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Abstract

Music streaming services rely on music recommendation systems to keep users
engaged and shape their musical taste. These systems rely on a combination
of user and item modeling, and are adept at serving relevant recommendations
to users through the analysis of collected data. Streaming services must now
focus on combating user feelings of stagnation and listening fatigue associated with
not receiving exciting and unique recommendations. This thesis proposes that
incorporating elements of groove into a music recommendation system’s features can
produce higher quality and more surprising recommendations by being genre agnostic
while still recommending tracks based on one of the most important characteristics
of music. To accomplish this, a beat tracking and onset detection system was
used to analyze two varieties of percussive source separated audio to quantify
features of groove. These features were then used to sort items into clusters, which
were tested in evaluation sessions to determine if groove could influence quality or
expectedness of recommendations. While the clusters had little effect on quality of
recommendations, participants were consistently reporting items as unexpected and
high quality, showing that recommending items based on features of groove could be
useful in producing more serendipitous recommendations1.

1A blog post version of this this is available on the MCT blog: https://mct-master.github.io/masters-
thesis/2023/12/04/josephcl-groove-thesis.html

i





Contents

0.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . v
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Manuscript Structure . . . . . . . . . . . . . . . . . . . . . . 2

2 Context and Preliminary Background . . . . . . . . . . . . . . . . . . . 3
2.1 Groove . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Understandings of Groove . . . . . . . . . . . . . . . . . 3
2.1.2 Groove Characteristics . . . . . . . . . . . . . . . . . . 3
2.1.3 Measurements of Syncopation . . . . . . . . . . . . . . . 4

2.2 Music Recommendation Systems . . . . . . . . . . . . . . . . . 4
2.2.1 MRS Techniques. . . . . . . . . . . . . . . . . . . . . 4
2.2.2 MRS Components . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Challenges in MRS Research . . . . . . . . . . . . . . . . 6

2.3 Audio Analysis and Processing . . . . . . . . . . . . . . . . . . 8
2.3.1 Musical Source Separation . . . . . . . . . . . . . . . . . 8
2.3.2 Onset Detection . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Beat Tracking . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Audio Analysis Parameters . . . . . . . . . . . . . . . . . 10

2.4 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . 10
3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 ML System . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 Percussive Source Separation and Onset Detection . . . . . . . 13
3.1.2 Groove Feature Extraction . . . . . . . . . . . . . . . . . 13
3.1.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Participant Selection . . . . . . . . . . . . . . . . . . . 15
3.2.2 Test Procedure . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . 15

4 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 17
4.1 ML System . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Song Selection . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Percussive Source Separation . . . . . . . . . . . . . . . 17
4.1.3 Onset Detection and Beat Tracking . . . . . . . . . . . . . . 18
4.1.4 Groove Feature Extraction . . . . . . . . . . . . . . . . . 18
4.1.5 Clustering . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



Contents

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 Onset Detection Initial Test Results . . . . . . . . . . . . . . . . . 19
5.2 Beat Tracking Manual Analysis . . . . . . . . . . . . . . . . . . 20
5.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3.1 Cluster Formation . . . . . . . . . . . . . . . . . . . . 21
5.3.2 Cluster Tendency Analysis . . . . . . . . . . . . . . . . . 22

5.4 Evaluation Session Results . . . . . . . . . . . . . . . . . . . . 23
5.4.1 Quality Results . . . . . . . . . . . . . . . . . . . . . 23
5.4.2 Expectedness Results . . . . . . . . . . . . . . . . . . 26
5.4.3 Serendipity and Anti-Serendipity Per Cluster . . . . . . . . . . 26
5.4.4 True Positives and True Negatives Per Cluster . . . . . . . . . 26
5.4.5 Effects of Serendipity and Anti-Serendipity Against Average Cluster

Quality and Expectedness . . . . . . . . . . . . . . . . . 31
5.4.6 Correlation Between Favorite and Least Favorite Items and Average

Cluster Quality and Expectedness . . . . . . . . . . . . . . 31
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.1 Clustering Method Quality . . . . . . . . . . . . . . . . . 33
6.1.2 Percussive Source Separation Comparison. . . . . . . . . . . 34
6.1.3 Relevant Evaluation Session Comments . . . . . . . . . . . . 34
6.1.4 Evaluation Session Results. . . . . . . . . . . . . . . . . 35

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . 38

6.3.1 Beat Tracking And Onset Detection. . . . . . . . . . . . . . 38
6.3.2 Evaluation Session . . . . . . . . . . . . . . . . . . . . 38
6.3.3 Future Studies . . . . . . . . . . . . . . . . . . . . . 38

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A Beat Bin Test Code. . . . . . . . . . . . . . . . . . . . . . . . . . 47
B Spleeter PSS Script . . . . . . . . . . . . . . . . . . . . . . . . . 49
C Get Onsets and Beats Code . . . . . . . . . . . . . . . . . . . . . . 51

C.1 Get Onsets and Beats Of Librosa PSS Audio . . . . . . . . . . . . . 51
C.2 Get Onsets and Beats Of Spleeter PSS Audio . . . . . . . . . . . . . 52

D Feature Extraction Code . . . . . . . . . . . . . . . . . . . . . . . . 53
E Cluster Formation Code . . . . . . . . . . . . . . . . . . . . . . . . 57

E.1 Form Clusters Using Groove Features Calculated From Librosa PSS Onsets and
Beats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

E.2 Form Clusters Using Groove Features Calculated From Spleeter PSS Onsets and
Beats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

F Evaluation Analysis Code . . . . . . . . . . . . . . . . . . . . . . . 63
G Relevant Evaluation Session Additional Comments. . . . . . . . . . . . . . 77

iv



Preface

0.1 Acknowledgements

I’d first like to thank the Music, Communication and Technology at the University of Oslo
program for welcoming me and providing me with the skills necessary to complete this thesis,
and all of the teachers that helped me along the way. My time in the program would not have
been nearly as enjoyable without the camaraderie and friendship my fellow students in the Music,
Communication and Technology program provided, tusen takk! This thesis benefited greatly
from the guidance of my supervisors, Hans T. Zeiner-Henriksen and Olivier Lartillot, and I’d
like to thank the RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion
and the MIRAGE project for providing me with support throughout my thesis semesters. To
everyone that participated in this thesis study, thank you so much for your time and patience.
Finally, I’d like to thank my family and friends, both in Norway and abroad, for all the support
over these past two and a half years. Ha det, MCT!

v





Chapter 1

Introduction

1.1 Research Motivation

What began as a way to combat piracy and theft in a digital age, music streaming services
have become the predominant way people around the world consume music [1]. Along with the
advent of music streaming services, Music Recommendation Systems (MRSs) became crucial
to the way these services operate by giving them the ability to “help users filter and discover
songs according to their tastes” [2, p. 396].It has also been observed that MRSs play a major
role in developing the tastes and listening habits of users [3]. However, implementing a MRS
comes with a diverse set of challenges for streaming services. Technical challenges that must be
addressed include profiling users, classifying musical items, and finding best practices for serving
new musical items to users [2, p. 397]. Streaming services have accomplished much in addressing
these relatively straightforward issues, but in recent times, more abstract and complex challenges
have arisen. These challenges include combating the fatigue of seemingly infinite choice [4, p.
10] and breaking users out of a “feedback loop,” where MRSs serve technically correct, but
bland and uninspired recommendations to the user [3]. As MRSs push streaming service users
more towards a homogenized listening experience and a socio-technological relationship with
the recommendation system itself [3], recommendations that push users into new discoveries are
necessary to reward long term engagement. In order to do this, MRSs must constantly evolve
by developing new, innovative techniques that utilize different kinds of musical and non-musical
features.

MRSs using many different features and techniques have been tested and studied over the
years. Some of these features do not involve analyzing the musical content of songs themselves,
and instead study features such as the listener’s historical behavior [5], song lyrical content [6],
user grouping [7], emotions and contextual factors [8], [9], motion data using wearable sensors
[9], [10], and mood similarity [11]. Studies that use raw audio data to extract features for a MRS
usually focus on Time-Frequency (TF) analysis, using features such as mel-frequency spectral
coefficients [6], [12], [13] and spectral centroid [13]. More often though, music streaming services
use a hybrid approach that features a healthy mix of musical, non-musical, personal, and social
features to serve recommendations [14, pp. 98–99]. Through their Application Programming
Interface (API), the twelve music recommendation features used by leading music streaming
service Spotify can be viewed [15, p. 238]. These features include metadata such as tempo
and time signatures, as well as proprietary calculations for song features including acousticness,
danceability, and energy [15, p. 240]. It remains unclear how these values are calculated, but
even when describing the characteristics of a song, the basis of these calculations remains overly
technical. For instance, danceability is based upon “tempo, rhythm stability, beat strength, and
overall regularity,” [15, p. 240] while energy is based upon “ dynamic range, perceived loudness,
timbre, onset rate, and general entropy” [15, p. 240]. More focus on using features in MRSs that
describe songs in human-like terms could be the key to breaking MRSs out of their machine-like
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Chapter 1. Introduction

precision and help them deliver more interesting and surprising recommendations to their users.
The theory that this thesis puts forth is that by using features of groove in a music

recommendation system, including pulse, subdivisions, and syncopation [16, pp. 6–9], streaming
services could have the ability to serve more human-like recommendations, since people tend to
recommend music based upon the features of the music itself rather than metadata. To research
this theory, a system was developed that extracted percussive notes from a piece of raw audio
and used those percussive notes as a way to analyze and mathematically calculate features of
groove. Once these groove features were calculated, a Machine Learning (ML) system that
groups similar songs in regards to features of groove was developed to see if this is an effective
lens to serve music recommendations to users. Serving music recommendations based on the
characteristics of groove can present a novel way of predicting user taste in a way that users
would actually be able to understand as opposed to more low level features using TF analysis.
Also, focusing solely on the topic of groove allows the opportunity to determine if introducing
these features to MRSs can combat the feedback loop that they currently struggle with.

1.2 Research Questions

The research questions for this project are as follows:

• How can characteristics of a groove be used to give individualized music recommendations
to listeners?

• What groove characteristics are the most useful for recommending new music to listeners?

• To what extent does recommending music based on groove influence the quality and
expectedness of recommended musical items?

• To what extent does recommending music based on groove influence the serendipity of
recommended musical items?

1.3 Contributions

The main contributions of this thesis are listed below.

• A comparison of the quality of beat tracking and onset detection between audio processed
with harmonic-percussive source separation using median filtering and deep learning drum
source separation.

• The development of a system that groups musical items based upon features of groove.

• A study and analysis on if an underlying groove of a musical item affects quality or
expectedness of items with similar groove features.

1.4 Manuscript Structure

This manuscript will begin in Chapter 2 with the context and relevant background for the
concepts explored in this thesis. The methodology of the research will then be explored in
Chapter 3, along with the design and implementation of the developed system in Chapter 4.
The results from the development of the system and the evaluation sessions are presented in
Chapter 5, concluding with a discussion of the results in Chapter 6 and a conclusive summary
of the thesis in Chapter 7.
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Chapter 2

Context and Preliminary Background

This chapter will provide the requisite knowledge for understanding the concepts, strategies,
and motivations behind this thesis study.

2.1 Groove

This section will explain groove as a concept, exploring different understandings of groove and
describing the features of groove that will form the basis of this thesis, as well as mathematical
approaches to quantifying one of the most important features of groove.

2.1.1 Understandings of Groove

Câmara and Danielsen [16] define the term “groove” in three ways: as a pattern and performance,
as pleasure, and as a state of being. The pattern and performance understanding of groove can
be seen as the rhythmic structure of a style of groove, where patterns and interactions between
rhythmic onsets create a structure for the groove [16, pp. 2–4]. Groove as pleasure is described
as judging the quality of a groove, namely as a “pleasureable drive towards action” [16, pp. 4–5].
Finally, groove as a state of being refers to the euphoric mindset that musicians or listeners find
themselves in when they experience a groove they perceive as good [16, pp. 5–6]. For the
purpose of this thesis, only groove as pattern and performance is considered due to its more
analytical nature as opposed to the other, more abstract understandings of groove.

2.1.2 Groove Characteristics

Câmara and Danielsen [16] break down the characteristics of groove-based music into five
features: pulse, subdivisions, syncopation, counter-rhythm, and microrhythm. The pulse of
the groove is defined as the steady beat that keeps the groove going, acting as the foundation to
add other groove characteristics on top of [16, pp. 6–7]. The subdivisions of a beat are defined as
the notes played at faster metrical levels than the beat, which are generally considered necessary
to establish a groove and give a sense of drive to the groove [16, pp. 7–8]. Syncopation enhances
a groove by temporarily displacing the normal accent of the meter, and is considered to be the
most important element in defining a style of groove [16, pp. 8–9]. Counter-rhythm is defined
as “momentary instances of cross-rhythm or systematic off-beat rhythm whose ultimate purpose
is to destabilize, but not fundamentally challenge, the main pulse” [16, pp. 9–10]. Finally,
microrhythm is defined as a slight deviation from the meter in the order of milliseconds that
helps to make the groove more dynamic and is more often felt rather than implicitly heard [16,
p. 10]. In this thesis, pulse, subdivisions, and syncopation are the characteristics that will be
focused on.
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Chapter 2. Context and Preliminary Background

2.1.3 Measurements of Syncopation

As perhaps the most defining feature of a groove, measuring syncopation mathematically is an
important challenge to express the groove of a rhythmic pattern. Gomez et al. [17] define three
mathematical values that can be used to measure syncopation: off-beatness, Keith’s measure,
and Weighted Note-to-Beat Distance (WNBD).

Off-beatness is defined as when an onset is detected that does not belong in any rhythm in
the 12-unit time span [17]. In regards to Table 3.1, an onset would be considered off-beat if
it was placed in the 1, 5, 7, or 11 unit bin (see section 3.1.2). Therefore, the measure of the
off-beatness of a rhythm is the number of off-beat onsets divided by the total number of off-beat
unit bins.

Keith’s measure is defined as a way to quantify hesitation, anticipation, and syncopation
between different notes [17]. Unlike the off-beatness measure, these three events require both
the beginning and the end of a note to calculate the value of Keith’s measure [17]. Hesitation
is defined as when a note starts on an on-beat and ends on an off-beat, anticipation as a note
starting on an off-beat and ending on an on-beat, and syncopation as when the note starts and
stops on an off-beat [17]. Each note is then given a value between 0 and 3: 0 for no event, 1 for
hesitation, 2 for anticipation, and 3 for syncopation [17].

WNBD is a way to measure syncopation based on distance between notes [17]. To find the
WNBD of a note, the T(x) value, which equals the minimum distance between the note and the
previous or next pulse as a fraction, must first be defined [17]. If the beat occurs on a pulse,
the WNBD is 0 [17]. If not, the WNBD value is then defined in relation to the end of the beat,
which is considered to be the start of the next beat [17]. If the beat ends before the next pulse,
on the next pulse, or any time after the next two pulses, Equation 2.1 is used [17].

WNBD = 1/T (x) (2.1)

If the beat ends between after the next pulse, but before or on the pulse after the next pulse,
Equation 2.2 is used [17].

WNBD = 2/T (x) (2.2)

Due to the T(x) value being the denominator for all WNBD values, more weight is given to
notes closer to pulses, without occurring on a pulse [17]. Also, the numerator is larger when the
end of the note crosses over a single pulse due to the feeling of syncopation being stronger in
this case [17].

2.2 Music Recommendation Systems

This section will provide relevant background on MRSs, including how the major streaming
services serve recommendations to their users, evaluation techniques and criteria for MRSs, and
current challenges in the field of study.

2.2.1 MRS Techniques

In [18], Paul and Kundu outline the five most common forms of music recommendation:
collaborative filtering, content-based filtering, metadata-based filtering, emotion-based filtering,
and the context-based model. This section will describe each of these techniques and list the
pros and cons of using these techniques in a MRS.
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2.2. Music Recommendation Systems

Collaborative Filtering

The collaborative filtering method serves recommendations to a user based upon the similarity of
their item ratings to other users [18, pp. 280–281]. Items ratings can either be explicit numerical
ratings or implicit ratings based upon the behavior of a user on the streaming platform [18, p.
281]. While analyzing user behavior is useful for serving recommendations, this filtering method
suffers when there are too few users to analyze and too few ratings on an item, which is known
as the cold start problem (see section 2.2.3) [18, p. 281].

Content-Based Filtering

In the content-based filtering method, features are extracted from musical items through either
programmatic or manual analysis, and are then used to match items to users who typically
rate items with similar features highly [18, p. 281]. To compute similarity, algorithms such as
k-means clustering (see section 2.4) can be employed [18, p. 281]. A major advantage of this
approach compared to collaborative filtering is that the cold start problem is solved, since it
recommends items solely based on the features of an item [18, p. 281]. However, it fails to take
into account differences in songs for features that are not analyzed, and it is a challenge to make
sure the item model is correct without extensive testing [18, p. 281].

Metadata Based Filtering

The metadata based filtering method uses basic song information to serve recommendations to
users without taking into account the user profile [18, p. 282]. This technique generally produces
poor results due to the shallow nature of metadata features, but can be improved through using
a hybrid approach with other filtering techniques [18, pp. 282–283].

Emotion Based Filtering

The emotion based filtering technique attempts to filter using the emotions that a musical item
inspires [18, p. 282]. While the satisfaction of having musical items that match a user’s emotions
is high and much research is ongoing in this sector, the manual labor to label each song is time
consuming and prone to error due to the emotional ambiguity between different users [18, p.
282].

Context-Based Model

The context-based model method focuses on the context surrounding the song and examines
how the musical item is perceived by the public and what users in the same area are listening to
[18, pp. 282–283]. Recommendations are served based upon a user’s information and compares
it to what other users like them are saying on social media websites or other users in a similar
location [18, pp. 282–283]. In a non-hybrid approach, the context-based model is one of the
most effective ways to serve recommendations due to the low amount of data necessary to serve
relevant recommendations [18, pp. 282–283].

2.2.2 MRS Components

Song et al. [2] break down the components of a MRS into three elements: users, items, and
user-item matching algorithms [2, p. 397]. This section will explain the importance and details
of user and item modeling, which are the most relevant to this thesis.

5



Chapter 2. Context and Preliminary Background

User Modeling

Making a model of a user is important since studies have shown that user personality is strongly
linked to musical preference [2, p. 397]. In order to properly profile a MRS user, one must
take into account both a user profile and a user experience [2, p. 397]. A user profile model
can be simply broken down into demographic, geographic, stable psychographic, and fluid
psychographic data, while a user listening experience model attempts to classify a user according
to musical expertise as either a savant, enthusiastic, casual, or indifferent user [2, pp. 397–398].

Item Profiling

Similarly to modeling a user, each item in a MRS must be modeled as well. This is typically
done by using three styles of metadata: editorial, cultural, and acoustic [2, p. 398]. Editorial
metadata is simple information about an item that is acquired by an editor, and is usually
employed in metadata information retrieval tasks [2, pp. 398–399]. Cultural metadata comes
from external research about patterns in music, and is mainly used in context-based information
retrieval [2, pp. 398–399]. Finally, acoustic metadata are features that are retrieved from the
audio analysis of an item, and are how most MRSs serve content-based recommendations [2, pp.
398–399].

2.2.3 Challenges in MRS Research

According to Schiedl et al. [14], current challenges in contemporary MRS research include
creating a proper evaluation strategy and registering new users in the system. This section will
explain these problems as it relates to this thesis, and will discuss approaches towards solving
these problems.

MRS Evaluation Metrics

While accuracy related evaluations are common and well documented, an evaluation strategy
for MRSs must include additional, novel measures, such as utility and surprise. Therefore,
measures for evaluating MRSs can be defined as either standard Music Information Retrieval
(MIR) methods or beyond-accuracy measures, due to their difficulty to describe mathematically
[14], [19]. Two standard MIR metrics used to evaluate the prediction power of MRSs, Mean
Absolute Error (MAE) and Root-Mean-Square Error (RMSE) calculate the difference between
the predicted rating and the actual rating of a specified number of items for a specific user,
but RMSE differs from MAE by penalizing larger differences between the predicted and actual
rating more than MAE. MAE and RMSE can be calculated in equations 2.3 and 2.4, respectively,
where i is the item, u is the user, ru,i is the actual rating, and r̂u,i is the predicted rating.

MAE = 1
|T |

∑
ru,i∈T

|ru,i − r̂u,i| (2.3)

RMSE =
√√√√ 1

|T |
∑

ru,i∈T

(ru,i − r̂u,i)2 (2.4)

A scenario Schiedl et al. [14] does not mention is if the prediction power of the MRS needs
to be evaluated, but an expected value does not exist. In this scenario, the data can be analyzed
using the standard deviation, which is the measure of the variance of a data set [20]. Equation
2.5 shows the equation for the standard deviation of a data set, where xi is a value in a data
set, xavg is the average value of all items in the data set, and n is the number of items in the
data set, and ddof is the delta degrees of freedom [21], [22].

6



2.2. Music Recommendation Systems

std =
√∑

(xi − xavg)2

n − ddof
(2.5)

An example of a beyond-accuracy metric is serendipity, which “aims at evaluating MRS
based on the relevant and surprising recommendations” [14, p. 105]. Measuring serendipity
according to unexpectedness mixed with the relevance of an item was first proposed by Ge et
al. [23, p. 259]. A version of this equation, provided by Schedl et al. [14, p. 105] is calculated
using equation 2.6, u is a user, Lu is the list of items recommended to a user, Lunexp

u is the list
of items labeled unexpected by the user, and Luseful

u is the list of items labeled useful by the
user. Useful items are usually found by either asking the user or using a rating to interpret the
usefulness of an item, while unexpected items are usually found by finding the distance between
an item and an expected item, which can be thought of as an item already rated by a user [14,
p. 105].

serendipity(Lu) = |Lunexp
u ∩ Luseful

u |
|Lu|

(2.6)

Zhang et al. [24] have proposed a measure of unserendipity based upon the similarity of a
new recommendation and a user’s history. However, a measure that appears to be overlooked
by literature on the topic is the measure of an item being not useful but expected, henceforth
referred to as anti-serendipity. The concept of anti-serendipity has previously been examined by
Cooper and Prager [25] in relation to identifying unimportant or irrelevant digital documents.
Similarly, a problem in MRSs is the tendency to recommend repetitive content contributing to
fatigue and criticism from users [26]. Anti-serendipity can therefore be thought of as the polar
opposite of serendipity, measuring how likely a MRS is to recommend irrelevant content that
does not surprise. It can be calculated using equation 2.7, where Lexp

u is the list of items labeled
expected by the user, and Lnotuseful

u is the list of items labeled not useful by the user.

anti − serendipity(Lu) = |Lexp
u ∩ Lnotuseful

u |
|Lu|

(2.7)

Cold Start

A current challenge in MRS design is how to integrate new users or new musical items to
the service, which Schiedl et al. [14] defines as the cold start problem. There are four main
approaches used by the industry to solve this problem: content-based approaches, hybridization,
cross-domain recommendation, and active learning [14, p. 98]. As described in section 2.2.1,
content-based approaches serve recommendations solely based on the preferences given by the
current user, which only addresses the problem of a new user and not new musical items
[14, p. 98], [18, p. 281]. To solve this issue, acoustic features of new items are analyzed
either automatically or manually, which are in turn used to predict the preference of a new
user [14, p. 98]. A limitation of this approach is the fact that the same acoustic features
tend to be used, while studies such as the one performed in [27] show that different acoustic
properties affect user taste in individualized ways [14, p. 99]. Hybridization is defined as a dual
approach, using a combination of a content-based recommender for analyzing acoustic properties
and a collaborative filtering recommender using information from other users [14, pp. 98–99].
While there are usually benefits in a hybrid approach, the approach is often overly complex to
understand and computationally heavy [14, p. 99]. Cross-domain recommendation is explained
as using information from a different domain, such as a user’s personality, in order to improve
results in the MRS domain [14, p. 99]. An obvious problem with this approach is the lack of
good quality and easily accessible datasets that could effectively link musical taste to another
domain [14, p. 99]. Finally, active learning is a system that learns from its active users to
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continuously improve and find better recommendations given specific user feedback [14, p. 99].
Major issues with active learning are the lack of a personalized approach to this approach’s black
box model, and the need to integrate user interfaces and profiles in order to assist in solving
this problem, creating more work in the process [14, pp. 99–100].

2.3 Audio Analysis and Processing

This section will describe the process of finding beats and onsets of percussive elements in audio
files, including the process of separating percussive elements from a piece of raw audio.

2.3.1 Musical Source Separation

A typical source separation problem involves extracting a set of independent signals from a
combination of signals [28]. Musical source separation involves separating independent signals
in a piece of raw audio, which presents a more challenging problem since recording, mixing, and
production parameters are prone to change between audio files and sometimes within the same
audio file [29, p. 31]. This process can be particularly helpful in the process of beat tracking
and onset detection due to the ability to remove the harmonic signals that act as interference
in these processes [30, p. 148]. This section will outline two methods to achieve musical source
separation for those tasks: using Harmonic-Percussive Source Separation (HPSS) and using deep
neural network tools.

Harmonic-Percussive Source Separation

Musical sources are usually broken down into harmonic, percussive, or vocal sources [29, p.
32]. The goal of HPSS is to separate the pitched, or harmonic, instruments from the percussive
instruments [29, p. 32]. One technique to achieve HPSS involves finding percussive audio by
finding a section in an audio file with noisy phase behavior [31]. This section will focus on a
more common HPSS method using median filtering, developed by Fitzgerald [32].

The median filtering technique for HPSS was developed in an attempt to create an approach
for HPSS that required no pretraining and was less processor and memory intensive than a
previously developed approach using tensor factorization [32, p. 1], [33]. The basis of this
technique was inspired by Ono et al. [34], who had previously determined that horizontal ridges
on a spectrogram corresponded to harmonic components (see Figure 2.1) and vertical ridges
corresponded to percussive components (see Figure 2.2) [32, p. 1]. Using this information, a
cost function that emphasizes horizontal lines while backgrounding vertical lines for harmonic
components, and vice versa for percussive components, was developed [32, pp. 1–2]. Next,
a median filtering process takes place [32, p. 2]. Median filters, which are commonly used
for signal processing tasks with wide spectrums and sharp edges on signals [35], operate by
“replacing a given sample in a signal by the median of the signal values in a window around the
sample” [32, p. 2]. By viewing harmonic components as outliers in the percussive spectrum and
percussive components as outliers in the harmonic spectrum, median filters are used horizontally
and vertically to smooth out spikes in harmonic and percussive events, which finally outputs
Harmonic Source Separated (HSS) and Percussive Source Separated (PSS) audio [32, pp. 2–3].
This method is quite efficient as tests have shown that two passes of the median filter, one
horizontally and one vertically, are sufficient to output high quality HSS and PSS audio [32, p.
3].

Spleeter

Approaches towards musical source separation using ML and deep learning neural networks
have become popular in recent years [36]. One of the best open source tools for musical source
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Figure 2.1: Mel-frequency spectrogram of an audio file with only percussive elements.

Figure 2.2: Mel-frequency spectrogram of an audio file with only harmonic elements.

9



Chapter 2. Context and Preliminary Background

separation is Spleeter [36], developed by Hennequin et al. [37]. Spleeter gives users the ability to
split audio files into different stems using one of three pre-trained models: a two stem model for
vocals and instrumentals, a four stem model for vocals, drums, bass, and other instrumentation,
and a five stem model for vocals, drums, bass, piano, and other instrumentation [37]. While
using neural networks is more time consuming than an HPSS based approach, an upside of using
Spleeter as opposed to other state of the art software such as open-unmix [38] is its relative time
efficiency [37]. Spleeter is able to process 100 seconds of audio every second while still producing
competitive signal quality in terms of minimizing interference, distortion, and artifacts [37, pp.
2–3].

2.3.2 Onset Detection

Bello et al. [39] describes an ideal single note as containing an attack, transient, onset, and
decay. To understand onset detection, the concepts of attacks, transients, and onsets must first
be understood. An attack is when the amplitude envelope of a note increases, a transient is
when an interval of a signal evolves in an unpredictable way, and an onset is the instance when
a transient is detected [39, pp. 1035–1036]. A typical onset detection algorithm processes the
original audio signal two or three times [39, p. 1036]. These stages are an optional pre-processing
stage to improve performance, a reduction stage which turns the signal into a detection function
that highlights the transients, and a peak-picking stage to find the onsets which peak above a
certain threshold [39, p. 1036].

2.3.3 Beat Tracking

A beat is defined in this thesis as an estimation of the steady pulse of an audio file. The standard
algorithm for beat tracking, developed by Ellis [40], attempts to reconcile the conditions of
placing a beat where an onset is detected while maintaining an inter-beat-interval with regular
spacing between beats. This is accomplished by first converting audio files into an onset strength
envelope, which shows the best candidates for beats where the onset strength is highest [40, pp.
52–53]. Using the onset strength envelope, tempo of the audio file is then estimated using an
autocorrelation equation that biases the tempo towards 120 beats per minute [40, pp. 53–54].
To maximize the onset strength and inter-beat-interval consistency, a dynamic programming
approach, first developed by Bellman [41], is used [40, pp. 51–53]. It is worth noting that
this technique has some limitations. Due to the reliance on a constant tempo for the dynamic
programming equation, non-constant tempos are not accommodated in this approach [40, p.
58]. Also, this approach achieves a beat accuracy of around 60% in tests with the state of the
art beat tracking training data set, meaning it can still frequently be prone to error despite a
relatively high degree of accuracy [40, p. 51].

2.3.4 Audio Analysis Parameters

Audio analysis functions, including onset detection and beat tracking, typically need certain
parameters that provide necessary information about the audio and help fine tune the analysis.
Two of those parameters are the sampling rate, which is the frequency in Hz of the audio signal,
and the hop length, which is the size of the frames that are used to analyze a signal [42, p. 19].

2.4 K-means Clustering

Jain et al. define data clustering as the “unsupervised classification of patterns (observations,
data items, or feature vectors) into groups (clusters)” [43, p. 264]. A clustering task must
first initiate pattern representation, which references the number and type of patterns in the
clustering process [43, p. 266]. To accomplish this, a data clustering algorithm could use feature
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selection, which determines the best features to cluster the data according to, feature extraction,
which transforms input data into new features for the clustering algorithm, or a combination of
both [43, p. 267]. Next, a distance function is used to determine the similarity of two different
patterns in a process called pattern proximity [43, p. 267]. As the final required step in the
clustering process, the data then undergoes grouping using different techniques, including the
k-means clustering technique used in this thesis [43, p. 267]. Optionally, the clustering process
may include data abstraction, which involves defining a simplified version of a larger data set
[43, p. 267]. Analysis of cluster quality can include cluster tendency, which is the analysis of the
data itself to determine if clustering is an appropriate method to group data points, and cluster
validity, which is the subjective analysis of the quality of clusters produced [43, pp. 267–268].

Clustering algorithms can be defined as partitional, hierarchical, artificial system, kernel-
based, and sequential [44]. One of the most predominant categories are partitional algorithms,
which aim to acquire a single partition of a data set where all clusters are found at the same
time [43, p. 278]. These algorithms stand in contrast to hierarchical algorithms, which produce
nested clusters which represent the levels at which cluster groups differ [43, p. 275]. K-means
clustering belongs to a sub-group of partitional algorithms known as squared error algorithms,
which attempts to minimize the squared error for a cluster [43, p. 278]. This is done using the
equation 2.8, where L is a clustering, R is a pattern set, K is the number of clusters, xj

i is the
ith pattern in the jth cluster, and cj is the centroid of the jth cluster. [43, p. 278].

e2(R, L) =
K∑

j=1

nj∑
i=1

|xj
i − cj |2 (2.8)

The k-means clustering algorithm begins by selecting k cluster centers, assigning each point in
a data set to a cluster by finding the nearest cluster center to each point using the aforementioned
squared error function, and redefining the center of each cluster based upon the formed clusters
[43, pp. 278–279]. Next, these clusters are examined for a convergence criterion, which is usually
examining either the decrease of squared error in each cluster or the number of reassignments
of data points to new clusters [43, p. 279]. Until the convergence criterion is met, new clusters
and cluster centers are found using the previously computed cluster centers [43, p. 279]. The
standard algorithm used for k-means clustering is Lloyd’s algorithm [45], [46].

An optimal k number of clusters for a data set can be found using a variety of techniques,
including the elbow and silhouette method [47]. The elbow method is a visual based technique,
where each consecutive k value is plot along the x axis, with the y axis being a cost function
relating to the distance between data points and cluster centers, such as the sum of squared
errors [47, p. 92], [48]. The k value at which the cost function drops dramatically before leveling
off is known as the elbow point, and represents the optimal k value to use [47, p. 92]. A
downside of the elbow method is that elbow points can sometimes be ambiguous [47, p. 92].
The silhouette method, an approach that compares the distance between points in a cluster
with the distance between clusters, can be used either as a more consistent alternative [49] or
in conjunction with the elbow method to find the optimal k value [47, p. 93]. This method
calculates the silhouette width s(i) using equation 2.9 where i is a piece of data in the data set,
a(i) is the average distance between i and all other pieces of data in its cluster, and b(i) is the
minimum of the average distances between i and all other pieces of data in every cluster besides
the one it belongs to [47, p. 94]. The k value that returns the largest average silhouette width
value for all data points can then be declared the optimal number of clusters for the data set
[47, p. 94].

s(i) = b(i) − a(i)
max(a(i), b(i)) (2.9)

The k-means algorithm is a popular option for solving clustering problems due to its relative
ease of implementation and its computational efficiency [43, p. 278]. In terms of big O notation,
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which according to Chivers and Sleightholme is a method to communicate the efficiency of an
algorithm based upon the data set it works on [50, pp. 359–360], the k-means algorithm achieves
O(n), or linear, efficiency [43, p. 278].
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Chapter 3

Methodology

This section will describe the design of the ML system used to extract groove features from raw
audio, as well as the design of the evaluation of this system.

3.1 ML System

The ML system developed for this thesis is based on detecting onsets and beats in raw audio files
and quantifying those values into values representing groove features. Once the groove features
were quantified, they were used as features in a k-means clustering algorithm that sorts the
audio files into clusters with similar grooves. This section will describe in detail the process to
accomplish this system.

3.1.1 Percussive Source Separation and Onset Detection

The first task of developing this system is to process the selected audio files and extract each
onset in preparation to analyze the groove characteristics. While harmonic elements may contain
elements of groove, only the percussive groove of the musical item was analyzed in order to
simplify data. Each analyzed musical item was processed to isolate only the drums using different
PSS techniques to ensure that onset detection is as accurate as possible. These different PSS
techniques were then compared using a test track with manually added percussive notes to
determine which PSS techniques should be tested going forward. The results of this test are
reported in section 5.1.

3.1.2 Groove Feature Extraction

Of the aforementioned five features of groove, three of them were focused on when extracting
groove features from musical items: syncopation, pulse, and subdivisions. Once the onsets and
beats of an item were found, a program was written to assign values to each of the aforementioned
components of groove using the calculated beats and onsets. For every beat besides the last
beat, the time between the current beat and the next beat is calculated and divided by 12,
which represents the total amount of time for each beat bin. Since onsets are the start of a
pulse, they have a tendency to fall slightly before the intended beat. Therefore, the beat bin
time divided by 2 before and after a beat bin divider is analyzed for each beat bin. If an onset
is found within this time, the corresponding beat bin then increases the number of onsets found
by 1. This also filters out duplicate onsets in case the onset detection function found multiple
onsets within the same time frame of a beat bin. Finally, once all beats are analyzed, the data
collection can begin.
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Beat subdivisions in a 12-unit time span
Rhythm 0 1 2 3 4 5 6 7 8 9 10 11

Fourth Note x
Eighth Note x x

Sixteenth Note x x x x
Eighth Note Triplet x x x

Sixteenth Note Triplet x x x x x x
Off Beat x x x x

Table 3.1: Rhythms in a 12-unit time span.

Measuring Pulse and Subdivision

Each beat for all musical items in this project is defined in a 12-unit time span, which allows
groupings based on two, three, four, and six units. Table 3.1 shows the different rhythms that
were analyzed for each item and which unit the onset needs to fall on in order to be on-beat for
that specific rhythm, which is represented by an x.

The fourth note rhythm can be considered the pulse of the beat, while all other unit divisions
besides those marked "off beat" are the subdivisions. After all the onset beat bin totals were
found, the number of times an onset appears in an on-beat bin for each rhythm is divided
by the total number of onsets found for all beat bins to normalize their values. These values
numerically represent the likelihood of an onset in a rhythm being played across all onsets in
the song segment. The normalized values for pulse, eighth notes, sixteenth notes, eighth note
triplets, and sixteenth note triplets are then used as features in the ML system.

Measuring Syncopation

As previously mentioned in section 2.1.3, off-beatness was measured by finding the number
of pulses in the off-beat bins, corresponding to bins 1, 5, 7, and 11 on table 3.1. WNBD
was calculated using the method described in Section 2.1.3, with the beats being the beats
calculated by the beat tracking algorithm and the pulses being the onsets detected. Between
Keith’s measure and WNBD, only WNBD was considered as a feature in the ML system. This
is due to the more arbitrary nature of Keith’s measure in assigning values of syncopation, as
well as a study conducted by Gomez et al. where it was found results of Keith’s measure to
be effectively similar to a measure of off-beatness through finding that their p-values obtained
through rank correlation analysis are very close to each other [51, pp. 8–9]. Therefore, the two
features used to represent syncopation were decided to be off-beatness and WNBD.

3.1.3 Clustering

Next, a ML, k-means clustering algorithm was created in order to cluster items together based
upon similar groove features. The number of clusters were determined through manual analysis
using the elbow and silhouette methods, as well as analyzing the resulting sizes of the clusters
to make sure they were relatively even. To determine the cluster validity, the six most central
tracks of each cluster were examined in a cluster tendency analysis in order to determine if the
percussive elements have groove characteristics in common. This manual analysis is presented
in section 5.3.2.

3.2 Evaluation

This section will describe the structure of the evaluation sessions for the ML system as well as
how data was collected and analyzed.
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3.2.1 Participant Selection

A total of 18 participants were selected for this study. Diverse perspectives on music is desired
for the participants in this evaluation to test the robustness of the MRSs. Because of this,
personal information was not considered during participant selection for this evaluation in order
to focus purely on the musical taste of the participant. Likewise, no personal information was
collected in the analysis of the MRSs in an attempt to make this test a purely content-based
approach.

3.2.2 Test Procedure

The evaluation session consists of a participant listening to multiple 30 second segments of songs.
Each of these items are one of the six closest items to the centroids of either a Librosa PSS cluster
or a Spleeter PSS cluster, since these can be considered the most representative items of each
cluster. Therefore the number of items each participant listens to is equal to six times the
number of Librosa PSS and Spleeter PSS clusters formed by the ML system. All six of the
items belonging to the same cluster are played in a row, with the first section of the test playing
items from the Librosa PSS clusters and the second section playing items from the Spleeter PSS
clusters. In order for participants to know when a musical item started and stopped and to give
enough time for the participant to enter their responses, two seconds of silence were added after
the end of each track.

The participants then rank these musical items on two different seven point Likert scales
[52]. The first scale determines the participant’s subjective enjoyment of the track, with 1
corresponding to “extreme dislike” and 7 corresponding to “extreme like.” The second scale
determines how likely the participant would be to listen to the track, or in other words how
expected the item was, with one corresponding to “extremely unlikely” and seven corresponding
to “extremely likely.” The words “extreme” and “extremely” on each end of the scale were used
in order to establish bipolarity within the participant’s response [53]. At the end of the test,
the participants were asked to state their most and least liked items in the selection in order to
represent the extremes of each participant’s taste, and finally were asked for additional comments
about the test if they had any. Essentially, this test functions as an extended content-based cold
start test to determine which clusters match the user’s taste the most, but instead of analyzing
total quality, cluster item similarity was analyzed, as described in the next section.

3.2.3 Data Analysis

To evaluate the similarity of the quality and expectedness of items in a particular cluster, the
standard deviation was calculated between the six evaluated tracks in every cluster for every
participant for both quality and expectedness values. Since the goal of the system is to have
the quality values of each cluster be relatively the same, standard deviations for the quality
ratings that are closer to 0 are more desirable. However, high or low values for the standard
deviation of expectedness values are not considered to be good or bad, but rather indicate how
consistently clusters serve expected or unexpected items. For both calculations, the delta degrees
of freedom was equal to 1, since this has been shown to help correct smaller sample sizes, and
with a sample size of six for each cluster the sample size can be considered sufficiently small
[54]. Also, the clusters of items that the participant labeled their favorite and least favorite were
analyzed to determine if those clusters have higher or lower average quality and expectedness
values compared to all other clusters. The accuracy measures MAE and RMSE were considered
for analysis, but were not calculated for either quality or expectedness on account of there not
being an expected value for any of these tracks for each user.

Furthermore, the beyond-accuracy measures serendipity and anti-serendipity were also
analyzed. Tracks that a user rates 1 to 3 on the quality scale were labeled not useful, while
tracks rated 5 to 7 on the quality scale were labeled useful. Similarly, tracks rated 1 to 3 on
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the expected scale were labeled unexpected and tracks rated 5 to 7 were labeled expected. Any
item a user rates a 4 on the quality or expected scale were excluded from these measures due
to the implied neutrality of the participant. If an item is labeled useful and unexpected, the
cluster is marked as containing a serendipitous track, and if an item is labeled not useful and
expected, the cluster is marked as containing an anti-serendipitous track. As a supplement,
tracks that were labeled not useful and unexpected, henceforth referred to as true negatives, as
well as tracks labeled useful and expected, henceforth referred to as true positives, were also
labeled.

To analyze these beyond accuracy measures, the total number of accounts of serendipity, anti-
serendipity, true positives, and true negatives across all users for each cluster will be examined.
This was done to see if either PSS method recommends more serendipitous or anti-serendipitous
tracks overall, and to see if there was an overall even distribution of true positive and true
negative tracks, which indicates a normal distribution of items. Next, the average quality
and expectedness ratings of clusters containing accounts of serendipity or anti-serendipity were
then compared against the average quality and expectedness ratings of all tracks for a given
participant. This analysis was done to see if containing an item that a participant marks
serendipitous or anti-serendipitous has any effect on the average quality or expectedness value
of a cluster.

16



Chapter 4

Design and Implementation

This section will describe how the ML system and evaluation session were implemented and will
list the tools and resources used in all areas of this project.

4.1 ML System

This section will report how the ML system was developed and implemented, and elaborates on
the choices made for the packages, datasets, and tools used.

4.1.1 Song Selection

The audio files used in this project were taken from the Free Music Archive (FMA), developed
by Defferrard et al. [55]. The FMA was developed specifically for MIR tasks due to the lack of
accessible large music datasets available for free use [55]. This ML system will use a subsection
of the dataset named fma_small featuring 8000 30-second segments of the songs in their library,
which other research papers on MRSs have deemed sufficient [56], [57]1. For this thesis, the FMA
was the best fit compared to other datasets due to its large variety of artists which are mainly
non-commercial and thus does not introduce any bias caused by participants having heard the
song previously.

4.1.2 Percussive Source Separation

Spleeter and the Python package Librosa’s HPSS function were used to isolate the percussive
elements in each musical item [37], [58]. These two methods were chosen after testing the onset
and beat detection system using test audio files, which will be elaborated on in Section 5.1.
The code for this initial test can be found in Appendix A2. For Spleeter, the 4stems model was
used to split the item into vocals, bass, drums, and other stems, and proceeded to use only the
drums stem to find beats and onsets. A Python script, which can be viewed in Appendix B3,
was written to call Spleeter for all items in the FMA. For Librosa, the HPSS effect was used,
which performs a short-time Fourier transform to provide information in the frequency domain,
then performs HPSS based upon Fitzgerald’s median filtering approach [32], [59], and finally
performs an inverse short-time Fourier transform to return the final percussive audio [60].

1While this study uses the fma_medium dataset, the study filters the number of files analyzed down to 7000,
making it comparable to the fma_small dataset.

2Also available on GitHub: https://tinyurl.com/4jr6s4vc
3Also available on GitHub: https://tinyurl.com/m6mmr9v7
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4.1.3 Onset Detection and Beat Tracking

Librosa was also used for its beat tracking function, which is inspired by Ellis’s beat tracking
with dynamic programming approach [40], [58], [61], and for its onset detection function. The
hop length of the onset and beat tracking functions are set to 220 samples to maximize both
clarity and time efficiency, and the sample rate of the audio files are 44100 Hz. The code for
this section can be viewed in Appendix C4.

4.1.4 Groove Feature Extraction

Groove features were calculated with a Python script, using the beats and onsets previously
found to quantify pulse, subdivisions, and WNBD. The code for this section can be viewed in
Appendix D5.

4.1.5 Clustering

The Python package Scikit-Learn’s k-means clustering algorithms were used to cluster the data
[62], and uses the default Lloyd’s algorithm [45]. The number of clusters were first decided by
using the elbow and silhouette methods. The elbow method was implemented by repeatedly
running the clustering function with an incremental k value between 2 and 10. Each time the
clustering function is run, the sum of squared distances for all items from its cluster center
is calculated and placed on a graph for manual analysis. For the silhouette method, the
silhouette coefficient is calculated using Scikit-Learn’s built in function using euclidean distance
calculations. The cluster formation process is described in full in section 5.3.1. The code for
this section can be found in Appendix E6.

4.2 Evaluation

The audio file used in the evaluation of this system was created by stitching together song
segments from the FMA into a single audio file using GarageBand. Six Librosa PSS clusters
and five Spleeter PSS clusters were formed (see Section 5.3.1), and six tracks were taken from
each cluster. The overall run time of the evaluation session therefore ran for 35 minutes and
10 seconds7, and participants were instructed to listen to all of the samples in a row without
interruption.

Participants entered their responses on a Google Form, and their responses were later
analyzed using a Python script. The analysis script used the Python package NumPy [63] and
its functions to calculate important values, including mean values [64] and standard deviation
[22], where delta degrees of freedom was equal to 1. The Python analysis script can be found
in Appendix F8. Once all the responses were collected, the Python library Matplotlib [65] was
used to graph various results in a more human readable manner.

4Also available on GitHub: https://tinyurl.com/ywbpsn6h
5Also available on GitHub: https://tinyurl.com/mpv7j27s
6Also available on GitHub: https://tinyurl.com/8kjttcdb
7This file can be downloaded on GitHub: https://tinyurl.com/472h8xcv
8Also available on GitHub: https://tinyurl.com/29j7dy7s
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Results

5.1 Onset Detection Initial Test Results

Four methods were considered to find beats and onsets: using raw audio, PSS audio with Librosa,
PSS audio with Spleeter, and PSS audio with Spleeter and Librosa. To test the accuracy of each
method, two audio tracks were created1. One track featured only drums playing one measure of
notes on the fourth notes, one measure of eight notes, one measure of eighth note triplets, one
measure of sixteenth notes, one measure of sixteenth note triplets, and one measure featuring
all off beats. This makes for a grand total of 80 onsets for the onset detector to find. The
next audio file consists of the same drum pattern, but with additional instrumentation including
bass, synth, and a choir sample to simulate vocals. Both files play at a tempo of 120 beats per
minute, as this is the tempo that beat tracking systems bias towards [40, pp. 53–54]. The results
of each method are found on table 5.1. The tracks with only drums begin with "Just Drums"
and the tracks with full instrumentation begin with "Song," with the audio analyzed marked
by either "Raw Audio," "Librosa PSS Audio," "Spleeter Audio," or "Librosa PSS and Spleeter
Audio" afterwards.

As shown from the table, all methods produced 68.75% to 83.75% accuracy on predicting
where onsets were located using detected beats, putting each well within the standard range
of Ellis’s [40] tests on dynamic beat tracking. The methods that analyzed the tracks with just
drums produced between 71.75% and 73.75% accuracy, with the main issue across all methods
being the prediction of the off-beat onsets. The raw audio and Spleeter PSS methods produced
71.75% accuracy, while the Librosa PSS and the Spleeter with Librosa PSS produced 73.75%
accuracy. This means that for the track with just drums, any method using Librosa PSS was
superior, which stands in contrast to the full instrumentation track test where both methods
using Spleeter were superior.

For the test track with full instrumentation, the best approach was using both Spleeter and
Librosa HPSS at 83.75% accuracy, with the pure Spleeter approach close behind at 78.25%
accuracy. Compared to the pure drum track test, the approaches using Spleeter maintained
around the same level of accuracy for on-beat onsets while fairing much better at detecting off-
beat onsets. The approach using Librosa PSS fared slightly worse than the Spleeter approaches,
scoring only 68.75% accuracy. In fact, the Librosa HPSS approach was less accurate than even
the raw audio approach at 76.25% accuracy. The main difference between these two approaches
was that Librosa HPSS registered slightly more offsets in incorrect locations than the raw audio
approach. However, the Librosa HPSS approach found a total of 77 onsets while the raw audio
approach found a total of 71 onsets, which makes the Librosa HPSS approach’s total onset
count closer to the target than the raw audio approach. Therefore, the two methods selected for
analyzing beats and onsets were using Librosa PSS audio and using Spleeter PSS audio due to

1These files can be downloaded on GitHub: https://tinyurl.com/mr4bvc8a
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target Just
Drums
Raw
Audio

Just
Drums
Librosa
PSS
Audio

Just
Drums
Spleeter
Audio

Just
Drums
Librosa
PSS and
Spleeter
Audio

Song
Raw
Audio

Song
Librosa
PSS
Audio

Song
Spleeter
Audio

Song
Librosa
PSS and
Spleeter
Audio

20 23 23 23 23 23 23 21 20
4 0 0 0 0 0 0 0 0
4 6 6 6 6 4 6 6 6
4 5 4 5 4 4 4 4 5
8 7 8 7 8 8 9 9 8
4 2 2 2 2 2 1 2 4
12 13 13 13 13 13 15 14 12
4 2 2 2 2 2 2 2 2
8 9 9 9 9 7 9 9 9
4 5 5 5 5 5 5 5 5
4 3 3 3 3 3 3 3 3
4 0 0 0 0 0 0 3 3

Accuracy (%) 71.25 73.75 71.25 73.75 76.25 68.75 78.25 83.75

Table 5.1: Initial onset detection and beat tracking test.

the comparable accuracy and to compare and contrast both PSS methods individually in terms
of grouping items with similar grooves together.

5.2 Beat Tracking Manual Analysis

While using the test audio tracks described in Section 5.1 helped to fine tune the onset detection
and beat tracking system, using pieces of audio with various recording qualities, production
styles, and percussive elements can prove to be challenging for beat tracking systems. As was
shown from Ellis’s study [40, p. 51], state of the art beat tracking systems are still only around
60% accurate. In order to analyze the robustness of the beat tracking system using PSS audio
from both methods, manual analysis of a representative sample of tracks in the FMA archive was
performed. The remainder of this section will review this manual analysis to show the different
types of successes and failures in analyzing beats for tracks in the archive2.

Tracks that feature steady, loud, and predominant drum recordings, such as tracks 135365,
135368, and 135372, all do a great job at finding steady, consistent beats for both PSS methods.
However, tracks that do not have these sorts of drums result in all different kinds of undefined
behavior depending on which PSS method was used. For instance, using the Librosa PSS
method, item 135010 features a fairly steady pulse with only a moment of instability in the middle
of the track, tracks 13092 and 135338 speed up and slow down the steady pulse throughout the
duration of the track, item 135054 features no beat but the beat tracking system still finds one,
and item 135363 features a fairly steady beat until vocals appear. Compared to the Spleeter PSS
method, tracks 135010, 135092, and 135363 feature basically no beat at all, while tracks 135338
feature some semblance of a beat, but very off-kilter, and item 135054 has the same behavior
as Librosa PSS method where there is no beat but one is still found, albeit in a completely
different place. Based on the manual review, Librosa PSS handles beat tracking for tracks
without strong drum recordings much better than Spleeter PSS, most likely due to the fact that
Spleeter filters out all non-drum and weak drum sounds in each item so a groove is impossible
to analyze. However, the results for both methods are nowhere near perfect and present a
significant challenge for groove feature extraction moving forward.

2The tracks featured in this manual analysis with clicks that represent the beats detected can be found on
GitHub: https://tinyurl.com/27y626e3 and https://tinyurl.com/2s4kh9za

20



5.3. Clustering

Figure 5.1: The elbow and silhouette method charts for Spleeter PSS clusters.

5.3 Clustering

This section will describe the process of determining the number of clusters formed for both of
the PSS audio methods, and will contain manual analysis of the six closest tracks to the center
of each cluster to determine if there are certain patterns in groove style that emerge in each
cluster.

5.3.1 Cluster Formation

The number of clusters for both methods were determined through manual analysis using the
elbow and silhouette methods, as well as analyzing cluster size to confirm that no cluster is too
small or too large. Note that the cluster sizes reported represent the sizes of the clusters during
one run through of the k-means algorithm with a given k value and that cluster sizes will vary
each time it is run, but only by small amounts and with clusters mostly trading outliers, which
were not important to the testing of these clusters.

The results of the elbow and silhouette methods for the Spleeter PSS audio approach can
be seen in Figure 5.1. While the elbow method in Figure 5.1 shows no clear elbow points, the
silhouette method shows a clear peak at 6 clusters. When the k-means algorithm is run with a
k value of 6, the sizes of the clusters range from 78 to 1738 items. 78 was determined too small
of a cluster size, so the next highest silhouette values, where k is 5 and 7, were analyzed next.
When the k-means algorithm is run with a k value of 7, the sizes of the clusters range from 78
to 1818 items, making this approach worse for cluster size distribution than when k is 5. When
the k-means algorithm is run with a k value of 5, the sizes of the clusters range from 830 to
2151 items, which is by far the most even distribution of clusters among the k values tested.
Therefore, the Spleeter PSS audio was grouped into a total of 5 clusters.

The results of the elbow and silhouette methods for the Spleeter PSS audio approach can
be seen in Figure 5.2. The elbow method in Figure 5.2 shows a subtle elbow point when the k
value is 5 and a more dramatic elbow point when the k value is 6, while the silhouette method
shows a peak when the k value is 5, with a slight drop off when the k value is 6. When the
k-means algorithm is run with a k value of 5, the sizes of the clusters range from 753 to 2761
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Figure 5.2: The elbow and silhouette method charts for Librosa PSS clusters.

items, while when the k-means algorithm is run with a k value of 6, the sizes of the clusters
range from 676 to 1829 items. While both of these methods are suitable, a k value of 6 was
ultimately chosen for grouping Librosa PSS audio due to the more dramatic elbow point and
the negligible difference between silhouette values between the k values of 5 and 6.

5.3.2 Cluster Tendency Analysis

After the Spleeter and Librosa PSS clusters were formed, the six closest items to the centroid
of each cluster were extracted. In a cluster tendency analysis, these items were examined to
determine if the k-means clustering algorithm had successfully grouped items based upon groove
characteristics. The written analysis can be found in the bullet list below.

• Librosa PSS cluster #1: The musical styles are incredibly varied, but the common groove
style between most of these pieces is a lack of syncopation, with the percussive elements
often remaining eighth and fourth notes.

• Librosa PSS cluster #2: The groove styles in these tracks contain much faster percussive
notes than the first cluster. While the majority of percussive elements still occur on fourth
and eighth notes, most of these tracks include some kind of drum fill or faster rhythmic
pattern.

• Librosa PSS cluster #3: The average sound of the items in these clusters are much more
abstract than the previous clusters, with sparse and unique production choices often not
featuring any percussive elements for some amount of time. This could be seen as a sort
of “misfit cluster” where items that were difficult to cluster ended up.

• Librosa PSS cluster #4: The predominant groove in this cluster is closer to sixteenth and
sixteenth triplet notes, with some light syncopation on a few of the tracks that give these
songs a driving, yet groovy feeling.

• Librosa PSS cluster #5: This cluster contains the most amount of songs that belong in
the same genre compared to the other clusters, with all but one song in the “indie rock”
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genre. The main driving groove of this cluster is eight notes, with sixteenth note fills at
the end of some measures.

• Librosa PSS cluster #6: This is by far the most syncopated cluster of the bunch, and
definitely feels the most “groovy.” The sonic palette of the cluster is reminiscent of “lofi
hip hop,” characterized by slightly off beat drum hits to emphasize the groove of a song
[66, p. 43].

• Spleeter PSS cluster #1: This cluster contains dense, rhythmic grooves with plenty of
triplets and sixteenth notes. While the tracks come from many different genres, most of
the tracks have the same level of moderate groove. The cluster is very similar to the
Librosa PSS cluster #2.

• Spleeter PSS cluster #2: This cluster is slightly disjointed in terms of groove, but the
most obvious link is that the groove is mostly dependent on eighth and sixteenth notes.

• Spleeter PSS cluster #3: This is another “misfit cluster” like the Librosa PSS cluster #3.
The percussive elements of these songs are either arithmetic or prone to change in tempo
and speed throughout the segment.

• Spleeter PSS cluster #4: This is the most disorganized cluster of the bunch, with many
of the tracks not containing drums at all, and one item containing possibly the densest
collection of drum onsets in this entire collection. A possible explanation for this is that
Spleeter filtered these songs in such a way that either gave way too many offsets to tracks
with no drum onsets or way too few offsets to the item with a dense collection of drum
onsets.

• Spleeter PSS cluster #5: There is very little in common in the groove styles of these six
tracks. This may be a different style of “misfit cluster” where items are grouped because
few other items in the collection contain a similar groove style. Clusters like these could
have possibly been prevented by adding more clusters.

An overall assessment of the quality of these clusters and each technique’s ability to cluster
items with similar groove qualities is available in Section 6.1.1.

5.4 Evaluation Session Results

This section will begin by reporting the average and standard deviation values of the quality
and expectedness per participant in Librosa and Spleeter PSS clusters. Following this, the total
number of true positives, true negatives, accounts of serendipity, and accounts of anti-serendipity
will be reported.

5.4.1 Quality Results

The standard deviation and average values of the subjective quality of all items in each Librosa
PSS cluster for every participant can be viewed in Figure 5.3. The average standard deviation
between all clusters is 1.42 with standard deviations between 1.13 and 1.69, and the average
quality values between all clusters is 4.25 with values between 3.9 and 4.67.

The standard deviation and average values of the subjective quality of all items in each
Spleeter PSS cluster for every participant can be viewed in Figure 5.4. The average standard
deviation between all clusters is 1.54 with standard deviations between 1.44 and 1.7, and the
average quality values between all clusters is 3.52 with values between 2.9 and 4.11.
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Figure 5.3: Standard deviation and average values of quality values per participant in Librosa PSS clusters.
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Figure 5.4: Standard deviation and average values of quality values per participant in Spleeter PSS
clusters.
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5.4.2 Expectedness Results

The standard deviation and average values of the expectedness of all items in each Librosa
PSS cluster for every participant can be viewed in Figure 5.5. The average standard deviation
between all clusters is 1.61 with standard deviations between 1.34 and 1.89, and the average
quality values between all clusters is 3.37 with values between 2.98 and 3.97.

The standard deviation and average values of the expectedness of all items in each Spleeter
PSS cluster for every participant can be viewed in Figure 5.6. The average standard deviation
between all clusters is 1.56 with standard deviations between 1.4 and 1.69, and the average
quality values between all clusters is 2.91 with values between 2.43 and 3.47.

5.4.3 Serendipity and Anti-Serendipity Per Cluster

The following section will report the total number of accounts of serendipity and anti-serendipity
found across each participant in every cluster. As there were 18 participants and 66 tracks,
there are a total of 1188 possible accounts of serendipity and anti-serendipity, with 648 possible
accounts in the Librosa PSS clusters and 540 possible accounts in the Spleeter PSS clusters.

The total number of tracks reported as serendipitous across all participants per Librosa PSS
cluster can be viewed in Figure 5.7. There were a total of 91 accounts of serendipity reported
(14.04% serendipity), which equals a total of 15.17 accounts of serendipity per cluster.

The total number of tracks reported as anti-serendipitous across all participants per Librosa
PSS cluster can be viewed in Figure 5.8. There were a total of 10 accounts of anti-serendipity
reported (1.54% anti-serendipity), which equals a total of 1.67 accounts of anti-serendipity per
cluster.

The total number of tracks reported as serendipitous across all participants per Spleeter PSS
cluster can be viewed in Figure 5.9. There were a total of 60 accounts of serendipity reported
(11.11% serendipity), which equals a total of 12 accounts of serendipity per cluster.

The total number of tracks reported as anti-serendipitous across all participants per Spleeter
PSS cluster can be viewed in Figure 5.10. There were a total of 20 accounts of anti-serendipity
reported (3.7% anti-serendipity), which equals a total of 4 accounts of anti-serendipity per
cluster.

5.4.4 True Positives and True Negatives Per Cluster

To compare against the serendipitous and anti-serendipitous items, instances of true positive and
true negative items across all users in each cluster were examined. As in the previous section,
there are 648 possible true positives and negatives in the Librosa PSS clusters and 540 possible
true positives and negatives in the Spleeter PSS clusters.

The total number of tracks reported as true positives across all participants per Librosa PSS
cluster can be viewed in Figure 5.11. There were a total of 175 true positives reported (27.01%
true positives), which equals a total of 29.17 true positives per cluster.

The total number of tracks reported as true negatives across all participants per Librosa PSS
cluster can be viewed in Figure 5.12. There were a total of 177 true negatives reported (27.31%
true negatives), which equals a total of 29.5 true negatives per cluster.

The total number of tracks reported as true positives across all participants per Spleeter PSS
cluster can be viewed in Figure 5.13. There were a total of 81 true positives reported (15% true
positives), which equals a total of 16.2 true positives per cluster.

The total number of tracks reported as true negatives across all participants per Spleeter
PSS cluster can be viewed in Figure 5.14. There were a total of 230 true negatives reported
(42.59% true negatives), which equals a total of 46 true negatives per cluster.
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Figure 5.5: Standard deviation and average values of expectedness values per participant in Librosa PSS
clusters.
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Figure 5.6: Standard deviation and average values of expectedness values per participant in Spleeter PSS
clusters.

Figure 5.7: Total serendipity across all participants per Librosa PSS cluster.
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Figure 5.8: Total serendipity across all participants per Spleeter PSS cluster.

Figure 5.9: Total anti-serendipity across all participants per Librosa PSS cluster.

Figure 5.10: Total anti-serendipity across all participants per Spleeter PSS cluster.

Figure 5.11: Total true positives across all participants per Librosa PSS cluster.
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Figure 5.12: Total true negatives across all participants per Librosa PSS cluster.

Figure 5.13: Total true positives across all participants per Spleeter PSS cluster.

Figure 5.14: Total true negatives across all participants per Spleeter PSS cluster.
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5.4.5 Effects of Serendipity and Anti-Serendipity Against Average Cluster Quality
and Expectedness

This section will examine if having at least one item in a cluster with an account of serendipity
or anti-serendipity has any effect over the average quality or expectedness of an entire cluster.
This is done by comparing the average quality and expectedness values for a cluster with an
account of serendipity or anti-serendipity against the average quality and expectedness values
of all other clusters from the same PSS method. A total of 108 Librosa PSS clusters and 90
Spleeter PSS clusters were analyzed across all users.

There were a total of 62 Librosa PSS clusters that contained at least one instance of
serendipity (57.41% of all Librosa PSS clusters). Of those clusters with serendipity, 34 had an
average quality value higher than average across all Librosa PSS clusters for a given participant
(54.84% of Librosa PSS clusters with serendipity), and 28 had an average quality value lower
than average for the across all Librosa PSS clusters for a given participant (45.16% of Librosa
PSS clusters with serendipity). There were also 21 clusters that had above average expectedness
across all Librosa PSS clusters for a given participant (33.87% of Librosa PSS clusters with
serendipity) and 41 clusters that had below average expectedness across all Librosa PSS clusters
for a given participant (66.13% of Librosa PSS clusters with serendipity).

There were a total of 42 Spleeter PSS clusters that contained at least one instance of
serendipity (46.67% of all Spleeter PSS clusters). Of those clusters with serendipity, 24 had an
average quality value higher than average across all Spleeter PSS clusters for a given participant
(57.14% of Spleeter PSS clusters with serendipity), and 18 had an average quality value lower
than average for the across all Spleeter PSS clusters for a given participant (42.86% of Spleeter
PSS clusters with serendipity). There were also 20 clusters that had above average expectedness
across all Spleeter PSS clusters for a given participant (47.62% of Spleeter PSS clusters with
serendipity) and 22 clusters that had below average expectedness across all Spleeter PSS clusters
for a given participant (52.38% of Spleeter PSS clusters with serendipity).

There were a total of 8 Librosa PSS clusters that contained at least one instance of anti-
serendipity (7.41% of all Librosa PSS clusters). Of those clusters with anti-serendipity, 5 had an
average quality value higher than average across all Librosa PSS clusters for a given participant
(62.5% of Librosa PSS clusters with anti-serendipity), and 3 had an average quality value lower
than average for the across all Librosa PSS clusters for a given participant (37.5% of Librosa PSS
clusters with anti-serendipity). There were also 5 clusters that had above average expectedness
across all Librosa PSS clusters for a given participant (62.5% of Librosa PSS clusters with anti-
serendipity) and 3 clusters that had below average expectedness across all Librosa PSS clusters
for a given participant (37.5% of Librosa PSS clusters with anti-serendipity).

There were a total of 15 Spleeter PSS clusters that contained at least one instance of anti-
serendipity (16.67% of all Spleeter PSS clusters). Of those clusters with anti-serendipity, 4
had an average quality value higher than average across all Spleeter PSS clusters for a given
participant (26.67% of Spleeter PSS clusters with anti-serendipity), and 11 had an average
quality value lower than average for the across all Spleeter PSS clusters for a given participant
(73.33% of Spleeter PSS clusters with anti-serendipity). There were also 10 clusters that had
above average expectedness across all Spleeter PSS clusters for a given participant (66.67% of
Spleeter PSS clusters with anti-serendipity) and 5 clusters that had below average expectedness
across all Spleeter PSS clusters for a given participant (33.33% of Spleeter PSS clusters with
anti-serendipity).

5.4.6 Correlation Between Favorite and Least Favorite Items and Average Cluster
Quality and Expectedness

To represent the most extreme poles of a participant’s taste, they were asked at the end of
the evaluation session for their favorite and least favorite musical items. The clusters that the
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participant’s favorite and least favorite items belong in were then analyzed to observe their effect
on quality and expectedness values. Unlike the previous results, the results are not separated
into Librosa and Spleeter PSS clusters but instead are treated as a whole. However, the total
number of user reported favorite and least favorite items in Librosa and Spleeter PSS clusters
will be reported. Out of the 18 participants, 17 properly reported their favorite items and 18
properly reported their least favorite items.

A total of 82.35% of participants (14 participants) reported that their favorite item was in
a cluster with a higher than average quality value, while 17.65% of participants (3 participants)
reported that their favorite item was in a cluster with a lower than average quality value. A
total of 64.71% of participants (11 participants) reported that their favorite item was in a cluster
with a higher than average expectedness value, while 35.29% of participants (6 participants)
reported that their favorite item was in a cluster with a lower than average expectedness value.
Finally, 70.59% of participants reported that their favorite item was in a Librosa PSS cluster
(12 participants), while 29.41% of users reported that their favorite item was in a Spleeter PSS
cluster (5 participants).

A total of 27.78% of participants (5 participants) reported that their least favorite item was in
a cluster with a higher than average quality value, while 72.22% of participants (13 participants)
reported that their least favorite item was in a cluster with a lower than average quality value.
A total of 16.67% of participants (3 participants) reported that their least favorite item was
in a cluster with a higher than average expectedness value, while 83.33% of participants (15
participants) reported that their least favorite item was in a cluster with a lower than average
expectedness value. Finally, 22.22% of participants reported that their least favorite item was
in a Librosa PSS cluster (4 participants), while 77.78% of users reported that their least favorite
item was in a Spleeter PSS cluster (14 participants).
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Discussion

This section will expand upon the key findings through the information provided in the results,
reflect upon the limitations in this study, and give recommendations for future research in this
field.

6.1 Key Findings

The key findings in this study come from the analysis of the PSS audio clusters, the beat tracking
and onset detection system, and interpretations of the data collected from the evaluation sessions.

6.1.1 Clustering Method Quality

The discussion on the quality of the Librosa and Spleeter PSS clustering methods will be broken
down into two parts: musical similarity within clusters and groove similarity within clusters.
Note that low musical similarity within a cluster is neither a positive or negative attribute, since
this could present more opportunities for serendipitous items, but low groove similarity is a
negative attribute because this implies the ML system did not cluster items with similar groove
styles as it was intended.

Musical Similarity

Of the content analyzed, the musical similarity between items in the same Librosa PSS cluster
struck a strange balance between consistent and wildly different musical styles. For example,
Librosa PSS cluster #1 contains musical styles including rap, instrumental acoustic guitar,
marching band music, and orchestral arrangements, while every item except for one in cluster
#5 is in the indie rock genre. These are the most dramatic examples, but the other Librosa PSS
clusters’ set of analyzed items usually feature two or three items within the same genre, with
the other three or four items belonging to completely different genres. On the other hand, the
musical similarity between items in the same Spleeter PSS cluster is nearly nonexistent. Every
cluster features tracks with barely any musical attributes in common, akin to Librosa PSS
cluster #1, with the possible exception of Spleeter PSS cluster #4 which could be described as
experimental, drone, or ambient music. Therefore, based purely on manual analysis, the Spleeter
PSS approach is the most likely to serve the most unexpected items, but both approaches have
the ability to serve items in completely different musical styles. Whether users will experience
serendipity with these different musical styles will be elaborated on in the discussion on the
evaluation sessions.
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Groove Similarity

After a manual analysis of the six closest tracks to the centroid of each cluster, it can be
reasonably assumed that the Librosa PSS audio is more suited to clustering than Spleeter PSS
audio since it was much harder to find common groove styles in Spleeter PSS clusters compared
to Librosa PSS clusters. One possible explanation for this phenomenon is the difference in quality
of the PSS audio between each PSS method. Spleeter PSS specifically tries to extract the drums
from each track, while Librosa PSS filters the percussive elements, which could include drums,
piano hits, or a particularly sharp acoustic guitar strum, among others. Not only does this mean
that mean that Librosa PSS can analyze a wider variety of items, as is evident by the much larger
number of invalid files found in Spleeter PSS audio analysis compared to Librosa PSS audio, but
it also shows that the artifacts that exist in Spleeter PSS separated audio could possibly confuse
the onset detection and beat tracking algorithms, resulting in inconsistent groove patterns within
clusters. This could also explain the aforementioned randomness of musical styles within the
Spleeter PSS clusters. Therefore, based purely on manual analysis, the Librosa PSS approach
is the most likely to serve items with a similar groove style.

6.1.2 Percussive Source Separation Comparison

As the previous key findings showed, the Librosa and Spleeter PSS methods differ quite a bit
in the way that beats are found and clusters are formed. To continue the differences between
these two methods, the Librosa PSS method had far fewer invalid files than the Spleeter PSS
method. A file is classified as “invalid” if there were no beats or onsets detected in the file,
resulting in the item not being able to be analyzed by the groove feature extraction program.
Out of 8000 audio files, the Librosa PSS method had 50 invalid tracks (0.625% invalid), while
the Spleeter PSS method had 876 invalid tracks (10.95% invalid). While the obvious downside
of using Spleeter PSS for onset detection is that there are fewer tracks to test with, a larger issue
was a fundamental misunderstanding of Spleeter’s purpose. Spleeter in fact does not perform
percussive source separation, but drum source separation. While the assumption in this thesis
was that these methods would be somewhat interchangeable, this turned out not to be the case,
as the model that Librosa was trained on was very effective at filtering non-drum sounds. In
order to analyze the groove of a musical item without any drums, a PSS method such as Librosa
that takes into account all percussive noises is absolutely necessary. Spleeter in groove analysis
could be useful in analyzing the grooves of different instruments if a data set can guarantee
that the items contain a particular instrument. However, Spleeter offers no advantages in drum
groove analysis that Librosa PSS does not already, due to the relative processing efficiency of
Librosa PSS and the ability to detect all manner of percussive events in a musical item.

6.1.3 Relevant Evaluation Session Comments

After the evaluation session was completed, participants were asked formally (on the Google
Form) and informally (through conversation) on their thoughts about the evaluation session.
This list below will summarize and discuss the key points found in these comments. A full set
of the relevant, formal additional comments can be found in Appendix G1.

• A large percentage of participants reported listening fatigue as the test went on, stating
that there were simply too many tracks to listen to. Furthermore, a few participants had
trouble keeping count of the current item due to the repetition.

• Some participants commented negatively on the quality of the tracks as a whole, stating
that the amateurish quality of some of the tracks left an overall negative view of the

1The full set of participant responses, including item quality and expectedness ratings, can be found on GitHub:
https://tinyurl.com/4k7whtxz
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tracks. While the poor recording quality is a clear flaw of some of the tracks in the FMA,
an overall negative attitude towards the tracks may actually simulate a streaming service
fairly accurately. If a truly representative sample of the music on a streaming service was
tested, one could surmise that the average listener would be off-put and react negatively
to a majority of the music.

6.1.4 Evaluation Session Results

The discussion on the results of the data analysis from the evaluation session will be split into
six parts. These include discussions on the overall quality and expectedness values per cluster,
standard deviation per cluster, serendipity and anti-serendipity per cluster, true positives and
true negatives per cluster, the effects on serendipity and anti-serendipity on cluster quality and
expectedness, and finally the effects of favorite and least favorite items on cluster quality and
expectedness.

Average Quality and Expectedness Values

To begin the comparison of Librosa and Spleeter PSS clusters, the average quality values will
be examined. Assuming a normal distribution for quality and expectedness ratings, the average
quality and expectedness values across all tracks for both PSS methods should be around 4 [67].
Across all participant ratings for all items of the evaluation session, an average quality rating
of 4.25 in the Librosa segment suggests a fairly normal distribution, while an average quality
rating of 3.52 suggests that other factors were at play that pushed the average rating further
from 4. This could be because there were not enough ratings for a normal distribution, due to
only having 5 Spleeter PSS clusters with 540 total ratings compared to 6 Librosa PSS clusters
with 648 total ratings. Another explanation for this discrepancy is that the overall quality of the
items served in the Spleeter system may have been less desirable than the items served by the
Librosa system, which will be discussed further while analyzing true positives and true negatives
later in this section.

In terms of the average expectedness, both Librosa and Spleeter PSS clusters have lower than
average values, with the Librosa method’s average value being 3.37 and the Spleeter method’s
average value being 2.91. This is mostly likely on account of the content of the FMA, which
includes more experimental and left field musical items than streaming services. While streaming
services contain plenty of experimental music themselves, it also contains nearly the entire history
of popular music, which could result in a more normal distribution of expectedness. With lower
than average expectedness values, it is also expected that there will be more serendipity and
true negatives found compared to anti-serendipity and true positives, respectively.

Standard Deviation Per Cluster

Standard deviation of quality values per cluster is analyzed to determine if solely using features of
groove in a MRS can serve relevant recommendations to users. Assuming a normal distribution
for quality and expectedness ratings, around 68% of the ratings are within one standard deviation
of the mean and 95% of the ratings are with two standard deviations of the mean [67]. Therefore,
if the average standard deviation across all clusters is below 1.5 then it can be reasonably assumed
that the recommendation system is better than random guessing.

With an average quality rating standard deviation per cluster of 1.42 for Librosa PSS clusters
and 1.54 for Spleeter PSS clusters, it can be concluded that participants were more likely to
receive relevant recommendations using the Librosa method, but both methods were fairly close
to random guessing. Therefore, for the goal of suggesting high quality items to users, using
only features of groove does not produce relevant results. However, the slightly lower standard
deviation per cluster average that the Librosa method produces suggests that with further fine
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tuning and possibly more features, a more refined recommendation system could be developed.
It is also worth noting that the average standard deviation of expectedness ratings per cluster for
both Librosa and Spleeter methods are fairly similar and above 1.5, suggesting a truly random
distribution of expectedness values per cluster.

Serendipity and Anti-Serendipity Per Cluster

Participants reported higher than expected accounts of serendipity, with both Spleeter and
Librosa PSS items having higher than 10% serendipity accounts. This could be attributed to
the diverse catalog of the FMA, or a general tendency for users to encounter positive surprises
when exploring a wide variety of music. However, participants tended not to report instances of
anti-serendipity. This could be a result of the combination of lower than average expectedness
values for both Librosa and Spleeter PSS clusters and the aforementioned accounts of the low
quality of some items in the FMA. The perceived low quality may have resulted in lower rated
items receiving equally low expectedness values due to the intensely negative reaction they
elicited in some participants. However, since items near the centroid of Spleeter PSS clusters
produced more than double the instances of anti-serendipity compared to Librosa PSS clusters,
it can be stated that Librosa PSS clusters do a better job at combating stagnation and steering
users away from low quality items in genres they are familiar with. Overall, the high values of
serendipitous items versus the much lower values of anti-serendipitous items shows that if music
streaming services expanded their horizons by introducing new styles of music to listeners that
do not have a history listening to that style of music, they would be much more likely to find
positive surprises rather than negative surprises, and that achieving serendipity through the lens
of groove could be a worthwhile approach to address this issue.

True Positives and True Negatives Per Cluster

Tracks from the Librosa PSS clusters contained a fairly even amount of true positive ratings
(27.01% of all ratings) and true negative ratings (27.31% of all ratings), further suggesting
a fairly even set of musical items in terms of quality and expectedness for each participant.
Comparatively, items from the Spleeter segment of the evaluation session contained a significant
number of true negatives (42.59% of all ratings), compared to only 15% of all ratings being
marked as true positives. This is backed up anecdotally by some users pointing out the the end
of the test, when the items from the Spleeter clusters were played, contained more strange and
experimental music.

Effects of Serendipity and Anti-Serendipity On Average Cluster Quality and Expectedness

To begin the discussion of the effects of serendipity and anti-serendipity on average cluster quality
and expectedness, it is worth noting that the number of clusters containing anti-serendipity were
minuscule and therefore did not produce statistically significant results. However, there were
many instances of serendipity across both Spleeter and Librosa PSS clusters, which gives a better
insight into how serendipity affects quality and expectedness values. In general, Librosa PSS
clusters had a much better spread of clusters that contained serendipitous items than Spleeter
PSS clusters. However, both Librosa and Spleeter PSS clusters that contained accounts of
serendipity only had higher than average quality values a little over half of the time. While this
suggests at least a little correlation between accounts of serendipity and an increase in quality,
this could also be explained by the fact that an account of serendipity guarantees that at least
one item in the cluster was rated above a 4 for quality. This could be all that a cluster needs
to boost its average above what was typical for a user, so it can be stated that correlation
between serendipity and quality was not significant for either PSS method. Similarly, average
expectedness in Spleeter PSS clusters with accounts of serendipity was below average a little
over half of the time, suggesting low correlation. However, a significant number of Librosa PSS
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clusters with accounts of serendipity had below average expectedness values, with 66.13% of the
clusters having below average expectedness values. Therefore, the most significant finding in this
analysis is that for the Librosa PSS clusters, a cluster that contains an instance of serendipity
has some correlation with a lower expectedness value across all items in the cluster.

Effects of Favorite and Least Favorite Items on Average Cluster Quality and Expectedness

In the analysis of quality values against participants’ reported favorite and least favorite items,
the results were similar to what was expected. A very high percentage of favorite items were in
clusters with above average quality values, while a very high percentage of least favorite items
were in clusters with below average quality values. While this trend could be explained with
the same logic that influences the average quality of tracks with accounts of serendipity and
anti-serendipity, the high percentages suggest that there is some correlation between a favorite
item being in a group of items with above average quality values for a participant. Another
expected result was the fact that Librosa PSS clusters contained a large majority of favorite
items compared to Spleeter PSS clusters. However, according to the previous analysis of the
quality of Librosa and Spleeter PSS cluster items, it was slightly surprising to not see a higher
percentage of Librosa PSS items being marked as favorite items. The effect of favorite and least
favorite items on expectedness produced somewhat expected results as well. A somewhat high
percentage of favorite tracks were in clusters with above average expectedness values, while a
very high percentage of least favorite tracks were in clusters with below average expectedness
values. These results match well with what was observed so far in terms of the lowest quality
items also having low expectedness values, but it also shows that participants tended to pick
favorite tracks that were in clusters that felt more comfortable and expected. Overall, not
much information was gained from this analysis, most likely due to the fact that there was little
correlation in quality between items within clusters.

6.2 Limitations

While this experiment attempted to replicate the recommendations of a music streaming service,
the resources available were far fewer than that of a typical streaming service. This, as well as
the inherent unpredictability of analyzing raw audio files, leads to limitations in this study,
which include but are not limited to:

• The state-of-the-art beat tracking system is still only around 60% accurate according to
Ellis’s study [40, p. 51].

• Audio files provided by the FMA vary in sound quality, instrumental makeup, and have
no guarantee of a constant tempo.

• The FMA data set used contained 8000, 30 second audio files as opposed to a typical
streaming service which contains millions of full length audio files [15, p. 238].

• Only 18 participants were used in this study, compared to the millions of users on a leading
streaming service [15, p. 239].

• Only the six closest items to the center of each cluster were manually analyzed and used as
test data for the evaluation sessions. For manual analysis, analyzing more items close to
the cluster could produce entirely new perspectives on the groove styles within a cluster.
For the evaluation sessions, this limited analysis may produce different results, making
each clustering method either more or less accurate in predicting user taste. As a real
world example, popular music streaming services have access to the ratings and behavior
surrounding every song a user listens to, giving their MRSs many more items and features
to analyze.
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• As a result of using songs most participants would not be aware of, it was not possible
to compare the prediction power of other streaming services compared to the developed
cluster due to the fact that most of these songs were not on Spotify.

6.3 Recommendations

This section will list recommendations for each component of this thesis experiment in order to
improve the quality of results and investigate new research questions in future studies.

6.3.1 Beat Tracking And Onset Detection

Based on the initial test results and the results of the evaluation session, a series of changes to
the beat tracking and onset detection system is recommended for future experiments.

• Having 12 subdivisions for each beat may have been too precise of a measurement.
Since analyzing with smaller subdivisions could exclude different rhythms and produce
inaccurate groove analysis, a more sophisticated onset detection system would be required
for further pulse and subdivision analysis.

• Tracks selected for future studies should have a defined tempo and should be recorded to a
click track, thus eliminating the need for beat tracking and ideally making onset detection
more accurate. Tracks with MIDI note values [68] available could also be considered, which
would also remove the need for onset detection, make groove detection 100% accurate, and
could allow the ability to add microtiming as a groove feature. While some MIDI datasets
exist for more specialized tasks, such as the expanded groove MIDI dataset from Callender
et al. [69], a major downside of this approach is the lack of quality datasets with MIDI
values for popular styles of music.

• Other forms of PSS and beat tracking should be tested besides Librosa that use novel
techniques to improve the quality of HPSS.

6.3.2 Evaluation Session

With the responses of the participants and anecdotal evidence as a basis, there are a series of
changes to the evaluation session that are recommended in the future.

• Instead of a single, 35 minute audio file, musical items should be placed within the form
itself so users know exactly what item they’re listening to and can listen back as many
times as they want.

• Google Forms should not be used because it does not support embedding tracks in the
form, the editor is clunky and inefficient for this style of evaluation, and the loading of the
form online takes a significant and unnecessarily long time to load.

6.3.3 Future Studies

While it was shown that recommending tracks solely based on groove has only some merit,
combining groove features with other MRS techniques or test data could improve test data.
Below is a list of changes to this study that could be performed in future studies to further
evaluate the effectiveness of including groove features in serving musical recommendations.
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• Instead of clustering items solely based on groove characteristics, items could be classified
using the groove characteristics and state-of-the-art features, such as the features in the
Spotify API [15]. This should then be compared to item clustering using only the state-
of-the-art features to observe if there was a noticeable shift in clusters. This way, a solid
baseline in terms of inter-cluster quality would be established due to the well tested nature
of the state-of-the-art features.

• A separate study on how expectedness relates to quality between clusters should be
performed separately using state-of-the-art features, as there has not been a baseline
established for self-reported expectedness between items recommended by a MRS.

• Focusing on recommending content based on a participant’s predefined preferences, rather
than examining how closely items in a single cluster are rated, could be a more effective
lens to examine the quality of a recommendation system.

• Combining a collaborative filtering or a context-based model with groove characteristic
features could help improve the quality of recommendations.

• Instead of using tracks within a free music archive, popular songs on streaming services
could be used instead to serve recommendations closer to what a music streaming service
would recommend. A popular song could be defined as either a song that has a certain
number of plays, or a song from an artist with a certain number of monthly listeners. The
biggest challenge of implementing this would be to find artists and songs that are popular,
but the participant has not heard before, as this could introduce bias in the test results.

• More tracks should be analyzed in future tests in order to more closely simulate the library
of a music streaming service.
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Conclusion

Characteristics of groove can be broken down mathematically to be used as features in ML
systems used to recommend music in MRSs. This ML system first requires a sophisticated beat
tracking and onset detection system to be developed in order to properly analyze the groove
of raw audio data. To make the groove analysis more consistent, PSS must be performed in
order to separate the percussive elements from the harmonic elements of a track. The two PSS
methods that were tested in this thesis were using Librosa HPSS and using the drum source
separation from the tool Spleeter. Beats and onsets were then extracted from an archive of
copyright-free musical items. In the end, using Librosa HPSS was clearly the superior method
for beat tracking and onset detection due to Spleeter filtering out everything except for drum
sounds, which completely ignores the other percussive noises in a musical item.

Next, groove features were calculated for both PSS methods using the beats and onsets
found. The features that were deemed most useful for recommending musical items due to
the ease of calculation and overall representation of an item’s groove included the pulse of the
beat, the subdivisions of the beat, and two methods for calculating overall syncopation of the
item: off-beatness and WNBD. These features were then used as the basis of a k-means clustering
algorithm for each PSS method, with the number of clusters determined through manual analysis
of the elbow method, silhouette method, and uniformity of cluster size. Through a review of
the six items closest to the centroid of each cluster, it was determined that Librosa PSS clusters
had much more distinct and clearly defined grooves compared to Spleeter PSS clusters.

An evaluation session was then performed with 18 participants to determine if there was a
correlation between groove styles and quality or expectedness. Using a normal distribution,
it was found that grouping musical items using features of groove produced quality and
expectedness values fairly similar to random guessing. This study found little to no correlation
between the quality or expectedness values in a given cluster using either PSS method, although
the Librosa PSS clusters were marginally better. Also, Librosa PSS clusters had a fairly even
number of items marked expected and high quality compared to items unexpected and low
quality, while Spleeter PSS clusters had many more unexpected and low quality items than
expected and high quality items.

Serendipity, or the reporting of a musical item being unexpected and high in subjective
quality, and anti-serendipity, or the reporting of a musical item being expected and low in
subjective quality, was also analyzed from the results of the evaluation session. Overall, the
Librosa PSS clusters contained many more accounts of serendipity and Spleeter PSS clusters
contained many more accounts of anti-serendipity. In analyzing the effects of serendipity and
anti-serendipity, little to no correlation between an account of serendipity in a cluster and the
average quality of all items in a cluster for either method was found. There were also too few
accounts of anti-serendipity found to produce a statistically significant analysis of the effects
of anti-serendipity on quality and expectedness. However, the analysis showed statistically
significant effects of an account of serendipity on the expectedness of items in Librosa PSS
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clusters, showing that clustering items based upon groove using Librosa HPSS can help streaming
service users fight feelings of stagnation in their recommendations by serving unexpected items
with similar styles of groove.

Using Librosa HPSS was found to be superior to using Spleeter in nearly all scenarios,
including finding beats and onsets, analyzing groove, and clustering items with similar grooves
together. Even though recommending musical items solely based on groove will not produce
higher quality recommendations for the average streaming service user with either PSS method,
the findings in this study could be used to fuel future research on this topic. Combining
features of groove into other state-of-the-art MRSs could help fight feelings of stagnation by
helping to recommend music outside of a streaming service user’s typical consumption. Future
studies should focus on building a more robust beat tracking system, testing different styles of
HPSS, combining groove features with other MRS features, using different music archives, and
expanding the scope of evaluation sessions with more participants, musical items, and a better
system for evaluation sessions.
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Appendix A

Beat Bin Test Code

import numpy as np
import librosa
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import librosa.display

def getBeatBins(signal):
onsetTimes = librosa.onset.onset\_detect(y=signal, sr=sr, hop\_length=220, units=’time’

)
tempo, beatTimes = librosa.beat.beat\_track(signal, sr=sr, hop\_length=220,units=’time’

)
beatBins = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
secondsPerBeat = 60 / tempo
bins = 12
binDivder = secondsPerBeat / 12

y\_beats = librosa.clicks (times=onsetTimes, length=len(signal), sr=sr)
sf .write("testOnsets4.wav", signal + y\_beats, sr)

for i in (range(len(beatTimes) − 1)):
currentBeat = float(beatTimes[i])
nextBeat = float(beatTimes[i+1])

binSeconds = (nextBeat − currentBeat) / bins
binBegin = currentBeat − (binSeconds/2)
binEnd = currentBeat + (binSeconds/2)

for j in range(bins):
# Extract a subarray of onsets for each 16th note to remove duplicate notes
currentOnsets = onsetTimes[(onsetTimes >= binBegin) & (onsetTimes < binEnd)]
if np.size (currentOnsets) != 0:

beatBins[j ] += 1

binBegin += binSeconds
binEnd += binSeconds

totalHits = 0
offHits = 0
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Appendix A. Beat Bin Test Code

for i in range(0, len(target)):
totalHits += target[i]
offHits += abs(target[i] − beatBins[i])

accuracy = 100 ∗ (1 − (offHits / totalHits ))
beatBins.append(accuracy)
return beatBins

import pandas as pd
import soundfile as sf

target = [20, 4, 4, 4, 8, 4, 12, 4, 8, 4, 4, 4]
df = pd.DataFrame(\{’target’: [20, 4, 4, 4, 8, 4, 12, 4, 8, 4, 4, 4, ’accuracy (%)’]})

files120 = [’data/justDrumsTest120.wav’, ’data/justDrumsTest120Spleeter.mp3’, ’data/
songTest120.wav’, ’data/songTest120Spleeter.mp3’, ]

sr = 44100

for track in files120 :
audio, sr = librosa.load(track, mono=True, sr=44100)
harmonic, percussive = librosa. effects .hpss(audio)
df [track + " raw audio"] = getBeatBins(audio)
df [track + " HPSS percussive seperation"] = getBeatBins(percussive)

df .to\_csv(’out.csv’ , encoding=’utf−8’, index=False)
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Appendix B

Spleeter PSS Script

import wave
import subprocess
import os
import sys

genreList = os. listdir ( ’fma_small’)

for genre in genreList:
if genre != ’ .DS_Store’ and genre != ’checksums’ and genre != ’README.txt’:

path = "instrumentals/" + genre
if os.path.exists (path) == False:

songList = os. listdir ( ’fma_small/’ + genre)
for song in songList:

if song != ’ .DS_Store’:
print(song)
output = "instrumentals/" + genre
print(output)
inputFile = "fma_small/" + genre + "/" + song
print(inputFile)
command = "python −m spleeter separate −c mp3 −p spleeter:4stems −o " +

output + " " + inputFile
print(command)
os.system(command)

outputList = os. listdir (output)
for newFolder in outputList:

if newFolder != ’.DS_Store’:
newFolderList = os. listdir (output + "/" + newFolder)
for newFile in newFolderList:

if newFile != ’drums.mp3’ and newFile != ’.DS_Store’:
os.remove(output + "/" + newFolder + "/" + newFile)
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Appendix C

Get Onsets and Beats Code

C.1 Get Onsets and Beats Of Librosa PSS Audio

import numpy as np
import librosa
import pandas as pd
import os
import soundfile as sf

def getBeatInfo(fileName, signal) :
onsets = librosa.onset.onset_detect(y=signal, sr=sr, hop_length=220, units=’time’)
tempo, beatTimes = librosa.beat.beat_track(signal, sr=sr, hop_length=220,units=’time’)
filesArray .append(fileName)
tempoArray.append(tempo)
beatTimesArray.append(beatTimes)
onsetsArray.append(onsets)

df = pd.DataFrame()
sr = 44100
genreList = os. listdir ( ’fma_small’)
filesArray = []
tempoArray = []
beatTimesArray = []
onsetsArray = []

for genre in genreList:
if genre != ’ .DS_Store’ and genre != ’checksums’ and genre != ’README.txt’:

tracks = os. listdir ( ’fma_small/’ + genre)
for track in tracks :

if track != ’ .DS_Store’ and track != ’checksums’ and track != ’README.txt’:
audioFile = ’fma_small/’ + genre + ’/’ + track
audio, sr = librosa.load(audioFile, mono=True, sr=44100)
harmonic, percussive = librosa. effects .hpss(audio)
print(track)
getBeatInfo(track, audio)

df [ ’ file ’ ] = filesArray
df [ ’tempo’] = tempoArray
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df[ ’beatTimes’] = beatTimesArray
df [ ’onsets’ ] = onsetsArray
df .to_csv(’hpssTrackInfo.csv’, encoding=’utf−8’, index=False)

C.2 Get Onsets and Beats Of Spleeter PSS Audio

import numpy as np
import librosa
import pandas as pd
import os
import soundfile as sf

def getBeatInfo(fileName, signal) :
onsets = librosa.onset.onset_detect(y=signal, sr=sr, hop_length=220, units=’time’)
tempo, beatTimes = librosa.beat.beat_track(signal, sr=sr, hop_length=220,units=’time’)
filesArray .append(fileName)
tempoArray.append(tempo)
beatTimesArray.append(beatTimes)
onsetsArray.append(onsets)

df = pd.DataFrame()
sr = 44100
genreList = os. listdir ( ’isolatedDrumsSpleeter’)
filesArray = []
tempoArray = []
beatTimesArray = []
onsetsArray = []

for genre in genreList:
if genre != ’ .DS_Store’ and genre != ’checksums’ and genre != ’README.txt’:

tracks = os. listdir ( ’isolatedDrumsSpleeter/’ + genre)
for track in tracks :

if track != ’ .DS_Store’ and track != ’checksums’ and track != ’README.txt’:
audioFile = ’isolatedDrumsSpleeter/’ + genre + ’/’ + track + ’/drums.mp3’
audio, sr = librosa.load(audioFile, mono=True, sr=44100)
print(track)
getBeatInfo(track, audio)

df [ ’ file ’ ] = filesArray
df [ ’tempo’] = tempoArray
df [ ’beatTimes’] = beatTimesArray
df [ ’onsets’ ] = onsetsArray
df .to_csv(’spleeterTrackInfo.csv’ , encoding=’utf−8’, index=False)
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Feature Extraction Code

import numpy as np
import math
import csv
import pandas as pd

def getWnbd(beatTimes, onsetTimes, bins):
noteCount = 0
wnbdTotal = 0

numberOfBeatsSinceLastNote = 0
tx = 0

for i in (range(len(beatTimes) − 1)):
currentBeat = float(beatTimes[i])
nextBeat = float(beatTimes[i+1])

binSeconds = (nextBeat − currentBeat) / bins
binBegin = currentBeat − (binSeconds/2)
binEnd = currentBeat + (binSeconds/2)

for j in range(bins):
# Extract a subarray of onsets for each 16th note to remove duplicate notes
currentOnsets = onsetTimes[(onsetTimes >= binBegin) & (onsetTimes < binEnd)]
if np.size (currentOnsets) != 0:

# Calculate WNBD for previous note
if tx != 0:

if numberOfBeatsSinceLastNote == 1:
wnbdTotal += 2 / tx

else:
wnbdTotal += 1 / tx

numberOfBeatsSinceLastNote = 0
noteCount += 1
tx = min(j, bins − j) / bins

binBegin += binSeconds
binEnd += binSeconds

53



Appendix D. Feature Extraction Code

numberOfBeatsSinceLastNote += 1

if noteCount == 0:
return 0

else:
return (wnbdTotal / noteCount)

def getRhythmValues(beatTimes, onsetTimes, bins):
beatBins = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

for i in (range(len(beatTimes) − 1)):
currentBeat = float(beatTimes[i])
nextBeat = float(beatTimes[i+1])

binSeconds = (nextBeat − currentBeat) / bins
binBegin = currentBeat − (binSeconds/2)
binEnd = currentBeat + (binSeconds/2)

for j in range(bins):
# Extract a subarray of onsets for each 16th note to remove duplicate notes
currentOnsets = onsetTimes[(onsetTimes >= binBegin) & (onsetTimes < binEnd)]
if np.size (currentOnsets) != 0:

beatBins[j ] += 1

binBegin += binSeconds
binEnd += binSeconds

totalHits = np.sum(beatBins)
if totalHits != 0:

pulse = beatBins[0] / totalHits
eighthNote = beatBins[6] / totalHits
sixteenthNote = (beatBins[3] + beatBins[9]) / totalHits
triplet = (beatBins[4] + beatBins[8]) / totalHits
sixteenthNoteTriplet = (beatBins[2] + beatBins[10]) / totalHits
offBeat = (beatBins[1] + beatBins[5] + beatBins[7] + beatBins[11]) / totalHits

return [pulse, eighthNote, sixteenthNote, triplet , sixteenthNoteTriplet, offBeat]

else:
return 0

# For Librosa HPSS
#with open("hpssTrackInfo.csv", ’r ’) as file :
# For Spleeter
with open("spleeterTrackInfo.csv", ’ r ’ ) as file :

bins = 12
invalidFiles = 0

filesArray = []
featuresArray = []
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df = pd.DataFrame()

csvreader = csv.reader( file )
header = next(csvreader)
for row in csvreader:

fileName = row[0].replace( ’ .mp3’, ’ ’ )
beatTimes = row[2].split()
onsetTimes = row[3].split()

if beatTimes[0] == ’[’:
beatTimes.pop(0)

if onsetTimes[0] == ’[’:
onsetTimes.pop(0)

if beatTimes[len(beatTimes) − 1] == ’]’:
beatTimes.pop(len(beatTimes) − 1)

if onsetTimes[len(onsetTimes) − 1] == ’]’:
onsetTimes.pop(len(onsetTimes) − 1)

beatTimes[0] = beatTimes[0].replace(’[ ’ , ’ ’ )
onsetTimes[0] = onsetTimes[0].replace(’ [ ’ , ’ ’ )
beatTimes[len(beatTimes) − 1] = beatTimes[len(beatTimes) − 1].replace(’]’, ’’)
onsetTimes[len(onsetTimes) − 1] = onsetTimes[len(onsetTimes) − 1].replace(’]’, ’’)

if (onsetTimes != [’’ ] and beatTimes != [’’]):
dummy = np.array(beatTimes)
beatTimes = dummy.astype(float)
dummy = np.array(onsetTimes)
onsetTimes = dummy.astype(float)

wnbd = getWnbd(beatTimes, onsetTimes, bins)
rhythmValues = getRhythmValues(beatTimes, onsetTimes, bins)

if rhythmValues == 0:
invalidFiles += 1

else:
features = [wnbd] + rhythmValues
featuresArray.append(features)
filesArray .append(fileName)

else:
invalidFiles += 1

df[ ’ file ’ ] = filesArray
df [ ’ features ’ ] = featuresArray
df .to_csv(’spleeterFeatures .csv’ , encoding=’utf−8’, index=False)
print("invalid files = " + str( invalidFiles ))
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Cluster Formation Code

E.1 Form Clusters Using Groove Features Calculated From Librosa
PSS Onsets and Beats

import numpy as np
import pandas as pd
import csv
import os

file1 = open("hpssFeatures.csv", ’r’)
csvReader1 = csv.reader(file1)
header = next(csvReader1)
fileArray1 = np.array([])
featuresArray1 = []

rowCount = 0
for row in csvReader1:

fileName = row[0]
features = row[1]. split ()

if features [0] == ’[’:
features .pop(0)

if features [len(features) − 1] == ’]’:
features .pop(len(features) − 1)

for i in range(len(features)):
features [ i ] = features[ i ]. replace( ’ , ’ , ’ ’ )

features [0] = features [0]. replace( ’ [ ’ , ’ ’ )
features [len(features) − 1] = features[len(features) − 1].replace( ’ ] ’ , ’ ’ )
features = np.array(features)
features = features.astype(float)
featuresArray1.append(features)
fileArray1 = np.append(fileArray1, fileName)
rowCount += 1

featuresNpArray1 = np.zeros((rowCount,7))
for i in range(len(featuresArray1)):

featuresNpArray1[i, :] = featuresArray1[i]
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import matplotlib.pyplot as plt
import matplotlib.style as ms
import sklearn.cluster
import sklearn.preprocessing

scaler1 = sklearn.preprocessing.StandardScaler()
scaler1 . fit (featuresNpArray1)
featuresNpArray1 = scaler1.transform(featuresNpArray1)

sse = [] #sum of squared errors
sil_coeff = [] #silhouette coefficients

range_n_clusters = range(2, 10)

for k in range_n_clusters:
kmeans = sklearn.cluster.KMeans(n_clusters=k).fit(featuresNpArray1)

sse .append(kmeans.inertia_)

label = kmeans.labels_
sil_coeff .append(sklearn.metrics.silhouette_score(featuresNpArray1, label, metric=’

euclidean’))

fig = plt. figure ( figsize =(8,5))
fig .add_subplot(121)
plt .subplots_adjust(wspace=0.4)
plt .plot(range_n_clusters, sse, ’b−’,label=’Sum of Squared Error’)
plt . xlabel("Number of clusters")
plt . ylabel("Sum of Squared Error")
plt .legend()
fig .add_subplot(122)
plt .plot(range_n_clusters, sil_coeff , ’b−’,label=’Silhouette Score’)
plt . xlabel("Number of clusters")
plt . ylabel("Silhouette Score")
plt .legend()
plt .show()

clusters = 6
kmeans1 = sklearn.cluster.KMeans(n_clusters=clusters).fit(featuresNpArray1)

pred_classes1 = kmeans1.predict(featuresNpArray1)
print(len(fileArray1))

for cluster in range(clusters):
print(’ cluster : ’ , cluster )

indiciesWhere = np.where(pred_classes1 == 0)
for index in indiciesWhere:

subArray = fileArray1[np.where(pred_classes1 == cluster)]
print(len(subArray))
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from sklearn.metrics import pairwise_distances

distances = pairwise_distances(kmeans1.cluster_centers_, featuresNpArray1)
ind = [np.argpartition( i , 6) [:6] for i in distances ]
closest = [fileArray1 [indexes] for indexes in ind]
print(closest)

E.2 Form Clusters Using Groove Features Calculated From Spleeter
PSS Onsets and Beats

import numpy as np
import pandas as pd
import csv
import os

file1 = open("spleeterFeatures.csv", ’ r ’ )
csvReader1 = csv.reader(file1)
header = next(csvReader1)
fileArray1 = np.array([])
featuresArray1 = []

rowCount = 0
for row in csvReader1:

fileName = row[0]
features = row[1]. split ()

if features [0] == ’[’:
features .pop(0)

if features [len(features) − 1] == ’]’:
features .pop(len(features) − 1)

for i in range(len(features)):
features [ i ] = features[ i ]. replace( ’ , ’ , ’ ’ )

features [0] = features [0]. replace( ’ [ ’ , ’ ’ )
features [len(features) − 1] = features[len(features) − 1].replace( ’ ] ’ , ’ ’ )
features = np.array(features)
features = features.astype(float)
featuresArray1.append(features)
fileArray1 = np.append(fileArray1, fileName)
rowCount += 1

featuresNpArray1 = np.zeros((rowCount,7))
for i in range(len(featuresArray1)):

featuresNpArray1[i, :] = featuresArray1[i]

import matplotlib.pyplot as plt
import matplotlib.style as ms
import sklearn.cluster
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import sklearn.preprocessing

scaler1 = sklearn.preprocessing.StandardScaler()
scaler1 . fit (featuresNpArray1)
featuresNpArray1 = scaler1.transform(featuresNpArray1)

sse = [] #sum of squared errors
sil_coeff = [] #silhouette coefficients

range_n_clusters = range(2, 10)

for k in range_n_clusters:
kmeans = sklearn.cluster.KMeans(n_clusters=k).fit(featuresNpArray1)

sse .append(kmeans.inertia_)

label = kmeans.labels_
sil_coeff .append(sklearn.metrics.silhouette_score(featuresNpArray1, label, metric=’

euclidean’))

fig = plt. figure ( figsize =(8,5))
fig .add_subplot(121)
plt .subplots_adjust(wspace=0.4)
plt .plot(range_n_clusters, sse, ’b−’,label=’Sum of Squared Error’)
plt . xlabel("Number of clusters")
plt . ylabel("Sum of Squared Errors")
plt .legend()
fig .add_subplot(122)
plt .plot(range_n_clusters, sil_coeff , ’b−’,label=’Silhouette Score’)
plt . xlabel("Number of clusters")
plt . ylabel("Silhouette Score")
plt .legend()
plt .show()

clusters = 5
kmeans1 = sklearn.cluster.KMeans(n_clusters=clusters).fit(featuresNpArray1)

pred_classes1 = kmeans1.predict(featuresNpArray1)
print(len(fileArray1))

for cluster in range(clusters):
print(’ cluster : ’ , cluster )

indiciesWhere = np.where(pred_classes1 == 0)
for index in indiciesWhere:

subArray = fileArray1[np.where(pred_classes1 == cluster)]
print(len(subArray))

from sklearn.metrics import pairwise_distances

distances = pairwise_distances(kmeans1.cluster_centers_, featuresNpArray1)

60



E.2. Form Clusters Using Groove Features Calculated From Spleeter PSS Onsets and Beats

ind = [np.argpartition( i , 6) [:6] for i in distances ]
closest = [fileArray1 [indexes] for indexes in ind]
print(closest)
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Evaluation Analysis Code

import numpy as np
import csv
import matplotlib.pyplot as plt
import math

def calculateSerendipityPerUser(serendipityPerUser, avgQualityPerUser,
avgExpectednessPerUser,

stdQualityPerUser, stdExpectednessPerUser, pssMethod, serendipityType):
belowAverageQualityClustersWithSerendipity = 0
aboveAverageQualityClustersWithSerendipity = 0
belowAverageExpectednessClustersWithSerendipity = 0
aboveAverageExpectednessClustersWithSerendipity = 0

#Librosa start and end
start = 0
end = 6
if (pssMethod == "Spleeter"):

start = 6
end = 11

totalClusters = 0
for i in range(0, len(serendipityPerUser)):

for j in range(start, end):
totalClusters += 1
if (serendipityPerUser[ i ][ j ] > 0):

userAvgQualityCluster = avgQualityPerUser[i][j]
userAvgExpectednessCluster = avgExpectednessPerUser[i][j]
userStdQualityCluster = stdQualityPerUser[i][j ]
userStdExpectednessCluster = stdExpectednessPerUser[i][j]

userAvgQualityTotal = np.average(avgQualityPerUser[i][start:end])
userAvgExpectednessTotal = np.average(avgExpectednessPerUser[i][start:end])
userStdQualityTotal = np.average(stdQualityPerUser[i][start:end])
userStdExpectednessTotal = np.average(stdExpectednessPerUser[i][start:end])

if (userAvgQualityCluster <= userAvgQualityTotal):
belowAverageQualityClustersWithSerendipity += 1

else:
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aboveAverageQualityClustersWithSerendipity += 1

if (userAvgExpectednessCluster <= userAvgExpectednessTotal):
belowAverageExpectednessClustersWithSerendipity += 1

else:
aboveAverageExpectednessClustersWithSerendipity += 1

print(’Total clusters analyzed = ’ + str(totalClusters))
totalClustersWithSerendipity = belowAverageQualityClustersWithSerendipity +

aboveAverageQualityClustersWithSerendipity
print(’Number of ’ + pssMethod + ’ clusters with ’ + serendipityType + ’ = ’ + str(

totalClustersWithSerendipity))
print(’Number of ’ + pssMethod + ’ clusters with ’ + serendipityType + ’ with above

average quality = ’ + str(aboveAverageQualityClustersWithSerendipity))
print(’Number of ’ + pssMethod + ’ clusters with ’ + serendipityType + ’ with below

average quality = ’ + str(belowAverageQualityClustersWithSerendipity))
print(’Number of ’ + pssMethod + ’ clusters with ’ + serendipityType + ’ with above

average expectedness = ’ + str(aboveAverageExpectednessClustersWithSerendipity))
print(’Number of ’ + pssMethod + ’ lusters with ’ + serendipityType + ’ with below

average expectedness = ’ + str(belowAverageExpectednessClustersWithSerendipity))

print(’Percentage of ’ + pssMethod + ’ clusters with ’ + serendipityType + ’ = ’ + str(
totalClustersWithSerendipity/totalClusters))

print(’Percentage of ’ + pssMethod + ’ clusters with ’ + serendipityType + ’ with above
average quality = ’ + str(aboveAverageQualityClustersWithSerendipity/
totalClustersWithSerendipity))

print(’Percentage of ’ + pssMethod + ’ clusters with ’ + serendipityType + ’ with below
average quality = ’ + str(belowAverageQualityClustersWithSerendipity/
totalClustersWithSerendipity))

print(’Percentage of ’ + pssMethod + ’ clusters with ’ + serendipityType + ’ with above
average expectedness = ’ + str(aboveAverageExpectednessClustersWithSerendipity/
totalClustersWithSerendipity))

print(’Percentage of ’ + pssMethod + ’ lusters with ’ + serendipityType + ’ with below
average expectedness = ’ + str(belowAverageExpectednessClustersWithSerendipity/
totalClustersWithSerendipity))

print(’’ )
print(’’ )

stdQualityCluster = []
stdExpectedCluster = []
avgQualityCluster = []
avgExpectedCluster = []

stdQualityPerUser = []
stdExpectednessPerUser = []
avgQualityPerUser = []
avgExpectednessPerUser = []
serendipityPerUser = []
antiserendipityPerUser = []

serendipityPerCluster = np.zeros(11)
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antiserendipityPerCluster = np.zeros(11)

trueNegativePerUser = []
truePositivePerUser = []
trueNegativePerCluster = np.zeros(11)
truePositivePerCluster = np.zeros(11)

favoriteTrackPerUser = []
leastFavoriteTrackPerUser = []

for i in range(0, 11):
stdQualityCluster.append(np.array([]))
stdExpectedCluster.append(np.array([]))
avgQualityCluster.append(np.array([]))
avgExpectedCluster.append(np.array([]))
trueNegativePerUser.append(np.array([]))
truePositivePerUser.append(np.array([]))

with open(’evaluationResponses.csv’, ’r ’ ) as csvFile :
next(csvFile)
reader = csv.reader(csvFile)
userIndex = 0
for row in reader:

stdQualityPerUser.append(np.array([]))
stdExpectednessPerUser.append(np.array([]))
avgQualityPerUser.append(np.array([]))
avgExpectednessPerUser.append(np.array([]))
serendipityPerUser.append(np.array([]))
antiserendipityPerUser.append(np.array([]))

favoriteNumber = [int(i) for i in row[133]. split () if i . isdigit () ]
leastFavoriteNumber = [int(i) for i in row[134]. split () if i . isdigit () ]
if (len(favoriteNumber) == 0):

favoriteTrackPerUser.append(−1)
else:

favoriteTrackPerUser.append(favoriteNumber[0])
if (len(leastFavoriteNumber) == 0):

leastFavoriteTrackPerUser.append(−1)
else:

leastFavoriteTrackPerUser.append(leastFavoriteNumber[0])
for i in range(0, 11):

# extract array of quality and expected values
clusterArray = row[(i∗12) + 1:(i∗12) + 13]
qualityArray = np.array(clusterArray [0::2]) .astype(int)
expectedArray = np.array(clusterArray[1::2]).astype(int)
stdQualityPerUser[userIndex] = np.append(stdQualityPerUser[userIndex], np.std(

qualityArray, ddof=1))
stdExpectednessPerUser[userIndex] = np.append(stdExpectednessPerUser[userIndex

], np.std(expectedArray, ddof=1))
avgQualityPerUser[userIndex] = np.append(avgQualityPerUser[userIndex], np.

average(qualityArray))
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avgExpectednessPerUser[userIndex] = np.append(avgExpectednessPerUser[userIndex
], np.average(expectedArray))

stdQualityCluster[ i ] = np.append(stdQualityCluster[i], np.std(qualityArray, ddof
=1))

stdExpectedCluster[i] = np.append(stdExpectedCluster[i], np.std(expectedArray,
ddof=1))

avgQualityCluster[i ] = np.append(avgQualityCluster[i], np.average(qualityArray))
avgExpectedCluster[i] = np.append(avgExpectedCluster[i], np.average(

expectedArray))

# get serendipity and antiserendipity
serendipity = np.zeros(6)
antiserendipity = np.zeros(6)
trueNegative = np.zeros(6)
truePositive = np.zeros(6)
for j in range(0, 6):

if (qualityArray[j ] > 4 and expectedArray[j] < 4):
serendipity [ j ] += 1
serendipityPerCluster[ i ] += 1

elif (qualityArray[j ] < 4 and expectedArray[j] > 4):
antiserendipity [ j ] += 1
antiserendipityPerCluster [ i ] += 1

elif (qualityArray[j ] < 4 and expectedArray[j] < 4):
trueNegative[j ] += 1
trueNegativePerCluster[i] += 1

elif (qualityArray[j ] > 4 and expectedArray[j] > 4):
truePositive [ j ] += 1
truePositivePerCluster[ i ] += 1

serendipityPerUser[userIndex] = np.append(serendipityPerUser[userIndex], sum(
serendipity))

antiserendipityPerUser[userIndex] = np.append(antiserendipityPerUser[userIndex],
sum(antiserendipity))

truePositivePerUser[ i ] = np.append(truePositivePerUser[i], truePositive)
trueNegativePerUser[i] = np.append(trueNegativePerUser[i], trueNegative)

userIndex += 1

# Serendipity vs. average cluster values
calculateSerendipityPerUser(serendipityPerUser, avgQualityPerUser, avgExpectednessPerUser,

stdQualityPerUser, stdExpectednessPerUser, ’Librosa’, ’ serendipity ’ )
calculateSerendipityPerUser(serendipityPerUser, avgQualityPerUser, avgExpectednessPerUser,

stdQualityPerUser, stdExpectednessPerUser, ’Spleeter’, ’ serendipity ’ )
calculateSerendipityPerUser(antiserendipityPerUser, avgQualityPerUser,

avgExpectednessPerUser,
stdQualityPerUser, stdExpectednessPerUser, ’Librosa’, ’anti−serendipity’)

calculateSerendipityPerUser(antiserendipityPerUser, avgQualityPerUser,
avgExpectednessPerUser,

stdQualityPerUser, stdExpectednessPerUser, ’Spleeter’, ’ anti−serendipity’)

# Favorite track cluster vs. average
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favoriteTracksInBelowAverageQualityCluster = 0
favoriteTracksInAboveAverageQualityCluster = 0
favoriteTracksInBelowAverageExpectednessCluster = 0
favoriteTracksInAboveAverageExpectednessCluster = 0
favoriteTracksInLibrosaClusters = 0
favoriteTracksInSpleeterClusters = 0
totalValidFavoriteTracks = len(favoriteTrackPerUser)

for i in range(0, len(favoriteTrackPerUser)):
if (favoriteTrackPerUser[i ] == −1):

totalValidFavoriteTracks −= 1
else:

favoriteTrackCluster = math.floor((favoriteTrackPerUser[i] − 1) / 6)
if (favoriteTrackCluster <= 5):

favoriteTracksInLibrosaClusters += 1
else:

favoriteTracksInSpleeterClusters += 1

averageUserQuality = np.average(avgQualityPerUser[i])
averageUserExpectedness = np.average(avgExpectednessPerUser[i])

averageQualityFavoriteTrackCluster = avgQualityPerUser[i][favoriteTrackCluster]
averageExpectednessFavoriteTrackCluster = avgExpectednessPerUser[i][

favoriteTrackCluster]

if (averageUserQuality > averageQualityFavoriteTrackCluster):
favoriteTracksInBelowAverageQualityCluster += 1

else:
favoriteTracksInAboveAverageQualityCluster += 1

if (averageUserExpectedness > averageExpectednessFavoriteTrackCluster):
favoriteTracksInBelowAverageExpectednessCluster += 1

else:
favoriteTracksInAboveAverageExpectednessCluster += 1

print(’Total participants with valid favorite tracks = ’ + str(totalValidFavoriteTracks))
print(’Number of favorite tracks in Librosa clusters = ’ + str(

favoriteTracksInLibrosaClusters))
print(’Number of favorite tracks in Spleeter clusters = ’ + str(

favoriteTracksInSpleeterClusters))
print(’Number of participants with favorite tracks in above average quality clusters = ’ +

str(favoriteTracksInAboveAverageQualityCluster))
print(’Number of participants with favorite tracks in below average quality clusters = ’ +

str(favoriteTracksInBelowAverageQualityCluster))
print(’Number of participants with favorite tracks in above average expectedness clusters =

’ + str(favoriteTracksInAboveAverageExpectednessCluster))
print(’Number of participants with favorite tracks in below average expectedness clusters =

’ + str(favoriteTracksInBelowAverageExpectednessCluster))

print(’Percentage of favorite tracks in Librosa clusters = ’ + str(
favoriteTracksInLibrosaClusters / totalValidFavoriteTracks))
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print(’Percentage of favorite tracks in Spleeter clusters = ’ + str(
favoriteTracksInSpleeterClusters / totalValidFavoriteTracks))

print(’Percentage of participants with favorite tracks in above average quality clusters = ’
+ str(favoriteTracksInAboveAverageQualityCluster / totalValidFavoriteTracks))

print(’Percentage of participants with favorite tracks in below average quality clusters = ’
+ str(favoriteTracksInBelowAverageQualityCluster / totalValidFavoriteTracks))

print(’Percentage of participants with favorite tracks in above average expectedness
clusters = ’ + str(favoriteTracksInAboveAverageExpectednessCluster /
totalValidFavoriteTracks))

print(’Percentage of participants with favorite tracks in below average expectedness
clusters = ’ + str(favoriteTracksInBelowAverageExpectednessCluster /
totalValidFavoriteTracks))

print(’’ )
print(’’ )

# Least favorite track cluster vs. average
leastFavoriteTracksInBelowAverageQualityCluster = 0
leastFavoriteTracksInAboveAverageQualityCluster = 0
leastFavoriteTracksInBelowAverageExpectednessCluster = 0
leastFavoriteTracksInAboveAverageExpectednessCluster = 0
leastFavoriteTracksInLibrosaClusters = 0
leastFavoriteTracksInSpleeterClusters = 0
totalValidLeastFavoriteTracks = len(leastFavoriteTrackPerUser)

for i in range(0, len(leastFavoriteTrackPerUser)):
if (leastFavoriteTrackPerUser[i ] == −1):

totalValidLeastFavoriteTracks −= 1
else:

leastFavoriteTrackCluster = math.floor((leastFavoriteTrackPerUser[i] − 1) / 6)
if (leastFavoriteTrackCluster <= 5):

leastFavoriteTracksInLibrosaClusters += 1
else:

leastFavoriteTracksInSpleeterClusters += 1

averageUserQuality = np.average(avgQualityPerUser[i])
averageUserExpectedness = np.average(avgExpectednessPerUser[i])

averageQualityLeastFavoriteTrackCluster = avgQualityPerUser[i][
leastFavoriteTrackCluster]

averageExpectednessLeastFavoriteTrackCluster = avgExpectednessPerUser[i][
leastFavoriteTrackCluster]

if (averageUserQuality > averageQualityLeastFavoriteTrackCluster):
leastFavoriteTracksInBelowAverageQualityCluster += 1

else:
leastFavoriteTracksInAboveAverageQualityCluster += 1

if (averageUserExpectedness > averageExpectednessLeastFavoriteTrackCluster):
leastFavoriteTracksInBelowAverageExpectednessCluster += 1

else:
leastFavoriteTracksInAboveAverageExpectednessCluster += 1

68



print(’Total participants with valid least favorite tracks = ’ + str(
totalValidLeastFavoriteTracks))

print(’Number of least favorite tracks in Librosa clusters = ’ + str(
leastFavoriteTracksInLibrosaClusters))

print(’Number of least favorite tracks in Spleeter clusters = ’ + str(
leastFavoriteTracksInSpleeterClusters))

print(’Number of participants with least favorite tracks in above average quality clusters
= ’ + str(leastFavoriteTracksInAboveAverageQualityCluster))

print(’Number of participants with least favorite tracks in below average quality clusters
= ’ + str(leastFavoriteTracksInBelowAverageQualityCluster))

print(’Number of participants with least favorite tracks in above average expectedness
clusters = ’ + str(leastFavoriteTracksInAboveAverageExpectednessCluster))

print(’Number of participants with least favorite tracks in below average expectedness
clusters = ’ + str(leastFavoriteTracksInBelowAverageExpectednessCluster))

print(’Percentage of least favorite tracks in Librosa clusters = ’ + str(
leastFavoriteTracksInLibrosaClusters / totalValidLeastFavoriteTracks))

print(’Percentage of least favorite tracks in Spleeter clusters = ’ + str(
leastFavoriteTracksInSpleeterClusters / totalValidLeastFavoriteTracks))

print(’Percentage of participants with least favorite tracks in above average quality
clusters = ’ + str(leastFavoriteTracksInAboveAverageQualityCluster /
totalValidLeastFavoriteTracks))

print(’Percentage of participants with least favorite tracks in below average quality
clusters = ’ + str(leastFavoriteTracksInBelowAverageQualityCluster /
totalValidLeastFavoriteTracks))

print(’Percentage of participants with least favorite tracks in above average expectedness
clusters = ’ + str(leastFavoriteTracksInAboveAverageExpectednessCluster /
totalValidLeastFavoriteTracks))

print(’Percentage of participants with least favorite tracks in below average expectedness
clusters = ’ + str(leastFavoriteTracksInBelowAverageExpectednessCluster /
totalValidLeastFavoriteTracks))

print(’’ )
print(’’ )

# Graph avg and std
stdQualityClusterLibrosa = stdQualityCluster[0:6]
stdExpectedClusterLibrosa = stdExpectedCluster[0:6]
stdQualityClusterSpleeter = stdQualityCluster[6:11]
stdExpectedClusterSpleeter = stdExpectedCluster[6:11]

avgQualityClusterLibrosa = avgQualityCluster[0:6]
avgExpectedClusterLibrosa = avgExpectedCluster[0:6]
avgQualityClusterSpleeter = avgQualityCluster[6:11]
avgExpectedClusterSpleeter = avgExpectedCluster[6:11]

numParticipants = len(stdQualityClusterLibrosa[0])
x = np.arange(numParticipants)

qualityLibrosaFig, qualityLibrosaAxs = plt.subplots(nrows=len(stdQualityClusterLibrosa),
ncols=2, figsize=(18, 20))
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qualityLibrosaFig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.93, wspace
=0.2, hspace=0.4)

qualityLibrosaFig. suptitle ("Standard Deviation and Average of Quality Values Per
Participant in Librosa PSS Clusters", fontsize=25)

for ax in qualityLibrosaAxs.flat :
ax.set_xticks(x)

for ax in qualityLibrosaAxs [:,0]:
ax.set(xlabel=’Participant’ , ylabel=’Standard Deviation’)

for ax in qualityLibrosaAxs [:,1]:
ax.set(xlabel=’Participant’ , ylabel=’Average’)

expectedLibrosaFig, expectedLibrosaAxs = plt.subplots(nrows=len(
stdExpectedClusterLibrosa), ncols=2, figsize=(18, 20))

expectedLibrosaFig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.93, wspace
=0.2, hspace=0.4)

expectedLibrosaFig.suptitle("Standard Deviation and Average of Expectedness Values Per
Participant in Librosa PSS Clusters", fontsize=25)

for ax in expectedLibrosaAxs.flat:
ax.set_xticks(x)

for ax in expectedLibrosaAxs[:,0]:
ax.set(xlabel=’Participant’ , ylabel=’Standard Deviation’)

for ax in expectedLibrosaAxs[:,1]:
ax.set(xlabel=’Participant’ , ylabel=’Average’)

qualitySpleeterFig , qualitySpleeterAxs = plt.subplots(nrows=len(stdQualityClusterSpleeter),
ncols=2, figsize=(18, 20))

qualitySpleeterFig .subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.93, wspace
=0.2, hspace=0.4)

qualitySpleeterFig . suptitle ("Standard Deviation and Average of Quality Values Per
Participant in Spleeter PSS Clusters", fontsize =25)

for ax in qualitySpleeterAxs. flat :
ax.set_xticks(x)

for ax in qualitySpleeterAxs [:,0]:
ax.set(xlabel=’Participant’ , ylabel=’Standard Deviation’)

for ax in qualitySpleeterAxs [:,1]:
ax.set(xlabel=’Participant’ , ylabel=’Average’)

expectedSpleeterFig, expectedSpleeterAxs = plt.subplots(nrows=len(
stdExpectedClusterSpleeter), ncols=2, figsize=(18, 20))

expectedSpleeterFig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.93, wspace
=0.2, hspace=0.4)

expectedSpleeterFig. suptitle ("Standard Deviation and Average of Expectedness Values Per
Participant in Spleeter PSS Clusters", fontsize=25)

for ax in expectedSpleeterAxs.flat :
ax.set_xticks(x)

for ax in expectedSpleeterAxs [:,0]:
ax.set(xlabel=’Participant’ , ylabel=’Standard Deviation’)

for ax in expectedSpleeterAxs [:,1]:
ax.set(xlabel=’Participant’ , ylabel=’Average’)
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averageQualityPerClusterLibrosa = np.zeros(6)
averageStdQualityPerClusterLibrosa = np.zeros(6)
averageExpectedPerClusterLibrosa = np.zeros(6)
averageStdExpectedPerClusterLibrosa = np.zeros(6)

for i in range(0, len(stdQualityClusterLibrosa)):
stdQuality = stdQualityClusterLibrosa[i]
qualityLibrosaAxs[i , 0]. set_title ("Standard Deviation Cluster " + str(i), fontsize =15)
qualityLibrosaAxs[i , 0]. axhline(np.average(stdQuality), color=’red’, linestyle =’−−’,

linewidth=0.5, label=’std = ’ + str(round(np.average(stdQuality), 2)))
qualityLibrosaAxs[i , 0]. legend(loc=’upper right’)
qualityLibrosaAxs[i , 0]. plot(x, stdQuality)
averageStdQualityPerClusterLibrosa[i] = np.average(stdQuality)
avgQuality = avgQualityClusterLibrosa[i]
qualityLibrosaAxs[i , 1]. set_title ("Average Cluster " + str(i) , fontsize =15)
qualityLibrosaAxs[i , 1]. axhline(np.average(avgQuality), color=’red’, linestyle =’−−’,

linewidth=0.5, label=’avg = ’ + str(round(np.average(avgQuality), 2)))
qualityLibrosaAxs[i , 1]. legend(loc=’upper right’)
qualityLibrosaAxs[i , 1]. plot(x, avgQuality)
averageQualityPerClusterLibrosa[i] = np.average(avgQuality)

stdExpected = stdExpectedClusterLibrosa[i]
expectedLibrosaAxs[i, 0]. set_title ("Cluster " + str(i) , fontsize =15)
expectedLibrosaAxs[i, 0]. axhline(np.average(stdExpected), color=’red’, linestyle =’−−’,

linewidth=0.5, label=’std = ’ + str(round(np.average(stdExpected), 2)))
expectedLibrosaAxs[i, 0]. legend(loc=’upper right’)
expectedLibrosaAxs[i, 0]. plot(x, stdExpected)
averageStdExpectedPerClusterLibrosa[i] = np.average(stdExpected)
avgExpected = avgExpectedClusterLibrosa[i]
expectedLibrosaAxs[i, 1]. set_title ("Average Cluster " + str(i) , fontsize =15)
expectedLibrosaAxs[i, 1]. axhline(np.average(avgExpected), color=’red’, linestyle =’−−’,

linewidth=0.5, label=’avg = ’ + str(round(np.average(avgExpected), 2)))
expectedLibrosaAxs[i, 1]. legend(loc=’upper right’)
expectedLibrosaAxs[i, 1]. plot(x, avgExpected)
averageExpectedPerClusterLibrosa[i] = np.average(avgExpected)

print(’Average standard deviation quality value for all Librosa clusters : ’ + str(np.
average(averageStdQualityPerClusterLibrosa)))

print(’Average quality value for all Librosa clusters : ’ + str(np.average(
averageQualityPerClusterLibrosa)))

print(’Average standard deviation expectedness value for all Librosa clusters : ’ + str(np.
average(averageStdExpectedPerClusterLibrosa)))

print(’Average expectedness value for all Librosa clusters : ’ + str(np.average(
averageExpectedPerClusterLibrosa)))

print(’’ )

averageQualityPerClusterSpleeter = np.zeros(5)
averageStdQualityPerClusterSpleeter = np.zeros(5)
averageExpectedPerClusterSpleeter = np.zeros(5)
averageStdExpectedPerClusterSpleeter = np.zeros(5)
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for i in range(0, len(stdQualityClusterSpleeter)):
stdQuality = stdQualityClusterSpleeter[i ]
qualitySpleeterAxs[ i , 0]. set_title ("Standard Deviation Cluster " + str(i), fontsize =15)
qualitySpleeterAxs[ i , 0]. axhline(np.average(stdQuality), color=’red’, linestyle =’−−’,

linewidth=0.5, label=’std = ’ + str(round(np.average(stdQuality), 2)))
qualitySpleeterAxs[ i , 0]. legend(loc=’upper right’)
qualitySpleeterAxs[ i , 0]. plot(x, stdQuality)
averageStdQualityPerClusterSpleeter[i] = np.average(stdQuality)
avgQuality = avgQualityClusterSpleeter[i]
qualitySpleeterAxs[ i , 1]. set_title ("Average Cluster " + str(i) , fontsize =15)
qualitySpleeterAxs[ i , 1]. axhline(np.average(avgQuality), color=’red’, linestyle =’−−’,

linewidth=0.5, label=’avg = ’ + str(round(np.average(avgQuality), 2)))
qualitySpleeterAxs[ i , 1]. legend(loc=’upper right’)
qualitySpleeterAxs[ i , 1]. plot(x, avgQuality)
averageQualityPerClusterSpleeter[i ] = np.average(avgQuality)

stdExpected = stdExpectedClusterSpleeter[i]
expectedSpleeterAxs[i, 0]. set_title ("Standard Deviation Cluster " + str(i), fontsize =15)
expectedSpleeterAxs[i, 0]. axhline(np.average(stdExpected), color=’red’, linestyle =’−−’,

linewidth=0.5, label=’std = ’ + str(round(np.average(stdExpected), 2)))
expectedSpleeterAxs[i, 0]. legend(loc=’upper right’)
expectedSpleeterAxs[i, 0]. plot(x, stdExpected)
averageStdExpectedPerClusterSpleeter[i] = np.average(stdExpected)
avgExpected = avgExpectedClusterSpleeter[i]
expectedSpleeterAxs[i, 1]. set_title ("Average Cluster " + str(i) , fontsize =15)
expectedSpleeterAxs[i, 1]. axhline(np.average(avgExpected), color=’red’, linestyle =’−−’,

linewidth=0.5, label=’avg = ’ + str(round(np.average(avgExpected), 2)))
expectedSpleeterAxs[i, 1]. legend(loc=’upper right’)
expectedSpleeterAxs[i, 1]. plot(x, avgExpected)
averageExpectedPerClusterSpleeter[i] = np.average(avgExpected)

print(’Average standard deviation quality value for all Spleeter clusters : ’ + str(np.
average(averageStdQualityPerClusterSpleeter)))

print(’Average quality value for all Spleeter clusters : ’ + str(np.average(
averageQualityPerClusterSpleeter)))

print(’Average standard deviation expectedness value for all Spleeter clusters : ’ + str(np.
average(averageStdExpectedPerClusterSpleeter)))

print(’Average expectedness value for all Spleeter clusters : ’ + str(np.average(
averageExpectedPerClusterSpleeter)))

qualityLibrosaFig. savefig ( ’qualityLibrosaFig.png’)
expectedLibrosaFig.savefig( ’expectedLibrosaFig.png’)
qualitySpleeterFig . savefig ( ’ qualitySpleeterFig .png’)
expectedSpleeterFig. savefig ( ’expectedSpleeterFig.png’)

# Serendipity
serendipityPerClusterLibrosa = serendipityPerCluster[0:6]
antiserendipityPerClusterLibrosa = antiserendipityPerCluster [0:6]
serendipityPerClusterSpleeter = serendipityPerCluster[6:11]
antiserendipityPerClusterSpleeter = antiserendipityPerCluster [6:11]
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trueNegativePerUserLibrosa = trueNegativePerUser[0:6]
truePositivePerUserLibrosa = truePositivePerUser[0:6]
trueNegativePerUserSpleeter = trueNegativePerUser[6:11]
truePositivePerUserSpleeter = truePositivePerUser[6:11]

trueNegativePerClusterLibrosa = trueNegativePerCluster[0:6]
truePositivePerClusterLibrosa = truePositivePerCluster [0:6]
trueNegativePerClusterSpleeter = trueNegativePerCluster[6:11]
truePositivePerClusterSpleeter = truePositivePerCluster[6:11]

serendipityPerClusterLibrosaFig, serendipityPerClusterLibrosaAxs = plt.subplots( figsize
=(10, 3))

serendipityPerClusterLibrosaFig.subplots_adjust(bottom=0.2)
serendipityPerClusterLibrosaFig. suptitle ("Total Serendipity Across All Participants Per

Librosa PSS Cluster")
serendipityPerClusterLibrosaAxs.set(xlabel=’Cluster’, ylabel=’Total Serendipity Found’)
serendipityPerClusterLibrosaAxs.set_xticks(np.arange(6))
serendipityPerClusterLibrosaAxs.axhline(np.average(serendipityPerClusterLibrosa), color=’

red’, linewidth=0.5, label=’Serendipity per Cluster = ’ + str(round(np.average(
serendipityPerClusterLibrosa), 2)) + ’, Total Serendipity = ’ + str(np.sum(
serendipityPerClusterLibrosa)))

serendipityPerClusterLibrosaAxs.legend(loc=’upper right’)
serendipityPerClusterLibrosaAxs.plot(np.arange(6), serendipityPerClusterLibrosa)
serendipityPerClusterLibrosaFig. savefig ( ’serendipityPerClusterLibrosaFig.png’)

serendipityPerClusterSpleeterFig, serendipityPerClusterSpleeterAxs = plt.subplots( figsize
=(10, 3))

serendipityPerClusterSpleeterFig.subplots_adjust(bottom=0.2)
serendipityPerClusterSpleeterFig. suptitle ("Total Serendipity Across All Participants Per

Spleeter PSS Cluster")
serendipityPerClusterSpleeterAxs.set(xlabel=’Cluster’, ylabel=’Total Serendipity Found’)
serendipityPerClusterSpleeterAxs.set_xticks(np.arange(5))
serendipityPerClusterSpleeterAxs.axhline(np.average(serendipityPerClusterSpleeter) , color=’

red’, linewidth=0.5, label=’Serendipity per Cluster = ’ + str(round(np.average(
serendipityPerClusterSpleeter), 2)) + ’, Total Serendipity = ’ + str(np.sum(
serendipityPerClusterSpleeter)))

serendipityPerClusterSpleeterAxs.legend(loc=’upper right’)
serendipityPerClusterSpleeterAxs.plot(np.arange(5), serendipityPerClusterSpleeter)
serendipityPerClusterSpleeterFig. savefig ( ’serendipityPerClusterSpleeterFig.png’)

antiserendipityPerClusterLibrosaFig, antiserendipityPerClusterLibrosaAxs = plt.subplots(
figsize =(10, 3))

antiserendipityPerClusterLibrosaFig.subplots_adjust(bottom=0.2)
antiserendipityPerClusterLibrosaFig. suptitle ("Total Antiserendipity Across All Participants

Per Librosa PSS Cluster")
antiserendipityPerClusterLibrosaAxs.set(xlabel=’Cluster’, ylabel=’Total Anti−Serendipity

Found’)
antiserendipityPerClusterLibrosaAxs.set_xticks(np.arange(6))
antiserendipityPerClusterLibrosaAxs.axhline(np.average(antiserendipityPerClusterLibrosa),

color=’red’, linewidth=0.5, label=’Anti−serendipity per Cluster = ’ + str(round(np.
average(antiserendipityPerClusterLibrosa), 2)) + ’, Total Anti−Serendipity = ’ + str(np.
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sum(antiserendipityPerClusterLibrosa)))
antiserendipityPerClusterLibrosaAxs.legend(loc=’upper right’)
antiserendipityPerClusterLibrosaAxs.plot(np.arange(6), antiserendipityPerClusterLibrosa)
antiserendipityPerClusterLibrosaFig. savefig ( ’antiserendipityPerClusterLibrosaFig.png’)

antiserendipityPerClusterSpleeterFig , antiserendipityPerClusterSpleeterAxs = plt.subplots(
figsize =(10, 3))

antiserendipityPerClusterSpleeterFig .subplots_adjust(bottom=0.2)
antiserendipityPerClusterSpleeterFig . suptitle ("Total Antiserendipity Across All Participants

Per Spleeter PSS Cluster")
antiserendipityPerClusterSpleeterAxs.axhline(np.average(antiserendipityPerClusterSpleeter) ,

color=’red’, linewidth=0.5, label=’Anti−serendipity per Cluster = ’ + str(round(np.
average(antiserendipityPerClusterSpleeter), 2)) + ’, Total Anti−Serendipity = ’ + str(np.
sum(antiserendipityPerClusterSpleeter)))

antiserendipityPerClusterSpleeterAxs.set(xlabel=’Cluster’, ylabel=’Total Anti−Serendipity
Found’)

antiserendipityPerClusterSpleeterAxs.set_xticks(np.arange(5))
antiserendipityPerClusterSpleeterAxs.legend(loc=’upper right’)
antiserendipityPerClusterSpleeterAxs.plot(np.arange(5), antiserendipityPerClusterSpleeter )
antiserendipityPerClusterSpleeterFig . savefig ( ’ antiserendipityPerClusterSpleeterFig .png’)

trueNegativePerClusterLibrosaFig, trueNegativePerClusterLibrosaAxs = plt.subplots(figsize
=(10, 3))

trueNegativePerClusterLibrosaFig.subplots_adjust(bottom=0.2)
trueNegativePerClusterLibrosaFig.suptitle("Total True Negative Across All Participants Per

Librosa PSS Cluster")
trueNegativePerClusterLibrosaAxs.set(xlabel=’Cluster’, ylabel=’Total trueNegative Found’)
trueNegativePerClusterLibrosaAxs.set_xticks(np.arange(6))
trueNegativePerClusterLibrosaAxs.axhline(np.average(trueNegativePerClusterLibrosa), color=

’red’, linewidth=0.5, label=’True Negative per Cluster = ’ + str(round(np.average(
trueNegativePerClusterLibrosa), 2)) + ’, Total True Negative = ’ + str(np.sum(
trueNegativePerClusterLibrosa)))

trueNegativePerClusterLibrosaAxs.legend(loc=’upper right’)
trueNegativePerClusterLibrosaAxs.plot(np.arange(6), trueNegativePerClusterLibrosa)
trueNegativePerClusterLibrosaFig.savefig(’trueNegativePerClusterLibrosaFig.png’)

trueNegativePerClusterSpleeterFig, trueNegativePerClusterSpleeterAxs = plt.subplots(figsize
=(10, 3))

trueNegativePerClusterSpleeterFig.subplots_adjust(bottom=0.2)
trueNegativePerClusterSpleeterFig.suptitle("Total True Negative Across All Participants Per

Spleeter PSS Cluster")
trueNegativePerClusterSpleeterAxs.set(xlabel=’Cluster’, ylabel=’Total trueNegative Found’)
trueNegativePerClusterSpleeterAxs.set_xticks(np.arange(5))
trueNegativePerClusterSpleeterAxs.axhline(np.average(trueNegativePerClusterSpleeter), color

=’red’, linewidth=0.5, label=’True Negative per Cluster = ’ + str(round(np.average(
trueNegativePerClusterSpleeter), 2)) + ’, Total True Negative = ’ + str(np.sum(
trueNegativePerClusterSpleeter)))

trueNegativePerClusterSpleeterAxs.legend(loc=’upper right’)
trueNegativePerClusterSpleeterAxs.plot(np.arange(5), trueNegativePerClusterSpleeter)
trueNegativePerClusterSpleeterFig.savefig( ’trueNegativePerClusterSpleeterFig.png’)
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truePositivePerClusterLibrosaFig, truePositivePerClusterLibrosaAxs = plt.subplots( figsize
=(10, 3))

truePositivePerClusterLibrosaFig.subplots_adjust(bottom=0.2)
truePositivePerClusterLibrosaFig. suptitle ("Total True Positive Across All Participants Per

Librosa PSS Cluster")
truePositivePerClusterLibrosaAxs.set(xlabel=’Cluster’, ylabel=’Total Serendipity Found’)
truePositivePerClusterLibrosaAxs.set_xticks(np.arange(6))
truePositivePerClusterLibrosaAxs.axhline(np.average(truePositivePerClusterLibrosa), color=’

red’, linewidth=0.5, label=’True Positive per Cluster = ’ + str(round(np.average(
truePositivePerClusterLibrosa), 2)) + ’, Total True Positive = ’ + str(np.sum(
truePositivePerClusterLibrosa)))

truePositivePerClusterLibrosaAxs.legend(loc=’upper right’)
truePositivePerClusterLibrosaAxs.plot(np.arange(6), truePositivePerClusterLibrosa)
truePositivePerClusterLibrosaFig. savefig ( ’truePositivePerClusterLibrosaFig.png’)

truePositivePerClusterSpleeterFig, truePositivePerClusterSpleeterAxs = plt.subplots( figsize
=(10, 3))

truePositivePerClusterSpleeterFig.subplots_adjust(bottom=0.2)
truePositivePerClusterSpleeterFig. suptitle ("Total True Positive Across All Participants Per

Spleeter PSS Cluster")
truePositivePerClusterSpleeterAxs.axhline(np.average(truePositivePerClusterSpleeter) , color

=’red’, linewidth=0.5, label=’True Positive per Cluster = ’ + str(round(np.average(
truePositivePerClusterSpleeter), 2)) + ’, Total True Positive = ’ + str(np.sum(
truePositivePerClusterSpleeter)))

truePositivePerClusterSpleeterAxs.set(xlabel=’Cluster’, ylabel=’Total Serendipity Found’)
truePositivePerClusterSpleeterAxs.set_xticks(np.arange(5))
truePositivePerClusterSpleeterAxs.legend(loc=’upper right’)
truePositivePerClusterSpleeterAxs.plot(np.arange(5), truePositivePerClusterSpleeter)
truePositivePerClusterSpleeterFig. savefig ( ’truePositivePerClusterSpleeterFig.png’)
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Appendix G

Relevant Evaluation Session Additional
Comments

• Please add a audible tag for each clip. For example a voice that tells you what track it is.
Could not do A-B testing between tracks

• Track 6 was hard to hear/close to inaudible.

• It could’ve been interesting to record the timecode of when the rating happened (in the
30 sec windows), as it seems that I make up my mind pretty quickly. But a few times I
changed my mind for better or for worse later in the excerpt.

• I would have appreciate to have the audio files embedded in the Google Form to make it
easier, but apart from that good job!

• I think I could have made a decision on each section in 15 seconds.

• Track 40 stuck with me as the one I liked the least. The instrumental music was not that
much to my taste but it was okay-ish, that’s why I gave it a higher rating in likeliness to
listen. The problem is that I understood the lyrics and really hated them.
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