
Electrical Power System
for the

CubeSTAR Nanosatellite

by

MARTIN OREDSSON
Department of Physics

THESIS

for the degree of

MASTER OF SCIENCE

(Master i Elektronikk og Datateknologi)

Faculty of Mathematics and Natural Sciences

University of Oslo, September 2010

II

Abstract

This thesis describes the development of an Electrical Power System (EPS)
prototype for the CubeSTAR nanosatellite. Without a power system the
other subsystems on the satellite cannot function, therefore a continuous
and reliable power source is needed.

CubeSTAR’s triple-junction solar cells are characterized and a general intro-
duction to spacecraft EPS is given. A solar simulator circuit that mimics
the solar cell behavior is also described. The energy storage cells, which
are Lithium Iron Phosphate based, are tested under various conditions. The
proposed system employs two redundant and digitally controlled maximum
power point trackers. To raise the efficiency of this low-voltage system, syn-
chronous buck converters are used. A PCB implementation that fits into the
pre-defined CubeSTAR structure is also presented.

III

IV

Acknowledgments

Mom and Dad, you deserve your own page, but this will have to do: thank you
for your unconditional love, support, and endless supply of Swedish coffee—
they are the fundamental components of this work.

I’m very grateful to my supervisor, Associate professor Torfinn Lindem at
the Electronics Group, for giving me the opportunity to work with such an
interesting topic. By placing himself in the background, he has given me the
freedom to explore the the topic of my thesis, and I couldn’t have asked for
more.

Stein Lyng Nielsen at the Electronics Laboratory has been an invaluable
resource. His willingness to share his experience on anything from printed
circuit board design to the famous wine districts of Portugal has been one of
the highlights the past year.

Tore Andrè Bekkeng also deserves a special mention for being a guiding star
throughout the phases of this work. Anything from LATEX, proofreading,
Matlab to PCB design, you’ve always had the answers and the kindness to
share them. I must also acknowledge the Plasma Group and especially Espen
Trondsen who have given me a the best possible conditions to do my thesis
work. This has included unlimited access to their electronics lab and Espen’s
practical wisdom—what a privilege! My friend and fellow student Manual
Lains has also been helpful in absorbing my bad jokes with minimum fuss.

Finally, my brother and aspiring mechanical engineering wizard, Mattias;
thanks man.

V

VI

Contents

1 Introduction 1

1.1 Background and Motivation 1

1.2 CubeSTAR and the Cubesat Standard 2

1.3 Goals of Present Work . 3

1.4 Thesis Outline . 4

2 Harvesting Energy from the Sun 5

2.1 Solar Energy . 5

2.2 From Solar- to Electrical Energy 7

2.3 Semiconductor Basics . 9

2.4 Electronic Behavior of a Triple Junction Solar Cell 11

2.4.1 Short-Circuit Current 13

2.4.2 Open-Circuit Voltage 14

2.4.3 Maximum Power Point 16

2.4.4 Fill Factor . 19

VII

2.4.5 Efficiency . 20

2.4.6 Loading the Solar Cell 21

2.5 Angular Response of a Solar Cell 22

2.5.1 Case 1: Minimum Sun 24

2.5.2 Case 2: One side facing the Sun 24

2.5.3 Case 3: Maximum Sun 24

2.5.4 Case 4: Average effective area for a free-tumbling space-
craft . 25

3 Spacecraft Electrical Power Systems 29

3.1 Objectives . 29

3.2 Power Regulation Topology 30

3.2.1 Direct Energy Transfer (DET) 31

3.2.2 Peak Power Transfer (PPT) 31

3.3 Orbital Considerations . 33

3.3.1 Orbit Period and the Eclipse 33

3.3.2 Orbit Temperature . 35

3.4 Maximum Power Point Tracking 37

3.4.1 Constant Voltage Method 38

3.4.2 Perturbation and Observation Method 38

3.5 Energy Storage with Lithium Iron Phosphate Battery 41

VIII

3.5.1 Chemistry Specific Properties 42

3.5.2 Battery Capacity Calculations 43

3.5.3 Forming a Battery Pack 46

3.5.4 Charging a Lithium-Iron Phosphate Cell 48

3.6 System Reliability . 50

3.6.1 Failure Tolerance . 50

3.6.2 Fault Protection . 50

3.6.3 Redundancy . 51

3.6.4 Thermal Design . 51

4 System Design 55

4.1 System Overview . 55

4.2 Wiring Up the Solar Cells . 56

4.3 Synchronous Buck Converter 57

4.3.1 Adding a Synchronous Rectifier 60

4.3.2 Deriving the LC Filter Component Values 61

4.4 Digital Control Block . 66

4.4.1 System State Machine 67

4.4.2 Event Transition Conditions 68

4.5 Large Signal Analysis . 68

IX

4.5.1 A Note on Small-signal Loop Response 70

4.6 Sensor to ADC - Analog Interface Design 71

4.6.1 Example: Sensing Battery Voltage 72

4.7 Telemetry and the TWI Bus 73

4.7.1 Slave Reaction to Address Packet 74

4.7.2 Receiving Data . 75

4.7.3 Transmitting Data . 75

4.8 Powering the Microcontroller 77

4.9 Fault Protection and Monitoring Unit 79

5 PCB Realization 83

5.1 Physical Dimensions . 85

5.2 Electromagnetic Compatibility 88

5.2.1 Conductor Parasitics 88

5.2.2 Noise and Interference 91

5.2.3 Current Return Path and Ground Noise 92

5.3 PCB Layout Noise Reduction Techniques 95

5.3.1 Decoupling . 95

5.3.2 Reducing the Loop Areas 96

5.3.3 Implementation of a Passive RC Snubber 98

X

6 Test Results 109

6.1 Dark Current-Voltage Measurements on UTJ Solar Cell 109

6.2 UTJ Solar Cell Angular Response 114

6.3 Open Loop Dutycycle Stepping 115

6.4 P&O Characteristic Oscillation 117

6.5 P&O Response Time . 117

6.6 MPPT to PID State Transition 118

6.7 Operation Mode Transitions 120

6.8 Over-discharge Abuse Tolerance 123

6.9 LiFePO4 Discharge in -17◦C 124

6.10 LiFePO4 vs Lithium Ion Polymer (LiPo) 125

7 Conclusions 127

Bibliography 131

A Solar Panel Simulation Circuit 133

A.1 Motivation . 133

A.2 Simulation Goals . 133

A.3 SPICE Circuit Implementation 135

A.4 PCB Realization . 138

A.5 Results . 139

XI

B Triple Junction Solar Cell SPICE Model 141

B.1 Creating a Subcircuit in SPICE 141

B.2 Excitation Circuit . 143

C Discrete PID Controller 147

C.1 Proportional Term . 147

C.2 Integral Term . 148

C.3 Derivative Term . 149

C.4 Implementation . 149

C.4.1 A Note on Loop Tuning 150

D Two Wire Interface (TWI) 153

D.1 Electrical Characteristics . 153

D.2 Start and Stop Conditions . 153

D.3 Address . 154

D.4 Data Transfer . 155

D.5 Clock Stretching . 156

E Production Files 157

E.1 Parts List . 158

E.2 Schematics . 161

E.3 Gerber Files . 177

XII

F C Code for ATXmega128A1 187

XIII

XIV

List of Figures

1.1 CubeSTAR 3D Model . 2

1.2 CubeSTAR Subsystems Overview 3

2.1 ASTM standard solar spectrum 6

2.2 Front and rear view of a Spectrolab solar cell 9

2.3 Energy bandgap between valence- and conduction bands . . . 10

2.4 Triple junction solar cell stack-up 11

2.5 Triple junction solar cell equivalent circuit 12

2.6 Triple junction solar cell IV plot 14

2.7 The effect of varying irradiance levels on the I-V curve. 15

2.8 The effect of varying temperature on the I-V curve. 16

2.9 Dual plot of I-V and P-V curve 17

2.10 The effect of internal resistance on the I-V curve. 19

2.11 The effect of internal leakage resistance on the I-V curve. . . . 20

2.12 Constant power load lines intersecting the IV curve 21

XV

2.13 Solar incident angle: Kelly cosine vs Cosine law 23

2.14 Geometry used to calculate average orbital power 26

2.15 Contour plot of the angular response 27

3.1 EPS main functional parts overview 30

3.2 Direct Energy Transfer system block diagram 31

3.3 Peak Power Tracking system block diagram 32

3.4 LEO reference view . 33

3.5 Geometry to calculate orbital eclipse and sunlit periods 34

3.6 Low-earth orbit temperature profile 36

3.7 MPPT control block diagram 37

3.8 MPPT: Perturb and Observe flow diagram 40

3.9 Dimensions and picture of LiFePO4 cell 41

3.10 LiFePO4 cycle life performance 42

3.11 Total solar array energy requirements 43

3.12 CubeSTAR batterypack open-view 47

3.13 LiFePO4 charging regime . 48

3.14 Equivalent circuit during the constant voltage charging phase. 49

3.15 Component heat removal in space/terrestrial conditions 52

4.1 System overview . 56

XVI

4.2 Solar array configuration . 57

4.3 Synchronous buck converter 58

4.4 Buck converter dutycycle vs Vout 59

4.5 Buck converter ON/OFF states 60

4.6 Oscilloscope view of the switch node voltage 61

4.7 Deadtime insertion on the gate driver signals 62

4.8 Buck inductor voltage and current waveforms 63

4.9 System state machine . 67

4.10 MPPT operation modes . 69

4.11 PID operation mode . 70

4.12 Transducer interface design (TID) block diagram. 71

4.13 Implemented TWI slave flow diagram 76

4.14 Microcontroller power scheme 77

4.15 Device: TPS2556 from TI . 79

4.16 Device: INA138 from TI . 80

4.17 Fault protection and monitoring unit 81

5.1 The first PCB prototype . 83

5.2 The second PCB prototype 84

5.3 The third PCB prototype . 85

XVII

5.4 Four layer PCB stackup . 86

5.5 The CubeSTAR module and backpanel templates 87

5.6 Trace inductance and plane capacitance geometries. 89

5.7 Trace resistance vs width . 90

5.8 Trace loop inductance vs width 91

5.9 Typical noise path . 92

5.10 Return current loop frequency dependency 94

5.11 Transients with and without decoupling 96

5.12 PCB measures taken to reduced noise 97

5.13 Avoiding the gaps in the ground plane 98

5.14 A simplified parasitic model for the switch node. 99

5.15 SR parasitic SPICE model . 101

5.16 Parasitic turn-on simulation 102

5.17 Capacitive coupling on the SR gate 103

5.18 Ringing sans snubber . 105

5.19 New ringing frequency with capacitor 106

5.20 Damping the ringing with a RC snubber 107

6.1 UTJ diode dark-current test setup 110

6.2 Test: Dark current measurement in -20◦C. 110

XVIII

6.3 Test: Dark current measurement in 3◦C. 111

6.4 Test: Dark current measurement in 23◦C. 111

6.5 Extrapolation of non-linear regression fits 112

6.6 Comparison of Voc and extrapolated dark-current values . . . 113

6.7 Test: Angular response of two series connect UTJ solar cells. . 114

6.8 Solar simulator IV curve on which the MPPT testing was done.115

6.9 Test: The effect of dutycycle on current, voltage and power. . 116

6.10 Test: P&O characteristic oscillation 117

6.11 Test: Systen response to varying Voc 118

6.12 Test: System state transition 119

6.13 Test: Charge-discharge-charge cycling 120

6.14 Test setup to test the large signal response. 121

6.15 Battery charging in MPPT mode with dummy load 121

6.16 Dummy load draw on battery charging in PID mode 122

6.17 LiFePO4 over-discharge abuse test 123

6.18 Setup for the -17 degree LiFePO4 discharge test. 124

6.19 Test: LiFePO4 cold discharge characteristics 125

6.20 Test: LiFePO4 vs Lithium Ion Polymer discharge 126

A.1 Solar simulator IV curve . 135

XIX

A.2 Solar simulator IV and PV curves 136

A.3 Circuit diagram of the solar cell simulation model. 137

A.4 Solar simulator PCB layout 138

A.5 Solar simulator photograph 139

A.6 Solar simulator Voc and Isc range 140

B.1 SPICE circuit used to generate the plots in this section. 144

C.1 PID to Buck block diagram 149

C.2 PID regulator block diagram. 150

D.1 Start and stop conditions. 154

D.2 The first byte after the start condition. 155

D.3 Acknowledge on the TWI bus. 155

D.4 Master read (top) and write (bottom) transaction. 156

E.1 TopSilk Layer . 178

E.2 TopStop Layer . 179

E.3 TopPaste Layer . 180

E.4 TopElec Layer . 181

E.5 Ground Layer . 182

E.6 Power Layer . 183

XX

E.7 BotElec Layer . 184

E.8 BotStop Layer . 185

E.9 Drill file . 186

XXI

XXII

List of Tables

2.1 Key parameters from the UTJ datasheet 8

2.2 Required energy to ionize different semiconductor materials . . 10

2.3 Solar array power output summary 28

3.1 Lithium Iron Phosphate batteries from A123 Systems 43

3.2 Battery capacity calculations summary. 46

4.1 Theoretical buck converter parameters. 66

4.2 Telemetry data sent on master request. 75

A.1 Spectrolab UTJ Characteristics 134

A.2 Solar cell simulation circuit parameters 139

XXIII

XXIV

Chapter 1

Introduction

This thesis gives a theoretical introduction to spacecraft electrical power
systems (EPS) and describes the design and development of a prototype
EPS for the CubeSTAR nanosatellite. Providing power for electronics that
operate in space give rise to a unique set of constraints, and as the only
available source of power, the EPS is literally the lifeline of the other systems
on the satellite.

By using a single switching regulator with a digital control loop, the max-
imum amount of solar power can be converted to electrical energy. At the
same time, the system controls charging of the energy storage cells that are
vital during the solar eclipse periods. Thus, a low parts-count and efficient
system is made possible.

1.1 Background and Motivation

This thesis is a part of the CubeSTAR student satellite project at the Uni-
versity of Oslo (UiO). The project is a part of the Norwegian student satel-
lite program (ANSAT) which is mainly funded by the government agency
Norwegian Space Centre (NSC). The ANSAT program itself is run by the
Norwegian Center for Space-related Education (NAROM) which is based at
Andøya Rocket Range (ARR). The scientific mission of CubeSTAR is to
demonstrate a new concept of measuring the electron density in the iono-

1

Figure 1.1: The CubeSTAR satellite has dimensions 20cm × 10 cm × 10cm
and are covered by solar cells on four sides. The four probes for measuring
electron density can be seen on the right side of the structure, while the
communication antennas are shown to the left.

spheric plasma, with a new multi-probe system that promises greater spatial
resolution than its predecessors. But in addition to that, the CubeSTAR
mission has an educational component which is to provide a platform where
students from several disciplines can work together towards a common goal
of launching their work into space.

1.2 CubeSTAR and the Cubesat Standard

The Cubesat standard, developed by California Polytechnic State University
and Standford University in 1999, is a specification of a type of miniaturized
satellite with the dimensions of a 10 cm cube and a maximum weight of one
kilogram. This is known as a ”1U” satellite. It didn’t take long though before
scaled versions of this 1U structure showed up, and both ”2U” (20cm × 10

2

cm × 10cm) and ”3U” (30cm × 10cm × 10cm) structures have been built
and launched. The CubeSTAR satellite is built after the 2U specification.

ADCS COMM OBDH EPS PAYLOAD

CubeSTAR
satellite

Figure 1.2: The Electrical Power System (EPS) is one of the five CubeSTAR
subsystems.

The satellite naturally divides itself into subsystems, which form the basis
for separate work groups where each group works on a single subsystem.
These range from Attitude Control (ADCS) to stabilize the satellite, com-
munication link (COMM), on-board data handling (OBDH), electrical power
system (EPS) and the scientific payload as mentioned. Communication with
the satellite is made possible by ground stations at UiO and ARS/Andøya
among others.

1.3 Goals of Present Work

The goals of this work have been to provide answers to the following ques-
tions:

• How much energy is available to the satellite and how can this energy
be utilized most efficiently?

• How should the energy be stored on-board?

• How is the electrical energy distributed to the other subsystems?

• How can the answers to the above questions be implemented on a
printed circuit board that is within the physical constraints of the 2U
formfactor?

3

In addition, to gap part of the bridge of discontinuity that often plagues
Cubesat projects, an attempt has been made to generate and present in-
formation in such a way that it could be picked up by the next wave of
students.

1.4 Thesis Outline

The explanatory approach taken here is to follow the flow of energy through
the system, from the Sun, through the regulation system and via the batter-
ies, before ending up at the subsystems.

In Chapter 2, the Sun’s role as the ultimate energy source is briefly described,
before moving on to the semiconductor devices that convert solar energy to
electrical energy on most of CubeSTAR’s surface; the solar cells. Having
gotten the energy aboard, Chapter 3 describes the EPS itself: the maximum
power point tracking, the Lithium Iron Phosphate batteries, and system
reliability are keywords here.

Arriving at Chapter 4, the background information from the previous chap-
ters is now crystalized into a system design which is described here, but also
spills into Chapter 5 which deals with the actual printed circuit board design.

The testing that have been done on various parts of the system is presented
in Chapter 6, while Chapter 7 concludes the thesis with a few words on what
this all means and how it can be used by future CubeSTAR worker bees.

4

Chapter 2

Harvesting Energy from the
Sun

The CubeSTAR satellite will harvest energy from the Sun through the use
of solar cells. This chapter deals with the theoretical background for the
conversion from solar- to electrical energy in the context of the chosen triple-
junction solar cells.

2.1 Solar Energy

To evaluate the amount of available solar energy for a spacecraft, the spectral
irradiance of the Sun at the Earth’s mean distance, or one astronomical unit
(1AU), is often used. Referring to the lack of attenuation in the vacuum
conditions above the Earth’s atmosphere, this spectrum is known as the Air
Mass Zero spectrum, or AM0 for short.

While the atmosphere absorbs certain wavelengths under terrestrial condi-
tions, the solar spectrum in space closely matches a black-body radiator at
5780K. These similarities are illustrated in Figure 2.1 where the Air Mass
Zero (AM0) reference1 spectrum is plotted together with the AM1.5 (terres-
trial conditions) and 5780K black-body plots. The peak of the spectrum,

1The data for the reference spectrum (ASTM E-490) can be found here:
http://rredc.nrel.gov/solar/spectra/am0/

5

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

Wavelength (nm)

S
pe

ct
ra

l I
rr

ad
ia

nc
e

(W
m

−
2 nm

−
1)

5780K Black Body
Extraterrestrial Spectrum (AM0)
Terrestrial Spectrum (AM1.5)

Figure 2.1: While the terrestrial solar spectrum suffers from absorption
of various wavelengths in the atmosphere, the conditions in space closely
matches those of a black body radiator.

which coincidentally is the part our eyes evolved to see, is at wavelengths
from 400 to 700 nanometers.

The photon energy E, in units of electron volts (eV), is

E =
hc

λ
(2.1)

where h = 4.135× 10−15eV · s is the Planck constant, c = 2.998× 108 m/s is
the speed of light in vacuum, and λ is the photon wavelength in meters. As
Figure 2.1 shows, at shorter wavelengths (i.e., higher energies) the photon
density drops off abruptly, and the Sun emits very little electromagnetic
radiation below wavelengths of about 300 nm. In other words, almost no
photons carry an energy greater than

6

Emax ≈ 1240 · eV nm

300 nm
≈ 4 eV

A more practical quantification of the incoming solar energy can be found
by integrating the energy under the AM0 curve in Figure 2.1. The result
is known as the solar constant and is a measure of flux, i.e. the amount of
incoming electromagnetic radiation per unit area that would be incident on
a plane perpendicular to the rays. Ignoring the small (less than 7%) annual
variations due to Earth’s varying distance to the Sun, the solar constant
has been measured to be roughly 1366 Watts per square meter, or 136.6
mW/cm2.

2.2 From Solar- to Electrical Energy

An incoming solar energy of 1366 watts per square meter would not be of
much use without a way to convert it to electrical energy. This job is typically
done with solar cells. Although the photovoltaic effect was first recognized
by French physicist A. E. Becquerel in the year 1839, it wasn’t until 1883
that the first solar cell was built by Charles Fritts. His new invention was
capable of transforming 1% of the incoming solar energy to electrical energy.

Fast forward 130 years, and luckily, CubeSTAR is mounted with solar cells
that convert solar energy to electrical energy with an efficiency of around
28%. The chosen cells for CubeSTAR are Spectrolab’s Ultra Triple Junction
(UTJ) solar cells, shown in Figure 2.2. For easy reference the most important
parameters from the UTJ datasheet are re-hashed in Table 2.1. The meaning
and significance of these parameters are explained in Section 2.4.

The cells are delivered in an assembly of solar cell, interconnects and cov-
erglass, known as a CIC, and are approximately 160 microns thick with an
area[3] of 26.62 cm2. The rear side is mounted with a silicon bypass diode
that sits anti-parallel relative to the solar cell’s anode-to-cathode direction.
The role of the bypass diode is to prevent a partially shadowed or damaged
individual CIC in a series string from being forced into reverse bias.

When sunlight hits these solar cells, one of three things happens:

7

Table 2.1: Key parameters from the UTJ datasheet, AM0, 28◦

Parameter Value Description

Jsc 17.05 mA/cm2 Short-circuit current density

Jmp 16.30 mA/cm2 Current density at the MPP

Voc 2.665 V Open-circuit voltage

Vmp 2.350 V Voltage at the MPP

Cff 0.84 Fill factor

η 28.3% Efficiency

jsc 5 µA/cm2/◦C Temperature coefficient for Jsc

jmp 1 µA/cm2/◦C Temperature coefficient for Jmp

voc -5.9 mV/◦C Temperature coefficient for Voc

vmp -6.5 mV/◦C Temperature coefficient for Vmp

1. The photon passes straight through the material.

2. The photon is reflected off the surface.

3. The photon is absorbed in the semiconductor material.

Reflection is related to unfavorable incident angles and surface coating of the
cells, and will not be dealt with here. To understand why the solar cell might
be transparent to certain photons while absorbing others, a short de-tour into
the basic workings of semiconductors is necessary.

8

Figure 2.2: Front and rear sides of a CIC from Spectrolab showing the cath-
ode interconnects (A,B,C), the anode (D) of the monolithic bypass diode,
the parallel electrodes (E) that terminate at the cathodes, the cell’s anode
(G), and the integral monolithic bypass diode (F) which protects the cell in
the case of reverse bias.

2.3 Semiconductor Basics

In an isolated atomic structure there are discrete energy levels associated
with each orbiting electron. When two atoms form a molecule, their atomic
orbitals combine and produce a number of molecular orbitals. As the num-
ber of atoms increase to form solids, the number of molecular energy levels
(orbitals) increase to the point where it is natural to speak of continuous
bands of energy instead of discrete energy levels. This electronic band struc-
ture, which is due to diffraction of the quantum mechanical electron waves
in the periodic crystal lattice, is the underlying determinant of a material’s
electrical properties.

There are two bands of special interest to us. The valence band which is
the highest occupied band, and the conduction band which is the lowest
unoccupied band. The energy gap, Eg, between these two bands is known
as the material’s band gap. Suffice for our discussion, it is a measure of the
amount of energy required to free an outer shell electron from its orbit around
the nucleus to a free (conducting) state.

9

Energy gap = Eg

Photon

Electron Conduction Band

Valence Band

Figure 2.3: The photon energy must be greater or equal to the bandgap in
order to free an electron from the valence band and make it a mobile charge
carrier.

In fact, a semiconductor is (arbitrary) defined as a material with 0 < Eg < 3
eV at a temperature of 300K, while insulators and conductors are defined
as materials with Eg > 3 eV and Eg = 0 respectively. The voltage across a
semiconductor and the band gap energy Eg are closely related through [9, p.
11]

VD ≈ Eg

q
− 0.4V

where we have divided by the elementary charge q in order to get the right
units. Table 2.2 lists the band gap energies[9, 20] of a few well-known semi-
conductor materials2.

Table 2.2: Required energy to ionize different semiconductor materials.

Semiconductor Material Bandgap Eg Voltage VD

Silicon (Si) 1.1 eV 0.7V

Germanium (Ge) 0.67 eV 0.27V

Gallium Arsenide (GaAs) 1.41 eV 1.01V

Gallium Indium Phosphide (GaInP2) 1.85 eV 1.45V

Triple junction solar cells are, simply put, constructed by stacking three

2At a temperature of T = 300K

10

different semiconductor materials on top of each other. If a photon has
insufficient energy to knock loose an electron in a layer, it will simply pass
through to the next layer. In the cells from Spectrolab, the top GaInP2 layer
is transparent to all but the most energetic photons in the ultraviolet and
visible part of the spectrum. The second GaAs layer absorbs near-infrared

GaInP2
GaAs

Ge Eg1Eg2 > Eg1Eg3 > Eg2 > Eg1
Figure 2.4: The collective ability of triple junction solar cells to absorb light of
different wavelengths is the main reason for their superior efficiency compared
to conventional solar cells.

light while the bottom Ge layer absorbs all the lower photon energies in the
infrared that are above 0.67 eV. By combining semiconductor materials with
different bandgap energies this way, higher conversion efficiencies are possible
due to the stack’s collective ability to match the solar spectrum.

When a layer does absorb photons, the solar energy excites electrons into the
material’s conduction band where it is free to sign up to do work as electrical
current. How this photo-generated current and voltage behaves electronically
is the topic for the next section.

2.4 Electronic Behavior of a Triple Junction

Solar Cell

To understand the electronic behavior of the triple junction solar cells, the
equivalent3 circuit in Figure 2.5 is used. Although the use of three diodes

3The monolithic bypass diode is not included, as it does not affect normal operation.

11

give a better feel for the higher output voltage of triple junction cells, its use
here is more illustrative than practical, as it unnecessarily clutters the equa-
tions without the benefit of increased information output from the model.
Therefore in the following the diode string will be treated as a single diode.

All plots in this section were created with the SPICE model from Appendix
B. Although the model ignores more exotic effects such as the parallel non-
ohmic current paths caused by recombination (which requires a second par-
allel diode in the model), it was constructed in such a way as to match the
output characteristics of Spectrolab’s cells as closely as possible.

RSH

RS

DGaAs

DGaInP2
DGe

ID ISH I

VOC

VD +

ISC

Figure 2.5: An equivalent circuit of a triple junction solar cell. The mono-
lithic bypass diode (not shown) has its anode connected to the negative
terminal and its cathode to VD.

With the simplifications made, the cell acts as a constant current source
shunted by a diode. The internal resistance to the current flow, represented
by a lumped resistor RS, is primarily caused by the resistivity of the semicon-
ductor material, but also from the metal grid and contacts on the cell. The
other (shunt) resistor RSH represents the leakage current across the junction,
and for a high-quality cell we have that RSH >> RS.

12

2.4.1 Short-Circuit Current

From Kirchoff’s Current Law it’s clear that the output current I from the
cell is

I = Isc − (ID + ISH)

where the photo-generated current Isc is proportional to the illumination,
ISH = VD/RSH is the current through the shunt resistor, while the current
ID through an isolated photocell is given by the Shockley diode equation;

ID = I0

[
exp

(
qVD

nkBT

)
− 1

]

where q is the elementary charge, VD is the voltage across the diode(s), kB

is the Boltzmann’s constant, T is the absolute temperature, n = 1 is the
ideality factor for an ideal diode, and finally the temperature- and area (A)
dependent reverse saturation current

I0 ∝ A · exp

(
− Eg

kBT

)
(2.2)

The output current then becomes

I = Isc − I0

[
exp

(
qVD

nkBT

)
− 1

]
− VD

RSH

(2.3)

where the ground leakage current represented by the last term is negligible
compared to Isc and ID.

If the output is shorted, the output voltage is trivially zero, which means
that the short-circuit current is the same quantity as the photo-generated
current, and thus a measure of the irradiance level, as shown in Figure 2.7.

13

0.0V 0.5V 1.0V 1.5V 2.0V 2.5V 3.0V
0mA

100mA

200mA

300mA

400mA

500mA
I(Vbias)

Isc

Voc

 --- D:_Work_dir\LTSpice_wrk\Closing In\UTJ_sim.cir ---

Figure 2.6: The simulated characteristic IV curve of a single triple junction
solar cell, plotted here with AM0 conditions in room temperature with Rs =
50mΩ and Rsh = 300Ω.

2.4.2 Open-Circuit Voltage

The cell’s open-circuit output voltage VOC is the voltage, VD, across the
current source less the small drop over RS, or

VD = VOC + IRS

In the open-circuit condition, there can be no current flow, I = Ioc = 0 and
thus

Ioc = Isc − I0

[
exp

(
qVoc

nkT

)
− 1

]
− Voc

RSH

= 0

Ignoring the last term and solving for Voc gives

14

0.0V 0.4V 0.8V 1.2V 1.6V 2.0V 2.4V 2.8V
0mA

100mA

200mA

300mA

400mA

500mA
I(Vbias)

1 W/m^2

500 W/m^2

1000 W/m^2

1366 W/m^2

 --- D:_Work_dir\LTSpice_wrk\Closing In\UTJ_sim.cir ---

Figure 2.7: The effect of varying irradiance levels on the I-V curve.

Voc = VT · ln
(

1 +
Isc

I0

)
≈ VT · ln

(
Isc

I0

)
(2.4)

where VT = kBT/q is the thermal voltage. From Equation 2.2 we have that
I0 is proportional to exp(−Eg/kBT), so

Voc ≈ VT · ln
(

Isc

I0

)
≈ kBT

q

(
ln Isc − Eg

kBT

)
∝ T (2.5)

which shows that the net effect is that Voc increases linearly with increasing
temperature. In Figure 2.8, parameters within the SPICE model was ad-
justed to match the negative temperature coefficient from the datasheet, and
as such, the curves represent the theoretical response to varying temperature.

Equation 2.4 also explains why the change in open-circuit voltage was so small
relative to the change in Isc under the varying irradiance conditions in Figure
2.7; Voc depends logarithmically on the Isc/I0 ratio which in turn depends
linearly on the irradiance, as we saw earlier. Replacing the current with the
current density expression above will also reveal that Voc is independent of
the cell area.

15

0.0V 0.5V 1.0V 1.5V 2.0V 2.5V 3.0V 3.5V
0mA

100mA

200mA

300mA

400mA

500mA
I(Vbias)

28°C

- 22°C

- 74 °C

78°C

 --- D:_Work_dir\LTSpice_wrk\Closing In\UTJ_sim.c ir ---

Figure 2.8: The open-circuit voltage is a strong function of temperature,
while the temperature’s effect on the short-circuit current is small enough
to be ignored in this model. The temperature values are retro-fitted values
from the datasheet.

2.4.3 Maximum Power Point

Every point on the I-V curve has a power associated with it, given by

P = V I = V

[
IL − I0

(
exp

(
V

VT

)
− 1

)]
(2.6)

In order to generate power, both V and I must be non-zero, so V 6= Voc and
I 6= Isc, and thus the cell must be operated between these two points on the
I-V curve.

The maximum power point (MPP) of a solar cell is the operating point on
the I-V curve where the product of the delivered output current, IL, and the
voltage across the cell, V, is at its maximum. We shall call this point

16

0.0V 0.3V 0.6V 0.9V 1.2V 1.5V 1.8V 2.1V 2.4V 2.7V 3.0V
0mA

100mA

200mA

300mA

400mA

500mA

0.00W

0.25W

0.50W

0.75W

1.00W

1.25W

I(Vbias)

Vmp

Imp

MPP

I(Vbias)*V(31)

Pmax

 --- D:_Work_dir\LTSpice_wrk\Closing In\UTJ_sim.cir ---

Figure 2.9: Every point on the I-V (bottom) curve has a corresponding point
on the P-V (top) curve. To extract maximum power from the cell, it must
be operated at the MPP.

Pmax = VmpImp

and take it to be the point where the maximum power is generated, as can
be seen in Figure 2.9.

Plugging the pair of Vmp and Imp into Equation 2.3 we find that the current
at the MPP is,

Imp = IL − I0

[
exp

(
Vmp

VT

)
− 1

]
(2.7)

From Figure 2.9 it is clear that the power derivative with respect to voltage
must be zero at the MPP (where V = Vmp and I = Imp), so

17

dP

dV
= IL − I0

[
exp

(
Vmp

VT

)
− 1

]
− Vmp

VT

I0 · exp

(
Vmp

VT

)

= Imp − Vmp

VT

I0 · exp

(
Vmp

VT

)
= 0 (2.8)

Using the result from Equation 2.8 together with Equation 2.4 we find that
the voltage at the MPP is

Vmp =
ImpVT

I0

exp

(
Vmp

VT

)

=
ILVT − I0VT ·

[
exp

(
Vmp

VT

)
− 1

]

I0 · exp
(

Vmp

VT

)

=
ILVT

I0 · exp
(

Vmp

VT

) +
VT

exp
(

Vmp

VT

) − VT

= VT · exp

(
−Vmp

VT

)(
IL

I0

+ 1

)
− VT (2.9)

Equation 2.9 is a so-called transcendent equation whose solution is usually
found by graphical or numerical methods. We will not pursue such matters
here, and simply state the first of two alternative solutions given by [7, eqn.
3.13—3.15], which is

Vmp = Voc − 3VT (2.10)

We’ll let the power-discussion rest for now, and run through the rest of
the datasheet parameters, before picking up the power again in Section 3.4,
where the focus will be on how to actually maximize the output power and
do something useful with it.

18

2.4.4 Fill Factor

We will now define the fill factor (FF) as the ratio between the actual power
output Pmax, and the product of open-circuit voltage Voc and short-circuit
current Isc.

FF =
VmpImp

VocIsc

(2.11)

The fill factor is a measure of a cell’s energy conversion efficiency, and as seen
from Figures 2.10 and 2.11, the ratio is strongly dependent on the shunt- and
series resistance in the cell.

0.0V 0.3V 0.6V 0.9V 1.2V 1.5V 1.8V 2.1V 2.4V 2.7V 3.0V
0mA

100mA

200mA

300mA

400mA

500mA
I(Vbias)

0.5ΩΩΩΩ

1ΩΩΩΩ

2ΩΩΩΩ

0.001ΩΩΩΩ

 --- D:_Work_dir\LTSpice_wrk\Closing In\UTJ_sim.cir ---

Figure 2.10: The effects of an increasing series resistance (RS). High quality
cells have low series resistance.

As an example of their impact, we can consider the case of a decrease in shunt
resistance in Figure 2.11. For every new lower value of RSH , the product of
Imp and Vmp decreases, while Voc and Isc remain constant, with a lower fill
factor as a result.

19

0.0V 0.3V 0.6V 0.9V 1.2V 1.5V 1.8V 2.1V 2.4V 2.7V 3.0V
0mA

100mA

200mA

300mA

400mA

500mA
I(Vbias)

15ΩΩΩΩ

25ΩΩΩΩ

50ΩΩΩΩ

1000ΩΩΩΩ

 --- D:_Work_dir\LTSpice_wrk\Closing In\UTJ_sim.cir ---

Figure 2.11: The effects of a decreasing shunt resistance (RSH). High quality
cells have high shunt resistance.

2.4.5 Efficiency

Lastly, there is the power conversion efficiency, which is a measure of the
cell’s ability to convert solar energy into electrical energy. Being the ratio of
output- to input power, it is dimensionless and given by

η =
Pm

Pin

=
Vmp · Imp

A ·G = FF
Voc · Isc

Pin

= FF
Voc · Isc

A ·G (2.12)

where G = 1366 W/m2 is the solar constant and A = 26.6 cm2 is the area of
a single UTJ cell from Spectrolab. Note that the cell efficiency is referenced
to AM0 conditions

20

2.4.6 Loading the Solar Cell

When a load is directly connected to a non-linear source such as the solar
cell, the system’s operating point is at the intersection of IV curve and the
load line. For a simple linear load with constant resistance, the load line
would be a straight line through origo, which, in the general case, would not
intersect the IV curve at the MPP but rather at some arbitrary point on the
IV curve.

In Figure 2.12, another type of load line can be seen; a constant power load.
Among the type of loads that are characterized by such a load line, is the
switching regulator4, which aims to regulate its output at a steady voltage
regardless of variations in input voltage or load current draw.

Figure 2.12: Constant power load lines (P1 and P2) intersect the IV curve
in two places. Only B2 is stable, and this is where the system naturally
operates. Figure reproduced from [19].

If the power is P = V I and the operating point moves away from this point,

4For example, if the solar cell voltage increases, the control loop of the regulator would
reduce its dutycycle, which in turn would reduce the input current of the regulator. There-
for, an increase in the input voltage (i.e., solar cell output voltage) results into a current
decrease, and vice versa, making the switching regulator look like a constant power load
to the solar cell.

21

to

P + ∆P = (V + ∆V)(I + ∆I) (2.13)

then, by ignoring the small term, the change can be expressed as

∆P = ∆V I + ∆IV (2.14)

At the maximum power point, ∆P should necessarily be zero and lie on a lo-
cally flat neighborhood, so the relationship in the limit between the dynamic
and static impedance at the maximum power point, can be stated as

∆V

∆I
= −V

I
(2.15)

When the solar cell is operated away from Pmax, it has been shown in [10]
that only point B2 in Figure 2.12 is stable and any perturbation from it
will generate a restoring power in the direction of Voc to take the operation
back to B2. In other words, electrically stable operation of the solar array is
characterized by

[
dP

dV

]

load

>

[
dP

dV

]

source

(2.16)

2.5 Angular Response of a Solar Cell

A fundamental parameter in all solar array analysis is the angle (η) between

the solar panel normal vector (N̂) and the spacecraft-Sun vector (Ŝ). In
general, the cosine of the angle between the two vectors is given by the the
sum of their direction cosines. Thus, by using elementary vector identities the
angle for any combination of panel normal and Sun vector can be calculated
with

N̂ • Ŝ = ~nx~sx + ~ny~sy + ~nz~sz = cos η (2.17)

22

This is an important result, because the amount of solar generated current
from a cell is proportional to the cosine of the angle between the two vectors—
or, at least up until a certain point. Beyond 50◦, increased reflection causes
the angular response to deviate from the cosine law, and the actual response
is more accurately expressed by what is known as the Kelly cosine:

ρ = −0.369 cos3 θ + 0.637 cos2 θ + 0.750 cos θ − 0.015

where θ is the angle between the Sun vector and the solar panel normal.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 C
ur

re
nt

Incident angle (θ in degrees)

Cos θ
Kelly cosine

Figure 2.13: Output current from a solar cell is proportional to the cosine of
the incident angle—up to about 50◦ at which point the Kelly cosine is more
accurate. No current is produced at angles > 85◦.

As seen in Figure 2.13, the actual electrical output drops off slightly steeper
than what the cosine function predicts, and no current is produced at angles
greater than 85◦. However, the deviation is not large enough to outweigh the
benefits of simpler calculations, so the Kelly cosine is therefore rejected here
in favor of the cosine function.

The input solar energy, I, on a spacecraft surface is given by

23

I = A ·K · cos η (2.18)

where A is the area in m2, K is the solar constant (1367 W/m2), and η is the
angle between the surface normal and Sun vector. With Equation 2.18 and
Figure 1.1 in mind, four different cases will be considered where an attempt
is made to illuminate how the spacecraft’s position will affect the effective
area A · cos η and thus the power output from the cells.

2.5.1 Case 1: Minimum Sun

This case is trivial since if one of the two sides without mounted solar cells
have their normal vector aligned with the Sun vector, the effective solar cell
covered area is zero and no power is produced.

Amin = 0

2.5.2 Case 2: One side facing the Sun

If the normal vector of a surface with four mounted solar cells is aligned with
the Sun vector the effective area is

Aone = 4× 26.6cm2 × cos 0 = 106.5cm2

and the produced power is

Pone = 1367W/m2 × 0.0106.5m2 × 28% = 4.08W (2.19)

2.5.3 Case 3: Maximum Sun

The maximum possible effective area is when two sides with mounted cells
simultaneously face the Sun such that their individual projected area in the
direction of the Sun equals the cosine of the angle. The total area is

24

Amax = 2× 4× 26.6cm2 × cos 45 = 150.6cm2

and the produced power is

Pmax = 1367W/m2 × 0.01506m2 × 28% = 5.76W (2.20)

2.5.4 Case 4: Average effective area for a free-tumbling
spacecraft

By letting the Sun vector lie along one of the axis, the projected area in
each dimension is sufficiently expressed by the spherical coordinates for the
normal vector:

Nx = sin β cos α

Ny = sin β sin α

Nz = cos β

Negative values of the cosine function are discarded since a surface is only
illuminated for angles between 0◦ and 90◦. The total projected area in the
direction of the Sun, Atot, is found by integrating the contributions from each
face over the 90◦ rotation about two axis, or

Atot =

π
2∫

0

π
2∫

0

(A1 sin β · cos α + A2 sin β · sin α + A3 cos β) dβ · dα

where A1,2,3 represent the areas of each of the three sides that at any given
time can face the Sun.

In terms of actual solar cell area, the solar panel configuration from Figure X
means one of the three areas will be zero. This fact is taken into account by
letting the empty face be represented by A1,2,3 in succession and averaging
the result over the three trials. But that is equivalent to replacing each

25

X
Figure 2.14: Solar panel normal vector and geometry used to estimate the
output power for a free tumbling spacecraft.

individual side’s area with the average area (i.e., two thirds of the area of
one side) of the three exposed sides, or

A = A1,2,3 = 4 cells× 26.6 cm2 × 2

3
= 70.9 cm2 = 0.00709 m2

so the numerical value for the total area becomes

Atot = A ·
π
2∫

0

π
2∫

0

(sin β · sin α + sin β · cos α + cos β) dβ · dα = A · (2 +
π

2
)

To get a feel for the angular response of Atot/A, the a Matlab script was used
to sum5 up the contributions and average them over the summation limits.
It should be noted however, that Figure 2.15 does not illustrate the actual
angular response of the spacecraft, but rather that of the equivalent scenario
with scaled average sized solar cells on all sides.

5The integrals were approximated with sums.

26

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

Angle α (degrees)

A
ng

le
 β

 (
de

gr
ee

s)

Figure 2.15: Angular response when all sides are covered by imaginary aver-
aged sized solar cells.

The averaged projected area Aavg in the direction of the Sun is then found
by dividing Atot with the integration limits, or

1

Aavg

=
1

Atot

·
π
2∫

0

π
2∫

0

dβ · dα ⇒ Aavg =
Atot

π2/4
(2.21)

Thus, the numerical average projected area in the direction of the Sun for a
free tumbling spacecraft is

Aavg = A · 2 + π
2

π2/4
= 0.0071 m2 · 8 + 2π

π2
= 0.01026 m2 (2.22)

27

Finally then, the estimated average input power during the sunlit portion of
the orbit is

Pavg = 1367W/m2 × 0.01026m2 × 28% = 3.93W (2.23)

for solar cells with 28% efficiency in AM0 conditions.

The four cases considered in this section are summarized in Table 2.3.

Table 2.3: Effective area and produced power under various spacecraft posi-
tions.

Case Area Power

1: Minimum area 0 0 W

2: One side only 106.5 cm2 4.08 W

3: Maximum area 150.6 cm2 5.76 W

4: Average area 102.6 cm2 3.93 W

28

Chapter 3

Spacecraft Electrical Power
Systems

3.1 Objectives

The main objective of the electrical power system (EPS) is to provide the
other subsystems with a reliable and continuous power source. Typical build-
ing blocks of such a system consists of a solar array, energy storage batteries
and power processing electronics, which perform:

1. Conversion from solar energy to electrical power

2. Energy storage in electrochemical cells

3. Control and regulation of the spacecraft’s electrical power

4. Power distribution to other loads

Having already dealt with the solar array in Chapter 2, the main focus here
will be on the second and third points, while the fourth task will be simplified
by choosing batteries with an operating voltage that lies in the range of what
many of the subsystems are expected to operate within. Thus, in the current
setup, a de-centralized distribution scheme is used.

29

Electrical Power Subsystem

Power
Regulation &

Control
Power
Source

Power
Distribution

Energy
Storage

Figure 3.1: Functional overview of the EPS. A de-centralized distribution
approach is proposed, where post-regulation is performed at the individual
sub-system level if necessary.

3.2 Power Regulation Topology

Electrical power systems used for spacecrafts in LEO can broadly be divided
into two types; the Direct Energy Transfer (DET) approach and the Peak
Power Transfer (PPT) approach. All other configurations are variations,
derivations or combinations of these two basic types.

Since they both have common building blocks in the form of solar arrays
and power distribution units, the distinction between DET and PPT lies in
how the power processing electronics conditions the solar array and storage
batteries. While a PPT system aims to extract the maximum power from the
solar array and hence dissipate very little power internally, a DET system
employs a shunt regulator to dissipate any excessive power.

In the following sections, a brief introduction to DET systems will be given
before moving on to the PPT systems which will be the main focus. Al-
though both types allow for a regulated or unregulated power bus, only the
unregulated types will be evaluated here since a de-centralized regulation
approach has been chosen. There is no need to regulate the main bus, as the
subsystems themselves will regulate their own supply.

30

3.2.1 Direct Energy Transfer (DET)

In the DET approach, the power from the solar array is directly transferred
to the loads (via the distribution unit). To regulate the bus voltage at a
predetermined level, a shunt regulator dissipates any excessive power as heat
within the system which may require large heatsinks.

SOLAR
ARRAY

POWER
DISTRIBUTION

UNIT

SHUNT
REGULATOR

STORAGE
BATTERIES

CHARGE
REGULATOR

TO
LOADS

Figure 3.2: The solar array is connected directly to the distribution unit in
a DET system. A regulated DET system is achieved by replacing the diode
with a discharge regulator.

Battery charging is dealt with by a dedicated charge regulator that charges
the batteries with a constant current during the sunlit portion of the orbit.
For the unregulated DET system shown in Figure 3.2, the batteries discharge
through a rectifying diode during the eclipse period, clamping the bus to a
diode drop below the battery voltage. A regulated counterpart is also widely
used where a dedicated discharge regulator can step up/down the battery
voltage to match the desired bus voltage.

3.2.2 Peak Power Transfer (PPT)

In the PPT approach, a regulator is placed in series between the solar array
and the loads. By taking control of the operating point on the solar array’s
I-V curve, the regulator tries to operate the solar array in such a way as to
maximize the power output from it. This increases efficiency and simulta-
neously side-steps the potential thermal dissipation problems seen in DET

31

systems. Such a regulator is often called a Maximum Power Point Tracking
(MPPT) regulator, and it is used to both charge the batteries and supply
the loads with power.

SOLAR
ARRAY

POWER
DISTRIBUTION

UNIT

PEAK POWER
TRACKING
REGULATOR

STORAGE
BATTERIES

TO
LOADS

Figure 3.3: A maximum power point tracking regulator, controlling the out-
put of the solar array, can be used to supply power to the loads and for
battery charging at the same time.

When the batteries are fully charged, the tracker electronically moves the
operating point away (towards the open-circuit condition) from the maximum
power point, and in the process it leaves the energy from the sun as heat in
the solar array itself, instead of converting it to electrical energy. Since a
large portion of the incoming solar energy already is left as heat in the 28%
efficient panels during normal operation, an additional few percent does not
pose a thermal problem as far as the solar array is concerned. Contrast this
to the DET systems, where the excessive energy is dissipated inside of the
spacecraft, which may give rise to some of the thermal problems discussed in
Section 3.6.4. Yet another benefit with the PPT system is that the battery is
connected directly to the loads. This maximizes efficiency during the eclipse,
which is when we need it.

Before looking closer at how such a PPT system works, some of the orbit
constraints will be introduced. By introducing them here, they will serve to
back up the decision to choose a PPT system over a DET system, and also
provide the backdrop for the energy storage discussion that follows i Section
3.5.

32

3.3 Orbital Considerations

Since the final orbit details for CubeSTAR are presently undefined, the orbit
considered here will be a typical Low Earth Orbit (LEO) Cubesat orbit,
with an altitude of 600 km and an inclination of 98◦. To simplify further,
only the ”minimum Sun” case (i.e., maximum eclipse), where the Sun-Earth
vector lies in the orbit plane, will be considered here. For all but the Sun
synchronous low earth orbits, the Sun will lie in the orbit plane twice a year,
allowing us to calculate the orbital parameters based on a simple argument
from geometry. The minimum Sun case also returns valuable information
about the energy storage requirements, as it defines the minimum battery
capacity needed.

Figure 3.4: Orbital altitude put in perspective; the expected CubeSTAR
altitude will be somewhere in between that of the Hubble Space telescope
and ISS. By comparison, the Earth’s atmosphere (in blue) reaches up to
about 100km where the first 10km contain 75% of the planet’s air.

3.3.1 Orbit Period and the Eclipse

The orbital period, T , is derived from Newton’s formulation of Kepler’s third
law, but that is a derivation we shall not pursue here. Rather, we will simply
reproduce the result from [15]:

33

T ' 2π

√
(RE + A)3

µ
' 1.6585 · 10−4 × (RE + A)3/2 = 96.7 min (3.1)

where µ = 3.986005× 1014 m3/s2 = 14.3496× 108 km3/min2 is the standard
gravitational parameter1 of a celestial body, RE = 6378.137 km is Earth’s
radius, A= 600 km is the orbit altitude for circular orbits. The sum of RE+A
is the orbit semimajor axis in km.

Equipped with the orbital period, we can find the eclipse period for the
minimum Sun case from the simple geometry in Figure 3.5. Since the final
orbit of CubeSTAR is unknown as of today, only the maximum eclipse (or
minimum Sun) case will be considered here. For all but the Sun synchronous
low earth orbits, the sun will lie in the orbit plane twice a year. This situation
is illustrated in Figure 3.5 and is valid for circular orbits.

Figure 3.5: Geometry used to calculate the eclipse and sunlit periods for the
”minimum sun” case when the sun is in the orbital plane.

When the Sun is in the orbital plane, the rays are parallel and the tangential
terminal ray forms a right triangle where the hypotenuse is equal to the sum
of Earth’s radius and the spacecraft altitude. One of the legs is equal to RE

as shown, and the angle is then

1It’s the product of Earth’s mass and gravitational constant.

34

α = arccos

(
RE

RE + A

)
= arccos

(
6378km

6378km + 600km

)
= 24◦ (3.2)

It then follows that

Fraction of time in sunlight =
180 + 2α

360
= 63.3 %

and

Fraction of time in eclipse =
180− 2α

360
= 36.6 %

For an orbital period of 96.7 minutes, the sunlit and eclipse fractions are thus
61.2 minutes and 35.4 minutes respectively.

3.3.2 Orbit Temperature

As discussed in Section 2.4, the solar array generates most power when oper-
ated under cold conditions. It is clear then from the approximate2 expected
orbital temperatures shown in Figure 3.6 that the solar array will produce
most energy upon leaving the eclipse, with the temperature profile rising
sharply before leveling out as the sunlight heats the panels. Only the PPT
regulator is able to adjust to this temperature variation.

Assuming the temperature profile in Figure 3.6 is representable for our mis-
sion, it reveals one of the main weaknesses of the DET system approach. The
moment the spacecraft leaves the eclipse, the battery voltage (and thus the
main bus) will be at its lowest level, while the cold array could potentially
generate its highest power level—if it hadn’t been clamped by the battery.
Thus, with DET, the moment the EPS needs to produce the most power is
the moment it in practice can produce the least relative to its potential. In
fact, its in the dual case, when the array is at its warmest (and thus VMP

2The shape of this curve depends on panel-specific factors such as absorption coefficients
(absorbtivity/emissivity), panel thickness, rigidity, etc.)

35

Figure 3.6: Solar array worst-case orbital temperature profile for a satellite
in a sun-synchronous low-earth orbit (LEO) at an altitude of 700km.

moves towards the battery voltage) and the battery is nearly fully charged
at the end of the orbit, that the DET maximizes solar array performance.

36

3.4 Maximum Power Point Tracking

A maximum power point tracker can be separated into two blocks; a control
block and a power block. The power block, which is discussed in Section 4.3,
is typically a switching DC-DC converter that steps the solar array voltage up
or down (or both) in accordance to the bus voltage, while the control block,
which can be implemented either in hardware[21] or software, measures the
solar array parameters and sets the new operating point.

Power

Control

LoadsSolar Array

MPPT Regulator

V A

Pmax
Figure 3.7: A maximum power point tracking regulator sits in series with the
solar array, and tries to find the optimal operating point on the array based
on the output/input current, voltage and/or a combination of the two.

Several control techniques exists, with varying degree of complexity and
accuracy[23, 11]. Perhaps the simplest tracking method is the Constant
Voltage method. Although considered at an early stage of development, it
was quickly discarded, and its sole purpose here is to provide a backdrop
upon which the actual chosen method can be compared to.

Also considered was the Incremental Conductance method, but its added
complexity and slower conversion time (with a large power loss as a result[11])
made it a less attractive option than the P&O, and it will not be dealt with
here.

37

3.4.1 Constant Voltage Method

The Constant Voltage (CV) method regulates the solar array terminal voltage
and matches it to a fixed reference voltage, which is the assumed MPP of the
solar array. The method is simple; just measure the array voltage, compare
it to a constant reference, and use the difference (or, error) to drive a power
conditioner. While this method requires very little computation, and thus
finds the approximated MPP very quickly, it suffers from low accuracy due to
the ignored temperature-dependent variations in the solar cell’s open-circuit
voltage. In fact, the ”constant” voltage method, in this context, is inherently
flawed, as it is based on a false assumption that the array voltage is constant.
A possible solution to this problem is to use a look-up table (based on the
temperature vs voltage plot in Figure 2.8) in tandem with panel temperature
measurements, and adding this temperature offset to the VOC measurements.

A variation of this method exists, which works by disconnecting the array at
regular intervals and measuring the open-circuit voltage. The new operating
voltage, i.e. the approximated maximum power point, is then set to around
75% of this value, which should be in the vicinity of the MPP.

VMPP = k × VOC (3.3)

where k is a constant approximately equal to 0.75. However, the penalty is
that power is lost during the sampling period when the cells are disconnected,
again reducing the efficiency of the CV method.

3.4.2 Perturbation and Observation Method

The Perturbation and Observation (P&O) Method is perhaps the most com-
monly used MPPT method due to its ease of implementation. The tracker
operates by periodically incrementing or decrementing (perturbing) the solar
array voltage and measuring (observing) the change in array power. If the
change results in an increase in the array output power, the tracker will re-
peat its last action. In the opposite case, if the result is a decrease, then the
next perturbation will be in the opposite direction. This situation is illus-
trated with the flow diagram in Figure 3.8, where P, V and I is the power,

38

voltage and current, while D represents the dutycycle control parameter.

One of the side-effects of this method is that the perturbation process is a
continuous process—the method will perturb the operating point even if it is
at the MPP. Thus, by definition, even if the P&O method finds the MPP, it
will never stay there. In fact, and as we’ll see later, the operating point will
oscillate around the MPP with an amplitude given by the PWM resolution.

A potential weakness of the P&O method is its inability to distinguish a drop
in power due to irradiance, versus a drop in power due to a perturbation.
The algorithm may fail to interpret the power drop for what it really is,
and continue to perturb the terminal voltage in the wrong direction, further
reducing the power.

39

Measure
V(k), I(k)

P(k) > P(k-1)

V(k) > V(k-1) V(k) > V(k-1)

D(k) = D(k-1)
+ ∆D

Return

Yes No

P(k) – P(k-1) = 0

Yes Yes

Calculate
P(k) = V(k)I(k)

No

No No

Yes

D(k) = D(k-1)
- ∆D

D(k) = D(k-1)
+ ∆D

D(k) = D(k-1)
- ∆D

Figure 3.8: Perturb and Observe method flow diagram.

40

3.5 Energy Storage with Lithium Iron Phos-

phate Battery

Energy storage batteries provide the power source for peak-power demands
and the eclipse periods. The capacity of a battery is the total number of
ampere-hours that can be withdrawn from a fully charged cell. The product
of ampere·second is the amount of electric charge transported in one second
by a steady current of one ampere, so the ampere-hour, or Ah, is equal to
3600 coulombs.

V
o

lt
ag

e
 (

V
)

V
o

lt
ag

e
 (

V
)

V
o

lt
ag

e
 (

V
)

V
o

lt
ag

e
 (

V
)

7.50 TARGET WELD AREA

64.95 ± 0.20

18.20 ± 0.20

10.00

V
o

lt
ag

e
 (

V
)

V
o

lt
ag

e
 (

V
)

V
o

lt
ag

e
 (

V
)

V
o

lt
ag

e
 (

V
)

Figure 3.9: A123 Systems LiFePO4 cell dimensions and picture.

The chosen batteries in this system are rechargeable 1.1 Ah Lithium Iron
Phosphate (LiFePO4) cells from A123 Systems Inc. Based on the calculated
orbital eclipse period in Section 3.3, they undergo about 15 charge-discharge
cycles per day—or about 5000 cycles a year.

Frequent charge-discharge cycling traditionally has a negative impact on the
capacity of a battery, however the projected cycle life of the cells from A123
Systems does not seem to suffer much from such effects, if their own datasheet
represents reality. The usual remedy for the detrimental effect of cycling is
to avoid deep depths of discharging (DOD) the battery. But even at full dis-
charge (100% DOD), the LiFePO4 cells seemingly perform well. Furthermore,
with the short expected lifetime of the CubeSTAR mission, it is unlikely that
the frequent cycling will be of any concern.

41

Figure 3.10: A123 Systems LiFePO4 DOD vs Cycles. Picture is copied from
A123 Systems Inc own website, and has been edited/emphesized.

3.5.1 Chemistry Specific Properties

Conventional lithium-based batteries generally have anodes made of car-
bon, while the cathode materials typically are lithium manganese oxide
(LiMn2O4), lithium nickel oxide (LiNiO2) or lithium cobalt oxide (LiCoO2).
Lithium iron phosphate (LiFePO4), on the other hand, was first identified as
a potential cathode material for rechargeable batteries in 1997, and—once the
problem of low electrical conductivity was solved—is now being recognized
for its low cost, non-toxicity, excellent thermal stability, safety characteris-
tics, good electrochemical performance, and high specific capacity.

Since it is a lithium-ion-derived chemistry, the LiFePO4 chemistry shares
many of the advantages and disadvantages of the traditional lithium-ion
chemistry. Two key differences, however, are the current rating and safety—
both in huge favor of LiFePO4. Another difference, albeit a small one, is the
lower energy density of LiFePO4; they exhibit a lower capacity per size or
volume than for example LiCoO2 based cells.

LiFePO4 is an intrinsically safer cathode material than LiCoO2 and man-
ganese spinel. The Fe-P-O bond is stronger than the Co-O bond so that
when abused (short-circuited, overheated, etc.), the oxygen atoms are much
harder to remove. This stabilization also helps fast ion migration. Breakdown
only occurs under extreme heating (generally over 800◦C), which prevents the
thermal runaway that LiCoO2 is prone to.

42

Instead of dwelling too much on chemistry, the interesting properties of the
LiFePO4 cells are summarized in Table 3.1.

Table 3.1: Lithium Iron Phosphate batteries from A123 Systems

Parameter Value

Nominal capacity 1.1Ah

Nominal voltage 3.3V

Cut-off voltage 2.0V

Maximum continuous discharge 30A

Max charge voltage 3.6V

Volumetric Energy Density 657 kJ/L

Gravimetric Energy Density 324 kJ/kg

Operating temperature range -30◦ to +60◦

Core cell weight 39 grams

3.5.2 Battery Capacity Calculations

Since about one third of the orbit time is in darkness, some of the energy
generated by the solar panels must be diverted to battery charging.

Daytime Energy Nighttime Energy
(Battery recharge) MarginLoss

Solar Panel Power Requirement

Figure 3.11: Distribution of the total energy from the solar panels.

If we assume a lossless system, the required battery capacity can be deter-
mined from an argument of energy balance; the total system energy balance

43

is the sum of the energy needed to charge the battery and the energy to
daytime loads, expressed as

Esa = En + Ed (3.4)

where Esa is the required solar panel energy, En and Ed are the energies
consumed during night and day, including margins. But energy is the product
of power and time, so Equation 3.4 can be written as

PsaTd = PnTn + PdTd (3.5)

where Psa is the average output from the solar array during the sunlit portion
of the orbit, Pn and Pd are the average load power consumption during night
and day, Tn and Td are the eclipse and day periods in hours.

If we use the average solar panel output from Table 2.3 and the sunlit and
eclipse fractions from Section 3.3 (Td = 1 and Tn = 0.6), and assume a
constant lossless power consumption Pnd(ideal) throughout the orbit, i.e. Pn

= Pd = Pnd(ideal), then we can solve Equation 3.5 for the average power
available to the subsystems throughout the orbit:

Pnd(ideal) =
PsaTd

Tn + Td

=
3.9W · 1hrs

0.6hrs + 1hrs
= 2.44W

Before we can take the system losses into account, it’s normal to group the
losses into three fractions[8]: Xa−l is the power transfer efficiency from the
solar array to daytime loads; Xa−b is the power transfer efficiency from solar
array to battery; Xb−l is the power transfer efficiency from the battery to the
nighttime loads.

With losses, Equation 3.5 becomes

Psa =
PnTn

Xa−lXb−lTd

+
Pd

Xa−l

(3.6)

Equation 3.6 should be used with the maximum time-averaged electrical loads

44

(including margins) and Psa is then the minimum required power required
from the solar array.

We can then take some imaginary losses into consideration by assuming Xa−l

= 80%, Xa−b = 85% and Xb−l = 95%. The average power available to the
subsystems including loss is

Pnd =
PsaXa−lXa−bXb−lTd

TnXa−l + Xa−bXb−lTd

= 1.96 W (3.7)

Raising the solar array to loads and battery efficiency to 90% would yield an
available power of 2.15W.

It follows then that the battery energy capacity is the average nighttime
power multiplied by the maximum eclipse time divided by the transmission
efficiency from battery to loads:

Eb =
PnTn

Xb−l

(3.8)

where Eb is the energy supplied by the battery in single nighttime cycle
measured at the battery terminals.

But Eb is usually not equal to the actual battery capacity. Only a small
percentage of the total battery capacity is removed at each discharge and the
battery is never allowed to discharge completely. The percentage removed,
or depth of discharge (DOD) during a discharge is

DOD =
Eb

Eb(tot)

(3.9)

where Eb(tot) is the battery total energy capacity in W·h. If we combine
Equation 3.8 with 3.9, the minimum energy capacity requirement for the
battery system is

Eb(tot) =
PnTn

Xb−lDOD
(3.10)

45

Dividing through by V = P/I we’re left with the ampere-hour product on
the right hand side, which we recognize as the capacity of a battery. The
battery capacity requirement in Ampere·hours is thus

C =
Eb(tot)

Vbat

=
PnTn

VbatXb−lDOD
(3.11)

where Vbat in volt is the average battery discharge voltage, Pn in watts is the
nighttime power required (including margins) and Tn is the eclipse period in
hours.

With a 3.25V discharge voltage and 10% DOD the required capacity is

C =
2.44× 0.6

3.25× 0.95× 0.1
= 4.7Ah (3.12)

A summary, based on the same loss ”guestimate” as in Equation 3.7, of the
capacity is found in Table 3.2.

Table 3.2: Battery capacity calculations summary.

Parameter Value

Average orbital power available 2.0W

Required battery capacity 4.7Ah

Depth of discharge (DOD) 10%

3.5.3 Forming a Battery Pack

One of the most appealing characteristics of the LiFePO4 cell for our pur-
poses is its flat discharge voltage of around 3.25V. This suites our chosen
unregulated power bus well. In fact, it’s the main reason the unregulated
bus was chosen in the first place. Thus there is no need to connect the bat-
teries in series to raise the battery pack voltage. However, by connecting four
1.1Ah cells in parallel, their collective capacity is increased to 4.4 Ah, which
is about the level we need, based on the calculations in Section 3.5.2.

46

The Electronics Lab and Mechanical Workshop at the Department of Physics
(UiO) are working together on the physical design of the battery pack. An
early engineering model that was made, is shown in Figure 3.12, where the
pack is mounted to form the center of gravity in the structure.

Figure 3.12: An early model made by the Mechanical Workshop at UiO,
shows the proposed dual 4.4Ah battery pack.

The pack contains two redundant 4.4 Ah batteries. There are potential issues
regarding equalization of the cells, but these should be minor, and should not
affect the design of the charging system. Only single-cell testing3 has been
done up to this point and thus the battery pack will not be discussed further,
on the assumption that the pack’s behavior will not differ much from that of
a single cell.

A short note on the pack’s potential failure modes is nevertheless worth
mentioning; The first kind is a high resistance type where the cell opens
(electrically). This kind of failure is less critical in parallel configuration
where the resulting decreased runtime offer a more graceful degradation of
load capability versus the series case.

An electrical shorted battery cell, on the other hand, would be catastrophic,
as it would drain the energy of remaining cells. Considering the extremely

3The pack has been connected to the prototype, but no systematic tests have been
performed yet.

47

low internal resistance—and high short-circuit current—of the LiFePO4 cells,
this type of failure would probably end the mission in spectacular fashion. To
prevent this, fuses, circuit breakers or thermal switches could be used, and
the surface of the battery terminals should be insulated to avoid accidental
contact with other conductors inside the structure[17].

3.5.4 Charging a Lithium-Iron Phosphate Cell

Similar to conventional lithium-based batteries, our chosen cell has two main
charging phases; constant current (CC) and constant voltage (CV), as shown
in 3.13. Both phases are explained below in the context of the implemented
charging system.

Y-
Ax

is

X-Axis

Current

Voltage 3.6V

CC CV

V,I

TimeTime

Figure 3.13: All lithium based rechargeable batteries are charged with a
”constant current - constant voltage” regime as shown. The battery is said
to be fully charged when the current drops below a certain threshold.

Constant Current Phase

When the battery charge regulator operates in the CC phase, it aims to
transfer as much energy as possible from the solar array to the battery. To
do this, it seeks out the MPP to maximize current flow to the battery, while

48

assuring that the charge current does not exceed the maximum allowed by the
manufacturer—the last point being of little importance due to the inherent
current limitations of the solar array and the recommended maximum charge
current of 1.5 A. This process continues until the battery’s terminal voltage
reaches a preset value of 3.6V, as per the cell’s datasheet.

Constant Voltage Phase

When the battery bus reaches a preset value of 3.6 V, the battery charge
regulator moves away from the MPP toward the open circuit voltage, reduc-
ing current flow to the battery, and regulates the bus at a constant voltage
of 3.6V. The reduction in charge current, which drops exponentially, is nec-
essary in order to maintain the bus at a steady 3.6V during this phase of the
charging.

DC ESR

Vc

Vbat

Ichg
Constant Voltage

Source
Battery

Figure 3.14: Equivalent circuit during the constant voltage charging phase.

The battery is said to be fully charged when Vbat = 3.6V and Ichg < C/10,
with C being the charge current. Or, as A123 Systems suggest; the battery
is fully charged after 45 min of CV, although this assumes a 1.5A charge
current.

49

3.6 System Reliability

The EPS has a special responsibility as the power supplier to all the other
subsystems; a system failure here would end the mission. An inevitable fact
of operating a power-system, or any electronics, in space, is that no repair
is possible once the system is launched. This means that special attention
must be paid to failure tolerance of components and the system’s reliability.

3.6.1 Failure Tolerance

In [18], the author summarizes failure tolerance as follows:

No single component failure shall result in a significant loss of
spacecraft operation.

Which raises the question; what is a significant loss? The answer is mission-
specific and the suggestion in [18] of 10% of the total power capability, is,
although being a nobel goal, probably not a realistic one, seen from a Cubesat
perspective. What the final failure tolerance amounts to will be more clear
when moving closer to the final system revisions, but even in the earliest
stages of development, the general approach to failure tolerance must be that
it is built into the system itself, and not be added as a post-hoc ”feature”.

On a component level, where traditional space power electronics designers
are restricted to high-reliability production lines, the limited budgets and
shorter expected mission lifetimes of typical Cubesat missions mean that
commercial off-the-shelf (COTS) components are often used. Most of the
components used in this prototype have been chosen with derated voltage
ratings and appropriate temperature ratings, but apart from that, no special
considerations regarding component reliability has been taken.

3.6.2 Fault Protection

By continuously monitoring the subsystems, a failure protection unit de-
tects and isolates faults that arise at each subsystem. Anomalous conditions

50

(e.g., an overcurrent condition) can invoke fault responses in the main on-
board computer that contain preprogrammed instructions such as going into
a ”safe-mode”, or similar. Such responses are currently outside the scope of
the EPS, and should be implemented in the main on-board computer.

A failed load typically implies a short circuit. Without protection, a shorted
subsystem would present a low-impedance path for the batteries—giving the
LiFePO4 battery-pack a golden opportunity to show-off their extremely high-
current capability. The resulting problem of a drained battery pack would
probably be the least of problems, considering how this current rush would
cause a likely fatal system error.

3.6.3 Redundancy

Unfortunately, the tight restrictions on PCB real-estate and weight in the
Cubesat satellite class, make redundancy difficult. However, by arranging
the solar cells as discussed in Section 4.2, the power-system naturally divides
itself into two equal and redundant parts. Although MOSFETs, diodes and
the passive components can be made more fault tolerant by adding identical
components in parallel, there are still unresolved issues regarding the digital
control system. What happens if the microcontroller and/or it’s power supply
fails?

3.6.4 Thermal Design

All non-ideal components dissipate power in the form of heat which is trans-
ported away from the component by one of the three fundamental modes
of heat transfer; conduction, convection or radiation. The big elephant in
the room here is the lack of air convection due to the vacuum conditions in
space. Although usually taken for granted, the principal means of cooling
PCB mounted components in terrestrial electronics is by air convection. For
the terrestrial case, the junction temperature tj can be modeled as in Figure
3.15, with

tj = P × (RΘj−c + RΘc−c || RΘc−s || RΘc−r)

51

where P is the power to dissipate and RΘj−c is the equivalent junction-to-case
resistance while RΘc−c,s,r are the case-to-environment equivalent resistances
representing convection (c), conduction (s) and radiation (r).

Terrestrial Environment

Component Radiation

Conduction

Convection

P
tj

RθJ-C
RθC-RRθC-SRθC-C

Space Environment

Component Radiation

Conduction

P
tj

RθJ-C
RθC-RRθC-S

Figure 3.15: The three different means for a component to get rid of heat
energy: convection, conduction and radiation. The situation can be modeled
with an equivalent circuit as shown (right).

Meanwhile, in space, the only way of transferring heat energy is by radiation
or conduction, increasing the junction temperature in Figure 3.15 to

tj = P × (RΘj−c + RΘc−s || RΘc−r)

Considering how the thermal resistance associated with air convection can be
between a fifth and a tenth of the radiation and conduction resistances[18],
a component operating at 40◦C in a terrestrial environment can experience

52

a case temperature exceeding 200◦C in vacuum! Because of this, special
attention must be paid to junction temperatures and expected dissipation
when selecting components.

53

54

Chapter 4

System Design

4.1 System Overview

Two redundant regulators each serve two opposite faced sides and aim to
either optimize the charge current into the batteries, or regulate the bus
voltage, depending on the system state. The regulation mode is determined
by the battery voltage. As long as the battery is below 3.6V, the regulator
aims to maximize the power output from the solar panels. This is equivalent
to maximizing the charging current, since the battery voltage is constant be-
tween the two discrete points in time where the regulator makes its decision.
When (or if) the battery reaches 3.6V, the regulation mode changes to a
constant voltage mode where a PID regulator regulates the battery voltage
at 3.6V, thus moving the operating point of the solar cells away from the
MPP.

A de-centralized post regulation scheme has been chosen for the subsystems.
The reasoning behind this can be summed up by the discharge plots of the
LiFePO4 cells in Chapter 6. Boasting an almost flat discharge curve, the idea
is that this voltage will be stable enough for some of the subsystems, and
if not, it is up to each individual subsystem to step up or down the voltage
as necessary. However, the subsystems will not be connected directly to the
battery bus, but will be routed through an overcurrent protection switch that
will shut down any ill-behaving systems.

55

Battery
Packs

Step-down
DC/DC

Control

A

Step-down
DC/DC

Control

ASolar Panels
North+South

Switch

A

A

A

Overcurrent
protection/
monitoring

DC-DC5V

3V – 3.6V4V – 6V

LDO

Subsystem
example 1

3V

3V – 3.6V

Solar Panels
East+West Battery

Packs (2)

V

V

V
T

Legend:

Subsystem
example 2

Subsystem
example 3

Power
Regulation and Control

Storage Cells

Power Source

Switch

Switch

V Voltage monitor A Current monitor Temperature monitorT

Figure 4.1: Two redundant regulators each service two opposite faced sides
and aim to either optimize the charge current into the batteries, or regu-
late the bus voltage, depending on the system state. De-centralized post
regulation has been chosen for the subsystems.

In the following sections, each of the blocks in Figure 4.1 will be explained
(except the other subsystems).

4.2 Wiring Up the Solar Cells

Since only one of two opposite facing side can face the Sun at any time,
they share a single regulator as shown in Figure 4.2. Two and two cells
are connected in series, raising the voltage to around 5 V. With four cells
on each side, two such series strings are connected in parallel, similar to the
configuration of the US Air Force built PSIREX picosatellite[13]. This boosts
the current to a maximum of around 900mA, but the orbital average will be
well below this as the photo-generated current falls off with the cosine to
the incident angle as described in Section 2.5. Each side is protected with
a diode to prevent the shaded side from loading down the sunlit and power
producing side. Low drop Schottky diodes are used here to minimize the VfI
loss over the diode.

56

N side S side

REGULATOR
UNIT
1 OF 2

3V – 3.6V

4V – 6V

Imax ≈
900 mA

W

S

ESatellite
Top View

N

Figure 4.2: Two opposite facing sides are connected in series via protec-
tion diodes to prevent the shaded side to load down the sunlit and power
producing side.

4.3 Synchronous Buck Converter

Two buck converters are used to step down the solar panel voltages to a lower
battery voltage. They are electrically identical, so the following description
applies to both converters.

If we forget about the synchronous rectifier (SR) for now, the basic idea is
to apply a pulse-width modulated (PWM) signal to the high-side switch and
average the resulting square wave with a large LC filter.

Operated as a switch, the mosfet is characterized by a very low drain-to-
source channel resistance while in the on state, and a very high resistance—
for all practical purposes, an open-circuit—while off. By driving the switch
with a PWM signal, the ratio of on-time to total cycle time, better known
as the dutycycle, can be used to set the voltage level on the output.

The relation between the dutycycle and output voltage can be understood by
looking at the average voltage at the switch (SW) node in isolation. As with
any waveform, the average is found by integrating the peak input voltage
seen at the SW node over a switching period Tsw, or

57

MOSFET
Driver

Charge
Pump ++

+

ATXmega
Microcontroller

TWI
(I2C) Sensors

(V, A, T)

2.7V – 3.6V

Battery
Pack
[1 of 2]

A

T

V

Side
”N”

A A

Side
”S”

4V – 6V

+

V

PWM

SW node

SR switch

Figure 4.3: Overview over the implemented buck converter. To drive the N-
type high-side mosfet, a simple charge pump is used in tandem with a driver
that is fed by a PWM signal from a microcontroller.

VSW (avg) =
1

Tsw

Tsw∫

0

Vin dt =
Ton

Tsw

Vin (4.1)

where the total cycle time Tsw = Ton + Toff can be replaced by the switch
on time Ton in the integral limit, since Vin is zero during the switch off-time
Toff . If the open/close frequency is fixed, we can define the dutycycle D as
the ratio of on-time to total time, or

D =
Ton

Ton + Toff

=
Ton

Tsw

(4.2)

and thus D is necessarily a number between 0 and 1. For an (ideal) buck, also
known as a step-down converter, the output voltage is directly proportional
to the dutycycle through

Vout = D · Vin (4.3)

58

which is to say that the output on a buck is always lower than the input.

Vin

1
D0

0

Vout

Figure 4.4: In contrast to other converter topologies the buck converter has
a linear relationship between dutycycle and output voltage.

However, chopping the input voltage on and off produces a square wave
output output with a high harmonic content, and is not very useful as far as
providing power to the typical load is concerned. To remedy this, a lowpass
LC filter is used to remove the higher harmonics and thus averages the square
waveform from the switch. But the introduction of the inductor leads to a
new challenge; the voltage across an inductor is related to the rate of change
of current by

VL(t) = L · dIL(t)

dt
(4.4)

and by abruptly turning off the input, i.e. a large di/dt, the voltage at SW
will quickly be driven down in an attempt by the inductor to maintain the
previous current. This reversal of the inductor voltage polarity is known as
an inductive kickback. By adding a diode at the switch node, the voltage at
the SW node is clamped a diode drop below ground during the off state and
the inductor now has a path through which it can maintain current flow. We
have a buck converter.

59

Load

High-side
FET

Vin
D C

L
+ +

Load

High-side
FETVin

D C

L
+ +

Figure 4.5: Energy is stored in the inductor during the ON state (top) as
the current through it ramps up. During the OFF state (bottom) the free-
wheeling diode provides a current as the inductor releases its energy into the
load.

4.3.1 Adding a Synchronous Rectifier

Unfortunately, adding the free-wheeling diode comes with a prize. From the
loss calculations in [16] it’s clear that the diode’s conduction loss (I · Vf)
represents by far the biggest loss in the converter. Even with the use of a
Schottky diode with low forward drop, as the one used here, the low output
voltage of the converter means that the loss in the diode remains relatively
large even with the most efficient diodes. A common work-around for low
voltage converters is to add a second mosfet that acts as a synchronous
rectifier, and basically takes over the duties of the free-wheeling diode[16].

60

Figure 4.6: SW node voltage. The turning on of the low resistance SR
channel is delayed by a small time known as ”deadtime”, during which the
diode conducts. Evidence of the falling inductor current can be seen by the
slightly positive voltage gradient while the diode/SR conducts. The snubber
is discussed in Section 5.3.3

As shown in Figure 4.6, even though the diode has lost some of its prominent
status, it still has a role to play at the beginning and end of each OFF state.
By adding the SR and driving it with an inverted PWM signal with respect
to the high-side, we now risk that both switches are on simultaneously. This
would short the input through the switches to ground, and must be avoided.
And it can—by adding a certain amount of deadtime between the switching
of the two mosfets, we ensure the necessary leeway needed for safe operation.
This is shown in Figure 4.7.

4.3.2 Deriving the LC Filter Component Values

The inductor voltage during the on period is the difference between the input
and output voltage of the converter and is given by

61

Figure 4.7: Oscilloscope screendump showing the gate drive signals on the
two mosfets. A software adjustable amount of deadtime is inserted to prevent
shoot-through.

VL = Vin − vout(t) ' Vin − Vout (4.5)

where the last approximation neglects the relatively small time-varying ripple
voltage. Equipped with this knowledge we can easily find the inductor current
via Equation 4.4. A simple re-arrangement reveals how the inductor current
changes with an essentially constant slope m1:

m1 =
dIL(t)

dt
=

VL(t)

L
=

Vin − Vout

L

The situation during the off period, when the inductor voltage VL(t) =
−Vout, is analogous to the on period, and thus the slope m2 is given by

62

t

∆IL
Ipeak
Ivalley IL(avg)

TswDTsw

VL(t)

IL(t)
t

Vin - Vout
- Vout VL(avg)= 0Area = λ1

Area = λ2
Slope = m1

Slope = m2

Figure 4.8: Ideal output inductor voltage (top) and current (bottom) wave-
forms during a switching cycle, illustrating the principle of inductor volt-
second balance where λ1 = λ2 during steady-state conditions.

63

m2 =
dIL(t)

dt
=

VL(t)

L
= −Vout

L

From Figure 4.8 the change in inductor current, or the output ripple current
amplitude, is given by

∆IL =

(
Vin − Vout

L

)
DTsw (4.6)

which brings us to the point where we can express the inductance as

L =
Vin − Vout

∆IL

DTsw (4.7)

A couple of key points can be made regarding inductor selection at this stage:

• A large inductance induces a low current ripple.

• The peak inductor current is greater than the average current.

• Choosing a large inductor means a lower switching frequency can be
used. This reduces overall AC losses in the circuit, but with a small
penalty of a larger DC resistance in the inductor windings.

• A small inductance offers less opposition to current changes and thus
quickens the load-transient response1

• A large inductor means continuous inductor current flow over a wider
load range.

By choosing a switching frequency of 127 kHz and following the guidelines
in [12] and allowing for 10% ripple current, the inductor value was chosen to
be

1A discussion on the difference between a continuous (CCM) and dis-continuous (DCM)
inductor current has been left out for the sake of brevity, but, in short, for very light loads
in DCM, the output voltage to dutycycle relation is transformed to a non-linear equation
and the frequency response is different. CCM is assumed here.

64

L = 100 µH (4.8)

The role of the output capacitance is to minimize voltage overshoot and ripple
at the output. Real capacitors have a certain amount of parasitic equivalent
series resistance (ESR) and inductance (ESL). The latter can be ignored
at frequencies below around 500 kHz[12], but the ESR has a real effect,
and thus the output ripple (noise) is mainly determined by the total output
capacitance and the total ESR. The relationship between output capacitance
C and total peak-to-peak ripple voltage ∆V is given in [5] as

∆V =
∆ILTsw

8C
(4.9)

but it does not take the ESR into account.

The ratio of total peak-to-peak ripple voltage ∆V to output voltage Vout is
given in [5] by

∆V

Vout

=
π2

2

(
f0

Fsw

)2

(1−D) (4.10)

where f0 = 1/2π
√

LC is the LC cutoff frequency, Fsw is the switching fre-
quency and D the dutycycle. Since we already have decided on the output
inductor value, we can solve Equation 4.10 for a maximum desired ripple
voltage of, say, ∆V = Vout · 3%. Doing so reveals the converter needs output
capacitance of2

Cout = 59 µF (4.11)

The drop incurred to the ESR is

∆VESR = ∆IL ·RESR =

(
Vin − Vout

L

)
DTswRESR (4.12)

2Considering how a large battery will load down the output line, the value is probably
not critical—but we’ll go by the book for now.

65

The chosen solid tantalum capacitors are low-ESR types, and by putting
two or three in parallel the resistance is further reduced. Their collective
equivalent resistance is only around 40 mΩ, and solving Equation 4.12 for
Vin = 5.5V, Vout = 3V, Tsw = 1/127500 kHz and L = 100 µH, reveals a
noise contribution from the ESR of only 5 mV.

The theoretical LC component values and other parameters related to the
operation of the buck converter is summarized in Table 4.1. The actual values
used on the PCB will use these values as starting points.

Table 4.1: Theoretical buck converter parameters.

Parameter Value

Vin (max/min) 6V/4V

Vout (max/min) 3.6V/2.7V

Dutycycle (min/max) 45%/90%

PWM Frequency 127 kHz

Switch/SR resistance, RDS(on) 6 mΩ

Input capacitance 57 µF

Output Inductor 100 µH

Output capacitance 59 µF

Output ripple3 3% · Vout

Output ESR ripple 5 mV

4.4 Digital Control Block

The digital control block is the brain, ears and eyes of the circuit and ulti-
mately sets the dutycycle on the buck converter depending on the sampled
sensor inputs. In this section the control scheme is described, and also an
example of the ADC interfacing process is given.

66

4.4.1 System State Machine

The main system control loop is implemented as a finite state machine (FSM)
that runs on a microcontroller. Currently there are three possible system
states, including two different regulation modes:

Figure 4.9: Main system loop state machine and transitions. The system
will at any time be in one of the four states depending on the conditions of
events.

MPPT State:
This is the main regulation mode and the implementation of the Perturb
& Observe algorithm described in Section 3.4.2. By tracking the MPP of
the solar panel, battery charge current is maximized. Seen from a battery
perspective, this mode takes care of the Constant Current (CC) charging
phase of the battery.

PID State
This is the secondary regulation mode which regulates the battery voltage
at 3.6V (or any voltage desired) with a discrete PID controller that can be
found in Appendix C. It takes care of the Constant Voltage (CV) phase of
charging, where the end-of-charge criterion is currently set at an arbitrary
minimum current. Hysteresis is built into the system to avoid oscillation
between the PID and MPPT state.

67

DISC state
This state disconnects the solar panels from the battery bus, and leaves the
system in a battery-discharge only condition. There isn’t any magic going on
here; the state simply discontinues PWM generation and activates internal
pull-downs on the microcontroller PWM port, leaving both the high-side and
SR switch in an open state. There should be an option to put the EPS system
in a low power mode in this state or as a separate state, but that has not
been implemented yet.

4.4.2 Event Transition Conditions

1. Power ON

2. Vbat >= Vbat(MAX): Leave constant current mode and regulate battery
voltage.

3. Vbat < (Vbat(MAX) - hysteresis): Battery is below its float voltage, go
back to constant current mode.

4. An error flag is set or the charge current Ibat < Ibat(REF) has dropped
to 10% (or any limit desired) of the max charge current and thus the
battery is per definition fully charged.

5. An error flag is set, disconnect panels until error is resolved.

The error flags can be set to trigger on parameters such as battery over-
temperature, low solar panel voltage, or any other test that is implemented.

4.5 Large Signal Analysis

While the digital control algorithm has two regulation modes, the system has
four operating modes: MPPT charging, PID charging, MPPT discharging,
and battery only discharging.

Since the battery is a ”stiff” voltage source, system stability is guaranteed in
the battery discharge only mode. When the system peak-power tracks, source
line 1 must be a constant power source line as in Figure 4.10. Source line 2

68

is a stiff voltage source and represents the discharging battery. The battery
provides an appropriate amount of current to compensate for the discrepancy
between source line 1 and the load line, and thus only one equilibrium point
exists.

Voltage

Current
Source line 1

Source line 2

Load line Charge current

Vbat Voltage

Current

Source line 1

Source line 2

Load line

Discharge current

Vbat
Figure 4.10: MPPT charge (left) and discharge (right) mode. When the load
is heavier than the solar panels can handle alone, the battery sources the
difference by discharging. When the load draw is less than what the solar
panels can handle, what is left goes to battery charging.

During the MPPT charging mode the battery acts as a varying voltage cur-
rent sink, and any extra power from the solar array will flow into the battery
to compensate for the discrepancy between source line 1 and the load line,
as shown to the left in Figure 4.10.

The change from MPPT charge to MPPT discharge mode does not cause
any stability problem since the converter always tracks the MPP of the solar
array[14]—the MPPT control algorithm doesn’t care if the battery is charging
or discharging. This is also in agreement with the tests that have been done
in Chapter 6.

During the last operating mode, when the battery is charged with constant
voltage, the battery is a constant power load line at any instant, as seen from
the solar array[14]. Since we’re moving off the MPP in this mode the solar
array voltage is floating, and will settle at the only stable operating point
towards the open-circuit condition, as discussed in Section 2.4.6. Thus, in
this operation mode, the solar array voltage will vary with load demand.

69

Voltage

Current

Stable

Unstable

P1 P2 > P1

Figure 4.11: During the PID (constant voltage) mode, the battery, as seen
from the solar array, is a constant power load line at any instant while the
solar array voltage is unregulated and floating. Only one stable equilibrium
point exists however, which is that towards the open-circuit voltage.

When the load increases to the point where the two operating points become
one, the system switches to MPPT mode.

4.5.1 A Note on Small-signal Loop Response

Apart from deriving the transfer function for the output LC filter, no attempt
has been made to determine the cross-over frequency, open-loop gain and
phase margin for the system.

The analog control loop equivalent of this system has a well-documented set
of equations that can be used to determine the three mentioned criterions for
a stable system. However, for the digital control loop with multiple modes,
the situation is not as clear. It can be said, though, that the effective lag of
the digital-control loop is the combination of two effects: processing delay
and update interval. The former includes the analog-to-digital conversion
time and the MPPT/PID control-algorithm calculations, and the latter is
the dutycycle update interval of the respective regulation states.

70

4.6 Sensor to ADC - Analog Interface Design

The sensors and ADC are the previously mentioned eyes and ears of the
circuit, and deserve a little extra attention due to their importance. Four
measurement points, shown as circles in Figure 4.3, are currently sampled
and used in the control scheme. They are:

1. Input (solar panel) voltage

2. Inductor output current

3. Output (battery) voltage

4. Battery temperature4

In order to utilize the entire dynamic range of the ADC, the sensor output
voltage span and the ADC input voltage span must be matched[4]. This is
in general a two-step process involving level-shifting and amplification with
op-amps as the prime candidate for the job.

K

Amplification

B

ADC InputSensor Output

Level
Shifting

Vin(max)
Vin(min) Vout(max)

Vout(min)
Figure 4.12: Transducer interface design (TID) block diagram.

In the first stage in Figure 4.12, the sensor’s output voltage is scaled (ampli-
fied) by a constant K, mapping the output range of the sensor to the input
range of the ADC. Once this is done the signal is shifted by a bias B, com-
pleting the interface circuit. The general equations for this process are linear
and can be stated as,

4A dummy termistor located on the PCB is used here for now.

71

Vout(max) = K × Vin(max) + B (4.13)

Vout(min) = K × Vin(min) + B

where Vin(max) and Vin(min) represents the maximum and minimum output
voltages from the input transducer corresponding to the max/min physical
variables that the sensor measures. Similarly, Vout(max) and Vout(min) represent
the inherent voltage range of the ADC. Since we will be using the multiplexed
ATXmega ADC for all the sensed signals in the system, the output voltages
needed for all the interfaces will be the same. They are given by the maximum
allowed voltage reference which is given in the ATXmega datasheet as

Vout(max) = Vref ≤ VCC − 0.6V = 2V (4.14)

The ADC is setup with differential sampling with the negative input grounded
so

Vout(min) = 0V (4.15)

We’ll apply this to the battery voltage sensor as an example, and let the rest
be, as it is just a matter of rinse and repeat for the other sensor inputs.

4.6.1 Example: Sensing Battery Voltage

To provide some headroom, the battery will be assumed to operated from a
low minimum of VIN(min) = 2.7V to a high maximum of VIN(max) = 3.7V .
The ADC input voltage range is still VOUT (min) = 0V to VOUT (max) = 2V .

Using the equations from 4.13

0V = 2.7V ×K + B

2V = 3.7V ×K + B

The first equation yields

72

K =
−B

2.7V

and the second equation yields

2V = 3.7V × −B

2.7V
+ B

and thus

K = 2

B = −5.4V

Using the general equation of an op-amp, we finally get

VOUT = K · VIN + B = 2VIN − 5.4 (4.16)

which can then used to calculate the resistor values in the op-amp circuit.
Referring to sheet 8 in the schematics (in Appendix), the resistor values can
be found from

VOUT =

(
R810 + R808

R808

)
· VIN − VREF

(
R810

R808

)

4.7 Telemetry and the TWI Bus

Telemetry is handled by Atmel’s version of the I2C communication bus; the
Two Wire Interface (TWI) which is detailed in Appendix D. The EPS system
has been configured as a slave, and as such it will respond to a request
from a master device. To avoid wasting resources on polling, slave address
recognition and data-complete interrupts are enabled. This ensures that the
EPS system will continue its duties, even in the case of a faulty TWI master.

73

4.7.1 Slave Reaction to Address Packet

The slave Address/Stop Interrupt Flag is set when a start condition suc-
ceeded by a valid address packet is detected. When this happens, the SCL
line is forced low, giving the slave time to respond or handle any data as
needed.

Once a START–ADDRESS–ACK sequence occurred, the combination of the read-
/write bit and bus condition give rise to one of the four cases the slave must
react to. These are summarized below:

Case 1: Address packet accepted - Direction bit set.
Read/write bit is high, indicating a master read operation. Clock stretching
is performed by forcing the SCL line low. If an acknowledgement is sent by
the slave, its hardware will set the Data Interrupt Flag indicating that data
is needed for transmit. If a negative acknowledgement is sent however, the
slave will wait for a new start condition and address match.

Case 2: Address packet accepted - Direction bit cleared.
Read/write is low, indicating a master write operation. The clock line is
forced low and if an acknowledgement is sent by the slave, the slave will wait
for data to be received. After this, more data, repeated start or stop may be
received. A negative acknowledgment will force the slave to wait for a new
start condition and address match.

Case 3: Collision.
When the slave is unable to send a positive or negative acknowledgment,
the Collision Flag is set. This disables the data and (negative) acknowledge
output from the slave logic, and also releases the clock hold. A start or
repeated start condition will be accepted.

Case 4: Stop condition received.
This case is analog to cases 1 and 2, except that when a stop condition is
received, the slave Address/Stop Flag is set and not the Address Match Flag
as in case 1 and 2.

74

4.7.2 Receiving Data

The TWI module is currently not configured to accept any attempts to be
written to, i.e., there is no data command functionality at present. However,
the required drivers are in place should the need arise in the future.

4.7.3 Transmitting Data

When the system acknowledges a master’s attempt to read telemetry data,
all sensor-data is refreshed, converted to 16 bit values corresponding to the
measured values in mV, mA or degrees Celsius where appropriate. The final
step before shipping them off to the TWI data buffers, is splitting the integers
into high- and low byte unsigned characters to match the TWI 8-bit data
field. For example, if the solar panel voltage is 5.5V, the third and fourth
telemetry bytes will be 0b00010101 and 0b01111100. The makeup and order
of the eight telemetry bytss are summarized in Table 4.2.

Table 4.2: Telemetry data sent on master request.

Byte Data

1 Solar panel current sensor 8 MSB

2 Solar panel current sensor 8 LSB

3 Solar panel voltage sensor 8 MSB

4 Solar panel voltage sensor 8 LSB

5 Battery voltage sensor 8 MSB

6 Battery voltage sensor 8 LSB

7 Battery temperature 8 MSB

8 Battery temperature 8 LSB

75

START
condition

ADR + RW

Correct
ADR

Error

Write
CTRLB
ACK

Write
DATA
Tx

Master
ACK NACK Transaction

Completed

Initialize
TWI Slave

Write
CTRLB
NACK

No

Yes

No

Yes

No

No

Yes

Yes

In hardware

In software

Legend:

Figure 4.13: Flow diagram of the implemented slave algorithm.

76

4.8 Powering the Microcontroller

The EPS reliance on the microcontroller for most of its tasks, raises a critical
question: How does the EPS provide power for itself?

There are two possible power sources available to the microcontroller; the
solar cells (VSA) and/or the battery (VBAT). The problem of choosing one
over the other can be traced back to a desire to operate the EPS continuously
throughout the orbit, and the need to be able to recover from a flat5 battery.
Since the solar array does not provide power during the eclipse, and the
microcontroller cannot run from a flat battery, the two requirements means
that neither the solar panels nor the battery can sustain system power on
their own.

To overcome this problem, the scheme in Figure 4.14 was implemented.

PG

3V LDO
Regulator

Microcontroller

VSA
VBATVµC> 3.2V 1

< 3.2V 0

VSA PG VµC
VSA*
VBAT

VSA*
Figure 4.14: Scheme for powering the system for the duration of an orbit.

A low dropout voltage regulator6 is used to step down the solar array voltage
to a usable VSA∗ = 3.0V. As long as the LDO input is higher than about
3.2V, the regulator output will be stable at VSA∗ = 3.0V and the PG signal,
being active high, keeps the PMOS turned off. If the array voltage drops

5Defined here as below 2.7V where the uC no longer guarantees its current operating
clock frequency.

6TPS76630 from Texas Instruments

77

below 3.2V, the active high Power Good signal pulls the gate of the p-type
MOSFET7 to ground—well below the threshold voltage (VGS(th) = −1.5V)
required to turn the FET on—at which point the MCU power is taken from
the battery.

Since the battery voltage range is within the rated input voltage range of
the microcontroller, the battery voltage is used directly without further reg-
ulation. This keeps the loss during the eclipse sleep-mode to the negligible
conduction loss in the MOSFET, while the LDO provides a stable power
source for the MCU during the period it matters the most.

A potential drawback with this approach is the switching back and forth in
the case of a free tumbling satellite. Testing should be done to evaluate this
effect, and a solution where the LDO’s active low enable signal is used to only
use the solar array power in the case of battery failure, should be considered.

The PG signal could also trigger an interrupt that disconnects the solar
array from the bus, and forces the microcontroller into a low-power sleep
state where it would stay for the duration of the battery-only power mode.
This idea has not yet been implemented though.

In general, the power dissipation in the ATxmega is proportional to the
square of the device’s supply voltage, so to minimize power consumption,
the lowest possible supply voltage should be used. Also, the overall power
consumption of the satellite might benefit if the guidelines in Atmel applica-
tion note AVR1010: ”Minimzing the power consumption of XMEGA devices”
was followed.

7FDN306P from Fairchild Semiconductor

78

4.9 Fault Protection and Monitoring Unit

Each subsystem that is connected to the power bus via the backpanel, is
buffered from the main bus by a autonomous fault protection unit that also
monitors the subsystem’s current consumption.

OUT

OUT

IN

IN

GND

FAULT
ILIM

EN

RILIM

RFAULT

100 kΩ

Control Signal

2.5V – 6.5V VOUT

TPS2556/57

0.1 uF

CLOAD

Fault Signal

Power Pad

Figure 4.15: Overcurrent protection with TPS2556.

The chosen protection device is TPS2556 from Texas Instruments which is
based on a 22mΩ high-side N-channel mosfet that is driven with an internal
charge-pump. With a response time (tIOS) of 3.5µs, it offers a programmable
current-limit (IOS) threshold between 500mA and 5A. The current-limit is
programmable via an external resistor, RILM, given by

IOS(max) =
99038V

RLIM
0.947 (4.17)

where the current is given in units of amperes if RLIM is given in units of kΩ.

When a over-current or over-temperature condition is detected the FAULT

logic output is asserted low until the condition is resolved, and the device
automatically shuts off the troubled subsystem.

The ENABLE signal controls the device supply current and is compatible with
TTL and CMOS levels, allowing for a microcontroller to manually turn in-
dividual subsystems ON or OFF as necessary. The device also has a built-in

79

RS

2

1

OUT

GND

RL

VO = ISRSRL/5kΩ

Load

5kΩ 5kΩ

VIN+

Up To 60V

VIN+ VIN–

3 4

IS

V+
5

Figure 4.16: Current monitoring with INA138.

undervoltage lockout with hysteresis (35mV) which disables the switch until
the input voltage reaches the turn-on threshold (2.35V).

To monitor the current consumption of each subsystem another device from
TI is used. The INA138 is a unipolar high-side current monitor with high
gain, allowing for a small sense resistor and low loss. It operates from 2.5V
to 36V which is well within the expected system voltage range.

A 25mΩ sense resistor was chosen in this prototype, which, together with the
2A upper limit set by TPS2556, and a maximum ATxmega ADC voltage of
2V, means that we need RL to be

RL =
Vo · 5kΩ

RS · IS

=
2V · 5kΩ

25mΩ · 2A
= 200kΩ

80

To
SubsystemFAULTTPS2556

INA
138

Manual
Shutdown
(optional)

RsenseFrom
Power Bus

Fault Protection Unit

Current
Monitoring

Fault
Detection

Figure 4.17: Automatic and/or manual overcurrent protection with TPS2556
combined with the current monitoring capabilities of INA138 constitute the
fault protection unit.

This unit will be implemented next to each subsystem’s connector on the
backpanel.

81

82

Chapter 5

PCB Realization

A total of three printed circuit boards (PCBs) were designed and realized.
Only the next two paragraphs will be devoted to the two first prototypes,
before moving on to the main focus of this section: the PCB realization of
the system described in Chapter 4. All work with the PCBs, from net list
to schematics through wiring board design and finally post-processing, was
done on the computer assisted design (CAD) suite Zuken Cadstar v12.1.

Figure 5.1: The first prototype was a two-layer PCB with a stand-alone buck
converter with a driver and some supporting electronics.

83

The first prototype, shown in Figure 5.1 was realized on a two-layer board
which basically consisted of a synchronous buck converter, a driver circuit,
snubber network, a current sensor and some testpoints. The PWM signal
was generated on a STK600/ATXmega development board from Atmel. This
setup met the wall around the time work on the control algorithm began and
the need arose to sample the various signals.

The second prototype, shown in Figure 5.2, was realized on a four-layer
board. All of the working parts of the first board was transferred to the
second prototype, which also included on-board digital control and ADC
interfacing for the first time. In addition, typical ’bells and whistles’ func-
tionality was added for debugging.

Figure 5.2: The second prototype was a four-layer PCB with on-board digital
control, sampling and LEDS and switches for debugging, in addition to the
buck converter on the right side of the board.

Finally, the system described in Chapter 4, was realized on the four-layer
board shown in Figure 5.3. Apart from a few tweaks here and there, this
board is electronically similar to the second prototype which did most of the
tasks it was intended to do. The big change though was the introduction of
a, second, redundant regulation system on a board that was smaller than the
second (single-regulator) prototype. The remainder of this chapter concludes
the work done on the final EPS prototype.

84

Figure 5.3: The third and last prototype is a four-layer PCB created with the
CubeSTAR module. It contains two redundant regulation blocks with JTAG
programmable digital parts, RS232 driver for debugging, I2C interface, and
connectors for the solar panels and backpanel/battery connector.

5.1 Physical Dimensions

Electronic design rules such as physical board dimensions, min/max trace
width, and component-to-component/pads/etc distances, are all contained
within pre-made templates made available to the CubeSTAR students by
the Electronic Laboratory (ELAB) at the Univeristy of Oslo.

The two available templates are the module and the backpanel templates.
However, neither the templates nor the design rules contained within them
are set in stone, and evolve—at the mercy of ELAB—with the student’s
designs and needs. Their current status is shown in Figure 5.5. Using the
module template means staying within the physical size of 80x75 mm with a
maximum building height of 25 mm. The backpanel template is only shown

85

here for the sake of completion, and will not be discussed further.

The board itself is a standard FR4 type, where the dielectric between the
copper planes is typically a woven fiberglass cloth that is reinforced with a
flame resistant1 epoxy resin.

18 µm

35 µm

35 µm

18 µmSIGNAL

SIGNAL

POWER PLANE

GROUND PLANE

Components Copper Dielectric (FR4)

1.6 mm

Figure 5.4: Four layer PCB stackup showing the inter-plane plated through-
hole vias connections (not to scale).

Total board thickness is 1.6 mm with 18 µm (0.5 Oz) Cu foils for the signal
layers, and 35 µm (1 Oz) foils for the Ground and Power layers. Wherever
possible, 0603 SMD components were chosen for the passives, and plated-
through hole vias with dimensions 1.0/0.5 mm for inter-plane connections.
Where space was tight the via size was reduced to 0.6/0.3 mm, with the two
numbers representing via pad and hole diameter, respectively.

1Flame Resistant, hence the abbreviation: FR4

86

Figure 5.5: The current status of the CubeSTAR module (top) and back-
panel (bottom) templates. Both were created and are maintained by the
Electronics Laboratory (ELAB) at UiO

87

5.2 Electromagnetic Compatibility

Choosing a switching buck converter as the power regulator means that we
are choosing an inherently noisy power system. The Cubesat formfactor, as
with the shrinking size of electronics in general, means that the subsystems
circuits will operate in close proximity to each other. The task then—not
only for this subsystem, but for all the subsystem designers—is to make sure
that the circuits affect each other adversely as little as possible.

The definition of electromagnetic compatibility given in [25] is,

Electromagnetic compatibility (EMC) is the ability of an elec-
tronic system to (1) function properly in its intended electromag-
netic environment and (2) not be a source of pollution to that
electromagnetic environment.

The first part of the definition is related to the susceptibility of a system,
which is the dual of immunity; the capability of a device to respond to noise.
The second part is related to the system’s level of emission, or interference-
causing potential.

This section deals with some of the sources of EMC problems and what has
been done to minimize their effect in the PCB design and layout.

5.2.1 Conductor Parasitics

Being far from the ideal straight lines known from the schematics, real life
conductors always have a certain amount of resistive and reactive behavior.
Since these conductors inter-connect every part of the circuit, a quick look
at how they (mis-)behave may be a good idea. The geometry used in this
section is shown in Figure 5.6, where the distance d also will be used to
represent the height of a trace above a ground plane.

88

L
W H

A

d

Figure 5.6: Trace inductance and plane capacitance geometries.

Resistance

The trace resistance in Ohms per meter for a material with a given resistivity
ρ in nΩ·m is

Resistance (Ω/m) =
ρ

W ·H

where W and H are the trace width and height in units of meters, as illus-
trated in Figure 5.6. For example, a 5 cm long copper (ρ = 16.8 nΩ·m) trace,
with W = 1.0 mm and H = 18 µm, has a resistance of 47 mΩ. Resistance
versus trace width is illustrated in Figure 5.7.

Inductance

Strip inductance is another parasitic to consider. Even at relatively low fre-
quencies, a conductor usually has more inductive reactance than resistance[25].
The trace loop inductance, valid as long as d > W, is

Inductance (nH/cm) = 1.996× ln

[
5.98 · d

0.8W + H

]

where W is the trace width and H is the trace thickness at a distance d above
the ground plane. Any units can be used for d, W, and H, as long as they are
consistent. For example, a 5 cm long trace with a cross section of 0.25 mm
x 18 µm, running 0.5 mm above its return ground plane, has an inductance
of roughly 25 nH. The effect of trace width on inductance is illustrated in
Figure 5.8.

89

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

0

10
1

10
2

R
es

is
ta

nc
e

pe
r

le
ng

th
 (

m
Ω

/c
m

)

Trace width (mm)

18 µm copper sheet (0.5 oz)
36 µm copper sheet (1 oz)

Figure 5.7: The resistance per length versus trace width for the two sheet
thicknesses used on the printed circuit board.

Capacitance

The capacitance in pF for the parallel-plate capacitor shown to the right in
Figure 5.6, is

Capacitance = ε0εr
A

d

where ε0 = 8.85 × 10−12 F/m is the vacuum permittivity, εr ≈ 4.5 is the
relative dielectric constant of the FR-4 board material, A is the plate area
in cm2, and d is the distance between the plates. For example, two 10 cm2

plates 0.5 mm apart has a total capacitance of only 800 pF—not of much use
as decoupling capacitance in power management.

In fact, for frequencies below 500 MHz, the simplest way to improve the EMC
performance of a four-layer board is to place the signal layers as closely as
possible to the current-return planes, thus minimizing the current loop areas
at the expense of this small and insignificant inter-plane capacitance[25]. This
was not, however, implemented on the current prototype where equidistant

90

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
3.5

4

4.5

5

5.5

6

6.5

Trace width (mm)

Lo
op

 In
du

ct
an

ce
 p

er
 le

ng
th

 (
nH

/c
m

)

36 µm copper sheet (1 oz)

18 µm copper sheet (0.5 oz)

Figure 5.8: Loop inductance versus trace width for rectangular PCB traces
located 0.5 mm above a ground plane for the two different sheet thicknesses
used in the PCB.

layers are used.

5.2.2 Noise and Interference

The definition of noise given in [25] is,

Noise is any electrical signal present in a circuit other than the
desired signal.

Two things are immediately clear with that definition. First of all; noise
wins. There’s simply no way a real-life signal will look like the simulated
ideal signal. But there’s still hope; by reducing the undesirable effect or
interference of noise until the noise magnitude is at an acceptable level,
the problem is solved. Second, whether or not a signal is classified as noise
depends on where it is. A desired signal in one part of the system can become
noise if coupled to another part of the system.

91

The noise path is often illustrated as shown in Figure 5.9.

NOISE
SOURCE

COUPLING
CHANNEL RECEPTOR

Figure 5.9: Typical noise path. All three blocks must be successfully identi-
fied to analyze a noise problem.

The source of noise can be grouped into three categories: 1) intrinsic noise
such as thermal and shot noise; 2) man-made noise such as digital electronics
and switching; 3) noise from natural disturbances such as sunspot activity
and lightning. Some of the techniques used to here to reduce noise are generic
and can be used on all kinds of noise, only noise reduction of the the second
category has been actively pursued here.

The coupling channel may be either a solid conductor which is run through a
noisy environment, or by means of electric and magnetic field coupling, while
the receptor in Figure 5.9 is the affected system.

5.2.3 Current Return Path and Ground Noise

A lot can be said about electrical currents, but one thing is universally true;
it can only flow in loops. Michael Faraday discovered that when the magnetic
flux enclosed by a loop of wire changes with time, a current is produced in
that loop, indicating that an electromotive force (emf) is induced around
the loop[22]. This wonderful result can be stated mathematically in what is
know as Faraday’s Law:

∮

C

E · dl = − d

dt

∫

S

B · dS (5.1)

where S is the surface bounded by the closed path C while E and B are
the electric and magnetic field vectors. The minus sign on the right-hand

92

side of Equation 5.1 ensures that Lenz’s Law is satisfied: the sense of the
induced emf is such that any current it produces tends to oppose the change
in the magnetic flux producing it. Solving Faraday’s Law for a given situa-
tion reveals that the induced emf is proportional to 1) loop area, 2) current
strength, and 3) frequency.

From a PCB perspective, the above result means that if the current drawn by
a device must take a long de-tour around the board before returning to the
device’s Vcc pin, a large current loop will be created which will be susceptible
to electromagnetic noise from surrounding sources, or, as in the case of high
current loops, create noise itself. Of the listed three, only loop area is usually
under the designer’s control at the production stage of development, and by
keeping it as small as possible, the risk of noise problems can be greatly
reduced.

By adding a separate ground plane as in Figure 5.4, the loop area is reduced to
the area traced by distance between the signal and ground planes in addition
to the track length. But ”ground” is not a magic black hole where current
disappears. The impedance of any conductor is complex and can be written
as

Zg = Rg + jωLg (5.2)

From Equation 5.2 it is clear how the ohmic resistance Rg dominates the
total impedance at low frequencies ω, while the inductance Lg dominates at
higher frequencies. Also, any conductor carrying a current will, per Ohm’s
Law, have an voltage drop associated with it. This is true also for ground
planes. The voltage drop (noise), which may cause interference in the ground
system, is given by

Vg = IgZg (5.3)

where Ig is the ground current and Zg is the ground impedance defined in
Equation 5.2. In fact, Equation 5.3 and 5.2 provide good reasons for the
decision to use the term current return path in place of ground plane in the
section title because it demonstrates that, assuming a ground current, no
two physically separated points in a ground plane will ever be at the same
potential. Further, since the impedance is frequency dependent, the term

93

return current moves the focus more towards the actual path taken by the
ground current.

We then have two options if we want to minimize the ground noise voltage;
minimize Zg or decrease Ig by forcing the ground current through a different
path. The two different scenarios in Figure 5.10 illustrates how frequency
affects the current return path.

High frequencyLow frequency

A

B

Vsrc
Path of least
resistance Path of least

inductance

A

B

Vsrc
Figure 5.10: The path taken by the return current in the ground plane is
dependent on frequency. At higher frequencies the return current seeks the
path of least inductance, which is traced out by the path that minimizes the
loop area.

In the low-frequency case, the current takes the path of least resistance, which
is the direct path from A to B in the ground plane. In the high-frequency
case, the current takes the path of least inductance (or loop area) which is the
return path in the ground plane directly under the signal trace. The distinc-
tion between low- and high frequency is typically a few hundred kilohertz[25],
and from the above discussion we can conclude that high-frequency signals
in fact behave as desired as far as reducing loop areas is concerned—that is,
as long as we don’t interrupt the signal path. On the other hand, the low-
frequency signals can create large and undesired current loops with improper
layout.

94

5.3 PCB Layout Noise Reduction Techniques

Noise and EMI issues with switch-mode DC-DC converters are often a result
of bad board layout and component placement[2]. Cutting corners here may
cause errant switching, excessive voltage ringing and even circuit latch-up.
So, not only does the layout dictate the EMC performance; getting it right
can be crucial to get correct functionality. Some of the techniques that were
used to tame the circuit are discussed below.

5.3.1 Decoupling

When a logic gate in an IC switches, a current transient, dI, rushes through
the ground and power traces as seen to the left in Figure 5.11. From the
familiar expression for voltage across a inductor

VL = L · dI

dt

it is clear the current spike will produce a corresponding voltage spike across
the trace inductances—an unwanted voltage which, per the definition in Sec-
tion 5.2.2, is regarded as noise on the line.

Regardless of the aforementioned measures taken against noise, PCB trace
distance will introduce an impedance (Rp,g and Lp.g in Figure 5.11) which will
create switching noise from the transient currents. Decoupling capacitors are
used to maintain a low dynamic impedance from the individual IC supply
voltage to ground. The capacitor stores energy in the form of charges and
helps minimize the local supply voltage droop when a fast current pulse is
taken from it. Placing the decoupling cap close to the circuit it is decoupling,
and making Lp2 as small as possible, is crucial—in fact, the inductance of a
long trace between the cap and IC pin can form a high-Q tuned LC circuit
which might generate ringing effects that are worse than the situation with
no cap at all.

The exact capacitance value is not critical, but it can be calculated by con-
sidering the transient current demand in relation to the acceptable power rail

95

IC IC

Lp Lp1

Lg Lg1

Lp2

Lg2
CddI dI

Vsrc Vsupply
Rg

Rp
Vsrc Vsupply

Figure 5.11: Transient power-supply current with and without a decoupling
capacitor.

voltage droop. For example, if a chip sinks 10ns× 50mA current pulses and
the acceptable voltage droop is 0.2V, then

IC = C · dV

dt
⇒ Cmin =

IC ·∆t

∆V
= 2.5 nF

Normal values for decoupling capacitors are in the range from 10 nF to
100 nF. For low-frequency decoupling, tantalum electrolytics of 1-2 µF in
areas where several devices may turn on simultaneously and draw current
are recommended. Additionally, a single large capacitor of 10-47 µF at the
power entry of the board is recommended to cope with frequency components
in the kHz range.

5.3.2 Reducing the Loop Areas

Currents up to 1A, averaging around half that value, enter the board during
the constant current battery charge stage. Therefore, the current loop areas
for the on- and off states must be identified and minimized. This is shown
in Figure 5.12, where the the low-side mosfet supplies the load with current
while the high-side switch is off.

The loop created by the input capacitors and the two series MOSFETs is
kept as small as possible. By doing so, any noise generated by the pulsating

96

Figure 5.12: A cutout from the PCB illustrating some of the measures taken
to minimize circuit noise. The situation shows the high current loops while
charging the battery.

97

current in the input capacitors ESR and ESL is minimized, giving the high
side MOSFET the full input voltage to work from.

The loop formed by the low-side MOSFET, the inductor and output capacitor
is also minimized, as this helps reduce ringing on the switch (SW) node where
the power switches and output inductor meet.

Since the digital part of the PCB is separated with ”slots” in the ground
plane, it becomes paramount not to cross the gaps. In Figure 5.13 a portion
of the traces on the bottom signal layer can be seen. By forcing the traces on
the bottom layer directly above their ground return current path, the loop
areas are kept to a minimum.

Figure 5.13: The ground plane is separated into digital and analog sections.
By not crossing the gaps, the return current is forced to return underneath
the signal traces thus minimizing the loop areas.

5.3.3 Implementation of a Passive RC Snubber

Unfortunately, there is a flip-side to the effort of trying to make the converter
as efficient as possible. By keeping the parasitic resistances as low as possible,
the decay time of the ringing increases, as there is little damping left in the
circuit. Ringing on the SW node is almost inevitable due to the resonant

98

tank formed by the (lumped) parasitic capacitance Cp and inductance Lp at
the node, as shown in Figure 5.14. The main culprits and cause of ringing
are the drain-to-source capacitance of the SR switch, package inductance in
the high-side switch and PCB traces and any capacitance seen looking into
the output inductor.

Lout
Lp

Cp SR
switch

High side
switch

SW
nodeVIN

Csnub
Rsnub

Snubber

Figure 5.14: A simplified parasitic model for the switch node.

Since Cp is charged through Lp, the stored inductor energy has to go some-
where once the SW node reaches Vin. This energy shows up as ringing, where
the tank’s oscillating frequency is

f0 =
1

2π
√

Lp · Cp

(5.4)

The snubber’s basic function is to absorb energy from the node’s parasitic
reactances, which in turn means a reduction in voltage- and current spikes,
noise, and power dissipation in the SR switch. The energy is not saved,
however—dissipation is merely shifted from the SR switch to the snubber
resistor, thus providing less stressful operating conditions for the switch. It’s
also worth noting that, for a given switching frequency fsw, the dissipated
energy in the snubber network

Psnub =
1

2
· CsnubV

2
in · fsw (5.5)

99

is independent of the snubber resistor value. In fact, the only influence
available over power dissipation at this point is the choice of Csnub, so care
must be taken when choosing its value.

The snubber capacitor is charged to Vin when the high-side switch turns on,
and discharged through Rsnub when the same switch turns off. This does not
mean the resistor can be chosen arbitrarily large however. One important
design constraint is that the chosen resistor value should be such that the
snubber RC time constant times three [6], is less than the minimum on-time
or maximum off-time of the power switches, i.e.

Rsnub · Csnub < TDmin (5.6)

where T is the switching period and Dmin is the minimum dutycycle. This
allows the snubber capacitor to fully charge and discharge during each portion
of the switching period.

From an EMI/RFI perspective, the energy that flows back and forth be-
tween the Cp’s electric field and Lp’s magnetic field does not generally pose a
problem[16]. However, the nature of low-voltage converters require the use of
low gate threshold MOSFETs which are susceptible to parasitic turn-on if the
ringing dv/dt becomes large. Also, the low cost and ease of implementation
is in clear favor of using a RC network.

Parasitic Turn-on

The nature of low-voltage converters require the use of low gate threshold
MOSFETs. A large dV/dt on the switch node represents a potential failure
mode as these spikes may be capacitively coupled from the drain to the gate,
and thus inadvertently turning on the SR during its off state. This can be
understood by considering how a rising voltage on the switch node causes
currents to flow in the parasitic capacitances and inductances in Figure 5.15.

As Figure 5.16 shows, a rise on the SW voltage also raises the SR drain
voltage. This rate of change in voltage is related to the current flowing into
Cdg and Cds by

100

Rg
8

Ls
350pH

Ld

250pH

Lg

2nH

Cgs
3310pF

Cdg
330pF

Cds
1240pF

P
U

L
S

E
(0

 6
 0

 1
0n

s
10

n
s

4u
s

8u
s)

V_in

L_pcb

1nH

SW_node

GS

.tran 10us

SR switch

Gate

Source

Drain

Driver

 --- D:_temp_working_dir\SPICE\MOSFET_parasitic_equivalent_cir.asc ---

Figure 5.15: A parasitic SPICE model of the SR MOSFET can be used to
predict if parasitic turn-on will be a problem.

i(t) = C · dv(t)

dt
(5.7)

where Cgs should be added to Cdg in order to represent the total branch
capacitance, C, as seen from the drain node. This capacitance is three times
greater than that of Cds, so most of the current will be geared towards charg-
ing the the gate capacitance. The current into Cdg must either be shunted
to ground through the driver, or go into Cgs. The latter option causes the
voltage on Cgs to rise, and if left unattended this voltage rise may above the
gate threshold voltage and momentarily turn on the MOSFET. As mentioned
in Section 4.3, a scenario where both switches are turned on simultaneously
would short the input (i.e. the solar panels) to ground, and must be avoided
at all costs. A SPICE simulation model is presented in [16] which can be
used to predict this event a priori.

For this simulation the MOSFET used was IRF7456 (i.e., a different MOS-
FET from the one used to calculate the snubber network), but the model is
generic and can be used for any similar situation. The manufacturers nor-
mally characterize their MOSFETs indirectly in their datasheets by CISS,

101

CRSS and COSS. Being functions of VDS their values are estimated from
plots in the datasheet at the maximum voltage that occurs across the device.
The maximum voltage seen at the SW node is

VSW (max) = Vin(max) − Vout(min) = 6V − 2.7V = 3.3V

From the IRF7456 datasheet we have

CDG = CRSS = 330pF

CGS = CISS − CRSS = 3640pF− 330pF = 3310pF

CDS = COSS − CRSS = 1570pF− 330pF = 1240pF

The parasitic inductances used are estimations from [16] where the typical
SO-8 package leads each contribute around 2 nH of inductance. With four
source leads, three drain leads and one gate lead, in addition to a small pcb
trace inductance, the model in Figure 5.15 was used to produce the plot in
Figure 5.16.

0µs 1µs 2µs 3µs 4µs 5µs 6µs 7µs 8µs 9µs
-540mV

-450mV

-360mV

-270mV

-180mV

-90mV

0mV

90mV

180mV

270mV

360mV

450mV

540mV
V(gs)

 --- D:_temp_working_dir\SPICE\MOSFET_parasitic_e quivalent_cir.raw ---

Figure 5.16: The SPICE simulation shows that the dv/dt bump has an
amplitude of around 450 mV.

102

Simulation shows that shoot-through should not pose a problem under the
given conditions. The spike—peaking at around 0.450 V—is below IRF7456’s
gate threshold voltage Vth = 0.6V. This is comparable to the real-life situ-
ation shown in Figure 5.17 which was captured before the snubber was im-
plemented. The dv/dt bump can clearly be seen when the high side switch
closes. In fact, due to the short duration of the voltage spike, a threshold
crossing would probably not be a problem anyway due to the MOSFET’s
inherent turn-on delay.

Figure 5.17: Capacitive coupling of large dv/dt ringing on the SW node may
cause the SR gate voltage to rise above its threshold voltage while it is in
the ”off” state.

To counter the parasitic turn on effect, the following measures are taken:

1. low driver pull-down (sinking) impedance

2. reduced rate of voltage rise on the SW node by using a snubber

103

3. keep the impedance from gate to source of the SR as low as possible

4. close attention to drive circuit layout: wide short track for low impedance,
GND track (plane) directly beneath it for low inductance and mini-
mized loop area in the circuit

The third point must be weighed up against the need to minimize the ex-
cessive inductive energy buildup by limiting the switching time on the main
switch. This is done by adding some resistance between the driver and the
gate, keeping in mind that this increases switching loss.

Choosing Component Values

We know the tank’s resonant frequency from measurement in Figure 5.18,
and want to damp the ringing. Now what? With Equation 5.4 in mind, it
would help if one of the parasitics was known. Of the two, Cp is the most
straight-forward to find, because the switch node capacitance is dominated
by SR’s output capacitance Coss = Cds + Cgd, which can be found from the
capacitance-voltage plots in the mosfet datasheet. Using Coss as a starting
point, the snubber capacitance will generally be two to four times this value.
The final choice of Csnub should[6] be such that the frequency of the ringing
to be damped is halved—at which point, the circuit capacitance is four times
the original value. In other words, when Csnub halves the ringing frequency,
its value is three times that of Cp.

In Figure 5.19, a 4.7nF cap has been added across the SR switch, and the
frequency is now around 7.5MHz. Since the resonant frequency of an LC
circuit is inversely proportional to the square root of the LC product, we can
conclude from this that the node’s parasitic capacitance is a third of 4.7nF,
or

Cp ≈ 1500pF (5.8)

which is in agreement with the MOSFET’s given datasheet2 value for output
capacitance.

2The mosfet used in this setup was Si4864DY from Vishay

104

Figure 5.18: Without the snubber, the switch-node (bottom curve) rings
with a period of T = 65 ns. The top curve is the high-side switch.

While Cp trivially ended up being equal to the output capacitance of the SR
switch, the parasitic inductance is a little bit more coy, as it depends on PCB
trace geometry and the mosfet component packaging (SO-8 in this case).

In the general case, Lp can be determined experimentally by measuring the
ringing period T1, before adding a parallel capacitor Ctest of known value and
noting the change in ringing period. The parasitic inductance will then be
given by

Lp = (T 2
2 − T 2

1) · 1

4π2 · Ctest

But with the prior knowledge of Cp as we now have, we can simply solve
Equation 5.4 for Lp.

105

Figure 5.19: By adding a lone 4.7nF capacitor (Rsnub = 0) across the SR
switch, the ringing period is increased to T = 130 ns.

Lp =
1

(2π · f0)2 · Cp

≈ 1

(2π · 15MHz)2 · 1500pF
≈ 75nH (5.9)

The final step is to choose the snubber resistor such that it equals the char-
acteristic impedance of the resonant tank, allowing for damping near Q = 1.

Q =
1

Rsnub

√
Lp/Cp

= 1

or

Rsnub =

√
Lp

Cp

=

√
75nH

1.5nF
= 7.1Ω (5.10)

106

Figure 5.20: By placing a RC snubber across the SR switch, very little ringing
is left on the switch-node waveform when the high-side switch (top curve)
closes.

The resistor value was rounded up to the nearest standard value and the
effect of the implemented snubber can be seen in Figure 5.20, where very
little ringing is left on the waveform.

107

108

Chapter 6

Test Results

All of the tests related to system performance were done on the second pro-
totype PCB.

6.1 Dark Current-Voltage Measurements on

UTJ Solar Cell

This test was done to measure the dark current of the solar cells, which is
the second term of the output current from Equation 2.3, repeated here for
convenience:

I = Isc − I0

[
exp

(
qVD

nkBT

)
− 1

]
− VD

RSH

The procedure used here involved covering the solar cells to eliminate light-
generated current and then using a power supply to force electrical current
through the cell from the positive contact to the negative. The current and
voltage was measured as the power supply voltage was increased from zero
to a predetermined limit. The limit was set to a maximum current of 20mA,
to avoid damaging the cells. The voltage across the cell was measured along
with the drop over the resistor.

109

R

I = 0

Two series UTJ cells
Vbias

Figure 6.1: Test setup of the two series connected cells in complete darkness.
A lab supply was varied and the voltage across the diode was measured. The
voltage across the resistor (R = 100 Ω) was used to calculate the current.

The resulting direction for current flow is opposite to that of the photo-
generated current (i.e. we’re in the fourth quadrant of the IV plot), but
the electrical configuration still means that the cell’s p-n junction is forward
biased as during normal operation. The test was repeated three times in
different temperatures: 23 ◦C, 3 ◦C and -20 ◦C. Two series connected cells
were used.

0 1 2 3 4 5 6
−20

−15

−10

−5

0

Forward Bias Voltage (V)

C
ur

re
nt

 (
m

A
)

Experimental: −20°C
Non−linear regression fit

y(x) = a exp(x / b)
a = −4.41e−007
b = 0.29091
R = 0.99354 (lin)

Figure 6.2: Dark current measurement in -20◦C.

110

0 1 2 3 4 5 6
−20

−15

−10

−5

0

Forward Bias Voltage (V)

C
ur

re
nt

 (
m

A
)

Experimental: 3°C
Non−linear regression fit

y(x) = a exp(x / b)
a = −1.4328e−006
b = 0.29137
R = 0.99909 (lin)

Figure 6.3: Dark current measurement in 3◦C.

0 1 2 3 4 5 6
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Forward Bias Voltage (V)

C
ur

re
nt

 (
m

A
)

Experimental: 23°C
Non−linear regression fit

y(x) = a exp(x / b)
a = −4.3707e−006
b = 0.29365
R = 0.99803 (lin)

Figure 6.4: Dark current measurement in 23◦C.

111

Regression Analysis

The plot in Figure 6.5 was made by plotting the non-linear fits returned from
the Matlab extension package Ezfit.

0 1 2 3 4 5 6
−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50

Forward Bias Voltage (V)

C
ur

re
nt

 (
m

A
)

Extrapolated non−linear fits

−20 °C

3 °C

23 °C

Figure 6.5: Extrapolation of the non-linear regression fits.

Finally, in Figure 6.6 a comparison was made between the extrapolated values
from the dark current measurements and the total output characteristics of
two series connected cells. The latter values were taken from the datasheet
which states temperature coefficient of -5.9 mV/◦C.

112

−40 −20 0 20 40 60 80 100 120
4

4.5

5

5.5

6

6.5
Two Series UTJ Cells−−−Open−circuit Voltage vs Temperature

Temperature (celcius)

O
pe

n−
ci

rc
ui

t V
ol

ta
ge

 (
V

)

Datasheet temperature coefficent: −5.9 mV/°C per cell
Extrapolated results from Dark Current experiment

Linear fit: − 7.0 mV/°C per cell

Figure 6.6: Comparison of the predicted datasheet temperature coefficient
for Voc and the results from the dark-current extrapolation with the Ezfit
Matlab add-on package.

113

6.2 UTJ Solar Cell Angular Response

This test was done to determine the angular response of two series connected
solar cells (see Section 2.5). The cells were mounted on a flat plastic assemble.
The location was the roof of the Chemistry building at UiO , 17th December
2009 at noon. Temperature was -7◦C.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Angle (degrees)

N
or

m
al

iz
ed

 C
ur

re
nt

Measured values
Cosine Function

Figure 6.7: Angular response of two series connect UTJ solar cells.

Contrary to the theoretical prediction (i.e. the Kelly cosine) the experiment
showed a slight positive deviation from the cosine function. However, the
experiment was plagued by reflections from various directions, which has not
been controlled for.

114

6.3 Open Loop Dutycycle Stepping

In this test the solar simulator circuit was setup with an open-circuit voltage
of around 5.3V, and a short-circuit current of 0.67A, as shown in Figure 6.8.

The feedback loop on the prototype PCB was opened (in software) and the
dutycycle was manually stepped with switch buttons on the PCB, resulting
in the output in Figure 6.9. The dutycycle in the plots are 8-bit register
values that can be converted to percent of full dutycycle by multiplying by
255 and dividing by 100.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Voltage, V

C
ur

re
nt

, I

Figure 6.8: Solar simulator IV curve on which the MPPT testing was done.

It can be seen that, for this combination of open-circuit voltage and short-
circuit current, there exists an optimal ratio of input and output voltage
(i.e., the dutycycle) that results in the maximum output power from the
solar panel.

115

170 180 190 200 210 220 230 240 250
0

0.1

0.2

0.3

0.4

0.5

0.6

C
ha

rg
e

C
ur

re
nt

, A

170 180 190 200 210 220 230 240 250 260
4

4.5

5

5.5

S
ol

ar
 c

el
l v

ol
ta

ge
, V

170 180 190 200 210 220 230 240 250 260
0

0.5

1

1.5

2

2.5

3

P
ow

er
, W

Dutycycle

Figure 6.9: The effect of dutycycle on current, voltage and power when the
solar simulator was set up with the I-V curve in Figure 6.8.

116

6.4 P&O Characteristic Oscillation

This test was done to illustrate the oscillating characteristic of the Perturb
and Observe MPPT algorithm. By holding down a press button on the
prototype board, the dutycycle was held at a low value. When the button
was released the system resumed normal operation and seeked out the MPP
as shown in Figure 6.10. Per definition the algorithm will oscillate around
the MPP.

0 20 40 60 80 100 120 140 160 180
170

175

180

185

190

195

200

205

210

215

220

225

Time (s)

D
ut

yc
yc

le

Figure 6.10: The control algorithm seeks out the maximum power point and
the characteristically oscillates around the MPP.

6.5 P&O Response Time

In this test the open-circuit voltage of the Solar Simulator circuit was varied
during the charging of a battery. This was done to simulate varying orbital
temperature and to evaluate the algorithm’s ability to track different power

117

levels. The ”temperature” was varied by adjusting trimpot B on the solar
simulator circuit. The solar simulator circuit output voltage and inductor
current was sampled and the product used as the y-axis value.

As can be seen in Figure 6.11, the response of the MPPT to abrupt changes
in Vmp results in undershooting. However, sudden changes (i.e. the time it
takes to turn a trimpot a couple of turns) in temperature are not expected
in orbit, except for perhaps the exit from eclipse where the system is thrown
back into action.

20 26 32 39
0

1

2

3

4

Time (min)

S
ol

ar
 P

an
el

 O
ut

pu
t P

ow
er

 (
W

) Simulated temperature
change

Simulated temperature
change

Figure 6.11: System/MPPT response to variations in open-circuit voltage
and hence Vmp.

6.6 MPPT to PID State Transition

A single LiFePO4 cell that had been discharged to 2.9V with a 6 Ω resistor in
room temperature was used in this test. It was charged as shown in Figure
6.12, where the MPPT state takes care of the Constant Current phase while
the PID state takes care of the Constant Voltage phase.

The storage cell was then immediately discharged again with the 6 Ω resistor

118

to 3.24V this time. The PID float voltage was set to 3.6V and recharg-
ing resumed. The full charge-discharge-charge cycle with two different float
voltages (set in software) can be seen in Figure 6.13

In the first charging the float voltage was set to 3.47V and in the second
charging the float voltage was set to 3.62V. A note on the battery voltage
curve: the sampling time of one sample per 5 seconds does not catch the
spikes that can be seen on a scope. The spikes (not shown) have a duration
of about 10ns and an amplitude of around 400mV and occur on every rising
SW node flank, i.e., the noise frequency is—not surprisingly— equal to the
switching frequency. It’s unclear yet whether or not these spikes present a
problem, and no attempt has been made to remove them. However it is
possible that part of this effect could be traced back to a poorly damped
snubber network on the prototype during this test. Another source of uncer-
tainty here is the ground strap of the scope probe; earlier tests with different
ground strap lengths showed doubling and even tripled effect of overshoot
ringing due to the added ground strap inductance.

0 13.6 27.2 40.7 54.3 67.9 81.4 95
2.9

3.1

3.3

3.5

B
at

te
ry

 V
ol

ta
ge

 (
V

)

Time (minutes)
0 13.6 27.2 40.7 54.3 67.9 81.4 95

0

300

600

900

C
ha

rg
e

C
ur

re
nt

 (
m

A
)

MPPT State

PID State

DISC
State

Battery Voltage

Charge Current

Figure 6.12: A closer look at the first charge of the charge-discharge-charge
cycling performed. The system is in MPPT mode during the CC phase and
switches to PID mode to achieve CV.

119

The complete charge-discharge-charge cycle can be seen in Figure 6.13.

Figure 6.13: The first charge cycle was done with a float voltage (adjustable
in software) of 3.47V and the second charge cycle with 3.62V.

6.7 Operation Mode Transitions

To see how the system reacted to a partial charge/discharge while sourc-
ing current for a dummy load potentiometer, the setup in Figure 6.14 was
used. One of the terminals of the pot meter was secured while the other was
manually put in contact with the regulator output.

120

RegulatorSolar Simulator
Circuit Variable

dummy
load

Battery

Circuit breaker

Figure 6.14: Test setup to test the large signal response.

Figure 6.15: MPPT mode. The battery voltage when a secondary load draws
current while the battery is charging. The three periods of dummy load draw
were done with increasing load; the first two are examples of MPPT charge
mode, and the third is MPPT discharge mode where the dummy load draws
more current than the solar array can supply.

121

Figure 6.16: PID mode. Similar dummy draws as in MPPT mode were done.
The two first that were within the solar array capability did not affect the
3.6V regulated battery voltage. The third attempt with a draw larger than
what the panels could handle, resulted in the battery discharging.

122

6.8 Over-discharge Abuse Tolerance

In this test the battery was discharged to 0.9V—well below the recommended
discharge cutoff at 2.0V. There was no sign of the battery struggling, other
than the quickly falling terminal voltage. Once the discharge was stopped the
battery was left with floating terminals. The next charge cycle was performed

Figure 6.17: Over-discharging the LiFePO4 cell to 0.9V. When the load is
removed, the battery voltage approaches 2.7V.

with the same charge current as the other tests—i.e., no pre-qualification
with low current charging was performed. No noticeable effect on the next
charge curve could be seen, and the battery acted as normal. Moreover, the
next discharge curve was nearly identical to the ”standard” discharge curve.
Thus, from this test, the LiFePO4 cell from A123 Systems seems to be able
to withstand a single over-discharge event without any detrimental effect on
capacity or discharge voltage levels. However, any long term effects of such
abuse are unknown.

123

6.9 LiFePO4 Discharge in -17◦C

In this test a single LiFePO4 cell was charged to 3.6V in room temperature
and then discharged through a 10 Ω resistor in a kitchen freezer holding a
temperature of -17◦C.

Figure 6.18: Setup for the -17 degree LiFePO4 discharge test.

The cell was then recharged again in room temperature to test if any per-
manent damage was done. The room temperature discharge curves before
and after the cold case were nearly identical and are therefor represented by
a single curve. Both the shape and level of the ”cold” discharge curve was
affected.

124

0 17 33 50 67 83 100 117 133 150
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Time (min)

V
ol

ta
ge

 (
V

)

LiFePO
4
 discharged in −17°C

LiFePO
4
 discharged in room temperature

Figure 6.19: LiFePO4 discharge characteristic in cold temperature versus
room temperature.

6.10 LiFePO4 vs Lithium Ion Polymer (LiPo)

In Figure 6.20 the LiFePO4 discharge curve can be contrasted against a
conventional 3.7V lithium ion polymer cell1. Both were discharged through
a 10 Ω resistor. The LiPo cell was charged with a dedicated Li-ion charger IC
chip, while the LiFePO4 cell was charged manually, with a simple lab supply.
Any effect this might have on the ”flatness” of the curves should favor the
LiPo cell.

1The battery is a 1100 mAh VARTA Easypack, which was tested in the early stages of
development.

125

0 17 33 50 67 83 100 117 133 150

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Time (min)

V
ol

ta
ge

 (
V

)

1100 mAh Lithium Polymer (Varta EasyPack)

1100 mAh Lithium Iron Phosphate (A123 Systems)

Figure 6.20: Comparison of the ”flatness” of the discharge curves of a Lithium
Ion Polymer cell and a LiFePO4 cell.

126

Chapter 7

Conclusions

This thesis has described an electrical power system prototype that is de-
signed to supply a free-trumbling CubeSTAR satellite with a continuous
orbital average power of around 2W, based on an assumed EPS efficiency of
around 80%. A single regulator has been shown to be sufficient to track the
maximum power point of the solar panels and charge the battery.

By implementing the control loop in software, the control system can evolve
with the CubeSTAR project as the need for new functionality arises. For
example, to speed up the digital control processing, a current-only measuring
scheme may be used for the maximum power point tracker[24].

The tests show that by using the proposed 4.4 Ah battery pack and a shal-
low depth of discharge, an unregulated 3.0V system should be within reach.
However, the test also show that the LiFePO4 cells react poorly to cold tem-
perature, and a reliable battery heater should be considered. The NASA
report found in [17] states an optimum temperature between 20 and 40◦C for
most lithium ion batteries, and this is probably a good guideline for lithium
iron phosphate cells too.

The flat discharge curve of the LiFePO4 cells are promising, as is their ap-
parent abuse tolerance. But with no flight-history (as far as I know) and
without the proven record in space that for example Lithium ion polymer
has, the question remains: can these batteries fly? Vacuum testing should
be a minimum requirement before launching Lithium Iron Phosphate into

127

space.

The system fits comfortably within the specified module PCB area. Apart
from decoupling and a serial driver for debugging, only the top side was used.
A consequence of trying to save precious PCB real-estate on this prototype,
each side’s protection diode must be placed external from this prototype
together with the joint that connects two opposite faced solar panels.

128

Bibliography

[1] Atmel application note aVR221: Discrete pid controller.

[2] Maxim application note 3645: Correct board layout lowers EMI of
switchmode converters.

[3] Spectrolab 28.3% Ultra Triple Junction (UTJ) Solar Cells (datasheet).

[4] Steven F Barret. Embedded Systems Design with the Atmel AVR Micro-
controller. Morgan & Claypool, New Jersey, 2010.

[5] Christophe Basso. Switch-Mode Power Supplies: SPICE Simulations
and Practical Designs. McGraw-Hill Professional, New York, 2008.

[6] Todd C. Philip. Snubber Circuits: Theory, Design, and Applications.
Technical report, 1994.

[7] Luis Castaner and Santiago Silvestre. Modelling Photovoltaic Systems
using PSpice. John Wiley & Sons, Ltd., Chichester, 2002.

[8] Charles D. Brown. Elements of Spacecraft Design. American Institute
of Aeronautics and Astronautics, Inc, Reston, VA, 2002.

[9] Photochemical Dynamics Group. The Basic Physics and Design of
III-V Multijunction Solar Cells. Technical report, Ecole Polytech-
nique Federale de Lausanne, http://photochemistry.epfl.ch/EDEY/III-
V physics.pdf.

[10] Bo H. Cho, Jae R. Lee, and Fred C. Y. Lee. Large-Signal Stability
Analysis of Spacecraft Power Processing Systems. IEEE Transactions
on Power Electronics, 5, No. 1:110–116, 1990.

[11] Chihchiang Hua and Jongrong Lin. A Modified Tracking Algorithm for
Maximum Power Point Tracking of Solar Array. Energy Conversion and
Managment, 45:911–925, 2003.

129

[12] Abraham I. Pressman, Keith Billings, and Taylor Morey. Switching
Power Supply Design, Third Edition. McGraw Hill, New York, 2009.

[13] Edward J. Simburger, Daniel Rumsey, David Hinkley, Simon Liu, and
Peter Carian. Distributed Power System for Microsatellites.

[14] Zhenhua Jiang and Roger A. Dougal. Multiobjective MPPT/Carging
Controller for Standalone PV Power Systems under Different Insola-
tion and Load Conditions. Industry Applications Conference, 39th IAS
Annual Meeting, 2:1154–1160, 2004.

[15] Vincent L. Pisacane. Fundamentals of Space Systems, Second Edition.
Oxford University Press, New York, 2005.

[16] Brian Lynch and Kurt Hesse. Under the Hood of Low-Voltage DC/DC
Converters. Technical report, 2003.

[17] Barbara McKissock, Patricia Loyselle, and Elisa Vogel. Guidelines on
Lithium-ion Battery Use in Space Applications. Technical report, Glenn
Research Center, Cleveland Ohio, 2009.

[18] D. O’Sullivan. Space Power Electronics – Design Drivers. ESA Journal,
18:1–23, 1994.

[19] Mukund R. Patel. Spacecraft Power Systems. CRC Press, Boca Raton,
2005.

[20] Paul R. Sharps. Growth and Development of GaInAs for Use in High-
efficiency Solar Cells. Research Triangle Institute, Annual Subcontravt
Report, page 10, 1992.

[21] Charles R. Sullivan and Matthew J. Powers. A High-Efficiency Maxi-
mum Power Point Tracker for Photovoltaic Arrays in a Solar-Powered
Race Vehicle. Power Electronics Specialists Conference, 24th Annual
IEEE, 24:574–580, 1993.

[22] Nannapaneni Narayana Rao. Elements of Engineering Electromagnetics,
Sixth Edition. Pearson Prentice Hall, New York, 2004.

[23] V. Salas, E. Olias, A. Barrado, and A. Lazaro. Review of the Maximum
Power Point Tracking Algorithms for Stand-alone Photovoltaic Systems.
Solar Energy Materials & Solar Cells, 90, 2006.

130

[24] V. Salas, E. Olias, A. Lazaro, and A. Barrado. New Algorithm using
only One Variable Measurement Applied to a Maximum Power Point
Tracker. Solar Energy Materials & Solar Cells, 87:675–684, 2004.

[25] Henry W. Ott. Electromagnetic Compability Engineering. John Wiley
& Sons, Inc, New Jersey, 2009.

131

132

Appendix A

Solar Panel Simulation Circuit

A.1 Motivation

The reliance on sunshine—a commodity lacking in most labs—becomes a
challenge when working with a system that uses solar cells as its power source.
This is especially true for work on the part of the regulation system that deals
with the maximum power point tracking on the solar cells. The non-linear
output characteristics of a solar cell means it is inherently an unstable (both
in current and voltage) power source—a behavior that can not be replicated
with the typical lab power supply.

While xenon-lamp based solar simulators are available, their cost, size and
heat make them impractical for the purposes described above. To overcome
these issues, a power supply was built that simulates the behavior of a single
side’s panel (i.e., two parallel strings of two cells in series).

A.2 Simulation Goals

As discussed in Chapter 2, the CubeSTAR satellite will be mounted with
Spectrolab’s 28.3% Ultra Triple Junction solar cells. The cell properties that
are relevant for this section are summarized in Table A.1, and the resulting

133

I-V curve1 for a single cell is shown in Figure A.1. Due to the negligible
difference between the characteristic I-V curve of the circuit’s chosen silicon
diode (IN4148) and that of the Ge-GaAs-InP based solar cell, the only re-
maining parameters of interest are the short-circuit current and open-circuit
voltage (i.e., we know the shape but need curve’s end points).

Table A.1: Spectrolab UTJ Characteristics

Current density (Jsc) 17.05mA/cm2

Open-circuit voltage (Voc) 2.665V
Cell area2 (A) 26.62 cm2

By assuming a high-quality solar cell (i.e., low series resistance Rs, and
high shunt resistance Rsh), the short-circuit current is equal to the photo-
generated current IL. Thus, for a single cell

Isc ≈ IL = Area× Jsc = 453mA (A.1)

and with an open-circuit voltage of 2.665V coupled with the fact that the
curve is of exponential nature, we have the information needed to replicate
the behavior in the simulator circuit.

1The plot is from Spectrolab’s datasheet, to be found here:
http://www.spectrolab.com/solarcells.htm

134

Figure A.1: I-V characteristics for a single 28.3% Ultra Triple Junction (UTJ)
solar cell.

A.3 SPICE Circuit Implementation

The solar cell simulation circuit consists of a constant-current generator that
acts as a reference to a pair of op-amps that, in turn, boosts the generator
current while maintaining the desired I-V curve.

In the SPICE circuit diagram shown in Figure A.3, U1 operates as a ref-
erence generator whose current passes through the diode D1, before being
sensed over the low-side shunt Rsh1. The diode D2 and op-amp U2 perform
temperature correction, while the op-amp U3 and bipolar transistor Q1 make
up the last output amplifier stage.

The solar cell’s irradiance-dependent short-circuit current, IL, is simulated
by adjusting the Rb resistor in Figure A.3. To simulate the open-circuit
voltage of the solar cell, which in reality is a function of temperature and the
number of series cells, the Ra resistor can be adjusted in order to move the
open-circuit voltage point.

It’s assumed that all four solar cells that make up the four panels on each
face are exposed to the same insolation and temperature. The series-parallel

135

panel configuration means that the short-circuit current and open-circuit
voltage from Table A.1 both can be multiplied by two. By choosing a 50Ω
trimpot for Rb and a 2kΩ trimpot in series with a 3.3kΩ resistor for Ra, the
circuit can be used to simulate the entire range of expected insolation and
the temperature-dependent voltage range from about 4V to 6V.

In the SPICE plot in Figure A.2, Rb = 36Ω and Ra = 4.3kΩ were arbitrarily
chosen with the resulting I-V and P-V curves shown.

0 1 2 3 4 5 6
0

0.5

1

C
ur

re
nt

 (
A

)

Voltage (V)
0 1 2 3 4 5 6

0

2

4

P
ow

er
 (

W
)

Figure A.2: Simulated current-voltage and power-voltage behavior of the
SPICE circuit in in Figure A.3. The short-circuit and open-voltage values
can be adjusted within a suitable range to take into account varying insolation
and temperature.

136

R
1

10
0

R
b

{R
B

}

R
sh

_1
1

R
sh

_2 0.
1

R
5

10
0

R
6

22
0k

V
1

5

V
2

-5

V
3

9
D

1
1N

41
48

D
2

1N
41

48

R
7

22
0k

22
0k

R
8

R
9

3.
9k

R
10

22
0k

R
11

82
0k

R
12

22
0k

R
13 1k

Q
1

FZ
T8

49

R
a

3.
3k

C
1

0.
1µ

F

I_
Lo

ad
0.

5

R
2 1

U
1

U
A

74
1

U
2

U
A

74
1

U
3

U
A

74
1

R
3 1

5V -5
V

5V

-5
V

9V

9V

-5
V

9V

5V

9V -5
V

O
U

T_
ne

g

O
U

T_
po

s

9V

REF_out OUT_neg

R
E

F_
ou

t

O
U

T_
po

s

O
U

T_
ne

g

9V

.d
c

I_
Lo

ad
 0

 2
00

0m
A

 1
m

A
.s

te
p

pa
ra

m
 R

B
 0

.0
1

50
 5

C
on

st
an

t C
ur

re
nt

/R
ef

er
en

ce
 G

en
er

at
or

O
ut

pu
t A

m
pl

ifi
er

Te
m

pe
ra

tu
re

 C
or

re
ct

io
n

P
ow

er
 S

up
pl

y

D
um

m
y

Lo
ad

.s
te

p
pa

ra
m

 R
A

 1
k

2k
 2

00

 -
--

 D
:_

W
or

k_
di

r\
LT

S
pi

ce
_w

rk
\S

ol
ar

_c
el

l_
si

m
ul

at
io

n_
ci

rc
ui

t_
v3

.1
.a

sc
 -

--

F
ig

u
re

A
.3

:
C

ir
cu

it
d
ia

gr
am

of
th

e
so

la
r

ce
ll

si
m

u
la

ti
on

m
o
d
el

.

137

A.4 PCB Realization

The SPICE circuit in Figure A.3 was realized on a two-layer PCB, illustrated
in Figure A.4 and Figure A.5. Some minor rework (not shown) was needed
before the circuit worked as intended, and a heatsink was also added to
prevent the transistor from overheating.

1

CN3

R9

D1

R5

R10

R3

X3

X4

C3

R7

C2

C4

C1

R1

P1

R11

CN1

R6

R8
D2 C

7

C8
R4

C5

R14

C6

X1

X2

R12

X5

P4R13

Q1

R2

TP2

TP1

TP4

TP7

TP6

TP5

TP3

BotSilkBotElecTopSilkTopElec

ELAB-2010
SOLAR CELL SIMULATOR V3.3

Martin Oredsson
 07/07/2010

Figure A.4: Two layer circuit layout. Note: the ground connection for the
shunt resistor R12 should be re-routed with a shorter track.

138

Figure A.5: The finished mounted PCB with a 8-pin male output connector
from ERNI.

A.5 Results

A 50Ω potentiometer was used as a varying load to generate the I-V curves
in Figure A.6. These curves correspond well to the SPICE simulation and
the I-V curve from the UTJ datasheet, enabling us to use this circuit as the
power source while working with the EPS system.

Table A.2: Solar cell simulation circuit parameters

Short-circuit current (Isc) 0.15− 0.86A
Open-circuit voltage (Voc) 4− 6V

139

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Voltage (V)

C
ur

re
nt

 (
A

)

Voc = 4.2V
Voc = 6.0V
Voc = 5.5V

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Voltage (V)

C
ur

re
nt

 (
A

)

Isc = 0.86A
Isc = 0.5A
Isc = 0.2A

Figure A.6: The open-circuit voltage (top) can be adjusted from 4V to 6V
to take into account the expected temperature range experienced by the real
solar cells. The short-circuit current (bottom) can be adjusted from 0.15A
to 0.86A to take into account the expected insolation range experienced by
the real solar cells. Note: These curves do not really flatter the circuit. With
more measurement points the output truly is exponential. See e.g. Figure
6.8.

140

Appendix B

Triple Junction Solar Cell
SPICE Model

B.1 Creating a Subcircuit in SPICE

To achieve a modular simulation design we can create subcircuits within the
SPICE environment. One of the benefits of using subcircuits is that we can
encapsulate the complete model1 of our solar cell within a single re-usable
block of code which then can be associated with an appropriate circuit symbol
that can be included as any other component in a spice circuit diagram.

The first two lines of the program defines a subcircuit named utj using the
.subckt keyword, with nodes 100, 101, and 102:

.subckt utj 100 101 102

+params:area=1,j0a=1,j0b=1,j0c=1,jsc=1,rs=1,rsh=1

The listed parameters are cell area, diode saturation currents j0x for each
junction semiconductor material, short-circuit current density jsc, series re-

1This approach also leaves the door open to later include input parameters such as sun
irradiance, temperature variations and load effects.

141

sistance rs, and shunt resistance rsh. All are loaded with dummy values at
this stage which are replaced by real values once the circuit is excited.

Next, the cell’s real property as a irradiance-dependent current source is
modeled with a voltage-dependent current source, or a G-device in SPICE
terms. The G-device’s input voltage at node 102 (in volts) will be used to
represent the irradiance in W/m2, and is described as follows:

Gxxx n+ n- value={expression}

where the current towards n+ is determined by the expression between the
curly brackets. The expression that will be used to represent the short circuit
current is

Isc =
JscA

1000
G (B.1)

so, by naming it Girrad, line 3 becomes

Girrad 100 101 value={(jsc*area/1000)*v(102)/1366}

In the next six lines, the three pn-junctions of the solar cell are represented by
diode definitions and their models. The general form of the diode definition
in SPICE is

d[name] [anode] [cathode] [modelname]

.model ([modelname] d [parmtr1=x] [parmtr2=y] . . .)

but we only need the saturation current here, and if we take the Germanium
junction as an example, the code becomes

142

DGe 103 104 Ge

.model Ge D(IS={j0a*area})

where the diode’s reverse bias saturation current is set to be proportional
to the cell area as it should. Finally, the shunt- and series resistances are
specified as rsh and rs, before the subcircuit ends statement it called.

The complete code for the subcircuit is

1 . subckt u t j 100 103 102 params : area=1, j s c =1, r s =1,
rsh=1

2 + j0a =1, j0b=1, j 0 c=1
3 g i r r ad 100 101 value={(j s c ∗ area /1000)∗v (102) /1366}
4 d1 101 104 gainp
5 . model gainp d(i s={ j 0a ∗ area })
6 d2 104 105 gaas
7 . model gaas d(i s={j0b ∗ area })
8 d3 105 100 ge
9 . model ge d(i s={ j 0 c ∗ area })

10 rsh 101 100 { rsh }
11 r s 101 103 { r s }
12 . ends u t j

Listing B.1: Using a SPICE sub-circuit to model a triple-junction solar cell.

In the next section, we’ll throw the subcircuit into an excitation circuit and
create some plots.

B.2 Excitation Circuit

The subcircuit in Figure B.1 is excited with two voltage sources; Vbias and
Virrad, where the latter represents the irradiance.

The characteristic I-V curve is then easily obtained by sweeping the bias
source over the operating range of the cell while Virrad source is set to
1366 W/m2. Comparing the curve against Spectrolab’s own datasheet plot
in Figure A.1, the saturation current within the subcircuit can be adjusted
until a satisfactory match is obtained.

143

Figure B.1: SPICE circuit used to generate the plots in this section.

By parameterizing the value of our irradiance source with the following lines

Virrad param 32 0 dc {ir}

.step param ir list 0 500 1000 1366

we can plot four I-V curves for four different values of insolation to illustrate
the current-irradiance relationship.

Although there are other factors that come into play regarding the temper-
ature dependence of the solar cell, one of the dominant factors, and one
which we have at arms length in our model, is the saturation current I0. By
parameterizing it with

.step param I0 list 9.5e-25 9.5e-20 9.5e-15 9.5e-10

and combining the result with the fact that Spectolab’s UTJ cells have a
negative temperature coefficient of -5.9 mV/◦C, the information can be pre-
sented graphically as in Figure 2.8.

The complete code for the excitation circuit is:

144

1 . i n c lude UTJ subckt . l i b
2 X1 0 31 32 u t j params : area =26.62 r s={RS} rsh=300
3 + j s c =17.05 j0a =9.5e−20 j0b=1e−16 j 0 c=1e−14
4 Vbias 31 0 dc 0
5 Virrad 32 0 dc 1366
6 RS = 50e−3
7 ∗ . param RS=0.001
8 ∗ . s t ep param RS l i s t 0 .0001 0 .001 0 .01 0 .1 1
9 . p l o t dc i (vb ias)

10 . dc vb ias 0 3 0 .01
11 . probe
12 . end

Listing B.2: Exciting the sub-circuit.

145

146

Appendix C

Discrete PID Controller

A PID controller[1] is used to stabilize the voltage during the constant voltage
charging phase1. By measuring the process value (battery voltage) and com-
paring this value to the reference (the preset battery float voltage), the error
can be calculated and used to determine the new process input. This input
will then try to adjust the measured process back to the desired setpoint.

Furthermore, the PID controller is capable of manipulating the process input
based on the history and rate of change of the signal. This can be used to our
advantage in the attempt to tame the battery voltage once it approaches the
float voltage. The region between 3.5 and 3.6V is characterized by a large
voltage gradient and once the battery approaches 3.6V and is saturated with
charge, a continued attempt to put charge in the battery is answered with
a quick increase in voltage. By implementing a PID controller, the voltage
overshoot is prevented and a more accurate and stable control is achieved.

C.1 Proportional Term

The Proportional term returns a system control input that is proportional to
the current error value. Except in the cases of zero control input or a system
process value equal to the desired reference, using only a P term gives a

1Although it’s implemented as a full PID controller, the derivative gain is currently set
to a very low value, so it’s perhaps closer to a PI-controller. Se note about tuning.

147

stationary error. A high valued P term results in a large change in the output
for a given change in the error, and/but setting the it too large will result
in a unstable system. Setting it low results in a less responsive/sensitive
controller, which might be unable to react quickly enough to variations in
the input.

The proportional term output is given by

Pout = Kp · e(t) (C.1)

where Kp is the proportional (or gain) tuning parameter, e is the difference
(error) between the measured and desired values at the present time, t.

C.2 Integral Term

The Integral term adds the sum of the previous errors to the system control
input, and as such is proportional to both the magnitude and duration of the
error. By summing up the error over time and multiplying with the integral
gain Ki, the I-term returns the scaled accumulated offset that should have
been corrected previously.

The integral term output is given by

Iout = Ki

t∫

0

e(τ) dt (C.2)

where Ki is the integral tuning parameter, τ is dummy integration variable,
and e(t) the time dependent error as before.

By adding the I term to the P term, the stationary error from the P only
case, is removed. However, since the I term is also responding to accumulated
errors from the past, overshooting the setpoint is a typical side-effect. These
issues should be dealt with by tuning the loop with one of the plethora of
tuning methods available.

148

C.3 Derivative Term

The derivative term deals with the rate of change of the process error, and is
calculated by determining the slope of the error over time. This rate is then
multiplied by the derivative gain Kd:

Dout = Kd
de(t)

dt
(C.3)

The end effect of the D term is to slow down the rate of change of the
controller output, which might be used to counter the overshoot effect from
the I term.

C.4 Implementation

The three terms are then added together and returned as the controller out-
put u(t)

u(t) = Kp · e(t) + Ki

t∫

0

e(τ) dt + Kd
de(t)

dt
(C.4)

PID Buck
Regulator

y0 e u

-

y

Figure C.1: When the system is in the CV state the PID regulator controls
the buck converter dutycycle.

149

In the digital world, integrals become sums and derivatives become slopes,
so

de(t)

dt
→ e(tk)− e(tk−1)

∆t
(C.5)

tk∫

0

e(τ) dτ →
k∑

i=1

e(ti)∆t (C.6)

Kpe u

d/dt

Ti

Td

Figure C.2: PID regulator block diagram.

The discrete controller is thus described by

u(n) = Kp · e(n) + Ki ·
n∑

k=0

e(k) + Kd · [e(n)− e(n− 1)] (C.7)

where Ki = KpT

Ti
and Kd = KpTd

T

C.4.1 A Note on Loop Tuning

A plethora of methods exists in the literature, but with limited time to invest
in the interesting topic of PID tuning, the PID regulator was tuned by trial

150

and error until a satisfactory result was achieved. The P, I, and D terms are
in any case readily available and easy to change in the PID.h header file.

151

152

Appendix D

Two Wire Interface (TWI)

This appendix provides a quick breakdown of the TWI bus and the neces-
sary background information for the described telemetry implementation in
Section 4.7.

D.1 Electrical Characteristics

Atmel’s I2C compatible TWI bus operates at 100 kbp/s and consists of two
active lines; Serial Data (SDA) and Serial Clock (SCL). Both are bidirectional
open-collector lines that require pull-up resistors. Any device connected to
the TWI bus has a unique address and acts as either a master or slave, with
the former being the initiator of data a transaction.

D.2 Start and Stop Conditions

On a idle bus, both SDA and SCL are high. To initiate a transaction, a
device must first pull SDA low before pulling SCL low, as in Figure D.1.
This is called a START condition (S). By initiating a transaction with the
start condition, a device automatically becomes the master, and all other
connected devices are considered slaves until a STOP condition (P) is issued.

153

The stop condition, being the start condition’s dual, is initiated by first
releasing the SCL line, followed by the release of the SDA line.

Further, a master can prevent other masters from starting their own transac-
tions by sending a new start condition before stopping the current one. This
is known as a REPEATED START, and can be used by the master to address
another slave without first generating a stop condition.

SDA

SCL

S P

SDA

SCL

START

CONDITION

STOP

CONDITION

SU00362

Figure 6. START and STOP conditionsFigure D.1: Start and stop conditions.

D.3 Address

After the start condition, the next seven bits contain the ADDRESS (A) of the
slave followed by a R/W bit which specifies the direction of the transaction.
When a slave recognizes its address it will ACKnowledge by pulling SDA low
in the next clock cycle. Meanwhile, all other slaves should keep the TWI
lines released (hence the need for pull-ups), and wait for the next START–
ADDRESS–R/W sequence.

154

R/W

SLAVE ADDRESS

LSBMSB

Figure D.2: The first byte after the start condition.

START

CONDITION

S 1 2 7 8 9

DATA OUTPUT BY

TRANSMITTER

DATA OUTPUT

BY RECEIVER

SCL FROM MASTER

CLOCK PULSE FOR ACKNOWLEDGMENT

Figure D.3: Acknowledge on the TWI bus.

D.4 Data Transfer

In the bottom part of Figure D.4, the read/write bit is low, indicating a
master write transaction. The data transfer will proceed once the slave has
acknowledged its address, and the transaction will be on-going for a arbitrary
number of DATA packets as long as no stop condition is initiated.

The master read transaction, shown in the top part of Figure D.4, is initiated
by setting the read/write bit high. When the slave acknowledges the address,
the master can start receiving data from the slave. Again, there is no inher-
ent limitation to the number of data packets that can be transferred—the
transaction is terminated when the masters sends a NACK followed by a stop
condition.

A third transfer modus is possible by combining the write and read transac-
tions into a combined transaction. By sending a REPEATED START–ADDRESS–
R/W, the master can at any time change the direction of the data transfer
within a transaction.

155

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎS DATASLAVE ADDRESS R/W A

ÎÎÎÎA DATA

ÎÎÎÎP
(READ)

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

1 ÎÎÎÎA

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎS DATA A/ASLAVE ADDRESS R/W A A

ÎÎÎÎÎÎÎÎÎDATA

ÎÎÎÎÎÎP

‘0’ (WRITE)
DATA TRANSFERRED

(n BYTES + ACKNOWLEDGE)ÎÎÎÎFROM MASTER TO SLAVE

FROM SLAVE TO MASTER

A = ACKNOWLEDGE (SDA LOW)
A = NOT ACKNOWLEDGE (SDA HIGH)
S = START CONDITION
P = STOP CONDITION

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Figure D.4: Master read (top) and write (bottom) transaction.

D.5 Clock Stretching

Although the clock is always controlled by the master, any device on the bus
can hold the clock low at any time, thus providing a slave a way to hold back
a transaction in case it needs more time to process data. When this happens,
the master cannot continue clocking, and the slave is said to perform clock
stretching.

156

Appendix E

Production Files

The following sections contain the parts list, schematics and Gerber files that
were created with the computer assisted software suite Zuken Cadstar V12.1.

157

E.1 Parts List

158

partslist.rep-- Parts List CADSTAR Design Editor Version 12.1Design: C:_workdir\Cadstar_wrk\V1.5\V1.5d\EPS_Prototype_v1.5d.scmDesign Title:EPS CubeSTAR PrototypeDate: 16. september 2010Time: 12:11--Part Name/Number Description Qty. Comps.---------------- ----------- ---- ------X-XX-XXX-XX ATMEL AVR MICROCONTROLLER 2 U701 U1701X-XX-XXX-XX BURR BROWN CURRENT SHUNT MONIT 2 X501 X1501E-65-759-63 10% 16V 0603 X7R 49 C303 C403 C501-502 C601 C701-713 C801-802 C804-805 C901-905 C1303 C1403 C1501-1502 C1603 C1701-1713 C1802-1805E-65-758-49 10% 50V 0603 X7R 2 C803 C1801E-65-757-81 10% 50V 0603 X7R 2 C307 C1307RS-248-007 ERNI 1.27mm SRC SINGLE ROW MIN 2 CN201-202E-43-714-31 13X2 TYCO PINROW ANGELED 1 CN203E-43-704-33 5X2 SCOTT ELEC. PINROW 2 CN701 CN1701F1713895 SMD SCHOTTKY DIODE 20V/2A 2 D401 D1401F-9550780 SMD VERY LOW DROP SCHOTTKY DIO 2 D301 D1301F1635948 WURTH CHOKE, SMD, 100UH 2 L301 L1301E-58-830-04 KOA SMD-W COIL 2 L601 L1601F-1422325 MOSFET DRIVER, DUAL, 1.5A 2 X402 X1402F-XX-XXX-XX +/-5% 0402 LQG15H-series 2 L602 L1602F-1663786 MICROPOWER OPAMP 6 X801-803 X1801-1803F-1197392 CHARGE PUMP VOLTAGE DOUBLER 2 X401 X1401RS-661-6468 LDO, 3.0V 2 X601 X1601E-60-440-02 RESISTOR KOA 0603 1% 0.1W 8 R304 R803 R811-812Page 1
159

partslist.rep R1304 R1805 R1808 R1811F-1703806 CURRENT SENSE RESISTOR 1206 1% 2 R301 R1301E-60-452-64 RESISTOR KOA 0603 1% 0.1W 4 R801-802 R1807 R1809E-60-450-25 RESISTOR KOA 0603 1% 0.1W 6 R601 R703 R804 R1601 R1703 R1803E-60-445-80 RESISTOR KOA 0603 1% 0.1W 2 R602 R1602E-60-448-46 RESISTOR KOA 0603 1% 0.1W 4 R701-702 R1701-1702E-60-451-08 RESISTOR KOA 0603 1% 0.1W 2 R807 R1812E-60-451-24 RESISTOR KOA 0603 1% 0.1W 2 R806 R1804E-60-451-40 RESISTOR KOA 0603 1% 0.1W 2 R809 R1806E-60-451-57 RESISTOR KOA 0603 1% 0.1W 2 R808 R1801E-60-454-05 RESISTOR KOA 0603 1% 0.1W 2 R501 R1501E-60-451-73 RESISTOR KOA 0603 1% 0.1W 2 R805 R1810E-60-438-71 RESISTOR KOA 0603 1% 0.1W 4 R302-303 R1302-1303E-60-452-56 RESISTOR KOA 0603 1% 0.1W 2 R810 R1802F-1053844 VOLT REF, 2.048V, 0.5%. uPOW 2 D601 D1601E-73-217-48 DUAL RS-232 TX/RX 3.0V - 5.5V 1 IC901E-35-790-18 ALPS-SMD PUSH BUTTON 2 SW701 SW1701F-1658504 SOLID TANTAL CAP 4 C401-402 C1401-1402F-1754123 TANTAL ELECTROLYTIC CAP 10 C302 C305-306 C603-604 C1302 C1305-1306 C1602 C1604F-1754003 SOLID TANTAL CAP 4 C301 C304 C1301 C1304E-67-732-46 TANTAL ELECTROLYTIC CAP 4 C404 C602 C1404 C1601E-67-736-34 TANTAL ELECTROLYTIC CAP 2 C605 C1605F1471047 P-CHANNEL MOSFET 12V/2.6A 0.5W 2 M601 M1601F-9102639 N-CHANNEL MOSFET 20V 4 Q301-302 Q1301-1302-- End of report--Page 1
160

E.2 Schematics

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

E.3 Gerber Files

The result of post-processing is a collection of files in the Gerber file format.
The Gerber files listed below completely defines the PCB, and is used by the
board house’s manufacturing machines. Each layer has its own Gerber file,
which is briefly described below.

177

Layer 1: TopSilk Layer

This layer contains all visible text on the top side of the finished PCB, in-
cluding text for component names, connectors and testpoints.

Figure E.1: TopSilk layer includes component names, outlines and other
visible text.

178

Layer 2: TopStop Layer

This layer defines the solder resist mask, giving the finished PCB its charac-
teristic green color. The solder mask greatly simplifies the soldering process
because it treats solder paste during reflow much in the same way that oil
treats water. Thus by having a solder resist between pads, the risk for solder
”bridges” (a short circuit) between component pins is greatly reduced. The
pads on this layer are oversized by 8 mils to provide a buffer zone around the
pad.

Figure E.2: TopStop layer defines the solder resist masks.

179

Layer 3: TopPaste Layer

This layer defines the mask for the soldering stencil, if such a stencil is used.
The stencil is a aluminium sheet with openings where the pads are. Once
in place the solder may be applied and once the stencil is removed, only the
pads are left covered with solder. The pads on this layer should be undersized
by 10% to avoid smearing.

Figure E.3: TopPaste layer defines the openings in the soldering paste stencil.

180

Layer 4: TopElec Layer

This is the top copper layer, and it carries most of the signal traces on the
board. Among these are the high-current input from the solar cells, the
switch node, and the mosfet drive signals which are all routed uninterrupted
on this layer.

Figure E.4: TopElec layer is the first copper layer and defines the copper
tracks and pads on the layer.

181

Layer 5: Ground Layer

The second, and arguably the most important, copper layer—mistakes made
here are punished hard by mother nature. The ground plane is separated
into areas for analog and digital to avoid the issues discussed in Section 5.3

Figure E.5: Ground layer is the second copper layer. It is segregated into
analog, digital and battery parts.

182

Layer 6: Power Layer

The third copper layer is the power plane, which is split into solar array
power, digital power and battery power areas. The latter is the battery
”bus” from which the remaining satellite subsystems are powered.

Figure E.6: Power layer is the third copper layer. It is split into power
”islands” for two opposite solar array side, digital, and battery.

183

Layer 7: BotElec Layer

The fourth and last copper layer is the bottom signal layer. It is mainly used
for decoupling and routing digital traces. It also holds the RS-232 driver
used for debugging.

Figure E.7: BotElec layer is the fourth and last copper layer and defines the
copper tracks and pads on the layer.

184

Layer 8: BotStop Layer

This is the solder resist mask for the bottom layer, see TopStop.

Figure E.8: BotStop layer defines the solder resist mask for the bottom layer.

185

Layer 9: Drill File

The NC (numeric control) drill file was created with Exellon’s control codes,
and defines the drill holes on the board. The dimensions of vias, testpoints,
and any other through holes are defined here.

Figure E.9: Drill layer is not really a layer, but in any case, it defines the
drill holes for all the plated vias and testpoints used.

186

Appendix F

C Code for ATXmega128A1

Listing F.1: main.c

1 #include <avr/io.h>
2 #include <util/delay.h>
3 #include <stdio.h>
4 #include <stdbool.h>
5 #include <stdint.h>
6 #include "avr_compiler.h"
7 #include "adc.h"
8 #include "battery.h"
9 #include "clock.h"

10 #include "fsm.h"
11 #include "lifespecs.h"
12 #include "mppt.h"
13 #include "pid.h"
14 #include "pwm.h"
15 #include "serial.h"
16 #include "twi_slave.h"
17 #include "main.h"
18
19
20 // **

21 // Variable definitions.

22 // **

23 #define NUM_BYTES 8
24 gFlags_t gFlags = {0, 0};
25 SolarPanels_t SolarPanelNS;
26 TWI_Slave_t twiSlave;
27 uint8_t telemetry[NUMBER_OF_TELEMETRY_POINTS * 2];
28
29 // **

187

30 // Setup printf () for debugging purposes.

31 // **

32 FILE mystdout = FDEV_SETUP_STREAM(uart_putchar ,
33 NULL ,
34 _FDEV_SETUP_WRITE);
35
36 int main(void)
37 {
38 // Connect the standard output

39 // to the address of mystdout

40 stdout = &mystdout;
41
42 // **

43 // Setup the GPIO ports for their respective duties

.

44 // **

45 // PWM output on PORTC

46 PORTC.DIRSET = 0xFF;
47 // Switches input on PORTF

48 PORTF.DIRSET = 0x00;
49
50 // **

51 // Initialize System Peripherals

52 // **

53 // Sets the system - and peripheral clocks.

54 CLK_init ();
55
56 // Enable high -level interrupts

57 PMIC_SetVectorLocationToApplication ();
58 PMIC.CTRL |= PMIC_HILVLEN_bm | PMIC_LOLVLEN_bm;
59
60 // Enable interrupts globally

61 sei();
62
63 // Enables and starts PWM on PORTC [0:1].

64 PWM_Start ();
65 // Sets up the serial comm. link used for debugging

.

66 USART_init ();
67 // Initialize the adc converter channels.

68 ADC_init ();
69 // Initialize PID regulator

70 pid_Init(K_P * SCALING_FACTOR ,
71 K_I * SCALING_FACTOR ,
72 K_D * SCALING_FACTOR ,
73 &pidData);
74
75 // Initialize TWI slave

76 TWI_SlaveInitializeDriver(&twiSlave ,

188

77 &TWID ,
78 TWID_SlaveProcessData);
79 TWI_SlaveInitializeModule(&twiSlave ,
80 SLAVE_ADDRESS ,
81 TWI_SLAVE_INTLVL_HI_gc)

;
82
83 typedef struct {
84 unsigned char NextState;
85 unsigned char Error;
86 } NormalParameters_t;
87
88 NormalParameters_t NormalParameters;
89 unsigned char CurrentState = ST_MPPT;
90 uint16_t SAvoltage , SAcurrent , BatVoltage;
91 char i = 0;
92
93 unsigned char NormalMode(unsigned char inp)
94 {
95 unsigned char NextState;
96 SAvoltage = SolarArrayNSVoltage ();
97 SAcurrent = SolarArrayNSCurrent ();
98 BatVoltage = BatteryVoltage ();
99

100 switch (CurrentState) {
101
102 case ST_MPPT:
103 MPPT(SAcurrent , SAvoltage);
104 NextState = ST_MPPT;
105 if(BattData.Voltage >= BAT_VOLTAGE_MAX)

{
106 NextState = ST_CVOLTAGE;
107 NormalParameters.NextState =

NextState;
108
109 } else if (BattData.Voltage <

BAT_VOLTAGE_MAX) {
110 NextState = ST_MPPT;
111 NormalParameters.NextState =

NextState;
112 }
113 break;
114
115 case ST_CVOLTAGE:
116 ST_CVoltage ();
117 if(BattData.Voltage <=
118 (BAT_VOLTAGE_MAX -

BAT_VOLTAGE_HYST)) {
119 NextState = ST_MPPT;

189

120 NormalParameters.NextState =
NextState;

121 } else {
122 NextState = ST_CVOLTAGE;
123 NormalParameters.NextState =

NextState;
124 }
125 break;
126
127 case ST_DISCONNECT:
128 ST_Disconnect ();
129 if(BattData.Voltage <=
130 (BAT_VOLTAGE_MAX -

BAT_VOLTAGE_HYST)) {
131 PWM_Start ();
132 NextState = ST_MPPT;
133 NormalParameters.NextState =

NextState;
134 } else {
135 NextState = ST_DISCONNECT;
136 NormalParameters.NextState =

NextState;
137 }
138 break;
139
140 case ST_POWERSAVE:
141 break;
142
143 case ST_SOFTSTART:
144 break;
145
146 default:
147 break;
148 }
149 return(NextState);
150 }
151
152 while (1){
153 CurrentState = NormalMode (1);
154
155 // Usart Debugging info

156 i++;
157 if (i==50)
158 {
159 printf("%d %u %u %u %u\n",
160 NormalParameters.NextState ,
161 SolarPanelNS.Current ,
162 SAvoltage ,
163 BattData.Voltage ,

190

164 DutyCycle);
165 i = 0;
166 }
167 }
168
169 SetDutyCycle (185);
170 return 1;
171 }
172
173 void UpdateTWI(void) {
174 for(uint8_t i = 0; i<8; i++) {
175 twiSlave.sendData[i] = GetTelemetry(i);
176 }
177 }
178
179 void TWID_SlaveProcessData(void)
180 {
181 uint8_t bufIndex = twiSlave.bytesReceived;
182 twiSlave.sendData[bufIndex] =
183 (~ twiSlave.receivedData[bufIndex]);
184 }
185
186 /* TWI slave Address or Stop Interrupt vector.

187 *

188 * TWID Slave Interrupt vector.

189 */

190 ISR(TWID_TWIS_vect)
191 {
192 UpdateTWI ();
193 TWI_SlaveInterruptHandler (& twiSlave);
194 }
195
196 /* Timer/Counter Overflow Channel A Interrupt vector.

197 *

198 * Updates the dutycycle buffer once per period.

199 */

200 ISR(TCC0_OVF_vect)
201 {
202 TCC0.CCABUF = DutyCycle;
203 }
204
205 /* Timer/Counter Compare or Capture Channel A

206 * Interrupt vector offset.

207 * Used by the PID regulator to set the update flag.

208 */

209 ISR(TCC1_CCA_vect)
210 {
211 static uint16_t i = 0;
212 if(i < TIME_INTERVAL)

191

213 i++;
214 else {
215 gFlags.pidTimer = TRUE;
216 i = 0;
217 }
218 }
219
220 /* Move interrupt vector table to application area.

221 *

222 * This function moves the interrupt vector table

223 * to application area. The function writes the

224 * correct signature to the Configuration Change

225 * Protection register before writing the CTRL

226 * register. Interrupts are automatically ignored

227 * during the change enable period.

228 */

229 void PMIC_SetVectorLocationToApplication(void)
230 {
231 uint8_t temp = PMIC.CTRL & ~PMIC_IVSEL_bm;
232 CCP = CCP_IOREG_gc;
233 PMIC.CTRL = temp;
234 }
235
236 uint16_t SolarArrayNSVoltage(void)
237 {
238 uint16_t SAVoltage = ReadADC (&ADCA.CH1 , offset_ch1 ,

5);
239 SolarPanelNS.Voltage = SAVoltage;
240 return(SAVoltage);
241 }
242
243 uint16_t SolarArrayNSCurrent(void)
244 {
245 uint16_t SACurrent = ReadADC (&ADCA.CH0 , offset_ch0 ,

5);
246 if(SACurrent < 0)
247 SACurrent = 0;
248 if(SACurrent > 60000)
249 SACurrent = 0;
250 SolarPanelNS.Current = SACurrent;
251 return(SACurrent);
252 }

Listing F.2: main.h

1 #ifndef MAIN_H
2 #define MAIN_H
3

192

4 // Minimum solar panel current below which the panels

are disconnected.

5 #define SOLARPANEL_CURRENT_MIN 0
6 // Minimum solar panel voltage

7 #define SOLARPANEL_VOLTAGE_MIN 0
8 #define TELEMETRY_BYTES 4
9 #define TWIS_STATUS_READY 0

10
11
12 // **

13 // State machine states

14 // **

15 // Initialization state

16 #define ST_INIT (10)
17 // Start -up state

18 #define ST_START (20)
19 // Prequalification state for over -discharged batteries

20 #define ST_PREQUAL (30)
21 // Prequalification control state

22 #define ST_PREQUAL_CTRL (40)
23 // Maximum power point tracking state

24 #define ST_MPPT (50)
25 // Maximum power point tracking control state

26 #define ST_MPPT_CTRL (60)
27 // Constant voltage state with PID regulation

28 #define ST_CVOLTAGE (70)
29 // Constant voltage control state

30 #define ST_CVOLTAGE_CTRL (80)
31 // Sleep state

32 #define ST_SLEEP (90)
33 // Disconnect state

34 #define ST_DISCONNECT (100)
35 // Discharge state (same as disconnect ?)

36 #define ST_DISCHARGE (110)
37 // Error state that deals with any error that may arise

38 #define ST_ERROR (120)
39
40
41 // **

42 // Solar Panels struct declarations

43 // **

44 /* Holds status and various data for the solar panels.

45 *

46 * These data are updated by sensors (TODO)

47 */

48 typedef struct
49 {
50 uint16_t Voltage;
51 uint16_t Current;

193

52 uint16_t Temperature;
53 uint16_t CutoffVoltage;
54 } SolarPanels_t;
55
56
57 // **

58 // Flags for status information

59 // **

60 /* Holds flags.

61 *

62 * These data are updated by

63 */

64 typedef struct {
65 uint8_t pidTimer :1;
66 uint8_t pwmTimer :1;
67 } gFlags_t;
68
69 // **

70 // Global variables

71 // **

72 extern unsigned char CurrentState;
73 extern int8_t offset_ch0 , offset_ch1 ,
74 offset_ch2 , offset_ch3;
75 extern gFlags_t gFlags;
76 extern SolarPanels_t SolarPanelNS;
77
78 // **

79 // Function prototypes

80 // **

81 int main (void);
82 void PMIC_SetVectorLocationToApplication(void);
83 uint16_t SolarArrayNSCurrent(void);
84 uint16_t SolarArrayNSVoltage(void);
85 void UpdateTWI(void);
86
87 #endif // MAIN_H

Listing F.3: adc.c

1 #include <avr/io.h>
2 #include <stdio.h>
3 #include <inttypes.h>
4 #include <stddef.h>
5 #include "avr_compiler.h"
6 #include "adc.h"
7
8 /* Reads the selected ADC channel.

9 *

10 * Takes a pointer to an ADC channel , offset , and

194

11 * the number of averaged samples as argument ,

12 * and starts a conversion on the given channel.

13 * An average over [samples] samples is then

14 * calculated before the conversion

15 * is terminated and the answer is returned.

16 */

17 uint16_t ReadADC(ADC_CH_t *adc_ch ,
18 uint8_t offset ,
19 uint8_t samples) {
20
21 uint32_t dummy = 0;
22 uint16_t result = 0;
23
24 for(uint8_t i = 0; i<samples; i++) {
25 ADC_Ch_Conversion_Start(adc_ch);
26 do {
27 } while (! ADC_Ch_Conversion_Complete(adc_ch));
28 if(i != 0) {
29 dummy += (uint32_t)ADC_ResultCh_GetWord_Signed(

adc_ch , offset);
30 }
31 }
32 result = (uint16_t)(dummy/(samples -1));
33 return result;
34 }
35
36 /* Helper function for the ReadADC function.

37 *

38 * Clears Interrupt flag by setting IF high , stores

39 * contents of the channels RES into answer before

40 * returning the answer.

41 */

42 int16_t ADC_ResultCh_GetWord_Signed(ADC_CH_t * adc_ch ,
int8_t signedOffset)

43 {
44 int16_t answer;
45
46 // Clear interrupt flag

47 adc_ch ->INTFLAGS = ADC_CH_CHIF_bm;
48
49 // Return result register contents

50 answer = adc_ch ->RES - signedOffset;
51 return answer;
52 }
53
54
55 /* Calculates the offset on a given ADC channel.

56 *

57 * This function does one or several measurements to

195

58 * determine the offset of the ADC. The ADC must be

59 * configured and enabled before this function is run.

60 * It only returns the low byte of the 12-bit

61 * conversion , because the offset should never

62 * be more than +-8 LSB off.

63 *

64 */

65 int8_t ADC_Offset_Get_Signed(ADC_t * adc , ADC_CH_t *ch ,
bool oversampling)

66 {
67 if (oversampling)
68 {
69 int16_t offset =0;
70 for (int i=0; i<4; i++)
71 {
72 ADC_Ch_Conversion_Start(ch);
73
74 do {
75 } while (! ADC_Ch_Conversion_Complete(ch));
76
77 // Returns ch.RES and adds it to offset

78 offset += ADC_ResultCh_GetWord_Signed(ch , 0x00);
79 }
80 // Takes the average offset value and throws the

excess high -order bits

81 return ((int8_t)(offset /4));
82 }
83 else //** Do one conversion to find offset:

84 {
85 int8_t offset =0;
86
87 // Starts a conversion on channel "ch"

88 ADC_Ch_Conversion_Start(ch);
89
90 do{
91 }while(! ADC_Ch_Conversion_Complete(ch));
92 offset = (uint8_t)ADC_ResultCh_GetWord_Signed(ch ,

0x00);
93
94 return offset;
95 }
96 }
97
98 /* Initializes the system ADC.

99 *

100 * Sets up the ADc , and so on. RTFM.

101 *

102 */

103 void ADC_init(void)

196

104 {
105 PORTA.DIRSET = 0x00;
106
107 // Clear RESOLUTION and CONVMODE Mode

108 // Set 8bit ADC resolution

109 // Enable signed conversion mode

110 ADCA.CTRLB =
111 ((ADCA.CTRLB & ~(ADC_RESOLUTION_gm |

ADC_CONMODE_bm))
112 | ADC_RESOLUTION_12BIT_gc
113 | (ADC_ConvMode_Signed ? ADC_CONMODE_bm : 0));
114
115 // Clear PRESCALER bits

116 // Set ADC_clk to Peripheral_clk /256

117 ADCA.PRESCALER =
118 (ADCA.PRESCALER & ~(ADC_PRESCALER_gm))
119 | ADC_PRESCALER_DIV64_gc;
120
121 // Clear REFSEL bits

122 // Set Reference to Internal Vcc /1.6

123 ADCA.REFCTRL =
124 (ADCA.REFCTRL & ~(ADC_REFSEL_gm))
125 | ADC_REFSEL_AREFA_gc;
126
127 // Clear Ch0 Input Mode and Gain factor

128 // Enable single -ended or differential input signal

129 // Set input amplification to 1x

130 ADCA.CH0.CTRL =
131 (ADCA.CH0.CTRL & ~(ADC_CH_INPUTMODE_gm
132 | ADC_CH_GAINFAC_gm))
133 | ADC_CH_INPUTMODE_DIFF_gc
134 | ADC_CH_GAIN_1X_gc;
135
136 // Clear Ch1 Input Mode and Gain factor

137 // Enable single -ended or differential input signal

138 // Set input amplification to 1x

139 ADCA.CH1.CTRL =
140 (ADCA.CH1.CTRL & ~(ADC_CH_INPUTMODE_gm
141 | ADC_CH_GAINFAC_gm))
142 | ADC_CH_INPUTMODE_DIFF_gc
143 | ADC_CH_GAIN_1X_gc;
144
145 // Clear Ch1 Input Mode and Gain factor

146 // Enable single -ended or differential input signal

147 // Set input amplification to 1x

148 ADCA.CH2.CTRL =
149 (ADCA.CH2.CTRL & ~(ADC_CH_INPUTMODE_gm |

ADC_CH_GAINFAC_gm))
150 | ADC_CH_INPUTMODE_DIFF_gc

197

151 | ADC_CH_GAIN_1X_gc;
152
153 // Clear Ch1 Input Mode and Gain factor

154 // Enable single -ended or differential input signal

155 // Set input amplification to 1x

156 ADCA.CH3.CTRL =
157 (ADCA.CH3.CTRL & ~(ADC_CH_INPUTMODE_gm |

ADC_CH_GAINFAC_gm))
158 | ADC_CH_INPUTMODE_DIFF_gc
159 | ADC_CH_GAIN_1X_gc;
160
161 // Set ADC4 pin as both positive and negative analog

input

162 ADCA.CH0.MUXCTRL =
163 (uint8_t) ADC_CH_MUXPOS_PIN4_gc
164 | ADC_CH_MUXNEG_PIN4_gc;
165
166 // Set ADC5 pin as both positive and negative analog

input

167 ADCA.CH1.MUXCTRL =
168 (uint8_t) ADC_CH_MUXPOS_PIN5_gc
169 | ADC_CH_MUXNEG_PIN5_gc;
170
171 // Set ADC6 pin as both positive and negative analog

input

172 ADCA.CH2.MUXCTRL =
173 (uint8_t) ADC_CH_MUXPOS_PIN6_gc
174 | ADC_CH_MUXNEG_PIN6_gc;
175
176 // Set ADC7 pin as both positive and negative analog

input

177 ADCA.CH3.MUXCTRL =
178 (uint8_t) ADC_CH_MUXPOS_PIN7_gc
179 | ADC_CH_MUXNEG_PIN7_gc;
180
181 ADCA.CALL = ReadCalibrationByte(
182 offsetof(NVM_PROD_SIGNATURES_t , ADCACAL0));
183 ADCA.CALH = ReadCalibrationByte(
184 offsetof(NVM_PROD_SIGNATURES_t , ADCACAL1));
185
186 // Enable the ADC.

187 ADC_Enable (&ADCA);
188
189 // Wait until common mode voltage is stable.

190 ADC_Wait_8MHz (&ADCA);
191
192 // Returns the offset between the two differential

inputs.

193 offset_ch0 =

198

194 ADC_Offset_Get_Signed (&ADCA , &ADCA.CH0 , true);
195 offset_ch1 =
196 ADC_Offset_Get_Signed (&ADCA , &ADCA.CH1 , true);
197 offset_ch2 =
198 ADC_Offset_Get_Signed (&ADCA , &ADCA.CH2 , true);
199 offset_ch3 =
200 ADC_Offset_Get_Signed (&ADCA , &ADCA.CH3 , true);
201
202 // Disable the ADC

203 ADCA.CTRLA = ADCA.CTRLA & (~ ADC_ENABLE_bm);
204
205 // Set ADC5 pin as positive analog input.

206 // Set ADC4 pin as negative analog input.

207 ADCA.CH0.MUXCTRL =
208 (uint8_t) ADC_CH_MUXPOS_PIN4_gc
209 | ADC_CH_MUXNEG_PIN2_gc;
210 ADCA.CH1.MUXCTRL =
211 (uint8_t) ADC_CH_MUXPOS_PIN5_gc
212 | ADC_CH_MUXNEG_PIN2_gc;
213 ADCA.CH2.MUXCTRL =
214 (uint8_t) ADC_CH_MUXPOS_PIN6_gc
215 | ADC_CH_MUXNEG_PIN2_gc;
216 ADCA.CH3.MUXCTRL =
217 (uint8_t) ADC_CH_MUXPOS_PIN7_gc
218 | ADC_CH_MUXNEG_PIN2_gc;
219
220 // Clear the SWEEP bits.

221 // Set channel 0 as active channel for sweep.

222 ADCA.EVCTRL = (ADCA.EVCTRL & ~(ADC_SWEEP_gm))
223 | ADC_SWEEP_0123_gc;
224
225 // Enable the ADC.

226 ADC_Enable (&ADCA);
227
228 // Wait until common mode voltage is stable.

229 ADC_Wait_8MHz (&ADCA);
230
231 // Enable free running mode.

232 ADCA.CTRLB |= ADC_FREERUN_bm;
233
234 }
235
236
237 /* Function: ADC_Wait_8Mhz ()

238 *

239 * 1) Store current PRESCALER Value

240 * 2) Set new PRESCALER value to Sys_clk /4

241 * 3) Delay 4 cycles

242 * 4) Restore old PRESCALER value

199

243 * 5) Return

244 *

245 * NOTE: Default clk is 2MHz and therefore

246 * below the maximum frequency to use this

247 * function.

248 *

249 */

250 void ADC_Wait_8MHz(ADC_t * adc)
251 {
252 /* Store old prescaler value. */

253 uint8_t prescaler_val = adc ->PRESCALER;
254
255 /* Set prescaler value to minimum value. */

256 adc ->PRESCALER = ADC_PRESCALER_DIV4_gc;
257
258 /* Wait 4* COMMON_MODE_CYCLES for common mode to

settle. */

259 _delay_us (4* COMMON_MODE_CYCLES);
260
261 /* Set prescaler to old value*/

262 adc ->PRESCALER = prescaler_val;
263 }
264
265 /* Reads the calibration bytes from factory.

266 *

267 * Bla bla bla.

268 */

269 uint8_t ReadCalibrationByte(uint8_t index)
270 {
271 uint8_t result;
272
273 /* Load the NVM Command register

274 * to read the calibration row.

275 */

276 NVM_CMD = NVM_CMD_READ_CALIB_ROW_gc;
277 result = pgm_read_byte(index);
278
279 /* Clean up NVM Command register. */

280 NVM_CMD = NVM_CMD_NO_OPERATION_gc;
281 return(result);
282 }

Listing F.4: adc.h

1 #ifndef ADC_H
2 #define ADC_H
3
4 #include <stdbool.h>
5

200

6 // **

7 // Definitions for the Analog -to -Digital peripheral.

8 // **

9 // Signed conversion mode flag.

10 #define ADC_ConvMode_Signed true
11 // Unsigned conversion mode flag.

12 #define ADC_ConvMode_Unsigned false
13 // Number of common mode cycles.

14 #define COMMON_MODE_CYCLES 16
15 // Enable selected ADC.

16 #define ADC_Enable(_adc) ((_adc)->CTRLA |=
ADC_ENABLE_bm)

17 // Disable selected ADC.

18 #define ADC_Disable(_adc) ((_adc)->CTRLA = (_adc)->
CTRLA & (~ ADC_ENABLE_bm))

19 // Starts a single conversion on a channel.

20 #define ADC_Ch_Conversion_Start(_adc_ch) ((_adc_ch)->
CTRL |= ADC_CH_START_bm)

21 // True or false flag which sets upon conversion

complete on a given channel.

22 #define ADC_Ch_Conversion_Complete(_adc_ch) \
23 (((_adc_ch)->INTFLAGS & ADC_CH_CHIF_bm) != 0x00)
24 // Selects the analog input pins on a channel. See

ADC_CH_MUXPOS/NEG_enum types.

25 #define ADC_Ch_InputMux_Config(_adc_ch , _posInput ,
_negInput) \

26 ((_adc_ch)->MUXCTRL = (uint8_t)(_posInput |
_negInput))

27
28
29 // **

30 // Global variables

31 // **

32 extern int8_t offset_ch0 , offset_ch1 , offset_ch2 ,
offset_ch3;

33 int8_t offset_ch0 , offset_ch1 , offset_ch2 , offset_ch3;
34
35 // **

36 // Function prototypes

37 // **

38 uint16_t ReadADC(ADC_CH_t *adc_ch , uint8_t offset ,
uint8_t samples);

39 int16_t ADC_ResultCh_GetWord_Signed(ADC_CH_t * adc_ch
, int8_t signedOffset);

40 int8_t ADC_Offset_Get_Signed(ADC_t * adc , ADC_CH_t *
ch , bool oversampling);

41 void ADC_init(void);
42 void ADC_Wait_8MHz(ADC_t * adc);
43 uint8_t ReadCalibrationByte(uint8_t index);

201

44
45 #endif //ADC_H

Listing F.5: clock.c

1 #include <inttypes.h>
2 #include <avr/io.h>
3 #include <util/delay.h>
4 #include "avr_compiler.h"
5
6 void CCPWrite(volatile uint8_t * address , uint8_t value

);
7
8 void CLK_init(void)
9 {

10 /* Enable 32 MHz Internal RC Oscillator */

11 OSC.CTRL |= OSC_RC32MEN_bm;
12
13 /*

14 * Select Prescaler Division Factors , where:

15 * "A" selects the clock frequency of clk_PER4

16 * relative to clk_SYS. "B" sets the clock frequency

17 * of clk_PER2 relative to clk_PER4 , and "C" sets

18 * the clock frequency of clk_PER and clk_CPU

19 * relative to clk_PER2.

20 *

21 * With internal 32MHz osc , A = 1, B = C = 2

22 * the system is running with:

23 *

24 * ---------------------------------------

25 * Clk_sys = 32 MHZ

26 * Clk_per4 = Clk_sys / 1 = 32 MHZ

27 * Clk_per2 = Clk_per4 / 2 = 16 MHz

28 * Clk_per = Clk_per2 / 2 = 8 MHz

29 * ---------------------------------------

30 *

31 */

32 uint8_t PSconfig =
33 (uint8_t) CLK_PSADIV_1_gc
34 | CLK_PSBCDIV_2_2_gc;
35 CCPWrite (&CLK.PSCTRL , PSconfig);
36
37
38 /*

39 * Wait until 32MHz Internal RC Oscillator

40 * is stable and ready to be used as Sysclk ,

41 * and then enable it.

42 */

43 do {} while ((OSC.STATUS & OSC_RC32MRDY_bm) == 0);

202

44 uint8_t clkCtrl =
45 (CLK.CTRL & ~CLK_SCLKSEL_gm)
46 | CLK_SCLKSEL_RC32M_gc;
47 CCPWrite (&CLK.CTRL , clkCtrl);
48 clkCtrl = (CLK.CTRL & CLK_SCLKSEL_RC32M_gc);
49
50 }
51
52 /* CCP write helper function written in assembly.

53 *

54 * This function is written in assembly because

55 * of the time critical operation of writing to

56 * the registers.

57 *

58 * address: A pointer to the address to write to.

59 * value: The value to put in to the register.

60 */

61 void CCPWrite(volatile uint8_t * address , uint8_t value
)

62 {
63 #ifdef __ICCAVR__
64
65 // Store global interrupt setting in scratch

66 // register and disable interrupts.

67 asm("in R1, 0x3F \n"
68 "cli"
69);
70
71 // Move destination address pointer

72 // to Z pointer registers.

73 asm("movw r30 , r16");
74 #ifdef RAMPZ
75 asm("ldi R16 , 0 \n"
76 "out 0x3B , R16"
77);
78
79 #endif
80 asm("ldi r16 , 0xD8 \n"
81 "out 0x34 , r16 \n"
82 #if (__MEMORY_MODEL__ == 1)
83 "st Z, r17 \n");
84 #elif (__MEMORY_MODEL__ == 2)
85 "st Z, r18 \n");
86 #else /* (__MEMORY_MODEL__ == 3) || (__MEMORY_MODEL__

== 5) */

87 "st Z, r19 \n");
88 #endif /* __MEMORY_MODEL__ */

89

203

90 // Restore global interrupt setting from scratch

register.

91 asm("out 0x3F , R1");
92
93 #elif defined __GNUC__
94 AVR_ENTER_CRITICAL_REGION();
95 volatile uint8_t * tmpAddr = address;
96 #ifdef RAMPZ
97 RAMPZ = 0;
98 #endif
99 asm volatile(

100 "movw r30 , %0" "\n\t"
101 "ldi r16 , %2" "\n\t"
102 "out %3, r16" "\n\t"
103 "st Z, %1" "\n\t"
104 :
105 : "r" (tmpAddr), "r" (value), "M" (CCP_IOREG_gc

), "i" (&CCP)
106 : "r16", "r30", "r31"
107);
108
109 AVR_LEAVE_CRITICAL_REGION();
110 #endif
111 }

Listing F.6: clock.h

1 #ifndef CLOCK_H
2 #define CLOCK_H
3
4 // **

5 // Function prototypes

6 // **

7 void CLK_init(void);
8 void CCPWrite(volatile uint8_t * address , uint8_t value

);
9

10 /* This macro will protect the following code

11 * from interrupts.

12 */

13 #define AVR_ENTER_CRITICAL_REGION() uint8_t volatile
saved_sreg = SREG; \

14 cli();
15
16 /* This macro must always be used in conjunction

17 * with AVR_ENTER_CRITICAL_REGION

18 * so the interrupts are enabled again.

19 */

20 #define AVR_LEAVE_CRITICAL_REGION() SREG = saved_sreg;

204

21 #endif // CLOCK_H

Listing F.7: battery.c

1 #include <avr/io.h>
2 #include "adc.h"
3 #include "battery.h"
4 #include "lifespecs.h"
5
6 Batteries_t BattData;
7
8 // **

9 // Functions

10 // **

11 /* Refreshes battery status information

12 * TODO

13 */

14 unsigned char BatteryStatusRefresh(void)
15 {
16 // Assume the worst..

17 unsigned char success = FALSE;
18
19 BattData.Charged = FALSE;
20 BattData.Low = TRUE;
21 BattData.Temperature = 0;
22 BattData.Capacity = 0;
23 BattData.MaxCurrent = 0;
24 BattData.MaxTime = 0;
25 BattData.MinCurrent = 0;
26
27 uint16_t Temperature = BatteryTemp ();
28
29 if(Temperature >= BAT_TEMPERATURE_MAX || Temperature

<= BAT_TEMPERATURE_MIN) {
30 // BattData.Temperature = Temperature;

31 //Flag battery temperature

32 }
33
34 uint16_t BatVoltage = BatteryVoltage ();
35
36 // Is the battery voltage above minimum safe cell

voltage?

37 if (BatVoltage >= BAT_VOLTAGE_MIN) {
38 BattData.Low = FALSE;
39 }
40
41 // Is the battery charged?

42 if (BatVoltage >= BAT_VOLTAGE_LOW) {
43 BattData.Charged = TRUE;

205

44 }
45
46 if ((! BattData.Low)) {
47 success = TRUE;
48 } else {
49 BattData.Low = FALSE; // (This is just a

technicality ..)

50 success = FALSE;
51 }
52
53 return(success); //when is it false ...? eh?

54 }
55
56 uint16_t BatteryVoltage(void)
57 {
58 uint16_t BatVoltage = ReadADC (&ADCA.CH2 , offset_ch2 ,

5);
59 BattData.Voltage = BatVoltage;
60 return(BatVoltage);
61 }
62
63 uint16_t BatteryTemp(void)
64 {
65 uint16_t BatTemperature = ReadADC (&ADCA.CH3 ,

offset_ch3 , 5);
66 BattData.Temperature = BatTemperature;
67 return(BatTemperature);
68 }

Listing F.8: battery.h

1 #ifndef BATTERY_H
2 #define BATTERY_H
3 #define TRUE 1
4 #define FALSE 0
5
6 // **

7 // Battery struct declarations

8 // **

9 /* Holds status and various data for the battery

10 *

11 * These data are updated by

12 * BatteryStatusRefresh () and

13 * BatteryDataRefresh ().

14 *

15 * TODO

16 */

17 typedef struct
18 {

206

19 // Battery fully charged. (TRUE/FALSE)

20 unsigned char Charged : 1;
21 // Battery low voltage. (TRUE/FALSE)

22 unsigned char Low : 1;
23 // Battery temperature , in centigrade.

24 uint16_t Temperature;
25 uint16_t Voltage;
26 // Capacity , in mAh.

27 unsigned int Capacity;
28 // Charge current , in mA.

29 unsigned int MaxCurrent;
30 // Charge cut -off time , in minutes.

31 unsigned int MaxTime;
32 // Cut -off current , in mA.

33 unsigned int MinCurrent;
34 } Batteries_t;
35
36 // **

37 // Global variable(s)

38 // **

39 extern Batteries_t BattData;
40
41 // ***

42 // Function prototypes

43 // ***

44 unsigned char BatteryCheck(void);
45 unsigned char BatteryStatusRefresh(void);
46 uint16_t BatteryVoltage(void);
47 uint16_t BatteryTemp(void);
48
49 #endif // BATTERY_H

Listing F.9: fsm.c

1 #include <avr/io.h>
2 #include <stdint.h>
3 #include <util/delay.h>
4 #include <stdio.h>
5 #include "fsm.h"
6 #include "pwm.h"
7 #include "main.h"
8 #include "pid.h"
9

10 void ST_CVoltage(void) {
11 // Run PID calculations once every PID timer

timeout

12 if(gFlags.pidTimer) {
13 RefValue = GetReference ();
14 MeasuredValue = GetMeasurement ();

207

15 InputValue = pid_Controller(RefValue ,
MeasuredValue , &pidData);

16
17 Set_Input(InputValue);
18 gFlags.pidTimer = FALSE;
19 }
20 _delay_ms (1);
21 }
22
23 void ST_Disconnect(void) {
24 PWM_Stop ();
25 }

Listing F.10: fsm.h

1 #ifndef FSM_H
2 #define FSM_H
3 // **

4 // Global variables

5 // **

6 extern int16_t RefValue , MeasuredValue , InputValue;
7
8 // ***

9 // Function prototypes

10 // ***

11 void ST_CVoltage(void);
12 void ST_Disconnect(void);
13
14 #endif //FSM_H

Listing F.11: mppt.c

1 #include <avr/io.h>
2 #include <util/delay.h>
3 #include <inttypes.h>
4 #include <stdio.h>
5 #include "mppt.h"
6 #include "pwm.h"
7
8 /* MAXIMUM POWER POINT TRACKING

9 * ------------------------------

10 * Tracks the maximum power point of the solar panel

11 * according to the Perturb and Observe Method.

12 *

13 * Returns status information.

14 */

15
16 // ***

17 // MPPT Algorithm nr1: "Perturb and Observe"

208

18 // ***

19 /* Track the maximum power point on the solar panel.

20 *

21 * This function tracks the maximum power point (MPP)

22 * on the solar panel according to the Perturb and

23 * Observe Method. TODO: A flag is set when the

battery

24 * has reached its maximum voltage level , and a new

25 * state is returned to the main loop.

26 */

27 unsigned char MPPT(uint16_t current , uint16_t voltage)
{

28 uint32_t Power = (uint32_t)voltage * (uint32_t)
current;

29 // check for old = new case here

30 if (Power > OldPower) {
31 if (voltage > OldVoltage) {
32 PWM_DecrementDutyCycle (1);
33 } else if (voltage < OldVoltage) {
34 PWM_IncrementDutyCycle (1);
35 }
36 } else if (Power < OldPower) {
37 if (voltage > OldVoltage) {
38 PWM_IncrementDutyCycle (1);
39 } else if (voltage < OldVoltage) {
40 PWM_DecrementDutyCycle (1);
41 }
42 }
43 OldPower = Power;
44 OldVoltage = voltage;
45
46 _delay_ms (1); // debugging

47 return (1);// ChargeParameters.NextState);
48 }

Listing F.12: mppt.h

1 #ifndef MPPT_H
2 #define MPPT_H
3
4 uint32_t OldPower;
5 uint16_t OldVoltage;
6
7 // ***

8 // Global variable(s)

9 // ***

10 extern uint16_t DutyCycle;
11
12 // ***

209

13 // Function prototypes

14 // ***

15 unsigned char MPPT(uint16_t current , uint16_t voltage);
16 #endif

Listing F.13: pid.c

1 #include <avr/io.h>
2 #include <util/delay.h>
3 #include <inttypes.h>
4 #include <stdbool.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include "adc.h"
8 #include "battery.h"
9 #include "lifespecs.h"

10 #include "pwm.h"
11 #include "pid.h"
12
13 pidData_t pidData;
14
15 /*

16 * Initialization of PID controller parameters.

17 */

18 void pid_Init(int16_t p_factor , int16_t i_factor ,
int16_t d_factor , pidData_t *pid)

19 {
20 // Setup Timer/Counter1 for PID.

21 TC1_init ();
22
23 // Start values

24 pid ->sumError = 0;
25 pid ->lastProcessValue = 0;
26
27 // Tuning constants

28 pid ->P_Factor = p_factor;
29 pid ->I_Factor = i_factor;
30 pid ->D_Factor = d_factor;
31
32 // Limits to avoid overflow

33 pid ->maxError = MAX_INT / (pid ->P_Factor + 1);
34 pid ->maxSumError = MAX_I_TERM / (pid ->I_Factor + 1)

;
35 }
36
37
38 /* Controller Algorithm

39 *

40 * This function calculates the PID error and returns

210

41 * the PID. Takes as input: desired (setPoint) value ,

42 * the measured (processValue) value and PID status (

pid_st).

43 */

44 int16_t pid_Controller(int16_t setPoint ,
45 int16_t processValue ,
46 pidData_t *pid_st)
47 {
48 int16_t error , p_term , d_term;
49 int32_t i_term , ret , temp;
50
51 error = setPoint - processValue;
52
53 // Calculate Pterm and limit error overflow

54 if(error > pid_st ->maxError) {
55 p_term = MAX_INT;
56 } else if(error < -pid_st ->maxError) {
57 p_term = -MAX_INT;
58 } else {
59 p_term = pid_st ->P_Factor * error;
60 }
61
62 // Calculate Iterm and limit integral runaway

63 temp = pid_st ->sumError + error;
64 if(temp > pid_st ->maxSumError) {
65 i_term = MAX_I_TERM;
66 pid_st ->sumError = pid_st ->maxSumError;
67 } else if(temp < -pid_st ->maxSumError) {
68 i_term = -MAX_I_TERM;
69 pid_st ->sumError = -pid_st ->maxSumError;
70 } else {
71 pid_st ->sumError = temp;
72 i_term = pid_st ->I_Factor * pid_st ->sumError;
73 }
74
75 // Calculate Dterm

76 d_term = pid_st ->
77 D_Factor * (pid_st ->lastProcessValue -

processValue);
78 pid_st ->lastProcessValue = processValue;
79
80 ret = (p_term + i_term + d_term) / SCALING_FACTOR;
81 if(ret > MAX_INT) {
82 ret = MAX_INT;
83 } else if(ret < -MAX_INT) {
84 ret = -MAX_INT;
85 }
86 return ((int16_t)ret);
87 }

211

88
89 /*

90 * Resets the integrator

91 */

92 void pid_Reset_Integrator(pidData_t *pid_st)
93 {
94 pid_st ->sumError = 0;
95 }
96
97 int16_t GetReference(void)
98 {
99 // Returns CELL_VOLTAGE_MAX.

100 return CELL_VOLTAGE_MAX;
101 }
102
103 int16_t GetMeasurement(void)
104 {
105 return(BatteryVoltage ());
106 // return(ReadADC (&ADCA.CH2 , offset_ch2 , 11));

107 }
108
109 /* Sets the PID output as input to the system.

110 *

111 * This function takes the output value from

112 * the PID controller and level shifts it into

113 * a positive range , normalizes the output

114 * before setting the the new dutycycle.

115 */

116 void Set_Input(int16_t inputValue)
117 {
118 uint8_t NewDutyCycle;
119 // Level shift the PID output value to a positive

range.

120 shifted_inputValue = inputValue + abs(PID_ERROR_MIN
);

121 // Normalize input range.

122 normalized_inputValue = ((shifted_inputValue/
PID_SHIFTED_ERROR_MAX));

123 // Calculate the new dutycycle

124 NewDutyCycle = DUTYCYCLE_MIN + (
DUTYCYCLE_VALID_RANGE * normalized_inputValue);

125 // Set the new dutycycle

126 SetDutyCycle(NewDutyCycle);
127 }
128
129 void TC1_init(void)
130 {
131 /* Set the clock source to

132 Clk_per /1024 = 8MHz /1024 = 7812 ,5 Hz

212

133 = 1 / 7812,5 s = 128us clock tick

134 */

135 TCC1.CTRLA =
136 (TCC1.CTRLA & ~TC1_CLKSEL_gm)
137 | TC_CLKSEL_DIV8_gc;//64_gc;
138
139 /* Set the Timer Waveform Generation Mode

140 * to normal , i.e. no waveform , and enable

141 * CC on channel A.

142 */

143 TCC1.CTRLB = (TCC1.CTRLB & ~TC1_WGMODE_gm)
144 | TC_WGMODE_NORMAL_gc
145 | TC1_CCAEN_bm;
146
147 /* Enable interrupts on CC channel A

148 * with HI priority

149 */

150 TCC1.INTCTRLB = (uint8_t) TC_CCAINTLVL_HI_gc;
151
152 /* Set the period for Timer1 */

153 TCC1.PER = 0x0FF0;
154
155 /*

156 * 16 bit Compare or Capture register.

157 * CCxH + CCxL = CCA. The reg is updated from

158 * CCaBUF. If CNT equals CCA (or CCx),

159 * the comparator signals a match that sets

160 * the CC channel ’s flag at the next timer

161 * clock cycle and the event and optional

162 * interrupt is generated.

163 */

164 TCC1.CCA = 0x0FF0;
165 }

Listing F.14: pid.h

1 #ifndef PID_H
2 #define PID_H
3
4 #include "stdint.h"
5
6 int16_t RefValue , MeasuredValue , InputValue ,

shifted_inputValue;
7 float normalized_inputValue;
8
9 // Limits for the error

10 #define PID_ERROR_MAX 225.0
11 #define PID_ERROR_MIN -73.0
12 #define PID_SHIFTED_ERROR_MAX

213

13 (PID_ERROR_MAX + abs(PID_ERROR_MIN))
14 #define PID_SHIFTED_ERROR_MIN
15 (PID_ERROR_MIN + abs(PID_ERROR_MIN))
16
17 // Maximum values used to avoid sign/overflow problems

18 #define MAX_INT INT16_MAX
19 #define MAX_LONG INT32_MAX
20 #define MAX_I_TERM (MAX_LONG / 2)
21
22 // Boolean values

23 #define FALSE 0
24 #define TRUE 1
25
26 // ***************************************

27 // Definitions for the PID gains which

28 // should be modified after tuning.

29 // ***************************************

30 // Proportional gain

31 #define K_P 0.35
32 // Integral gain

33 #define K_I 0.26
34 // Derivative gain

35 #define K_D 0.005
36
37 // ***************************************

38 // Definition for the desired PID sample

39 // time interval. For a n-bit counter:

40 // TIME_INTERVAL = (desired interval

41 // [sec]) * (frequency [Hz]) / (2^n-1)

42 // ***************************************

43 //! PID sampling time interval

44 #define TIME_INTERVAL 20
45
46 // ***************************************

47 // Definition for the scaling factor

48 // ***************************************

49 //! Scaling factor.

50 #define SCALING_FACTOR 128
51
52 // **

53 // PID Status declarations

54 // **

55 /* Holds the setpoints and data used by

56 * the PID control algorithm.

57 */

58 typedef struct {
59 int16_t lastProcessValue;
60 int32_t sumError;
61 int16_t P_Factor;

214

62 int16_t I_Factor;
63 int16_t D_Factor;
64 int16_t maxError;
65 int32_t maxSumError;
66 } pidData_t;
67
68 extern pidData_t pidData;
69 // struct PID_DATA pidData;

70 // pidData_t pidData; ??

71 /*

72 struct PID_DATA {

73 int16_t lastProcessValue;

74 int32_t sumError;

75 int16_t P_Factor;

76 int16_t I_Factor;

77 int16_t D_Factor;

78 int16_t maxError;

79 int32_t maxSumError;

80 };

81 typedef struct PID_DATA pidData_t;*/

82
83
84 // *************************************

85 // Function prototypes

86 // *************************************

87 // Returns the reference voltage

88 // (in ADC counts) for the PID algorithm.

89 int16_t GetReference(void);
90 // Returns the battery voltage from

91 // ADC channel 2.

92 int16_t GetMeasurement(void);
93 // Sets the dutycycle to the new input.

94 void Set_Input(int16_t inputValue);
95 // Initialize the the PID routine.

96 void pid_Init(int16_t p_factor ,
97 int16_t i_factor ,
98 int16_t d_factor ,
99 pidData_t *pid);

100 // The actual PID algorithm. Returns the

101 // new inputvalue for the converter.

102 int16_t pid_Controller(int16_t setPoint ,
103 int16_t processValue ,
104 pidData_t *pid);
105 // Resets the integrator to avoid integral run -away.

106 void pid_Reset_Integrator(pidData_t *pid_st);
107 // Timer/Counter for PID

108 void TC1_init(void);
109
110 #endif

215

Listing F.15: pwm.c

1 #include <avr/io.h>
2 #include <stdio.h>
3 #include "pwm.h"
4
5 // **

6 // Starts the PWM output to the high - and

7 // low side switches.

8 // **

9 /* Starts PWM output with

10 * dead -time insertion on PORTC.

11 */

12 void PWM_Start(void)
13 {
14 // Enable output on PC0.

15 PORTC.DIRSET = (PIN0_bm | PIN1_bm);
16 // Set 16bit period.

17 TCC0.PER = (PWM_period & HiResMask);
18 // Enable Single Slope PWM and Enable Compare

Capture Channel A (CCA).

19 TCC0.CTRLB = (TCC0.CTRLB & ~TC0_WGMODE_gm) |
TC_WGMODE_SS_gc | TC0_CCAEN_bm;

20 // Selects starts a clock source. Must use DIV1 if Hi

-Res enabled.

21 TCC0.CTRLA = (TCC0.CTRLA & ~TC0_CLKSEL_gm) |
TC_CLKSEL_DIV1_gc;

22
23 // Enable interrupts on CC channel A with HI priority

.

24 TCC0.INTCTRLA = (uint8_t) TC_CCAINTLVL_LO_gc;
25
26 // Enable Dead -Time Generator for CCA and mirror Low -

side signal on PC1.

27 AWEXC.CTRL |= AWEX_DTICCAEN_bm;
28 // Enables Output Override on pin 0 and 1.

29 AWEXC.OUTOVEN = (PIN0_bm | PIN1_bm);
30 // Writes number of peripheral clock cycles of Dead

-Time to Both Sides.

31 // AWEXC.DTBOTH = 2;

32 // Sets number of peripheral clock cycles of Dead -

Time to Low side.

33 AWEXC.DTLS = 3;
34 // Writes number of peripheral clock cycles of Dead -

Time to High Sides.

35 AWEXC.DTHS = 3;
36 // Enable High Resolution on Timer/Counter 0.

37 HIRESC.CTRL |= HIRES_HREN_TC0_gc;
38 // Set default dutycycle. TCC0.CCABUF =

DUTYCYCLE_DEFAULT;

216

39 DutyCycle = SetDutyCycle(DUTYCYCLE_DEFAULT);
40 TCC0.CCABUF = DutyCycle;
41 }
42
43 // ***

44 // Stops the PWM output to the

45 // high - and low side switches.

46 // ***

47 /*! Stops PWM output , and activates the internal

48 * pull -downs on the NMOS gates , leaving the the

49 * switches in an open state.

50 */

51 void PWM_Stop(void)
52 {
53 // Turn off Timer/Counter (no clock selected)

54 TCC0.CTRLA = (TCC0.CTRLA & ~TC0_CLKSEL_gm) |
TC_CLKSEL_OFF_gc;

55 // Set waveform generation to normal mode ,

56 // i.e, NO waveform generation.

57 TCC0.CTRLB = 0;
58 // Turn off Advanced Waveform Generation module.

59 AWEXC.CTRL = 0;
60 // Turn off Hi Resolution module.

61 HIRESC.CTRL = 0;
62 // Set port C to input.

63 PORTC.DIR = 0;
64 // Enable Totempole w/ pull -down on PIN0

65 PORTC.PIN0CTRL = PORT_OPC_PULLDOWN_gc;
66 // Enable Totempole w/ pull -down on PIN1

67 PORTC.PIN1CTRL = PORT_OPC_PULLDOWN_gc;
68
69 // SetErrorFlag(PWM_STOPPED);

70 }
71
72 /* Decrements the PWM duty cycle , if not already at min

.

73 *

74 * TRUE Success , duty cycle could be incremented.

75 * FALSE Failure , duty cycle already at maximum.

76 */

77 unsigned char PWM_DecrementDutyCycle(uint8_t StepSize){
78 if (DutyCycle > DUTYCYCLE_MIN) {
79 DutyCycle -= StepSize;
80 return(TRUE);
81 } else {
82 return(FALSE);
83 }
84 }
85

217

86 /* Increments the PWM duty cycle , if not already at

max.

87 *

88 * TRUE Success , duty cycle could be incremented.

89 * FALSE Failure , duty cycle already at maximum.

90 */

91 unsigned char PWM_IncrementDutyCycle(uint8_t StepSize){
92 if (DutyCycle < DUTYCYCLE_MAX) {
93 DutyCycle += StepSize;
94 return(TRUE);
95 } else {
96 return(FALSE);
97 }
98 }
99

100 /* Sets the PWM dutycycle within the defined

101 * MAX and MIN values.

102 *

103 * TRUE Success , duty cycle could be incremented.

104 * FALSE Failure , duty cycle already at maximum.

105 */

106 uint8_t SetDutyCycle(uint8_t NewDutyCycle) {
107 // Check if new dutycycle is ok

108 // before setting the new value.

109 if(NewDutyCycle > DUTYCYCLE_MAX) {
110 DutyCycle = DUTYCYCLE_MAX;
111 // OutOfBounds = TRUE;

112 } else if(NewDutyCycle < DUTYCYCLE_MIN) {
113 DutyCycle = DUTYCYCLE_MIN;
114 } else DutyCycle = NewDutyCycle;
115
116 // Return the dutycycle value

117 return(DutyCycle);
118 }

Listing F.16: pwm.h

1 #ifndef PWM_H
2 #define PWM_H
3
4 // ***

5 // Definitions for Pulse -Width -Modulation module.

6 // ***

7 // The period used for the PWM clock (Timer0).

8 #define PWM_period 0x00FF
9 // High resoultion mask used to make sure the

10 // two LSBs in TCC0.PER are zero.

11 #define HiResMask 0xFFFC
12 // Maximum PWM dutycycle.

218

13 #define DUTYCYCLE_MAX 236
14 // Minimum PWM dutycycle.

15 #define DUTYCYCLE_MIN 180
16 // Valid range of the PWM dutycycle based

17 // on min/max limits.

18 #define DUTYCYCLE_VALID_RANGE
19 (DUTYCYCLE_MAX - DUTYCYCLE_MIN)
20 // A "safe" default PWM dutycycle for debugging etc.

21 #define DUTYCYCLE_DEFAULT 210
22
23 #define TRUE 1
24 #define FALSE 0
25
26 // ***

27 // Global variables

28 // ***

29 extern uint16_t DutyCycle;
30
31 uint16_t DutyCycle;
32 // **

33 // Function prototypes

34 // **

35 void PWM_Start(void);
36 void PWM_Stop(void);
37 unsigned char PWM_DecrementDutyCycle
38 (uint8_t StepSize);
39 unsigned char PWM_IncrementDutyCycle
40 (uint8_t StepSize);
41 uint8_t SetDutyCycle
42 (uint8_t NewDutyCycle);
43
44 #endif // PWM_H

Listing F.17: serial.c

1 #include <avr/io.h>
2 #include <stdio.h>
3 #include "serial.h"
4
5 // ***

6 // Setup the USART on PORTC. See p241 in the datasheet.

7 // ***

8 void USART_init(void)
9 {

10 // Set PORTC [6:7] as output for serial

communication.

11 PORTC.OUTSET = PIN6_bm;
12 PORTC.DIRSET = PIN6_bm;
13 /* Set BSCALE = 0 and BSEL [10:0] = 51 (or 12).

219

14 * This gives a baud rate of 9600 (or 38600) with a

f_per = 8Mhz ,

15 * as per the equations on p. 238 in the datasheet.

16 */

17 USARTC0.BAUDCTRLB = (USARTC0.BAUDCTRLB & (~
USART_BSCALE_gm | ~USART_BSEL_gm)) ;

18 USARTC0.BAUDCTRLA = 51;
19 // Disable interrupts

20 USARTC0.CTRLA = (USART_RXCINTLVL_OFF_gc |
USART_TXCINTLVL_OFF_gc);

21 // Asynchronous mode , No parity , 8 bit , 1 Stop bit (

default , i.e. USART_SBMODE_bm not set)

22 USARTC0.CTRLC = (USART_CMODE_ASYNCHRONOUS_gc |
USART_PMODE_DISABLED_gc | USART_CHSIZE_8BIT_gc);

23 // Enable transmitter

24 USARTC0.CTRLB = USART_TXEN_bm;
25 }
26
27 /* Macro for writing to the USART on PORTC.

28 *

29 * This macro is used for debugging purposes only.

30 */

31 int uart_putchar(char c, FILE *stream)
32 {
33 if (c == ’\n’)
34 uart_putchar(’\r’, stream);
35
36 while (!(USARTC0.STATUS & USART_DREIF_bm));
37
38 USARTC0.DATA = c;
39 return 0;
40 }

Listing F.18: serial.h

1 #ifndef SERIAL_H
2 #define SERIAL_H
3
4 // **

5 // Function prototypes

6 // **

7 void USART_init(void);
8 int uart_putchar(char c, FILE *stream);
9

10 #endif // SERIAL_H

Listing F.19: twislave.c

1 #include <avr/io.h>

220

2 #include <stdio.h>
3 #include <util/delay.h>
4 #include "battery.h"
5 #include "main.h"
6 #include "twi_slave.h"
7
8 /* Initalizes TWI slave driver structure.

9 *

10 * Initialize the instance of the TWI Slave

11 * and set the appropriate values.

12 *

13 * twi:

14 * The TWI_Slave_t struct instance.

15 * module:

16 * Pointer to the TWI module.

17 * processDataFunction:

18 * Pointer to the function that

19 * handles incoming data.

20 */

21 void TWI_SlaveInitializeDriver(
22 TWI_Slave_t *twi ,
23 TWI_t *module ,
24 void (* processDataFunction) (void))
25 {
26 twi ->interface = module;
27 twi ->Process_Data = processDataFunction;
28 twi ->bytesReceived = 0;
29 twi ->bytesSent = 0;
30 twi ->status = TWIS_STATUS_READY;
31 twi ->result = TWIS_RESULT_UNKNOWN;
32 twi ->abort = false;
33 }
34
35
36 /* Initialize the TWI module.

37 *

38 * Enables interrupts on address recognition

39 * and data available. Remember to enable interrupts

40 * globally from the main application.

41 *

42 * twi:

43 * The TWI_Slave_t struct instance.

44 * address:

45 * Slave address for this module.

46 * intLevel:

47 * Interrupt level for the TWI slave ISR.

48 */

49 void TWI_SlaveInitializeModule(
50 TWI_Slave_t *twi ,

221

51 uint8_t address ,
52 TWI_SLAVE_INTLVL_t

intLevel)
53 {
54 twi ->interface ->SLAVE.CTRLA = intLevel |
55 TWI_SLAVE_DIEN_bm |
56 TWI_SLAVE_APIEN_bm |
57 TWI_SLAVE_ENABLE_bm;
58
59 twi ->interface ->MASTER.CTRLA &= 0;
60 twi ->interface ->SLAVE.ADDR = (address <<1);
61 }
62
63
64 /* Common TWI slave interrupt service routine.

65 *

66 * Handles all TWI transactions and responses to

67 * address match , data reception , data transmission ,

68 * bus error and data collision.

69 *

70 * twi:

71 * The TWI_Slave_t struct instance.

72 */

73 void TWI_SlaveInterruptHandler(TWI_Slave_t *twi)
74 {
75 uint8_t currentStatus = twi ->interface ->SLAVE.STATUS;
76
77 /* If bus error. */

78 if (currentStatus & TWI_SLAVE_BUSERR_bm) {
79 twi ->bytesReceived = 0;
80 twi ->bytesSent = 0;
81 twi ->result = TWIS_RESULT_BUS_ERROR;
82 twi ->status = TWIS_STATUS_READY;
83 }
84
85 /* If transmit collision. */

86 else if (currentStatus & TWI_SLAVE_COLL_bm) {
87 twi ->bytesReceived = 0;
88 twi ->bytesSent = 0;
89 twi ->result = TWIS_RESULT_TRANSMIT_COLLISION;
90 twi ->status = TWIS_STATUS_READY;
91 }
92
93 /* If address match. */

94 else if ((currentStatus & TWI_SLAVE_APIF_bm) &&
95 (currentStatus & TWI_SLAVE_AP_bm)) {
96 TWI_SlaveAddressMatchHandler(twi);
97 }
98

222

99 /* If stop (only enabled through slave read

transaction). */

100 else if (currentStatus & TWI_SLAVE_APIF_bm) {
101 TWI_SlaveStopHandler(twi);
102 }
103
104 /* If data interrupt. */

105 else if (currentStatus & TWI_SLAVE_DIF_bm) {
106 TWI_SlaveDataHandler(twi);
107 }
108
109 /* If unexpected state. */

110 else {
111 TWI_SlaveTransactionFinished(
112 twi , TWIS_RESULT_FAIL);
113 }
114 }
115
116 /* TWI address match interrupt handler.

117 *

118 * Prepares TWI module for transaction when

119 * an address match occurs.

120 *

121 * twi:

122 * The TWI_Slave_t struct instance.

123 */

124 void TWI_SlaveAddressMatchHandler(TWI_Slave_t *twi)
125 {
126 /* If application signalling need to abort (error

occurred). */

127 if (twi ->abort) {
128 twi ->interface ->SLAVE.CTRLB =
129 TWI_SLAVE_CMD_COMPTRANS_gc;
130 TWI_SlaveTransactionFinished(
131 twi , TWIS_RESULT_ABORTED);
132 twi ->abort = false;
133 } else {
134 twi ->status = TWIS_STATUS_BUSY;
135 twi ->result = TWIS_RESULT_UNKNOWN;
136
137 /* Disable stop interrupt. */

138 uint8_t currentCtrlA =
139 twi ->interface ->SLAVE.CTRLA;
140 twi ->interface ->SLAVE.CTRLA =
141 currentCtrlA & ~TWI_SLAVE_PIEN_bm;
142
143 twi ->bytesReceived = 0;
144 twi ->bytesSent = 0;
145

223

146 /* Send ACK , wait for data interrupt. */

147 twi ->interface ->SLAVE.CTRLB =
148 TWI_SLAVE_CMD_RESPONSE_gc;
149 }
150 }
151
152
153 /* TWI stop condition interrupt handler.

154 *

155 * twi:

156 * The TWI_Slave_t struct instance.

157 */

158 void TWI_SlaveStopHandler(TWI_Slave_t *twi)
159 {
160 /* Disable stop interrupt. */

161 uint8_t currentCtrlA =
162 twi ->interface ->SLAVE.CTRLA;
163 twi ->interface ->SLAVE.CTRLA =
164 currentCtrlA & ~TWI_SLAVE_PIEN_bm;
165
166 /* Clear APIF , according to flowchart don’t ACK or

NACK */

167 uint8_t currentStatus =
168 twi ->interface ->SLAVE.STATUS;
169 twi ->interface ->SLAVE.STATUS =
170 currentStatus | TWI_SLAVE_APIF_bm;
171
172 TWI_SlaveTransactionFinished(twi , TWIS_RESULT_OK);
173 }
174
175 /* TWI data interrupt handler.

176 *

177 * Calls the appropriate slave read or write handler.

178 *

179 * twi:

180 * The TWI_Slave_t struct instance.

181 */

182 void TWI_SlaveDataHandler(TWI_Slave_t *twi)
183 {
184 if (twi ->interface ->SLAVE.STATUS & TWI_SLAVE_DIR_bm)

{
185 TWI_SlaveWriteHandler(twi);
186 } else {
187 TWI_SlaveReadHandler(twi);
188 }
189 }
190
191 /* TWI slave read interrupt handler.

192 *

224

193 * Handles TWI slave read transactions and responses.

194 *

195 * twi:

196 * The TWI_Slave_t struct instance.

197 */

198 void TWI_SlaveReadHandler(TWI_Slave_t *twi)
199 {
200 /* Enable stop interrupt. */

201 uint8_t currentCtrlA = twi ->interface ->SLAVE.CTRLA;
202 twi ->interface ->SLAVE.CTRLA =
203 currentCtrlA | TWI_SLAVE_PIEN_bm;
204
205 /* If free space in buffer. */

206 if (twi ->bytesReceived < TWIS_RECEIVE_BUFFER_SIZE) {
207 /* Fetch data */

208 uint8_t data = twi ->interface ->SLAVE.DATA;
209 twi ->receivedData[twi ->bytesReceived] = data;
210
211 /* Process data. */

212 twi ->Process_Data ();
213
214 twi ->bytesReceived ++;
215
216 /* If application signalling need to abort (error

occurred),

217 * complete transaction and wait for next START.

Otherwise

218 * send ACK and wait for data interrupt.

219 */

220 if (twi ->abort) {
221 twi ->interface ->SLAVE.CTRLB =
222 TWI_SLAVE_CMD_COMPTRANS_gc;
223 TWI_SlaveTransactionFinished(
224 twi , TWIS_RESULT_ABORTED);
225 twi ->abort = false;
226 } else {
227 twi ->interface ->SLAVE.CTRLB =
228 TWI_SLAVE_CMD_RESPONSE_gc;
229 }
230 }
231 /* If buffer overflow , send NACK and wait for next

START. Set

232 * result buffer overflow.

233 */

234 else {
235 twi ->interface ->SLAVE.CTRLB =
236 TWI_SLAVE_ACKACT_bm
237 | TWI_SLAVE_CMD_COMPTRANS_gc;
238 TWI_SlaveTransactionFinished(

225

239 twi , TWIS_RESULT_BUFFER_OVERFLOW);
240 }
241 }
242
243
244 /* TWI slave write interrupt handler.

245 *

246 * Handles TWI slave write transactions and responses.

247 *

248 * twi:

249 * The TWI_Slave_t struct instance.

250 */

251 void TWI_SlaveWriteHandler(TWI_Slave_t *twi)
252 {
253 /* If NACK , slave write transaction finished. */

254 if ((twi ->bytesSent > 0) && (twi ->interface ->SLAVE.
STATUS &

255 TWI_SLAVE_RXACK_bm)) {
256 twi ->interface ->SLAVE.CTRLB =

TWI_SLAVE_CMD_COMPTRANS_gc;
257 TWI_SlaveTransactionFinished(twi , TWIS_RESULT_OK);
258 }
259 /* If ACK , master expects more data. */

260 else {
261 if (twi ->bytesSent < TWIS_SEND_BUFFER_SIZE) {
262 uint8_t data = twi ->sendData[twi ->bytesSent];
263 twi ->interface ->SLAVE.DATA = data;
264 twi ->bytesSent ++;
265
266 /* Send data , wait for data interrupt. */

267 twi ->interface ->SLAVE.CTRLB =
TWI_SLAVE_CMD_RESPONSE_gc;

268 }
269 /* If buffer overflow. */

270 else {
271 twi ->interface ->SLAVE.CTRLB =

TWI_SLAVE_CMD_COMPTRANS_gc;
272 TWI_SlaveTransactionFinished(twi ,

TWIS_RESULT_BUFFER_OVERFLOW);
273 }
274 }
275 }
276
277 /* TWI transaction finished function.

278 *

279 * Prepares module for new transaction.

280 *

281 * twi:

282 * The TWI_Slave_t struct instance.

226

283 * result:

284 * The result of the transaction.

285 */

286 void TWI_SlaveTransactionFinished(
287 TWI_Slave_t *twi , uint8_t result)
288 {
289 twi ->result = result;
290 twi ->status = TWIS_STATUS_READY;
291 }
292
293 /* Telemetry -grabbing function.

294 *

295 * Prepares and fetches sensor -data

296 * for transmission via TWI.

297 *

298 * OBS! Perhaps this method should read the

299 * struct members of each sensor , in order to

300 * reduce the process time spent in the ISR.

301 *

302 * data:

303 * The high - or low byte of a sensor.

304 * info:

305 * The return value converted to mV.

306 */

307 uint8_t GetTelemetry(char data) {
308 uint16_t BV_temp , BT_temp , SAV_temp , SAC_temp;
309 uint8_t info;
310
311 switch(data) {
312 case 0:// BAT_VOLTAGE_HI_BYTE:
313 BV_temp =
314 (BatteryVoltage ())*ADC_TO_MILLIVOLTS;
315 info = ((BV_temp) >> 8);
316 break;
317
318 case 1:// BAT_VOLTAGE_LO_BYTE:
319 info =
320 (BatteryVoltage ())*ADC_TO_MILLIVOLTS;
321 break;
322
323 case 2:// BAT_TEMP_HI_BYTE:
324 BT_temp =
325 (BatteryTemp ())*ADC_TO_MILLIVOLTS;
326 info = ((BT_temp) >> 8);
327 break;
328
329 case 3:// BAT_TEMP_LO_BYTE:
330 info =
331 (BatteryTemp ())*ADC_TO_MILLIVOLTS;

227

332 break;
333
334 case 4:// SA_VOLTAGE_HI_BYTE:
335 SAV_temp =
336 (SolarArrayNSVoltage ())*

ADC_TO_MILLIVOLTS;
337 info = ((SAV_temp) >> 8);
338 break;
339
340 case 5:// SA_VOLTAGE_LO_BYTE:
341 info =
342 (SolarArrayNSVoltage ())*

ADC_TO_MILLIVOLTS;
343 break;
344
345 case 6:// SA_CURRENT_HI_BYTE:
346 SAC_temp =
347 (SolarArrayNSCurrent ())*

ADC_TO_MILLIVOLTS;
348 info = ((SAC_temp) >> 8);
349 break;
350
351 case 7:// SA_CURRENT_LO_BYTE:
352 info =
353 (SolarArrayNSCurrent ())*

ADC_TO_MILLIVOLTS;
354 break;
355
356 default:
357 info = 0;
358 break;
359 }
360 return(info);
361 }

Listing F.20: twislave.h

1 #ifndef TWI_DRIVER_H
2 #define TWI_DRIVER_H
3
4 #include "avr_compiler.h"
5
6 /* Buffer size defines. */

7 #define TWIS_RECEIVE_BUFFER_SIZE 8
8 #define TWIS_SEND_BUFFER_SIZE 8
9 #define TWIS_STATUS_READY 0

10
11 //! Slave address.

12 #define SLAVE_ADDRESS 0x49

228

13
14 /* Transaction status defines.*/

15 #define TWIS_STATUS_READY 0
16 #define TWIS_STATUS_BUSY 1
17
18 #define ADC_TO_MILLIVOLTS 1.820
19
20 #define BAT_VOLTAGE_HI_BYTE 0x80
21 #define BAT_VOLTAGE_LO_BYTE 0x40
22 #define BAT_TEMP_HI_BYTE 0x20
23 #define BAT_TEMP_LO_BYTE 0x10
24 #define SA_VOLTAGE_HI_BYTE 0x08
25 #define SA_VOLTAGE_LO_BYTE 0x04
26 #define SA_CURRENT_HI_BYTE 0x02
27 #define SA_CURRENT_LO_BYTE 0x01
28
29 // ***

30 // TWI struct/enum declarations

31 // ***

32 /* Transaction result enumeration */

33 typedef enum TWIS_RESULT_enum {
34 TWIS_RESULT_UNKNOWN = (0x00 <<0),
35 TWIS_RESULT_OK = (0x01 <<0),
36 TWIS_RESULT_BUFFER_OVERFLOW = (0x02 <<0),
37 TWIS_RESULT_TRANSMIT_COLLISION = (0x03 <<0),
38 TWIS_RESULT_BUS_ERROR = (0x04 <<0),
39 TWIS_RESULT_FAIL = (0x05 <<0),
40 TWIS_RESULT_ABORTED = (0x06 <<0),
41 } TWIS_RESULT_t;
42
43 typedef struct TWI_Slave {
44 // Pointer to what interface to use

45 TWI_t *interface;
46 // Pointer to process data function

47 void (* Process_Data) (void);
48 // Read data

49 register8_t receivedData[TWIS_RECEIVE_BUFFER_SIZE];
50 // Data to write

51 register8_t sendData[TWIS_SEND_BUFFER_SIZE];
52 // Number of bytes received

53 register8_t bytesReceived;
54 // Number of bytes sent

55 register8_t bytesSent;
56 // Status of transaction

57 register8_t status;
58 // Result of transaction

59 register8_t result;
60 // Strobe to abort

61 bool abort;

229

62 } TWI_Slave_t;
63
64 // ***

65 // Function prototypes

66 // ***

67 void TWI_SlaveInitializeDriver(
68 TWI_Slave_t *twi ,
69 TWI_t *module ,
70 void (* processDataFunction) (void));
71
72 void TWI_SlaveInitializeModule(
73 TWI_Slave_t *twi ,
74 uint8_t address ,
75 TWI_SLAVE_INTLVL_t intLevel);
76
77 void TWI_SlaveInterruptHandler(TWI_Slave_t *twi);
78 void TWI_SlaveAddressMatchHandler(TWI_Slave_t *twi);
79 void TWI_SlaveStopHandler(TWI_Slave_t *twi);
80 void TWI_SlaveDataHandler(TWI_Slave_t *twi);
81 void TWI_SlaveReadHandler(TWI_Slave_t *twi);
82 void TWI_SlaveWriteHandler(TWI_Slave_t *twi);
83 void TWI_SlaveTransactionFinished(
84 TWI_Slave_t *twi , uint8_t result);
85 void TWID_SlaveProcessData(void);
86 uint8_t GetTelemetry(char data);
87
88 #endif /* TWI_DRIVER_H */

230

