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Abstract

The need for harbor protection systems have increased over the last decade. One

vital component of harbor surveillance are the use of sonar to detect underwater

threats such as divers. In order to detect such threats, algorithms for detection,

tracking and a robust classification of underwater objects is needed.

This thesis uses known methods to detect, track and classify objects recorded from

real sonar data. A temporal cell averaging filter is used to detect objects in sonar

images and a tracking method based on the Probabilistic Data Association Filter

(PDAF) is used to track an object over time.

A set of object features, derived from a sequence of sonar images, is used to compute

a set of static and temporal features. The features tested in the thesis are compared

to each other to measure their ability to distinguish divers from marine life such as

seals and dolphins. A linear discriminant function is used as a classifier.
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Chapter 1

Introduction

1.1 Motivation

The need for harbor protection systems has emerged as the threat of terrorist

attacks against ships and harbors has increased over the last decade. Over the

history of time, sea transport has been the largest carrier of freight, and ships

play an important role in a modern society. Harbors are large facilities containing

large amount of people and goods. They are often situated in areas with dense

population and with a lot of passengers and cargo circulation, hence the harbors

are potentially vulnerable for terrorist attacks.

On October 12, 2000, the American naval destroyer USS Cole entered the harbor

of Aden, Yemen for refueling. During the refueling a small boat approached and

placed itself alongside the destroyer. Shortly after the small boat exploded making

a 15 times 15 meter wide hole in the destroyers side. 17 of the ship’s crew where

killed and 39 injured. This attack showed how vulnerable vessels are while docked.

In 1995, Sri Lankan Navy lost a number of vessels due to suicide divers from the

Tamil Tigers, and Hamas has also used divers to attack Israeli installations.

In a harbor protection system the goal is to have control of every object that may

be a threat to the facility both over and under the water level. The use of sonar

are one method of monitoring activity under the surface of the sea. In a normal

port there are a lot of activity, and it can be a challenging and time consuming job

for a sonar operator to separate potential threats and normal activity.

By finding an effective way to detect and correctly classify objects and distinguish

potential threats from normal activity, the workload of the sonar operator will be

reduced and the reaction time for an underwater threat will be increased.
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CHAPTER 1. INTRODUCTION

1.2 The Problem

This thesis evaluates known features to see if they are suitable for distinction and

classification of divers and marine life in sonar images. The features tested consists

of shape descriptors and echo strength measurements. Features are extracted from a

sequence of sonar pings resulting in a set of features describing an object of interest.

These static features from each ping are combined to characterize an object over

time. This results in a new set of temporal features. Both static and temporal

features are used to train a classifier to classify two classes, diver or marine life.

To extract these features, the object of interest must first be detected in the sonar

image. To collect a sample set of each feature, the object has to be observed over

a period of time. In order to do this a tracking algorithm has been implemented.

To separate the object in the sonar image from the background, a segmentation

algorithm has also been implemented. The static features are extracted from the

segmented object.

At the end a simple linear discriminant function has been used to classify the

objects, and a comparison of the different features are made.

The thesis has used real sonar data of diver and marine life. The sonar data are

provided by Kongsberg Defence Systems.

1.3 The Process

The purpose of this thesis was to find features that could correctly classify objects

of interest in a harbor environment and find a robust classification of such targets.

In order to extract the features needed for the classification a detection and tracking

method was needed. This became as an important and consuming task as the actual

classification.

The thesis describes two types of detection methods. The use of a Constant False

Alarm Rate (CFAR) filter and a temporal cell averaging filter. Both methods where

tested and the temporal cell averaging filter proved to be most accurate and therefor

implemented.

Two types of tracking algorithms have been implemented and tested; the Nearest

Neighbor Kalman filter and the Probabilistic Data Association filter. Both methods

where able to track objects over multiple pings, but the PDAF method appeared

to be more robust to noise and clutter.

2



1.3. THE PROCESS

The thesis tests known features that has proved good classification ability in similar

tasks [3, 4, 12]. The features consists of a set of static features and a set of temporal

features.

A simple linear classifier have been used to test the features. A selection of the

most efficient features have been found, based on the features individual ability to

correctly classify between the two classes.

The results show that on the given training set, the temporal features are able to

classify the training objects with 0% error rate while the static features gives an

error rate of 1.2%.
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Chapter 2

Short introduction to sonar

and divers

This section will give a short introduction to the concept of sonar and different type

of divers and marine life that can be expected in an harbor environment. The effect

different diving equipment can have on the sonars ability to detect divers will be

discussed, as well ad the effect sonar can have on marine mammals such as dolphin

and whales.

2.1 Sonar

Sound Navigation and Ranging, commonly referred to as SONAR is a technique

that uses sound propagation in water to navigate or detect various objects. There

are mainly two types of sonar, passive sonar and active sonars. The main difference

between the two types is while the passive sonar listens for sound produced by other

objects like vessels, marine life etc, active sonars emit sound pulses and listens for

the echo of the pulse. The use of passive sonar are most often used by submarines

that cannot emit any active sound pulses due to the risk of detection.

Active sonars have both transmitters and receivers. Each sound pulse the sonar

emits is called a ping and the reflected pulse is called an echo. In harbor protection

system both types can be used.
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CHAPTER 2. SHORT INTRODUCTION TO SONAR AND DIVERS

2.2 Different types of divers

One of the threats you can expect against ships and harbor infrastructure is attack

from divers. Since the second world war military divers has been used to carry out

covert operations like sabotage missions and intelligence gathering. By swimming

under water equipped with SCUBA1 gear, a person can easily enter an unprotected

port facility unnoticed and do a lot of damage.

There are different types off SCUBA equipment, Open, semi-closed an closed circuit

system. The first type is widely used by civilian sport divers, the two latter are

mainly used by professional and military divers.

2.2.1 Open circuit

This is the most common type of SCUBA set. It consist of an steel or aluminum

tank filled with compressed air or other compressed gas such as nitrox2, heliox 3

and trimix 4, a first stage that reduces the air pressure and a second stage at the

mouthpiece. The diver breathes compressed air and exhales the used air directly

out in the water giving a large trail of bubbles behind.

2.2.2 Semi-closed circuit

Less common are the closed or semi-closed systems called rebreathers. This type

of SCUBA gear is more technical and complicated than the open circuit. A person

absorbs approximately 5% of the oxygen he breathes and produces carbon-dioxide

instead. Instead of letting the exhaled air from the diver which still contains oxygen,

directly out in the water, the rebreather circulate the used air by removing the

carbon-dioxide and adding new gas. As the breathing gas circulates the diver uses

more and more of the oxygen decreasing the precentage of oxygen and increasing

the precentage of nitrogen. To keep the oxygen level steady, a constant flow of

new breathing gas is added to the system. To prevent a build up of gas in the

system some gas is released into the water through a exhaust valve. This system

lets only out a small amount of bubbles. Types of breathing gases commonly used

in rebreathers are nitrox and heliox.

1SCUBA stands for Self Contained Underwater Breathing Apparatus
2Normal air consists of approximately 78% nitrogen, 21% oxygen and 1% other gases. Ni-

trox refers to a gas containing nitrogen and oxygen but unlike normal air it has usually a lower
presentage of nitrogen and higher precentage of oxygen. This will give a diver a reduced risk of
decompression sickness but will limit the depth that gas can be used.

3Breathing gas consisting of helium and oxygen.
4Breathing gas consisiting of helium, nitrogen and oxygen.

6
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2.2.3 Closed circuit

The closed circuit system is a rebreather that uses 100% oxygen as breathing gas.

With no nitrogen in the breating gas there is no need to have a constant flow of

new gas added to the system. Instead new oxygen is added through a demand

valve as the circulation oxygen is absorbed by the diver. Having only oxygen as

the breathing gas enables the system to be fully closed, with no exess gas leaving

the system. This type of breathing system is primarily used by military divers for

covert operations.

2.2.4 Effect of different systems in sonar

The different systems will give a different effect in the sonar image. Air bubbles

gives a good source for echo. A diver using an open SCUBA system will give a

far larger echo than a diver using a closed or semi closed system. A diver using

a closed or semi closed system may therefor be more difficult to detect than one

with an open system. The sonar data used in this thesis are of a diver using a semi

closed rebreather system.

2.3 Marine Life

In harbor environments there will always be a element of marine life such as fish,

seals, dolphins and whales. There are two reasons why detection and classification

of such life are desirable. Seals and dolphins can often be mistaken for a human

diver. Both size and often swim pattern can be similar to that of a human diver. In

order to prevent false alarms a harbor protection system must be able to distinguish

a diver from a seal or dolphin.

Marine mammals such as dolphins and whales rely on their hearing to navigate

and communicate. Sonar sound waves can do serious damage to marine mammals

[1]. Feeding and other vital behavior can also be disturbed by the presence of a

sonar. Many countries have therefore imposed regulations for use of SONAR in

areas where mammals are present. The ability to detect and classify this type of

marine life enables the use of sonar in regulated areas as the sonar can reduce the

signal strength or be shut down in the presence of mammals.

7
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Figure 2.1: Left: Diver with open circuit system. Right: Two divers with closed
circuit Siva 24 rebreathers.

2.4 Summary

A brief explanation of the concept of sonar has been presented along with a short

description of the different types of divers and which effect different diving equip-

ment may have for sonar detection.

The negative effect sonar may have on marine mammals such as dolphins and whales

gives motivation for the ability to detect such mammals in order to shut down the

sonar if they are present.

8



Chapter 3

Theoretical Background

The classification system described in this thesis consists of the following blocks,

� Target detection

� Tracking

� Feature extraction

� Feature selection

� Classification

This section will give a theoretical description of the different functional blocks of

the classification system. A block schematic of the overall system can be seen in

Fig. 3.1. The sonar data used in this thesis has first been matched filtered before

further processing.

3.1 Object Detection

In order to extract features from an object, the object must first be detected in

the sonar image. A sonar image consists of a matrix of cells, just like pixels in an

ordinary picture. A detection of a possible object are hereafter referred to as an

event. Objects in sonar images are often hard to detect due to signal noise, clutter

and interference. In order to detect events in a sonar image a filtering process is

needed. A common approach is to find an average echo strength for each cell either

by temporal or spatial averaging.

9



CHAPTER 3. THEORETICAL BACKGROUND

Event detection

Tracking

Feature extraction

Feature selection Classifier

Training set Test set

Matched filtered data

Figure 3.1: Overall system

3.1.1 Constant False Alarm Rate

The Constant False Alarm Rate (CFAR) filter is used to distinguish measurements

from valid objects to background noise. Target echoes can often be buried in

signal noise or clutter which has unknown power. A threshold is used to detect

object measurements as events. The CFAR filter sets the threshold adaptively

based on the local information of the total noise power. Based on the average

noise in neighboring cells, the CFAR filter sets the local threshold for each cell.

To avoid that the amplitude from the cell under test influencing the estimation

of the average noise, a band of guard cells are often set up around the cell[9, 11].

Using this method to adaptive find the local threshold for each cell, the filter that

a constant false alarm rate is kept.

3.1.1.1 The Algorithm

Assuming the intensity of the noise is exponentially distributed [11], the background

noise for one cell is estimated by taking the average amplitude of n surrounding

10



3.1. OBJECT DETECTION

Cell under test Averaging cells Guard cells

Figure 3.2: CFAR: The background noise is estimated by the averaging cells. A
band of guard cells is set around the cell under test to prevent self masking.

cells

µ̂ =
1

n

n∑
i=1

Ai. (3.1)

If the amplitude of the cell under test (X) is larger than the estimate (µ̂), the cell

will be defined as a valid event

X

µ̂
> τ, (3.2)

where τ is a user defined constant scale factor. This scale factor is used to control

false alarm rate of the system. From [7] the probability of a false alarm in a cell is

given by

Pfa =
1(

1 + τ
n

)n (3.3)

where n is the number of cells used to estimate µ̂. Given a false alarm rate Pfa,

the scale factor can be calculated as

τ = n
(
P

−1/n
fa − 1

)
. (3.4)

Figure 3.2 shows a CFAR filter mask. The cells surrounding the cell under test is

used as guard cells separating the cell from the cells used for estimating the average

noise.

3.1.2 Temporal Cell Averaging

Another approach to to cell averaging filter is to do a temporal averaging instead

of spatial averaging. In this method the mean amplitude of each cell is found by

averaging the cell amplitude from every ping up to k.

11
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X

X +

Z⁻¹

(1-a)

a

x[k] y[k]

Figure 3.3: Block diagram of temporal averaging algorithm. x[k] is the cell ampli-
tude from the current ping k. The output y[k] is the temporal average estimate
µ̂k.

The following algorithm is used in the pinPingFilter function described in Section

4.1. This approach has been used at Kongsberg Defence Systems (KDS) to find

valid events in matched filtered sonar data, and has shown good results also in this

thesis.

3.1.2.1 The algorithm

The mean amplitude of each cell at ping k is found by

µ̂k = (1− a)µ̂k−1 + aXk, (3.5)

where a is a constant scale factor between zero and one and µ̂k−1 is the average

estimate for the cell at ping k−1. Looking at the ratio between the mean amplitude

of the cell and the amplitude of the cell in ping k, if the amplitude is larger than

the estimate, the cell will be defined as a valid event,

Xk

µ̂k
> τ, (3.6)

where τ is a constant scale factor. Figure 3.3 shows a block diagram of the temporal

averaging algorithm.

3.2 Tracking

Tracking consists of estimating the current state(i.e location) of a object, based

on uncertain measurements and its former state [10]. Having the last state of a

12



3.2. TRACKING

object, the expected new state is an estimate based on the history of the object

and associated measurements (events). False alarm and clutter detections may

be present and give origin to non-object events. These events may not be easily

distinguishable from the true object and some type of data association is needed.

Data association is to determine from which object a certain event originated from.

3.2.1 Model of tracking

The goal for linear tracking is to predict the next state of an object based on

previous events [11]. The standard discrete linear model in tracking is

xk+1 = Fxk + vk, (3.7)

where xk is the object state vector at time k, F is the transition matrix and vk is

the process noise. The object state vector consist of the Cartesian coordinates in

two dimensions and their rate of chance between each ping

F =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 x =


x

y

ẋ

ẏ

 . (3.8)

The only information available from the sonar image is the position of the mea-

surements. The relation between the measurement vector zk and the state vector

is

zk = Hxk + wk. (3.9)

where H is measurement matrix,

H =

[
1 0 0 0

0 1 0 0

]
, (3.10)

and wk is the measurement noise. If there is only one event at each ping at time k

to relate to a track, this model would be optimal. However there are often multiple

events for each ping and they form a set of events

Zk = {zk(1), zk(2), · · · , zk(m)} . (3.11)

To determine which of these events that originates from the track, a form for data

association is needed. Two common methods are the Nearest Neighbor Kalman

Filter (NNKF) and the Probabilistic Data Association Filter (PDAF)[10, 2].

13
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3.2.2 Nearest Neighbor Kalman Filter

In this method the event that is nearest to the estimated measurement is chosen

for updating the track. If there exists multiple tracks, a single event can only

be associated to one track. If there are no valid events in close proximity to the

estimated measurement, the estimate is propagated to the next ping. This method

is fairly easy to implement and do not demand a lot of computational time. However

the possibility of losing the track and adapt false events are moderately high [10].

3.2.2.1 The algorithm

The algorithm [10] predicts the next state of a track by using a difference equation

x̃k|k−1 = Fx̂k−1|k−1, (3.12)

where x̂k−1|k−1 is the estimated state at time k − 1 and x̃k|k−1 is the predicted

state at time k. The associated covariance matrix can be written as

P̃k|k−1 = FP̂k−1|k−1F
T +Qk, (3.13)

where Qk = E{vkvTk }. From the predicted state, we can get the predicted mea-

surement

z̃k|k−1 = Hx̃k|k−1, (3.14)

and use this to calculate the innovation vectors for all valid measurements,

νk(i) = zk(i)− z̃k|k−1 for i = 1, · · · ,m. (3.15)

These vectors indicate the distance between the events and the estimated measure-

ment. Finding the nearest event, we use its innovation to update the estimated

state

x̂k|k = x̃k|k−1 +Kνk. (3.16)

The Kalman filter gain is given by

K = P̃k|k−1H
TS−1, (3.17)

14



3.2. TRACKING

where S is the innovation covariance matrix

Sk = HP̃k|k−1H
T +Rk. (3.18)

The state covariance matrix is updated by

P̂k|k = (I −KH)P̃k|k−1. (3.19)

3.2.3 Probabilistic Data Association Filter

A more robust method than the NNKF is The Probabilistic Data Association Fil-

ter (PDAF)[11]. The PDAF calculates the association probability for each valid

measurement that falls inside a gate around the predicted measurement at the cur-

rent time for an object. Instead of using the nearest measurement for updating

the estimate, a weighted sum of all valid measurements are used for the updating

process. This makes the filter less sensitive to clutter and noise and usually gives

a better performance than the NNKF [10]. However since the algorithm is more

complex, the computational time is greater.

3.2.3.1 The Algorithm

The algorithm for the PDAF function [10, 11] are similar to the NNKF with a few

modifications. The first steps are just like the NNKF [10], predicting the target

state and its associated covariance. Then compute the innovation and its covariance

matrix S,

x̃k|k−1 = Fx̂k−1|k−1 (3.20)

z̃k|k−1 = Hx̃k|k−1 (3.21)

P̃k|k−1 = FP̃k−1|k−1F
T +Qk (3.22)

Sk = HP̃k|k−1H
T +Rk. (3.23)

Rather than choosing the nearest event for updating the track, the PDAF calcu-

lates the associated probabilities for each valid event inside a gate and calculates a

combined innovation,

νk =
m∑
i=1

βk(i)νk(i). (3.24)
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The associated probabilities is calculated using Poisson’s clutter model [10]

βk(i) =


e−0.5ν(i)T S−1ν(i)

PFA

√
|2πS| (1−PD)

PD
+
∑m

j=1 e−0.5ν(i)T S−1ν(i)
i = 1, 2, · · · ,m

PFA

√
|2πS| (1−PD)

PD

PFA

√
|2πS| (1−PD)

PD
+
∑m

j=1 e−0.5ν(i)T S−1ν(i)
i = 0

, (3.25)

where PFA is the false alarm probability and PD is the detection probability.

The state estimate is updated with the combined innovation and the Kalman gain

matrix

x̂k|k = x̃k|k−1 +Kkνk. (3.26)

The state covariance matrix is updated by

P̂k|k = βk(0)P̃k|k−1 + (1− βk(0))P
c
k|k + P s

k (3.27)

where P c
k|k is defined as

P c
k|k = P̃k|k−1 −KkSK

T
k , (3.28)

and the spread of the innovations

P s
k|k = K

(
m∑
i=1

βk(i)νk(i)νk(i)
T − νkν

T
k

)
KT . (3.29)

3.2.4 Track management

This section describes the way the tracking algorithm is managed.

3.2.4.1 Track Initiation

Every new event initiates the start of a new track. Since a lot of the events originate

from noise or clutter a track score is assigned to each track. This track score is

used to eliminate false tracks and is described later on.
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3.2.4.2 Track Propagation

If a track have no validated events inside the gate, it will not be updated but the

predicted state will be propagated to the next ping:

x̂k|k = x̃k|k−1, (3.30)

P̂k|k = P̃k|k−1. (3.31)

For each time a track is propagated the track score falls. When the track score

fall below a predefined threshold the track is eliminated. The threshold is a fixed

system parameter and is based on scenario and performance requirements.

3.2.4.3 Gating

To exclude unlikely events from the innovations, gating is performed. A normalized

distance

d2 = νTS−1ν, (3.32)

is used. If the normalized distance is lower than the predefined gate value G, the

event is considered valid. For the NNKF the closest event inside the gate is used

to update the track. For the PDAF method, all measurements inside the gate

contributes to the innovations.

z1(k)

z2(k)

z4(k)

z3(k)

z5(k)

z6(k)

d1

d2

d3

d4
d5

d6

x[k-1]

x[k]

Figure 3.4: Diagram showing the gating principle. The red circles are the predicted
states and the squares are the events. The events inside the circle are considered
valid.
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3.2.4.4 Track Fusing

To avoid redundant tracks, similar tracks are fused. Tracks that share the last n

observations are combined. For two tracks i and j with estimated state vectors and

covariance matrices, the combined state vector can be expressed as

xc = x̂i + P̂iP̂
−1
ij (x̂j − x̂i) (3.33)

The combined covariance matrix can be expressed as

Pc = P̂i − P̂iP̂
−1
ij P̂i, (3.34)

where

P̂ij = P̂i + P̂j . (3.35)

The history of track i will follow the new combined track and track j will be

eliminated.

3.3 Feature Extraction

Being able to track a target enables the possibility to gather information about

the target over a period of time. The information gathered is called features and

is used to describe the target in such way that it easily can be distinguished from

other objects. In this thesis static features will be extracted from each ping and

later combined with the feature changes over time. This will produce a set of both

static and temporal features.

In order to extract these features, the object of interest must first be isolated. This

is done by identifying which of the sonar image cells that is a part of the object

and which cells are background noise. This is done by segmentation.

3.3.1 Segmentation

For each state estimate used for updating the track a chip from the sonar image

is made. This chip takes the track position and its n surrounding cells to make a

small sonar image containing the object that caused the event.

Segmentation is to separate the image into regions which shares similar criteria.

In this case there are two regions, the object of interest and background cells. In
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order to separate the object from background a segmentation method called region

growing [8] is used.

3.3.1.1 Region growing segmentation

Region growing is a procedure that groups cells into regions based on predefined

criteria and cell based properties. The approach is to start with one or a set of seed

points. Neighboring cells to the seed cell who share the same criteria are included

in the region and the region grows until there are no more neighboring cells who

meets the criteria. An example of the approach can be as follows.

1. Start with finding the seed points. Make a binary image s with ones in the

seed point and zeros in the rest of the cells.

2. Form a binary image f containing ones for each cell that meets the criteria.

Cells that does not meet the criteria are labeled zero.

3. Append all the 1-valued points in f that are neighboring points with the seed

points

4. Label each connected cell in the output image with a region label.

3.3.2 Features

The choice of features in this thesis has previously shown to give a good classification

performance on divers [3, 12]. The same set of features will be tested to see if they

are able to distinguish between divers and marine life.

3.3.2.1 Static features

The static features are listed and explained below.

1. Area: This is the surface of the object after segmentation. It is defined as

A =
∑
i,j

= T (i, j) (3.36)

where T (i, j) has a value of one for a cell inside the object and zero for cells

outside.

2. Perimeter: The perimeter can be defined as the number of boundary cells. A

boundary cell is a cell that is 4-connected1 with any background cell.

14-connected cells are any cell that touches one of the sides of a background cell.
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3. Compactness: Is defined as

Compactness =
4π ·A
P 2

, (3.37)

where A is the area and P the perimeter.

4. Mean: This feature measures the average reflected amplitude of the segmented

object.

Mean =

∑
i,j G(i, j)

N
, (3.38)

where G is the amplitude of the cells in the object and N is the number of

cells within the object.

5. Variance: The variance of the amplitude is defined as

V ariance =

∑
i,j (G(i, j)−Mean)

2

N
. (3.39)

6. Major Axis: Length of the major axis of the smallest enclosing ellipse of the

segmented object.

7. Minor Axis: Length of the minor axis of the smallest enclosing ellipse of the

segmented object.

8. Eccentricity: Scalar that specifies the eccentricity of the ellipse that has the

same second moment as the object. The eccentricity is the distance between

the foci of the ellipse and its major axis length. The eccentricity of an ellipse

lies between 0 and 1, where a circle has eccentricity 0 and a line segment

eccentricity 1.

9. First and second invariant moment: A moment mpq is of order p+ q and for

a digital image f(x, y) defined as

mpq =
∑
x

∑
y

xpyqf(x, y), (3.40)

and the central moments are

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y), (3.41)

where

x̄ =
m10

m00
and ȳ =

m01

m00
. (3.42)
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The normalized central moments are then defined as

ηpq =
µpq

µγ
00

, (3.43)

where

γ =
p+ q

2
+ 1. (3.44)

This leads to the first and second invariant moment and can be expressed as

ϕ1 = η20 + η02 (3.45)

ϕ2 = (η20 − η02)2 + 4η211 (3.46)

3.3.2.2 Temporal features

These static features can be used to produce temporal counterparts. The temporal

features are as follows

1. Mean: The mean value of the static feature f is

µi =
1

n

n∑
j=1

fi,j , (3.47)

where n is the number of pings and i is feature number

2. Variance:

σ2
i =

1

n

n∑
j=1

(fi,j − µi)
2. (3.48)

3. Mean rate of change:

µr,i =
1

n− 1

n∑
j=2

(fi,j − fi,j−1). (3.49)

4. Variance rate of change:

σ2
r,i =

1

n− 1

n∑
j=2

((fi,j − fi,j−1)− µr,i)
2. (3.50)

By using these temporal features on the static features the amount of features

increases from 10 to 40.
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3.4 Classifier

The task of the classifier is to use the features extracted from an object to define the

object to a specific class or category [5]. In order for a classifier to do this, it has to

learn how the features for each class is distributed. There are two ways of training a

classifier [5]. By having a training set of feature vectors witch are labeled by class,

the classifier can learn how the features of each class is distributed. This is called

supervised learning. The other approach is to train the classifier with an unlabeled

training set. Giving no information of the number of classes and class distribution,

the classifier groups the features by their statistics making the different classes.

This is called unsupervised learning. In this thesis supervised learning is used.

3.4.1 Bayesian Decision Theory

In Bayesian decision theory, the statistics for each class is used to set the probability

that an object belongs to a certain class. If the distribution of a feature is dependent

of class, it is said to be a class conditional density. Having the knowledge how the

conditional densities and prior probabilities for each class, a decision rule can be

made by choosing the class with the highest posterior probability. This can be

found using the Bayes formula.

3.4.1.1 Bayes formula

A decision rule uses the information given by the features to decide which class a fea-

ture vector most likely belongs to. Having information about the prior probability

for each class P (ωi) and the conditional densities p(x|ωi), the posterior probability

can be found using Bayes formula [5]:

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
, (3.51)

where

p(x) =
c∑

i=1

p(x|ωi)P (ωi) for classes i = 1, · · · , c. (3.52)

The term p(x) can be viewed as a scale factor that ensures that the sum of all

posterior probabilities sum up to one. This term is unimportant as far as decision

making is concerned.
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3.4.2 Discriminant Functions

In this thesis the choice of classifier has fallen on the use of discriminant functions.

Discriminant functions use feature statistics derived from the training set to classify

an object. Given a feature vector x from an unknown object and a set of discrim-

inant functions gi(x) for classes 1, · · · , c, the classifier labels the object to class ωi

if

gi(x) > gj(x) for all j ̸= i. (3.53)

There are many choices for a discriminant function [5]. Bayes rule can be one choice

gi(x) = P (ωi|x) (3.54)

=
p(x|ωi)P (ωi)

p(x)
, (3.55)

Since any scaling to the discriminant function will not influence the decision, the

function can be simplified to

gi(x) = p(x|ωi)P (ωi). (3.56)

Any monotonically increasing functions used on gi(x) will not change the decision,

so it can be re-written to

gi(x) = ln p(x|ωi) + lnP (ωi) (3.57)

This may seem to complicate the function, however as will be shown later this will

lead to computational simplification.

3.4.2.1 Discriminant function for a Gaussian model

The Gaussian probability density function or a feature x is defined as,

p(x) =
1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}
, (3.58)

with µ = E[x] being the expected value of x, and σ2 = E[(x − µ)2] being the

variance. For the multivariate case the feature vector x has a dimension d equal to

the number of features used. If each of the d components, xi are independent and

normally distributed with their own mean and variance, their joint density has the
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form

p(x) =
d∏

i=1

p(xi) =
d∏

i=1

1√
2πσi

exp

{
−1

2

(
xi − µi

σi

)2
}

(3.59)

=
1

(2π)d/2
∏d

i=1 σi

exp

{
−1

2

d∑
i=1

(
xi − µi

σi

)2
}
. (3.60)

The exponent can be written as

−1

2

d∑
i=1

(
xi − µi

σi

)2

= −1

2
(x− µ)

T
Σ−1 (x− µ) , (3.61)

where Σ−1 is the inverse covariance matrix. The determinant of the covariance

matrix |Σ| is the product of all the variances, hence the general multivariate normal

density in d dimensions can be written as,

p(x) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
. (3.62)

Inserting this into (3.57) leads to the following discriminant function

gi(x) = −1

2
(x− µi)

TΣ−1
i (x− µi)−

d

2
ln 2π − 1

2
|Σi|+ lnP (ωi). (3.63)

Because the term d
2 ln 2π is independent of i it acts only as a constant and can be

dropped. The resulting discriminant function is quadratic and can be written as:

gi(x) = xTWix+wT
i x+ wi0, (3.64)

where

Wi = −1

2
Σ−1

i , (3.65)

wi = Σ−1
i µi (3.66)

and

wi0 = −1

2
µT
i Σ

−1
i µi −

1

2
|Σi|+ lnP (ωi). (3.67)

3.4.2.2 Linear Discriminant Function

It is possible to make a quadratic discriminant function linear. A linear discriminant

functions are more easy to compute and are popular to use as trial classifiers [5].
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Because of their simplicity they can also give better classification performance than

more complicated functions [4].

In order to make this quadratic discriminant function linear, the joint covariance

matrix is found by taking the weighted average of the class covariance matrices,

Σ =

c∑
i=1

P (ωi)Σi. (3.68)

This simplifies the quadratic form in (3.63) to

gi(x) = −1

2
(x− µi)

TΣ−1(x− µi) + lnP (ωi). (3.69)

Expanding the quadratic form in the first term leads to

gi(x) = −1

2

(
xTΣ−1x− 2Σ−1µix+ µT

i Σ
−1µi

)
+ lnP (ωi). (3.70)

Dropping the xTΣ−1x term which is independent if i, the discriminant function

becomes linear and can be written as:

gi(x) = wT
i x+ wi0, (3.71)

where

wi = Σ−1µi (3.72)

and

wi0 = −1

2
µT
i Σ

−1µi + lnP (ωi). (3.73)

3.4.2.3 Discriminant functions for two class problems

If there are only two classes to classify, the discriminant functions can be combined

to define a single discriminant function

g(x) = g1(x)− g2(x) (3.74)

For this case the decision rule will choose ω1 if g(x) > 0 otherwise ω2. In the special

case where a feature vector lies on the decision border g(x) = 0, the vector has equal

class probability and can be assigned to either class. Using the linear discriminant

function from (3.71) for each class, the new single discriminant function can be
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written as follows:

g(x) = g1(x)− g2(x) (3.75)

=
(
wT

1 x+ w10

)
−
(
wT

2 x+ w20

)
(3.76)

= (w1 −w1)
Tx+ (w10 − w20) (3.77)

= wTx+ w0, (3.78)

where

w = w1 −w1 (3.79)

and

w0 = w10 − w20. (3.80)

3.5 Summary

In this chapter the theoretical background needed to solve the thesis problem is

presented. The topics covered are object detection, tracking, feature extraction

and classification methods.

For object detection two types of CFAR filters has been presented, namely a spatial

cell averaging filter and a temporal cell averaging filter. The spatial cell averaging

filter uses the neighboring cells to estimate the average amplitude while the tem-

poral cell averaging filter takes the amplitude of each cell over multiple pings to

calculate the average amplitude.

For the problem of tracking two different methods has been introduced. The Near-

est Neighbor Kalman Filter (NNKF) and a Probabilistic Data Association Filter

(PDAF). While the NNKF is easy to implement it lacks robustness when there is a

lot of noise. The PDAF is more complicated but is less sensitive to noise and less

chance of false event adoption since the track update is done by a weighted sum of

events.

A set of static and temporal features have been listed. The methods for extracting

these features rises the need for a method for segmenting valid object from back-

ground in the sonar image. For this task a region growing algorithm is proposed.

A linear discriminant function is described and suggested as a classifier. Even

though more complicated and sophisticated classifiers exists, the linear discriminant

function often shows good results when it comes to classification.
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Methods

This section describes theMatlab implementation of the theory described in Chap-

ter 3. A major part of the thesis has been to solve the problem of extracting the

features used to train and test the classifier. In order to extract the desired features,

the objects of interest must first be detected in the match filtered data and then

tracked to collect a large training set.

The methods implemented are function for event detection, tracking function, a

feature extraction function and classification.

All implementation is done in Matlab. The functions used for CFAR filtering and

event detection where already produced at Kongsberg Defence Systems (KDS) and

has been used unaltered in this thesis. For the classification and feature selection

the Matlab toolbox prtools[6] has been used.

Function for reading the matched filtered sonar data files is also used and provided

by KDS.

4.1 Detection

Both the CFAR filter and event detection algorithms used in this thesis where

already made by KDS. The files pingPingFilter.m and findFMEvents.m are used

unaltered and are only given a short description.

The event detection is done by filtering the sonar image with a temporal CFAR

filter described in section 3.1.2. The filter uses the cell variance over each ping to

average the sonar image.
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Figure 4.1: Event detection in sonar image. Events are identified by blue asterisks.
A diver with semi-closed breathing system is detected by three events and marked
by the black circle.

function [pingPingOutput, mean, variance] ...

= pingPingFilter(currentPing, mean, variance, pingCounter, parameters)

Input parameters: currentPing are the sonar image produced by the matched

filtered data from the current ping. The mean and variance are two matrices of

the same size as the sonar image. They contain the current mean and variance of

each cell. pingCounter is an integer counting the pings processed. parameters

contains the scaling factors for the mean and variance, see Figure 3.3.

Output parameters: pingPingOutput is an image matrix consisting of the square

root of the currentPing cell variance divided by the temporal mean of the cell

variances,

pingP ingOutput =

√
(currentP ing − aprioriMean)2

aprioriV ariance
. (4.1)

Output mean and variance are the posterior matrices which includes the current

ping. They are used as input for when the function is used on the next ping.

A fixed threshold is used on the output image to detect events. Any cell in the

image pingPingOutput higher than the threshold will be set as an event. The

function findFMEvents is used to detect events in the filtered image:
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function [fmEvents, eventCounter] = findFMEvents(fmSweepData,...

fmNormalizedSweepData, NoOfScans, NoOfBeams, scansPerMeter, ...

maxNoOfEventsPerBlock)

Input parameters: fmSweepData and fmNormalizedSweepData are the same as cur-

rentPing and pingPingOutput. noOfScans and noOfBeams are the length and width

of the sonar image. scansPerMeter indicates how many cells there is per meter

in the range direction of the image. maxNoOfEventsPerBlock sets the maximum

length of the output event matrix.

Output parameters: fmEvents is a matrix of events containing range, bearing and

amplitude. eventCounter is a integer containing number of events found.

Targets like divers may have a larger extent than one cell and may result in more

than one event. A sonar image containing multiple events are shown in Figure 4.1.

4.2 Tracking

The tracking algorithm is divided over several functions. The functions used are:

� getKalmanParameters

� trackInit

� predictKalmanStates

� dataAssociation

� updateTrack

� fuseTrack

The tracking function is used on the CFAR filtered data. For the first ping all events

will start a new track. The new tracks will be initiated by the function trackInit

and the the next state is predicted. Data association between the tracks and new

events is done by either the Nearest Neighbor Kalman Filter or Probabilistic Data

Association.

4.2.1 Kalman parameters

All system specific parameters are set in the function getKalmanParameters. The

output variable is a Matlab structure array containing the parameters listed in

table 4.1.

The transition and measurement matrices F and H, used are the same as described in

equations (3.8) and (3.10). The noise covariance matrices Q and R are the same size
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F State transition matrix
H Measurement transition matrix
Q_SCALFACTOR Scaling factor for the process noise covariance

matrix
R_SCALEFACTOR Scaling factor for the measurement noise co-

variance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix
MAXPROPAGATE Number of times a track can propagate in a

row before termination
MAXCOMMONEVENTS Number of common events shared between

two tracks before fusing
GATE Size of the gate determining which measure-

ments are valid
FALSEALARMPROBABILITY The probability for false alarm
DETECTIONPROBABILITY The detection probability

Table 4.1: Kalman Parameters

FALSEALARMPROBABILITY 0.005
DETECTIONPROBABILITY 0.65

Table 4.2: System defined probabilities

as F and H. In this thesis both matrices are identity matrices scaled by Q_SCALFACTOR

and R_SCALFACTOR. How many times a track can propagate before it is terminated is

defined by MAXPROPAGATE. The GATE defines the area around a predicted state where

events are considered valid. The gate variable is a constant that act as a threshold

for the normalized distances for all the events. See Figure 3.4. MAXCOMMONEVENTS

sets how many common events two tracks must share before they are fused. The

parameters FALSEALARMPROBABILITY and DETECTIONPROBABILITY are parameters

defined by the tracking system. In this case the parameters are set as defined in

Table 4.2.

4.2.2 Track initiation

This function initiates the track. A Matlab structure array trackObjects are

created with one entry for every event. The structure array contains all track

history, event chips and feature information. This function only runs one time

when the track starts.

function [trackObjects] = trackInit(fmEvents,eventCounter,kalmanParameters)

%Initialize tracks for all events

dX = kalmanParameters.dX;
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dY = kalmanParameters.dY;

noPings = kalmanParameters.MAXPROPAGATE;

for idObj = 1:eventCounter

%The Current State:

trackObjects{idObj}.x current state = [fmEvents(idObj,1:2),dX,dY]';

%Martrx listing events used:

trackObjects{idObj}.eventsUsed = fmEvents(idObj,1:2);

%Initial State Covariance:

trackObjects{idObj}.sCovMatrix = 1*eye(4);

%no pings to propagate without valid event

trackObjects{idObj}.trackScore = noPings;

%Saving the track

trackObjects{idObj}.fmTrack =[fmEvents(idObj,1:2)];

%Logging number of times track has been propagated:

trackObjects{idObj}.noTimesPropagated = 0;

end

Input parameters: fmEvents and eventCounter is the array and number of events

produced by findFMEvent.m. kalmanParameters consists of the parameters de-

scribed in previous section (Section 4.2.1).

Output parameters: trackObjects is a structure array containing all the tracks

and the tracking variables.

The algorithm gets the parameters for the Kalman algorithm. These parameters are

found in the function getKalmanParameters. They are system dependent and can

be changed to fit different systems. The Matlab structure array trackObjects

stores all data associated which each track. This includes variables used for the

tracking algorithm and object features extracted during the track. All these vari-

ables are explained in the next sections. After track initiation the tracking algorithm

predicts the next state, measurement, covariance matrix and innovation covariance

matrix.

4.2.3 Predict states

After the tracks have been initialized the next state for each track are predicted by

the function predictKalmanStates.

function [trackObject] = predictKalmanStates(trackObject,kalparam)

%Estimates the next state of the object beeing tracked using the kalman

%parameters in input kalparam.

for idObj = 1 : length(trackObject)

%Next predicted state

trackObject{idObj}.x next state = ...
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kalparam.F*trackObject{idObj}.x current state;

%Update predicted covariance matrix

trackObject{idObj}.pCovMatrix = ...

kalparam.F*trackObject{idObj}.sCovMatrix*kalparam.F' + kalparam.Q;

%Next predictes measurement:

trackObject{idObj}.z next state = ...

kalparam.H*trackObject{idObj}.x next state;

%Estimate the invation/residual covariance matrix (S)

trackObject{idObj}.S = ...

kalparam.H*trackObject{idObj}.pCovMatrix*kalparam.H' + kalparam.R;

end

Input parameters: trackObjects, kalmanParameters.

local parameters: x_next_state, x_current_state, sCovMatrix, pCovMatrix.

Output parameters: trackObjects.

This function predicts the next state for the object x̃k|k−1, the predicted measure-

ment z̃k|k−1, and predicted covariance matrix for the state P̃k|k−1 and innovation

matrix S as described in equations (3.20) to (3.22) and (3.18). All predictions are

saved in the structure array trackObjects.

After the state vectors and covariance matrices for all tracks are predicted, the

tracking algorithm tries to associate the events found in the next ping to each

track. This is done by the function dataAssociation.

4.2.4 Data Association

The data association function associates all events from the last ping to the existing

track. This is done either using the NNKF algorithm or the PDAF algorithm

depending on what is specified in the input.

function [TAS] = dataAssociation ...

(fmEvents, eventCounter, trackObject,kalmanParameters, ASS TYPE)

for idObj = 1: length(trackObject)

%Initialize variables:

v = zeros(eventCounter,2);

d 2 = zeros(eventCounter,1);

%Calculate the innovations/residual vector(v) and normal distaces(d 2)

for idEv = 1:eventCounter

%Finding the innovations:
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v(idEv,:) = (fmEvents(idEv,1:2)' ...

- trackObject{idObj}.z next state)';

%Finding the normalized distances (d 2)

d 2(idEv) = v(idEv,:)* inv(trackObject{idObj}.S)*v(idEv,:)';
end

%Nearest Neighbor Kalman Filter:

if (strcmp(ASS TYPE,'NNKF'))

TAS(idObj).vector = v;

TAS(idObj).d 2 = d 2;

end

%Probabilistic Data Association Filter:

if (strcmp(ASS TYPE,'PDAF'))

%Get false alarm probability and detection probability from Kalman

%parameters.

fa = kalmanParameters.FALSEALARMPROBABILITY;

pd = kalmanParameters.DETECTIONPROBABILITY;

%Initialize arrays:

e = zeros(eventCounter,1);

p = zeros(eventCounter+1,1);

%Calculate conditional probability:

b = fa* (det(2*pi*trackObject{idObj}.S)ˆ0.5)*((1-pd)/pd);
for idEv = 1:eventCounter

e(idEv) = exp(-0.5*v(idEv,:)...

*inv(trackObject{idObj}.S)*v(idEv,:)');
end

%Probability that all events are false alarms:

p(1) = b/(b+sum(e));

for idEv = 1:eventCounter

p(idEv+1) = e(idEv)/(b+sum(e));

end

%Save probabilities, normalized distances and innovations to

%output:

TAS(idObj).vector = v;

TAS(idObj).d 2 = d 2;

TAS(idObj).p = p;

end

end

Input parameters: fmEvents is the output matrix from the function findFMEvents.

It consists of all the events found in the last ping. eventCounter is the number of
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events found in the last ping. trackObjects contains the predicted measurements

for the tracks. The input parameter kalmanParameters is needed to calculate the

conditional probabilities for the PDAF model. ASS_TYPEdefines if the function shall

use the NNKF method or the PDAF method to calculate the track association.

Output parameters: TAS .

This function associates the events from the latest ping to the current tracks. This

is done by either the NNKF model or PDAF. The method used is specified in the

input parameter ASS_TYPE. The function calculates the innovations v (3.15) and

normalized distances d_2 (3.32) for all the events. If the PDAF method is used,

the function calculates the association probabilities βi as described in (3.25). The

associated probabilities, normalized distance vector and innovations are returned

in the output parameter TAS. If the NNKF is chosen, only innovation vector v and

normalized distance vector d_2 are returned.

For the PDAF method, the function need the false alarm probability and detection

probability which is specified in the Kalman parameters. These probabilities are

used to compute the conditional probabilities. When the innovation vector and

associated probabilities are found the tracks need to be updated. This is done in

the trackUpdate function.

4.2.5 Track Update

The track update is done by the function updateTrack. The function runs trough

every track and updates the state estimates with the associated measurements from

the last ping.

function [trackObjects] = ....

updateTrack(trackObjects,fmEvents,kalmanParameters,TAS, ASS TYPE)

%function for updating tracks by either the NNKF or PDAF method.

Input parameters: trackObjects containing all trackdata including the predicted

states and covariance matrices, fmEvents with all events from last ping. The

kalmanParameters contains parameters needed for the PDAF method, TAS is the

structure array with the calculated innovations, normalized distances and condi-

tional probabilities the events have for the different tracks. ASS_TYPEspecifies which

method to use.

Output parameters: trackObjects with updated track data for each track.

The function updates the track using either the NNKF method or PDAF method,

which is defined in the input parameter ASS TYPE. If the NNKF method is chosen,

the function takes the normalized distances found in the data association function
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and checks if any events are inside the gate. If so, the event nearest the predicted

measurement is selected and used to update the state estimate (3.16) and the track

score is updated. If no events lies inside the gate, the track is propagated and the

track score is reduced by one. The propagation is logged in a counter that counts

how many times a track has propagated without any valid events. If the track

score is zero the track is terminated. The Kalman filter gain and state covariance

matrices are updated and the new state estimate is added to the track data.

if strcmp(ASS TYPE,'NNKF')

disp('Association type NNKF');

%Update track according to nearest neighbor kalman filter:

for idObj = 1: length(trackObjects)

%Get the normalized distances and innovation vectors:

d 2 = TAS(idObj).d 2;

v = TAS(idObj).vector;

%Calculate Kalman filter gain:

K = trackObjects{idObj}.pCovMatrix*kalmanParameters.H'*...
inv(trackObjects{idObj}.S);

%Get the measurement of the event that is closest to the predicted

%measurement.

k = find(d 2==min(min(d 2)));

%Update the predicted state and state ovariance matrix:

%Only update if event lies inside gate.

if d 2(k)≤kalmanParameters.GATE

trackObjects{idObj}.x current state = ...

trackObjects{idObj}.x next state + K*v(k,:)';

%reset track score

trackObjects{idObj}.trackScore = kalmanParameters.MAXPROPAGATE;

%set event is used in track

trackObjects{idObj}.eventsUsed = ...

[trackObjects{idObj}.eventsUsed;fmEvents(k,1:2)];
%No events inside the gate, and trackscore is above zero:

elseif (d 2(k)>kalmanParameters.GATE && ...

trackObjects{idObj}.trackScore > 0)

%Propagate predicted state

trackObjects{idObj}.x current state = ...

trackObjects{idObj}.x next state;

%reduce trackScore by one

trackObjects{idObj}.trackScore = ...

trackObjects{idObj}.trackScore - 1;

%Log number of times the track has been propagated:

trackObjects{idObj}.noTimesPropagated = ...

trackObjects{idObj}.noTimesPropagated + 1;

else

%If no measurement are inside gate and track score is zero,

%delete track:

trackObjects{idObj}=[];
continue;
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end

%Update state covariance matrix:

trackObjects{idObj}.sCovMatrix = ...

(eye(4)-K*kalmanParameters.H)*trackObjects{idObj}.pCovMatrix;
%Update trackData

trackObjects{idObj}.fmTrack = [trackObjects{idObj}.fmTrack;...
trackObjects{idObj}.x current state(1:2)'];

end

%Sort out deleted tracks

trackObjects(cellfun(@isempty,trackObjects))=[];

If the PDAF model is chosen, the function follows the same procedure as with the

NNKF approach. Instead of updating the state estimate with the nearest event,

all events that lies inside the gate are used to calculate the combined innovation v2

(3.24). This is used to update the state estimate and the state covariance matrix as

described in equations (3.26) to (3.29). If no events lies inside the gate the track is

propagated and the track score is reduced. If the track score falls to zero the track

is terminated.

elseif strcmp(ASS TYPE,'PDAF')

disp('Association type PDAF');

%Update track according to nearest neighbor kalman filter:

for idObj = 1: length(trackObjects)

insideGate = 0;

%Get the normalized distances, innovation vectors and conditional

%probabilities:

d 2 = TAS(idObj).d 2;

v = TAS(idObj).vector;

p = TAS(idObj).p;

%Calculate Kalman filter gain:

K = trackObjects{idObj}.pCovMatrix*kalmanParameters.H'*...
inv(trackObjects{idObj}.S);

%Get the measurement of the event that is closest to the predicted

%measurement:

k = find(d 2==min(min(d 2)));

%Check if any events are inside gate:

%Compute the combined inovation/residual of the measurement

%inside the gate.

for i=1:length(d 2)

if(d 2(i)≤kalmanParameters.GATE)

v2(i,:)=p(i+1)*v(i,:);

s(i)=p(i+1)*v(i,:)*v(i,:)';

insideGate = 1;

end

end

%Update the predicted state and state ovariance matrix
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%Only update if measurement lies inside gate.

if (insideGate)

if (length(v2(:,1))>1)

v2 = sum(v2);

end

%Calculate the spread of inovations:

ps = K*(sum(s)-v2*v2')*K';

%Covariance update with correct measurement:

pc = trackObjects{idObj}.pCovMatrix - ...

K*trackObjects{idObj}.S*K';
%Update state estimate:

trackObjects{idObj}.x current state = ...

trackObjects{idObj}.x next state + K*v2';

%Reset track score:

trackObjects{idObj}.trackScore = kalmanParameters.MAXPROPAGATE;

%Set event is used in track (use nearest event k):

trackObjects{idObj}.eventsUsed = ...

[trackObjects{idObj}.eventsUsed;fmEvents(k,1:2)];
%Updated state covariance matrix

trackObjects{idObj}.sCovMatrix = ...

p(1)*trackObjects{idObj}.pCovMatrix + (1-p(1))*pc + ps;

%Check if NaN and delete track

if isnan(trackObjects{idObj}.sCovMatrix)
trackObjects{idObj}=[];
continue;

end

%If there is no events inside the gate, propagate track:

elseif ¬insideGate && trackObjects{idObj}.trackScore > 0

%Propagate predicted state:

trackObjects{idObj}.x current state = ...

trackObjects{idObj}.x next state;

%Reduce trackScore

trackObjects{idObj}.trackScore = ...

trackObjects{idObj}.trackScore - 1;

%Log number of times the track has been propagated:

trackObjects{idObj}.noTimesPropagated = ...

trackObjects{idObj}.noTimesPropagated + 1;

else

%If no measurement are inside gate, delete track.

trackObjects{idObj}=[];
continue;

end

%Update trackData

trackObjects{idObj}.fmTrack = [trackObjects{idObj}.fmTrack;...
trackObjects{idObj}.x current state(1:2)'];

end

%Sort out deleted tracks

trackObjects(cellfun(@isempty,trackObjects))=[];
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After all tracks are updated the tracking algorithm checks if any tracks may orig-

inate from the same object. As seen in Figure 4.1 the diver in the sonar image

causes three events that leads to three different tracks. Having three almost similar

tracks for one object is unnecessary and for this reason a form of track fusion is

applied. This is done by the function fuseTrack.

4.2.6 Track Fusion

Tracks that are similar are likely to originate from the same object. To avoid

redundant tracks track fusion as applied. The function fuseTrack fuses tracks

that are in close proximity and follow the same direction.

function [trackObjects] = fuseTrack(trackObjects, kalmanParameters)

%Function fuses tracks that share the last n events.

maxComEvents = kalmanParameters.MAXCOMMONEVENTS;

%Check if any tracks shares the same events:

if(length(trackObjects)>1)

for k = 1:(length(trackObjects)-1)

%Length of track has to be larger then number of common events.

if (¬isempty(trackObjects{k})&& ...

length(trackObjects{k}.eventsUsed)≥ maxComEvents)

%Save last three events in matrix a:

a = trackObjects{k}.eventsUsed(end-(maxComEvents-1):end,:);

for l = k+1:length(trackObjects)

if (¬isempty(trackObjects{l}) && ...

length(trackObjects{l}.eventsUsed)≥ maxComEvents)

%Save last three events in matrix b:

b = ...

trackObjects{l}.eventsUsed(end-(maxComEvents-1):end,:);
%Check if the last three events in track a shares the

%same cells as the last events in track b:

c = eq(round(a),round(b));

%If the two tracks share the three last events, fuse

%tracks:

if all(c(:)) == 1

trackObjects = fuseTwoTracks(trackObjects,k,l);

end

end

end

end

end

end

%Sort out deleted tracks

trackObjects(cellfun(@isempty,trackObjects))=[];

end
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Input parameters: trackObjects contains all the updated tracks. The input

kalmanParameters contains the limit for haw many common events two tracks

can have before they are fused.

Output parameters: Returns trackObjects where redundant tracks are removed.

The function checks if any two tracks share the last n events. The number of

common events before fusing is defined by the MAXCOMMONEVENTS variable which is

found in kalmanParameters. If the two tracks share enough common events, the

two tracks are fused. The definition of a common event is that the events from each

track lies in the same cell. Tracks that meets these requirements are fused by the

sub function fuseTwoTracks:

function [trackObjects] = fuseTwoTracks(trackObjects,i,j)

%Fuse tracks i and j

x1 = trackObjects{i}.x current state;

x2 = trackObjects{j}.x current state;

P1 = trackObjects{i}.sCovMatrix;
P2 = trackObjects{j}.sCovMatrix;

%Combined covariance matrix

PC = P1 - P1*inv(P1+P2)*P1;

%Commbined state vector

xc = x1 + P1*inv(P1+P2)*(x2 - x1);

%Update trackObjects

trackObjects{i}.fmTrack = ...

[trackObjects{i}.fmTrack(1:end-1,:);xc(1:2)'];
trackObjects{i}.sCovMatrix = PC;

%Remove other track

trackObjects{j}=[];
end

Input parameters: trackObjects and the indexes i and j specifies the tracks to

fuse.

Output parameters: trackObjects.

The fusing algorithm follows the equations defined in (3.33) and (3.34). Since the

two track is expected to originate from the same object it is only necessary to keep

track information from one of the two tracks. The combined state and covariance

matrix are computed and added to the surviving track. The other track is then

terminated.

This method ensures that there only exists one track for each potential object.

Tracks that are initiated by random events are swiftly terminated by keeping a track

score and removing tracks where the score drops to zero. The tracking algorithm
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Figure 4.2: Track of a marine mammal over 161 pings. The red asterisks shows the
track of the object. The blue asterisks indicates the events found in the last ping.
The track started in the center of the image and the black asterisks indicates the
last location of the track.

Extracted Chip Segmentation Feature Extraction

Figure 4.3: Float diagram of the feature extraction procedure.

should now hold the potential to gather features over time from objects detected

in the sonar images. Figure 4.2 shows a track of a possible marine mammal over

166 pings using the PDAF method.

4.3 Feature Extraction

During the tracking of an object the features are extracted for each ping. The

feature extraction is done by extracting a chip of n cells surrounding the current

state of the track. This chip is then segmented into background and foreground cells

in order to extract the cells containing echo originated from the object. From these

object cells information is extract to produce the features used for classification.

Se Figure 4.3 for float diagram.
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4.3.1 Chip Extraction

From each current state a chip is extracted containing the event or events that

originated the state. In order to be sure that the hole object is extracted, the chip

is approximately 20 meters times 10 degrees with the state estimate in center of

the chip. This is done by the function chipExtract.

function [trackObjects] = chipExtract(trackObjects,currentPing,...

pingPingOutput,scansPerMeter,kalParam)

%Extracts an image chip from the current ping for each track based on the

%state estimate for the track.

CHIPSIZE = [10 20]; %[meters degrees]

%Size of chip:

[M N] = size(currentPing);

%Run through the tracks and extract chip

for idObj = 1 : length(trackObjects)

%Only extract chip if we have a valid event

if (trackObjects{idObj}.trackScore == kalParam.MAXPROPAGATE)

%Find center of chip. (last track position)

trackPos = trackObjects{idObj}.fmTrack(end,:);
centerChip = [round(trackPos(2)*scansPerMeter),...

round(trackPos(1))];

%Set chip borders:

top= centerChip(1)-round(CHIPSIZE(1)*scansPerMeter);

buttom=centerChip(1)+round(CHIPSIZE(1)*scansPerMeter);

left = centerChip(2)-CHIPSIZE(2);

right = centerChip(2)+CHIPSIZE(2);

%Correct if out of bounds

if (top < 1)

buttom = buttom + diff([topp 1]);

top = 1;

end

if (buttom > M)

top = top + diff([buttom M]);

buttom = M;

end

if (left < 1)

right = right + diff([left 1]);

left = 1;

end

if (right > N)

left = left + diff([right N]);

right = N;

end

%Extract chip from current ping and normalized ping

41



CHAPTER 4. METHODS

chip = currentPing(top:buttom,left:right);

normalizedChip = pingPingOutput(top:buttom,left:right);

%If chip elements exixist add to

if (isfield(trackObjects{idObj},'Chips'))
trackObjects{idObj}.Chips(:,:,end+1)= chip;

trackObjects{idObj}.NormChips(:,:,end+1)= normalizedChip;

else

trackObjects{idObj}.Chips(:,:,1)= chip;

trackObjects{idObj}.NormChips(:,:,1)= normalizedChip;

end

end

end

Input parameters: trackObjects contains the track data, currentPing is the sonar

image of the last ping. The parameter pingPingOutput is the CFAR filtered image

used to identify the events. scansPerMeter states how many cells that covers

a meter in the range direction. kalParam is the structure array containing the

Kalman parameters used for the tracking.

Output parameters: trackObjects where each track contains a chip of the state

estimate in the last ping.

The function runs through every track stored in trackObject and extracts a chip

from the sonar image of the last ping and a chip from the CFAR filtered sonar

image pingPingOutput. Chips are only extracted if the track has a valid state

estimate in the last ping. If the track was propagated, this will be indicated by a

reduced track score for the track. Tracks being propagated suggest there where no

events around the last estimate. Therefore, there is no reason to extract any chips.

4.3.2 Segmentation

The segmentation is done by region-based segmentation called region growing [8].

The chip is first low pass filtered using a adaptive noise removal filter. From

each chip the highest amplitude is found. From the cell with the highest am-

plitude, the region grows appending all cells that are 8-connected1 with a cell

contained by the region and with an amplitude above a defined threshold. The

region based segmentation is done by the function region. This function is called

by the featureExtract which is described in the next section.

function [S] = region(chip)

% Segmetation of the input chip by using region growing segmentation

1Every cell that touches one of the edges or corners are considered neighbors.
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% method. Returns segmented chip S containing one region.

%Finding dimension of chip

[noScans noBeams] = size(chip);

%Low pass filter the chip

fchip = wiener2(chip, [20 2]);

% %Finding threshold to extract the high precentile aplitudes in the image

[n xout] = hist(fchip,100);

threshold = xout(78);

%Eliminating the candidates that are not candidates by segmenting the image

BI =zeros(size(fchip));

for i = 1:numel(fchip)

if (fchip(i)>threshold)

BI(i)=1;

end

end

%Seed matrix

S = zeros(size(chip));

%extracting center of chip to find seedpoint

centerChip = fchip(round(0.1*noScans):round(0.9*noScans),...

round(0.1*noBeams):round(0.9*noBeams));

%Finding seed point. We know that it shold be around center of chip

[range beam] = find(fchip == max(centerChip(:)));

%Setting start point in seed matrix

S(range,beam)=1;

%Structuring element 8 connectivety

SE = strel('square',3);

%Loop for growing region. dialate from seedpoint and check if any

%connecting neighbours are within the thresholded difference.

% Setting start value for the while loop

growing=1;

while(growing)

%Reset growing

growing=0;

%Save last S for comparison

prevS = S;

%Dialate the region in S by structureing element SE (8 connected)

diaS= imdilate(S,SE);

%Check if we have valid bins in the dialated region

S = diaS.*BI;

%If there has been a change in the region the loop will continue, if

%the region is the same as last iteriation break the loop.

if ¬isequal(prevS,S)
growing =1;

end

end

43



CHAPTER 4. METHODS

Chip

 

 

20 40

100

200

300

400 40

50

60

Segmented Chip

 

 

20 40

100

200

300

400

0

0.2

0.4

0.6

0.8

1

Normalized Chip (pingPingOutput)

 

 

20 40

100

200

300

400 10

20

30

40

Figure 4.4: First plot is the chip extracted from the match filtered sonar image.
Next is the chip extracted from the CFAR filtered image. The chip to the right is
the segmented chip

Input parameters: chip is the extracted chip from the sonar image containing the

tracked object.

Output parameters: S is a binary segmented version of the input chip containing

one region defining the object.

The image is segmented by thresholding original image with a threshold set to a

high percentile. Cells that have a amplitude that differs maximum 22% of the seed

point are set to one, and cells whith amplitude below the threshold are set to zero.

This percentage has shown good results on the data sets used in this thesis. For

other data sets a different criteria may be more suited. The seed point is set by

finding the cell with the highest amplitude. Since the low pass filter may have

introduced some noise around the border of the image, the border cells are exluded

as seed point candidates.

From the seed cell, the function checks if any neighboring cells meets the predicate

(8-connected to region and amplitude above threshold). Any cells that meets these

requirements are added to the region. The region continues to grow until there

are no more candidate cells. The output image consist of one region defining the

object. See Figure 4.4 for details.
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4.3.3 Features

In each track, a chip containing the tracked object exists for every ping. It is

from these chips the object features are extracted. This is done by the function

featureExtract:

function [trackObjects] = featureExtract(trackObjects)

%Function for extraction static and temporal features for each track in

%input trackObjects.

Input parameters: trackObjects contains one or multiple tracks, each track having

a sequence of extracted chips.

Output parameters: trackObjects is the input structure array with the static and

temporal feature statistics added.

The function runs through every track in the input trackObjects. For every track

there is a sequence of chips extracted from every ping in the track. Each chip is

segmented to a binary version containing only the tracked object. This is done by

the region function described in the last section. Using both the extracted chips

and their segmented version, the static features are extracted.

4.3.3.1 Static Ping Features

The static features extracted from each chip is described in Section 3.3.2.1. As

a reminder, the features can be seen in Table 4.3. The features area, perime-

ter, eccentricity, major- and minor axis are extracted using the Matlab function

regionprops which is included in the Image Processing Toolbox� for Matlab;

function [BWobject Stats] = extractRegionProps(bwImage)

%Label each region in binary image:

L = bwlabel(bwImage);

%Extract fetures with regionprops:

stats = regionprops(L,'Area','Perimeter','MajorAxisLength',...

'MinorAxisLength','Eccentricity');

%find largest area

idx = find([stats.Area]== max([stats.Area]));

%if we have multiple objects of same size, chose one:

if(size(idx,2)>1)

idx = idx(1);

end

%create image only containing largest object:

BWobject = ismember(L,idx);

%Save features for single object:
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Stats = stats(idx);

end

Input parameters: bwImage is the binary segmented chip.

Output parameters: BWobject is the segmented chip containing one region. stats

is a structure containing features extracted from the region.

The function labels each region in the input chip bwImage. The Matlab func-

tion regionprops returns the features selected for each region. Usually the input

image only contains one region, but if it by accident contains more than one re-

gion, regionprops returns statistics from every region. To guarantee that only

the features from the object region is returned, the largest region in the image is

chosen.

The features mean, variance, compactness, first- and second order invariant mo-

ments, have their own functions. They are all calculated as described in section

3.3.2.1 and are only described briefly;

function objectMean = extractMean(chip,BWobject)

Input parameters: chip is the chip extracted from the sonar image containing the

object. The BWobject is the segmented chip. It defines which cells in chip to

include for the mean amplitude calculation.

Output parameters: objectMean is a scalar with the mean amplitude of the object

cells. It is calculated as defined in (3.38).

function objectVariance = extractVariance(chip,BWobject,objectMean)

Input parameters: chip is the extracted chip with BWobject as the segmented

version. objectMean is the output from extractMean and is used for calculating

the variance of the object cells

Output parameters: objectVariance is a scalar with the variance of the object

cells. It is defined in (3.39).

function compact = extractCompactness(perimeter,area)

Input parameters: perimeter and area are features extracted by the function

extractRegionProps.

Output parameters: compact is a scalar describing the compactness of the object.

See (3.37).
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Static features
Area The total number of cells in the segmented object
Perimeter Every object cell that are a 4-connected with a

background cell is considered a boundary cell. The
perimeter is the length of all boundary cells.

Major axis Length of the major axis of the smallest enclosing
ellipse of the segmented object

Minor axis Length of the minor axis of the smallest enclosing
ellipse of the segmented object

Eccentricity Eccentricity is the ratio of the distance between
the foci of an ellipse and its major axis length.
The eccentricity is calculated from an ellipse that
has the same second order moment as the region.

Mean amplitude This is the mean amplitude of the cells included
in the region

Variance amplitude This is the variance of the amplitude to the cells
in the region

Compactness The ratio between area and perimeter
The first and second in-
variant moment

Derived from the second order normalized central
moments of the region

Table 4.3: Static features

function [invM1 invM2] = invMoments(chip)

Input parameters: chip

Output parameters: invM1 and invM2 are found using the equations (3.40) to (3.46).

All functions are called from featureExtract and the output is stored in the

structure array trackObjects. The static features are used to derive the temporal

features.

4.3.3.2 Temporal Ping Features

The temporal feautures used are mean, variance, mean rate of change and variance

rate of change. These temporal features are used on all the static features giving

four temporal features for each static feature. Each static feature consists of a

vector with feature measurements from every ping. Five feature measurements are

used to produce a temporal feature measurement.

function [interFeatureMatrix] = extractInterScanFeatures(featureSet)

%Splitt the featureSet into block of size N and compute interframe

%measurements for each block

N = 5;

%Setting number of blocks with N samples. Overshooting samples

%will be discarded.
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noOfBlocks = floor(size(featureSet,2)/N);

startIndex = 1;

%initializing arrays

interMean = zeros(1,noOfBlocks);

interVar = zeros(1,noOfBlocks);

meanROC = zeros(1,noOfBlocks);

varROC = zeros(1,noOfBlocks);

for i = 1:noOfBlocks

%Extract block of N samples from featureset

blockSet = featureSet(startIndex:(startIndex + (N-1)));

%inter scan mean and variance

interMean(i) = mean(blockSet);

interVar(i) = var(blockSet);

%Mean Rate Of Change

for j = 2:N

meanROC(i) = meanROC(i) + (blockSet(j)-blockSet(j-1));

end

meanROC(i) = meanROC(i)/(N-1);

%Mean Variance Of Change

for j = 2:N

varROC(i) = ...

varROC(i) + ((blockSet(j)-blockSet(j-1))-meanROC(i))ˆ2;

end

varROC(i) = varROC(i)/(N-1);

%Set startindex for next block

startIndex = startIndex + N;

end

interFeatureMatrix = [interMean',interVar',meanROC',varROC'];

end

Input parameters: featureSet is a vector containing all feature measurements from

one static feature.

Output parameters: interFeatureMatrix is a matrix consisting of four vectors,

one for each temporal feature.

4.4 Classification

The Matlab toolbox prTools[6] is used for the classification. This toolbox has

build in all the functions needed to test and evaluate the features described in this

chapter.
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4.4.1 Preparing the data set

In order to train the classifier the feature sets for the static and temporal features

must be prepared to make a data set. All feature statistics are stored in the

structure array trackObjects. The features are extracted to form a matrix on

the form,

features︷ ︸︸ ︷
f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n
...

...
. . .

...

fm,1 fm,2 · · · fm,n

, (4.2)

where each row represents a specific feature (e.g. area, perimeter). Four matrices

are made:

1. Static features for diver objects

2. Temporal features for diver objects

3. Static features for marine life objects

4. Temporal features for marine life objects

These matrices are then combined to form two data sets, one for the static features

containing samples from both classes and one for the temporal features. The two

datasets are used to both train and test the classifier. Each of the data sets are

split into two subsets; a training set and a test set. The training set consists of 1/3

of the samples and the remaining 2/3 are used for the test set.

4.4.2 Choice of classifier

The classification is done as described in Section 3.4. The linear discriminant

function based on normal density distributions is used. The prTools toolbox uses

a Gaussian linear discriminant function (ldc). The functions makes a quadratic

problem linear as described in Section 3.4.2.2. The linear model is chosen because

it has shown better results then a quadratic discriminant function in similar tests

[4]. The simplicity of a linear model can also show better performance on new data,

than a more sophisticated classifier specially designed to classify a specific data set.
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4.4.3 Choice of features

The static feature set consists of 10 different features. Using the four temporal

features on the static feature set gives a full temporal feature set of 40 features.

Many of these features may not be able to distinguish the two classes or may

be redundant when combined with other features. Features with poor separation

ability may also act as noise to the classifier, making the classification results worse.

To reduce the complexity of the classifier and ensure optimal performance its de-

sirable to have as few features as possible. Selecting only the best features that

are able to distinguish between the classes and eliminating the redundant ones will

ensure this.

A forward feature selection method i chosen. This method starts with a empty

feature set and adds the feature with the best individual performance. All remaining

features are tested in combination whit the first one and the pair with the best

classification performance is chosen. The third feature is chosen in the same manner

and this procedure is done until all features are selected.

4.5 Summary

In this chapter the implementation of the theory in Chapter 3 is presented. The

main blocks in this chapter covers the detection of events in the sonar image,

algorithm for tracking an object over time, a model for extracting features from the

object and how to use these features to identify an object to a specific class.

The event detection method uses a temporal CFAR filter to detect events. The filter

estimates the square difference between the variance of the cell and the temporal

mean of the cell variance. Any cell with a difference above a specific threshold is

considered a valid event.

A function for tracking events originated from an object is described. The tracking

function can use either the Nearest Neighbor Kalman Filter or the Probabilistic

Data Association Filter as a model for tracking. This choice is specified by the

user. A detailed description of every part in the tracking algorithm is presented.

In order to extract the features needed for classification, a small image called a chip

from every validated state in the track is extracted from the sonar image. This chip

contains the a image of the reflected echo of the object being tracked. The chip

is segmented into object and background cells in order to extract feature statistics

from the object cells.
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A set of static features are extracted from the chip. Taking statistics of each feature

over multiple pings produces a second feature set of temporal features.

A linear discriminant function is presented as classifier. The features from both

classes are combined to produce a data set for the static features and one for

the temporal. These data sets are split into a training set and a test set. The

training set is used for training the classifier and the test set is used to measure the

performance.

To select an optimal feature set a forward feature search method is described. Each

feature individual performance is measured and the one with the best performance

is chosen for the first feature. Other features are tested in combination with this

first and the pair with the best classification results is selected as the feature set.

This is done until all features are chosen.
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Chapter 5

Results and Discussion

In this section the results of the problem is presented. Classification results of

both static and temporal feature sets will be shown and the different performance

between the two feature set will be discussed. The individual performance of each

feature will give rise to forming an optimal subset of features to give the least

classification error.

5.1 Analysis of Variance

Analysis of Variance is a statistical procedure for comparing sample means. The

One-Way ANOVA test is used to test mean between different groups are equal. By

comparing the means of the different features between the classes, the ANOVA test

gives a probability if the means comes from the same class or if the classes are in

fact different. An ANOVA test of the features will give an indication of how well

the different features are able to separate the two classes.

In Table 5.1 and Table 5.2 the F-number indicates “how different” the two classes

are. A small number would indicate that the classes are the same and a large

number would indicate a significant difference between the classes. The p-value

shows the probability of observing the given F-number if the classes were truly

equal.

The results of the ANOVA test indicates that the static features selected for classi-

fication shows a good ability to distinguish between the two classes. The difference

between the temporal features seems to be a little smaller and therefor might not

be as suitable for classification purposes.
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Feature F-number Prob > F
Area 285.9 0
Perimeter 1493.6 0
Major Axis Length 2287.7 0
Minor Axis Length 322.3 0
Eccentricity 491.3 0
Mean 316.1 0
Variance 5.2 0.0229
Compactness 1216.2 0
First Invariant Moment 2425.1 0
Second Invariant Moment 766.1 0

Table 5.1: One-Way ANOVA test of the static features

5.2 Classification

The classification was done by using the prTools toolbox for Matlab[6]. The clas-

sifier was trained by the function ldc which is a linear discriminant function. This

type of classifier has been used in similar experiments and shown good results[3, 4].

5.2.1 Performance of classifier

The feature set containing both classes are divided into a training set and a test

set. The training set is used to train the classifier and the test set is later used

to test the classifier. One drawback of this method is that the both sets are very

similar since they are taken randomly from the same feature set. This may lead to

an over optimistic success rate, however the method still gives a good indication of

how well the different features work.

5.2.1.1 Confusion matrix

A confusion matrix is a convenient way of displaying the performance of a classifier.

It plots the the true class labels versus the labels classified by the classifier. A

confusion matrix can in some cases give a better picture of the performance of the

classifier than to only look at the error rate. For instance if the number of feature

samples from each class are unbalanced a error rate will give little or no information

on how effective the classifier is.

Table 5.3 shows the classification of 341 samples using the static features described

in section 4.3.3.1. The classifier classifies 6 objects wrong. One diver event is

classified as marine life and five marine life events are classified as divers.
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Feature F-number Prob > F

Area

Temporal mean 78.2621 0.0000
Temporal variance 0.0569 0.8120
Mean ROC 1.2175 0.2726
Variance ROC 0.2382 0.6266

Perimeter

Temporal mean 523.5723 0
Temporal variance 0.1793 0.6729
Mean ROC 1.3310 0.2515
Variance ROC 0.4014 0.5279

Major Axis Length

Temporal mean 778.4026 0
Temporal variance 4.4755 0.0370
Mean ROC 2.0529 0.1552
Variance ROC 4.2223 0.0426

Minor Axis Length

Temporal mean 129.0564 0
Temporal variance 41.9407 0.0000
Mean ROC 1.0711 0.3033
Variance ROC 36.8563 0.0000

Eccentricity

Temporal mean 268.1971 0
Temporal variance 47.7795 0.0000
Mean ROC 0.0126 0.9110
Variance ROC 36.2639 0.0000

Mean

Temporal mean 74.0701 0.0000
Temporal variance 55.1243 0.0000
Mean ROC 1.0669 0.3042
Variance ROC 35.3636 0.0000

Variance

Temporal mean 4.4814 0.0369
Temporal variance 20.7161 0.0000
Mean ROC 0.3174 0.5745
Variance ROC 16.5120 0.0001

Compactness

Temporal mean 564.1035 0
Temporal variance 99.1252 0.0000
Mean ROC 0.4876 0.4867
Variance ROC 72.1760 0.0000

First Invariant Moment

Temporal mean 785.0002 0
Temporal variance 12.9733 0.0005
Mean ROC 1.8371 0.1785
Variance ROC 11.8479 0.0009

Second Invariant Moment

Temporal mean 246.0793 0
Temporal variance 10.6272 0.0015
Mean ROC 2.0031 0.1602
Variance ROC 9.5283 0.0026

Table 5.2: One-Way ANOVA test of the temporal features
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Estimated labels
True labels Diver Marine life Total
Diver 174 1 175
Marine life 5 161 166
Total 179 162 341

Table 5.3: Confusion matrix for classification using static features

Estimated labels
True labels Diver Marine life Total
Diver 24 0 24
Marine life 0 24 24
Total 24 24 48

Table 5.4: Confusion matrix for classification using temporal features.

A classification using the temporal features from section 4.3.3.2 classifies all the

objects correctly. See table 5.4.

5.2.2 Feature Evaluation

The evaluation of the features will look at the individual features ability to separate

the two classes and which set of features that will give the highest classification rate.

This is done for both the static and temporal feature sets.

5.2.2.1 Ranking of static features

The ranking of the static features are done by the Matlab function featrank

which is found the the prTools toolbox. This function ranks the features by their

individual ability to correctly classify the samples. The ranking of the features

can vary slightly depending on how the training and test are divided. To get a

good estimate of the correct ranking, the average of 100 feature rankings have been

done. Table 5.5 shows the static features sorted by their ability to separate the two

classes. The temporal features are shown in table 5.6.

5.2.3 Number of Features

The more features used to train a classifier does not necessarily give a better results.

Some features may just make the classification more complex. To find the optimum

number of features, and which features to use can reduce the complexity of the

classifier. There are several methods to find the best feature set. In this thesis a

forward feature selection based on the individual feature ranking.
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Rank Static feature
1 Perimeter
2 Minor axis length
3 Major axis length
4 Second invariant moment
5 Area
6 First invariant moment
7 Compactness
8 Eccentricity
9 Mean
10 Variance

Table 5.5: Static feature ranking after 100 runs

Rank Static feature
1 Variance Minor axis length
2 Variance rate of change Mean
3 Mean Minor axis length
4 Mean rate of change Perimeter
5 Mean rate of change Mean
6 Variance rate of change Compactness
7 Variance Mean
8 Variance Perimeter
9 Mean rate of change Eccentricity
10 Variance Eccentricity

Table 5.6: Temporal feature ranking
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Figure 5.1: Classification error against number of features for static feature set

Starting with a empty feature set, features are incrementally added one at a time

and the error rate is calculated. This method performs well when the optimal subset

of features are small. A disadvantage of this method is that it does not discard any

features added. This means that any features in the subset that becomes redundant

when new features are added, will be kept. Because of the timespan of the thesis

other feature selection methods has not been tested. The forward selection method

was chosen because if its simplicity and that there was a small number of features

to be tested. Other selection methods should be tested in the case of further work

on this topic. Figure 5.1 shows the classification error rate for the static features

using the forward selection routine. The plot shows that using only one feature

gives a classification error of approximately 1.5%. Expanding the feature set to

include four features reduces the error rate to about 1.18%. At a featureset of five

and six features, the errror rate rises giving more misclassified samples. After five

fetaures are added the error rate keeps stable at around 1.8%.

For the temporal features Figure 5.2 shows that for a feature set up to 19 features

the classifier manages to correctly classify every object. Adding more features after

this will only act as noise and lead to mis classifications.
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Figure 5.2: Classification error against number of features for temporal feature set

5.2.4 Error rate of diver and marine life

Looking at the error rate gives no indication on which samples are misclassified.

Figures 5.3 and 5.4 shows the error rate specified by each class. As the plot shows,

there are far more marine life objects that are misclassified than diver objects.

For this evaluation subsets containing less then five features, no diver objects are

misclassified. This does not mean that the results will be the same for another test

set.

In a harbor protection system it will be more desirable to have marine life objects

misclassified than diver objects. Classifying marine life objects as divers would

result in false alarms, but if a diver object gets misclassified, a potential threat

has been neglected. To ensure that all diver objects are correctly classified, a cost

function [5] should be implemented.

Looking at Figures 5.3 and 5.4, the error rate for the marine life are much higher

that that of the diver object. This distribution is much more preferable than a high

numbered of misclassified diver objects.
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5.2.5 Static versus Temporal Features

The results shows that the both the static and the temporal features manages to

separate the two classes. The static features classifies with an error rate approx-

imately between 1.2 - 1.8%. The temporal features shows an error rate of 0%.

Because the temporal feature set is sparse than the static feature set, it hard to

compare the two feature sets. A different test set and training set may show differen

results.

As shown in Figure 5.2 the error rate is zero for the first 19 features. After 20

features the error rate increase dramatically, reaching a error rate of approximately

37% when the full feature set is used.

The classification using the static feature set with up to five features shows that

only marine life objects are misclassified. When the feature set consists of more that

four features both diver and marine life objects are misclassified. For the temporal

features, features sets up to 20 features gives no misclassification for any of the two

objects. As the feature set expands the complexity of the feature set gets higher

resulting in an increase of misclassification. Using the full set of temporal features

gives a error rate of almost 60% for marine life and approximately 18% for diver

objects. For the static fetures, using the full feature set gives a error rate of around

3% for marine life objects and 0.5% for diver objects.

Using temporal features reduces the variance of the feature giving higher densities

and a larger class separation. This can be seen in Figures 5.5 and 5.6. This shows

scatter plot of the static features perimeter and minor axis length and the temporal

mean of the same features. The straight line between the two classes are the linear

discriminant function for a classifier using the for mentioned features.
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Figure 5.3: Classification error for each class for static features
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Chapter 6

Conclusion and Further

Work

6.1 Conclusion

The detection and classification of underwater threats are essential in order to

protect harbor infrastructure. The ability to efficient detect and correctly classify

objects will reduce the workload of a sonar operator monitoring the sonar and

increasing the reaction time to a potential threat.

By finding distinct features that can distinguish between different objects a simple

classifier can be used to correctly classify objects of interest.

Features tested are static and temporal features.

The features tested in this thesis shows the capability to separate and correctly

classify objects such as divers and marine life. The temporal features shows a

greater ability than the static feature set, however the number of samples for the

temporal features are limited so it is unknown how representative this data is.

Using temporal features to classify gives a longer time before classification can be

made because of the need of multiple pings to get the features. The static features

may produce a correct classification faster but with a slightly increased chance of

error.

A linear discriminant function seems to be a sufficient classifier for this task. Even

though some objects will be misclassified a classifier more adapted to this set of

samples may not perform any better or even worse than the linear discriminant

function.
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The tracking is used to collect the features samples. At this state it is not robust

enough to follow an object for more than approximately 150 pings. The robust-

ness is strong enough to collect the features when sections with known objects are

present.

Thesis shows that the features tested are capable to classify the two classes. The

ranking of the features may differ when tested on new data as well as the number

of features needed to give good results may also vary depending on data set used.

6.2 Further work

The tracking algorithm can be optimized so it can hold the track longer than

the current version can. System and measurement noise should be estimated and

introduced to the algorithm.

Since the tracker has been used for feature gathering on ping sections with known

objects, no new tracks are initiated after the first track initiation. This method

works for feature gathering on a known data set, but for target detection on a live

system, the tracker has to be continuously updated with new tracks, To use this

tracker for target detection, every new event that is not associated with any existing

tracks must trigger a new track.

The region growing function can sometimes spread the region over the entire chip

if the chip contains a lot of noise. Some improvements to prevent this will be

preferable.

Due to time restraints on this thesis, other feature selection methods have not been

tested. Different types of feature selection methods may produce more optimal

feature sets.

The classifier uses a linear discriminant function which is easy and robust. The

classification may be improved with other types of classifications and should be

tested.

64



List of Figures

2.1 Divers with open circuit and closed circuit SCUBA gear. . . . . . . . 8

3.1 Overall system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 CFAR: The background noise is estimated by the averaging cells. A

band of guard cells is set around the cell under test to prevent self

masking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Block diagram of temporal averaging algorithm. x[k] is the cell am-

plitude from the current ping k. The output y[k] is the temporal

average estimate µ̂k. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Diagram showing the gating principle. The red circles are the pre-

dicted states and the squares are the events. The events inside the

circle are considered valid. . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Event detection in sonar image. Events are identified by blue aster-

isks. A diver with semi-closed breathing system is detected by three

events and marked by the black circle. . . . . . . . . . . . . . . . . . 28

4.2 Track of a marine mammal over 161 pings. The red asterisks shows

the track of the object. The blue asterisks indicates the events found

in the last ping. The track started in the center of the image and

the black asterisks indicates the last location of the track. . . . . . . 40

4.3 Float diagram of the feature extraction procedure. . . . . . . . . . . 40

4.4 First plot is the chip extracted from the match filtered sonar image.

Next is the chip extracted from the CFAR filtered image. The chip

to the right is the segmented chip . . . . . . . . . . . . . . . . . . . . 44

5.1 Classification error against number of features for static feature set . 58

5.2 Classification error against number of features for temporal feature set 59

5.3 Classification error for each class for static features . . . . . . . . . . 61

5.4 Classification error for each class for temporal features . . . . . . . . 61

5.5 Scatter plot with density estimation . . . . . . . . . . . . . . . . . . 62

65



5.6 Scatter plot with density estimation . . . . . . . . . . . . . . . . . . 62

66



List of Tables

4.1 Kalman Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 System defined probabilities . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Static features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 One-Way ANOVA test of the static features . . . . . . . . . . . . . . 54

5.2 One-Way ANOVA test of the temporal features . . . . . . . . . . . . 55

5.3 Confusion matrix for classification using static features . . . . . . . . 56

5.4 Confusion matrix for classification using temporal features. . . . . . 56

5.5 Static feature ranking after 100 runs . . . . . . . . . . . . . . . . . . 57

5.6 Temporal feature ranking . . . . . . . . . . . . . . . . . . . . . . . . 57

67



68



Bibliography

[1] Kristina Alexander. Whales and sonar: Environmental exemptions for the

navy’s mid-frequency active sonar training. Technical report, Fort Belvoir,

VA, 2008.

[2] Y. Bar-Shalom, F. Daum, and J. Huang. The probabilistic data association

filter. Control Systems Magazine, IEEE, 29(6):82 –100, dec. 2009.

[3] M.J. Chantler and J.P. Stoner. Robust classification of sector-scan sonar image

sequences. In OCEANS ’94. ’Oceans Engineering for Today’s Technology and

Tomorrow’s Preservation.’ Proceedings, volume 2, pages II/591 –II/596 vol.2,

13-16 1994.

[4] M.J. Chantler and J.P. Stoner. Automatic interpretation of sonar image se-

quences using temporal feature measures. Oceanic Engineering, IEEE Journal

of, 22(1):47 –56, jan 1997.

[5] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification

(2nd Edition). Wiley-Interscience, 2 edition, November 2000.

[6] R.P.W Duin, P Juzczak, P. Paclik, E. Pekalska, D. de Riddler, D.M.J. Tax,

and S. Verzakov. Prtools4.1, a matlab toolbox for pattern recognition. Delft

University of Technology, 2007.

[7] P.P. Gandhi and S.A. Kassam. Optimality of the cell averaging cfar detector.

Information Theory, IEEE Transactions on, 40(4):1226 –1228, jul 1994.

[8] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd

Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[9] B. Magaz and M.L. Bencheikh. Dsp implementation of a range azimuth cfar

processor. pages 1 –4, may. 2008.

[10] VPS Naidu, G Girija, JR Raol, and Raj R Appavu. Data association and

fusion algorithms for tracking in presence of measurement loss. In Symposium

69



on Modern Trends in Radar Technology, RADSYM-2002, volume 86, pages

17–28. IE(I), 2002.

[11] A. Rodningsby and Y. Bar-Shalom. Tracking of divers using a probabilistic

data association filter with a bubble model. Aerospace and Electronic Systems,

IEEE Transactions on, 45(3):1181 –1193, july 2009.

[12] I. Tena Ruiz, D.M. Lane, and M.J. Chantler. A comparison of inter-frame

feature measures for robust object classification in sector scan sonar image

sequences. Oceanic Engineering, IEEE Journal of, 24(4):458 –469, oct 1999.

70


	Introduction
	Motivation
	The Problem
	The Process

	Short introduction to sonar and divers
	Sonar
	Different types of divers
	Open circuit
	Semi-closed circuit
	Closed circuit
	Effect of different systems in sonar

	Marine Life
	Summary

	Theoretical Background 
	Object Detection
	Constant False Alarm Rate
	Temporal Cell Averaging 

	Tracking
	Model of tracking
	Nearest Neighbor Kalman Filter
	Probabilistic Data Association Filter
	Track management

	Feature Extraction
	Segmentation
	Features

	Classifier
	Bayesian Decision Theory
	Discriminant Functions

	Summary

	Methods
	Detection 
	Tracking
	Kalman parameters
	Track initiation
	Predict states
	Data Association
	Track Update
	Track Fusion

	Feature Extraction
	Chip Extraction
	Segmentation
	Features

	Classification
	Preparing the data set
	Choice of classifier
	Choice of features

	Summary

	Results and Discussion
	Analysis of Variance
	Classification
	Performance of classifier
	Feature Evaluation
	Number of Features
	Error rate of diver and marine life
	Static versus Temporal Features


	Conclusion and Further Work
	Conclusion
	Further work

	List of Figures
	List of Tables
	Bibliography

