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Simple Summary: Periodontitis, a chronic inflammatory disease of the gums, and the oral micro-
biome have been recently implicated in the development of various cancers. Due to the mounting
interest in the oro-intestinal axis, this review summarizes the current evidence linking periodontitis
and oral bacteria to digestive tract cancers. The oral microbiome is a diverse ecosystem consisting
of a variety of bacteria, some of which can move down to the gastrointestinal tract through enteral
and hematogenous routes and contribute to multi-step carcinogenesis. Periodontitis and specific
oral bacteria have been epidemiologically associated with an increased risk of esophageal, stomach,
pancreatic, and colorectal cancers. The underlying mechanisms are still being investigated but may
involve the production of carcinogenic metabolites by oral bacteria or immune evasion, as well as
systemic inflammation triggered by periodontitis. These findings may have relevant implications for
oral health and gastrointestinal cancer prevention, highlighting the importance of maintaining good
oral hygiene and treating periodontitis.

Abstract: Periodontitis has been linked to an increased risk of various chronic non-communicable
diseases, including gastrointestinal cancers. Indeed, dysbiosis of the oral microbiome and immune-
inflammatory pathways related to periodontitis may impact the pathophysiology of the gastroin-
testinal tract and its accessory organs through the so-called “gum–gut axis”. In addition to the
hematogenous spread of periodontal pathogens and inflammatory cytokines, recent research sug-
gests that oral pathobionts may translocate to the gastrointestinal tract through saliva, possibly
impacting neoplastic processes in the gastrointestinal, liver, and pancreatic systems. The exact
mechanisms by which oral pathogens contribute to the development of digestive tract cancers are
not fully understood but may involve dysbiosis of the gut microbiome, chronic inflammation, and
immune modulation/evasion, mainly through the interaction with T-helper and monocytic cells.
Specifically, keystone periodontal pathogens, including Porphyromonas gingivalis and Fusobacterium
nucleatum, are known to interact with the molecular hallmarks of gastrointestinal cancers, inducing
genomic mutations, and promote a permissive immune microenvironment by impairing anti-tumor
checkpoints. The evidence gathered here suggests a possible role of periodontitis and oral dysbiosis
in the carcinogenesis of the enteral tract. The “gum–gut axis” may therefore represent a promising
target for the development of strategies for the prevention and treatment of gastrointestinal cancers.

Keywords: digestive system diseases; malignancies; neoplasms; oral bacteria; pancreatic cancer;
periodontal diseases; periodontal medicine; risk factors; systemic inflammation

1. Introduction

Gastrointestinal cancers account for more than 25% of all cancers globally and 35%
of related deaths. In 2020, these cancers accounted for more than 5 million incident
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cases and 3.5 million deaths globally [1,2]. Gastrointestinal cancer is often classified by
the involved anatomical district (esophagus, stomach, liver, pancreas, colon, and rectum
cancer). Although there has been considerable advancement in the timely detection of
colorectal cancer (CRC), the prognosis for other gastrointestinal malignancies is often
unfavorable, as they are usually detected at advanced stages [3].

Whereas traditional risk factors for these cancers include smoking, alcohol consump-
tion, and dietary factors, emerging evidence suggests that chronic (meta)inflammation and
alterations in the enteral microbiome may also play a critical role [4,5]. In recent years,
growing interest has been devoted to the potential link between periodontitis, a highly
prevalent inflammatory disease of the gums, and digestive tract cancers [6,7]. Additionally,
the oral microbiome in general, which is a complex and diverse ecosystem of microorgan-
isms that inhabit the mouth, has been implicated in the development of these common
malignancies [8]. A great deal of epidemiologic evidence has therefore increasingly linked
periodontitis/oral bacteria and gastrointestinal cancers [9–11], and many recent scientific
works have shed new light on the potential biological underpinning of these relationships,
including the direct invasion of the cancer microenvironment by oral bacteria and the
systemic inflammation triggered by periodontitis.

This review aims to provide an organizing principle that summarizes the current
mechanistic evidence linking periodontitis and oral bacteria to digestive tract cancers. The
present overview also emphasizes the need for further research to fully understand the
role of oral health in the gastrointestinal tumorigenic process, with the ultimate goal of
developing novel effective interventions to prevent and possibly treat these deadly diseases.

2. Periodontitis and Gut Diseases: Where Is the Link?
2.1. What Is Periodontitis

Periodontitis is a common inflammatory disease affecting the supporting tissues
around teeth, including the gingiva, periodontal ligament, and alveolar bone [12]. Currently,
about 40% of all US adults suffer from periodontitis and ~11% of the world’s population
is currently diagnosed with a severe form of the disease [13–16]. Periodontitis is caused
by a complex interplay of (epi)genetic, environmental, and microbial factors, and it is
characterized by the progressive destruction of the tooth-supporting apparatus, resulting
in extensive tooth loss in its most advanced stages [17]. The disease is initiated by the
accumulation of dental plaque, a biofilm of bacteria and other microorganisms that colonize
the tooth surface and the adjacent soft tissues [18]. Over time, this biofilm triggers an
immune response, leading to the release of pro-inflammatory cytokines and chemokines
that recruit immune cells, initially neutrophils and macrophages, and later plasma and T
helper 17 cells [19]. This chronic inflammation can lead to the breakdown of the periodontal
tissues, resulting in the formation of periodontal pockets, and ultimately tooth loss.

In addition to its detrimental effects on oral health, periodontitis has been associated
with over 60 different systemic diseases during the past decade, including cardiovas-
cular diseases, diabetes, respiratory affections, neurologic disorders, and digestive tract
alterations, mainly inflammatory bowel disease (IBD) and cancers [20–26]. Although
the exact causal relationships between periodontal and systemic diseases are difficult to
determine due to the complexity of the underlying mechanisms, chronic low-grade bac-
teremia/endotoxemia and systemic inflammation caused by periodontitis are thought to
play major roles [20,27].

2.2. The Emerging “Gum–Gut Axis”

In recent years, an additional pathway is garnering increasing attention, namely the
enteral way. Indeed, recent studies have shown that the oral cavity and gastrointestinal
tract are interconnected and can influence each other, especially from immunological
and microbiological perspectives [28]. Previously, it was thought that multiple barriers
maintained the separation of the oral and gut microbiota, with most salivary microbes
killed by gastric acid and bile as they passed through the gastrointestinal tract. However,
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recent evidence has challenged this view, with even healthy individuals displaying habitual
oral microbes in their feces [29]. In a study of 470 individuals, Schmidt et al. discovered
that roughly one-third of intestinal bacterial strains originated from the mouth or were
specialized gut subtypes of the same oral species. However, patients with IBD, bowel
cancer, and rheumatoid arthritis exhibited greater oral–fecal microbial transmission than
healthy controls [29].

Interestingly, emerging evidence suggests that periodontitis may influence the patho-
physiology of the enteral system [30–32]. Several mechanisms have been put forward
to explain this link. The first is the transfer of oral bacteria and their byproducts from
the mouth to the digestive tract via swallowing [31]. Once in the gut, these bacteria can
cause inflammation, modify the gut microbiome, and generate metabolites that facilitate
pathologic processes [33,34]. Kitamoto and colleagues conducted a study in mice that
demonstrated how periodontitis can cause and exacerbate gut inflammation [31]. The
research demonstrated that oral pathobionts can infiltrate the gastrointestinal tract by inges-
tion and activate the inflammasome complex in the colon of genetically susceptible hosts.
A second mechanism involves the immunological route. Indeed, in the same experimental
model, periodontitis generated particular types of T helper 17 (Th17) immune cells that
could move to the gut lymph nodes, where they were stimulated by oral pathobionts that
translocated to the gut, ultimately causing colitis [31]. Importantly, Th17 cells from the oral
cavity did not respond to antigens from gut-resident microbiota, indicating oral-specific
immunity [31]. In addition, recent studies suggest the possibility of a “bidirectional effect”.
Indeed, in another experiment on mice, gut translocation of oral pathobionts was shown to
also exacerbate periodontitis via Th17 cells. These oral-pathobiont-responsive Th17 cells
differentiated in Peyer’s patches and migrated to the head region upon oral infection. This
study suggested how the promotion of periodontitis via these oral-pathobiont-responsive
Th17 cells may be also mediated by the intestinal microbiome [35]. A third mechanism
involves periodontitis-induced systemic inflammation, which can result in a local increase
in oxidative stress, altered defense function, immune evasion, and disruption of the gut
barrier function [36]. In turn, these mechanisms can lead to higher intestinal mucosa
permeability and translocation of microbial products as well as inflammatory mediators
into the circulation, further exacerbating chronic systemic inflammation [14,15].

3. The Oro-Intestinal Microbiome as a Carcinogen
3.1. Gut Microbiota in Health and Disease

The human intestinal tract harbors over 1000 species of bacteria, amounting to more
than 100 trillion gut microbial cells; the majority of them reside in the colon [37]. Although
a heritable component is present, studies on twins have demonstrated that environmental
factors play a major role in microbiota composition [21]. In addition, within the same
individual, local factors such as the availability of oxygen and nutrients, pH, and diet affect
the composition and proportion of the microbiota, which indeed varies across the lumen,
mucosa, and crypt–villus axis [38]. The most predominant phyla are Firmicutes (60%),
Bacteroides (20%), Actinobacterium, and Enterobacteriaceae, with viruses, archaea, and
fungi represented as well [39].

The gut microbiota is key to several features of human physiology, including immune,
metabolic, and neurobehavioral traits [40]. Indeed, this meta-organism has an essential role
for the fermentation of non-digestible dietary fibers, which in turn allows the growth of
specialist bacteria producing short-chain fatty acids (SCFAs), amino acids, and gases [41,42].
Among SCFAs, acetate, propionate, and butyrate are the most common, and they exert
several important functions, such as regulation of gluconeogenesis, training of the immune
system, and control of mucosal permeability [43]. For instance, butyrate represents the
principal energy source for human colonocytes, and it is also key for the maintenance of
the epithelial barrier function [44].

There is a considerable body of evidence indicating the involvement of the gut mi-
crobiota in various health and disease states [40,43]. Notably, a plethora of mechanisms
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contribute to the development of diet-induced obesity and metabolic complications re-
sulting from gut microbiota dysbiosis, including immune dysfunctions involving T cell
increased avidity [45,46], altered energetic and gut hormone regulation [47], as well as the
activation of proinflammatory pathways [40]. Notably, translocation of lipopolysaccharide
(LPS) endotoxins across the gut barrier and their entry into the portal circulation is among
the mechanisms implicated in this process [40]. These harmful microbial metabolites have
the potential to affect the normal state of organs beyond the gastrointestinal tract and can
have negative impacts on, for instance, the gut–brain axis and gut–liver axis [48,49]. Indeed,
lower bacterial diversity, a prominent feature of dysbiosis, has been observed in the gut
of patients with a wide range of chronic inflammatory diseases compared with healthy
controls, including IBD [50], diabetes mellitus [51], obesity, hypertension [52], and also
gastrointestinal malignancies [53].

3.2. Oral–Gut Dysbiosis in the Pathogenesis of Gastrointestinal Cancers

According to conservative estimates, microbes contribute to more than 15% of all
cancers, resulting in an annual neoplastic burden of 1.2 million cases [54]. Regarding enteral
system malignancies, Helicobacter pylori, a well-known colonizer of the gastric mucosa, is
an example of an infectious agent associated with stomach cancer. H. pylori infection can
cause chronic gastritis and mediate the progression to gastric atrophy, intestinal metaplasia,
and ultimately gastric cancer [55]. Similarly, chronic hepatitis B and C viral infections may
be key contributors to liver cancer [56], whereas certain strains of human papillomavirus
(HPV) have been linked to anal and oropharyngeal cancers [57]. In the case of colon cancer,
some evidence suggests that chronic infection from Streptococcus bovis and Fusobacterium
nucleatum may be associated with an increased risk of the disease [58,59].

Beyond individual pathogens, intestinal dysbiosis, defined as an imbalance in the
whole taxonomy and function of the gut microbiota, has been implicated in the patho-
genesis of several types of cancer, including those of the digestive tract [60]. Indeed,
dysbiosis promotes tumorigenesis through several mechanisms, including the production
of pro-inflammatory metabolites such as trimethylamine N-oxide (TMAO) and LPS, the
impairment of the immune response, and the induction of genotoxic stress and nitosative
DNA damage [20]. Dysbiosis may also contribute to the development of pre-cancerous
lesions by altering the expression of the genes involved in cell proliferation and apoptosis,
such as the tumor suppressor gene TP53 [61]. Moreover, the gut microbiota influences the
response to cancer therapy, since dysbiosis has been associated with a reduced efficacy and
increased toxicity of chemotherapy and immunotherapy [62].

In recent years, periodontitis and the transfer of oral bacteria have been linked to the
alteration of the microbiota composition of the enteral system, playing a relevant role in gut
dysbiosis and its consequences [63]. Despite previously being considered as independent
ecologic units, recent evidence is laying the ground for testing the whole oro-intestinal
microbiome as a functional entity with the potential for inducing pathologic and even
tumorigenic hits at both local and distant body compartments [7,34,63].

In the following paragraphs, we will present the available mechanistic evidence and
interaction pathways linking periodontitis to digestive tract malignancies (Figure 1). In the
absence of animal models of induced periodontitis or human trials, emphasis was given to
studies exploring the virulence factors of translocating periodontal pathogens into specific
cancer tissues (Table 1).

Table 1. Mechanisms linking periodontal pathogens to gastrointestinal carcinogenesis.

Periodontal Pathogens Main Mechanisms Tumor Location References

Adhesion to keratinocytes, invasion and induction of
NF-kB pathway Esophageal [64]

Porphyromonas gingivalis Gingipain-mediated activation of the MAPK/ERK
signaling pathway Colorectal [65,66]
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Table 1. Cont.

Periodontal Pathogens Main Mechanisms Tumor Location References

Endotoxins (LPS) induction of higher TLR4 expression Pancreatic
Aggregatibacter

actinomycetemcomitans
Cytolethal distending toxin genotoxicity and activation
of NF-kB pathway Liver and colorectal [67,68]

Fusobacterium nucleatum

FadA–E-cadherin interaction inducing activation of
Wnt–β-catenin signaling and CRC cell proliferation
Fap2–TIGIT interaction on T and NK cells inducing
immune repression
Fap2–Gal-GalNac interaction inducing pro-metastatic
cytokines
Increase the secretion of cytokines GM-CSF, CXCL1, IL-8
in cancer cells

Colorectal

[69,70]

Pancreatic

Treponema denticola Dentilisin degradation of IL-8 and TNF-α, cleavage of
pro-MMP-8 and 9 Esophageal [71]

CRC, colorectal cancer; Fap2, fibroblast activation protein-2; GM-CSF, granulocyte-macrophage colony stimu-
lating factor; IL-8, interleukin 8; MMP, matrix metalloproteinases; NF-kB, nuclear factor kappa B; TIGIT, T cell
immunoreceptor with immunoglobulin and ITIM domains; TLR, toll-like receptor; TNF- α, tumor necrosis factor α.
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4. Link between Periodontitis/Oral Bacteria and Esophageal Cancers
4.1. Epidemiology and Risk Factors of Esophageal Cancer

Esophageal cancer represents the seventh most frequent malignancy and a top cause
of cancer-related deaths worldwide [1]. The age-standardized incidence rate for esophageal
cancer ranges from less than 1 to more than 50 cases per 100,000 individuals per year
globally [72]. There are two main types of esophageal cancer. The first type is called
esophageal adenocarcinoma (EAC), which starts in the glandular cells in the lower part of
the esophagus near the stomach. EAC is the most common type of esophageal cancer in
Western countries, and it is often associated with gastroesophageal reflux disease [73]. The
second type of esophageal cancer is squamous cell carcinoma (ESCC), which develops in
the thin, flat cells that line the upper part of the esophagus. Known risk factors for ESCC
include tobacco use, alcohol consumption, obesity, and poor diet. Additional factors, such
as genetic susceptibility, environmental exposures, and infection with certain pathogens,
may also contribute to the development of esophageal cancer [74]. Despite advances in its
treatment, the overall prognosis for esophageal cancer is still poor, with a five-year survival
rate of approximately 20% [75]. Therefore, prevention strategies and early detection are
critical.

An epidemiological association between periodontitis and esophageal cancers has
been described in the literature. In a large cohort study conducted in the USA, the prospec-
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tive association between a history of periodontitis, edentulism, and the risk of EAC was
evaluated through validated questionnaires. The study followed 98,459 women and
49,685 men for over 20 years, during which 199 incidental cases of EAC were recorded. The
results indicated that a history of periodontitis was linked to a 43% increase in the risk of
EAC [11].

4.2. Mechanistic Insights into the Perio-Esophageal Cancer Link

Research studies have shown various associations between specific oral microbiota
and the risk of developing EAC or ESCC. For example, Tannerella forsythia and Treponema
denticola have been linked to an increased risk of EAC, whereas symbiotic Neisseria spp. and
Streptococcus pneumoniae have been associated with a lower risk [71,76,77]. In a recent study
by Kawasaki et al., the presence of T. forsythia and Streptococcus anginosus in dental plaque,
as well as Aggregatibacter actinomycetemcomitans in saliva, was associated with an increased
risk of esophageal malignancies [78,79]. Additionally, a prospective study revealed higher
levels of T. forsythia and P. gingivalis in oral rinse samples obtained from patients with EAC
and ESCC, respectively, before their first diagnosis [80]. Additionally, F. nucleatum has been
linked to the stage of ESCC and a worse prognosis and may be a potential biomarker for
ESCC outcomes [81].

The mechanisms behind the tumorigenic effects of these oral pathobionts are not
yet fully understood, but it may be plausibly ascribed to some of their virulence factors
(Figure 2). P. gingivalis is considered a putative carcinogen because of its ability to attach to
keratinocytes in the gingival and upper digestive tracts, which activates the signaling path-
way related to nuclear factor (NF)-κB. This activation may in turn lead to the proliferation
and metastasization of ESCC cells and triggers epithelial–mesenchymal transformation
through a signaling pathway activated by the transforming growth factor (TGF)-dependent
Smad/YAP/TAZ [30,64,82]. Additionally, a recent enrichment analysis has suggested that
F. nucleatum induces the chemokine CCL20, which can enhance tumor invasiveness [83].
Collectively, these findings indicate that specific oral microbiota may contribute to the
development and progression of esophageal cancers through various mechanisms. Among
the other species involved, T. denticola secretes dentilisin, a chymotrypsin-like proteinase
with a high proteolytic activity, which may favor epithelial cell invasion [84,85].
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Cancers 2023, 15, 4594 7 of 19

5. Link between Periodontitis/Oral Bacteria and Gastric Cancers
5.1. Epidemiology and Risk Factors for Gastric Cancer

Gastric (or stomach) cancer represents the fifth most common malignancy worldwide
and the third leading cause of cancer-related deaths [86]. The incidence and mortality
rates of gastric cancer greatly varies by geographic location, with higher rates observed
in Eastern Asia, Central and Eastern Europe, and South America [87]. The risk factors
for gastric cancer include chronic infection with H. pylori, history of chronic gastritis or
peptic ulcer disease, smoking, heavy alcohol consumption, a diet high in salt and preserved
foods, and family history of gastric cancer [88]. Certain genetic conditions, such as Lynch
syndrome, are also associated [89].

H. pylori is a Gram-negative bacterium that shows a preference for colonizing the
gastric epithelium. Prolonged infection with this pathogen has been identified as the
leading risk factor for the main type of gastric cancer, adenocarcinoma (GACC) [90]. In light
of this, the World Health Organization has classified H. pylori as a class I carcinogen [91,92].
However, also other members of the gastric microbiota may also be involved in malignant
transformation [93]. Indeed, gastric cancer is a histologically progressive disease that
typically follows a multistep process encompassing atrophic gastritis, metaplasia, and
finally malignant transformation. This progression has also been related to bacteria from
the Actinobacteria, Firmicutes, Proteobacteria, and Fusobacteria phyla, which have been
consistently detected in stomach biopsies derived from patients with GACC [94].

An epidemiological association between periodontitis and gastric cancer has also
been described. Interestingly, tooth loss due to periodontitis has been significantly related
with an increased risk of GAAC over a 22-to-28-year follow-up period [11]. Similarly, a
large-scale study found a significant association between clinically assessed periodontitis
and the incidence of gastric cancer (aHR = 1.14, 95% CI: 1.04–1.24) [95].

5.2. Mechanistic Insights into the Periodontitis–Gastric Cancer Link

The mechanistic link between periodontitis and gastric cancer is not fully understood,
but several potential pathways have been proposed (Figure 2). First, chronic inflammation is
a hallmark of both periodontitis and gastric cancer, and the systemic inflammatory response
elicited in periodontitis may exacerbate the pyroptotic background that underpins gastric
tumorigenesis [96,97]. This may involve the activation of pro-inflammatory mediators, such
as chemokines and cytokines, which can promote tumor growth and metastasis [98]. The
most relevant transcription factors implicated in the gastric-cancer-related inflammation
are NF-kB and STAT3 [99]. NF-kB is activated by the toll-like receptor (TLR)–MyD88
pathway, hypoxia-inducible factor (HIF)-1a, IL-1a, and TNF-α [100], which are all pathways
systemically upregulated in patients with periodontitis [101].

Second, the translocating oral microbiota may be a further contributor in gastric
tumorigenesis [102]. Members of oral pathogenic taxa, mostly F. nucleatum, Parvimonas
micra, Peptostreptococcus stomatis, Slackia, Peptostreptococcus, S. anginosus, Parvimonas, and
Dialister have been robustly associated with gastric cancer [103,104]. Interestingly, these
oral taxa exhibited specific niche-dependent relationships that intensified as the tumor
progressed [104].

Third, epigenetic modifications may also be involved. Histone modifications, DNA
methylation, and non-coding RNA can indeed regulate gene expression and play a critical
role in gastric tumorigenesis [105]. In the in vivo study by Palioto et al., periodontitis was
associated with altered DNA methylation patterns in gastric mucosa after P. gingivalis oral
administration, suggesting a potential role for epigenetic modifications in the link between
periodontitis and gastric cancer [106].

Lastly, since H. pylori has been shown to be a key contributor to gastric cancer devel-
opment, a fourth pathway may involve the role of periodontal pockets acting as a reservoir
for H. pylori [107].



Cancers 2023, 15, 4594 8 of 19

6. Link between Periodontitis/Oral Bacteria and Pancreatic Cancers
6.1. Epidemiology and Risk Factors for Pancreatic Cancer

Pancreatic cancer is the seventh most common cause of cancer-related deaths world-
wide, with an overall five-year survival rate of less than 10% [108]. The incidence of
pancreatic cancer increases with age, with the majority of cases diagnosed in individuals
over the age of 50 years. Smoking, overweight, history of chronic pancreatitis, genetic mu-
tations such as BRCA2 and PALB2, and family history of pancreatic cancer, are all known
risk factors [109]. Additionally, exposure to certain chemicals or radiation, diabetes, and
H. pylori infection, are also considered as possible risk indicators [110]. Despite advances
in treatment, the prognosis for pancreatic cancer remains poor, with most cases being
diagnosed at an advanced stage.

A recent meta-analysis including eight epidemiological studies highlighted that pe-
riodontitis and tooth loss are linked to a higher risk for pancreatic malignancies, with
odds ratios (ORs) of 1.7 and 1.5, respectively, after adjusting for the main common risk
factors [111].

6.2. Mechanistic Insights into the Periodontitis–Pancreatic Cancer Link

Diverse pathways have been proposed to explain the relationship between periodon-
titis and pancreatic cancer (Figure 3). One of the main mechanisms involves the chronic
systemic inflammation and meta-inflammation elicited by periodontitis [112]. Indeed,
leukocyte counts and C-reactive protein, which are systemic markers of chronic inflamma-
tion also elevated in periodontitis, have been associated with an increased risk of pancreatic
cancer [113]. Additionally, metabolic alterations, diabetes mellitus, and obesity, which are
highly associated with periodontitis, promote the chronic pancreatic spill-out of cytokines
and growth factors that contribute to neoplastic development [114,115].
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Figure 3. Local mechanisms for periodontal pathogen involvement in pancreatic carcinogenesis. IL-8,
interleukin 8; LPS, lipopolysaccharide; NF-kB, nuclear factor kappa B; ROS, reactive oxygen species;
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Another potential pathway is oral bacterial translocation to the pancreatic tissues,
both from hematogenous and enteral routes, with consequent genotoxic damage and lo-
cally induced immune evasion. Once believed to be a sterile organ, the pancreas harbors
specific bacteria that can migrate from the mouth and intestine in both health and disease
states [116,117]. Notably, patients with pancreatic ductal adenocarcinoma (PDAC) dis-
played a distinctive periodontal pathobiont signature in both plasma, saliva, and pancreatic
tumor tissues [65,118]. In a case–control study, individuals with plasma antibodies against
the two main periodontal pathobionts, P. gingivalis and A. actinomycetemcomitans, had a
higher risk of pancreatic cancer compared with their matched controls [118]. Additionally,
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a recent case–control study revealed that patients with intraductal papillary mucinous
neoplasms (IPMNs) who developed invasive cancers or had high-grade dysplasia had
significantly higher levels of circulating IgG reactivity to F. nucleatum [119]. Regarding
saliva, Fan et al. conducted a study that revealed a strong association between the oral
carriage of P. gingivalis and A. actinomycetemcomitans and the development of PDAC [65].
Moreover, a higher salivary-IgA-reactivity to the fibroblast activation protein-2 (Fap2) of F.
nucleatum and S. gordonii was observed in high-risk IPMN cases compared with low-risk
IPMN controls. Regarding the direct detection of oral bacteria in the tumor tissue, peri-
odontitis taxa were found enriched in both the pancreatic and gut environments in PDAC
patients, particularly Gemella morbillorum and F. nucleatum subsp. vincentii [120].

The exact mechanisms by which oral bacteria may promote pancreatic cancer are
not fully understood, but it is thought that bacterial translocation may contribute to local
chronic inflammation, both directly and through the disruption of the immune system. In
mouse models, periodontal bacteria were indeed shown to accelerate the development of
PDAC, possibly through the direct action of their virulence factors, such as P. gingivalis
gingipains [121,122]. Moreover, TLR4 present in the gut’s mucosal lining recognizes
lipopolysaccharide from P. gingivalis, which triggers the release of inflammatory cytokines
through NF-κB signaling and the generation of reactive oxygen species (ROS), which can
in turn cause DNA damage and mutations. Notably, overexpression of TLR4 has been
observed in human pancreatic cancer [123]. In addition, F. nucleatum can increase the
secretion of the cytokines GM-CSF, CXCL1, and IL-8 in PDAC cells, eliciting a phenotype
associated with tumor progression [124]. In addition to their pro-inflammatory effect,
periodontal pathogens may promote immune evasion, generating a tolerogenic immune
program by differentially activating specific TLRs in monocytic cells [125]. Lastly, another
hypothesis is that the role of periodontitis in pancreatic carcinogenesis is mediated by its
induction of gut dysbiosis, which in turn may trigger immune inflammatory disfunctions
in the pancreatic environment [63].

7. Link between Periodontitis/Oral Bacteria and Colorectal Cancers
7.1. Epidemiology and Risk Factors for Colorectal Cancer

CRC is the third most commonly diagnosed cancer worldwide and the second leading
cause of cancer-related deaths [126]. CRC is more prevalent in developed countries, though
its occurrence is rising in developing ones due to modifications in lifestyle and dietary
habits. CRC incidence is age-related, with most cases occurring in individuals above
50 years [127]. Several risk factors for CRC have been found, including inherited genetic
variants such as Lynch syndrome and familial adenomatous polyposis, a personal history
of IBD, and family history of CRC. Additionally, lack of physical exercise, diet rich in red
and processed meat, scant consumption of fruits, vegetables, fiber, and alcohol and tobacco
use are modifiable risk factors [128].

According to a recent meta-analysis conducted by Li et al., which included seven epi-
demiological studies, periodontitis is associated with an increased risk of CRC (RR = 1.44, 95%
CI: 1.18–1.76) [129].

7.2. Mechanistic Insights into the Periodontitis–CRC Link

The main mechanism proposed to explain the link between periodontitis and CRC
involves the translocation of oral bacteria and their virulence factors from the oral cavity to
the gut by both hematogenous and enteral routes, leading to dysbiosis and local inflam-
mation [130]. Indeed, a metagenomic analysis of 526 samples from various populations
identified seven bacteria (including F. nucleatum, Porphyromonas asaccharolytica, P. micra, and
Prevotella intermedia) that were consistently enriched in CRC in different populations [131].
Specifically, in a seminal study, the relative abundance of F. nucleatum species considerably
increased over time from intramucosal carcinoma to more advanced stages [132]. Moreover,
it seems that F. nucleatum is linked to the CRC genetic subtype (CpG island methylator
phenotype-high lesions) and tumor site (proximal tumors) [133].
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Mechanistically, the role of F. nucleatum in promoting the development of CRC has
been well established; it mainly does this by inducing genotoxic damage and activating
various signaling pathways that contribute to tumor progression and inhibition of immune
surveillance (Figure 4) [121,134,135]. F. nucleatum also uses its Fap2 protein to bind to Gal-
GalNAc on CRC cells, facilitating colonization in the host [69]. Furthermore, F. nucleatum
is capable of activating proinflammatory cytokines such as TNF-α, IL-6, IL-8, and IL-1β
through its FadA protein, which binds to E-cadherin of intestinal epithelial cells, leading to
the activation of the β-catenin and NF-κB pathways [70,121]. The bacteria’s Fap2 protein
can also promote cancer progression and immune escape by binding to TIGIT receptors
on NK cells and other T-lymphocyte-infiltrating tumors [121]. Lastly, F. nucleatum can
stimulate the proliferation and invasion of CRC by activating the NF-κB pathway via TLR4
and MyD88 [136]. For these reasons, the quantification of F. nucleatum may even serve as a
possible prognostic marker for CRC [135].
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8. Link between Periodontitis/Oral Bacteria and Liver Cancers
8.1. Epidemiology and Risk Factors for Liver Cancer

Liver cancer is the sixth most common cancer in the world [137]. Hepatocellular
carcinoma (HCC), the main type of liver malignancy, is typically asymptomatic in the
first stages, thus the majority of cases are discovered when the disease is more advanced.
The most frequent risk factors for HCC include exposure to aflatoxins, alcoholic cirrhosis,
non-alcoholic fatty liver disease (NAFLD), and chronic hepatitis B or C virus infection.
Specifically, chronic HBV/HCV infection can account for up to 80% of cases in some regions,
such as in Asia and sub-Saharan Africa. Conversely, in more developed countries, the
incidence of HCC is rising in parallel to the increasing prevalence of NAFLD, which is in
turn linked to obesity, insulin resistance, and type 2 diabetes [138]. Additional risk factors
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for HCC include smoking, exposure to chemicals such as vinyl chloride and arsenic, and
hereditary hemochromatosis. Unfortunately, the prognosis for HCC remains low, with less
than 20% of patients with advanced-stage disease surviving at five years [139]. Prevention
measures, including vaccination against HBV, screening for HCC in high-risk populations,
and lifestyle modifications to reduce the risk of NAFLD, are therefore critical for the control
of HCC.

In a recent systematic review, presence of periodontitis and tooth loss were associ-
ated with a broad spectrum of liver conditions, including non-alcoholic fatty liver dis-
ease, transaminase level, liver cirrhosis and also HCC, the latter with an OR of 1.34 (95%
CI = 1.04–1.74) [140].

8.2. Mechanistic Insights into the Periodontitis–Liver Cancer Link

Researchers have shown interest in investigating the potential relationship between
periodontitis and HCC, as periodontal inflammation can have an impact on circulating
ROS and oxidative stress, which have been linked to the development of parenchymal
cancers [141,142]. In an experimental model of ligature-induced periodontitis, increased
serum ROS resulting from periodontitis was indeed shown to be detrimental to liver health
by decreasing the ratio between the reduced and oxidized forms of glutathione [143]. In
addition, in humans, the association between periodontitis and HCC stages has been
proposed to be potentially mediated by an increase in ROS levels [144].

Another pathway involves the possible consequences of periodontitis-induced gut
microbiota changes on the gut–liver axis [145]. Indeed, a distinctive salivary bacterial
profile has been detected in subjects with HCC compared with healthy controls, the former
is characterized by a higher abundance of the genera Flifactor, Haemophilus, and Porphy-
romonas [146]. This may induce a shift in the gut flora, with an enrichment of bacteria with
pathogenic potential [63,147]. In turn, alterations in the gut microbiota can impact on the
liver through the portal and biliary systems, thereby inducing inflammation, fibrosis, and
genotoxicity, as well as activating antiapoptotic signaling pathways through various molec-
ular patterns and metabolites (such as deoxycholic acid and LPS) [148]. These molecules
may also initiate immune responses that play a role in the development of HCC [149]. In
mice, the presence of F. nucleatum indeed decreased the diversity of the gut microbiota,
increased the levels of pro-inflammatory cytokines in the serum, and reduced immune cell
cytotoxicity, ultimately promoting liver metastasis [150].

Finally, a direct local effect of periodontal pathobionts in liver carcinogenesis has been
proposed. In a murine model of microbially induced hepatocarcinogenesis, cytolethal
distending toxins derived from A. actinomycetemcomitans were indeed able to significantly
enhance the hepatic expression of proinflammatory genes, the growth mediators IL-6 and
TGF-alpha, to increase the proliferation of HCC cells and induce genotoxic damage [67].

9. Future Research Priorities

Despite not adopting a systematic search methodology, the present review identified
key articles providing different levels of evidence linking periodontitis to gastrointestinal
carcinogenesis (Figure 5). Notably, whereas preclinical studies can identify taxonomic
players and mechanisms, the degree of transability to humans is uncertain. Conversely,
when dealing with humans, the available studies suffer an observational design, limiting
the verification of causality.

Future research on the relationship between periodontitis and gastrointestinal cancers
should focus on several key areas. First, additional epidemiological studies are needed
to confirm and further characterize the association between periodontitis and various
types of gastrointestinal cancers. These studies should account for potential confounders,
such as those from lifestyle habits [151,152], environmental contaminants [153], and other
factors [152–154]. In particular, the role of diet, diabetes, and obesity as modulators for
both the oral and gut microbiomes may be critical in mediating the susceptibility to car-
cinogenic stimuli [155]. Second, mechanistic studies are also still needed. Specifically, they
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should investigate the specific pathways and molecules involved in the translocation of oral
pathogens from the oral cavity to the gastrointestinal tract and the downstream effects on
immune response, inflammation, and cancer development. To determine the composition of
the tumor-associated microbiota, it is recommended to utilize DNA-based techniques such
as next-generation sequencing of 16S ribosomal RNA genes or whole-genome shotgun se-
quencing [156,157]. In addition, advances in “culturomics” and single-cell transcriptomics
will allow us to understand whether this microbiome could be used as a true hallmark or
is simply a bystander ascribed to the “enhanced permeability and retention effect” (i.e.,
greater accumulation of macromolecules in cancer tissues due to prolonged circulation and
enhanced permeability) [158]. Third, studies should explore the effects of periodontitis
prevention and treatment strategies in reducing the risk of gastrointestinal cancers. To
this regard, diabetes mellitus may represent a relevant knot in the vicious network en-
compassing periodontitis, oral–gut microbiome alterations, systemic inflammation, and
gastrointestinal cancers [20,159,160]. Due to the acknowledged bidirectional relationship
between periodontitis and this highly prevalent metabolic disease, diabetic subjects are
particularly vulnerable to this path to multi-morbidity and would benefit the most from
novel targeted interventions along the gum–gut axis. Fourth, research is needed to identify
biomarkers that could be used for early detection of gastrointestinal cancers, specifically
in patients with periodontitis. Lastly, a major challenge is to discriminate between the
role of periodontitis per se or the role that the translocating oral flora may play in the
induction/progression of cancers. Whereas preclinical studies have already focused on
the mechanistic aspects of the latter, in vivo models of gastrointestinal carcinogenesis and
induced periodontitis should be implemented.
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10. Conclusions

The fight against cancer and its tremendous physical, emotional, and financial se-
quelae is a major priority in all public health agendas worldwide. Cancer mortality has
decreased in the industrialized world in recent years as a result of considerable advance-
ments in the understanding of the etiology of the disease, as well as in its prevention, early
identification, and treatment. However, unresolved challenges remain, especially related
to gastrointestinal cancers. Recent evidence suggests that periodontitis and the dysbiotic
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oral microbiome could play a role in the development of digestive tract malignancies. The
exact mechanisms may involve dysbiosis of the gut microbiome, chronic inflammation, and
direct interaction with host immune cells. Despite the rising evidence critically examined in
the present review, further research is needed to unravel the underlying mechanisms and
to develop effective interventions targeting the complex interplay between the pathologic
oral environment and the digestive tract. Overall, the gum–gut axis represents a promising
avenue for future research and public health initiatives aimed at reducing the global burden
of cancer. This critical review highlighted the need for future research commitments, as
well as policies aimed at reducing the exposure to risk factors from the oral cavity as part
of comprehensive cancer preventive efforts.
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