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Abstract. We prove a bound conjectured by Itenberg on the Betti
numbers of real algebraic hypersurfaces near non-singular tropical lim-
its. These bounds are given in terms of the Hodge numbers of the
complexification. To prove the conjecture we introduce a real variant
of tropical homology and define a filtration on the corresponding chain
complex inspired by Kalinin’s filtration. The spectral sequence associ-
ated to this filtration converges to the homology groups of the real al-
gebraic variety and we show that the terms of the first page are tropical
homology groups with Z/2Z-coefficients. The dimensions of these ho-
mology groups correspond to the Hodge numbers of complex projective
hypersurfaces by combining results of Itenberg, Mikhalkin, Katzarkov,
and Zharkov and the authors together with Arnal. The bounds on the
Betti numbers of the real part follow, as well as a criterion to obtain
a maximal variety. We also generalise Bertrand’s formula relating the
signature of the complex hypersurface and the Euler characteristic of
the real algebraic hypersurface, as well as reprove Haas’ combinatorial
criterion for the maximality of plane curves near the tropical limit.

Résumé

On démontre une borne conjecturée par Itenberg sur les nombres de
Betti des hypersurfaces algébriques réelles proches de la limite tropi-
cale. Ces bornes sont exprimées en fonctions des nombres de Hodge de
la complexification. Pour démontrer ces bornes nous introduisons une
variante de l’homologie tropicale dans le cadre réel, et définissons une
filtration sur le complexe de châıne associé, inspirée par la filtration de
Kalinin. La suite spectrale associée à cette filtration converge vers les
groupes d’homologie de la variété algébrique réelle, et nous montrons que
les termes de la première page sont les groupes d’homologie tropicale (à
coefficients dans Z/2Z). Les dimensions de ces groupes d’homologie cor-
respondent aux nombres de Hodge des hypersurfaces projectives com-
plexes grâce aux résultats d’Itenberg, Mikhalkin, Katzarkov, Zharkov
d’une part et des auteurs avec Arnal d’autre part. Les bornes sur les
nombres de Betti s’ensuivent, ainsi qu’un critère pour obtenir une variété
maximale. Nous généralisons également la formule due à Bertrand
reliant la signature d’une hypersurface complexe et la caractéristique
d’Euler d’une hypersurface réelle, et nous redémontrons le critère com-
binatoire de Haas sur la maximalité des courbes planes proches de la
limite tropicale.

1



2 ARTHUR RENAUDINEAU AND KRIS SHAW

1. Introduction

A real hypersurface V ⊂ Pn+1 of degree d is a hypersurface defined by
a real homogeneous polynomial f(z0, . . . , zn+1) ∈ R[z0, . . . , zn+1] of degree
d. We let RV denote the set of real points of V and CV denote the set
of its complex points. The following fundamental question in real algebraic
geometry can be traced back beyond Hilbert’s sixteenth problem, see [Hil00],
[Wil78], [DK00b] for a survey. In this paper we denote by Z2 the field with
two elements.

Question 1.1. For any 0 ≤ q ≤ n, what is the maximal possible value of
the q-th Betti number

bq(RV ) := dimHq(RV ;Z2)

among degree d non-singular real algebraic hypersurfaces V in Pn+1?

In 1876, Harnack [Har76] proved the optimal bound

b0(RV ) ≤ (d− 1)(d− 2)

2
+ 1,

for V a non-singular real algebraic plane curve of degree d. This bound
was generalised to any compact non-singular real curve by Klein [Kle76]

by replacing (d−1)(d−2)
2 with g(CV ), where g(CV ) denotes the genus of the

complex curve. Beyond the case of plane curves, no optimal bounds are
known in general on the individual Betti numbers of real algebraic varieties.
For example, in the case of non-singular real algebraic surfaces in P3, the
maximal values of the individual Betti numbers are unknown beyond degree
5. It is known that the maximal number of connected components of a non-
singular real algebraic quintic surface is either 23, 24, or 25 and the maximal
value of the first Betti number is either 45 or 47, see [Ore01] and [IK96]. In
general, we will denote by hp,q(CV ) the (p, q)-th Hodge number of CV .

In relation to higher Betti numbers, in 1980 Viro formulated the following
conjecture for all real projective surfaces.

Conjecture 1.2 (Viro). If V is a non-singular real projective surface such
that CV is simply connected, then

b1(RV ) ≤ h1,1(CV ),

where h1,1(CV ) denotes the (1, 1)-th Hodge number of CV .

When V is the double covering of P2 ramified along a curve of even de-
gree, the above conjecture is equivalent to the slight weakening of Ragsdale’s
conjecture about plane curves [Rag04] made by Petrowsky [Pet38], see also
[Vir80]. Counterexamples to Ragsdale’s and Petrovsky’s conjectured have
been constructed by Viro [Vir80] and Itenberg [Ite93], respectively. Iten-
berg’s counterexample paved the way to various counterexamples to Viro’s
conjecture and to constructions of real algebraic surfaces with many con-
nected components, for example those in [Ite97], [Bih99], and [Bru06]. It
is still not known whether Viro’s conjecture is true for surfaces which are
maximal in the sense of the Smith-Thom inequality (1.2).

There are two main directions in Question 1.1. The first is to obtain
restrictions on the topologies of real algebraic varieties, as is the case for
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Harnack’s bound. The second direction is to provide constructions of real
algebraic varieties with given topology. Viro’s patchworking method pro-
vided a breakthrough in the second direction [Vir84]. This technique con-
tinues to be the most powerful tool to construct real algebraic varieties in
toric varieties with effectively computable topology. Here we will restrict our
attention to Viro’s primitive combinatorial patchworking, see Remark 3.8.
The following was conjectured by Itenberg around 2005, and later appeared
in [Ite17].

Conjecture 1.3. [Ite17, Conjecture 2.5] Let V be a real hypersurface in
Pn+1 obtained by a primitive patchworking. Then for any integer q =
0, . . . , n,

bq(RV ) ≤

{
hq,q(CV ) for q = n/2,

hq,n−q(CV ) + 1 otherwise.

In the case of real algebraic surfaces in P3 arising from primitive patch-
workings the above bounds were already proven by Itenberg [Ite97], and are
explicitly,

b0(RV ) ≤
(
d− 1

3

)
+ 1 and b1(RV ) ≤ 2d3 − 6d2 + 7d

3
.

For example, real algebraic surfaces of degree 5 arising from a primitive
patchworking satisfy b0(RV ) ≤ 5 and b1(RV ) ≤ 45. Furthermore, asymp-
totic analogues of the bounds in Conjecture 1.3 were proved by Itenberg and
Viro in [IV07].

Viro’s method for patchworking applies not only to real hypersurfaces in
projective space but also to hypersurfaces in more general toric varieties,
see for example [Ris93]. Real algebraic hypersurfaces arising from primitive
patchworking were later interpreted by Viro [Vir01] as real algebraic hyper-
surfaces near non-singular tropical limits, see Definition 3.9 and [BIMS15,
Section 5.3]. Here we will use this contemporary point of view on Viro’s
method and relate it to Viro’s original formulation in Remark 3.8. A hy-
persurface near the non-singular tropical limit will always be (partially)
compactified in a toric variety whose fan is a subfan of the dual fan of the
Newton polytope of the hypersurface. We say a Newton polytope ∆ is non-
singular if the associated toric variety Y∆ is non-singular. In this paper we
establish the following theorem for real algebraic hypersurfaces in compact
non-singular toric varieties near a non-singular tropical limit.

Theorem 1.4. Let V be a compact real algebraic hypersurface with non-
singular Newton polytope and near a non-singular tropical limit. Then for
any integer q = 0, . . . , n,

bq(RV ) ≤

{
hq,q(CV ) for q = n/2,

hq,n−q(CV ) + hq,q(CV ) otherwise.

When the toric variety is projective space, Conjecture 1.3 follows directly
from the following theorem and the fact that hq,q(CV ) = 1 for 2q 6= n by
the Lefschetz hyperplane section theorem.
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1.1. A guide to the proof of Theorem 1.4. To prove Theorem 1.4, we
use a tropical description of primitive patchworking in terms of real phase
structures, which we present in Section 3. We recall the relation to the stan-
dard version of primitive patchworking in Remark 3.8. For an n-dimensional
non-singular real tropical hypersurface X in a tropical toric variety Y the
notion of a real phase structure E is described in Definition 3.1. In Section
3.2 we describe a cellular cosheaf on X called the sign cosheaf SE . A cellu-
lar cosheaf G on a tropical hypersurface X consists of a vector space G(σ)
for each face σ of X together with linear maps iστ : G(σ) → G(τ) for each
inclusion of faces τ ⊂ σ. These linear maps must satisfy commutativity
conditions for all face relations ρ ⊂ τ1, τ2 ⊂ σ. The cellular chain com-
plex C•(X;SE) with coefficients in SE together with its homology groups
H•(X;SE) are defined in Definition 3.16. Note that all the cosheaves in
this paper are considered over Z2, unless it is otherwise clearly stated. In
Proposition 3.17, we prove that the homology groups of the sign cosheaf are
isomorphic to the homology groups of the real part of a real algebraic hy-
persurface near the tropical limit. The next step of the proof is to construct
a filtration of the chain complex with coefficients in SE ,

0 ⊂ C•(X;Kn) ⊂ · · · ⊂ C•(X;Kp) ⊂ · · · ⊂ C•(X;SE), (1.1)

where the Kp’s are the collection of cellular cosheaves on X from Definition
4.5.

The tropical homology groups, as introduced by Itenberg, Katzarkov,
Mikhakin and Zharkov [IKMZ19], are also homology groups of cosheaves on
tropical varieties but with rational coefficients. Here we use a Z2-variant
of this homology theory and denote the cosheaves by Fp. For every p and
each face τ of X, we define linear maps bvp : Kp(τ) → Fp(τ) in Definition
4.9, which come from the augmented filtration of a group algebra which
was highlighted by Quillen [Qui68]. It follows from Lemma 4.8, that these
linear maps are surjective and satisfy Ker(bvp : Kp(τ)→ Fp(τ)) = Kp+1(τ).
Proposition 4.10 shows that these linear maps commute with the cosheaf
maps and thus induce morphisms of chain complexes and produce the fil-
tration in (1.1). Then we consider the spectral sequence associated to this
filtration which we denote by (E••,•, ∂•). This spectral sequence degenerates
since it arises from a filtration of a chain complex consisting of finite dimen-
sional chain groups. Therefore we obtain,

dimHq(X;SE) =

n∑
p=0

dimE∞q,p.

By Corollary 4.11 we get

E1
q,p = Hq(C•(X,Kp)/C•(X,Kp+1)) ∼= Hq(X;Fp).

This establishes the following theorem which bounds the Betti numbers of
real algebraic hypersurfaces near the tropical limit. The theorem holds not
just for a compact hypersurface in the toric variety defined by its Newton
polytope, but also for a non-compact hypersurface obtained by removing the
intersection with any of the torus orbits of that toric variety. This includes
for example, hypersurfaces near the tropical limit contained in the torus or
affine space. In the statement below, the notation bBMq denotes the q-th
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Betti number of the Borel-More homology group [BM60] and HBM
q (X;Fp)

denotes the Borel-Moore variant of tropical homology [JRS18]. For ∆ a
lattice polytope, denote by Y o

∆ a partial compactification of the torus corre-
sponding to a subfan of the dual fan of ∆.

Theorem 1.5. Let V be a real algebraic hypersurface with Newton polytope
∆ in the non-singular toric variety Y o

∆ and near the non-singular tropical
limit X. Then for all q we have,

bq(RV ) ≤
n∑
p=0

dimHq(X;Fp),

and

bBMq (RV ) ≤
n∑
p=0

dimHBM
q (X;Fp).

The main ingredient for proving Theorem 1.4 from Theorem 1.5 is to
relate the dimensions of tropical homology groups with Z2-coefficients and
the Hodge numbers of complex hypersurfaces.

Theorem 1.6. Let X be a non-singular compact tropical hypersurface with
non-singular Newton polytope ∆. Let V be a non-singular complex hypersur-
face in the non-singular complex toric variety Y∆ also with Newton polytope
∆. Then for all p and q we have

dimHp,q(CV ) = rankHq(X;Fp).
Proof. By [ARS, Corollary 1.4], the integral tropical homology groups of the
hypersurface X are torsion free. Therefore, we have

rankHq(X;FZ
p ) = dimHq(X;Fp) = dimHq(X;FQ

p ),

where Hq(X;FZ
p ) and Hq(X;FQ

p ) are the tropical homology group with
Z and Q-coefficients, respectively. By [IKMZ19, Corollary 2] and [ARS,
Corollary 1.9] we have dimHq(X;FQ

p ) = hp,q(CV ) and this completes the
proof. �

Finally, the expression of the bounds in Theorem 1.4 is obtained by the
Lefschetz Hyperplane Theorem which implies that if p+q 6= n or p 6= q then
then hp,q(CV ) = 0.

Remark 1.7. We expect that the above theorem may also hold beyond the
case of hypersurfaces. For example, Viro’s patchworking construction has
been generalised to complete intersections [Stu94], [Bih02]. In order to ob-
tain a version of Theorem 1.4 for complete intersections it remains to relate
the dimensions of the tropical homology groups with Z2-coefficients to the
Hodge numbers of complete intersections over the complex numbers. One
possible route to making this connection is to establish tropical Lefschetz sec-
tion theorems and torsion freeness of the integral tropical homology groups
for tropical complete intersections as in the case for hypersurfaces in [ARS].

Even more generally, a tropical manifold is a polyhedral space locally mod-
elled on matroid fans [MR, Section 7.4]. A real phase structure on a tropical
manifold would consist of specifying orientations of the local matroids, sub-
ject to compatibility conditions. It would be interesting to study real phase
structures in this context and to generalise Theorem 1.5.



6 ARTHUR RENAUDINEAU AND KRIS SHAW

1.2. Further consequences of the spectral sequence. In Section 6, we
describe how to go further in the spectral sequence to give criteria in The-
orem 6.1 for a real algebraic hypersurface arising from a primitive patch-
working to attain the bounds in Theorem 1.4. For a real algebraic variety,
the Smith-Thom inequality bounds the sum of the Betti numbers of the real
part by the sum of the complexification,

n∑
q=0

bq(RV ) ≤
2n∑
q=0

bq(CV ). (1.2)

A real algebraic variety is called an M -variety, or a maximal variety, if it
satisfies equality in (1.2). The spectral sequence gives a necessary and suf-
ficient condition for a compact real algebraic hypersurface near the tropical
limit to be maximal in the sense of the Smith-Thom inequality. Moreover,
Theorem 6.1 gives a criterion for individual Betti numbers to attain the
bounds of Theorem 1.4.

Theorem 1.8. A compact real hypersurface with non-singular Newton poly-
tope and near a non-singular tropical limit is maximal in the sense of the
Smith-Thom inequality (1.2) if and only if the associated spectral sequence
(E••,•, ∂•) degenerates at the first page.

Proof. A compact real hypersurface near the tropical limit is maximal in
the sense of the Smith-Thom inequality if and only if all the inequalities in
Theorem 1.4 are equalities. This happens exactly when the spectral sequence
(E••,•, ∂•) degenerates at the first page. �

Viro proved the existence of non-singular maximal surfaces of any degree
in P3 [Vir79]. Later, Itenberg and Viro proved that there exist non-singular
projective hypersurfaces of any dimension that are asymptotically maxi-
mal [IV07]. This was generalised by Bertrand [Ber06] to hypersurfaces and
complete intersections in arbitrary toric varieties. Bertrand also proved in
[Ber06] that there exist toric varieties in any dimension that do not ad-
mit torically non-degenerate maximal hypersurfaces. However, all known
examples are singular.

Question 1.9. For every non-singular Newton polytope ∆, does there exist
a maximal real hypersurface in the toric variety Y∆ with Newton polytope
∆?

Theorem 6.1 describes the possible non-zero differentials on further pages
of the spectral sequence (E••,•, ∂•). If the following conjecture is true, then
it would simplify the statement of Theorem 6.1, since we would only need
to consider the differentials on the first page.

Conjecture 1.10. For a compact non-singular real tropical hypersurface
(X, E) the spectral sequence associated to the filtration

0 ⊂ C•(X;Kn) ⊂ · · · ⊂ C•(X;K1) ⊂ C•(X;SE)
degenerates at the second page.

In Section 7, we restrict our attention to real plane curves near the tropical
limit. In this case, the only possible non-zero differential of the spectral
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sequence is on the first page. Using the isomorphism in Corollary 4.11, this
differential is ∂1 : H1(C;F0) → H0(C;F1). In Theorem 7.2, we explicitly
describe this linear map using the twist description of patchworking for
curves [BIMS15, Section 3]. Using this description we also recover Haas’
criterion for the maximality of curves in toric surfaces near non-singular
tropical limits in Theorem 7.5.

A real algebraic hypersurface near the non-singular tropical limit has the
same signature as the Euler characteristic of its real part. This relation
was first proved in the case of surfaces by Itenberg [Ite97], and then later
generalised to arbitrary dimensions by Bertrand [Ber10]. By comparing
Euler characteristics of different pages of the above spectral sequence, we
recover this result and a generalisation to the non-compact case. A different
proof of this signature formula in the compact case was given by Arnal in
his master’s thesis [Arn17] also using tropical homology. We recall that as
in Theorem 1.5, we let Y o

∆ denote a partial compactification of the torus
corresponding to a subfan of the dual fan of ∆.

Corollary 1.11. Let V be a real algebraic hypersurface in the non-singular
toric variety Y o

∆ with Newton polytope ∆ and near the non-singular tropical
limit X, then

χBM (RV ) = χy(CV )
∣∣
y=−1

,

where χy(CV ) denotes the χy genus of CV and χ(RV ) is the topological
Euler characteristic of RV . In particular, if Y∆o = Y∆ is compact, then

χ(RV ) = σ(CV ),

where σ(CV ) denotes the signature of CV .

Proof. The Euler characteristic of the r-th page of a spectral sequence is

χ(Er) =
∑
p,q

(−1)q dimErq,p.

Since any page is by definition the homology of the preceding page, one has

χ(E∞) = · · · = χ(E0) =
∑
p

χ(CBM• (X;Fp)),

where χ(CBM• (X;Fp)) denotes the Euler characteristic of the chain complex
for the Borel-Moore homology of X with coefficients in Fp.

A complex hypersurface CV which is near a non-singular tropical limit
is torically non-degenerate in the sense of [DK86]. Therefore, by [ARS,
Theorem 1.8], the Euler characteristics of the chain complexes for tropical
homology give the coefficients of the χy genus of CV ,

χy(CV ) =
∑
p

(−1)pχ(CBM• (X;Fp))yp.

Therefore,

χy(CV )
∣∣
y=−1

= χ(E0)

Moreover, the Euler characteristic of the infinity page is equal to the Borel-
Moore Euler characteristic of RV ,

χ(E∞) = χBM (RV ),
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and this proves the first claim.
Finally, when the ambient toric variety is compact, then so is the hyper-

surface. Then by the definition of the χy genus, we have σ(CV ) = χ−1(CV )
and the corollary is proved. �

To end the introduction we would like to make a few remarks about the
geometric inspiration behind the proofs of Theorem 1.4. The construction of
the cosheaves SE , Kp, and Fp, together with the linear maps bvp, are all pre-
sented using linear algebra, but their definitions are geometrically motivated.
In the case of the sign cosheaf, the Z2-vector space SE(σ) associated to a face
σ of X is isomorphic to H0(RPn\RAσ;Z2), where Aσ is a real hyperplane
arrangement determined by the face σ and n is the dimension of X. The
cosheaves Fp from tropical homology satisfy Fp(σ) = Hp(CPn\CAσ;Z2)
[Zha13]. This is described in the proof of Lemma 2.6.

For real varieties, the Viro homomorphism is a partially defined multival-
ued homomorphism

bv∗ : H∗(RV ;Z2) 99K H∗(CV ;Z2),

where H∗(RV ;Z2) and H∗(CV ;Z2) denote the total homology of the real
and complex parts respectively. A description of these homomorphisms is
given in [DK00b, Appendix A2]. The complement of a real hyperplane
arrangement A in RPn is a disjoint union of convex regions and therefore
satisfies Hq(RPn\RA;Z2) = 0 for all q 6= 0. Moreover, the complement of a
real hyperplane arrangement is a maximal variety in the sense of the Smith-
Thom inequality (1.2) [OT92, Introduction p.6]. Therefore, in this special
case the Viro homomorphism gives a collection of well defined graded maps

bvp : Ker(bvp−1)→ Hp(CPn\CA;Z2).

The map bv0 : H0(RPn\RA;Z2) → Hp(CPn\CA;Z2) is induced by the
inclusion i : RPn\RA → CPn\CA. To define the map bvp, given α ∈
Ker(bvp−1), consider a p-chain β in CPn\CA such that ∂β = bvp−1(α).
Then bvp(α) is the homology class of the cycle β + conj(β). It follows from
the maximality of CPn\CA that the complex conjugation acts as the iden-
tity on homology groups, see [Wil78, Corollary A.2]. Therefore, the maps
bvp are well defined as they do not depend on the choice of the chain β.
Kalinin’s spectral sequence [Kal05] induces a filtration on the real homology
of a variety, which in the case of a real hyperplane arrangement is given by

0 = Ker(bvn) ⊂ Ker(bvn−1) ⊂ · · · ⊂ · · · ⊂ Ker(bv0) ⊂ H0(RPn\RA;Z2).

Although we do not use this geometry in the presentation of our argu-
ments, we borrow the notation for the Viro homomorphisms for our maps
bvp : Kp → Fp and use the letter K to denote the pieces of the filtration of
SE in reference to Kalinin’s filtration.

1.3. Related works. In the case of real complete toric varieties, Hower
[How08] used a spectral sequence to relate the Betti numbers of a real toric
variety to a Z2 variant of Brion’s Hodge spaces for fans [Bri97]. The Z2-
Hodge spaces for complete regular fans vanishes outside of the line p = q
[BFMvH06, Proof of Theorem 1.2], and nonsingular complete real toric va-
rieties are all maximal in the sense of the Smith-Thom inequality. Hower
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proved that in the case of real toric varieties coming from reflexive poly-
topes, the spectral sequence also degenerates at the first page, and those
toric varieties are again all maximal. Hower also exhibits an example of a
six-dimensional projective toric variety which is not maximal, disproving a
conjecture in [BFMvH06].

The Hodge spaces for fans coincide with the tropical cohomology groups of
the corresponding tropical toric variety, since their defining chain complexes
are isomorphic by definition. Finding necessary and sufficient conditions for
fans to satisfy a version of Poincaré duality for Brion’s Hodge spaces with
integer coefficients would lead to a better understanding of fans defining
maximal toric varieties.

For Lagrangian toric fibrations equipped with an anti-symplectic involu-
tion, Castaño-Bernard and Matessi study the cohomology of the fixed point
locus using a long exact sequence which relates it to the cohomology of the
Calabi-Yau manifold [CnBM10]. This is inspired by the Leray spectral se-
quence of Gross that relates the cohomologies of the Calabi-Yau manifold
and the base space [Gro01], see also [GS10]. Very recently Argüz and Prince,
computed the connecting maps of this long exact sequence and the coho-
mology groups with Z2-coefficients of real Lagrangians in the quintic 3-fold
and its mirror [AP20].

1.4. Outline of the paper. In Section 2, we review the definitions of trop-
ical hypersurfaces in toric varieties and their tropical homology groups. Sec-
tion 3 uses real phase structures on non-singular tropical hypersurfaces to
describe Viro’s primitive patchworking. In Subsection 3.2, we introduce the
sign cosheaf and the real tropical homology groups. Section 4 describes the
augmentation filtration in general and adapts it to filter the sign cosheaves
and the chain complexes. Section 5 contains the proof of Theorem 1.4.
Section 6 investigates going further in the spectral sequence and lists all
possible non-zero maps at further pages. Lastly in Section 7, we illustrate
the situation in the case of plane curves and describe the only possibly non-
zero differential map in the spectral sequence in this case. This allows us to
recover Haas’ condition to obtain maximal curves.
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hannes Rau, Antoine Touzé, Jean-Yves Welschinger, and Ilia Zharkov for
insightful discussions. We thank also Hülya Argüz, Diego Matessi, Matilde
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2. Projective tropical hypersurfaces

The tropical numbers are the set T = [−∞,∞). We equip T with the
topology of a half open interval and TN with the product topology. Trop-
ical toric varieties are tropical manifolds in the sense of [MR, Chapter 7]
with charts to TN . The space TN itself is tropical affine space. Just like
toric varieties over a field, they are constructed from rational polyhedral
fans see [MS15, Section 6.2], [MR, Section 3.2]. We recall that a rational
polyhedral fan Σ is simplicial if each of its cones is the cone over a simplex.
A simplicial rational polyhedral fan in RN is unimodular if the primitive
integer directions of the rays of each cone can be completed to a basis of
ZN . A tropical toric variety is non-singular if it is built from a simplicial
unimodular rational polyhedral fan. A tropical toric variety is compact if
and only if the corresponding fan is complete.

A tropical toric variety TY has a stratification and the combinatorics of
the stratification is governed by its fan Σ. For a cone ρ of Σ, let T (ρ) denote
its tangent space, meaning the linear span of the cone. For a face ρ the
corresponding stratum of TY is defined to be TYρ := RN/T (ρ). We assume
the vertex of the fan to be 0, so the corresponding open stratum of TY is
denoted by TY0.

Example 2.1. If the fan Σ in RN consists of a single point, then the associ-
ated tropical toric variety is called an N -dimensional tropical torus. A trop-
ical torus can be identified with RN as a vector space and there is an integer
lattice ZN contained in it. Furthermore, each stratum of an N -dimensional
tropical toric variety TY is a tropical torus of dimension N − dim ρ. The
stratum TYρ can be non-canonically identified with RN−dim ρ, and contains
a lattice which maps to ZN under this identification.

Notice that TYρ is not necessarily closed in TY , and we let TYρ denote

its closure. For two cones ρ and ρ′ of the fan Σ we have TYρ′ ⊂ TYρ if and
only if ρ is a face of ρ′ in Σ. Moreover, if ρ is a face of ρ′ in Σ, we have a
projection map denoted by πρ,ρ′ : TYρ → TYρ′ which is dual to the inclusion
of T (ρ′) into T (ρ).

Example 2.2. Tropical projective space TPN is constructed from the com-
plete fan Σ in RN whose rays are in directions −e1, · · · − eN , e0 =

∑N
i=1 ei,

where ei denote the standard basis vectors. For every proper subset I (
{0, . . . , N} there is a cone of the fan defining TPN of dimension equal to
|I|. Moreover, analogous to projective space over a field, tropical projective
space can also be defined as the quotient

TPN =
TN\(−∞, . . . ,−∞)

(x0, . . . , xN ) ∼ (a+ x0, . . . , a+ xN )
,

where a ∈ T\ −∞.
The cones of Σ correspond to subsets I ( {0, . . . , N}. The I-th open

stratum of the stratification of TPN is then

TPNI = {x ∈ TPN | xi = −∞ iff i ∈ I}.
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Using the above quotient description, the open stratum TPN0 can be iden-
tified with the vector space RN+1/〈(1, . . . , 1)〉. Hence it is a tropical torus of
dimension N and has the structure of a real vector space. Similarly, an open
stratum TPNI can be identified with a quotient of a real vector space deter-
mined by the cone corresponding to I. It is a tropical torus of dimension
N − |I|. 4

2.1. Tropical hypersurfaces. A tropical polynomial in n+ 1 variables is
a function Ftrop : Rn+1 → R of the form

Ftrop(x) = max
i∈A

(ai + 〈i, x〉), (2.1)

where 〈 · , · 〉 denotes the standard scalar product in Rn+1, the set A is a
finite subset of Zn+1, and ai ∈ T for all i ∈ A.

A tropical polynomial of the form (2.1) induces a regular subdivision of
the Newton polytope of its defining polynomial. A tropical hypersurface X
in Rn+1 is the locus of non-linearity of the function defined by a tropical
polynomial together with weights naturally assigned to its top dimensional
faces, also known as facets. The tropical hypersurface of a polynomial is dual
to the regular subdivision of its Newton polytope induced by the convex-hull
of the graph of i → ai, hence this subdivision is called the dual subdivision
of X. The weight of a facet is the integer length of the segment of the
dual subdivision dual to the facet. We refer the reader to [MS15, Section
3.1], [BIMS15, Section 5.1], and [MR, Section 2.3] for further details and
examples.

A tropical hypersurface in Rn+1 is non-singular if its dual subdivision
is primitive, meaning that each n + 1 dimensional polytope of the subdi-
vision has normalised lattice volume equal to 1. In particular, the weights
on all facets of a non-singular tropical hypersurface are equal to one. We
define a tropical hypersurface in a tropical toric variety TY to be the clo-
sure of a tropical hypersurface in TY0 ⊂ TY where TY0 is the open stratum
corresponding to the vertex 0 of the fan defining TY .

Given a non-singular tropical hypersurface X in Rn+1 with Newton poly-
tope ∆, we will consider its (partial) compactification in a tropical toric
variety TY which is defined by a subfan of the dual fan of ∆. In this case,
the compactification of X in TY∆ is said to be a non-singular tropical vari-
ety if TY∆ is non-singular, which is guaranteed if the Newton polytope ∆ is
non-singular.

Example 2.3. The fan Σ defining TPn+1 from Example 2.2 is a complete
fan. Therefore, the non-singular tropical hypersurfaces that we consider in
TPn+1 must satisfy that the dual fan of their Newton polytopes are equal
to Σ. Therefore, the Newton polytope of such a hypersurface is equal up to
translation to d∆n+1 for some d, where

d∆n+1 = ConvHull{0, de1, . . . , den+1}.

If X is non-singular in Rn+1 with the above Newton polytope, then it is
dual to a unimodular subdivision of d∆n+1. The intersection XI ⊂ TPn+1

I
is also a non-singular tropical hypersurface dual to the subdivision of the
corresponding face of d∆n+1.
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We follow the convention that all faces of a hypersurface X in a tropical
toric variety are closed, see [JRS18, Section 2.A]. We let Xρ := X ∩ TYρ.
The faces of Xρ are also closed in the tropical torus TYρ, when considered
with its own topology. However, since TYρ is not closed in TY , the closure
in TY of a face σ in TYρ may not be equal to σ. If σ is a face in TYρ, upon
taking the closure σ in TY only faces of X contained in strata TYη satisfying
ρ ⊂ η can be contained in σ.

For a face σ of a tropical hypersurface, we let int(σ) denote its relative
interior. The sedentarity of a point y in TY is ρ if y is contained in the
stratum TYρ. The sedentarity of a face σ is denoted by sed(σ) and is equal
to ρ if int(σ) ⊂ TYρ. The parent face of a face τ of X of dimension k and
sedentarity ρ is the unique face σ of X of zero sedentarity and dimension
k + dim ρ such that τ is in the boundary of σ. The star of a face σ is the
star of any point in its relative interior. More precisely,

Star(σ) =
{
v ∈ TYsed(σ) | ∃δ > 0 s.t. ∀ε < δ, xσ + εv ∈ Xsed(σ)

}
.

where xσ is any point in int(σ).

2.2. Tropical homology. The cosheaves that we use throughout the text
will always be vector spaces over Z2. Let X be a non-singular tropical
hypersurface in a tropical toric variety TY . Let the defining fan of TY be
the simplicial unimodular fan Σ in Rn+1, and let Zn+1 denote the standard
lattice in Rn+1. Let ρ be a cone of Σ of dimension s with primitive integer
generators r1, . . . , rs and define the integral tangent space to TYρ as

TZ(TYρ) :=
Zn+1

〈r1, . . . , rs〉
.

For a face σ of X of sedentarity ρ ∈ Σ, denote the tangent space of intσ
by T (σ). Notice that T (σ) ⊂ T (TYρ). The integral tangent space of int(σ) is
TZ(σ) := T (σ)∩ TZ(TYρ). Since σ is a rational polyhedron, we can consider
the lattice points of TYρ contained in the tangent space. Since X is a non-
singular hypersurface the rank of TZ(σ) is the same as the dimension of σ
and also the reduction modulo 2 of the free Z-module TZ(σ) is a vector space
of the same dimension as σ. In fact, at any vertex v adjacent to σ, one can
complete a basis of the free Z-module TZ(σ) into a basis of TZ(TYρ) with
vectors in TZ(σi) for σi faces adjacent to v. We denote this vector space
over Z2 by F1(σ).

If TYρ and TYη are a pair of strata corresponding to cones ρ ⊂ η of Σ

then TYη ⊂ TY ρ then the generators of the cone η contain the generators of
the cone ρ. Therefore there is a projection map:

πρη : TZ(TYρ)→ TZ(TYη). (2.2)

Upon taking the reduction modulo 2 we get a map πστ : F1(TYρ)→ F1(TYη).
For faces σ and τ in TYρ and TYη, respectively, such that τ ⊂ σ, Equation
(2.2) restricts to a map

πστ : F1(σ)→ F1(τ). (2.3)

Definition 2.4. Let X be a non-singular tropical hypersurface in a tropical
toric variety TY with defining fan Σ. The p-multi-tangent spaces of X are
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cellular cosheaves Fp on X. For ρ ∈ Σ and τ a face of Xρ := X ∩ TYρ we
have

Fp(τ) =
∑

τ⊂σ⊂Xρ
dim(σ)=n−dim ρ

p∧
F1(σ). (2.4)

When τ ⊂ σ, the maps of the cellular cosheaf iστ : Fp(σ) → Fp(τ) are
induced by the inclusions F1(σ) → F1(τ) when σ and τ have the same
sedentarity and otherwise are induced by the quotient map πστ from (2.3).

Example 2.5. The tropical plane X ⊂ TP 3 is the closure of a two dimen-
sional fan X0 in R3. The fan X0 has rays τ1, τ2, τ3, and τ0 in respective
directions −e1,−e2,−e3, and e0 = e1 + e2 + e3, where ei’s are the standard
basis vectors. Every pair of rays generates a two dimensional face of X∩R3,
see the right hand side of Figure 2. Denote by εi the reduction of ei mod 2.

Let σij denote the two dimensional face spanned by rays τi and τj . Then
F1(σij) = Z2〈εi, εj〉 and F2(σij) = Z2〈εi ∧ εj〉. For the ray τi, we obtain
F1(τi) = Z3

2 and F1(τi) = Z2〈εi ∧ εj , εi ∧ εj′〉 where εi, εj , εj′ form a basis of
Z3

2. For any face τ of X, we have F0(τ) = Z2.

An integral version of the next lemma can also be found in [ARS, Corollary
2.16]. We include its proof here for completeness.

Lemma 2.6. Let X be an n-dimensional non-singular tropical hypersur-
face of a tropical toric variety TY . For a face τ of X of dimension k and
sedentarity ρ the polynomial defined as

χτ (λ) :=
n∑
p=0

(−1)p dimFp(τ)λp,

is equal to

χτ (λ) = (1− λ)k
[
(1− λ)n−k+1−dim ρ − (−λ)n−k+1−dim ρ

]
.

Proof. By [Zha13, Theorem 4], the Z-multi-tangent spaces FZ
p (σ) are iso-

morphic to the dual of the p-th graded piece of the Orlik-Solomon algebra of
the matroid of an associated projective hyperplane arrangement Aσ defined
over the complex numbers. The Orlik-Solomon algebra of this arrangement
is isomorphic to the cohomology ring of the complement of the arrangement
in projective space so that Hom(FZ

p (σ),Z) ∼= Hp(CPn\CAσ;Z). The ho-
mology groups of the complement of a complex hyperplane arrangement are
torsion free so Fp(σ) ∼= Hp(CPn\CAσ;Z2).

Let Pn−k denote the (n − k)-dimensional pair of pants; that is the com-
plement of n − k + 2 hyperplanes in general position in CPn−k. For a face
τ of X of dimension k and sedentarity ρ, the complement of the associated
arrangement is Pn−k−dim ρ × (C∗)k. Therefore, we have the isomorphism

Fp(τ) ∼= Hp(Pn−k−dim ρ × (C∗)k;Z2), and by the Künneth formula for the
homology groups we have

χτ (λ) = χPn−k−dim ρ
(λ)χ(C∗)k(λ),
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where χPn−k−dim ρ
(λ) and χ(C∗)k(λ) are the Euler-Poincaré polynomials of

Pn−k−dim ρ and (C∗)k respectively. Calculating the homology of these spaces
shows that

χPn−k(λ) =

n−k−dim ρ∑
r=0

(−1)r
(
n− k − dim ρ+ 1

r

)
λr

= (1− λ)n−k+1−dim ρ − (−λ)n−k+1−dim ρ,

and

χ(C∗)k(λ) =
k∑
s=0

(−1)s
(
k

s

)
λs = (1− λ)k.

The product of these two polynomials is precisely the description of χτ (λ)
in the lemma. �

Definition 2.7. Let X be a non-sinuglar tropical hypersurface of a tropical
toric variety TY . The groups of cellular q-chains with coefficients in Fp are

Cq(X;Fp) =
⊕

dimσ=q

Fp(σ).

The boundary maps ∂ : Cq(X;Fp) → Cq−1(X;Fp) are given by the direct
sums of the cosheaf maps iστ for τ ⊂ σ. The (p, q)-th tropical homology
group is

Hq(X;Fp) = Hq(C•(X;Fp)).

3. Real tropical hypersurfaces

In this section we describe a tropical approach to Viro’s primitive patch-
working construction via real phase structures. For an explanation of how
it relates to Viro’s original construction see Remark 3.8. Section 3.1 defines
real phase structures on tropical hypersurfaces and describes how to obtain
the real part of the tropical hypersurface. In Subsection 3.2, we introduce
the sign cosheaf on a tropical hypersurface and prove that its homology
groups are isomorphic to the homology groups of the real part of a tropical
variety equipped with a real phase structure.

3.1. Real phase structures and patchworking.

Definition 3.1. A real phase structure on an n-dimensional non-singular
tropical hypersurface X in a tropical toric variety TY is a collection E =
{Eσ}σ∈Facet(X0) where Eσ ⊂ Zn+1

2 is an n-dimensional affine subspace whose
direction is F1(σ). The collection E must satisfy the following property:

If τ is a face of X0 of codimension 1, then for any facet σ adjacent to τ and
any element ε ∈ Eσ, there exists a unique facet σ′ 6= σ adjacent to τ such
that ε ∈ Eσ′.

A non-singular tropical hypersurface equipped with a real phase structure
is called a non-singular real tropical hypersurface.

Example 3.2. Figure 1 depicts a real tropical line X in the tropical projec-
tive plane TP 2. On each edge σ0, σ1, σ2 of the line there is a set of vectors
in Z2

2. These vectors indicate all the points in the affine subspace Eσi for a
real phase structure E .
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{(0, 0), (1, 0)}

{(0, 0), (0, 1)}

{(0, 1), (1, 0)}

Figure 1. On the left is the real tropical line X ⊂ TP 2 with
a real phase structure E from Example 3.2. On the right hand
side is its real part RXE in RP 2.

The vertex of the tropical line is the only codimension one face. For
(0, 0) ∈ Eσ1 , we have that (0, 0) ∈ Eσ2 and (0, 0) 6∈ Eσ0 . This is the condition
in Definition 3.1 for the face σ1 and the element (0, 0).

Example 3.3. Recall the tropical hyperplane described in Example 2.5 and
depicted on the right of Figure 2. The following collection of affine spaces
forms a real phase structure on X,

Eσ12 = 〈ε1, ε2〉, Eσ13 = 〈ε1, ε3〉, Eσ23 = 〈ε2, ε3〉,

Eσ01 = 〈ε0, ε1〉+ ε3, Eσ02 = 〈ε0, ε2〉+ ε1, and Eσ03 = 〈ε0, ε3〉+ ε2.

Given a plane P ⊂ RP 3, the intersection of L with the coordinate hyper-
planes of RP 3 defines an arrangement of real hyperplanes on RP ∼= RP 2.
Such is the picture on the left hand side of Figure 2. Each region of the
complement of this hyperplane arrangement on RP ⊂ RP 3 lives in a single
orthant of R3 = RP 3\{x0 = 0}. In Figure 2, each connected component
of the complement of the line arrangement is labelled with the vector in
Z3

2 corresponding to this orthant. Let Li = {xi = 0} ∩ P ⊂ RP 3 and set
pij = Li∩Lj . Notice that the points contained in the affine space Eσij of the
real phase structure on X coincide with the collection of signs of the regions
of the complement of the line arrangement which are adjacent to the point
pij .

Following [GKZ08, Chapter 11], we now describe how to obtain a space
homeomorphic to the real part of a toric variety by glueing together multiple
copies of a tropical toric variety. Let Σ be a rational polyhedral fan in Rn+1

defining a tropical toric variety TY . For every ε ∈ Zn+1
2 , let TY (ε) denote

a copy of TY indexed by ε. Define

T̃Y :=
⊔

ε∈Zn+1
2

TY (ε)/ ∼, (3.1)

where ∼ identifies strata TYρ(ε) and TYρ(ε′) if and only if ε + ε′ is in the
reduction modulo 2 of the linear space spanned by the cone ρ.

The following theorem is a direct translation of [GKZ08, Theorem 11.5.4].
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L2

(1, 0, 0)

(0, 0, 0)
(0, 1, 0)

(1, 1, 0)

L∞

(1, 0, 1)
(0, 1, 0)

(0, 1, 1)
L3

(0, 0, 1)

L1

σ12

σ01

σ03

σ02

σ13

σ23

Figure 2. The left hand side depicts a real line arrangement
in RP 2 arising from a linear embedding RP 2 → RP 3. On the
right is a tropical plane X in TP 3. A real phase structure on
X is described in Example 3.3.

Theorem 3.4. The topological space T̃Y is homeomorphic to the real point
set of the toric variety RY .

Example 3.5. We explicitly describe how to obtain RPn+1 by glueing to-
gether multiple copies of TPn+1. For every ε = (ε1, · · · , εn+1) ∈ Zn+1

2 , let
TPn+1(ε) denote a copy of TPn+1 indexed by ε. Then

RPn+1 ∼=
⊔

ε∈Zn+1
2

TPn+1(ε)/ ∼,

where ∼ is the equivalence relation generated by identifying x ∈ TPn+1(ε)
and x′ ∈ TPn+1(ε′) for ε 6= ε′, such that [x0, · · · , xn+1] =

[
x′0, · · · , x′n+1

]
and

• if x0 6= −∞, then there exist a unique 1 ≤ j ≤ n + 1 such that
εj 6= ε′j . Moreover, we must have xj = x′j = −∞.

• if x0 = −∞, then we must have εi 6= ε′i for all 1 ≤ i ≤ n+ 1.

Given a polyhedron σ of sedentarity 0 contained in TY and ε ∈ Zn+1
2 we

let σε denote its copy in TY (ε).

Definition 3.6. Let X be a non-singular tropical hypersurface in a tropical
toric variety TY together with a real phase structure E.

The real part of X with respect to the real phase structure E is denoted
RXE and is the image in RY of ⋃

facets of σ⊂X0
ε∈Eσ

σε.

where σε denotes the closure of σε ⊂ TY0(ε) in TY (ε).

The following theorem is the tropical reformulation of a particular case
of the combinatorial version of Viro’s patchworking theorem from [Vir84].

Theorem 3.7 (Viro’s patchworking [Vir84]). Let (X, E) be a non-singular
real tropical hypersurface with Newton polytope ∆ in a non-singular tropical
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toric variety TY o
∆ corresponding to a subfan of the dual fan of ∆. Then there

exists a non-singular real algebraic hypersurface V of Y o
∆ also with Newton

polytope ∆ such that

(T̃Y o
∆,RXE) ∼= (RY o

∆,RV ).

Remark 3.8. For the reader’s convenience, we explain the connection be-
tween the tropical version of primitive patchworking and Viro’s original for-
mulation as described in [Vir84, Ite93, Ris93].

The input of Viro’s original formulation of primitive patchworking is a
regular subdivision of a lattice polytope ∆ ⊂ Rn+1, whose normal fan is
unimodular, together with a choice of sign δi ∈ {+,−} for each lattice point
i ∈ ∆ ∩ Zn+1.

Given a tropical hypersurface X ∈ Rn+1, its dual subdivision is a regu-
lar subdivision of ∆ which, by definition, is primitive if X is non-singular.
Every edge e of the dual subdivision of ∆ is dual to a facet σe of X. From
a real phase structure E on X we produce a collection of signs δi for all
i ∈ ∆ ∩ Zn+1 as follows. Two vertices of an edge e of the subdivision of ∆
are assigned different signs if and only if Eσe contains the origin (0, · · · , 0)
in Zn+1

2 . For more details we refer to [Ren17, Lemma 1]. Upon choosing the
sign of one lattice point in ∆ arbitrarily, this rule determines a collection of
signs for each integer point in ∆.

From the subdivision of ∆ and the assignment of signs to all lattice points
in ∆, Viro’s construction builds a polyhedral complex in the following way.
For ε ∈ Zn+1

2 , let ∆(ε) denote the symmetric copy of ∆ in the orthant of
Rn+1 corresponding to ε. Then define

∆̃ :=
⋃

ε∈Zn+1
2

∆(ε)/ ∼, (3.2)

where the equivalence relation ∼ is the same as described for the tropical
toric variety coming from the fan Σ which is a subfan of the dual fan of ∆.

The triangulation of ∆ induced by X induces a symmetric triangulation
of ∆(ε). Moreover, the sign choices δi ∈ {+,−} for i ∈ ∆ ∩ Zn+1 induce
choices of signs for ∆(ε) for all ε ∈ Zn+1

2 by way of the following rule: For
i1, . . . , in ∈ ∆(ε)

δ(i1,...,in) =

n+1∏
j=1

(−1)εjij

 δ(|i1|,...,|in+1|).

In other words, when passing from a lattice point to its reflection in a
coordinate hyperplane, the sign is preserved if the distance from the lattice
point to the hyperplane is even, and the sign is changed if the distance is
odd.

For a simplex T in the subdivision of ∆(ε) let ST denote the convex hull of
the midpoints of the edges of T having endpoints of opposite signs. Denote by
S the union of all such ST considered in the quotient to ∆̃ as in (3.2). Then

S is an n-dimensional piecewise-linear manifold contained in ∆̃. It turns
out that pairs (T̃Y ,RXE) and (∆̃, S) are combinatorially isomorphic and
homeomorphic. Thus the two formulations of patchworking are equivalent.
For more details see [Ren17, Lemma 1].
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From here a polynomial defining the hypersurface V from Theorem 3.7
can be written down explicitly. The defining polynomial of V is

Ft(x) =
∑

(i1,...,in+1)∈Zn+1∩∆

δi1,...,in

(
xi11 · · ·x

in+1

n+1x
d−

∑
ij

0

)
t−a(i1,...,in) , (3.3)

where the a(i1,...,in)’s are the coefficients from the tropical polynomial in (2.1)
and t > 0 is a sufficiently large real number.

Definition 3.9. A real algebraic hypersurface V in a toric variety Y is called
near a non-singular tropical limit if it is defined by a polynomial Ft(x) of
the form (3.3) for t sufficiently large coming from a non-singular tropical
hypersurface X with a real phase structure E and the fan defining Y is a
subfan of the fan dual to the Newton polytope of Ft

In particular, a hypersurface near a non-singular tropical limit X with real
phase structure E will satisfy the homeomorphism of pairs from Theorem
3.7

(T̃Y o
∆,RXE) ∼= (RY o

∆,RV ).

3.2. The sign cosheaf. Let X be a non-singular real tropical hypersurface
equipped with a real phase structure E . By definition, for any facet σ of
X of sedentarity 0, the real phase structure E gives an affine space Eσ of
direction F1(σ). Let us extend the real phase structure to facets of higher
sedentarity as follows.

Recall the definition of the map πστ : F1(σ) → F1(τ) from (2.3) via the
projection maps πρη : F1(TYρ) → F1(TYη) when σ and τ are in strata TYρ
and Yη, respectively. Also recall that the parent face of a face τ of X of
dimension k and sedentarity ρ is the unique face σ of X of zero sedentarity
and dimension k+ dim ρ such that τ is in the boundary of σ. Let τ0 denote
the parent face of a facet τ in Xρ so that πτ0τ (τ0) = τ . Define Eτ = πτ0τ (Eτ0).
Notice that Eτ is an affine space of F1(TYρ) which is parallel to F1(τ).

Example 3.10. The tropical line in TP 2 from Example 3.2 contains three
points of non-zero sedentarity. The projection of the affine vector spaces
Eσ1 , Eσ2 for the horizontal and vertical edges are simply 0 ∈ F1(TPn+1

{1} )

and 0 ∈ F1(TPn+1
{2} ), respectively. For the diagonal edge we obtain Eσ0 =

1 ∈ F1(TPn+1
{0} ). Here both F1(TPn+1

{1} ) and F1(TPn+1
{2} ) are one dimensional

vector spaces over Z2, so we identify them with Z2 in the unique way.

Example 3.11. The real phase structure on the tropical plane X ⊂ TP 3

from Example 3.3 can be extended to the facets of all strata XI for I a
proper subset of {0, . . . , n+ 1}. If |I| = 1 then XI is a tropical line in as in
Example 3.2. Consider for example I = {1} and the facet ρ2 = σ12 ∩X{1}.
The projection πσ12ρ2 has kernel the first coordinate direction and therefore

Eρ2 = 〈e1, e2〉/〈e1〉 ⊂ F1(TP 3
{1}). Furthermore, X{12} is a point and EX{12} =

0.

For any facet σ of any sedentarity, we define the abstract vector space
SE(σ) with basis in bijection with the elements of Eσ,

SE(σ) = Z2 〈wε | ε ∈ Eσ〉 .
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•{0}
{(0, 0), (1, 0)}

σ1

•
{0}

{(0, 0), (0, 1)}

σ2

•{1}

{(0, 1), (1, 0)}

σ0

Figure 3. The extension of the real phase structure on the
tropical line from Example 3.2 to faces of non-zero sedentar-
ity.

The vector space SE(σ) is a linear subspace of the abstract vector space
Z2

〈
wε | ε ∈ F1(TYsed(σ))

〉
.

Definition 3.12. Let X be a non-singular real tropical hypersurface equipped
with a real phase structure E. The sign cosheaf SE on X is defined by

SE(τ) =
∑

σ | τ⊂σ
sed(σ)=sed(τ)

SE(σ), (3.4)

where the sum is over the facets σ of Xsed(τ) containing τ . The maps of the
cellular cosheaf

iστ : SE(σ)→ SE(τ)

are induced by natural inclusions when σ and τ are of the same sedentarity
and otherwise are induced by the quotients πστ from (2.3) composed with
inclusions.

Example 3.13. We describe some of the vector spaces SE(τ) and maps
between them for the real phase structure on the tropical plane X ⊂ TP 3

from Example 3.3.
For the facets σ01, σ12, and σ13 of sedentarity 0 from Example 3.3 we have,

SE(σ01) = 〈wε3 , wε1+ε3 , wε1+ε2 , wε2〉,
SE(σ12) = 〈w0, wε1 , wε2 , wε1+ε2〉, and

SE(σ13) = 〈w0, wε1 , wε3 , wε1+ε3〉.
Consider the one dimensional face τ1 of sedentarity 0 and in direction e1.
Then we have

SE(τ1) = 〈wε | ε ∈ Eσ12 ∪ Eσ13 ∪ Eσ01〉 = 〈w0, wε1 , wε2 , wε1+ε2 , wε3 , wε1+ε3〉,
and there is an injection iσ12τ1 : SE(σ12)→ SE(τ1).

For the face ρ2 from Example 3.11 we have

SE(ρ2) = 〈w0, wε2〉 ⊂ Z2

〈
wε | ε ∈ F1(TPn+1

{1} )
〉
.

The map iσ12ρ2 : SE(σ12)→ SE(ρ2) has kernel generated by wε1 and wε1+ε2 .
These bases elements correspond to the points in the kernel of the map
πσ12ρ2 : F1(σ12)→ F1(ρ2).
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Lemma 3.14. Let X be a non-singular real tropical hypersurface equipped
with a real phase structure E. If τ is a face of dimension k of the stratum
Xρ, the dimension of SE(τ) is

dimSE(τ) = 2dimXρ+1 − 2k.

Proof. It follows from the definition that SE(τ) is the Z2-vector space gen-
erated by wε for elements ε in the set

E(τ) :=
⋃

σ | τ⊂σ
sed(σ)=sed(τ)

E(σ),

where the union is taken over the facets σ of Xsed(τ) containing τ . It follows
from [Ite97, Proposition 3.1], which is formulated in the original description
of Viro’s patchworking described in Remark 3.8, that #(E(τ)) = 2dimXρ+1−
2k. �

Corollary 3.15. For any face τ of X, we have∑
0≤p≤dim τ

dimFp(τ) = dimSE(τ).

Proof. Let τ be a face of dimension k of the stratum Xρ. Since dimXρ =
n− k − dim ρ, it follows from Lemma 2.6 that

χτ (λ) = (1− λ)k
[
(1− λ)dimXρ+1 − (−λ)dimXρ+1

]
,

and then ∑
0≤p≤dim τ

dimFp = χτ (−1) = 2dimXρ+1 − 2k = dimSE(τ).

�

Definition 3.16. Let X be a non-singular tropical hypersurface equipped
with a real phase structure E. The groups of cellular q-chains with coeffi-
cients in SE are

Cq(X;SE) =
⊕

dimσ=q

SE(σ).

The boundary maps ∂ : Cq(X;SE) → Cq−1(X;SE) are given by the direct
sums of the cosheaf maps iστ for τ ⊂ σ. The real tropical homology groups
are

Hq(X;SE) := Hq(C•(X;SE)).

For a non-singular tropical hypersurface X equipped with a real phase
structure E , we relate the homology of the cellular cosheaf SE to the homol-
ogy of the real part RXE .

Proposition 3.17. Let X be a non-singular tropical hypersurface equipped
with a real phase structure E. There is an isomorphism of chain complexes

C•(RXE ;Z2) ∼= C•(X;SE).

It follows that Hq(RXE ;Z2) ∼= Hq(X;SE) for all q.
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Proof. Firstly, we have

Cq(RXE ;Z2) =
⊕
σ̃∈RX

dim σ̃=q

Z2〈σ̃〉

and the differential

∂ : Cq(RXE ;Z2)→ Cq−1(RXE ;Z2) (3.5)

is given componentwise by maps σ̃ →
∑

τ̃∈∂σ̃ τ̃ . We can rewrite these chain
groups by summing instead over the faces of X

Cq(RXE ;Z2) =
⊕
σ∈X

dimσ=q

 ⊕
σ̃∈RXE
∃ε|σε=σ̃

Z2〈σ̃〉

 =
⊕
σ∈X

dimσ=q

SE(σ).

By Definition 3.16 we have Cq(RXE ;Z2) ∼= Cq(X;SE) for all q. Also by the
definition of the maps iστ : SE(σ)→ SE(τ) for σ and τ of dimensions q and
q−1 respectively, we see that the differentials of the chain complex C•(X;SE)
coincide with the differentials in (3.5) above. Therefore the chain complexes
are isomorphic and the isomorphism of homology groups follows. �

4. A filtration of the chain complex

We begin by describing the augmentation filtration highlighted by Quillen
[Qui68] on the abstract vector space Z2 〈wε | ε ∈ V 〉, where V is a vector
space defined over Z2. This same filtration was used in [BFMvH06] and
[How08] to give criteria for a toric variety to be maximal in the sense of
the Smith-Thom inequality. We then adapt the filtration to the situation
when V is an affine subspace and not only a vector space, and apply this
to filter first the vector spaces S(σ) where σ is a top dimensional face of a
tropical hypersurface. This produces filtrations of the spaces S(τ) for any
face τ . Finally, we show that this produces a filtration of the chain complex
C•(X;S). Throughout this section X will denote an n-dimensional tropical
hypersurface with Newton polytope ∆ contained in the tropical toric variety
TY∆.

4.1. The augmentation filtration. Let V be a vector space defined over
Z2. The vector space Z2 〈wε | ε ∈ V 〉 can also be considered as the group
algebra Z2 [V ], where the algebra structure is given by wεwη = wε+η. Any
element of Z2 [V ] can be written as

∑
aiwεi , where ai ∈ Z2 and εi ∈ V . For

a subset G ⊂ V we define

wG :=
∑
ε∈G

wε.

The augmentation morphism is a morphism of algebras given by

ϕ : Z2 [V ] → Z2∑
aiwεi 7→

∑
ai.

The augmentation ideal of V , denoted IV is the kernel of this morphism.
For all p ≥ 1, define

IpV = {w1 · · ·wp | w1, · · · , wp ∈ IV } .
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Notice that IV = I1
V . Since IV is the kernel of a homomorphism it is an

ideal, and for all p ≥ 1 we have Ip+1
V ⊂ IpV . We obtain a filtration of Z2 [V ]:

· · · ⊂ IpV ⊂ · · · ⊂ I
2
V ⊂ IV ⊂ Z2 [V ] . (4.1)

The following lemma and proposition are generalisations of [BFMvH06,
Lemma 6.1 and Proposition 6.1], but we recall their proofs for convenience.
The Grassmannian of p dimensional vector subspaces of V is denoted by
Grp(V ).

Lemma 4.1. For p ≥ 1, the power IpV is additively generated by {wF | F ∈
Grp(V )}.

Proof. The proof is by induction on p. If p = 1, an element w ∈ IV is a sum
of an even number of elements wε1 , · · · , wε2l ∈ Z2[V ]. Then we can write

w =
∑

i|wεi 6=w0

w{0,εi},

and {0, εi} is a 1-dimensional subspace of V .

Now assume that the claim is true for p. Then Ip+1
V is additively generated

by products wF ′w{0,ε}, where F ′ is a vector subspace of V of dimension p and
ε ∈ V . If ε ∈ F ′ then wF ′w{0,ε} = 0 and otherwise wF ′w{0,ε} = wF , where
F = 〈F ′, ε〉 is a vector subspace of V of dimension p + 1. This completes
the proof. �

Corollary 4.2. If p > dimV , then IpV = 0, and the filtration in (4.1) is a
filtration of length dimV .

Proposition 4.3. For all p there is an isomorphism of vector spaces IpV /I
p+1
V
∼=∧p V .

Proof. Consider the map

f : V → Z2 [V ]
ε 7→ w0 + wε

This map is not a homomorphism but f(V ) ⊂ IV . One can consider the
composition of f with the quotient map IV → IV /I2

V , and we denote this
map by f1. Then f : V → IV /I2

V is a homomorphism since

f(ε) + f(η) + f(ε+ η) = (w0 + wε)(w0 + wη) ∈ I2
V .

For all p, define the map

fp : V p → IpV /I
p+1
V

(ε1, · · · , εp) 7→ f(ε1) · · · f(εp),

where (IV /I2
V )p is naturally identified with IpV /I

p+1
V , and V 1 = V . These

maps are p-linear and alternating since

(f(ε))2 =
[
(w0 + wε)

2
]

= w2
0 + w2

ε = w0 + w0 = 0,

and it descends to a linear map

f̂p :
∧p V → IpV /I

p+1
V

ε1 ∧ · · · ∧ εp 7→ f(ε1) · · · f(εp).
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By Lemma 4.1, the power IpV is generated by wF for all vector subspaces

F of V of dimension p, so the maps f̂p are surjective. Since IV = kerϕ, its

dimension is 2dimV − 1, and the set of generators {wF | F ∈ Gr1(V )} is a
basis of IV . Therefore,

dimV∑
p=1

dim IpV /I
p+1
V = dim IV = 2dimV − 1

and
dimV∑
p=1

dim

p∧
V = 2dimV − 1,

so all the map f̂p are isomorphisms. �

4.2. The filtration of the sign cosheaf. Here we adapt the augmentation
filtration from the last subsection to filter the vector spaces S(τ) for τ a face
of a tropical hypersurface X equipped with a real phase structure.

Let σ be a facet of Xρ. By choosing a vector θ in the affine hyperplane
Eσ, we obtain an identification

ψθ : SE(σ) ∼= Z2[
−→
Eσ],

where
−→
Eσ denotes the vector subspace of F1(TYρ) parallel to Eσ of dimension

n + 1 − dim ρ. Transporting the augmentation filtration of Z2[
−→
Eσ] by the

isomorphism ψθ, one obtains a filtration of SE(σ)

0 = Kn+1−dim ρ(σ) ⊂ Kn(σ) ⊂ · · · ⊂ K0(σ) = SE(σ).

In the following lemma, we show that this filtration does not depend on the
choice of an element θ in SE(σ) we choose. Let Affp(Eσ) denote the space of
all p-dimensional affine subspaces of Eσ.

Lemma 4.4. For any facet σ of Xρ one has

Kp(σ) = 〈wG | G ∈ Affp(Eσ)〉

Proof. Recall that we choose an element θ of the affine hyperplane Eσ. By
Lemma 4.1, the vector space Kp(σ) is generated by the wG for all affine
subspaces G of Eσ of dimension p passing through θ. Let G be an affine
subspace of Eσ of dimension p not passing through θ, and let H be any
affine hyperplane H of G. Since we are over Z2, one has G = H ∪H ′, where
H ′ is the affine hyperplane of G parallel to and disjoint from H. Denote by
H1 the affine subspace of Eσ parallel to H and passing through θ. Then one
has

wG = wH∪H1 + wH′∪H1 ,

and the lemma is proved. �

Definition 4.5. Let X be a real tropical hypersurface with real phase struc-
ture E. For all p, we define a collection of cosheaves Kp on X. For τ a face
of X of sedentarity ρ, let

Kp(τ) =
∑
σ⊃τ
Kp(σ) ⊂ SE(τ)
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where the sum is over facets σ of Xρ. The cosheaf maps Kp(τ1) → Kp(τ2)
for τ2 ⊂ τ1 are the restrictions of the maps iτ1τ2 : SE(τ1)→ SE(τ2).

For each face τ of X we obtain a filtration of SE(τ) given by

Kn(τ) ⊂ · · · ⊂ K2(τ) ⊂ K1(τ) ⊂ K0(τ) = SE(τ). (4.2)

If τ2 ⊂ τ1, then the facets adjacent to τ1 are a subset of the facets adjacent
to τ2. It follows that iτ1τ2(Kp(τ1)) ⊂ Kp(τ2) so that the cosheaf maps for Kp
are well-defined.

Example 4.6. Any two vectors wε1 , wε2 for ε1, ε2 ∈ F1(TYρ) are on an
affine line. Moreover, these are the only points over Z2 contained on the
line. Therefore, every facet σ of sedentarity ρ of a real tropical hypersurface
X, the vector subspace K1(σ) ⊂ SE(σ) is generated by wε1 + wε2 , for any
vectors ε1, ε2 ∈ E(σ). This implies that K1(σ) is the hyperplane inside SE(σ)
defined by the linear form

∑
ε∈Eσ xε = 0 where the xε’s form a dual basis to

the wε’s.
For a face τ of sedentarity ρ and higher codimension, we will prove that

the space K1(τ) is also an hyperplane inside SE(τ) defined by the linear form∑
ε∈Eσ
σ⊃τ

xε = 0,

where the σ considered in the summation are facets of Xsed(τ).
By the description of K1(τ) in terms of generators we see that it is con-

tained in the claimed hyperplane. To prove the reverse inclusion, it is enough
to show that wε + wε′ ∈ K1(τ), for any wε, wε′ ∈ SE(τ). Let σ and σ′ be
two facets of Xρ containing τ such that ε ∈ Eσ and ε′ ∈ Eσ′ . If σ = σ′, then
wε + wε′ ∈ K1(σ) and the claim is true.

Suppose the facets σ, σ′ are distinct. Since they intersect in τ , they nec-
essarily intersect in a vertex v of the same sedentarity as τ . There are
n− dim ρ+ 2 rays of Xρ containing the vertex v, and the facets of Xρ con-
taining v correspond to the cones generated by subsets of size n− dim ρ of
these rays. Therefore, any two distinct cones σ, σ′ intersecting in τ must have
at least n− dim ρ− 2 rays in common. It follows that σ and σ′ necessarily
intersect in a face of codimension either one or two.

If it is a face of codimension one, then by the condition on a real phase
structure in Definition 3.1, there exists ε1 ∈ Eσ ∩ Eσ′ . But then wε + wε′ =
(wε+wε1)+(wε1 +wε2) ∈ K1(τ). If σ∩σ′ is a face of codimension two, then
there exists a facet σ′′ such that τ ⊂ σ′′, the intersections σ∩σ′′ and σ′∩σ′′
are of codimension 1 and σ ∩ σ′ ∩ σ′′ = σ ∩ σ′. This follows from the above
description of facets adjacent to a vertex v in terms of the span of subsets of
the rays at v. Then, there exist ε1 ∈ Eσ ∩ Eσ′′ and ε2 ∈ Eσ′′ ∩ Eσ′ such that

wε + wε′ = (wε + wε1) + (wε1 + wε2) + (wε2 + wε′) ∈ K1(τ).

This shows that K1(τ) is also a hyperplane inside SE(τ) for all faces τ .

Example 4.7. For the real tropical plane from Example 3.3 we describe
the filtration in (4.2) for some faces. Following Example 4.6, for every
facet σij of X, the vector space K1(σij) is of codimension one in SE(σij)
Moreover, the vector space SE(σij) is two dimensional. Therefore, the only



BETTI NUMBERS OF REAL HYPERSURFACES 25

element in Aff2(SE(σ)) is the whole vector space itself. This implies that
K2(σij) = 〈wSE(σij)〉, in particular it is one dimensional. For instance for
σ12 we have,

SE(σ12) = 〈w0, wε1 , wε2 , wε1+ε2〉,
K1(σ12) = 〈w0 + wε1 , w0 + wε2 , w0 + wε1+ε2〉, and

K2(σ12) = 〈w0 + wε1 + wε2 + wε1+ε2〉.
For the face τ1 from Example 3.13, since K1(τ1) is generated by K1(σ01),

K1(σ12), and K1(σ13), we have

K1(τ1) = 〈w0 + wε1 , w0 + wε2 , w0 + wε1+ε2 , w0 + wε3 , w0 + wε1+ε3〉.
For p = 2 we have

K2(τ1) = 〈wSE(σ01), wSE(σ12)〉,
since wSE(σ01) + wSE(σ12) + wSE(σ13) = 0.

Lemma 4.8. For any face τ of X, there is an isomorphism

Fp(τ) ∼= Kp(τ)/Kp+1(τ).

Proof. Extend the map f̂p from the proof of Proposition 4.3 to a map defined
on any face τ of X:

f̂p(τ) : Fp(τ) −→ Kp(τ)/Kp+1(τ).

This map is again surjective and it follows from Corollary 3.15 that it is a
isomorphism. �

Using the isomorphism from Lemma 4.8, we can define homomorphisms
Kp(τ)→ Fp(τ), which we call the Viro homomorphisms following [DK00a].

Definition 4.9. For any face τ of X, define the Viro homomorphisms
bvp : Kp(τ)→ Fp(τ) as the composition of the quotient map

Kp(τ)→ Kp(τ)/Kp+1(τ)

with the inverse of the isomorphism f̂p(τ).

If τ is a face of X, then Kp(τ) is also generated by vectors of the form wG,
where G is an element of Affp(Eσ) for some top dimensional face σ containing
τ . The Viro map on the generators is

bvp(wG) = v1 ∧ · · · ∧ vp,
where v1, . . . , vp is a basis of the vector space parallel to the affine space G.

Proposition 4.10. For all faces τ ⊂ σ of X, the following diagram com-
mutates and the rows are exact

0 // Kp+1(σ)
i //

iστ
��

Kp(σ)
bvp //

iστ
��

Fp(σ)

iστ
��

// 0

0 // Kp+1(τ)
i // Kp(τ)

bvp // Fp(τ) // 0.

(4.3)

Proof. The exactness of the rows follows from Lemma 4.8. Since the aug-
mentation morphism commutes with linear projections and inclusions, the
left-hand square is commutative. The commutativity of the square on the
right follows from the description of bvp on the generators. �
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The cellular q-chains with coefficients in Kp are defined by

Cq(X;Kp) =
⊕

dimσ=q

Kp(σ).

Thanks to the commutativity of the left hand square of the diagram in
Proposition 4.10, there is the complex of relative chains

C•(X;Kp,Kp+1) := C•(X;Kp)/C•(X;Kp+1).

We let Hq(X;Kp,Kp+1) denote the q-th homology group of this complex.

Corollary 4.11. For all p and q we have isomorphisms

Hq(X;Kp,Kp+1) ∼= Hq(X;Fp).

Proof. There is an isomorphism bvp : Cq(X;Kp,Kp+1)→ Cq(X;Fp) for each
q. The commutativity on the right hand side of Proposition 4.10 implies that
bvp induces an isomorphism of complexes C•(X;Kp,Kp+1) → C•(X;Fp).
Since the complexes are isomorphic, so are their homology groups and this
proves the statement of the corollary. �

Proposition 4.12. The first page of the spectral sequence associated to the
filtration of the chain complex C•(X;SE) by the chain complexes C•(X;Kp)
has terms

E1
q,p
∼= Hq(X;Fp).

Proof. Proposition 4.10 implies that the chain complexes C•(X;Kp) filter
the chain complex C•(X;SE) from Definition 3.16

0 ⊂ C•(X;Kn) ⊂ · · · ⊂ C•(X;K1) ⊂ C•(X;SE).

This is a finite filtration of a complex of finite dimensional vector spaces,
therefore the spectral sequence associated to this filtration converges [McC01,
Theorem 2.6]. By definition, the first page of the spectral sequence of the
filtered complex consists of the relative chain groups,

E1
q,p
∼= Hq(X;Kp,Kp+1).

Then the proposition follows from Corollary 4.11. �

Proof of Theorem 1.5. The pages of a spectral sequence satisfy dimE∞q,p ≤
dimErq,p for all r. By Propositions 3.17, 4.12, and the convergence of the
spectral sequence associated to the filtration we obtain

dimHq(RV ) = dimHq(X;SE) =

dimX∑
p=0

E∞q,p ≤
dimX∑
p=0

E1
q,p =

dimX∑
p=0

Hq(X;Fp).

When the tropical hypersurface X is contained in a partial compactifica-
tion of the torus TY o

∆ corresponding to a subfan of the dual fan of the Newton

polytope ∆ the filtration of the chain complex C•(X;SE) can be restricted
to the cells contained in X = X ∩ Y o

∆ to give a filtration of CBM• (X;SE).
Variants of Propositions 3.17 and 4.12 also hold in the non-compact case
and the argument given above completes the proof. �
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5. Proof of Theorem 1.4

Lemma 5.1. Let X be a compact tropical non-singular hypersurface of di-
mension n in the non-singular tropical toric variety TY∆, where ∆ is the
Newton polytope of X. Then

dimHq(X;Fp) = 0

unless p+ q = n or p = q.

Proof. Let V be a complex non-singular hypersurface of the same dimension
and Newton polytope as X considered in the complex toric variety Y∆. The
Lefschetz Hyperplane Section Theorem together with Poincaré duality for
CV implies that hp,q(CV ) = 0 unless p+ q = n or p = q. The statement of
the lemma now follows by applying Theorem 1.6. �

Proof of Theorem 1.4. It follows from the statement of Theorem 1.5 that

bq(RV ) ≤
d∑
p=0

dimHq(X;Fp).

By Lemma 5.1, the sum on the right hand side is equal to
∑

p=0 h
p,q(CV )

which completes the proof. �

6. Going further in the spectral sequence

In addition to bounding the Betti numbers of real hypersurfaces close
to a non-singular tropical limit, the spectral sequence provides immediate
criteria for the optimality of the bounds on individual Betti numbers from
Theorem 1.4, in addition to the criterion for maximality in the sense of the
Smith-Thom inequality from Theorem 1.8.

Theorem 6.1. Let V be a compact hypersurface with non-singular Newton
polytope near a non-singular tropical limit X, then the q-th Betti number of
RV attains the bound in Theorem 1.4 if and only if all of the following maps
from the spectral sequence for X are zero

(1) when q = n/2,

∂1 : E1
q,q → E1

q−1,q+1 and ∂1 : E1
q+1,q−1 → E1

q,q,

(2) when q < n/2,

∂1 : E1
q,n−q → E1

q−1,n−q+1, ∂1 : E1
q+1,n−q−1 → E1

q,n−q, and

∂2q−n+1 : E2q−n+1
q+1,q−r → E2q−n+1

q,q .

Remark 6.2. If V is a compact hypersurface in a non-singular toric variety
near a non-singular tropical limit, then the real point set RV is a smooth n-
dimensional manifold and its Betti numbers over Z2 satisfy Poincaré duality.
This ensures that

bi(RV ) = bn−i(RV ).

Therefore in order to determine all of the Betti numbers of RV we only need
to determine the Betti numbers bq(RV ) for q ≤ n/2.
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Lemma 6.3. Let V be a compact hypersurface with non-singular Newton
polytope near a non-singular tropical limit X. The only possible non-zero
differentials of the spectral sequence (E••,•, ∂

•) for X are

∂1 : E1
q,p → E1

q−1,p+1 for p+ q = n (6.1)

∂r : Erq+1,q−r → Erq,q for r = 2q − n+ 1 (6.2)

∂r : Erq,q → Erq−1,q+r for r = n− 2q + 1. (6.3)

Proof. If a boundary map ∂r : Erq,p → Erq−1,p+r is non-zero, then necessarily

both Erq,p and Erq−1,p+r must be non-zero. This implies that both E1
q,p
∼=

Hq(X;Fp) and E1
q−1,p+r

∼= Hq−1(X;Fp+r) must be non-zero. But Lemma

5.1 implies that E1
q,p
∼= Hq(X;Fp) = 0 unless p+ q = n or p = q.

Case 1: Suppose p + q = n, then for Erq−1,p+r to be non-zero we must
have either q− 1 + p+ r = n or q− 1 = p+ r. In the first case r = 1. In the
second case r = 2q − n− 1. These are the maps listed in (6.1) and (6.2) in
the statement of the lemma.

Case 2: If p = q, then we have the non-zero map in (6.1) when r = 1. If
r > 1, then q − 1 + q + r = n so that we find the condition in (6.3) above.
This completes the proof of the lemma. �

Proof of Theorem 6.1. The q-th Betti number attains the bounds in Theo-
rem 1.4 if and only if for all p the maps

∂r : Erq,p → Erq−1,p+r and ∂r : Erq+1,p−r → Erq,p,

are zero for all r. The theorem follows from the list of possible non-zero
differential maps in Lemma 6.3. �

Example 6.4. Applying Theorem 6.1 to the case n = 2 implies that for all
r the only possibly non-zero differentials of the spectral sequence are

∂1 : H2(X;K0,K1)→ H1(X;K1,K2) and ∂1 : H1(X;K1,K2)→ H0(X;K2).
(6.4)

Recall that Corollary 1.11 relates the signature of CV to the Euler charac-
teristic to RV for a non-singular real hypersurface obtained from a primitive
patchworking. Combining this with Poincaré duality for RV , Serre duality
for CV , and also the Lefschetz Hyperplane Theorem for CV and CY∆ we
obtain the following equality,

2b0(RV )− b1(RV ) = 2 + 2h2,0(CV )− h1,1(CV ).

Therefore a compact surface in a three dimensional toric variety obtained
by primitive patchworking is maximal if and only if one of the maps in (6.4)
is zero.



BETTI NUMBERS OF REAL HYPERSURFACES 29

Example 6.5. For n = 4 we show the first pages of the spectral sequence.
The first page on the left below has terms E1

q,p
∼= Hq(X;Fp).

Z2

0 0

0 Z2
oo 0oo

0 0 0 0

E1
0,4 E1

1,3
oo E1

2,2
oo E1

3,1
oo E1

4,0
oo

0 0 0 0

0 Z2
oo 0oo

0 0

Z2

Z2

0 0

0 Z2

ttjjjj
jjjj

j 0

0 0 0 0

E2
0,4 E2

1,3 E2
2,2

ttjjjj
jjjj

E2
3,1

ttjjjj
jjjj

E2
4,0

ttjjjj
jjjj

0 0 0 0

ttjjjj
jjjj

j

0 Z2 0

0 0

Z2

Notice that all differentials on the second page are trivial since the condi-
tions (6.2) and (6.3) in Lemma 6.3 cannot be satisfied for n = 4 and r = 2.
Therefore E3

q,p = E2
q,p and the arrows of the third page are depicted on the

left.

Z2

0 0

0 Z2

wwooo
ooo

ooo
ooo

0

wwooo
ooo

ooo
ooo

0 0 0 0

E3
0,4 E3

1,3 E3
2,2 E3

3,1

wwooo
ooo

ooo
ooo

E3
4,0

wwooo
ooo

ooo
ooo

0 0 0 0

0 Z2 0

0 0

Z2

Z2

0 0

yyrrr
rrr

rrr
rrr

rrr
rr

0 E4
1,1 0

0 0 0 0

E4
0,4 E4

1,3 E4
2,2 E4

3,1 E4
4,0

yyrrr
rrr

rrr
rrr

rrr
rr

0 0 0 0

0 E4
3,3 0

0 0

Z2

On the right hand side above is the fourth page of the spectral sequence.
Here all differentials are zero, moreover for r ≥ 4 all differentials are zero by
Lemma 6.3.

7. Case of plane curves

In this section we explicitly describe the only possibly non-zero differen-
tial map in the spectral sequence in the case of curves. In this case, Viro’s
primitive patchworking construction, equivalently, the real phase structures
on tropical curves from Section 3.1, can be reformulated in terms of ad-
missible twists. For definitions and examples of tropical curves, tropical
toric surfaces, the twist description of Viro’s patchworking, and the tropical
homology of tropical curves we refer to [BIMS15].

Given a compact non-singular tropical curve C in a tropical toric surface
there is another equivalent way of describing a real phase structure on C
in terms choosing a subset of twisted edges of the bounded edges of C ∩ R2

satisfying an admissibility condition. A collection T of bounded edges of a
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Figure 4. On the left is a non-singular cubic with a twist-
admissible set of edges. On the right hand side is the image
by the coordinatewise logarithm map of RV .

tropical curve C ∩ R2 is admissible if for all γ ∈ H1(C;F0) we have∑
e∈T∩Supp(γ)

ve = 0 ∈ Z2
2,

where ve is the primitive integer direction of the edge e. The edges in T are
called twisted edges because of how a real algebraic curve near a tropical
limit C with a real phase structure given by the twisted edges behaves under
the logarithm map. See the right hand-side of Figure 4.

Let C be a non-singular compact tropical curve with a real phase structure
E . For a bounded edge e of C0, its symmetric copy, eε in RCE , is adjacent
to two other edges eε1, eε2 of RCE which are also contained in the quadrant
corresponding to ε. The twisted edges for a real phase structure E corre-
spond to those edges e of C for which e1, e2 are not contained in a closed
half space of R2(ε) whose boundary contains eε. A detailed description of
this approach can be found in [BIMS15, Section 3.2].

Using the twist formulation we describe explicitly the map

∂1 : H1(C;F0)→ H0(C;F1)

arising from the spectral sequence on the chain level when the curve C is
compact. In this case, both of the above homology groups are isomorphic
to Zg2, where g is the first Betti number of C. For explicit calculations of
the tropical (co)homology of tropical curves see [BIMS15, Section 7.8].

Example 7.1. Figure 4, shows a non-singular plane tropical cubic with a
twist-admissible set of edges, and the image by coordinatewise logarithm
map Log of the real part RV of the curve V which is defined by the poly-
nomial Pt from (3.3) for t sufficiently large. Figure 5 depicts RCT . Notice
that this curve is maximal in the sense of Harnack’s inequality, namely
b0(RV ) = g(CV ) + 1.

Let C̃ denote the first barycentric subdivision of C, which results in adding
a vertex in the middle of each edge. Then the vertices of C̃ are the vertices
of C together with additional vertices ve for each edge of C. For every edge e
of C there are now two edges e′ and e′′ of C̃, moreover ve is in the boundary
of each of these edges.
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Figure 5. The real part RV for the real cubic from Figure
4 and Example 7.1.

We can extend any cellular cosheaf G, in particular, F0,F1, or SE , to
a cellular cosheaf on C̃ in the following way. Set G(ẽ′) = G(ẽ′′) = G(e).
If ve is the midpoint of an edge e then define G(ve) = G(e). The cosheaf
morphisms G(ẽ′) → G(ve) are the identity maps. Changing the cellular
structure does not change the homology groups of the cosheaves F0,F1,
and SE . Namely, Hi(C̃;F0) ∼= Hi(C;F0), Hi(C̃;F1) ∼= Hi(C;F1), and

Hi(C̃;SE) ∼= Hi(C;SE).
For a cellular homology class γ ∈ H1(C;F0), we denote by Supp(γ) the

collection of edges of C appearing in some chain representing γ. This is well
defined since we are working with Z2-coefficients.

Theorem 7.2. Let C be a non-singular compact tropical curve in a tropical
toric surface. Suppose C is equipped with a real phase structure correspond-
ing to a collection of twists T of edges of C. Then the boundary map of the
spectral sequence ∂1 : H1(C̃;F0)→ H0(C̃;F1) is given by

∂1(γ) =
∑

e∈T∩Supp(γ)

ve ⊗ se,

where se is the generator of F1(ve). In particular, the number of connected
components of RC is equal to dim Ker(∂1) + 1

Proof. It is enough to prove the statement for cycles in C which are bound-
aries of bounded connected components of the complement R2\C since they

form a basis of H1(C;F0). Given such a cycle γ ∈ C1(C̃;F0), we first choose
a lift γ̃ ∈ C1(C;SE) as follows. Let v be a trivalent vertex of C and suppose

that v is in the cycle γ. Let ẽ1 and ẽ2 be the two edges of C̃ (or half edges
in C) which share the endpoint v and are contained in γ, see Figure 6. Let
ε(v) denote the unique element in E(ẽ1) ∩ E(ẽ2) by Definition 3.1.

We set
γ̃ =

∑
ẽ∈γ∩C̃

ẽ⊗ wε(v) ∈ C1(C;SE),

where in the sum above v, is the unique trivalent vertex of C̃ adjacent to
the edge ẽ.

If e ∈ Edge(C ∩ γ) ∩ T and v, v′ are the two adjacent vertices of e, then
wε(v) and wε(v′) are different and

bv1(wε(v) + wε(v′)) = we ∈ F1(e).
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ẽ1

ẽ2

v E(e2) = {ε′′, ε(v)}

E(e1) =

{ε′, ε(v)}

Figure 6. The cycle γ of the cubic from Figure 4 and the
lift around a vertex.

If e is not twisted, then wε(v) = wε(v′). This proves that ∂γ̃ ∈ C0(C;K1)
is supported by the midpoints of twisted edges and that the image by bv1

of the coefficient over e is exactly the generator of F1(e). This proves the
lemma. �

Example 7.3. Consider the tropical curve C in both sides of Figure 7. The
red markings on the edges denote collections of twisted edges T1 on the left
and T2 and the right. It can be verified that both collections of twists are
admissible.

Consider the basis γ1, γ2, γ3 of H1(C;F0) where γi’s are the boundaries of
the three bounded connected components of R2\C. Let γ∗1 , γ

∗
2 , γ
∗
3 denote the

dual basis of H0(C;F1). We can represent the map from ∂1 from Theorem
7.2 by a matrix using these two ordered bases and we obtain the matrices 0 1 1

1 0 1
1 1 0

 and

 1 1 1
1 1 1
1 1 1

 ,

for the twists T1 and T2, respectively. The matrix on the left has a 1-
dimensional null space, and therefore a real algebraic curve produced from
the collection of twists on the left of Figure 7 has two connected components.
On the right the matrix has a 2-dimensional null space and the curve from
the twists on the right of Figure 7 has 3 connected components.

7.1. M-curves and Haas theorem. Haas in his thesis [Haa97] studied
maximal curves obtained by primtive patchworking. In particular, he found
a necessary and sufficient criterion for maximality (see also [BIMS15, Section
3.3] and [BBR17]). Here as an example we reformulate and reprove Haas’
criterion for maximality using the techniques of the last section.

Definition 7.4. An edge e of a tropical curve C in a 2-dimensional non-
singular tropical toric variety TY is called exposed if e is in the closure of
an unbounded connected component of TY0\C0. The set of exposed edges is
denoted by Ex(C). Denote by Exc(C) the complement of Ex(C) in the set
of bounded edges of C0 ∩ TY0.

The following theorem is a reformulation of Haas’ maximality condition
reproved using the description of the map in the spectral sequence from
Theorem 7.2.
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Figure 7. The curve C with two collections of twists T1

and T2 from Example 7.3.

Theorem 7.5 (Haas’ maximality condition [Haa97]). Let C be a non-
singular compact tropical curve in a tropical toric variety equipped with a real
phase structure corresponding to a collection of twisted edges T ⊂ Edges(C).
Then RC is a maximal curve if and only if T ∩ Exc(C) = ∅ and for every
cycle γ ∈ H1(C;Z2) the intersection γ ∩ T consists of an even number of
edges.

Proof. By Theorem 1.8, the curve RC is maximal if and only if ∂1 = 0.
Cycles in C1(C;F0) which are boundaries of connected components of the
complement R2\C form a basis of H1(C;F0). There are g := b1(C) such
cycles and we denote them by γ1, . . . , γg. Therefore, it suffices to show that
∂1(γi) = 0 for all i.

For C a non-singular tropical curve there is a non-degenerate pairing:

〈 , 〉 : H0(C;F1)×H1(C;F0)→ Z2

induced from the pairing on integral homology groups for non-sinuglar trop-
ical curves in [Sha11]. A similar non-degenerate pairing defined between
tropical homology and cohomology groups is also defined in [BIMS15, Sec-
tion 7.8] and [MZ14, Section 3.2]. On the chain level this pairing is:

〈β, γ〉 = |EdgeSupp(β′) ∩ γ| mod 2,

where β′ ∼ β and β′ ∈ C0(C̃;F1) is supported on the midpoints of edges
of C. The set EdgeSupp(β′) consists of the edges of C whose midpoint is
in the support of β′. Therefore, it suffices to show that for all pairs of such
cycles γi and γj , the non-degenerate pairing 〈∂1(γi), γj〉 is zero.

The intersection γi∩T is even if and only if 〈∂1(γi), γi〉 = 0. Secondly, the
pairing 〈∂1(γi), γj〉 = 0 if and only if γi ∩ γj ∩ T is a set of even cardinality.
Since γi and γj are boundaries of convex regions in R2 they can only intersect
in at most one edge of C. Therefore, the intersection γi ∩ γj ∩ T must be
empty and the statement is proved. �

References
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[Har76] C. Harnack. Über die Vieltheiligkeit der ebenen algebraischen Kurven. Math.
Ann., 10:189–199, 1876.

[Hil00] D. Hilbert. Mathematische probleme. Nachrichten von der Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1900:253–
297, 1900.

[How08] V. Hower. Hodge spaces of real toric varieties. Collect. Math., 59(2):215–237,
2008.

[IK96] I. Itenberg and V. Kharlamov. Towards the maximal number of components
of a nonsingular surface of degree 5 in RP3. In Topology of real algebraic
varieties and related topics, volume 173 of Amer. Math. Soc. Transl. Ser. 2,
pages 111–118. Amer. Math. Soc., Providence, RI, 1996.

[IKMZ19] I. Itenberg, L. Katzarkov, G. Mikhalkin, and I. Zharkov. Tropical homology.
Math. Ann., 374(1-2):963–1006, 2019.



BETTI NUMBERS OF REAL HYPERSURFACES 35
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