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A semiclassical theory of small oscillations is developed for nuclei that are subject to velocity-dependent forces
in addition to the usual interatomic forces. When the velocity-dependent forces are due to a strong magnetic
field, novel effects arise—for example, the coupling of vibrational, rotational, and translational modes. The
theory is first developed using Newtonian mechanics and we provide a simple quantification of the coupling
between these types of modes. We also discuss the mathematical structure of the problem, which turns
out to be a quadratic eigenvalue problem rather than a standard eigenvalue problem. The theory is then
re-derived using the Hamiltonian formalism, which brings additional insight, including a close analogy to the
quantum-mechanical treatment of the problem. Finally, we provide numerical examples for the H2, HT, and
HCN molecules in a strong magnetic field.

I. INTRODUCTION

Many aspects of theoretical chemistry can be under-
stood in terms of the semiclassical notion of a potential
energy surface. Most importantly, equilibrium structures
correspond to potential energy minima, while the cur-
vature in different directions determines the molecular
vibrational frequencies. These frequencies, in turn, are
important for infrared spectroscopy and thermodynami-
cal properties.

This simple picture derived from the potential energy
surface needs to be modified when the nuclei are sub-
ject to velocity-dependent forces: There is then a distinc-
tion between the curvature of the potential energy and
dynamical frequencies squared, as noted in a previous
work1. We are here interested the velocity dependence
that enters in the form of the Lorentz force due to an ex-
ternal magnetic field. A sufficiently strong magnetic field
has profound effects on the electronic structure and the
potential energy surface. Chemical bonding is affected1,2

and even many otherwise unbound one-electron ions be-
come bound in a strong field3. Moreover, the center-
of-mass motion becomes coupled to the internal motion
and the Born–Oppenheimer approximation becomes less
accurate4–7. Most such effects are beyond the scope of
the present work. However, there is an important dy-
namical screening effect wherein the electrons partially
shield the nuclei from the Lorentz forces due to the ex-
ternal field. A consistent semiclassical picture that takes
this screening into account is that the electrons give rise
not only to a Born–Oppenheimer scalar potential, as in
standard treatments, but also a Born–Oppenheimer vec-
tor potential. The latter turns out to be the geometric
vector potential associated with the Berry phase8–13.

In Sec. II, we show how velocity-dependent forces mod-
ify the standard eigenvalue problem (H − ω2M)η̂ = 0,
from which the mass matrix M and molecular Hessian H
determine vibrational frequencies ω and modes η̂. The
modified problem contains a rotational term that couples
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translations, rotations, and vibrations. Because of this
term, the modified problem is no longer a standard eigen-
value problem, but rather what is known as a quadratic
eigenvalue problem. In Sec. III, the theory is considered
in the Hamiltonian formalism, yielding a new formula-
tion and a close analogy to quantum excitation energies.
In Sec. IV, we provide several numerical illustrations of
physical effects that arise due to the new term.

II. THEORY

Let B(s) = ∇ × A(s) denote the external magnetic
field and A(s) its magnetic vector potential at posi-
tion s. We adopt a semiclassical picture9,10,12 where
the electrons are fully quantum mechanical and the elec-
tronic state ψ(r; R) depends parametrically on the clas-
sical nuclear positions R (and also on B). Here, r =
(r1, . . . , rn) collectively denotes all electron coordinates
and R = (R1, . . . ,RN ) all nuclear coordinates. The
Born–Oppenheimer scalar potential, or the potential en-
ergy surface, is given by

v(R) =
∑
I<J

qIqJ
|RI −RJ |

+ 〈ψ|Hel|ψ〉, (1)

where qI is the nuclear charge and Hel is the electronic
Hamiltonian. The electronic Hamiltonian Hel and wave
function ψ both depend parametrically on R but for ease
of notation this dependence is suppressed. The Born–
Oppenheimer vector potential, or the geometric vector
potential, is given by

χI(R) = −i

∫
ψ∗

∂ψ

∂RI
dr. (2)

Note that v(R) and χI(R) depend on all nuclear coor-
dinates jointly and the latter on an additional nuclear
index. The sensitivity of the electronic state to geomet-
ric perturbations can be quantified by the tensor

ΞIJ(R) =

∫
∂ψ

∂RI

(
∂ψ

∂RJ

)†
dr. (3)
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The Berry curvature is defined in terms of χI as

Ωint
Iα,Jβ =

∂χIα
∂RJβ

− ∂χJβ
∂RIα

= −iΞIα,Jβ + iΞJβ,Iα, (4)

and coincides with the anti-symmetric part of the tensor
Ξ that quantifies the sensitivity to rotational perturba-
tions of the 3N dimensional vector R. (The middle ex-
pression gives rise to second-order derivatives of ψ, which
can be shown to cancel10.) For a single nucleus (N = 1),
the Berry curvature contains exactly the same elements
as the curl ∇×χI=1, only arranged as a skew-symmetric
matrix rather than as a vector. For a system of sev-
eral nuclei, it is a multi-dimensional generalization of the
three-dimensional curl.

In the nuclear Hamiltonian, the geometric vector po-
tential χI appears as a correction to the external mag-
netic vector potential, and it modifies the nuclear mo-
menta and kinetic energy8–10. Newton’s equation of mo-
tion, supplemented by the Berry screening force, now
takes the form10,12

mIR̈I = −∂v(R)

∂RI
+qIṘI×B(RI)+

∑
J

Ωint
IJ (R)ṘJ , (5)

where mI is the mass of nucleus I. The Lorentz force
has a more specific form than the Berry screening force;
we therefore absorb the former into the latter. In com-
ponent form, the Lorentz force is given by FL;Iα =

qIεαβγṘIβBγ(RI), where εαβγ is the Levi-Civita symbol
and summation over β, γ is implied. Defining

ΩIα,Jβ(R) = qIδIJ εαβγ Bγ(R) + Ωint
Iα,Jβ(R) (6)

and the mass matrix MIα,Jβ = qαβ δIJ mI , the equation
of motion is compactly expressed in terms of 3N × 3N
matrices as

MR̈ = −∂v(R)

∂R
+ Ω(R) Ṙ. (7)

We note that the Berry curvature is a real-valued anti-
symmetric 3N × 3N matrix, ΩT = −Ω.

A. Rigid motion and translational-rotational coupling

Before specializing the theory to small oscillations, we
consider a different special case. Suppose that the motion
consists purely of rigid translations and rigid rotations
but no vibrations. All velocities are then determined by
two parameters—the center-of-mass velocity u = Ṙcm

and the angular-velocity vector ν—and are given by

ṘI = u + ν ×∆RI , (8)

where ∆RI = RI − Rcm are the nuclear coordinates
relative to the center of mass. For a uniform magnetic
field, we obtain by summing over all nuclei in Eq. (5) and

using the expression in Eq. (8) for the nuclear velocities,
the equations∑

I

mIR̈I =
∑
I

qI(u + ν ×∆RI)×B

+
∑
IJ

Ωint
IJ (u + ν ×∆RJ),

(9)

assuming that the potential energy surface is translation-
ally invariant,

∑
I ∂v(R)/∂RI = 0. Next, introducing

the total mass mtot, total charge qtot and the center of
nuclear charge Rcc = (1/qtot)

∑
I qIRI , we arrive at the

following expression for the translational motion of the
system

mtotu̇ = qtot(u + ν × (Rcc −Rcm))×B

+
∑
IJ

Ωint
IJu +

∑
IJ

Ωint
IJ (ν ×∆RJ), (10)

We note that the magnetic field and the Berry curvature
couple the center-of-mass motion and the angular veloc-
ity of the system. No such coupling occurs in the absence
of a magnetic field, if (as is typical) the wave function can
be chosen to be real valued.

To obtain the corresponding equation for the angular
velocity of the system, we evaluate the torque on each
nucleus by taking the cross product of Eq. (5) with ∆RI :

∆RI ×mIR̈I

= −∆RI ×
∂v

∂RI

+ qI∆RI × ((u + ν ×∆RI)×B)

+
∑
J

∆RI ×Ωint
IJ (u + ν ×∆RJ).

(11)

We next express the acceleration R̈I in terms of the an-
gular velocity by taking the time derivative of ṘI in (8),
yielding:

R̈I = u̇ + ν̇ ×∆RI + ν × (ν ×∆RI). (12)

Substituting this result into Eq. (11), summing over all
nuclei, introducing the moment-of-inertia tensor I and
the electrical quadrupole moment tensor Q given by

I =
∑
I

mI(|∆RI |2I−∆RI∆RT
I ), (13)

Q =
∑
I

qI(|∆RI |2I−∆RI∆RT
I ), (14)

and assuming that the potential energy surface gives rise
to no net torque,

∑
I mI∆RI × ∂v/∂RI = 0, we obtain:

Iν̇ + (Iν)× ν

= qtot(Rcc −Rcm)× (u×B)− (QB)× ν

+
∑
IJ

∆RI ×Ωint
IJ (u + ν ×∆RJ).

(15)
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This equation determines the angular acceleration ν̇ or,
if one prefers, the (closely related) time derivative of the
angular momentum. It is a form of Euler’s rigid body
equation of motion, supplemented with the effects of the
Berry screening force.

The coupling between the translational and rotational
equations of motion in Eqs. (10) and (15), respectively,
becomes more transparent by mapping one of the vectors
in a cross product to a skew symmetric matrix according
to

s× t = [s]×t = −[t]×s, (16)

in the notation

[s]× =

 0 −s3 s2
s3 0 −s1
−s2 s1 0

 , s = (s1, s2, s3). (17)

Rewriting Eq. (10) and (15) and introducing the 3 × 3
translational–rotational coupling matrix

G = qtot[B]×[Rcc −Rcm]× −
∑
IJ

Ωint
IJ [∆RJ ]×, (18)

Newton’s equation for center-of-mass motion becomes

mtotu̇ = −qtotB× u +
∑
IJ

Ωint
IJ u + Gν, (19)

while Euler’s equation for rotation about the center-of-
mass becomes

Iν̇ + (Iν)× ν = −(QB)× ν

−
∑
IJ

[∆RI ]×Ωint
IJ [∆RJ ]×ν − GTu. (20)

From Eqs. (10) and (19), it is clear that the center-of-
mass acceleration is affected by the internal rotation ν.
The strength of this coupling is proportional to the dif-
ference between the center of charge and the center of
mass as well as to the magnetic field, although it may be
partially counterbalanced by the Berry curvature term.
Likewise, from Eqs. (15) and (20), it is clear that the an-
gular acceleration of the internal rotation is affected by
the center-of-mass motion. Again the coupling is propor-
tional to the the difference between the center of charge
and the center of mass as well as to the magnetic field,
and it may be counterbalanced by the effect of the Berry
curvature.

B. Equation of motion for small oscillations

Next, we choose the initial position to be a local min-
imum R0 on the potential energy surface v(R), so that
∂v/∂R = 0. We assume that all time dependence is cap-
tured by linear motion and an oscillatory displacement
εη(t) that is small enough for our below approximations
to be valid:

R(t) = R0 + Ṙ0t+ εη(t). (21)

Denoting the Hessian and the term arising from geomet-
rical gradients of the Berry curvature tensor at R = R0

by

HIα,Jβ =
∂2v(R)

∂RIα∂RJβ

∣∣∣∣
R=R0

, (22)

ΛIα,Jβ =
∑
Kγ

∂ΩIα,Kγ(R)

∂RJβ

∣∣∣∣
R=R0

Ṙ0;Kγ , (23)

and letting Ω = Ω(R0), we may write the equations of
motion in Eq. (7) to first order in ε in the manner

Mη̈ = (Λ−H)η + Ωη̇. (24)

Remarkably, the gradients of Ω(R) couple with the linear

motion Ṙ0 to produce a correction to the Hessian. In
what follows, we assume that this correction vanishes,
either because Ω(R) is approximately constant around

R = R0 + Ṙ0t+ εη or because there is no linear motion,
Ṙ0 = 0.

A Fourier transformation of Eq. (24) with Λ = 0 yields

(H− iωΩ− ω2M)η̂(ω) = 0 (25)

or, equivalently,

(H̃− iωΩ̃− ω2I) ζ̂(ω) = 0, (26)

in terms of the mass-weighted Hessian and mass-weighted
Berry curvature

H̃ = M−1/2HM−1/2, (27)

Ω̃ = M−1/2ΩM−1/2, (28)

and ζ̂(ω) = M1/2η̂(ω). Because ω enters both linearly
and quadratically, these equations are instances of the
quadratic eigenvalue problem (QEP)14 rather than of
a standard eigenvalue problem. In principle, even the
usual vibrational eigenvalue problem without velocity-
dependent forces, Hη̂ = ω2Mη̂, is a QEP since ω enters
quadratically. However, it is trivially re-expressed as a
standard eigenvalue problem of the same dimension by
introducing λ = ω2.

A general QEP can be transformed to an equivalent
standard eigenvalue problem of doubled dimension. Such
a transformation is said to linearize the QEP. There are
many ways of linearizing a QEP and here we illustrate
one of them. By introducing a new variable for the veloc-
ity, γ(t) = η̇(t), the equation of motion can be written
in a form that is first-order in time:

γ = η̇, (29)

Mγ̇ = −Hη + Ωγ. (30)

In the frequency domain, the corresponding system is

γ̂(ω) = iωη̂(ω), (31)

iωMγ̂(ω) = −Hη̂(ω) + Ωγ̂(ω). (32)
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Finally, these equations can be rearranged into a gener-
alized eigenvalue problem(

0 I
−H Ω

)(
η̂
γ̂

)
= iω

(
I 0
0 M

)(
η̂
γ̂

)
. (33)

Alternatively, in terms of the mass-weighted quantities
ζ = M1/2η and ξ = ζ̇ = M1/2η̇, we obtain the standard
eigenvalue problem(

0 I

−H̃ Ω̃

)(
ζ̂

ξ̂

)
= iω

(
ζ̂

ξ̂

)
. (34)

Compared to a standard eigenvalue problem of the same
dimension, a quadratic eigenvalue problem has twice as
many eigenvalues, although two distinct eigenvalues may
share the same eigenvector. Solving one of the quadratic
eigenvalue problems in Eq. (25)–(26) of dimension 3N
or one of the standard eigenvalue problems in Eq. (33)-
(34) of doubled dimension 6N yields a discrete set of 6N
dynamical frequencies ωk and oscillatory modes η̂k =

M−1/2ζ̂k.
Returning to the original QEP, we note three charac-

terizations of the eigenmodes. Firstly, because the ma-
trices H,Ω,M are all real, taking the complex conju-
gate of Eq. (25) leads to the conclusion that the eigen-
modes come in complex conjugated pairs: If η̂k is a
solution with frequency ωk, then η̂∗k is also a solution
with frequency −ω∗k. For simplicity we restrict atten-
tion to real frequencies from now on and thus expect
η̂k(ωk) = η̂k(−ωk)∗ to hold.

Secondly, if also the eigenmode η̂k is real, then it sat-
isfies the two equations

(H− ω2
kM)η̂k = 0, (35)

ωkΩη̂k = 0, (36)

separately. Hence, real modes must either have zero fre-
quency ωk = 0 or belong to the null space of Ω. Moreover,
real modes must also be solutions of a vibrational problem
without velocity-dependent forces.

Thirdly, some modes have two distinct frequencies.
Equivalently, suppose the modes are ordered so that ω1

and ω2 share the same mode η̂ = η̂1 = η̂2. This mode
satisfies

(H− iω1Ω− ω2
1M)η̂ = 0, (37)

(H− iω2Ω− ω2
2M)η̂ = 0, (38)

simultaneously. Subtracting one equation from the other
and dividing by ω2 − ω1 6= 0, we obtain

(iΩ + (ω1 + ω2)M)η̂ = 0. (39)

Hence, eigenmodes with more than one frequency must
be generalized eigenvectors of Ω. Moreover, if the corre-
sponding eigenvalue is different from zero (i.e., if ω1 +
ω2 6= 0), then the eigenmode cannot be real valued.

Regarding distinct frequencies that share the same
eigenvector, we stress that it is the pair of a frequency and

an eigenvector that together determine the dynamics in
the time domain—whereas the pair (ω1, η̂) corresponds
to η1(t) = 2Re(η̂eiω1t), the pair (ω2, η̂) corresponds to
η2(t) = 2Re(η̂eiω2t).

C. A frequency-dependent orthogonality property

The standard vibrational problem without velocity-
dependent forces yields 3N normal modes that are or-
thogonal with the mass tensor M as the metric. The
QEP yields 6N modes η̂k and it is immediately clear
that they cannot all be orthogonal. Projecting Eq. (25)
from the right by a different mode yields

η̂†l (H− iωkΩ− ω2
kM)η̂k = 0 (40)

and taking the complex conjugate and using that ΩT =
−Ω yields

η̂†k(H− iωkΩ− ω2
kM)η̂l = 0. (41)

Setting k = 1, l = 2 in the first equation and k = 2, l = 1
in the second equation and taking the difference, we now
obtain

η̂†2
(
(ω2

2 − ω2
1)M + i(ω2 − ω1)Ω

)
η̂1 = 0. (42)

When ω1 6= ω2 this simplifies to

η̂†2 ((ω2 + ω1)M + iΩ) η̂1 = 0. (43)

For real modes, we may discard the Ω term and re-
cover the usual orthogonality property. However, com-
plex modes are in general not orthogonal in the metric
M nor in any other fixed metric.

D. Configuration-space rotations and rovibrational
coupling

In the time domain, Eq. (39) corresponds to

Mη̈ = Ωη̇. (44)

The same simplified equation of motion also arises in the
special case when the Hessian can be neglected, H ≈ 0.
This equation of motion can be solved explicitly since the
real antisymmetric matrix Ω is a generator of rotations
in the 3N -dimensional configuration space,

η(t) = M−1/2 eΩ̃t M1/2η(0), (45)

R(t) = R0 + εM−1/2 eΩ̃t M1/2η(0), (46)

with Ω̃ = M−1/2ΩM−1/2. In general, rotations in
configuration space preserve all distances and angles in
configuration space, but do not necessarily correspond
to rigid rotations that preserve internuclear distances
|RI − RJ | in three-dimensional space. Hence, even for
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a vanishing Hessian, rovibrational coupling arises due to
Ω.

An instructive special case arises when the Berry
curvature vanishes, Ωint = 0, so that the external
Lorentz force is the only velocity-dependent force. Then
Ω̃IJ = (qI/mI)δIJν has a block-diagonal structure with
ναβ = εαβγBγ . The motion of each nucleus can now be
solved independently,

ηI(t) = e
qI
mI

νt
ηI(0), (47)

RI(t) = R0;I + ε e
qI
mI

νt
ηI(0), (48)

As a result, each nucleus undergoes independent rotation
with an angular velocity that depends on its gyromag-
netic ratio qI/mI . For this to be a rigid rotation that
preserves all pairwise distances |RI(t) −RJ(t)|, the gy-
romagnetic ratios must be identical, qI/mI = qJ/mJ .
Additionally, the nuclei must either share the same gyro-
center, R0;I = R0;J , or all motions must be synchronized
in the sense that the initial displacements are identical,
ηI(0) = ηJ(0). In other cases, configuration-space rota-
tions couple rigid rotations and vibrational motion.

E. Quantification of translational, rotational, and
vibrational coupling

A mode η̂(ωk) can be decomposed into components
that correspond to rigid translation, rigid rotation, and
internal motion, respectively. Here we are interested in
the kinetic energies associated with these components.
From Eq. (21), we obtain for the kth mode the following
Cartesian displacement of nucleus I:

RI(t) = R0;I + εηk;I(t), (49)

where

ηk;I(t) = η̂k;Ie
iωkt + η̂∗k;Ie

−iωkt. (50)

The kinetic energy of this mode is given by

Tk =
ε2

2

∑
I

mI |η̇k;I |2

=
ε2ω2

k

2

∑
I

mI

(
2η̂∗k;I · η̂k;I − η̂k;I · η̂k;Ie2iωkt

− η̂∗k;I · η̂
∗
k;Ie
−2iωkt

)
.

(51)

The kinetic energy is thus a periodic function of time,
with time average

T k = ε2ω2
k

∑
I

mI |η̂k;I |2. (52)

Similarly, the total mechanical momentum is

Π = ε
∑
I

mI η̇k;I

= iεωk
∑
I

mI(η̂k;Ie
iωkt − η̂∗k;Ie

−iωkt)
(53)

and the time average of the kinetic energy due to the
center-of-mass motion is therefore

T cm =
ε2ω2

k

mtot

∣∣∣∑
I

mI η̂k;I

∣∣∣2. (54)

Next, we consider the total mechanical angular momen-
tum J relative to the center of mass Rcm of the equilib-
rium geometry. With the notation ∆R0;I = R0;I −Rcm,
we may write

J =
∑
I

(∆R0;I + εηk;I)×mI η̇k;I

=
∑
I

(
∆R0;I + ε(η̂k;Ie

iωkt + η̂∗k;Ie
−iωkt)

)
×mI iεωk(η̂k;Ie

iωkt − η̂∗k;Ie
−iωkt).

(55)

Introducing the auxiliary quantity

K̂ =
∑
I

mI∆R0;I × η̂k;I , (56)

the time average of the rotational energy becomes, to
second order in ε,

T rot = ε2ω2
kK̂
†I−1K̂, (57)

where I is the moment-of-inertia tensor of Eq. (13).
As a simple measure of the degree to which a mode rep-

resents center-of-mass motion, rotation about the center
of mass, and vibration, we define the fractions

Pcm =
T cm

T
, (58)

Prot =
T rot

T
, (59)

Pvib =
T − T cm − T rot

T
= 1− Pcm − Prot, (60)

which are nonnegative and add up to 1. Numerical exam-
ples will be given below, in Sec. IV. Whereas the inter-
pretation of Prot is relatively straightforward, it should
be kept in mind that Pcm measures both linear trans-
lation and cyclotron-like motion of the center of mass.
Both Prot and Pcm capture only rigid motion and the
non-rigid motion is quantified by Pvib.

III. HAMILTONIAN FORMULATION

It is straightforward to generalize the above treat-
ment based on Newton’s equation of motion to a La-
grangian or Hamiltonian formulation more suitable to
non-Cartesian coordinates. Here, however, we highlight
different aspects of in particular the Hamiltonian formu-
lation: firstly, its lack of gauge invariance and, secondly,
that it leads directly to a linearized form of the QEP.
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For convenience, we let aI(R) = −qIA(RI) + χI(R)
denote a three-dimensional vector as function of the con-
figuration R and a(R) denote the corresponding 3N -
dimensional vector. In Cartesian coordinates R, the nu-
clear Hamiltonian may then be written

H(P,R) =
1

2
(P + a(R))TM−1(P + a(R)) + v(R). (61)

The Hamiltonian is already quadratic in the momenta P.
To construct an approximation that is second order in the
pair (R,P), we consider the Taylor expansion around a
point R0 of vanishing gradient ∂v/∂R. Defining

FJβ,Iα(R0) =
∂aJβ(R)

∂RIα

∣∣∣∣
R=R0

, (62)

SIα,Kγ(R0) =
∑
Jβ

aJβ(R)m−1J
∂2aJβ(R)

∂RIα∂RKγ

∣∣∣∣
R=R0

, (63)

we have

v(R0 + s) ≈ v(R0) +
1

2
sTHs, (64)

a(R0 + s) ≈ a(R0) + F(R0) s, (65)

and

a(R0 + s)TM−1a(R0 + s) ≈ a(R0)TM−1a(R0)

+ 2a(R0)TM−1F(R0) s +
1

2
sTS(R0)s.

(66)

In terms of the 6N × 6N matrix

H[2]
mat(R0) =

(
H + S + FTM−1F FTM−1

M−1F M−1

)
(67)

the Hamiltonian can now be written as

H(P,R) ≈ 1

2

(
R−R0

P + a(R0)

)T

H[2]
mat

(
R−R0

P + a(R0)

)
(68)

and Hamilton’s equations of motion take the form(
Ṙ

Ṗ

)
=

(
0 I
−I 0

)(
∂H/∂R
∂H/∂P

)
=

(
0 I
−I 0

)
H[2]

mat

(
R−R0

P + a(R0)

) (69)

The ansatz R(t) = R0+εη(t) and P(t) = −a(R0)+εκ(t)
now yields, to first order in ε, the equations of motion(

η̇
κ̇

)
=

(
0 I
−I 0

)
H[2]

mat

(
η
κ

)
. (70)

Finally, Fourier transformation yields the eigenvalue
equation

iω

(
η̂(ω)
κ̂(ω)

)
=

(
0 I
−I 0

)
H[2]

mat

(
η̂(ω)
κ̂(ω)

)
(71a)

or, equivalently,

− iω

(
0 I
−I 0

)(
η̂(ω)
κ̂(ω)

)
= H[2]

mat

(
η̂(ω)
κ̂(ω)

)
. (71b)

A change of variables first to mass-weighted coordinates
and then to α̂±(ω) = M1/2η̂(ω)± iM−1/2κ̂(ω) produces
a third equivalent form,

ω

(
I 0
0 −I

)(
α̂−(ω)
α̂+(ω)

)
=

(
A B
B∗ A∗

)(
α̂−(ω)
α̂+(ω)

)
, (71c)

where

A = I + M−1/2(H + S + FTM−1F)M−1/2

− iM−1/2(F− FT )M−1/2, (72)

B = −I + M−1/2(H + S + FTM−1F)M−1/2

− iM−1/2(F + FT )M−1/2. (73)

The formal similarity with the quantum-mechanical
random-phase approximation is striking15.

As shown above, the Hamiltonian description of small
vibrations yields a linearized eigenvalue problem of dou-
ble dimension already from the start. However, it has the
disadvantage of being formulated in terms of the mani-
festly gauge dependent canonical momentum PI , leading
to the above matrix where the ingredients F and S are
gauge dependent too. This disadvantage can be allevi-
ated by performing the geometric gauge transformation

a′(R) = a(R)− ∂

∂R

(
1

2
sTF(R0) s

)
= a(R)− 1

2

(
F(R0) + F(R0)T

)
s

(74)

where we recall that s = R−R0. This leaves the quantity
defined in Eq. (63) unchanged (i.e. S′(R0) = S(R0)),
while the first-order derivative

F ′Jβ,Iα(R0) =
∂a′Jβ(R)

∂RIα

∣∣∣∣
R=R0

= 1
2FJβ,Iα(R0)− 1

2FIα,Jβ(R0)

= 1
2ΩJβ,Iα(R0)

(75)

has now been transformed into half the Berry curvature
defined in Eq. (6). After this geometric gauge transfor-
mation the Hamiltonian matrix takes the form

H′[2]mat(R0) =

(
H + S + 1

4ΩTM−1Ω 1
2ΩTM−1

1
2M−1Ω M−1

)
, (76)

where S is the remaining gauge dependent contribution.
In what follows, we neglect S. Noting that the original

momentum κ̂ is now gauge transformed into some κ̂′, the
eigenvalue equation is(

iωη̂
iωκ̂′

)
=

(
0 I
−I 0

)
H′[2]mat

(
η̂
κ̂′

)
=

(
1
2M−1Ωη̂ + M−1κ̂′

−(H + 1
4ΩTM−1Ω)η̂ − 1

2ΩTM−1κ̂′

)
.

(77)
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The upper half of this system yields κ̂′ = (iωM− 1
2Ω)η̂.

Inserting this into the lower half, and using the anti-
symmetry ΩT = −Ω, yields precisely the quadratic
eigenvalue problem in Eq. (25).

A. Orthogonality properties

Consider now multiple solutions η̂k, κ̂k, ωk to the
above eigenvalue problem. Projecting Eq. (71b) from the
left by a different solution yields

− iωk

(
η̂l
κ̂l

)†(
0 I
−I 0

)(
η̂k
κ̂k

)
=

(
η̂l
κ̂l

)†
H[2]

mat

(
η̂k
κ̂k

)
(78)

with complex conjugate

− iωk

(
η̂k
κ̂k

)†(
0 I
−I 0

)(
η̂l
κ̂l

)
=

(
η̂k
κ̂k

)†
H[2]

mat

(
η̂l
κ̂l

)
.

(79)
Taking the difference between the first equation with k =
1 and l = 2 and the second equation with k = 2 and l = 1,
we obtain

(ω1 − ω2)

(
η̂2

κ̂2

)†(
0 I
−I 0

)(
η̂1

κ̂1

)
= 0. (80)

Repeating the above derivation but with Hermitian con-
jugates replaced by matrix transposition also yields

(ω1 + ω2)

(
η̂2

κ̂2

)T(
0 I
−I 0

)(
η̂1

κ̂1

)
= 0. (81)

Hence, when the frequencies satisfy ω2
1 6= ω2

2 , we obtain
two simultaneous orthogonality properties. When the
frequencies satisfy either ω1 = ω2 6= 0 or ω1 = −ω2 6= 0,
only one of the properties is informative.

B. Quantization and interpretation of frequencies as
excitation energies

The classical theory of vibrations derived above re-
duces to the standard one in the limit Ω → 0 of van-
ishing velocity-dependent forces. Even though the cal-
culated frequencies are derived as dynamical resonance
frequencies, they are usually interpreted as excitation en-
ergies. In the case Ω = 0, this interpretation is justified
by the analogy between a single classical and quantum
harmonic oscillator. The case of 3N coupled harmonic
oscillators may be reduced to that of a single oscillator
by exploiting the fact that the 3N normal coordinates
are orthogonal and diagonalize H[2]

mat, resulting in 3N de-
coupled oscillators16,17. When Ω 6= 0, the orthogonality
properties in Sec. III A are sufficient to achieve such a

decoupling, despite the off-diagonal blocks of H[2]
mat and

the lack of orthogonality of the spatial components η̂k

discussed in Sec. II C. However, below we follow an alter-
native approach that circumvents the need for decoupling
the oscillators18 and that yields complementary insights.

To this end, consider the quantized analogue of H, ob-
tained by replacing the classical canonical momentum PI

by the hermitian operator P̂I = −i∂/∂RI . Collecting all
positions and momenta in a single column vector

ẑ =

(
R−R0

P̂ + a(R0)

)
, (82)

the quantized Hamiltonian becomes

ĤQ =
1

2
ẑ†H[2]

matẑ. (83)

With an additional binary index indicating the upper or
lower half of ẑ, we index the 6N components according
to ẑ0Iα = RIα and ẑ1Iα = P̂Iα. For compactness, we
introduce single symbols a = (σ, I, α), b = (σ′, J, β), and
so on, for such composite indices. Now, defining a matrix
J with elements Jab = −i[ẑa, ẑb], we use the canonical
commutation relations, [Ra, P̂b] = iδab, to deduce the
matrix form

J =

(
0 I
−I 0

)
, (84)

which is identical to the matrix that first appeared in
Eq. (69) above.

Let us now seek a ladder operator of the form X̂ = ξcẑc
(summation implied over repeated composite indices)
and with the property

[ĤQ, X̂] = ωX̂. (85)

When this operator acts on an energy eigenstate |0〉, sat-
isfying ĤQ|0〉 = E0|0〉, it produces a new eigenstate with
an energy shifted by ω:

ĤQX̂|0〉 = (X̂ĤQ + [ĤQ, X̂])|0〉 = (E0 + ω)X̂|0〉. (86)

Writing out the commutation relation in Eq. (85) in com-
ponent form, this relation becomes

ωξeẑe =
1

2
[H[2]

mat;abẑaẑb, ξcẑc]

=
1

2
H[2]

mat;ab (ξcẑa[ẑb, ẑc] + ξc[ẑa, ẑc]zb)

=
1

2
H[2]

mat;ab (ξcẑaiJbc + ξciJacẑb) .

(87)

Renaming dummy summation indices and using the fact
that H[2]

mat is a symmetric matrix, we may now verify the
matrix eigenvalue equation

iH[2]
matJ ξ = ωξ. (88)

After a change of variables ξ′ = J ξ, we finally obtain

H[2]
matξ

′ = iωJ ξ′. (89)
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This eigenvalue equation is formally identical to the com-
plex conjugate of Eq. (71b) and we have

ξ′ ∝
(
η̂∗

κ̂∗

)
, (90)

where the quantities on the right-hand side are classical
Fourier coefficients rather than quantum-mechanical op-
erators. In summary, the same mathematical eigenvalue
problem yields both (a) classical modes with associated
resonance frequencies and (b) quantum-mechanical lad-
der operators with associated energy shifts. This identi-
fication justifies the interpretation of frequencies as exci-
tation energies.

For two different ladder operators, X̂k and X̂l,

[X̂k, X̂l] = ξk;a[ẑa, ẑb]ξl;b = Jacξ′k;c[ẑa, ẑb]Jdbξ′l;d
= Jacξ′k;ciJabJdbξ′l;d = −iξ′k;cJcdξ′l;d

(91)

which according to the orthogonality property in Eq. (81)
vanishes if ωk 6= −ωl. Hence, ladder operators with dif-
ferent absolute frequencies |ωk| 6= |ωl| commute. When
ωk = −ωl > 0, we have X̂k = X̂†l and X̂†l X̂l is (up to
normalization) the number operator for the kth mode.

IV. RESULTS

We illustrate the above theory of small oscillations for a
few molecular systems subject to strong a magnetic field.
For small molecules, atomic units are natural and we use
B0 = 2.35×105 T to denote the atomic unit of magnetic.
All calculations were performed at the Hartree–Fock level
using London19,20. In particular, its functionality for
analytical geometrical gradients1 and the recent imple-
mentation of the Berry-curvature tensor10,11 was relied
on. Standard basis-set names are prefixed by ‘L’ to indi-
cate that London gauge factors21 are used and by ‘u’ to
indicate decontraction of primitive Gaussian functions.
For a strong magnetic field, decontraction is useful since
most basis sets were originally constructed for zero-field
situations. Hessians were computed by numerical dif-
ferentiation of analytical gradients1. We used a simple
symmetric finite difference

Hab(R) ≈ 1

2ε

(
∂v(R + εeb)

∂Ra
− ∂v(R− εeb)

∂Ra

)
, (92)

where ea is a unit vector along a coordinate axis in the
3N dimensional configuration space. A small step of
ε = 0.001 bohr was used and we also ensured a very
tight self-consistent field convergence. For each system,
the optimal geometry, including the optimal orientation
relative to the field, was determined as the minimum of
the potential-energy surface for a given field strength.
The quadratic eigenvalue problem was solved using the
function polyeig in the Matlab package22. The di-
mensions of quadratic eigenvalue problems are not large
enough for numerical stability to be an issue in this work.
However, for large dimensions, one may also consider the
linearization denoted14.

A. Singlet H2

At the RHF/Lu-aug-cc-pVTZ level of theory, the op-
timal bond distance at B = 0 is R = 1.388 bohr. By
contrast, at B = B0, the optimal bond distance is
R = 1.219 bohr, with the bond axis parallel to the mag-
netic field. In Fig. 1, the spectrum of the hydrogen
molecule at these geometries is shown. In the absence
of a field, there are translational modes with ω = 0, and
a vibrational mode with ω = 4585 cm−1. There are also
rotational modes that would have ω = 0 in exact calcu-
lations but because of numerical inaccuracies they have
a small imaginary values in our finite-difference calcula-
tions (ω = ±18i cm−1). The sensitivity of barrier-free
rotational modes to numerical errors is a well known
problem for this type of calculation23. At B = B0,
the translational modes with ω = 0 remain, but the ro-
tational modes have split into two distinct frequencies
ω = 1450 cm−1 and ω = 1560 cm−1, while the vibrational
mode is substantially stiffer, with ω = 5964 cm−1.

To investigate the relative importance of the velocity-
dependent term Ω and field-induced change in v, we com-
puted the spectrum with the Hessian H at B = 0 (at
R = 1.388 bohr) and Ω at B = B0 (at R = 1.219 bohr).
We also interchanged these, so that H was obtained at
B = B0 (at R = 1.219 bohr) and Ω = 0 as it is at
B = 0. Another variant we considered was to use H at
B = B0 with the bare Lorentz force, but neglecting the
Berry screening force (Ωint = 0).

From these results, shown in the shaded part of Fig. 1,
we see that the change in frequencies is almost entirely
a result of magnetic-field effects on the potential-energy
surface—in particular, the compression of the optimal
geometry with the resulting higher curvature captured
by the Hessian. The main effect of the external Lorentz
force and the Berry curvature is to split the rotational
modes, which would otherwise be degenerate at ω =
±1504 cm−1. Moreover these degenerate modes could be
chosen complex, in which case they satisfy the relation

η̂(±1504 cm−1) = η̂(∓1504 cm−1)∗. (93)

Due to the degeneracy, the modes are not uniquely de-
termined and we are free to choose the modes as the real
and imaginary parts of the complex modes, leading to
real modes. By contrast, the velocity-dependent forces
arising from the true Ω at B = B0 break time-reversal
symmetry, leading to the situation that

η̂(+1560 cm−1) = η̂(−1450 cm−1)

= η̂(−1560 cm−1)∗ = η̂(+1450 cm−1)∗,
(94)

which is illustrated in Fig. 4. Consequently, these rota-
tional modes can no longer be chosen to be real; they
always have both real and imaginary components.

The importance of the Berry curvature and the re-
sulting screening force is illustrated in the uppermost
shaded area of Fig. 1, showing the unscreened spectrum.
The unscreened spectrum is very close to the screened
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spectrum except for spurious modes at ω = ±120 cm−1,
which is the cyclotron frequency qtotB/mtot for the cen-
ter of mass. These spurious modes result from the bare
Lorentz force and correspond to complex-valued linear
combinations of translations in the plane perpendicular
to the bond axis.

In more detail, we can order the eigenvectors so that
the real-valued η̂1 and η̂2 are two such translations, both
with a vanishing frequency ω1 = ω2 = 0, meaning that
Hη̂1 = Hη̂2 = 0. The corresponding spurious modes
are then η̂3 = η̂1 + iη̂2 and η̂4 = η̂∗3 = η̂1 − iη̂2, with
nonvanishing frequencies ω3 = −ω4 = 120 cm−1. Like
the real modes η̂1 and η̂2, they satisfy Hη̂3 = Hη̂4 = 0
but, unlike the real modes, they also satisfy

(−iω3Ω− ω2
3M)η̂3 = 0, (95)

(−iω4Ω− ω2
4M)η̂4 = 0, (96)

with nonzero frequency. Hence, the complex linear com-
binations solve two eigenvalue problems simultaneously,
while the real valued vectors solve only one.

As seen in Fig. 1, replacing a proton by tritium reduces
the rotational and vibrational frequencies. Even though
this isotope substitution breaks inversion symmetry and
leads to different gyromagnetic ratios for the two nuclei,
the modes remain pure translational, pure rotational, and
pure vibrational. For each mode, one of Pcm, Prot, or Pvib

is close to one and the remaining two are thus close to
zero. For the isotopologue HT oriented along the x-axis,
the translational–rotational coupling matrix of Eq. (18)
is given by

G =

0 0 0
0 −0.609 0
0 0 −0.609

 , (97)

with vanishing contribution from the Berry curvature.
Hence, rotation around the y- or z-axis, which are per-
pendicular to both the bond axis and the magnetic field,
couples to the center-of-mass translation along the same
axis. For H2, by contrast, the whole coupling matrix
vanishes, G = 0. According to the other quantitative
measures, shown for HT in Table I, the modes are to a
very high precision either purely translational, rotational,
or vibrational.

We finally note that, for both H2 and HT, the Lorentz
force on the center of mass is completely canceled by
the Berry screening force, according to the magnetic-
translational sum rule24:∑

IJ

Ωint
IJ = qtot[B]×. (98)

B. Comparison with dynamical trajectories

To assess the effects of anharmonicity, we have gen-
erated vibrational spectra from Born–Oppenheimer dy-
namics at different initial conditions for B = 0 and

TABLE I. Dynamical frequencies ω of the singlet HT
molecule in a perpendicular field of B = B0. The next three
columns show the degree of rigid center-of-mass motion, rigid
rotational motion, and vibration (positive and negative fre-
quencies share the same values for this system). The fourth
column shows the time-averaged rotational energy.

ω [cm−1] Pcm Prot Pvib T̄rot/ε
2ω2

±0.00 1.000 0.000 0.000 0

±0.00 1.000 0.000 0.000 0

±0.00 1.000 0.000 0.000 0

±1192 0.000 1.000 0.000 2.2 × 103

±1265 0.000 1.000 0.000 2.2 × 103

±4870 0.000 0.000 1.000 0
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FIG. 1. Spectrum of the hydrogen molecule in the singlet
electronic state and the minimum geometry parallel to the
magnetic field of strength B = 0 and B = B0. The top and
bottom spectra show the tritium isotopologue HT, whereas
the other spectra are for H2. For comparison, the shaded
region also displays the spectra produced with mixed data—
with Ω and v computed at different field strengths. The ver-
tical axis is arbitrary and for visualization purposes only.

B = B0, with inclusion of the Lorentz force and the
Berry screening force. As in previous work12, we use the
auxiliary-coordinates-and-momenta propagator, a time
step of 1 fs, and a total simulation time of 200 ps. The
simulations started from the equilibrium geometry at the
given field strength with initial kinetic energy, in units of
kelvin, 0.01, 0.1, 1, 10, 100, and 300 K. For the simu-
lations at B = 0, we do not sample the the rotational
modes. The resulting spectra for the higher kinetic ener-
gies are shown in Fig. 2; the lowest kinetic energies yield
spectra visually indistinguishable from T = 1 K.

At a sufficiently low kinetic energy, the motion is ex-
pected to be near harmonic, whereas a higher initial ki-
netic energy will probe anharmonic effects. Our results
confirm this picture, with the dynamical spectrum co-
inciding with the harmonic approximation up to about
1 K. Interestingly, the anharmonic effects on the stretch-
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FIG. 2. Spectrum for singlet H2 at B = B0 obtained from
Born–Oppenheimer dynamics compared to the lines from the
quadratic eigenvalue problem (vertical black lines). The dy-
namical spectra differ in the initial kinetic energy, which is
given in units of kelvin.
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FIG. 3. Spectrum near the stretching mode for singlet H2

at vanishing field, B = 0, obtained from Born–Oppenheimer
dynamics compared to the lines from the quadratic eigenvalue
problem (vertical black lines). The dynamical spectra differ
in the initial kinetic energy, which is given in units of kelvin.
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FIG. 4. Four rotational eigenvectors η̂(ω) for the H2

molecule in the singlet state and a magnetic field of B = B0.
The bond axis is indicated with a thick black lines, the real
component of η̂(ω) with solid blue lines, and the imaginary
component with dotted red lines. The dynamical frequency
is given in units of cm−1 for each mode. Note that the corre-
sponding four eigenvalues are distinct, but there are only two
unique and linearly independent eigenvectors.

ing vibration produce a red shift at B = 0 (see Fig. 3)
but a blue shift at B = B0. While the former effect is
well known, the latter can be understood from the ob-
servation that the covalent hydrogen σ2

g bond becomes
stiffer as the angle between the magnetic field and the
bond axis increases. Since higher temperatures allow the
molecule to explore these parts of the potential-energy
surface, the averaged frequency of the stretching mode
increases.

C. Triplet H2

Although the triplet state of H2 is unbound in the ab-
sence of a magnetic field, it becomes bound in a suffi-
ciently strong magnetic field2,25, with a preferred perpen-
dicular orientation in the field. The underlying mecha-
nism for this perpendicular paramagnetic bonding is that
anti-bonding orbitals develop an orientation-dependent
angular momentum that is stabilized by the orbital Zee-
man effect1,2,26,27. At the UHF/Lu-aug-cc-pVTZ level,
the optimal bond distance at B = B0 is R = 2.709 bohr,
at the preferred perpendicular field orientation. At this
field strength, the MS = −1 component of the triplet is
the ground state of H2.

Spectra of triplet H2 and HT are shown in Fig. 5. As
expected, the H2 stretching mode of 942 cm−1 at B = B0

is much lower than the corresponding frequency of sin-
glet H2. The barrier-free rotation about the field axis
should have ω = 0 but our calculated result a small imag-
inary value (ω = ±6i cm−1) because of numerical inac-
curacies. The hindered rotation in the plane spanned
by the molecular axis and the magnetic field occurs at
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FIG. 5. Spectrum of the hydrogen molecule in the triplet
electronic state and the minimum geometry perpendicular to
the magnetic field of strength B = B0. The top spectrum
shows the tritium isotopologue HT, whereas the other spectra
are for H2. For comparison, the shaded region also displays
the spectra produced by zeroing out either the full Ω = 0 or
the Berry curvature contribution Ωint = 0. The vertical axis
is arbitrary and for visualization purposes only.

at ω = ±190 cm−1; it is not degenerate and the velocity-
dependent force does not split this mode. As a result, the
spectra obtained with screened and unscreened Lorentz
forces are very similar; see the lower shaded area in Fig. 5.
However, as seen in the upper shaded area in Fig. 5,
omission of the Berry screening force leads to a spurious
center-of-mass cyclotron mode at ω = ±120 cm−1, since
the system then behaves like particle of charge +2 in a
magnetic field.

As seen in Table II, all modes in triplet H2 are to high
precision pure translations, rotations, and vibrations ac-
cording to our quantification using Pcm, Pvib, and Pvib.
However, while the zero-frequency modes have a vanish-
ing time average T̄ /ε2ω2 = 0 (this quantity can be cal-
culated without division by zero), the stretching mode
has a small rotational energy T̄ /ε2ω2 = 0.3 that is not
numerical noise. This amount should be compared to
T̄ /ε2ω2 = 1.8× 103 for the rotational modes.

For the isotopologue HT oriented along the x-axis and
the magnetic field along the z-axis, the translational-
rotational coupling matrix is given by

G =

0 0 1.354

0 0 0

0 0 0

 , (99)

with vanishing contribution from the Berry curvature.
Hence, rotation about the z-axis couples to center-of-
mass translation along the x-axis. For H2, the coupling
matrix vanishes, G = 0. For both H2 and HT, the bare
Lorentz force on the center of mass is canceled by the
Berry screening force; see Eq. (98).

TABLE II. Dynamical frequencies ω of triplet H2 and HT in a
perpendicular field of B = B0. The next three columns show
the degree of rigid center-of-mass motion, rigid rotational mo-
tion, and vibration (positive and negative frequencies share
the same values for this system). The fourth column shows
the time-averaged rotational energy. The fourth line for both
H2 and HT are barrier-free rotational modes and are reported
as 0 since our calculated small, non-zero value is a numerical
artifact.

H2

±0 1.000 0.000 0.000 0

±0 1.000 0.000 -0.000 0

±0 1.000 0.000 0.000 0

±0 0.000 1.000 0.000 1.8 × 103

±190 0.000 1.000 -0.000 1.8 × 103

±942 0.000 0.000 1.000 0.30

HT

±0 1.000 0.000 0.000 0

±0 1.000 0.000 0.000 0

±0 1.000 0.000 0.000 0

±0 0.000 1.000 0.000 2.2 × 103

±155 0.000 1.000 0.000 2.2 × 103

±769 0.000 0.000 1.000 0.24

D. Singlet HCN

Hydrogen cyanide has been investigated at the
RHF/Lu-cc-pVDZ level. In a strong field of B = 0.3B0,
HCN adopts a linear geometry perpendicular to the
field, with a C–H and C–N bond distances of 1.964 and
2.153 bohr, respectively. All 18 dynamical frequencies are
given in Table III along with the degree of translational,
rotational, and vibrational motion.

For this system, numerical errors are noticeable in our
finite-difference procedure for computing the Hessian,
probably because the energy and forces respond very
differently to vibrational and rotational modes, respec-
tively. Our numerical Hessian has a nonsymmetric com-
ponent on the order of ‖H−HT ‖F = 5.9× 10−8 au. Ad-
ditionally, numerical errors manifest themselves in that
some frequencies with absolute value below 0.03 cm−1 are
imaginary and that a barrier-free rotational mode has a
calculated value of 1.3 cm−1. For this reason, we report
frequencies |ω| ≤ 1.3 cm−1 as 0.

The modes listed in the table are visualized in Fig. 6.
Several modes are mixed rather than pure translations,
rotations, or vibrations—for example, the barrier-free ro-
tation about the field axis, includes a substantial degree
of center-of-mass motion, although the proportion is very
sensitive to the numerical accuracy of the calculations.
Moreover, the rotational mode at ω = 172 cm−1, which
corresponds to rotation around an axis perpendicular to
both the magnetic field and molecular axis, has 5.7% vi-
brational character. Similarly, the vibrational mode with
ω = 443 cm−1, corresponding to a change in the bond
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TABLE III. Dynamical frequencies ω of the HCN molecule in
a perpendicular field of B = 0.3B0. The next three columns
show the degree of rigid center-of-mass motion, rigid rota-
tional motion, and vibration (positive and negative frequen-
cies share the same values for this system). The fourth col-
umn shows the time-averaged rotational energy. The numbers
marked with asterisks are very sensitive to numerical accuracy
and likely not converged.

ω [cm−1] Pcm Prot Pvib T̄rot/ε
2ω2

±0 1.000 0.000 0.000 0

±0 1.000 0.000 0.000 0

±0 0.996 0.004 0.000 58

±0 0.468∗ 0.532∗ 0.000 4.8 × 103

±172 0.000 0.943 0.057 3.5 × 103

±286 0.000 0.000 1.000 4.5 × 10−5

±443 0.000 0.057 0.943 190

±2207 0.000 0.000 1.000 1.3 × 10−3

±3762 0.000 0.000 1.000 1.2 × 10−2

angle by displacing atoms along the magnetic field axis,
has 5.7% rotational character.

As for singlet and triplet H2, the Lorentz force on the
center of mass is completely canceled by the Berry screen-
ing force (see Eq. (98)). The translational–rotational
coupling matrix has contributions both from the external
magnetic field and the Berry curvature. With the molec-
ular axis aligned to the x-axis and the magnetic field to
the z-axis, it is obtained from these two contributions as

G =

0 0 0.451

0 0 0

0 0 0

+

0 0 −0.337

0 0 0

0 0 0

 . (100)

This results in a coupling between rigid rotations about
the magnetic field (z-axis) and center-of-mass transla-
tions along the molecular axis (x-axis). This coupling is
seen in the mode with ω = ±0, which is predominantly
translation along the molecular axis but with 0.4% rota-
tional character.

V. CONCLUSIONS

We have developed the theory of small oscillations in
molecules subject to velocity-dependent forces. Specifi-
cally, when the velocity-dependent forces are the Lorentz
forces in an external magnetic field and the Berry screen-
ing force8–10, several novel effects arise. For example, the
internal motion can no longer be considered in isolation
and there is coupling between rigid translations, rigid ro-
tations, and pure vibrations. Also, rotational modes are
split when the clockwise and counterclockwise rotation
are no longer symmetry equivalent but subject to differ-
ent magnetic forces.

0
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0.6

0.8

 = 2206 
 = 443 

 = 172 
 = 0

 = 0

0

 = 0

5

 = -3762 
 = -443 

 = -286 
 = 0

 = 0
 = 0

10  = 3762 
 = -2206 

 = 286 
 = -172 

 = 0
 = 0
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FIG. 6. Oscillatory modes of the HCN molecule oriented
perpendicular to a field of B = 0.3B0. The real part of each
mode is indicated with blue lines. Only the mode with ω =
3.7 cm−1 has a (barely) visible imaginary part indicated in
red. The length scale for these lines is arbitrary; however, the
relative lengths within and between modes are meaningful.
The dynamical frequency ω in cm−1 is also given for each
mode.

In mathematical terms, the dynamical frequencies are
no longer obtained from a standard eigenvalue problem
involving the mass matrix and the geometric Hessian.
Instead, the frequencies are obtained from a quadratic
eigenvalue problem, with a more complicated structure
of eigenvectors than a standard eigenvalue problem. We
also discussed linearization—that is, the conversion of
the quadratic eigenvalue problem to a standard eigen-
value problem of double dimension. The most interest-
ing linearization is obtained from Hamilton’s equation of
motion. Although this work is focused on the classical
dynamics of nuclei, the Hamiltonian formulation admits
a close analogy with the quantum-mechanical treatment
of vibrations, allowing us to verify that the classical fre-
quencies can be interpreted as excitation energies.

The developed theory has been illustrated by numer-
ical results for the hydrogen molecule and hydrogen
cyanide in a strong magnetic field. Although the effect
of the velocity-dependent forces is in general complex,
its main effect is to split rotational modes. By contrast,
the effect of the magnetic field via the potential-energy
surface is to blue shift stretching frequencies and intro-
duce hindered rotations. Whereas harmonic stretching
frequencies are typically blue shifted relative to the (true)
anharmonic frequencies in the absence of the magnetic
field, we observe the opposite effect for singlet H2 in a
strong magnetic field, for which the anharmonic stretch-
ing frequency is higher than the corresponding harmonic
frequency.

Coupling of translational, rotational, and vibrational
motions is also seen in our numerical results, although
the magnitude of the coupling is small. This is likely due
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to the relatively simple structure of the coupling matrix
G in the above linear molecules. Because our quantifica-
tion of the coupling is energy based, the small coupling
could also be due to modes of different type having ki-
netic energies of different orders of magnitude. Larger
molecules with lower symmetry may display such cou-
plings in a larger percentage of the modes.
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