.1 The Adversarial Concept Attack Algorithm

Next, we will introduce the notation used in our algorithm, which is described in detail in
Algorithm 1. Assume we have a CBM h : Rd → Rp, with a concept model g : Rd → Rk.
Given an input image x and class label y, assume that argmax(h(x)) = y. This means
that our concept model correctly predicts the true class label. Also let the concept
logits be g(x) = ĉ, and let ĉb = I(σ(ĉ) > 0.5) be the binary predictions, where the
indicator function I (see Equation (2.1)) works elementwise. Our goal is to produce a
perturbed image x̃ = x + r with c̃b = I(σ(g(x̃)) > 0.5) and argmax(h(x̃)) = ỹ, such that
c̃b = ĉb, but ỹ ̸= y. Additionally, we want x̃ to have elements that are in an interval that
represent valid pixel values, and r ∈ Rd to be small enough so that x + r look identical
to x by humans.

We now describe how the algorithm works in detail. We start with x̃0 = x and at
every step t calculate

p̂t = sign(∇x̃t
L(h(x̃t), y))

This value is the initial perturbation for an iteration, which may be altered in the
next step in order to mitigate concept prediction changes. If a concept prediction has
already been changed, we terminate the algorithm as not successful.

In order to avoid changing the concept predictions, we calculate sensitive concepts,
which are concepts that are close to being changed. Concept predictions change when
the sigmoided values pass 0.5, and occur when the logit values change sign. Therefore,
we identify a concept as sensitive if g(x̃)j = c̃j ∈ (−γ, γ), for some threshold value γ.
For original concept predictions g(x)j > 0, we want to avoid further lowering g(x̃t)j , and
for original concept predictions g(x)j < 0, we want to avoid further increasing g(x̃t)j .

We try to avoid further altering sensitive concept predictions by changing the inputs
in the initial perturbation pt that contributes to moving them closer to 0. For each
sensitive concept cj , we calculate which direction each pixel influence the prediction of
that concept, qj = sign(∇x̃t

g(x̃t)j). We then alter the inputs of our initial perturbation
if they lower concept logits for concepts that are initially predicted to be present, or
increase concept logits that were initially predicted to be absent. We obtain a mask

Mt,j = Iβ(p̂t ⊙ qj ̸= sign(g(x)j)) =
{

1 if p̂t ⊙ qj ̸= sign(g(x)j),
β otherwise,

where ⊙ is elementwise multiplication and the indicator function Iβ works elementwise
and returns 1 if the condition is true, and β ∈ (−1, 0) if not. Given M sensitive
concepts, we denote the set of masks for all sensitive concepts at step t as {M}t =
{M1,t, M2,t, . . . , MM,t}. We then accumulate the masks {M}t such that Mt =
min({M}t, 1) elementwise. This means that an element in Mt is β if that element was
β in at least one of the masks in {M}t, and 1 otherwise. If all the inputs in Mt equals
β, we terminate with negative results. We finally obtain the perturbation pt = p̂t⊙Mt.

The remaining steps are applying the perturbation, projecting the new image down on
the epsilon-ball around the initial image, and clamping the values so that they represent

42

7.2. Testing the Algorithm on the CUB and ConceptShapes Datasets

valid pixel values. The updated perturbed image is set to x̃t + αpt for some step length
α. We denote the ℓ∞ norm projection as Π[x−ϵ,x+ϵ](x̃t +αpt). This projection essentially
makes sure that no single pixel value deviates from the original image more than ϵ. The
final update is obtain after clamping, x̃t+1 = clamp(Π[x−ϵ,x+ϵ](x̃t + αpt), xmin, xmax).
The valid range of pixel values [xmin, xmax] depends on the normalisation of the images,
since the perturbations are added on the transformed images.

7.2 Testing the Algorithm on the CUB and ConceptShapes
Datasets

We demonstrate adversarial concept attacks on both ConceptShapes and on CUB.
We train a CBM with hyperparameters found from hyperparameter optimization (see
Section 8.1). We run a grid search to find good hyperparameters for the attacks, and
then run the adversarial concept attack algorithm on all the images in the test set.
We use the 10-class 5-concept and the 21 class 9-concept ConceptShapes datasets, both
with s = 98. We use the full CUB dataset and subsets of 250 images from each class
in the ConceptShapes datasets. For all datasets, we used the CBM trained with a soft
bottleneck. Visualisations of the attacks can be seen in Figure 7.1 and Figure 7.2.

Figure 7.1: Adversarial Concept Attack. The image is perturbed in a way that makes the
model predict the same concepts, but different classes. With Algorithm 1, we were able to
perturb 57.4% of images in the CUB test-set this way. The perturbations are indistinguishable
for humans. The model had 100% concept accuracy for this image, but this number was between
85%-98% for most images.

The adversarial concept attacks had a 57.4% success rate for CUB, 35.4% for the
10-class ConceptShapes dataset and 26.6% for 21 class ones. We also tested with PGD,
where we aborted if the concept prediction changed. The details are in Table 7.1, and

43

Chapter 7. Adversarial Concept Attacks

Algorithm 1 Adversarial Concept Attack Algorithm
1: Result: Perturbed image x̃ of x, such that CMB h misclassifies x̃, but the concept

predictions are the same for x̃ and x, or 0 for failed run.
2: Input:

Input image x ∈ Rd.
Class label y ∈ [1, . . . , p].
CBM h : Rd → Rp with input-to-concept function f : Rd → Rk, such that

argmax(h(x)) = y.
Sensitivity threshold γ ∈ (0,∞).
Step length α ∈ (0, 1).
Deviation threshold ϵ ∈ Rd.
Max iterations tmax ∈ N1.
Gradient weight β ∈ (1, 0].
Valid pixel range [xmin, xmax]

3: x̃0 ← x ▷ Initialize adversarial example
4: ĉ = g(x) ▷ Calculate original concept logits
5: ĉb = I(σ(ĉ) > 0.5) ▷ Calculate original binary predictions
6: for t = 0, . . . , tmax do
7: c̃← g(x̃)
8: c̃b = I(σ(c̃) > 0.5) ▷ New concept predictions
9: if c̃b ̸= ĉb then ▷ Check if concept predictions are changed

10: return 0 ▷ Fail due to changed concept predictions
11: end if
12: p̂t = sign(∇x̃t

L(h(x̃t), y)) ▷ Calculate initial perturbation
13: Initialize Mt ∈ Rd with all elements as ones ▷ Initialise gradient mask
14: for j ← 0, . . . , k do
15: if c̃j in (−γ, γ) then ▷ Identify sensitive concept
16: qj = sign(∇x̃t

g(x̃t)j)
17: Mt,j ← Iβ(p̂t ⊙ qj ̸= sign(g(x)j)) ▷ Concept mask for c̃j

18: Mt ← min(Mt, Mt,j) ▷ Update mask
19: end if
20: end for
21: if All entries in Mt equals β then
22: return 0 ▷ Fail due to all β mask
23: end if
24: pt = p̂t ⊙Mt ▷ Calculate final perturbation
25: x̃′ = Π[x−ϵ,x+ϵ](x̃t + αpt) ▷ Projection step
26: x̃t+1 = clamp(x̃′, xmin, xmax) ▷ Clamping step
27: if argmax(h(x̃t+1)) ̸= y) then
28: return x̃t+1 ▷ Succesful perturbation
29: end if
30: end for
31: return 0 ▷ Fail due to max iterations exceeded

44

7.2. Testing the Algorithm on the CUB and ConceptShapes Datasets

Figure 7.2: Adversarial Concept Attack. Algorithm 1 was successful at about a third of
the images from ConceptShapes. Some of the perturbed images are easily distinguishable for
humans. Most of the concepts were predicted with 100% accuracy.

some examples can be found in Table 7.2. We see that the difference of successful
concept attacks is much bigger with the CUB dataset, which have many more concepts
and pixels.

Adversarial Concept PGD
Attack Success Rate Success Rate

CUB
112 concepts 57.4% 16.2%

ConceptShapes with
10 classes and 5 concepts 35.5 % 31.4%

ConceptShapes with
21 classes and 9 concepts 26.6% 22.5%

Table 7.1: Success rate of adversarial concept attacks on images in the test-sets. An attack is
considered a success when the class prediction is changed, but not the concept predictions. First
column uses Algorithm 1, while the second column uses projected gradient descent (PGD) [58].

The adversarial concept algorithm is sensitive with respect to its hyperparameters.
We experienced that the two most important hyperparameters are the step length α
and the sensitivity threshold γ. These are highly dependent. A lower α means that
we change the images less in each step, and thus allows us to have a lower γ. If they
both are too low however, we might not be able to change the class label prediction
within the maximum amount of iterations. If α is high, we might drastically change the
concept predictions in each step, so we need to also use a high value of γ to mitigate

45

Chapter 7. Adversarial Concept Attacks

Least Flycatcher Yellow Warbler Pomarine Jaeger Common Yellowthroat

Warbling Vireo Wilson Warbler Laysan Albatross Kentucky Warbler

Table 7.2: Examples of successful adversarial concept attacks on CUB. First and second
row show original predictions and images. The third and fourth row show new predictions and
perturbed images. The original predictions were correct.

concept prediction change. However, this might lead to too many sensitive concepts,
which cancel out too many inputs in the gradients.

We used a simple grid-search to find the hyperparameters α and γ. We optimise the
proportion of images that are susceptible to the adversarial attacks, which means the
class prediction gets changed, but not the concept predictions. We also experimented
with different values of β ∈ [−1, 0], but it only slightly changed the results. Lowering ϵ
makes the attacks slightly less successful, but make the images look more similar to the
original images. All of the perturbed CUB images look identical to the original ones,
but one can spot clear differences with the ConceptShapes images. The details of the
hyperparameters are in the Appendix A.3.

There probably exist algorithms with higher success rates, but our intent is only
to demonstrate that such adversarial examples exist and are not rare. Our algorithm
operates in a greedy fashion with respect to the initial perturbation, and only factors in
the concept predictions later. It might be possible to calculate a more precise weighted
perturbation of both goals, instead of first making one based on just the classes, then
reversing the directions that negatively affects the concepts. It might also be possible
to backtrack if a concept prediction is changed. In [30], an algorithm that does not
change the class prediction, but does change the concept predictions is proposed. In
case of a concept prediction change in our algorithm, one might run this to backtrack
the concept predictions without immediately terminating. While we believe this outlines
the possibility for more accurate attacks, our intent is simply demonstrating that they
exist.

7.3 Are Adversarial Concept Examples a Problem for CBM’s
Trustworthiness?

The existence of these adversarial concept attacks substantially harms the promised
interpretable qualities of CBMs. Since it has been abundantly demonstrated that DL
models are unstable and susceptible to adversarial attacks [6], [8], [50]–[55], it might not

46

7.3. Are Adversarial Concept Examples a Problem for CBM’s Trustworthiness?

be surprising that CBMs are as well. However, most DL models only provide predictive
power, not interpretability. The key quality of CBMs is that their class predictions can
be interpreted by their concept predictions. Therefore, if similar concept predictions can
lead to drastically different results, how can one trust CBM’s interpretations?

The problem of adversarial concept attacks lies in the insensitivity between concept
predictions and class predictions. Normal adversarial attacks show that predictions are
highly sensitive to small changes in inputs. However, our adversarial concept attacks
show that class predictions can be sensitive to small changes in the input, while the
concept predictions are completely insensitive to the same changes. This is problematic
since one should expect that interpretations are highly sensitive to the results they are
interpreting.

We can also see the results in light of the false structure conjecture proposed in [7].
It suggests that DL models are unstable due to not classifying what they are meant
to, but instead finding some highly correlated, but unstable false structures. Therefore,
efforts to explain or interpret the models actually explain the false structures instead of
the task. In this light, CBM interprets the false structure that it is actually learning,
which is probably meaningless to humans.

Because of these limitations, we suggest that future work on concept-based models
with the intent of improving interpretability should address this issue. Interpretable
models should either be somewhat resistant to these kinds of attacks, or have a sufficient
explanation for why the existence of the attacks does not limit their interpretability.

47

Chapter 7. Adversarial Concept Attacks

48

Chapter 8

Experimental Setup for Performance
Evaluation

We conduct various experiments to assess the performance of the hybrid concept-
based models. This is done on both the CUB dataset and many variations of the
ConceptShapes datasets. We test our proposed CBM-Res, CBM-Skip and SCM against
three benchmark models, which consists of a standard CNN, an ordinary CBM and an
oracle model, which uses true concept labels to predict during testing. We train on
different subsets of the data, and record the test accuracies. We also look at how the
concept-based models learn the concepts. We run every experiment both with a soft and
a hard bottleneck layer in the concept-models.

The code was made in Python with PyTorch [78] as the DL library. We used Python
version 3.9.5, Torch version 2.0.1 and TorchVision version 0.15.2. We trained on the
University of Oslo’s USIT ML nodes [75], which mostly consists of RTX2080TIs. Because
of the low resolution of the ConceptShapes dataset, the bottleneck for computation was
running many different hyperparameter settings, not the training. We therefore enjoyed
speeding up the computations by running different datasets and hyperparameter settings
on different devices in parallel.

All of the runs are seeded and can be recreated with the openly available code at
https://github.com/Tobias-Opsahl/TobiasaoThesis.

8.1 Performance Evaluation Setup

We now give an overview of the setup for the performance experiments in detail, and
describe differences for the CUB and ConceptShapes datasets afterwards. The parts of
the experiments that are similar for the datasets are covered in this section, while the
subsets sampling and architectures are described in the next sections.

In order to benchmark the models we propose, we test them against the following
three models:

1. Standard model: We construct an ordinary CNN model that does not train
on the concepts. The choice of architecture and model capacity depends on the
dataset and task. Since this is the type of model that is common to use in a
computer vision context, we refer to it as the standard model.

2. Vanilla CBM: We also benchmark against a normal CBM [23]. This is to explore
if the hybrid architectures in our models will give better performance than a
previously proposed concept-based model.

49

https://github.com/Tobias-Opsahl/TobiasaoThesis

Chapter 8. Experimental Setup for Performance Evaluation

3. Oracle: We also construct an oracle model, which uses the true concept labels
both at training and test time. This is to see how much predictive power we can
get from the concept labels alone.

We construct the standard model and the vanilla CBM such that they have
approximately the same amount of trainable parameters as the hybrid concept-based
models. The number of parameters are shown in Table 8.1.

Model Total Parameters Trainable Parameters Frozen Parameters

ConceptShapes models with 10 classes and 5 concepts

Standard model 139,578 139,578 0
Vanilla CBM 137,583 137,583 0
CBM-Res 138,527 138,527 0
CBM-Skip 138,399 138,399 0
SCM 152,849 152,849 0

ConceptShapes models with 21 classes and 9 concepts

Standard model 139,941 139,941 0
Vanilla CBM 138,053 138,053 0
CBM-Res 139,758 139,758 0
CBM-Skip 139,614 139,614 0
SCM 167,579 167,579 0

CUB models

Standard model 11,425,032 248,520 11,176,512
Vanilla CBM 11,371,880 195,368 11,176,512
CBM-Res 11,416,952 240,440 11,176,512
CBM-Skip 11,428,088 251,576 11,176,512
SCM 11,786,488 609,976 11,176,512

Table 8.1: Amount of parameters in the different models. There are many variations of
the ConceptShapes datasets, here we show the one with the fewest parameters (top) and the one
with the most parameters (middle). The ConceptShapes models are trained from scratch, hence
no frozen parameters. The CUB models uses a frozen ResNet18 [76] model.

In order to test how the models perform with different amounts of data, we split
each dataset in many subsets. For each of the subset and for each model, we run a grid
search in order to find hyperparameters. We then train the models and measure the
test-set accuracy. This is averaged over many runs, where each run uses a different seed
for the model’s weight initialisations and the drawing of the subsets. We used 10 runs
for ConceptShapes and 3 for CUB.

We use the Misprediction overlap (MPO) metric from [24] to measure the quality of
the concept predictions. The metric calculates the proportion of data points that had
m or more concept mispredictions. For concept labels C = {c1, c2, . . . , cN} and concept
predictions Ĉ = {ĉ1, ĉ1, . . . , ĉN}, this becomes:

MPO(C, Ĉ; m) = 1
N

N∑
i=1
I (E(ci, ĉi) ≥ m) (8.1)

Where I is the indicator function from Equation (2.1) and E(ci, ĉi) =
∑k

j=1 I(ci,j ̸=
ĉi,j), where k is the amount of concepts. We then plot the MPO for values m ∈ [1, 2, ..., k].

50

8.2. CUB Experiments

Recall that the concept-based models’ loss function is
∑N

i=1 [LY (ŷi, yi) + λLC(ĉi, ci)].
We let LY be the cross entropy loss function (Equation 2.2). Since the concepts may
have many positive elements, we use an elementwise binary cross entropy function for
LC . This can be written as:

LC(ĉ, c) = −
k∑

j=1
[cj log(ĉj) + (1− cj) log(1− ĉj)]

Where the predictions ĉ have been passed through a sigmoid function.
We construct two oracle models. One is a logistic regression model, and one is a

neural network with one hidden layer, where the hidden layer has as many nodes as
there are concepts. The oracle models and the standard model are trained with the
cross entropy loss function (Equation 2.2).

In order to improve generalisation beyond the training set, we added dropout
[48] after activation of the base-CNN output in the concept-based models, and at a
corresponding layer in the standard model. When using a soft bottleneck, we used a
sigmoid activation function after the bottleneck layer (except for CBM on CUB, which
used no activation function). Every other layer uses a ReLU activation function.

The hyperparameter search is performed with a grid search. It is run for every model,
for every subset of every dataset. All models search for the learning rate. The concept-
based models also search for the concept weight λ. Since the standard model does not
use this parameter, we search for an exponential learning rate decay parameter instead,
so all the models have the same amount of hyperparameter trials. In the ConceptShapes
datasets, we also search for a dropout probability. We excluded the oracle models from
the hyperparameter searches.

We also tried to tune the hyperparameters with more advanced statistical methods,
by sampling with Tree-structured Parzen Estimation (TPE) sampler [79] and pruning
searches with the use of the Optuna library [80]. However, even though we were able to
try a wider range of values on more hyperparameters, the results were poorer and often
led to inconsistent results. The details are covered in the Appendix A.4.

We use the Adam optimiser for all models [47]. We apply an exponential learning
rate decay parameter after every 10 epochs in ConceptShapes, and after every 5 epochs
in CUB. The standard model tunes this decay parameter, while the other models use
0.7. The details not covered here can be found in the source code, which is carefully
documented.

8.2 CUB Experiments

8.2.1 CUB Subsets

We use six different subsets for the CUB dataset. The dataset consists of N = 11788
images of p = 200 classes, with a 50%-50% train-test split. We use 20% of the training
images for validation. This means that each class has about 30 images used for training
and validation. We try subsets of [1000, 2000, 3000, 4000, 5000, 5894] used for training
and validation, where 5894 corresponds to the full dataset. Each subset is balanced with
respect to the classes, so the 2000 image-subset contains 10 images from each class.

51

Chapter 8. Experimental Setup for Performance Evaluation

8.2.2 CUB Models

We use a pre-trained Resnet18 [76] trained on imagenet [57] as our base-CNN on the
CUB dataset. We overwrite the classification layer with a linear layer with 256 nodes.
We make this new layer trainable, and freeze all the other layers in the pre-trained
model. For the standard model, we attach one more hidden layer with 256 nodes, so
that it has about the same number of parameters as the concept-based models. In the
vanilla CBM, we have one hidden layer with 112 nodes, the number of concepts, after
the bottleneck layer.

In the CBM-Skip, we set r = 128, the number of nodes of the linear layer after the
bottleneck layer. The SCM has one linear layer with 256 nodes after the base-CNN.
We attach three concept layers to the last three convolutional blocks of the pre-trained
model, and two after the two linear layers at the end. Since the dimensionality is so high
from the convolutional blocks, we perform average pooling before passing it through the
concept layers. All of the models have a classification layer at the end with 200 nodes.

8.3 ConceptShapes Experiments

8.3.1 Datasets

Many different configurations of the ConceptShapes datasets were used. To start off,
we examine the effect of different values for s, which control the correlation between
the concepts and the target classes. Recall that s = 50 results in the concepts being
completely random, not depending on the classes, and s = 100 makes every image of a
given class have the exact same concept labels.

We test different values of s on the 10-class 9-concept ConceptShapes dataset. We
construct datasets for values of s in [50, 60, 70, 80, 98, 100]. We generate 1000 images for
each class, resulting in 10000 images per dataset. The global test set consists of 2000
images. To measure performance on different dataset sizes, we train and test on five
different subsets of the data. We draw subsets of sizes in [500, 1000, 1500, 2000, 2500] for
training and validation, which are split respectively at 60%-40%. The subsets are drawn
balanced with respect to the classes, so the 500 subset have 50 images from each class.
All of the subsets use the same global test set.

We hypothesise that the hybrid concept-based models will perform worse than the
standard model when s = 50, and perform better when s is high. At s = 50, the concepts
have no correlation with the classes, so the hybrid concept-based models will only have
more noise to work with. We will use an oracle model to see how much information
that lies in the concepts. At this value of s, the vanilla CBM should perform equal to
random guessing if there is no concept leakage. At high values of s, the concept-based
models have more useful data to work with, and should therefore perform better than
the standard model. It is not clear how the vanilla CBM will perform compared to the
standard CNN, since even though it is trained with the concept labels, it also has a big
restriction in that all information is going through the bottleneck layer. We also expect
that higher levels of s will make the standard model perform better than with lower
values of s. Even though it is not trained directly on the concept, the complex nature of
DL models will likely benefit from the correlation between the concepts and the classes.

After testing different values of s, we try different amounts of classes and concepts.
We use [10, 15, 21] amount of classes, with 5 and 9 concepts, resulting in six main
datasets. We set s = 98 and s = 100 to explore how the models perform when the

52

8.3. ConceptShapes Experiments

concepts should be useful. The diverse settings for our datasets will help verify if results
are consistent or dependent on specific settings.

For all of the datasets, we test on five different subsets. They have 50, 100, 150, 200
and 250 images used for training and validation for each class. We split training and
validation at a 60%-40% ratio. We use the full test-set in all of the subsets.

8.3.2 ConceptShapes Models

For the base-CNN, we use a CNN with three convolutional blocks and one linear layer.
They use a 3× 3 kernel with 1-padding, and 8, 16, and 32 channels, respectively. After
the convolutions we use ReLU activation function and 2× 2 max pooling. We then use
a linear layer with 64 nodes and ReLU activation function.

The standard model uses one more hidden layer of size 32. The vanilla CBM has
one hidden layer after the bottleneck layer, with as many nodes as there are concepts,
5 or 9. For CBM-Skip, r is set to 16. The SCM attaches a concept layer after the three
convolutional blocks. Since the dimensionality is high, we use dropout with a tunable
dropout probability before inputting it to the concept layers. It also attaches one concept
layer after the base-CNN’s linear layer, and uses one more hidden layer with 64 nodes
that also has a concept layer.

53

Chapter 8. Experimental Setup for Performance Evaluation

54

Chapter 9

Results of the Models’ Performances

9.1 CUB Results

9.1.1 Hybrid Concept Models Perform the Best on CUB

In order to test the performances, we have trained and tested them at the CUB dataset.
We have plotted the averaged accuracies for both hard and soft bottlenecks in Figure 9.1.
We have omitted the oracle models, which used true concept labels to predict during
testing, since they consistently achieved 100% test accuracies on all the subsets. We
observe that the hybrid concept-based models achieve the highest test-set accuracies on
all subsets, outperforming the benchmark standard CNN model and the vanilla CBM.
The hybrid concept-based models perform well both with a hard and soft bottleneck,
but the vanilla CBM performs much worse with a hard bottleneck.

The SCM performs slightly worse than the other hybrid concept models. This may
be because the three first concept layers are connected to frozen output of layers that we
do not train. Training the full model for a couple epochs might improve its performance.

9.1.2 None of the Models Learn the Concepts Properly

We now look at the MPO concept plots (from Equation 8.1) in Figure 9.2. The concept-
based models achieve close to zero mispredictions only when the MPO parameter m
surpasses 30, with a high ratio of misprediction for lower values of m. This suggests
that the concept-based models do not sufficiently learn to predict the concepts, which is
a huge flaw if the motivation is interpretability.

In the light of the shortcomings of the CUB dataset discussed in chapter 5, these
MPO scores are not surprising. Many of the images contain ambiguous concepts, where
the concept can not be inferred from the image. It is therefore unreasonable to expect
the concept predictions to be accurate. Since the concepts are one-hot-encoded, they
are sparse, and contain positive labels at a rate of 1 to 9. We therefore also tried
training with a weighted binary cross entropy function, similarly to what was done in
[23]. However, this made the results slightly worse.

We want to acknowledge that we think it is possible to achieve better performance,
both for the benchmark models and for the hybrid concept models. Some steps towards
improving them are replacing the pre-trained CNN ResNet18 with a pre-trained model
with even higher model capacity, training for more epochs, and doing even more
hyperparameter searches. However, the scope of this thesis is to do a fair comparison
of the hybrid concept-based models and the benchmark models, not to make the best
overall performing model.

55

Chapter 9. Results of the Models’ Performances

Soft Bottleneck Hard Bottleneck
Te

st
-s

et
A

cc
ur

ac
y

5 10 15 20 25 30

25

30

35

40

45

50

55

60
Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM

5 10 15 20 25 30

20

30

40

50

60

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM

Size of subset Size of subset

Figure 9.1: Hybrid concept models outperform the benchmark models on all subsets
of CUB. The results are averaged over 3 runs, and include tight 95% confidence intervals. The
x-axis denotes how many images that were included for training and validation for each of the 200
classes, where the rightmost point denotes the full training dataset. Left: Test accuracies using
a soft bottleneck, where the hybrid concept-based models use a sigmoid activation function, and
the vanilla CBM uses none. Right: Test accuracies using a hard bottleneck for all the concept-
based models, where the concept predictions are rounded off to binary values.

Soft Bottleneck Hard Bottleneck

M
P

O
Sc

or
e

0 15 30 45 60 75 90 105

0.0

0.2

0.4

0.6

0.8

1.0 Vanilla CBM
CBM-Res
CBM-Skip
SCM

0 15 30 45 60 75 90 105

0.0

0.2

0.4

0.6

0.8

1.0 Vanilla CBM
CBM-Res
CBM-Skip
SCM

m m

Figure 9.2: Misprediction overlap (MPO) for the concept predictions on the full CUB
dataset. The x-axis shows the MPO parameter m. The results are averaged over three runs, and
include 95% confidence intervals. We see almost no difference between soft and hard bottlenecks.
The metric is from [24] and is defined in Equation 8.1.

56

9.2. ConceptShapes

Soft Bottleneck Hard Bottleneck
10

C
la

ss
es

Te
st

-s
et

A
cc

ur
ac

y

50 75 100 125 150 175 200 225 250

10

12

14

16

18

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

10

12

14

16

18

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

Size of subset Size of subset

Figure 9.3: Test accuracies with no correlation between the concepts and the classes.
The oracle model performs as good as random guessing. The vanilla CBM displays concept
leakage, since it performs better than the oracle. The results are averaged over 10 runs and
include 95% confidence intervals.

9.2 ConceptShapes

The two oracle models achieved very similar performance. Therefore, we only show the
logistic regression oracle.

9.2.1 Results with No Correlation Between Concepts and Classes

We first investigate when there is no correlation between the concepts and the classes.
Recall that our hypothesis was that the standard model would perform the best, since
the concepts will essentially act as noise. The oracle model should perform equally to
random guessing. If the CBM performs better than the oracle, it will display concept
leakage. The results for the 10-class 9-concepts s = 50 dataset are plotted in Figure 9.3.

We see that the oracle model has about 10% test accuracy, which is what one would
get with random guessing. The vanilla CBM performs substantially better. This is a
sign of concept leakage, even with a hard bottleneck. The hybrid concept models have
similar performance with soft and hard bottlenecks, but the vanilla CBM performs worse
with a hard bottleneck.

The confidence intervals suggest that there is much variance over the runs, which
is expected with small subsets. However, the standard model does not outperform
our hybrid concept-based models as hypothesised. It appears that the hyperparameter
optimization has given it more variable hyperparameters, since its performance does
not increase with the sizes of subsets. Surprisingly, the hybrid concept models are more
stable, and have the best performance in most of the runs. We suggest that this indicates
that they are able to assign small weights to the bottleneck layer when the concepts are
irrelevant for the target classes.

9.2.2 Hybrid Concept-based Models Perform Better than the Benchmark
Models

We now look at the results when the concepts and classes are actually correlated, which
is the scenario where we want to use the hybrid concept-based models. We look at

57

Chapter 9. Results of the Models’ Performances

Soft Bottleneck Hard Bottleneck

s
=

60
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250
12

14

16

18

20

22

24

26

28

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250
12

14

16

18

20

22

24

26

28

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

s
=

70

Te
st

-s
et

A
cc

ur
ac

y

50 75 100 125 150 175 200 225 250

30.0

32.5

35.0

37.5

40.0

42.5

45.0
Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

s
=

80

Te
st

-s
et

A
cc

ur
ac

y

50 75 100 125 150 175 200 225 250

45

50

55

60

65

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

45

50

55

60

65

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

s
=

90

Te
st

-s
et

A
cc

ur
ac

y

50 75 100 125 150 175 200 225 250
70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

s
=

10
0

Te
st

-s
et

A
cc

ur
ac

y

50 75 100 125 150 175 200 225 250

99.0

99.2

99.4

99.6

99.8

100.0

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

97.5

98.0

98.5

99.0

99.5

100.0

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

Size of subset Size of subset

←
−

In
cr

ea
se

d
co

rr
el

at
io

n
be

tw
ee

n
co

nc
ep

ts
an

d
cl

as
s-

la
be

ls
←
−

Figure 9.4: Hybrid concept models perform the best with various amounts of
correlations between concepts and classes. The correlation increases with s. The scores
are averaged over 10 runs and include 95% confidence intervals.

58

9.2. ConceptShapes

s ∈ [60, 70, 80, 90, 100] for the 10 class and 9 concept datasets. The results are plotted
in Figure 9.4.

We see that the hybrid concept models once again perform the best. The best one
among the three varies over the datasets. The SCM performs much better here than for
CUB, where it used a frozen pre-trained model.

The information in the concepts alone, indicated with the oracle model, steadily
increases with s. With s equal to 60 and 70, the hybrid concept models perform better
than the oracle, indicating that they are able to use the skip connections well. At s = 100,
all of the models are able to easily get an almost perfect test-accuracy, indicating that
this particular dataset is trivial.

The hybrid concept models are once again not influenced much by the soft or hard
bottleneck, but the vanilla CBM is. With a soft bottleneck, the vanilla CBM is able
to perform as well as the hybrid concept models when s is 60, 70, but not with higher
correlations.

9.2.3 All the Models Learn to Predict the Concepts

We now investigate how the concepts are learned. We look at values of s ∈
[50, 70, 80, 90, 100], where 60 is omitted to make the plot be formatted better. We only
look at MPO scores for the biggest subset. The results are plotted in Figure 9.5.

We see that the models learn concepts better the more they correlate with the classes.
However, they are still predicted well at lower values of s, even with s = 50. The vanilla-
CBM and SCM learn the concept the best. This differs from the results on the CUB
dataset. We suggest that it indicates that concept-based models are able to learn the
concepts well when the concepts are not ambiguous and are somewhat related to the
classes.

9.2.4 Similar Results can be Observed on All of the Dataset Variations

We now look at some other variations of the ConceptShapes datasets, and confirm that
the results are consistent. We look at datasets with 10, 15 and 21 classes, with both 5
and 9 concepts, where s = 98. We include even more results in the Appendix A.2, where
we try with s = 100.

The test-accuracies for 5 and 9 concepts are respectively in Figure 9.6 and Figure 9.7.
Most importantly, we clearly see that the difficulty of the classification task increases
with the amount of classes. This can be seen from the oracle models performance, and
the overall accuracy of the models.

We see the same trends as earlier. The hybrid concept-based models perform the
best, beating both benchmark models. They are not sensitive to the type of bottleneck.
The vanilla CBM performs worse with a hard bottleneck, especially with 9 concepts.
Interestingly, it does not show signs of concept leakage with 21 classes in Figure 9.6, and
is the only model that performs worse than the oracle. The standard model performs
worse than the hybrid concept-based models, and has much higher variance. This is
seen by the wide confidence interval and the occasional drops in performance when the
subsets sizes increase.

We also look at the respective concept MPO plots from the biggest subsets in
Figure 9.8 and Figure 9.9. We see that all the concept-based models learn the concepts
well. Only 10-15% of the test set images get predicted with one single mistake, and less
than 2% gets predicted with two wrong concepts.

59

Chapter 9. Results of the Models’ Performances

Soft Bottleneck Hard Bottleneck

s
=

50
M

P
O

Sc
or

e

1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

Vanilla CBM
CBM-Res
CBM-Skip
SCM

s
=

70

M
P

O
Sc

or
e

1 2 3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Vanilla CBM
CBM-Res
CBM-Skip
SCM

s
=

80

M
P

O
Sc

or
e

1 2 3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

0.4

Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Vanilla CBM
CBM-Res
CBM-Skip
SCM

s
=

90

M
P

O
Sc

or
e

1 2 3 4 5 6 7 8 9

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5 6 7 8 9

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Vanilla CBM
CBM-Res
CBM-Skip
SCM

s
=

10
0

M
P

O
Sc

or
e

1 2 3 4 5 6 7 8 9
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5 6 7 8 9
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040 Vanilla CBM
CBM-Res
CBM-Skip
SCM

m m

←
−

In
cr

ea
se

d
co

rr
el

at
io

n
be

tw
ee

n
co

nc
ep

ts
an

d
cl

as
s-

la
be

ls
←
−

Figure 9.5: MPO scores for concepts, over various correlations between concepts and
classes. The correlation increases with s. The scores are averaged over 10 runs and include 95%
confidence intervals.

60

9.2. ConceptShapes

Soft Bottleneck Hard Bottleneck

10
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250

60

65

70

75

80

85

90

95

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250
60

65

70

75

80

85

90

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

15
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250
40

50

60

70

80

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

50

60

70

80

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

21
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250
30

40

50

60

70

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

40

50

60

70

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

Size of subset Size of subset

Figure 9.6: Test accuracies for various classes with 5 concepts and s = 98. The scores
are averaged over 10 runs and include 95% confidence intervals.

61

Chapter 9. Results of the Models’ Performances

Soft Bottleneck Hard Bottleneck

10
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250

90

92

94

96

98

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250
91

92

93

94

95

96

97

98

99

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

15
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250

76

78

80

82

84

86

88

90

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250
72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

21
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250

74

76

78

80

82

84

86

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

74

76

78

80

82

84

86

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

Size of subset Size of subset

Figure 9.7: Test accuracies for various classes with 9 concepts and s = 98. The scores
are averaged over 10 runs and include 95% confidence intervals.

62

9.2. ConceptShapes

Soft Bottleneck Hard Bottleneck

10
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Vanilla CBM
CBM-Res
CBM-Skip
SCM

15
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Vanilla CBM
CBM-Res
CBM-Skip
SCM

21
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10 Vanilla CBM
CBM-Res
CBM-Skip
SCM

m m

Figure 9.8: MPO scores for 5 concepts and s = 98. The scores are averaged over 10 runs
and include 95% confidence intervals.

63

Chapter 9. Results of the Models’ Performances

Soft Bottleneck Hard Bottleneck

10
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5 6 7 8 9

0.00

0.02

0.04

0.06

0.08

0.10

0.12 Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5 6 7 8 9

0.00

0.02

0.04

0.06

0.08

0.10

0.12 Vanilla CBM
CBM-Res
CBM-Skip
SCM

15
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5 6 7 8 9

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5 6 7 8 9

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Vanilla CBM
CBM-Res
CBM-Skip
SCM

21
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5 6 7 8 9

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5 6 7 8 9

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Vanilla CBM
CBM-Res
CBM-Skip
SCM

m m

Figure 9.9: MPO scores for 9 concepts and s = 98. The scores are averaged over 10 runs
and include 95% confidence intervals.

64

9.3. Summary of Performances

9.3 Summary of Performances

We believe that these experiments are evidence for an increase in performance when
using hybrid concept-based models. They achieve a better test-set accuracy than both
the standard CNN model and the CBM on the CUB dataset and the various variations of
the ConceptShapes datasets. They are also more consistent, having tighter confidence
intervals and a more steady gain in accuracy when the size of the subset increases
compared to the benchmark models. They learn concepts as well as a vanilla CBM, and
utilise hard bottlenecks better. They are also able to perform well when the correlation
between the concepts and the classes is low or zero.

65

Chapter 9. Results of the Models’ Performances

66

Chapter 10

Conclusion and Future Work

10.1 Conclusion

To our knowledge, we are the first to propose concept-based models with the intent of
improving performance. This differs from the motivation of interpretability from earlier
work. The only hybrid model known by the authors is the CBM with unsupervised
concepts [29], but this was proposed in order to make evidence for lack of interpretability,
and its performance was not tested.

We proposed two novel concept-based neural network architectures and tested their
performance. In order to do the testing in a controlled manner, we proposed a set
of synthetic concept datasets called ConceptShapes. The datasets can be adjusted
with respect to concept and class correlation, the amount of classes and the amount
of concepts. We tested our models against a standard CNN, vanilla CBM and oracle
models, which showed clear performance advantages of using the hybrid concept-based
models. This was also confirmed on the popular CUB dataset.

We also demonstrated that adversarial concept attacks are highly effective on CBMs.
Adversarial examples exist such that a CBM has different class predictions, even though
the concept predictions are identical. This limits the trust from their interpretations.
We suggest that future work with the motivation of interpretability should address this
issue.

10.2 Future Work

We propose different directions of future work with hybrid concept-based models:

• More advanced model architectures: The models proposed work as a starting
point for hybrid concept-based modelling. There are more possibilities to explore.
Particularly, the Concept Embedding Models (CEM) [72] seems promising with
respect to performance. The performance of CEMs can be benchmarked against
the hybrid concept-models, and one could try to make a hybrid CEM. This was not
done in the thesis due to the CEM being discovered only recently by the authors.

• More concept datasets: The usefulness of ML models partly comes from their
ability to work on a vast amount of different datasets. We provide a starting
point with our proposed ConceptShapes datasets, but we believe it is necessary to
develop and test on more datasets in order to explore model performance. For the
concept-based models, this might require new concept datasets.

67

Chapter 10. Conclusion and Future Work

• Applications in deep reinforcement learning: One particularly exciting
possible direction to explore is how concept-based models will perform in the
reinforcement learning setting. Similarly to other DL models, reinforcement
learning has been successful in various tasks [42], [43], but are notorious for their
data-hungry nature. Constructing reinforcement learning agents that also predict
and train on concepts might help them learn quicker.
This direction of future work is particularly interesting since concepts in
reinforcement learning may be acquired easily. For an agent moving in space,
concepts may be its rotation, velocity and position. These concepts are obtainable
from simple calculations. A chess computer may use material advantage, the kings
position and how close the pieces are to the centre as concepts. These metrics can
be easily calculated with existing chess engines. This way, reinforcement learning
does not have the limitation of requiring very specific concept datasets in order to
develop concept-based models.
Furthermore, this might be an interesting path for machine learning applications
in computational neuroscience. Experiments on mice show that the neurons of the
brain [81] are task specific to a certain extent, which differs from current artificial
neural networks. Training some layers of the network on specific tasks (like with
SCMs) might achieve more specification of nodes, which could allow for more
accurate modelling of natural intelligence.

68

Bibliography

[1] F. Doshi-Velez and B. Kim, ‘Towards a rigorous science of interpretable machine
learning’, arXiv preprint arXiv:1702.08608, 2017.

[2] Z. C. Lipton, ‘The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery.’, Queue, vol. 16, no. 3,
pp. 31–57, 2018.

[3] C. Rudin, ‘Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead’, Nature machine intelligence, vol. 1,
no. 5, pp. 206–215, 2019.

[4] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser et al., ‘Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities and challenges toward
responsible ai’, Information fusion, vol. 58, pp. 82–115, 2020.

[5] European Commission. ‘Europe fit for the Digital Age: Commission proposes new
rules and actions for excellence and trust in Artificial Intelligence’. (2021), [Online].
Available: https : / / ec .europa .eu /commission /presscorner /detail / en / IP_21_1682
(visited on 04/11/2023).

[6] C. Szegedy, W. Zaremba, I. Sutskever et al., ‘Intriguing properties of neural
networks’, arXiv preprint arXiv:1312.6199, 2013.

[7] L. Thesing, V. Antun and A. C. Hansen, ‘What do ai algorithms actually learn?-on
false structures in deep learning’, arXiv preprint arXiv:1906.01478, 2019.

[8] V. Antun, F. Renna, C. Poon, B. Adcock and A. C. Hansen, ‘On instabilities of
deep learning in image reconstruction and the potential costs of ai’, Proceedings of
the National Academy of Sciences, vol. 117, no. 48, pp. 30 088–30 095, 2020.

[9] Y. LeCun. ‘Animals and humans get very smart very quickly with vastly smaller
amounts of training data than current AI systems.’ (Nov. 2023), [Online]. Available:
https://www.linkedin.com/posts/yann- lecun_animals-and-humans-get-very-smart-
very - quickly - activity - 7133567569684238336- szrF? trk=public_profile_post_view
(visited on 25/11/2023).

[10] K. Simonyan, A. Vedaldi and A. Zisserman, ‘Deep inside convolutional networks:
Visualising image classification models and saliency maps’, arXiv preprint
arXiv:1312.6034, 2013.

[11] M. Sundararajan, A. Taly and Q. Yan, ‘Axiomatic attribution for deep networks’,
in International conference on machine learning, PMLR, 2017, pp. 3319–3328.

[12] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, ‘Grad-
cam: Visual explanations from deep networks via gradient-based localization’,
in Proceedings of the IEEE international conference on computer vision, 2017,
pp. 618–626.

69

https://ec.europa.eu/commission/presscorner/detail/en/IP_21_1682
https://www.linkedin.com/posts/yann-lecun_animals-and-humans-get-very-smart-very-quickly-activity-7133567569684238336-szrF?trk=public_profile_post_view
https://www.linkedin.com/posts/yann-lecun_animals-and-humans-get-very-smart-very-quickly-activity-7133567569684238336-szrF?trk=public_profile_post_view

Bibliography

[13] A. Shrikumar, P. Greenside and A. Kundaje, ‘Learning important features through
propagating activation differences’, in International conference on machine
learning, PMLR, 2017, pp. 3145–3153.

[14] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt and B. Kim, ‘Sanity
checks for saliency maps’, Advances in neural information processing systems,
vol. 31, 2018.

[15] A.-K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.-R. Müller and P.
Kessel, ‘Explanations can be manipulated and geometry is to blame’, Advances in
neural information processing systems, vol. 32, 2019.

[16] A. Ghorbani, A. Abid and J. Zou, ‘Interpretation of neural networks is fragile’,
in Proceedings of the AAAI conference on artificial intelligence, vol. 33, 2019,
pp. 3681–3688.

[17] P.-J. Kindermans, S. Hooker, J. Adebayo et al., ‘The (un) reliability of saliency
methods’, Explainable AI: Interpreting, explaining and visualizing deep learning,
pp. 267–280, 2019.

[18] M. Ghassemi, L. Oakden-Rayner and A. L. Beam, ‘The false hope of current
approaches to explainable artificial intelligence in health care’, The Lancet Digital
Health, vol. 3, no. 11, e745–e750, 2021.

[19] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas et al.,
‘Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (tcav)’, in International conference on machine learning, PMLR,
2018, pp. 2668–2677.

[20] A. Ghorbani, J. Wexler, J. Y. Zou and B. Kim, ‘Towards automatic concept-based
explanations’, Advances in neural information processing systems, vol. 32, 2019.

[21] McGrath et al., ‘Acquisition of chess knowledge in alphazero’, Proceedings of the
National Academy of Sciences, vol. 119, no. 47, e2206625119, 2022.

[22] D. Alvarez Melis and T. Jaakkola, ‘Towards robust interpretability with self-
explaining neural networks’, Advances in neural information processing systems,
vol. 31, 2018.

[23] P. W. Koh, T. Nguyen, Y. S. Tang et al., ‘Concept bottleneck models’, in
International conference on machine learning, PMLR, 2020, pp. 5338–5348.

[24] D. Kazhdan, B. Dimanov, M. Jamnik, P. Liò and A. Weller, ‘Now you see me
(cme): Concept-based model extraction’, arXiv preprint arXiv:2010.13233, 2020.

[25] Y. Sawada and K. Nakamura, ‘Concept bottleneck model with additional
unsupervised concepts’, IEEE Access, vol. 10, pp. 41 758–41 765, 2022.

[26] E. Kim, D. Jung, S. Park, S. Kim and S. Yoon, ‘Probabilistic concept bottleneck
models’, arXiv preprint arXiv:2306.01574, 2023.

[27] K. Chauhan, R. Tiwari, J. Freyberg, P. Shenoy and K. Dvijotham, ‘Interactive
concept bottleneck models’, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, 2023, pp. 5948–5955.

[28] A. Margeloiu, M. Ashman, U. Bhatt, Y. Chen, M. Jamnik and A. Weller, ‘Do
concept bottleneck models learn as intended?’, arXiv preprint arXiv:2105.04289,
2021.

[29] A. Mahinpei, J. Clark, I. Lage, F. Doshi-Velez and W. Pan, ‘Promises and pitfalls
of black-box concept learning models’, arXiv preprint arXiv:2106.13314, 2021.

70

Bibliography

[30] S. Sinha, M. Huai, J. Sun and A. Zhang, ‘Understanding and enhancing robustness
of concept-based models’, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, 2023, pp. 15 127–15 135.

[31] C. Wah, S. Branson, P. Welinder, P. Perona and S. Belongie, ‘The caltech-ucsd
birds-200-2011 dataset’, California Institute of Technology, Tech. Rep., 2011.

[32] G. Menghani, ‘Efficient deep learning: A survey on making deep learning models
smaller, faster, and better’, ACM Computing Surveys, vol. 55, no. 12, pp. 1–37,
2023.

[33] E. Strubell, A. Ganesh and A. McCallum, ‘Energy and policy considerations for
deep learning in NLP’, arXiv preprint arXiv:1906.02243, 2019.

[34] Numenta. ‘AI is harming our planet: addressing AI’s staggering energy cost’. (May
2022), [Online]. Available: https://www.numenta.com/blog/2022/05/24/ai-is-harming-
our-planet/ (visited on 13/11/2023).

[35] R. Miotto, F. Wang, S. Wang, X. Jiang and J. T. Dudley, ‘Deep learning for
healthcare: Review, opportunities and challenges’, Briefings in bioinformatics,
vol. 19, no. 6, pp. 1236–1246, 2018.

[36] M. I. Razzak, S. Naz and A. Zaib, ‘Deep learning for medical image processing:
Overview, challenges and the future’, Classification in BioApps: Automation of
Decision Making, pp. 323–350, 2018.

[37] S. Bubeck et al., ‘Sparks of artificial general intelligence: Early experiments with
gpt-4’, arXiv preprint arXiv:2303.12712, 2023.

[38] X. Liu, K. Gao, B. Liu et al., ‘Advances in deep learning-based medical image
analysis’, Health Data Science, 2021.

[39] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification with deep
convolutional neural networks’, Advances in neural information processing systems,
vol. 25, 2012.

[40] A. Graves, A.-r. Mohamed and G. Hinton, ‘Speech recognition with deep recurrent
neural networks’, in 2013 IEEE international conference on acoustics, speech and
signal processing, Ieee, 2013, pp. 6645–6649.

[41] Y. LeCun, Y. Bengio and G. Hinton, ‘Deep learning’, Nature, vol. 521, no. 7553,
p. 436, 2015.

[42] V. Mnih, Kavukcuoglu et al., ‘Human-level control through deep reinforcement
learning’, nature, vol. 518, no. 7540, pp. 529–533, 2015.

[43] D. Silver, Huang et al., ‘Mastering the game of go with deep neural networks and
tree search’, nature, vol. 529, no. 7587, pp. 484–489, 2016.

[44] D. E. Rumelhart, G. E. Hinton and R. J. Williams, ‘Learning representations by
back-propagating errors’, nature, vol. 323, no. 6088, pp. 533–536, 1986.

[45] I. Sutskever, J. Martens, G. Dahl and G. Hinton, ‘On the importance of
initialization and momentum in deep learning’, in International conference on
machine learning, PMLR, 2013, pp. 1139–1147.

[46] G. Hinton. ‘Neural Networks for Machine Learning’. (Oct. 2012), [Online].
Available: https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
(visited on 29/11/2023).

71

https://www.numenta.com/blog/2022/05/24/ai-is-harming-our-planet/
https://www.numenta.com/blog/2022/05/24/ai-is-harming-our-planet/
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Bibliography

[47] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimization’, arXiv
preprint arXiv:1412.6980, 2014.

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
‘Dropout: A simple way to prevent neural networks from overfitting’, The journal
of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[49] R. Hamon, H. Junklewitz, I. Sanchez et al., ‘Robustness and explainability of
artificial intelligence’, Publications Office of the European Union, vol. 207, 2020.

[50] K. Eykholt, I. Evtimov, E. Fernandes et al., ‘Robust physical-world attacks on deep
learning visual classification’, in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 1625–1634.

[51] N. Carlini and D. Wagner, ‘Audio adversarial examples: Targeted attacks on
speech-to-text’, in 2018 IEEE security and privacy workshops (SPW), IEEE, 2018,
pp. 1–7.

[52] B. Liang, H. Li, M. Su, P. Bian, X. Li and W. Shi, ‘Deep text classification can be
fooled’, arXiv preprint arXiv:1704.08006, 2017, https://arxiv.org/pdf/1704.08006.pdf.

[53] S. G. Finlayson, J. D. Bowers, J. Ito, J. L. Zittrain, A. L. Beam and I. S. Kohane,
‘Adversarial attacks on medical machine learning’, Science, vol. 363, no. 6433,
pp. 1287–1289, 2019.

[54] I. J. Goodfellow, J. Shlens and C. Szegedy, ‘Explaining and harnessing adversarial
examples’, arXiv preprint arXiv:1412.6572, 2014.

[55] A. Kurakin, I. Goodfellow and S. Bengio, ‘Adversarial machine learning at scale’,
arXiv preprint arXiv:1611.01236, 2016.

[56] C. Szegedy, W. Liu, Y. Jia et al., ‘Going deeper with convolutions’, in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[57] Russakovsky et al., ‘Imagenet large scale visual recognition challenge’, Interna-
tional journal of computer vision, vol. 115, pp. 211–252, 2015.

[58] A. Madry, A. Makelov, L. Schmidt, D. Tsipras and A. Vladu, ‘Towards deep
learning models resistant to adversarial attacks’, arXiv preprint arXiv:1706.06083,
2017.

[59] S.-M. Moosavi-Dezfooli, A. Fawzi and P. Frossard, ‘Deepfool: A simple and
accurate method to fool deep neural networks’, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2574–2582.

[60] M. J. Colbrook, V. Antun and A. C. Hansen, ‘The difficulty of computing stable
and accurate neural networks: On the barriers of deep learning and smale’s 18th
problem’, Proceedings of the National Academy of Sciences, vol. 119, no. 12,
e2107151119, 2022.

[61] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran and A. Madry,
‘Adversarial examples are not bugs, they are features’, Advances in neural
information processing systems, vol. 32, 2019.

[62] J. Larson, S. Mattu, L. Kirchner and J. Angwin. ‘How We Analyzed the COMPAS
Recidivism Algorithm’, ProPublica. (May 2016), [Online]. Available: https://www.
propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm.

[63] A. Adadi, ‘A survey on data-efficient algorithms in big data era’, Journal of Big
Data, vol. 8, no. 1, p. 24, 2021.

72

https://arxiv.org/pdf/1704.08006.pdf
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

Bibliography

[64] Telefónica. ‘A Fit-For-Purpose and Borderless European Artificial Intelligence
Regulation’. (2022), [Online]. Available: https : / / www . telefonica . com / en /
communication- room/blog /a - fit - for - purpose- and- borderless- european- artificial -
intelligence-regulation/ (visited on 04/11/2023).

[65] New York Times. ‘E.U. Agrees on Landmark Artificial Intelligence Rules’. (2023),
[Online]. Available: https:/ /www.nytimes.com/2023/12/08/technology/eu- ai- act-
regulation.html (visited on 14/12/2023).

[66] S. M. Lundberg and S.-I. Lee, ‘A unified approach to interpreting model
predictions’, Advances in neural information processing systems, vol. 30, 2017.

[67] Y. LeCun, ‘The mnist database of handwritten digits’, http://yann. lecun.
com/exdb/mnist/, 1998.

[68] A. Abid, M. Yuksekgonul and J. Zou, ‘Meaningfully debugging model mistakes
using conceptual counterfactual explanations’, in International Conference on
Machine Learning, PMLR, 2022, pp. 66–88.

[69] Z. Chen, Y. Bei and C. Rudin, ‘Concept whitening for interpretable image
recognition’, Nature Machine Intelligence, vol. 2, no. 12, pp. 772–782, 2020.

[70] S. Shin, Y. Jo, S. Ahn and N. Lee, ‘A closer look at the intervention procedure of
concept bottleneck models’, arXiv preprint arXiv:2302.14260, 2023.

[71] M. Yuksekgonul, M. Wang and J. Zou, ‘Post-hoc concept bottleneck models’, arXiv
preprint arXiv:2205.15480, 2022.

[72] M. Espinosa Zarlenga, P. Barbiero, G. Ciravegna et al., ‘Concept embedding
models: Beyond the accuracy-explainability trade-off’, Advances in Neural
Information Processing Systems, vol. 35, pp. 21 400–21 413, 2022.

[73] M. Nevitt, D. Felson and G. Lester, ‘The osteoarthritis initiative’, Protocol for the
cohort study, vol. 1, 2006.

[74] E. Pierson, D. M. Cutler, J. Leskovec, S. Mullainathan and Z. Obermeyer, ‘An
algorithmic approach to reducing unexplained pain disparities in underserved
populations’, Nature Medicine, vol. 27, no. 1, pp. 136–140, 2021.

[75] University Centre for Information Technology, University Of Oslo, Machine
learning infrastructure (ml nodes), Norway, 2023.

[76] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recognition’,
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[77] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, ‘Densely connected
convolutional networks’, in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

[78] A. Paszke, S. Gross, F. Massa et al., ‘Pytorch: An imperative style, high-
performance deep learning library’, Advances in neural information processing
systems, vol. 32, 2019.

[79] J. Bergstra, R. Bardenet, Y. Bengio and B. Kégl, ‘Algorithms for hyper-parameter
optimization’, Advances in neural information processing systems, vol. 24, 2011.

[80] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, ‘Optuna: A next-
generation hyperparameter optimization framework’, in Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining,
2019, pp. 2623–2631.

73

https://www.telefonica.com/en/communication-room/blog/a-fit-for-purpose-and-borderless-european-artificial-intelligence-regulation/
https://www.telefonica.com/en/communication-room/blog/a-fit-for-purpose-and-borderless-european-artificial-intelligence-regulation/
https://www.telefonica.com/en/communication-room/blog/a-fit-for-purpose-and-borderless-european-artificial-intelligence-regulation/
https://www.nytimes.com/2023/12/08/technology/eu-ai-act-regulation.html
https://www.nytimes.com/2023/12/08/technology/eu-ai-act-regulation.html

Bibliography

[81] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser and E. I. Moser, ‘Microstructure of
a spatial map in the entorhinal cortex’, Nature, vol. 436, no. 7052, pp. 801–806,
2005.

74

Appendix A

Appendix

A.1 ConceptShapes Dataset Details

The intervals of the shapes’ outline thickness was between 1 and 1.2 for the shapes with
the “thick-outline” concept, and between 0.2 and 0.5 for the ones without it. Rectangles
used height and width to determine its size when creating, while the rest of the shapes
used radius. A shape with the “big-figure” concept would have its radius drawn from
2.8 and 3.3, or height and width independently between 2 and 2.5 if it was a rectangle.
If it did not have the “big-figure” concept, the radius would be drawn from 1.5 and
2, or height and width between 1 and 1.2 if it was a rectangle. Despite being chosen
to make all the shapes more or less the same size, the rectangles and circles ended up
substantially smaller than the triangles, pentagons, hexagons and wedges, for both big
and small figures. However, since they are chosen from two clearly distinct intervals, we
did not consider this as an issue.

The following tables show which classes that got assigned a high probability for
which concepts for the 15-class and 21-class datasets. For the five-concept datasets, the
background concepts are not used.

Classes
Concept 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Thick Outline X X X X X X X X
Big Figures X X X X X X X X
Blue Facecolor X X X X X X X
Red Outline X X X X
Stripes X X X X
Magenta Upper Bg. X X X X X X
Indigo Lower Bg. X X X X X
Upper Bg. Stripes X X X X
Lower Bg. Stripes X X X X

Table A.1: Overview of which classes that would get assigned a high probability for which
concepts, in the 15-class ConceptShapes datasets. An X indicates high probability (s%), while
the absence of an X represents a low probability ((100 - s)%).

75

Appendix A. Appendix

Classes
Concept 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Thick Outline X X X X X X X X X X X
Big Figures X X X X X X X X X X X X
Blue Facecolor X X X X X X X X X
Red Outline X X X X X
Stripes X X X X X X X X X
Magenta Upper Bg. X X X X X
Indigo Lower Bg. X X X X X X
Upper Bg. Stripes X X X X X
Lower Bg. Stripes X X X X X X

Table A.2: Overview of which classes that would get assigned a high probability for which
concepts, in the 21-class ConceptShapes datasets. An X indicates high probability (s%), while
the absence of an X represents a low probability ((100 - s)%).

Soft Bottleneck Hard Bottleneck

10
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250

65

70

75

80

85

90

95

100

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

60

70

80

90

100

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

15
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250

50

60

70

80

90

100

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

50

60

70

80

90

100

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

21
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250
40

50

60

70

80

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

40

50

60

70

80

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

Size of subset Size of subset

Figure A.1: Test accuracies for various classes with 5 concepts and s = 100. The scores
are averaged over 10 runs and include 95% confidence intervals.

76

A.1. ConceptShapes Dataset Details

Soft Bottleneck Hard Bottleneck

10
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250

99.0

99.2

99.4

99.6

99.8

100.0

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

97.5

98.0

98.5

99.0

99.5

100.0

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

15
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250

50

60

70

80

90

100

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

50

60

70

80

90

100

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

21
C

la
ss

es
Te

st
-s

et
A

cc
ur

ac
y

50 75 100 125 150 175 200 225 250

82

84

86

88

90

92

94

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

50 75 100 125 150 175 200 225 250

80

82

84

86

88

90

92

94

Standard Model
Vanilla CBM
CBM-Res
CBM-Skip
SCM
Oracle

Size of subset Size of subset

Figure A.2: Test accuracies for various classes with 9 concepts and s = 100. The scores
are averaged over 10 runs and include 95% confidence intervals.

77

Appendix A. Appendix

Soft Bottleneck Hard Bottleneck

10
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10 Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10

Vanilla CBM
CBM-Res
CBM-Skip
SCM

15
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

Vanilla CBM
CBM-Res
CBM-Skip
SCM

21
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5

0.00

0.01

0.02

0.03

0.04

Vanilla CBM
CBM-Res
CBM-Skip
SCM

m m

Figure A.3: MPO scores for 5 concepts and s = 100. The scores are averaged over 10 runs
and include 95% confidence intervals.

78

A.1. ConceptShapes Dataset Details

Soft Bottleneck Hard Bottleneck

10
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5 6 7 8 9
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5 6 7 8 9
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040 Vanilla CBM
CBM-Res
CBM-Skip
SCM

15
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

Vanilla CBM
CBM-Res
CBM-Skip
SCM

21
C

la
ss

es
M

P
O

Sc
or

e

1 2 3 4 5 6 7 8 9

0.00

0.01

0.02

0.03

0.04

0.05
Vanilla CBM
CBM-Res
CBM-Skip
SCM

1 2 3 4 5 6 7 8 9

0.00

0.01

0.02

0.03

0.04

0.05 Vanilla CBM
CBM-Res
CBM-Skip
SCM

m m

Figure A.4: MPO scores for 9 concepts and s = 100. The scores are averaged over 10 runs
and include 95% confidence intervals.

79

Appendix A. Appendix

A.2 Results Details

We include the test-accuracies and MPO plots for datasets with the correlation
parameter s set to 100, shown in Figure A.1, Figure A.2, Figure A.3, Figure A.4. The
results are consistent with what we examined in Chapter 9.

A.3 Adversarial Concept Attacks

We now explain the details of the hyperparameter search for the adversarial concept
attacks. For the ConceptShapes datasets, we used a grid search with α ∈
[0.003, 0.001, 0.00075] and γ ∈ [0.1, 0.05, 0.01]. For CUB, the values were α ∈
[0.0001, 0.000075, 0.00005] and γ ∈ [0.1, 0.075, 0.05, 0.02]. These values were chosen
after some initial experimentation. The best values were α = 0.001, γ = 0.1 and
α = 0.000075, γ = 0.1, respectively. In order to reduce the running time, we sampled
200 images from the test-sets, instead of using all of them. We used 800 max steps for
ConceptsShapes and 300 for CUB.

We ran the grid search with β = −0.3 and ϵ = 1. After the grid search, we performed
a line search on β ∈ [0.1, 0,−0.1,−0.3,−0.5,−0.7,−1]. The results were very similar,
but slightly better for β = −0.1. The success rates were calculated using all of the
images in the test-set where the model originally predicted correctly.

A.4 Hyperparameter Optimization Details

For the ConceptShapes datasets, the learning rates were sampled from values in
[0.05, 0.01, 0.005, 0.001], and dropout probabilities from [0, 0.2, 0.4]. The standard CNN
model also searched for learning rate exponential decay parameters in [0.1, 0.5, 0.7, 1],
which were applied every ten epochs on CUB and every five epochs in ConceptShapes.
The concept-based models set the decay parameter to 0.7 and search for concept
weight schedules instead. They were [(100, 0.8), (100, 0.9), (5, 1), (10, 1)], where the first
element of the tuple represents the concept weight, and the second its exponential decay
parameter, applied every epoch. The regions to search for hyperparameters were found
by adjusting the intervals after several runs. We ran with some initial hyperparameter
searches, and adjusted them gradually by inspecting which hyperparameters the models
ended up with.

We also tried to tune the hyperparameters with more advanced statistical methods,
by sampling with Tree-structured Parzen Estimation (TPE) sampler [79] and pruning
searches with the use of the Optuna library [80]. This allowed for more hyperparameters
to be searched for, so we added the amount of nodes in the output layer from the base-
CNN and searched for the hyperparameters in bigger intervals. However, in order to get
good performance, we used 150 trials, compared to the 48 used for grid search. Even
with a pruner, the TPE searches took more time.

We decided to go on with the grid search over the TPE sampler. Since grid search
used a more structured approach and guarantees which hyperparameters get tested, we
only wanted to use the TPE sampler if it performed a lot better. The performances were
similar, but the TPE runs were more variable. It was more common to have models that
would perform worse when using bigger subsets of training data, since they ended up
with worse hyperparameters.

For the CUB dataset, we sat the dropout probability to 0.15 and searched for
learning rates in [0.01, 0.005, 0.001, 0.0005, 0.0001]. The standard model searched for

80

A.4. Hyperparameter Optimization Details

the exponential learning rate decay parameter in [0.1, 0.5, 0.7, 0.9, 1], applied every
ten epochs. The concept-based models set this 1 and search for concept weight
schedules in [(100, 0.8), (100, 0.9), (1, 1), (3, 1), (10, 1)], where the first number indicates
the initial concept-weight, and the second indicates the exponential concept-weight decay
parameter applied every epoch.

We did not perform hyperparameter searches for the oracle models, since they
easily converged at all datasets without it. We set the learning rate to 0.01 for the
ConceptShapes dataset and 0.001 for the CUB dataset. There was no regularisation
done. The neural network oracle had one hidden layer, where the hidden layer had as
many nodes as there were concepts.

The pixel values in the images were scaled down to [0, 1] and normalised. The
models trained on CUB used imagenet [57] normalisation parameters, and the models
on the ConceptShapes datasets used means of 0.5 and standard deviations of 2 for all
channels. We performed random cropping on the training images, and centre cropping
when evaluating and testing. We did not perform any data augmentation that changed
colours in the images, in order to not interfere with the concepts relating to colours.

81

	Introduction
	The Issues with Data Hungry Algorithms
	Our Contributions
	Thesis Structure

	Deep Learning
	The Deep Learning Framework
	Adversarial Attacks
	Explainable Artificial Intelligence

	The Rise and Fall of Saliency Maps
	Saliency Maps
	The Lack of Explanations from Saliency Maps

	Concept-based Explanations and Models
	Post-hoc Concept-based Explanations
	Interpretable Models
	Concept-based Models
	Pitfalls of Concept-based Models

	Datasets
	Shortcomings of Existing Concept Datasets
	Caltech-USCD Birds-200-2011 (CUB)
	Osteoarthritis Initiative (OAI)

	Introducing the ConceptShapes Datasets
	Description of the Concepts
	Correlation Between Classes and Concepts
	Further Details

	Novel Model Architectures
	Concept Bottleneck Models with Skip Connection
	Sequential Bottleneck Model (SCM)
	Training
	Further Details

	Adversarial Concept Attacks
	The Adversarial Concept Attack Algorithm
	Testing the Algorithm on the CUB and ConceptShapes Datasets
	Are Adversarial Concept Examples a Problem for CBM's Trustworthiness?

	Experimental Setup for Performance Evaluation
	Performance Evaluation Setup
	CUB Experiments
	CUB Subsets
	CUB Models

	ConceptShapes Experiments
	Datasets
	ConceptShapes Models

	Results of the Models' Performances
	CUB Results
	Hybrid Concept Models Perform the Best on CUB
	None of the Models Learn the Concepts Properly

	ConceptShapes
	Results with No Correlation Between Concepts and Classes
	Hybrid Concept-based Models Perform Better than the Benchmark Models
	All the Models Learn to Predict the Concepts
	Similar Results can be Observed on All of the Dataset Variations

	Summary of Performances

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	ConceptShapes Dataset Details
	Results Details
	Adversarial Concept Attacks
	Hyperparameter Optimization Details

