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Summary

The CubeSTAR satellite is a student satellite project at the University of Oslo. The main
mission is to measure the turbulence in the electron plasma using a novel Multi Needle
Langmuir Probe system developed at the University of Oslo. In order to get correct mea-
surements, it’s important that the probes are located in the front of the satellite in the orbit
velocity direction.

In this thesis, the attitude control problem of the CubeSTAR nano-satellite is the main
topic. The satellite will use three electromagnetic coils as actuators, mounted on each
axis. These coils can generate a magnetic moment, and together with the Earth’s geomag-
netic field, create a torque able to change the attitude of the spacecraft. The problem with
using magnetic coils is that the magnetorquers only work in the direction perpendicular to
the geomagnetic field, and there will always exist one axis that is not controllable. How-
ever, because the geomagnetic field is approximately periodic, the spacecraft becomes
controllable over one orbit.

The spacecraft dynamics and the environmental models are derived and analyzed, and the
design of the magnetic coils are presented. An adaptive PD-like controller and the LQR
optimal control problem are presented and investigated for magnetic stabilization of the
spacecraft, in addition to the B-dot detumbling control law. Simulations of the different
controllers shows the performance when realistic disturbances are added to the system,
and a recommendation based on these results are presented.

The attitude determination and control system will be implemented on a FPGA on-board
the satellite. Implementation of the attitude control is achieved by using the DSP-builder
software by Altera. The source code is compiled to HDL, and downloaded onto the
FPGA. The performance of the FPGA is shown through hardware in-the-loop simulations.
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Chapter 1

Introduction

Since the beginning of the space age, a lot of work has been done regarding the Attitude
Determination and Control System (ADCS) on satellites. The ADCS is of great
importance because satellites, also called spacecrafts, usually needs to point in specific
directions in order to perform its assigned tasks. This tends to be towards the Earth, sun
or stars, while other parts such as antennas may need to point towards the Earth, while
solar panels needs to be directed towards the sun.

The purpose of this thesis is to examine the problem of using magnetic control to
stabilize a 2 kg nano satellite, i.e. satellite with mass less then 10 kg. The mass is
assumed evenly distributed over the volume. First, a reasonable model of the satellite
must be established and investigated. Then the magnetic coils, also called
magnetorquers, must be designed in such a way that they are able to control the
spacecraft and meets the design specifications. Control strategies are proposed and
simulated with the spacecraft and environmental models. A constant gain Linear
Quadratic Regulation (LQR) control law will be implemented on a Altera Cyclone III
FPGA using the DSP-builder software by Altera, and tested using Hardware In the
Loop (HIL) simulations.

1.1 The CubeSat Standard

The CubeSat concept, developed at the Stanford University, was designed in order to
make it easier to launch student satellite projects at a lower cost comparing to
commercial satellites. The original CubeSat was a cube of size 10cm× 10cm× 10cm,
named 1-U and weighing at most 1 kg. A deployer was also developed, namely P-POD
(Poly Pico-satellite Orbital Deployer). This deployer could stack three CubeSats on top
of each other, and launch them into space. Later, 2-U and 3-U CubeSats where
developed. They consist of the original area, but is 20cm and 30cm high, respectively.
The satellites is usually launched as secondary payloads in order to lower the costs,
resulting in a large amount of student satellite projects. In recent revisions, the weight
specifications has been changed, allowing heavier satellites [40]. However, in this thesis
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the original weight specifications are assumed.

1.2 The CubeSTAR student satellite project
The Space Technology And Research development center (STAR) project is a
collaboration between UiO (University of Oslo) and UNIS (University Center in
Svalbard) amongst others. It’s main focus is to study the Sun-Earth relationship
including turbulence in ionospheric plasma. The CubeSTAR project was initiated as a
spin-off from this project with support from the Norwegian Space Center, NAROM
(Norwegian Center for Space-related Education) and ANSAT Student Satellite Program.
The idea behind the project is to build a satellite from scratch using the CubeSat
framework. This results in a project which involves several disciplines, and gives
students an opportunity to examine the field of space technology.
The CubeSTAR student satellite project has decided to use a 2-U CubeSat, as this size
gives the necessary space and weight required. The subsystems consist of Power Supply,
Communication, Ground Control, Attitude Control and Determination System and the
payload(scientific mission). The satellite will operate at an altitude between 300 and 800
km height. A sketch of the CubeSTAR satellite borrowed from the Instrument Workshop
at the Department of Physics, UiO is shown in figure 1.1. On the left side of the satellite,
the communication antennas are mounted. The multi-Needle Langmuir Probe (m-NLP)
system, consisting of four probes, is to the right.

Figure 1.1: Sketch of the CubeSTAR satellite.
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1.2.1 Scientific mission
As mentioned, the STAR-project is working with measurements of the electron density
in ionospheric plasma. The scientific mission of CubeSTAR is to use a novel Langmuir
probe system for determination of absolute electron density in ionospheric plasma,
called m-NLP. This system is developed at the University of Oslo (UiO), and has been
successfully demonstrated on the ICI-2 (Investigation of Cusp Irregularities) sounding
rocket in 2008[4]. The m-NLP system has a spatial resolution down to the sub-meter
scale, while common systems usually has a spatial resolution of kilometers. For the
CubeSTAR system, a low-power version of the system used on ICI-2 will be developed.
The system consist of compromising four cylindrical probes with a diameter of 0.5 mm
and a length of about 25 mm. Each of these probes are operated at different fixed bias
voltages in the electron saturation region. On-board, a Altera Cyclone IV FPGA will do
the calculations of the electron density. In order to get correct measurements, it’s
important that the m-NLP system is placed in the front of the velocity direction with an
accuracy of about 10o. For more information about the scientific experiment, see
Bekkeng [4].

1.3 Attitude Control and Determination System

The following gives a short introduction to the most used control and determination
concepts. For simplicity, only Earth orbital spacecraft missions are considered.

1.3.1 Control actuators
There exists several ways to control a spacecraft. Stabilization of satellites can be
divided into two categories, passive stabilization and active stabilization.

Passive stabilization methods

Passive stabilization methods usually stabilizes in two axes only. These methods are
often easy to apply, inexpensive, and tends to be very robust. However, the passive
stabilization methods usually doesn’t give good accuracy, and it’s therefore necessary to
implement active stabilization methods as well.

Gravity gradient stabilization, usually realized with a boom, uses the gravitational force
to stabilize the spacecraft. Gravity gradient stabilization stabilizes in two axes only, and
excludes stabilization in the direction of the gravity gradient. The property of this kind
of stabilization lies in the position of the center of gravity of the satellite. With a gravity
gradient boom, the center of gravity is moved towards the boom, causing the effect that
the boom will be aligned in the direction of the Earth.
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Spin stabilization is caused by spinning the satellite about a stable axis. This creates a
gyroscopic effect, making it hard to change the attitude in the spin stabilized axes. This
two-axes stabilization is however not suitable for a large amount of spacecrafts. A large
amount of satellites are not symmetric, and it is therefore often hard to spin stabilize the
satellite. In order to get spin stabilization, an active control actuator must be applied.

Passive magnets will force the spacecraft to follow the Earth’s magnetic field. The
orientation will only point with limited accuracy, and in most cases not with the desired
attitude. When using magnetometers, the passive magnets will also disturb the
measurements because the passive magnets are much stronger than the Earth’s magnetic
field. In most missions, the orientation of the satellite must be known, and can therefore
be hard to achieve with the use of passive magnets. However, this type of stabilization is
very easy to implement and very robust in terms of failure.

Active stabilization methods

In order to get high accuracy on the attitude control, active stabilization methods are
often required. They are more expensive and harder to implement then passive methods,
but is in most cases necessary to be able to carry out the satellite’s main mission.

Magnetic coils, or magnetorquers, are winded electromagnetic coils with or without
metallic cores. The magnetic coils creates a magnetic field when electrical current is
applied. This field then acts on the Earth’s geomagnetic field, creating a torque acting on
the satellite. The magnetic coils are cheap and light. The problem with magnetic coils
however is the dependency of the Earth’s magnetic field. It’s only possible to apply a
control torque in the direction perpendicular to the geomagnetic field vector. This means
that there will always be an axis not controllable. However, the geomagnetic field is not
homogeneous, and can be considered periodic. Because of this it’s possible to have a
3-axes stabilization using magnetic coils solely. In addition, the geomagnetic field is
very weak, and attitude control based on magnetorquers will therefore tend to be slow.

Momentum wheels and reaction wheels is well used methods to get very high accuracy.
They consist of mechanical moving wheels creating gyroscopic effects. Momentum
wheels are usually used for gyroscopic stabilization as these operate at high rotation
speeds. Reaction wheels can change the spacecrafts angular momentum, and operates at
zero nominal rotation speed. This gives a very fast response, and is able to act
independent on the three axes. The disadvantages with these types of wheels are high
power consumption, moving parts that can easily fail, large mass, expensive and large
volume. In addition, because momentum wheels operates at high rotation speeds, they
need support for momentum dumping. This is usually realized with magnetorquers. The
placement of the wheels is also of high importance as a small misplacement will severely
change the spacecrafts properties.
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Thrusters are propulsive devices. They shoot out mass in one direction, and thus creating
a force in the opposite direction. Thrusters can be realized with liquid fuel, plasma and
ions to name a few. The most common way to use thrusters for attitude control of
satellites are with liquid fuel. This bang-bang solution creates a very fast response, with
great accuracy. However, liquid fuel have a limited life time, is very heavy and can be
hard to implement. In addition, liquids are hard to model because they can not be
modeled as rigid bodies, and creates more complex models of the spacecraft.

1.3.2 Attitude determination
Although not treated in this thesis, the attitude determination system is a very important
system. Without it, it’s not possible to estimate the attitude of the spacecraft, and hence
the active attitude control mat be useless. In the following, a short introduction to
selected attitude sensors will be presented.

The magnetometer is an absolute attitude sensor that measures the Earth’s geomagnetic
field. With a 3-axis magnetometer, it’s possible to estimate the attitude by comparing the
measurements with a model of the Earth’s geomagnetic field. It’s therefore vital that the
geomagnetic model is good, and that the position of the satellite in the orbit is known.
Because the magnetometer measures magnetic fields, there may occur difficulties
regarding use of magnetic coils and internal magnetic dipole disturbances.

A sun sensor is a absolute attitude sensor that senses the direction of the sun, and can
also be implemented with solar cells. When the satellite is in eclipse, that is in the
shadow of the Earth, the sun sensors are not usable.

Star trackers can identify thousands of different stars, and can hence be used as an
absolute attitude sensor. These sensors can give very high accuracy, but requires low
angular velocities, in addition to being very expensive.

The gyroscope is a relative attitude sensor that senses rotation. It can not be used alone
for attitude determination, but can severely improve the attitude estimation together with
absolute attitude sensors.

1.4 CubeSTAR attitude control actuators
Up to now, there exists very little data on the results on the use of active attitude control,
including magnetorquers, on nano-satellites. This is due to the fact that developers other
than student projects tends to rely on passive attitude control on nano satellites. In
addition, the failure of the ADCS has been a huge problem on CubeSat projects.
Different types of actuators has above been presented. CubeSTAR is a small satellite,
without much space and a strict weight restriction. A gravity boom could be of interest,
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but can be difficult to realize as a boom deployment must be designed. Momentum
wheels and reaction wheels gives great pointing accuracy, but is big and expensive. It’s
possible to buy commercial, “off the shelf” ADCS with magnetorquers and momentum
wheels, but these are of the size of 1-U, and therefore use half of the available space in a
2-U CubeSat.

As of this stage, it’s desirable to use three perpendicular magnetic coils solely for
attitude control on the CubeSTAR satellite. This because of its light weight, it’s easy to
implement and design, have a low power consumption and is inexpensive. Because of
the shape of the satellite, two different types of coils must be designed. These coils will
have the dimensions dimensions 190× 75mm and 75× 75mm, and a max cross section
of 2x5mm (10mm2). The satellite has limited supply of electrical energy, and has a limit
of 100 mA current in the coils and the voltage set to 3V.

1.5 Previous work
At this stage of the project, there exists no previous work on the ADCS for the
CubeSTAR project. Some of the work in this thesis has been to explore the literature on
the magnetic attitude control problem. As already mentioned, there exists a large amount
of literature on attitude control of spacecrafts. In this section, some of the mentionable
work on attitude control using magnetic coils as actuator are presented, followed by
some projects similar to CubeSTAR.

In 1961 White et al. [44] was the first to mention that the Earth’s magnetic field could be
used for attitude control by installing magnets on a spacecraft. Later, in 1988 Martel
et al. [28] examined using magnetic control for gravity-gradient stabilized spacecrafts. In
1989 Musser and Ward [29] attempted to use a fully magnetic attitude three-axis
stability. The general attitude was formulated in Wen and Kreutz-Delgado [41] and
Fjellstad and Fossen [12]. However, this work does not directly relate to the problem of
using magnetorquers solely because of the problems regarding uncontrollability in the
geomagnetic field. The work of Wisniewski [47] in 1996 has become a reference
literature, investigating different controllers. This includes Lyapunov stability theory,
and linear theory was used to obtain both time-variant and time-invariant constant gain
controllers. In addition, non-linear control theory based on sliding mode control where
developed.

In recent years, Bolandi and Vaghei [7] designed an adaptive controller for spinning
satellites was designed with high attitude accuracy. The design included a
supervisory-adaptive controller with sliding control. Proportial-Derivate (PD)-control
has been investigated by for example Lovera and Astolfi [23], Makovec et al. [26]. The
LQR optimal control approach has been investigated by Lovera et al. [24], Psiaki
[32], Pulecchi et al. [33], Wisniewski [47] to name a few. Here, the general LQR
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problem is investigated, in addition to periodic and constant gain LQR solutions.
Hegrenæs et al. [17], Krogstad et al. [20], Silani and Lovera [37], Wood et al. [48] has
examined the Model Predictive Control (MPC) approach to the attitude control. The
designs demonstrates improvement in the performance compared with PD control
problem. The MPC problem is very similar to the LQR control problem. Even though
the two problems finds the optimal control input, the main difference between the two is
that MPC also predicts the optimal control input and the state space model for the future
in a given horizon. In this way, the present computed control input is adjusted according
to the information about the future. Although the improved results, the MPC approach is
more difficult to implement and is more computational demanding compared to the more
classical approaches such as PD control. MPC solutions with look-up tables, such as the
explicit MPC method used in Hegrenæs [16], requires large amounts of memory, but
give good results.

1.5.1 Similar Missions

The following will present some of the previous satellite missions similar to the
CubeSTAR project. The satellites mission objectives and ADCS are of special interest,
and the focus will be on these parts.

Ørsted

Ørsted is a 60kg Danish satellite from the University of Aalborg launched in 1999, and is
still operative. The satellite is considered as the first satellite using three magnetic coils
for attitude control solely together with a gravity gradient boom, and the work of
Wisniewski [47] has become a classic reference on attitude control of satellites using
magnetorquers. Several controllers where derived and tested. The main scientific
objective of the spacecraft was to map the Earth’s magnetic field and to determine the
changes in the field. More theory on the Ørsted satellite can be found in Bøgh and
Blanke [5], Bøgh et al. [6], Wisniewski and Blanke [46] and some lessons learned from
the project in Bak et al. [3].

nCube

The nCube student satellite project consisted of two satellites, named nCube-1 and
nCube-2, developed mainly at NTNU (Norwegian University of Science and
Technology)[8, 30, 31, 39]. The two satellites shared the same main mission, namely to
demonstrate and test ship traffic surveillance and reindeer tracking using a space-born
AIS(Automatic Identification System). The satellites used active magnetic coils together
with a deployable gravity boom. The attitude determination system consisted of 3-axis
magnetometers and sun sensors. However, one satellite was lost in a failed launch
attempt, and there where never communication with the second one.
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Compass-1

Compass-1 is a pico-satellite developed at Univerity of Applied Sciences Aachen,
Germany [14]. It’s a 1-U CubeSat, and uses magnetic coils only. The satellite was
launched in 2008 in a Low Earth Orbit (LEO), with a camera as it’s main payload.
Pointing error was detected in simulation to be approximately 10o. A constant gain
full-state feedback LQR controller where implemented, and the attitude determination
consisted of a 3-axis magnetometer and five sun sensors.

AAU CubeSat

The AAU CubeSat was a 1-U CubeSat developed at Aalborg University, Denmark
[15, 19]. The main mission consisted of taking photographs of the Earth from a LEO at
approximately 700km. Three perpendicular magnetorquers was used as actuators, with a
total magnetic coil mass budget of 150g, and a power budget with maximum 450 mW.
For detumbling, the B-dot algorithm was used. The constant gain LQR was investigated
for attitude stabilization. This controller requires very little on-line computation. A
LMI(Linear matrix inequality) controller based on H2 optimal control was also
investigated, but not found suitable. However, both controllers gave usable results. The
satellite used a three-axis magnetometer and six sun sensors as attitude determination
senors. The satellite experienced severely limited operations in the first few months after
the launch. This was due to problems concerning communications and power supply.

1.6 Outline of the thesis

The thesis is organized as follows:

• Chapter 2: Different attitude parametrizations including their properties are
presented.

• Chapter 3: The spacecraft dynamics are presented along with the environmental
models and the magnetic coils.

• Chapter 4: The design of the magnetorquers are investigated.

• Chapter 5: An adaptive PD-controller and the LQR optimal control problem are
given, in addition to a detumbling control law.

• Chapter 6: The performance of the different controllers investigated by
simulations.

• Chapter 7: In this chapter, a constant gain attitude controller is implemented on a
FPGA and the performance is shown through HIL simulations.
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• Chapter 8: In this chapter, the conclusions and recommendations for further work
are given.

• Appendix A: An abstract based on the work done in this thesis was submitted to
the 61st International Astronautical Congress (IAC) 2010, Prague, Czech
Republic.

• Appendix B: The Matlab source code is included

• Appendix C: Printouts of the Simulink block diagrams.

• Appendix D: Printout of the DSP builder block diagrams.
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Chapter 2

Attitude Parametrization

When working with dynamic models, for example spacecraft attitude dynamics, several
Cartesian frames are often used. These frames can be used to evaluate how different
objects are oriented according to each other. Before describing the spacecraft dynamics,
it’s necessary to look at how orientation can be described. In this chapter, the most used
attitude parametrizations are presented. The different methods are evaluated and
compared, and based on this, the attitude parameterization used for this work is chosen.
For simplicity, orthonormal basis vectors is assumed throughout. A geometric vector, ~v,
can be described in the coordinate frame Fa as an algebraic vector va. For simplicity,
algebraic vector notation is used. For more information on the subject, see for example
Egeland and Gravdahl [11].

2.1 Direction cosine matrix
The direction cosine matrix, or simply the rotation matrix, is a way to coordinate
transform a vector from one frame to another. The rotation matrix has three
interpretations. It can be used to rotate a vector within a reference frame, represent a
vector from one reference frame to another or to represent the orientation between two
different reference frames.
A rotation matrix,R, is a rotation matrix if and only if [11]

R ∈ SO(3) (2.1)

where SO(3) is defined as

SO(3) =
{
R|R ∈ R3×3,RTR = I, detR = 1

}
(2.2)

where I is the 3× 3 identity matrix.
The coordinate transformation of a vector, ~v, from frame Fa to the Fb frame can be
expressed as

vb = Rb
av

a (2.3)

The rotation matrix,Rb
a, in equation 2.3 represents the orientation between the two
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frames. Because the rotation matrix is in SO(3), transposing the rotation matrix yields

Ra
b = RbT

a = Rb−1

a (2.4)

The reverse transformation of the vector v , that is from frame Fb to Fa, can then be
expressed as

va = RbT

a v
b = Ra

bv
b (2.5)

2.1.1 Kinematic differential equation

From the properties of 2.2, the kinematic differential equation of the rotation matrix can
be expressed as two alternative equations.

Ṙb
a = ωaba ×Rb

a (2.6)

or
Ṙb
a = Rb

aω
ab
b × (2.7)

where ωaba is the angular velocity of Fb relative to Fa represented in Fa, and similar for
ωabb .

2.1.2 Skew-symmetric form

The vector cross product found in equation 2.6 and 2.7 can be shown to be skew
symmetric. The skew symmetric form of a vector cross product of the vector
ω =

[
ωx ωy ωz

]T can be expressed as

S(ω) = ω× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (2.8)

Equation 2.6 and 2.7 can then, with the skew-symmetric form, be expressed as

Ṙb
a = S(ωaba )Rb

a = Rb
aS(ωabb ) (2.9)

2.2 Euler angles

The Euler angle parametrization is an intuitive way of describing one coordinate frame
to another using three successive rotations. It’s physical interpretation consist of using
the direction matrix to post multiply three rotation matrices, which are obtained from
rotations about three fixed axes in the system. It’s common to define the rotations as roll,
pitch and yaw, where the Euler roll angle φ is a rotation about the x-axis, the pitch angle
θ about the y-axis and the yaw angle ψ about the z-axis. These axes are orthonormal to
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each other, following the right hand rule. From this, three principal rotation matrices
about the three axes can be described as

Rx(φ) =

1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)

 (2.10a)

Ry(θ) =

 c(θ) 0 s(θ)
0 1 0
−s(θ) 0 c(θ)

 (2.10b)

Rz(ψ) =

c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1

 (2.10c)

where s(·) and c(·) represents sin(·) and cos(·), respectively.

It can be shown that there exists 12 possible rotation sequences. To calculate the rotation
sequence, evaluation of 6 trigonometric functions, 4 additions and 16 multiplications are
needed. In addition to being computational demanding, singularities occurs for certain
angles.

The usual way when dealing with rigid bodies with six degrees of freedom is the
yaw-pitch-roll (3-2-1 or z-y-x) rotation. This rotation matrix can then be written as

Ra
b = Rz(ψ)Ry(θ)Rx(φ) (2.11)

By inserting 2.10 into 2.11 we get the rotation matrix expressed in the terms of the Euler
angles

Rb
a =

c(ψ)c(θ) c(ψ)s(θ)s(φ)− s(ψ)c(φ) c(ψ)c(φ)s(θ) + s(ψ)s(φ)
s(ψ)c(θ) s(ψ)s(θ)s(φ) + c(ψ)c(φ) s(ψ)s(θ)c(φ)− c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)

 (2.12)

It must be noted however, thatRb
a is singular for θ = ±π

2
. This means that the

representation will introduce singularities when rotating the pitch axis ±π
2
. In many

cases, for example ship navigation, it’s possible to place the reference frame in such a
way that singularities does not occur. However, satellites can have all possible
orientations, and singularities may occur. When dealing with euler angles in these types
of systems, extra precaution is necessary to avoid numerical errors.
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2.3 Euler parameters
The Euler parameters, or unit quaternions, was discovered by Leonhard Euler. These are
essentially the same as quaternions formulated by Sir William Hamilton. Due to the
small difference, mainly in notation, unit quaternions will therefore be called quaternions
and Euler parameters interchangeably. The Euler parameters are attractive due to
non-singularities unlike the Euler angles, and require less computation then Euler angles.
However, there is no physical interpretation, and it’s therefore hard to understand the
orientation. It’s therefore often necessary to transform the quaternions to Euler angles in
order to evaluate the orientation. In this work, the Euler parameters is defined as [11]

q =

[
ε
η

]
(2.13)

ε =

q1q2
q3

 = k sin

(
θ

2

)
(2.14)

η = q4 = cos

(
θ

2

)
(2.15)

The quaternions must be normalized in order to be unit quaternions, that is

qT · q = 1 (2.16)

It’s interresting to note that

q = −q (2.17)

as this may cause trouble when using quaternions as equilibrium in attitude control. In
many cases, only using the positive or negative quaternion equilibrium doesn’t imply the
shortest way of rotation, and unnecessary rotations may occur.
The Euler parameters can also be expressed on the alternative form

q1 = e1 · sin
(
φ

2

)
(2.18a)

q2 = e2 · sin
(
φ

2

)
(2.18b)

q3 = e3 · sin
(
φ

2

)
(2.18c)

q4 = cos

(
φ

2

)
(2.18d)

The rotation matrix for quaternions can be described as
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R(ε, η) = I + 2ηS(ε) + 2S2(ε) (2.19)

The kinematic differential equations can be expressed as [11]

ε̇ =
1

2
[ηI + S(ε)]ωaba (2.20)

η̇ = −1

2
εTωabb (2.21)

2.4 Discussion
In the previous sections Euler angles and Euler parameters has been introduced. The
Euler angles are intuitive and easy to use do to the fact that they has a physical
interpretation. However, Euler angles include singularities which may cause numerical
problems. A spacecraft is able to orientate in all directions, and singularities can
therefore become a reality. Euler parameters are four dimensional, and does not suffer
from singularities. This makes Euler parameters a popular choice in the literature and in
many applications. Other parametrizations such as the modified Rodrigues parameters
and the (w, z) parameterization has not been treated due their little use in the literature.
Because of the avoidance of singularities and the massive usage in the literature makes
the Euler parameters a suitable choice for attitude parametrization for the CubeSTAR
attitude control system.
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Chapter 3

Spacecraft Dynamics

Spacecraft dynamics is the science in understanding and predicting a spacecraft’s
orientation and rotational motion. The field can roughly be divided into two parts. The
attitude dynamics, or rotational dynamics, describes the attitude and rotational motion of
the spacecraft about it’s own axes. The other part is the orbital dynamics, or translation
dynamics, which describe the orientation and rotational motion seen from another
reference, e.g. the earth. When a spacecraft is orbiting a planet or another object, the
attitude dynamics and orbital dynamics are mutually coupled [18]. If we remove all the
forces working on the spacecraft and the planet, except, off course, the gravitation field
keeping the spacecraft orbiting, the orbital dynamics will affect the attitude dynamics
and vice versa because the gravitation field is a conservative field. In conservative fields,
the system-energy, momentum and spin is extant, and this includes the translation and
rotation dynamics to both the spacecraft and the orbited object, and hence the mutually
coupling.

In this chapter, the spacecraft dynamics is presented. The reference frames used in this
work is defined before the equations of motion is derived. From here the dynamic and
kinematic equations are found, and these equations are essential to describe how the
satellite acts in space. Before the dynamic equations are completed, the magnetorquers
and environmental models must be investigated. In order to use linear system theory a
linearized model is derived, and controllability and stabilizability are analyzed.

For the orbit propagation, Keppler’s laws are usually used to describe the orbit motion
around the Earth. However, because this thesis is assuming a circular orbit, a more
simpler orbit propagation is used. This model assumes that the Earth is spherical, and the
orbit has a constant altitude in addition to a constant angular velocity. By knowing the
orbit’s radius, the orbit’s angular rate, the orbit inclination on the Earth, and the Earth’s
angular velocity about its own axis, it’s possible to calculate the position of the
spacecraft over time. ECSS [10] includes standard parameters of the Earth, and is used
as reference. The interested reader should refer to Hughes [18], Sidi [36], Wertz
[42], Wertz and Larson [43].
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3.1 Coordinate Reference frames
In order to analyze and describe the dynamics of the spacecraft, it’s necessary to define
coordinate reference frames that the dynamics are relative to. In chapter 2 the
mathematics needed to describe the relative orientation between two coordinate
reference frames was established. In this section, the different reference frames used to
describe the satellites dynamics are presented.

Earth Centered Inertial (ECI) frame
The Earth-centered inertial frame, ECI, denoted Fi, is centered in the earth’s center. The
xi axis points towards vernal equinox, the point where the ecliptic, or plane of the
Earth’s orbit about the Sun, crosses the Equator going from south to north. The zi axis
points through the geographic north pole and the yi axis completes the right hand rule.
As the name implies, this reference frame doesn’t rotate, and is used as the inertial
reference frame for the system. For inertial frames, the axes are fixed, and thus have no
acceleration. Newtons laws can therefore be applied to this reference frame.

Earth Centered, Earth Fixed (ECEF) frame
The Earth-centered, Earth-fixed frame, ECEF, denoted Fe has it’s origin in center of the
earth. The axes are fixed with xe pointing through 0o latitude 0o longitude, ze towards the
geographical north pole and ye follows the right hand rule. The frame rotates relative to
the ECI frame around the zi axis with one revolution per day, giving a constant angular
rate of ωe = 7.2921× 10−5rad/s.

Satellite orbit frame
The satellite orbit frame, Fo, is centered in the mass center of the satellite. The xo axis
points in the satellites velocity direction, the zo axis towards nadir, the direction towards
Earth’s center, while the yo axis completes the right hand rule. The frame can be seen as
the reference frame for the body frame, and the attitude of the spacecraft can be
described how the body frame is oriented in the orbit frame.

Satellite body frame
The satellite body frame, Fb is fixed in the satellites center of mass. If the body frame
axes coincide with the satellites principal axes, the inertia tensor products vanishes, and
the inertia matrix becomes diagonal. This simplifies the dynamic equations and is
therefore used. Since the spacecraft will have its longest side in the velocity direction,
with the scientific payload in front, the xb axis will point in this direction. The two other
axes, yb and zb, will point through two of the long sides according to the right hand rule.
Rotation about the axis xb, yb and zb is defined as roll, pitch and yaw, respectively.
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3.2 Equations of Motion

In this section the equations of motion are presented. The spacecraft is modeled as a
rigid body, and Euler’s equation is applicable. In the case where satellites are using
liquid thrusters, the fuel will lap, in addition to lose weight over time due to the use of
the thrusters. In the extreme environment in space the spacecraft will experience a severe
temperature change. This may cause thermal deformations on the spacecraft, and change
it’s dynamics. In addition, antennas and scientific instruments can oscillate, making the
spacecraft not rigid. However, because the CubeSTAR satellite is small, with no liquids
on-board and small flexible parts, the rigid body model will be a good approximation.
This chapter is based on Hughes [18], Sidi [36], Wertz [42].

3.2.1 Angular momentum

Euler’s moment equation can be formulated as [36]

τA = ḣi
A = ḣib

A + ωib
b × hi

A (3.1)

This equation shows that the applied torque, τA, to a system will change the derivative of
the angular momentum of the system.
The angular momentum is defined as

hib
A = Ibω

ib
b (3.2)

where the inertia matrix Ib is expressed as

Ib =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 =

∫M(y2 + z2)dm −
∫
M
xydm −

∫
M
xzdm

−
∫
M
yxdm

∫
M

(x2 + z2)dm −
∫
M
yzdm

−
∫
M
zxdm −

∫
M
zydm

∫
M

(x2 + y2)dm


(3.3)

Since Ib is a real, symmetric matrix, it has real eigenvalues and orthogonal eigenvectors.
This means that it’s possible to place the Fb frame in such a way that Ib becomes a
diagonal matrix. By assuming a uniform mass distribution and letting the principle axes
coincide with the body reference system it can be shown that the inertia tensors can be
written as

Ixx =
m

12
(b2 + c2) (3.4a)

Iyy =
m

12
(a2 + c2) (3.4b)

Izz =
m

12
(a2 + b2) (3.4c)
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where m is the total mass of the satellite and a, b, c is the length of the x, y, z axes,
respectively. It must be mentioned that the shape of the spacecraft in this case is a
cuboid, a right rectangular prism.

From equation 3.4a-3.4c, it’s easy to see that, when a uniform mass distribution is
considered, the shape of the spacecraft has a huge impact on how the satellite will
behave in space.

3.2.2 Dynamics

The dynamics of the satellite describes how the angular velocity evolves over time, and
how external torques acts on the satellite. The Newton-Euler equation is only defined in
the inertial frame, and can be expressed as [36]

Ibω̇
ib
b + ωib

b × Ibωib
b = τcoils + τgg + τdis = τ (3.5)

where Ib is the inertia matrix, τcoils is the torque created by the magnetic coils described
in section 3.3, τdis are the disturbance torques described in section 3.4 along with the
gravity gradient torque τgg. The cross product ωib

b × Ibωib
b arises due to the fact that the

dynamics are described in a rotating coordinate frame, namely the body frame, in the
inertial frame.

By looking at the system without any external torques, the individual elements of the
dynamics can be written as

ω̇ib
b,x =

Iy − Iz
Ix

ωib
b,yω

ib
b,z = kxω

ib
b,yω

ib
b,z (3.6a)

ω̇ib
b,y =

Iz − Ix
Iy

ωib
b,xω

ib
b,z = kyω

ib
b,xω

ib
b,z (3.6b)

ω̇ib
b,z =

Ix − Iy
Iz

ωib
b,xω

ib
b,y = kzω

ib
b,xω

ib
b,y (3.6c)

By using the equations in 3.6a-3.6c, these homogeneous equations can be used to
analyze spin stability. In general, a rigid body is angular motion stable if the body spins
about it’s minimum or maximum moment of inertia.

3.2.3 Kinematics

The kinematics can be used to describe the orientation of the spacecraft in the orbit as a
result of the spacecrafts angular velocity described by the dynamics. The kinematic
differential equation using the Euler parameters can be expressed as [36]
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q̇ =
1

2
W (ωobb ) · q (3.7)

whereW (ω) is the 4× 4 skew symmetric matrix of the angular velocity, and can be
written as

W (ωobb ) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (3.8)

Here, ωobb is the angular velocity of the spacecraft seen from the orbit represented in the
satellite body. From equation 3.5 the angular velocity of the spacecraft seen from the
inertial frame, ωib

b , was solved. It’s therefore necessary to rotate the angular velocity into
the correct frame. The transformation can be expressed as

ωib
b = ωobb + ωiob (3.9)

By knowing the orbit angular velocity, ω0, and having defined the different coordinate
frames, ωobb can be written as

ωobb = ωib
b − ωiob = ωib

b − ωoj0 (3.10)

where j0 is the column in the rotation matrix from the inertial frame to the orbit frame
describing the rotation of the angular velocity of the orbit in the inertial frame.

3.3 Magnetic torquers

To understand how the interaction between a spacecraft and earth’s magnetic field, it’s
necessary to examine how magnetic fields can cause torques to act on a spacecraft. The
CubeSTAR satellite will use three magnetic coils. These coils will create a magnetic
dipole reacting with the earth’s magnetic field. Electromagnetic coils creates a magnetic
dipole when electrical current flows through the windings. This current is proportional to
the ampere-turns and the area enclosed by the coil, yielding

m(t) = ni(t)A (3.11)

where m is the produced magnetic moment, n is the number of turns, i is the electrical
current and A is the face area of the coil.

The magnetic moment vector created by the coils follows the laws of magnetism, and
will therefore act perpendicular on the earth’s magnetic field vector in the body frame.
This can be described by a cross product, and written as
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τcoils = mcoils × bb (3.12)

where bb is the geomagnetic field in the body frame.

By using the skew-symmetric matrix we can represent the magnetic torque as

τcoils = S(mcoils)bb =

bzmy − bymz

bxmz − bzmx

bymx − bxmy

 (3.13)

The magnetic coils acts, as already mentioned, perpendicular on the geomagnetic field.
This means that if a coils is parallel to the geomagnetic field vector, no torque will be
created. It’s therefore possible to use a mapping of the magnetic torque to create a
control torque that only includes the perpendicular parts of the magnetic moment. By
separating the parallel and perpendicular magnetic moments, it’s possible to write

τ =
(
m‖ +m⊥

)
× b = m⊥ × b (3.14)

Then, by including an extra cross product of the geomagnetic field and the norm of the
field, a mapping of the magnetic moment insures that the control torque only acts on the
geomagnetic field perpendicular to the magnetorquers.

τcoils =
mcoils × bb
|bb|

× bb (3.15)

3.4 Environmental Models

3.4.1 Earth’s Geomagnetic Field
The earth is surrounded by a magnetic field, also called the geomagnetic field. This field
can approximately be modeled as a magnetic dipole, with the magnetic south pole near
the geographical north pole, approximately 11.5o south of the pole, and the magnetic
north pole near the geographic south pole. The magnetic field is very important for life
on earth, as this field protects us from solar winds amongst other things. The
geomagnetic field is higher close to the ground, and decrease with the altitude. In
addition, at higher altitudes the solar magnetic field cause perturbations, making the
geomagnetic complicated to model. The earth’s magnetic field is constantly changing,
and the magnetic poles moves over time.

The International Geomagnetic Reference Field (IGRF) is a standard mathematical
description of the Earth’s magnetic field. The model describes both the magnetic field
and the secular variations in the field. IGRF is updated every fifth year. and the validity
of current model is year 2010 to 2015.
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The current version, IGRF-11, is a 13th order model, with a precision of one tenth of a
nT(nano Tesla). IGRF-11 uses Gauss coefficients which define a spherical harmonic
expansion of the geomagnetic potential. This can be expressed as [42]

V (r, θ, φ, t) = a ·
k∑

n=1

(a
r

)n+1
n∑

m=0

(gmn cos(mφ) + hmn sin(mφ)Pm
n (θ)) (3.16)

where r is the geocentric distance from earth, θ is the co-elevation, that is latitude −90◦

and φ is the longitude. a is the equatorial radius of the earth, gmn and hmn is the Gaussian
coefficients. Pm

n (θ) are the Schmidt semi-normalized associated Legendre functions of
degrees n and order m.

Figure 3.1-3.3 shows the magnetic field in the orbit frame at 300, 500 and 800 km
altitude. The orbit is a circular orbit with an inclination of 90o. A modified version of the
IGRF-11 mex file from the open-source Mirone project at Luis [25] was used to
calculated the geomagnetic field for the considered orbits.
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Figure 3.1: The geomagnetic field seen from the orbit frame at 300 km altitude. The circular orbit
has an inclination of 90o
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Figure 3.2: The geomagnetic field seen from the orbit frame at 500 km altitude. The circular orbit
has an inclination of 90o

.

Dipole model

The IGRF model requires a lot of computation. Another way of estimating Earth’s
magnetic field is to use a dipole model. This model is easy to calculate, and many
controllers are designed with the dipole model because this tends to create some
robustness towards measurement errors on the magnetic field.

The dipole approximation model of the geomagnetic field, with no Earth rotation and no
orbit precession, can be written as [32]

b̃0(t) =

b1(t)b2(t)
b3(t)

 =
µf
a3

 cos(ω0t) sin(im)
− cos(im)

2 sin(ω0t) sin(im)

 (3.17)

where im is the orbit’s inclination with respect to the geomagnetic equator and this is
currently about 11.5 degrees south of the geographic north pole. µf = 7.9 · 1015Wbm is
the dipole strength, ω0 is the orbit angular velocity, and a is the semi-major axis, equal
the radius of a circular orbit.

In figure 3.4, the geomagnetic field is shown in the orbit frame with a circular orbit at
500 km altitude and an inclination of 90o. As can be seen from the figure, the dipole
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Figure 3.3: The geomagnetic field seen from the orbit frame at 800 km altitude. The circular orbit
has an inclination of 90o

.

model gives good results compared to the 13th order IGRF-11 model.

3.4.2 Gravity Gradient torque

Gravity gradient is a property of every asymmetric object in the presence of a gravity
field. The axis of least inertia tends to align the field direction, while the largest inertia
axis aligns normal to the gravity field. If the gravitational field is uniform over a body,
then the center of mass is the center of gravity, and the gravitational torque about the
mass center will then be zero. In space, however, the gravitational field is not uniform,
and the gravity gradient can be expressed as

τgg =
3µ

r3o
ue × Iue (3.18)

where µ = 3.986 · 1014m3/s2 is the earth’s gravitational coefficient, ro is the distance
from the earth’s center, I is the inertia matrix and ue is the unit vector towards nadir.
By inserting equation 3.18 in the body frame, this yields:

τgg =
3µ

r3o
c3 × Ic3 = 3ω2

oc3 × Ic3 (3.19)
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Figure 3.4: The geomagnetic field seen from the orbit frame at 500 km altitude using the dipole
approximation. The circular orbit has an inclination of 90o

where c3 is the third column of the rotation matrix from the body frame to the orbit
frame, and is the nadir pointing unit vector of the orbit frame.
Over time, every asymmetric object will, theoretically, align the gravity field. However,
other disturbances will deviate the satellite from this orientation, unless the spacecraft is
gravity gradient stable. This can be achieved in the design of the spacecraft, or by using
a gravity gradient boom. From [36], two sub-regions of gravity gradient stability are
defined by

Iy > Ix > Iz Iy < Ix + Iz (3.20)

or

Ix > Ix > Iy Ix < Iy + Iz (3.21)

When designing satellites, it’s therefore important to design a spacecraft that is in one of
these to sub-regions.

3.4.3 Aerodynamic Torque
Spacecrafts in low earth orbits will not travel through near empty space, but will be
surrounded by the earth’s atmosphere. The atmosphere consists of particles, and when
the spacecraft collides with these particles, this causes a force on the satellite.
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The aerodynamic force acting on the spacecraft can be written as (Wertz and Larson
[43])

Faero =
1

2
ρCdAv

2uaero (3.22)

where ρ is the atmospheric density, Cd is the aerodynamic drag coefficient (usually
between 2.0 and 2.5), v is the spacecraft orbit velocity and uaero is the vector describing
the direction of the force on the satellite. Finally, A is the cross-sectional area facing the
satellite’s orbit velocity, and it’s this area that collides with the atmospheric particles.
The cross-sectional area is assumed constant in equation 3.22, but will in reality vary in
some degree depending on how the satellite is oriented in the orbit. The lowest area will
occur in this case, when the satellite is in equilibrium, that is the body frame coincides
with the orbit frame.

The air density, is higher close to ground and will gradually weaken as the hight
increases. In orbits with altitude lower then approximately 400km, the aerodynamic drag
is the dominant disturbance (Wertz [42]). In table 3.1, the air density for the specific
altitudes for this work are shown[43]. From this it can be seen that maximum air density
at an altitude of 300 km is around ten thousand times larger than the minimum air
density at an altitude of 800 km, and hence the orbit altitude plays a major part in the
aerodynamic disturbance acting on the spacecraft.

Table 3.1: Air density in the atmosphere for specific altitudes.

Altitude [km] Atmospheric Density ρ [kg/m3]

Minimum Mean Maximum

300 8.19× 10−12 1.95× 10−11 3.96× 10−11

500 8.98× 10−14 4.89× 10−13 1.80× 10−12

800 2.96× 10−15 9.63× 10−15 4.39× 10−14

The aerodynamic force will act in the negative satellite orbit velocity direction, and by
using the defined orbit frame, uaero can be expressed in the orbit frame as

uoaero =

−1
0
0

 (3.23)

Because the aerodynamic force acting on the spacecraft is working in the negative orbit
velocity direction, it’s lowering the orbit velocity and hence the altitude. This is however
not treated in this work where a constant circular orbit is considered. However, this
torque is also acting on the center of pressure, and if the Center of Mass (CoM) is not in
the Geometric Center (GC), this creates a torque on the satellite. This torque is given as
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the cross product of the displacement vector between the CoM and the GC, rCoM−GC ,
and the aerodynamic force vector, Faero, hence (Hughes [18])

τaero = rCoM−GC × Faero (3.24)

The displacement vector, rCoM−GC , is an important factor to these kinds of torques, and
it’s important that this vector is made as small as possible in the design. In fact, if this
vector is not present there will be theoretically no disturbing torque of this kind, all
though this is very unlikely. The standard requirement for CubeSats is that the center of
mass must be within 2cm of the geometric center [40].

3.4.4 Solar Radiation Torque

The sun eradiates electromagnetic waves in a large spectrum, from x-rays to radio waves.
These waves, together with the solar winds, causes physical pressure on the spacecraft’s
body when in direct view of the sun. In eclipse, however, these pressures are not present.
The Earth is also eradiating, mainly reflecting the waves from the sun, but also emitting
radiation produced by the earth. This radiation will act on the spacecraft at any time in
orbit, and is higher closer to the earth. The radiation from the earth is typical one third of
the solar radiation (Hughes [18]), and will therefore not be further investigated. For
precise calculations on radiation acting on the spacecraft, eradiation from earth should be
taken into account. The solar winds consists mainly of ionized nuclei and electrons.
However, these winds are 100-1000 times smaller than the momentum flux of the solar
radiation, and can therefor be neglected compared to the solar radiation. All other types
of radiation, such as galactic rays, will also be neglected.

The momentum flux of solar radiation varies according to time of year(distance to sun)
and other factors, such as solar activity level. The mean momentum flux, Prad, of the
solar radiation is given as [36]

Prad =
Fe
c

= 4.5× 10−6kgm−1sec−2 (3.25)

where c is the speed of light and Fe is the mean integrated energy flux at earth’s position.
The solar radiation preassure, Frad is given as [36]

Frad = PradACPurad (3.26)

where A is the cross-sectional area of the satellite facing the sun, urad is the vector
describing the direction of the force on the spacecraft and CP is the spacecraft surface
absorption characteristic. CP lies between 1 and 2, where CP = 1 is a perfectly
absorbing material and CP = 2 is a material reflecting all light. In equation 3.26 it’s
assumed that the surface absorption characteristic is equal for the total area surface. This
is seldom the case, but due to the small characteristic changes, the small size of CubeSats
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and the uncertainty of the value, a constant surface absorption characteristic is assumed
in this work. The cross-sectional area is also assumed constant as done in section 3.4.3.

When the solar waves hits the spacecraft, this creates a force pushing the spacecraft in
the same direction. If the CoM lies in the GC, the force created is evenly distributed and
the spacecraft is only pushed in the sunlight direction without creating torque on the
spacecraft itself. For a satellite orbiting the Earth, this means that the sun pushes the
satellite towards earth most of the time, and thus lowering the altitude and changing the
orbit. This effect is not taken into account in this work where a constant circular orbit is
considered. If, however, the CoM is not in the GC, the solar radiation will also create a
torque on the spacecraft. This torque will be created on the axes perpendicular to the
solar waves, that is the cross-product of the displacement vector between the CoM and
the GC, rCoM−GC , and the solar radiation force vector Frad. The solar pressure torque
acting on the body can therefore be written, similar to equation 3.24, as [18]

τrad = rCoM−GC × Frad (3.27)

3.4.5 Residual Dipole Torques
Although the satellite is controlled by magnetic coils, this is not the only magnetic field
produced by the spacecraft. Electric components also create magnetic fields, in addition
to ferromagnetic materials. These fields can be considered as disturbances as they are
not wanted, and have an effect on the satellite’s attitude. It’s therefore necessary to avoid
these disturbances as much as possible by designing the satellite with this in mind. This
includes designing and using electrical components and materials that creates as small as
possible magnetic moments. However, these dipole moments are usually time-invariant,
and can theoretically be removed by measuring and estimating the residual dipoles, and
using these values as biases in the magnetic coil control.

The residual dipole torque is expressed essentially the same as for the magnetorquers,
and is written as

τres = mres × bb (3.28)

For more details on determining dipole moments, see Lee et al. [21].

3.5 Linearized model

In the previous sections the satellite model was derived, and these equations are
nonlinear by nature. In order in order to apply linear system theory and control law
synthesis procedures, the dynamics of the spacecraft must be linearized. A linear time
variant system can be expressed as [9]
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ẋ(t) = F (t)x(t) +G(t)u(t) (3.29)

where x(t) is the total state vector, F (t) is the plant system matrix, u is the control input
andG is the input matrix.

As mentioned before, it’s desirable to stabilize the satellite in such a way that the
multi-Needle Langmuir Probe system is pointing in the velocity direction, the x-axis.
This will be the same as a nadir, vector describing the direction of the center of the earth,
pointing satellite.
To be able to linearize the nonlinear system a equilibrium must be chosen. The natural
choice would be to let the angular velocity with respect to the reference be zero, and that
the attitude is such that the body coordinate system coincides with the reference. This
gives the equilibrium

ωibb,ref =

 0
−ω0

0

 , qref =


0
0
0
1

 (3.30)

By using the Taylor expansion, the linearization can be done by adding a pertubation to
the system plant with respect on the states around the equilibrium.
The Euler parameters can then be expressed as

δq =


δq1
δq2
δq3
δq4

 ≈ [δε1
]

(3.31)

and the body angular velocities as

δωib
b =

 δωibb,x
δωibb,y − ω0

δωibb,z

 (3.32)

From equation 3.7 the kinetic differential equation was found to be

q̇ =
1

2
W (ωobb ) · q (3.33)

Because η, the fourth Euler parameter is defined by the other three parameters,
η =

√
1− q21 − q22 − q23 , this value can be omitted in the linearization.

By selecting the linearized state vector as
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[
δω
δε

]
=


δωx
δωy
δωz
δq1
δq2
δq3

 (3.34)

where ω = ωib
b for simplicity, the linearization of the kinetic differential equation can be

expressed as

δε̇ =

1
2

0 0 0 0 1
2
ω0

0 1
2

0 0 0 0
0 0 1

2
−1

2
ω0 0 0



δωx
δωy
δωz
δq1
δq2
δq3

 (3.35)

The homogeneous dynamic differential equation from equation 3.5 is

Ibω̇ib
b + ωib

b × Iωib
b = 0 (3.36)

The cross-product can be written as

−I−1(ωib
b × Iωib

b ) = −I−1S(ωib
b )Iωib

b

=


(Iy−Iz)
Ix

ωib
b,yω

ib
b,z

(Iz−Ix)
Iy

ωib
b,xω

ib
b,z

(Ix−Iy)
Iz

ωib
b,xω

ib
b,y

 =

σxωib
b,yω

ib
b,z

σyω
ib
b,xω

ib
b,z

σzω
ib
b,xω

ib
b,y

 (3.37)

where

σx =
Iy − Iz
Ix

, σy =
Iz − Ix
Iy

, σz
Ix − Iy
Iz

(3.38)

Because of the pertubations, δωiδωj ≈ 0, and the cross product is approximately

− I−1(ωib
b × Iωib

b ) ≈

σx(ωo + δωobb,y)δω
ob
b,z

σyδω
ob
b,xδω

ob
b,z

σz(ωo + δωobb,y)δω
ob
b,x

 ≈
σxωoδωobb,z0
σzω0δω

ob
b,x

 (3.39)

Disturbance torques are not linearized because of their complexity, except from the
gravity gradient.

The gravity gradient from equation 3.19 was found to be

τgg = 3ω2
oc3 × Ic3 (3.40)
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where c3 can be expressed as

c3 =

 2(q1q3 − q2q4)
2(q2q3 + q1q4)

−q21 − q22 + q23 + q24

 (3.41)

Because δqi · δqj ≈ 0 for i, j = 1, 2, 3 and δq2i ≈ 0 for i = 1, 2, 3, the linearized gravity
gradient becomes

I−1τgg = 6ω2
0

−σxδq1σyδq2
0

 (3.42)

The linearized dynamics, including gravity gradient, can then be written as

δω̇ =

 0 0 −kxω0 −6kxω
2
0 0 0

0 0 0 0 6kyω
2
0 0

−kzω0 0 0 0 0 0



δωx
δωy
δωz
δq1
δq2
δq3

+ I−1τcoils (3.43)

The magnetic moment is already linear, and was found to be from equation 3.15

τcoils =
mcoils × bb
|bb|

× bb (3.44)

By using the skew-symmetric form, this can be written as

τcoils =
1

|bb|
S(bb)

TS(bb)
Tmcoils (3.45)

3.5.1 Linearized equations of motion
The total linearized system plant can be expressed as[

δω̇
δε̇

]
= F

[
δω
δε

]
+G(t)mcoils +

[
I−1

0

]
τdist (3.46)

where

F =


0 0 −kxω0 −6kxω

2
0 0 0

0 0 0 0 6kyω
2
0 0

−kzω0 0 0 0 0 0
1
2

0 0 0 0 1
2
ω0

0 1
2

0 0 0 0
0 0 1

2
−1

2
ω0 0 0

 (3.47)
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and

G(t) =


I−1

|bb|

−b2y(t)− b2z(t) bx(t)by(t) bx(t)bz(t)
bx(t)by(t) −b2x(t)− b2z(t) by(t)bz(t)
bx(t)bz(t) by(t)bz(t) −b2x(t)− b2y(t)

0 0 0
0 0 0
0 0 0



 (3.48)

3.6 Controllability
Investigating controllability on non-linear systems may not be trivial due to it’s
complexity. Therefore, the linearized system model will be investigated. A linear system
is said to be controllable if there exists a control, u, which can get an arbitrary state
x(t0) to an arbitrary state x(t1) for t1 > t0. The controllability condition states that the
state and input matrix,A,B, satisfy that [13]

Θ =
[
B|AB|...|An−1B

]
(3.49)

has rank n.
From the system 3.46, η is equal zero, and hence the system is uncontrollable. In fact,
this is the only uncontrollable state. In addition, the controllability matrix is nearly
singular, and this reflects that there is always one axis not controllable. In order for the
system to be stabilizable, this uncontrollable state needs to be stable.

3.7 Stabilizability
In order for an uncontrollable linear system to be stabilizable, all eigenvalues
corresponding to the uncontrollable modes must be stable. This can be done by using the
Kalman canonical decomposition. The original uncontrollable linear system with
rank(Θ) = n1 < n, where Θ is given in 3.49, is decomposed into controllable and
uncontrollable subspaces. From Chen [9] it’s shown that it’s possible to form a n× n
matrix P−1 with the n1 first columns are linearly independent columns of Θ. The
transformation x = P−1x̄ can then be transformed into[

˙̄xuc
˙̄xc

]
=

[
Āuc 0
Ā12 Āc

] [
x̄uc
x̄c

]
+

[
0
B̄c

]
u (3.50)

y =
[
C̄uc C̄c

] [x̄uc
x̄c

]
+Du (3.51)

where the controllable block Āc is a n1 × n1 matrix and the uncontrollable block Āuc is
a (n− n1)× (n− n1) matrix.
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By including η in the linear system, the canonical system can be found. The averaged
geomagnetic field is used to create a time invariant linear system in order of simplicity.
The eigenvalues of the uncontrollable block is found to be stable, and hence the system
is stabilizable.

3.8 Summary
In this chapter the reference frames for the considered satellite was defined. Later, the
non-linear equations of motion for the satellite was derived along with the respective
environmental models. In order to use linear control theory, the linearized equations of
motion was derived and analyzed in terms of stability and stabilizability. It was found
that the linear model was not controllable, but stabilizable.

The disturbance torques can seem to be relatively high when looked at individually.
When worst case disturbances are used, it’s unlikely that all the disturbances will act in
the same direction on the spacecraft. Instead, torque cancellation may occur, resulting in
lower realistic total disturbance torques.

The spacecraft must be orbiting the Earth in an altitude between 300 and 800 km because
of the scientific instrument. The solar disturbance torque is relatively constant over this
interval. However, there is a very huge difference in the aerodynamic drag disturbance.
At higher altitudes, the air density is lower, and less aerodynamic force. Even though the
geomagnetic field is also lower at higher altitudes, this can be compensated by using
larger magnetic coils. In order to keep the disturbances as low as possible, a higher orbit
altitude may be of interest.



Chapter 4

Magnetorquer Design

In the previous chapter, the spacecraft dynamics where presented along with the dynamic
properties of the magnetic coils. In this chapter, the magnetic coil design will be
investigated. In order to manufacture magnetic coils for the satellite, it’s necessary to
check if the preliminary design specifications are suitable or if changes must be made.
This chapter only investigated the basic properties, and doesn’t cover the entire
magnetorquer design. In this thesis, the interesting part is to examine if the given
dimensions and power restrictions can give a possible producible magnetic moment big
enough to control the spacecraft. Problems such as physical layout, production, driver
circuit, current sensor, self inductance, eddy currents, hysteresis and other disturbances
in addition to validation is not treated in this work.

4.1 Design specification
At the time being, the satellite will have, because of the spacecraft dimensions, two
different types of coils. Two coils will have the dimension of 190× 75mm, and will
hereby be called the long side coils. The coil on the short side of the satellite will be
75× 75mm, and named the short side coil. The coils are positioned in the satellite so
that all three coils are orthogonal to each other. Because of the restricted space available
inside the satellite, the maximum coil cross-sectional area is set to 2× 5mm = 10mm2.
Work on the power supply indicates that it’s possible to use a maximum coil voltage of 3
volts, and each coil is restricted to around 100mA. In table 4.1 the constraints for the
magnetorquer design are listed.

4.2 Magnetic coil design
The electromagnetic coils can be made with or without a metal core. With a metal core,
a greater magnetic field can be produced by the same coil compared to an air core coil.
However, metal cores are heavy and use more space. Therefore, air core magnetorquers
will be used in this thesis.
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Table 4.1: Magnetorquer design constraints

Parameter Symbol Value Unit

Maximum width bmax 75 mm
Maximum height shor tside hs,max 75 mm
Maximum height long side hl,max 190 mm
Maximum face area short side as,max 5625 mm2

Maximum face area long side al,max 14250 mm2

Maximum coil cross-sectional width bc,max 5 mm
Maximum coil cross-sectional height hc,max 2 mm
Maximum coil cross-sectional area ac,max 10 mm2

Mean width (bmax − hc,max) bmean 73 mm
Mean height short side (hs,max − hc,max) hs,mean 73 mm
Mean height long side (hl,max − hc,max) hl,mean 188 mm
Mean face area short side as,mean 5329 mm2

Mean face area long side al,mean 13724 mm2

Mean circumference shortside (2(bmean + hs,mean)) lcs,mean 292 mm
Mean circumference longside (2(bmean + hl,mean)) lcl,mean 522 mm
Voltage at full load UC 3.0 V
Maximum allowed current Imax 100 mA
Maximum power at full load Pmax 300 mW
Minimum temperature Tmin −60 ◦C
Nominal temperature Tnorm 25 ◦C
Maximum temperature Tmax 100 ◦C
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The magnetic moment for a coil is given by

m(t) = ncoilicoil(t)Acoil (4.1)

where m is the magnetic moment, n is the number of turns, i is the electrical current and
A is the face area of the coil. From simulations and previous work such as Graversen
et al. [15] and Gießelmann [14] the desired magnetic moment is set to 100mAm2, and is
a fairly large number for a small satellite such as CubeSTAR. This value is only used as a
maximum reference value, and much lower magnetic moments can control the
spacecraft, and exceed the disturbances.

From equation 4.1, since the coil face area is fixed, the magnetic moment is increased by
either increasing the amount of turns or by increasing the electrical current. This will,
however, increase the weight and power usage, respectively. The number of turns of a
coil must therefore be chosen in such a way that the weight of the coils are reasonable
and the power restrictions are not violated. In addition, larger number of windings can
lead to a larger possibility of coil failure, i.e. short circuiting.

At this point, there exists no weight restrictions on the magnetorquers. However,
satellites, especially Cubesats, have a strict weight limitation, and CubeSTAR can weight
maximum 2 kg. By setting an upper boundary of 5% of the total weight, that is 100
grams for all three coils, this value can be used for comparison with the final design
result. Note that these limits only include the wiring, and not other electrical components
and/or circuits necessary to implement the magnetorquers.

In order to design the magnetic coils, several properties mus be investigated. The
following material is adopted from Serway and Jewett [35].

The maximum current in a coil will be at the minimum temperature due to the fact that
the resistance is temperature dependent. The coil resistance can be written as

R =
nlσ(T )

aw
(4.2)

where n is the number of turns, l is the circumference and aw is the wire cross sectional
area. The wire material resistivity, σ(T ), of a conductor varies, over a limited
temperature range, approximately linearly with the temperature and can be found by
knowing the resistivity at a specific temperature, σ0, and the temperature coefficient of
resistivity, α, yielding

σ = σ0[1 + α(T − T0)] (4.3)

Although aluminium has better properties for use in magnetic coils[15], very thin
aluminium wire is not commercial available. Therefore, copper may be the best choice
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of material. In table 4.3 the copper properties from [35] are listed.

The mass of a coil is given by

Mc = nlawρ (4.4)

where mc is the mass [kg], n is the number of turns, l is the length [m], aw the the cross
sectional area and ρ is the material density.
The power can be expressed as

P = UI = I2R (4.5)

In equation 4.2, the ohmic resistance increases with decreasing lead
cross-section.Therefore there exists a minimum wire cross sectional area, and the chosen
wire diameter must not exceed this value. For more on design development and
production of electromagnetic coils, see Aydinlioglu [2].

Table 4.2: Copper properties

Parameter Symbol Value Unit

Density ρ 8.92 · 103 kg/m3

Resisivity @ 20◦C σ0 1.7 · 10−8 Ωm
Temperature coefficient of resistivity α 3.9 · 10−3 1/◦C

4.3 Design results
In table 4.3 and table 4.4, the results of the short side and long side coils design are
shown, respectively. As can be seen from the tables, the coils give necessary magnetic
moments as well as meeting the design criteria. The two different types of coils where
designed in a way that they essentially weights the same, and thus resulting in different
produceable magnetic moments. The coils could have been designed with the magnetic
moment in mind, as this would lead to different weights.

4.4 Summary
In this chapter the magnetic coil design was investigated. It was found that with the
design restrictions at the time being, it’s possible to produce magnetic air coils able to
create large enough magnetic moments to control the satellite. Although aluminium is a
better choice of material, there is not commercial available very thin aluminium wires.
An important property of the coils is the rise time constant, the time before the magnetic
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Table 4.3: Magnetorquer design results for the short side coil

Parameter Symbol Value Unit

Number of turns Ns 258
Mass Ms 11.9 kg
Wire diameter dw 0.15 mm
Wire cross sectional area aw 0.01767 mm2

Coil cross sectional area as,c 4.56 mm2

Maximum Current at Tmin Is,-60 60 mA
Maximum Current at Tnom Is,25 40.6 mA
Maximum Current at Tmax Is,100 31.5 mA
Maximum Power at Tmin Ps,-60 180 mW
Maximum Power at Tnom Ps,25 121.8 mW
Maximum Power at Tmax Ps,100 95.5 mW
Coil Resistance at Tmin Rs,-60 50 Ω
Coil Resistance at Tnom Rs,25 73.89 Ω
Coil Resistance at Tmax Rs,100 95.09 Ω
Produceable magnetic moment at Tmin ms,-60 82.5 mAm2

Produceable magnetic moment at Tnom ms,25 55.8 mAm2

Produceable magnetic moment at Tmax ms,100 43.3 mAm2

Table 4.4: Magnetorquer design results for the long sides

Parameter Symbol Value Unit

Number of turns Nl 144
Mass Ml 11.8 kg
Wire diameter dw 0.15 mm
Wire cross sectional area aw 0.01767 mm2

Coil cross sectional area al,c 2.55 mm2

Maximum Current at Tmin Il,-60 60 mA
Maximum Current at Tnom Il,25 40.7 mA
Maximum Current at Tmax Il,100 31.6 mA
Maximum Power at Tmin Pl,-60 180 mW
Maximum Power at Tnom Pl,25 122.1 mW
Maximum Power at Tmax Pl,100 94.8 mW
Coil Resistance at Tmin Rl,-60 50 Ω
Coil Resistance at Tnom Rl,25 73.73 Ω
Coil Resistance at Tmax Rl,100 94.88 Ω
Produceable magnetic moment at Tmin ml,-60 118.6 mAm2

Produceable magnetic moment at Tnom ml,25 80.4 mAm2

Produceable magnetic moment at Tmax ml,100 62.4 mAm2
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field occurs after the electrical current has been turned on, and the time it takes before the
magnetic field is removed after the current has been shut off. Without going into details,
the work of Busterud [8], Graversen et al. [15] indicates a rise time constant of about
100µs. This is very small, and should not cause trouble in the magnetic coil control.
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Attitude Control

In the previous chapters, the spacecraft’s dynamics has been presented, analyzed and
discussed. The CubeSTAR scientific instrument needs to point in the orbit velocity
direction in order to use the measurements. An pointing accuracy of around 10 degrees
can be seen as necessary to fulfill this.

Based on the previous work that has been reviewed, three different control laws has been
investigated. The first is the B-dot control law for detumbling the satellite. The last two
controllers can be used for stabilization of the spacecraft. Based on the simulation results
and implementation issues, one of these control laws will be implemented on a FPGA.

Because this thesis only focus on the attitude control, no attitude determination is
applied. This means that the full-state feedback is the output of the non-linear system
models. Because the accuracy of the determination is unknown, the “real” states are
used, and there is no uncertainties in the state measurements. This is however not
realistic, and the attitude controllers must be tested with the attitude determination
system when this is available.

5.1 Detumbling

When the satellite has relatively high angular velocity, it’s said to be tumbling. This
happens usually right after the release from the launch pod. The uncontrolled satellite
can also over time start to tumble due to disturbances. These disturbances can increase
the rotational kinetic energy in the spacecraft if they act on the spacecraft in a
non-periodic way. In addition, deployment of mechanical parts, such as antennas, can
cause tumbling.

When the satellite is tumbling, it’s desirable to bring the angular velocities down before
starting to stabilize the spacecraft. There are many reasons for this. Firstly, the
stabilization controllers may not be stable with high angular velocities. Attitude
determination sensor may get problems regarding measurements, and it’s therefore not
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possible to estimate the attitude of the orientation. In addition, when using a gravity
gradient boom, high angular velocity can stress the boom under deployment and cause
damage.

In this thesis, the B-dot algorithm will be used as a detumbling controller. The B-dot
controller was first introduced in Stickler and Alfriend [38]. Later, Wisniewski [47]
derived a modified version of this controller with use of the Lyapunov direct method.
The controller only uses measurements from a 3-axis magnetometer, and no information
about the spacecraft attitude or orbital position is required. The controller can therefore
be employed at any point of time.

The original B-Dot control law is given as [38]

m = −Kḃb (5.1)

wherem is the magnetic output moment, K is a positive constant gain, and ḃb is the
derivative of the measured magnetic field in the body frame. The controller acts like a
compass needle following the geomagnetic field. The smallest theoretical angular
velocity achieved by the B-dot controller is therefore the change of the geomagnetic field
in the orbit. It must be noted that the sampling rate of the magnetometer is of great
importance. Faster sampling rates will improve the performance of the detumbler as the
magnetic field is continuously changing in the orbit, in addition to the spin of the
spacecraft.

The kinetic energy can be expressed as [47]

Ek =
1

2
ωib

T

b Ibω
ib
b (5.2)

By using the assumption that the change of the magnetic field vector is being the result
of the rotation of the spacecraft only, the derivative of the magnetic field can be
expressed as

ḃb ≈ bb × ωib
b (5.3)

From this, it can be shown that the control law in equation 5.1 will reduce the angular
velocity of the satellite. The gain in equation 5.1 determines how fast the angular
velocity of the spacecraft will be decreased. Higher gain gives faster dissipation of
kinetic energy, but at the cost of higher power consumption and possibly unstability.

5.2 Magnetic Stabilization

When the satellite is not tumbling, it’s desired that the scientific instrument points in the
orbit velocity direction. It’s therefore necessary to use a control law that stabilize the
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spacecraft with as high accuracy as possible. When magnetic coils is used as actuators,
normal attitude control laws cannot be used as the magnetic coils can only produce a
torque in the plane perpendicular to the magnetic field.
Based on a study of the literature on ADCS using magnetic coils, an adaptive PD-like
control law and the LQR optimal control problem has been decided to be further
investigated for magnetic stabilization of the CubeSTAR satellite. The LQR control
problem is investigated as a constant gain controller, and a periodic gain controller.

5.2.1 Proportional-Derivative Control
PD is a very common control law. Although they are essentially the same, there exist a
various number of different PD-controllers. A simple PD-control can be written on the
form when using attitude and angular velocity error feedback as

τ = −
[
Kd Kd

] [ωe
qe

]
(5.4)

where ωe = ωref − ωobb and qe is the attitude error quaternion vector. Kd andKd are
gain matrices. These gains does not need to be matrices, as they can also be treated as
scalars or vectors. For the system 5.4, where ωe =

[
ωe,1 ωe,2 ωe,3

]T and
qe =

[
qe,1 qe,2 qe,3

]T , the gains can be written as

Kp =

kp11 kp12 kp13
kp21 kp22 kp23
kp31 kp32 kp33

 , Kd =

kd11 kd12 kd13
kd21 kd22 kd23
kd31 kd32 kd33

 (5.5)

However, standard PD-control on small satellites using only magnetorquers does not
necessarily give good results [27].

In this thesis, the work of Lovera and Astolfi [22] has been decided to be further
investigated. This work does not rely on the frequently adopted assumption of
periodicity of the geomagnetic field. Instead it uses a adoption mechanism of the
measured geomagnetic field.

From chapter 3 the deterministic dynamics of the spacecraft was found to be

Iω̇ib
b + S(ωib

b )Iωib
b = τcoils (5.6)

By writing the system as

Iω̇obb = S(ωib
b )Iωobb + Γ(t)u (5.7)

where

Γ(t) = ST (b̃(t))S(b̃(t)) ≥ 0 (5.8)
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and

b̃(t) =
b(t)

||b(t)||
(5.9)

it’s possible to prove that the control input

u =

{
−εkvωr t ≤ t̄

−Γ̂−1av (ε2kpqr + εkvωr) t > t̄
(5.10)

can stabilize the system. The control law cannot use Γ(t) before the requirement in
equation 5.8 is fulfilled at time t̄. Before time t̄, the controller acts as a detumbler.
The differential equation

˙̂Γav =
1

t
(Γ− Γ̂av), t > 0 (5.11)

with initial condition

Γ̂av(0) = Γ(0) (5.12)

can be seen as a adoption mechanism on the geomagnetic field.

5.2.2 Linear-Quadratic Regulator

In this section, the LQR optimal control problem is investigated. From the work of
Gießelmann [14], Psiaki [32], Scholz [34], Wisniewski [45] amongst others, the LQR
problem is well documented for use on spacecrafts with the use of magnetorquers. The
problem is based on Pontryagin’s optimal theory, and can be stated as finding the control
input that minimizes a given criteria. For further reading, the reader should refer to
Anderson [1].

The LQR utilizes the state feedback in order to find the optimal control. In general, in
order to take system model uncertainties into account, and/or if the full state feedback is
not available, the states must be estimated. This can be done with for example Kalman
filtering, see [13], and the Linear Quadratic Gaussian control problem can be used to find
the optimal control.

The infinite-horizon optimal control is found by minimizing a quadratic cost criteria
given by

J =
1

2

∫ ∞
0

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt (5.13)

where
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uT (t) ·R · u(t) > 0

xT (t) ·Q · x(t) ≥ 0

}
for u(t),x(t) 6= 0 (5.14)

In equation 5.14,Q andR must be semi-positive definite and positive definite,
respectively. This ensures that all energy added to the system has a cost, and no energy is
given for free.

The LQR problem can, however, only be used on linear systems. As previous mentioned
in chapter 3, the continuous-time linear deterministic system can be described by the
state space model

ẋ(t) = F (t)x(t) +G(t)u(t) (5.15)

y(t) = Cx(t) (5.16)

The linearized system model found in chapter 3 must therefore be used. This model does
not behave the same as the non-linear system, but can be used in small deviations around
the equilibrium.

The solution to the optimal control, where J is minimized, can be written as

u(t) = −Kx(t) (5.17)

where th gainK is the solution to the optimal control problem, and is obtained as

K = R−1BTP (5.18)

In order to solve equation 5.18, the Riccati equation must solved. The Riccati differential
equation can be used to solve minimalization problems when dealing with quadratic cost
functions. The Riccati equation is given as [1]

Ṗ (t) = −P (t)A(t)−AT (t)P (t)−Q+ P (t)G(t)R−1(t)G(t)P (t) (5.19)

If the system is controllable or stabilizable, P (t) converges to a stationary solution,
yielding

0 = F TP + PF − PGR−1GTP +Q (5.20)

This equation is called the algebraic Riccati equation (ARE), and can be used because
the linear model was found stabilizable i chapter 3, and thus simplifies the calculation of
the optimal gain.

The closed-loop system can be written as

ẋ(t) = (A−BK)x(t) = Acx(t) (5.21)
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If the system is observable or detectable, as in this case, the optimal state feedback is
asymptotically stable, or equally,Ac is Hurwitz, if every eigenvalue ofAc has strictly
negative real part[1].

Periodic LQR control

A periodic is a system that repeat itself after a period of time, hence the name. Because
the geomagnetic field can be modeled as a near periodic field, periodic system theory can
be applied. Based on this, it’s possible to create a periodic gain LQR control law. The
following is based on Wisniewski [47]
Consider the following linear system

ẋ(t) = A(t)x(t) +B(t)u(t) (5.22a)
y(t) = C(t)x(t) (5.22b)

where the state and input vector is given as x(t) ∈ Rn and u(t) ∈ Rm, respectively. The
matricesA(t) andB(t) are periodic matrices of period T , and the system is periodic
system where

A(t+ T ) = A(t), B(t+ T ) = B(t) (5.23)

It’s then possible to calculate the LQR gain matrix for each time step over one orbit, and
use this value in a look-up table. The gain is precalculated off-line, and the optimal
control can be used for each time step over the orbit. The geomagnetic field is, however,
not periodic over each orbit because the Earth is rotating. The solution will only be an
approximation, and the performance may vary. However, the orbit will, after several laps,
end up in the same position as previous. The geomagnetic field can therefore be averaged
over this number of orbits for each time step. This will create an average periodic
geomagnetic field vector that can be used for calculating the periodic LQR gain matrix.

The average geomagnetic field can be calculated as

Ĝ =
1

T

∫ T

0

G(t)dt (5.24)

The periodic LQR gain matrix can then be calculated as above over one orbit, achieving
the gain matrix

K(t) = K(t+ T ) (5.25)
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Floquet Theory

When dealing with periodic linear system, Floquet theory can be used for stability
analysis. Because the stability of periodic systems are considered over time, the
transition matrix, see [13], can be calculated over one period. When the transition matrix
is calculated over one period, it’s called the monodromy matrix. The eigenvalues of the
monodromy matrix can then be found, and the placement of the eigenvalues can
determine if the system is stable. The material in this section is based on Wisniewski
[47].

Consider the zero input system

ẋ(t) = Ac(t)x(t) (5.26)

whereAc(t) can be the closed-loop system matrix from equation 5.21.
The transition matrix, Φ(t, t0), of the system 5.26 can be expressed as

Φ(t+ T, t0) = Φ(t, t0)C (5.27)

where t0 is the initial time, T is the period and C is a constant matrix.
By writing

Φ̇ = Ac(t)Φ (5.28)

it’s possible to show that

Φ̇(t+ T, t0) = Ac(t+ T )Φ(t+ T, t0) (5.29)

There exist a constant matrixR such that C = eRT and together with the initial
condition

Φ(t0, t0) = I (5.30)

it follows that

Φ(t0 + T, t0) = eRT (5.31)

Φ(t0 + T, t0) is called the monodromy matrix at t0, and the eigenvalues of the
monodromy matrix are independent of t0, The system is asymptotically stable, if and
only if the eigenvalues of theR matrix have negative real parts.
Another way of determine if the system is stable or not is to solve the monodromy
matrix differential equation

Φ̇(t+ T, t0) = Ac(t)Φ(t+ T, t0) (5.32)

If the eigenvalues of the monodromy matrix after one period, called the characteristic
multipliers ofAc(t), belongs on the open unit disc, the system is stable.
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Constant gain LQR control

Instead of using the periodic assumption, a constant gain LQR matrix can be found. The
control matrixG(t), was found to be time variant, and included the geomagnetic field in
the body frame. In order to find a constant gain LQR control law, the average of this field
must be found. This can be done by solving

Ĝ =
1

T

∫ T

0

G(t)dt (5.33)

over several orbits.

This averaged geomagnetic field vector can be used to calculate a constant gain matrix,
K, and tested for stability with Floquet analysis. The advantage of using this method
over the periodic assumption is that less memory is required, and is more simpler to
implement.

Choosing Q and R

In order to get a stable LQR control law, the weighting matrices must be correct chosen.
More weighting on the states will give a faster response, but will increase the power
consumption. If the control output is weighted more, the power consumption will be
lower, but with a slower state response. To little weighting can lead to a non-stabilizing
system, while to much weighting can lead to a unstable system. There exist no exact way
to select the weighting matrices, but there are several “rules of thumb” that can give
good results. These weighting matrices can indeed be time variant in the case of the
periodic LQR problem, but using time invariant weighting matrices usually give good
results. In addition, the weighting usually doesn’t need to be changed over time, as the
importance hierarchy of the states and control input doesn’t change over time. It’s
important to notice that when dealing with time variant and time invariant systems, a
stable time variant LQR controller doesn’t necessary needs to be stable on the time
invariant system, and vice versa.

If the designer has sufficient knowledge of the system, the maximum value of the
individual states and control inputs can be used to find the weighting matrices as

R(i, i) =
1

u2i,max
Q(i, i) =

1

x2i,max
(5.34)

However, this is usually not the case, and other methods of selecting the weighting
matrices must be used.

One usual way is to hold the control weighting matrix,R, constant and equal the identity
matrix.
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R = I3×3 (5.35)

The state weighting matrix,Q is then selected in a way that gives the best results.
ChoosingQ can be done in several ways. One common way is to let the matrix be
diagonal.

Q = diag(
[
kv1 kv2 kv3 kp1 kp2 kp3

]
) (5.36)

In [15], another way of selectingQ was found to give good results.

Q =

[
qk1I 0

0 qk2I

]T [
0.5I 0.5I
0.5I 0.5I

] [
qk1I 0

0 qk2I

]
(5.37)

where I is the 3× 3 identity matrix, and q, k1 and k2 are scaling factors.

The chosen weighting matrices must be checked for stability. This can be done by using
Floquet theory described in section 5.2.2. A less rigorous method is to test the calculated
controller in terms of simulation.

5.3 Summary
In this chapter, the B-Dot control law used for detumbling was presented. Right after
separation of the launch pod, relatively high angular velocities may occur. This controller
is able reduce the satellites angular velocity by only using magnetometer measurements.

For magnetic stabilization, an adaptive PD-like controller where presented. This
controller is quite complex, but does not rely on the frequently adopted assumption of a
periodic geomagnetic field. The LQR control problem where investigated, along with
both a periodic and constant gain solution. The stability of the LQR controller can be
tested with Floquet theory, and some material on choosing the weights in the
optimalization criteria where discussed.
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Chapter 6

Simulations

As previous mentioned, there exists very little data about the CubeSTAR satellite at this
moment. In order to simulate and test the examined controllers, several parameters must
be chosen. These parameters are best guesses and values suggested by references such as
Wertz and Larson [43].
In this chapter, the controllers found in chapter 5 are tested with simulations. The
controllers to be tested are the detumbling controller B-dot, the adaptive PD-regulator
and LQR controllers. The disturbances in chapter 3 are added for a more realistic
simulation. Because no attitude determination system is present, the full-state feedback
will be the “real” states from the non-linear system models, and hence no noise. In table
6.1 the simulation parameters are shown.

Table 6.1: Simulation Model Parameters

Parameter Symbol Value Unit

Total mass ms 2.0 kg

Intertia Matrix [I]

0 0 0
0 0 0
0 0 0

 kg ·m2

Displacement vector of CoM to GC rCoM−GC

[
0 0 0

]T
m

Coefficient of drag CD 2.0 −
Coefficient of solar preassure CP 1.6 −
Area of drag AD 0.03 m2

Area of solar preassure AP 0.03 m2

The displacement vector rCoM−GC, is selected rather low. When simulated with higher
values, the satellite became uncontrollable because the solar radiation torque and the
aerodynamic torque became larger. This shows the importance of that the displacement
vector must be made as low as possible in the design process. The residual dipole
disturbance is ignored due to the fact it was not possible to find an estimate of the value.
In addition, it could be possible to remove this disturbance by using this constant
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disturbance as a bias in the magnetic coil control.

In the simulations, the axes of importance are the y and z axes. This is because the
m-NLP system is mounted on the x axis. Stabilization about this axis is not necessarily
needed, because the scientific instrument only will spin about its own axis. However, the
x-axis is coupled with the other axes, and, because of the spin stability, will have an
effect on the y and z axes as well.

A lot of the work in this thesis was done regarding the tuning of the different controllers.
Although all the controllers did stabilize in the deterministic case, this was not the case
when the disturbances was added. The tuning of the controllers did give usable results
for the adaptive PD-control and the constant gain LQR controller, but it was not possible
to stabilize the spacecraft with the periodic controller in the presence of disturbances.

The magnetic coils are modeled as linear actuators, with saturation on the maximum
values found in chapter 4. As can be seen from the simulations, the maximum magnetic
moment for each coil is large enough.

The satellite is simulated in a circular orbit with an inclination of 90o at 500 km altitude.
This value was chosen because it lies in the middle of the CubeSTARs desired altitudes,
300 to 800 km. However, from chapter 3 it was found that the aerodynamic disturbance
is the only disturbance that changes with the altitude. This can indicate that in order to
reduce the disturbances, higher altitudes are of interest.

The Matlab and simulink source code can be found in appendix B and C.

6.1 The Uncontrolled Satellite
Before simulating the controllers found in the previous chapter, it’s interesting to see
how the uncontrolled spacecraft behaves. The non-linear system is added disturbances,
and the noise will be the same as used for the controllers later in this chapter in order to
see how much influence the disturbances has on the attitude of the satellite. From figures
6.1-6.4 it can be seen that, with the initial values shown in table 6.2, the satellite quickly
moves away from the initial attitude. and starts to tumble. The maximum disturbance
torques are identified as (Nm)

τdist,max =

 4.78 · 10−10

−8.99 · 10−10

1.38 · 10−9

 (6.1)

This is rather small values. If the satellite was designed in another way, the system
would be spin stable and gravity gradient stable, larger disturbance torques could
possibly be added to the system without losing stability.
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Table 6.2: Initial conditions for the uncontrolled satellite simulation

Initial Angles
[
Φ0 Θ0 Ψ0

]T [
10 −20 −10

]T
Initial body angular velocity (rad/s) ωobb,0

[
0 0 0

]T
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Figure 6.1: Euler angles from the uncontrolled satellite
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Figure 6.2: Quaternions from the uncontrolled satellite
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Figure 6.3: Angular velocity from the uncontrolled satellite
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Figure 6.4: Disturbance torques acting on the uncontrolles satellite

6.2 Detumbling simulation

As mentioned in chapter 5.1, the initial angular body rates can become large, especially
right after the separation of the P-POD. For simulation purposes, the initial conditions
was chosen as specified in table 6.3.

Table 6.3: Initial conditions and gain value for the B-dot detumbling simulation

Initial Angles
[
Φ0 Θ0 Ψ0

]T [
10 −20 −10

]T
Initial body angular velocity (rad/s) ωobb,0

[
0 0.1 0

]T
Detumbling gain K 10000

The performance of the simple controller from equation 5.1 can be seen in figures
6.5-6.9. The B-dot controller is able to reduce the initial body rates to around 0.002rad/s
within 3 orbits. Because the controller only uses the magnetic field measurements, the
lowest theoretical angular body rate would be the rate of change of the earth’s magnetic
field in the orbit frame.
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Figure 6.5: Euler angles from the B-dot control simulation
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Figure 6.6: Quaternions from the B-dot control simulation
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Figure 6.7: Angular velocity from the B-dot control simulation

0 1 2 3 4 5 6 7 8 9 10

−0.02

−0.01

0

0.01

0.02

Magnetic moments

M
x
(A

m
2
)

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

x 10
−4

M
y
(A

m
2
)

0 1 2 3 4 5 6 7 8 9 10

−0.02

−0.01

0

0.01

0.02

M
z
(A

m
2
)

orbit

Figure 6.8: Magnetic moments from the B-dot control simulation
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Figure 6.9: Magnetic torques from the B-dot control simulation

6.3 PD-Control simulation
For simulation of the adaptive PD-like control law, the same disturbances as used in the
uncontrolled satellite simulation are used. In table 6.4 the initial conditions and gain
values are shown.

Table 6.4: Initial conditions and gain value for the adaptive PD-control simulation

Initial Angles
[
Φ0 Θ0 Ψ0

]T [
10 −20 −10

]T
Initial body angular velocity (rad/s) ωobb,0

[
0 0 0

]T
Weighting factor ε 0.001

Quaternion weighting vector kp
[
0.2 0.4 0.2

]T
Body angular velocity weighting vector kv

[
0.01 0.2 0.1

]T
The gains was found with trial and error, and the performance of the controller can be
seen in figures 6.10-6.15. As can be seen from the figures, the maximum pointing
accuracy is identified as approximately

Φ = +8o and − 45o

Θ = ±4o

Ψ = ±15o
(6.2)
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Although the z-axis has a somewhat large maximum value, the angle is usually within
10o. The x-axis has very large values, but has no effect on the accuracy of the m-NLP
instrument, as already mentioned. It can therefore be concluded that the adaptive PD-like
controller is able to stabilize the spacecraft with disturbances added to the system. The
larger error at the end of the simulation is due to the fact that the geomagnetic field is
constantly changing. By ignoring the oscillations, the satellite is stabilized in about one
orbit.
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Figure 6.10: Euler angles from the PD control simulation
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Figure 6.11: Quaternions from the PD control simulation

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

x 10
−4 Angular velocity

ω
x
(r

a
d
/s

)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

x 10
−4

ω
y
(r

a
d
/s

)

0 1 2 3 4 5 6 7 8 9 10

−2

0

2

x 10
−4

ω
z
(r

a
d
/s

)

orbit

Figure 6.12: Angular velocity from the PD control simulation
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Figure 6.13: Magnetic moments from the PD control simulation
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Figure 6.14: Magnetic torques from the PD control simulation
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Figure 6.15: Disturbance torques from the PD control simulation

6.4 LQR Control

In this section, the LQR control laws are simulated. First, the periodic controller was
tested. Although stabilization was achieved without disturbances, it was not possible to
stabilize the spacecraft when disturbances was added. The periodic LQR control law
simulation results are therefore not shown. Many different tunings where tried, and it
seems like the gap between an unstabilizable controller and an unstable controller was
very small, making it very hard to find a stable periodic control law. However, when the
inertia matrix was changed, a stable controller where found. This shows the importance
that the satellite must be designed with stability in mind, and an uniform mass
distribution is not of interest.

6.4.1 Constant Gain

For the simulation of the constant gain LQR control, the initial condition and gain values
shown in figure 6.5 was used.
The disturbance torques are the same as in previous simulations. The performance of the
constant gain controller is shown in figures 6.16-6.21. The maximum pointing accuracy
is identified as approximately
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Table 6.5: Initial conditions and gain value for the constant gain LQR control simulation

Initial Angles

Φ0

Θ0

Ψ0

 [
10 −20 −10

]T
Initial body angular rate ωobb,0

[
0 0 0

]T
State weighting matrix Q 103 · diag([5000, 5000, 5000, 8.5, 200, 8.5])
Control weighting matrix R diag(

[
1 1 1

]
)

Φ = +3o and − 35o

Θ = +1o and − 5o

Ψ = ±15o
(6.3)

These results are similar to the PD-control simulation, but better pointing accuracy is
achieved. By ignoring the oscillations, the satellite is stabilized in about one orbit.
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Figure 6.16: Euler angles from the constant gain LQR control simulation
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Figure 6.17: Quaternions from the constant gain LQR control simulation
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Figure 6.18: Angular velocity from the constant gain LQR control simulation
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Figure 6.19: Magnetic moments from the constant gain LQR control simulation
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Figure 6.20: Magnetic torques from the constant gain LQR control simulation
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Figure 6.21: Disturbance torques from the constant gain LQR control simulation

6.5 Discussion

In this chapter, the performance of the different control laws was shown by simulations.
The B-dot detumbler control law works well for detumbling the satellite in the presence
of disturbances, and is able to reduce relatively high initial angular rates in a relatively
short time. The B-dot control law is very simple, and hence easy to implement.

Based on the results, the constant gain LQR control law is a suitable choice for the
magnetic stabilization of the CubeSTAR satellite as this controller gives the best results
of the magnetic stabilization controllers. The controller is able to stabilize the satellite in
the presence of disturbances, and an accuracy within the specification has been achieved.
In addition, this controller is also the least complex. After calculating the gain matrix
off-line, the attitude control system only needs to store the gain matrix, and calculate the
optimal control by multiplying the gain with the state vector estimated by the attitude
determination system.

The adaptive PD-like controller nearly gave as good results the constant gain controller.
However, this controller is much more complex, and is much harder to implement. The
advantage of this controller, however, is that it don’t use the assumption of a periodic
magnetic field. This makes it robust to geomagnetic model errors.
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The last controller investigated was the periodic LQR controller. In the presence of
disturbances, it was not possible to stabilize the spacecraft.

As can be seen from the simulations, the magnetic coils give large enough magnetic
moments in order to stabilize the spacecraft.
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Chapter 7

Implementation

For the scientific mission on the CubeSTAR satellite it’s intended to use a Field
Programmable Gate Array (FPGA) to perform calculations necessary to obtain the
necessary data. A FPGA is an integrated circuit that can be configured by the user. The
FPGA can be programmed in general by using a hardware description language (HDL).
Due to this, it would be interesting and practical to implement the ADCS on the same
device. Implementing the ADCS on a FPGA is, as far as the author know, not previous
done on a satellite. Because of this, it’s therefore necessary to investigate to see if it’s
possible to implement the attitude controller on the FPGA using the “DSP builder“
tool-box for Matlab/Simulink by Altera to compile HDL, how this is done, and how the
FPGA performs as a attitude controller.

Altera has created DSP builder which is essentially a tool-box compatible with
MATLAB/simulink. A lot of the work in this thesis went to finding out how the DSP
builder works, and how the tool can be used to compile and implement software on a
FPGA. The work was implemented and tested on a “BeMicro FPGA-based MCU
Evaluation Board“ with a Cyclone III FPGA and the more advanced “DSP Development
Kit, Cyclone III Edition”.

The main problem with using the DSP builder tool-box for this project is the fact that
matrix/vector calculations are not supported. In order to use the DSP builder tool-box,
the vector/matrix calculations must be created from scratch using the implemented scalar
functions. This work is tedious, and will be very complex when dealing with for
example multiplication and inverting of large matrices with bad numerical properties.
One solution to this problem is to write the ADCS directly in HDL.

Because of the fact that vector/matrix calculations is not supported in DSP-builder, the
constant gain LQR controller from chapter 5.2.2 was chosen. In addition to being the
simplest controller for stabilizing the spacecraft, it also gave the best results from the
simulations. For the FPGA simulink source code, see appendix D.
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7.1 HIL Simulation
The controller was implemented on the FPGA, and the HIL tool from DSP builder was
used in order to simulate and test the controller. HIL simulation is a simulation where
hardware is used in the simulation loop. The DSP-builder includes a HIL-simulation tool
that can be used for simulating together with FPGAs. The FPGA kits where connected to
a computer and the non-linear models including the environmental models where
simulated on the computer. Meanwhile, the angular velocity and quaternions where sent
to the FPGA, and the FPGA performed the attitude control calculations. The controller
inputs where sent back to the computer, and used in the non-linear system model.

Because this simulation only will show the feasibility of the FPGA, no disturbances was
added in the simulation.
The initial Euler angles where selected asΦ0

Θ0

Ψ0

 =

−160o

−80o

20o

 (7.1)

and the initial body angular rate as

ωobb,0 =

0
0
0

 (7.2)

The constant gain was calculated as

K =

 9500 −0.123 −3404.7 36.1 −3.6e− 4 5.75
−0.04 19726 0.079 −1.53e− 5 66.7 −2.6e− 4
−359.4 0.0067 13977.8 −21.96 1.53e− 5 7.63

 (7.3)

As can be seen from figures 7.1 -7.5, the spacecraft stabilizes in about one orbit, aligning
the equilibrium perfectly. From this, it’s possible to conclude that the attitude control can
be implemented on a FPGA using the DSP-builder software.
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Figure 7.1: Euler angles from the FPGA HIL simulation
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Figure 7.2: Quaternions from the FPGA HIL simulation
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Figure 7.3: Angular velocity from the FPGA HIL simulation
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Figure 7.4: Magnetic moments from the FPGA HIL simulation
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Figure 7.5: Magnetic torques from the FPGA HIL simulation



74 Chapter 7 Implementation



Chapter 8

Conclusions

8.1 Discussion of Results
In this thesis, the attitude control problem for the CubeSTAR satellite has been
presented. The magnetic coils design was developed, and two different types of attitude
controllers where investigated in addition to a detumbler control law.

The design of the magnetic coils showed that it’s possible to manufacture magnetic coils
that is able to control the spacecraft and meeting the design specifications. The coils are
very light, but is able to create a relatively large magnetic moment.

From the simulations, it was found that the B-dot detumbling control law performed
good, and reduced the satellites angular velocity from a relatively high initial value in the
presence of disturbances. The control law is very simple to implement, and is suitable as
a detumbler controller for the CubeSTAR satellite.

Regarding the magnetic stabilization, it was found that the constant gain LQR control
law gave the best results. This controller is simple to implement, and requires very little
memory. The controller gave a tolerated accuracy, but may be improved by more tuning
of the regulator parameters, changing the spacecraft properties and reduce the
disturbances. The satellite became stable after about one orbit.

The adaptive PD-like control law also gave usable results, but was not chosen because of
its complexity and a somewhat lesser pointing accuracy. The periodic LQR control law
failed to stabilize the system when realistic disturbances was added.

The constant gain control law was implemented on a FPGA, and tested using HIL
simulations. It was found that it is possible to implement the ADCS on a FPGA using
DSP builder, but because of the lack of matrix support in the DSP-builder software, the
ADCS should be written in HDL.

Better pointing accuracy could also have been achieved by changing the inertia matrix of
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the satellite. This could have been done by not using a uniform mass distribution, and
thus creating a spin stable and gravity gradient stable satellite. In addition, by moving the
m-NLP system and antennas to the longest sides of the satellite, the equilibrium would
change, resulting in that the longest side of the satellite would point towards nadir. This
layout would be much easier to make gravity gradient stable, and hence better results.

In addition, the pointing accuracy will also be improved by reducing the disturbances.
The residual dipole disturbance could be reduced by avoiding ferromagnetic materials
and canceling current loops. It was found that the displacement vector of the geographic
center to center of mass has a huge impact on the solar pressure and aerodynamic
disturbances. The solar pressure disturbance does not change with respect to the altitude.
This is not the case for the aerodynamic drag disturbance, where this becomes very low
at high altitudes. It’s therefore desirable to use an orbit with as high altitude as possible
to reduce disturbances, and hence increasing the stabilization. In deed, the geomagnetic
field also weakens at higher altitudes, but this can be compensated by more windings in
the coils.

8.2 Recommendation for Future Work
As this thesis is the first work to examine the attitude control problem for the CubeSTAR
project, there still exists a large amount of work to be done on the ADCS before the
satellite is ready to launch. Some of the future work to be done on the attitude control
system should consist of;

• It should be investigated if it’s possible to tune the constant gain LQR matrix to
improve the performance of the magnetic stabilization. An integral state can also
be added to the state vector, and thus improving the stabilization by removing bias
disturbances.

• The attitude determination system must be developed and incorporated with the
attitude control system. In this way, a more realistic model of the satellite is
achieved by using estimated system quaternion attitudes and angular velocities.
The uncertainties in the sensors are then included, and more realistic simulations
can be performed.

• Together with the attitude determination system, a complete HDL source code
must be written for the implementation on the FPGA. This code can then be used
on the FPGA, and verified in more realistic hardware in-the-loop simulations,
including a physical model of the satellite with the magnetic coils and sensors.

• The magnetic coils must be further investigated, and physical models of the coils
must be manufactured, tested and verified.
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• The simulation parameters was selected by best-guesses and recommendations in
the literature. These values must be determined by real hardware testing in order to
get a more realistic performance result of the controllers. This includes orbit
parameters, disturbance torques parameters and other properties of the satellite.

• Disturbance torques acting on the satellite must be minimized in order to improve
the magnetic stabilization. This includes the displacement vector of the geographic
center and the center of mass of the satellite, and residual magnetic dipole
moments.

• If the pointing accuracy must be better, it’s necessary to investigate if a gravity
gradient boom or momentum wheels can be used. Another way to get better
accuracy can be to redesign the satellite and move scientific instrument with
respect to gravity gradient stability.
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Appendix A

Abstract submitted to the 61st
International Astronautical Congress
(IAC)

During solar storms, turbulent electron clouds are formed in the ionosphere, causing
distortion in satellite communication signals. The phenomenon of electron clouds is far
from fully understood. Research in this area gives us the knowledge that we can later use
to notify about space weather, and to improve equipment such as GPS receivers.
CubeSTAR will measure the structures in the electron clouds and improve the resolution
2000-fold, from todays seven kilometers down to the meter level. To ensure correct
measurements, it is important that the multi-Needle Langmuir Probes are pointing in the
satellite’s velocity direction. In recent years a lot of work has been dedicated to attitude
control of spacecrafts using solely magnetic actuators. In this paper, several of these
controllers are investigated, including linear optimal control and adaptive control laws.
The controllers are discussed from a practical point of view concerning future on-board
implementation. The satellite’s dynamics are presented with corresponding disturbance
torques along with considerations concerning the magnetic coils. Simulation results are
given, which illustrate the performance of the different controllers, and recommendation
for future work on the attitude control system for the CubeSTAR project.
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Appendix B

MATLAB source code

InitSatelliteModel.m

%Find all open Simulink scopes and return
%their handles to an array called hScopeFig.
hScopeFig = findall(0,'Type','Figure','Tag','SIMULINK_SIMSCOPE_FIGURE');

%Set the renderer for all open scopes to painters.
set(hScopeFig,'Render','painters');

%Turn off the Scople/Zbuffer warnings.
warning('off','Simulink:SL_ScopeRendererNotZBuffer');
%*****************************************************
%* Initialization *
%*****************************************************
clear all;
close all;

%Declare global variables
global I A B K B_O_x B_O_y B_O_z;
global u_f r_o i_m w_o
%load data files
load igrf11-2010-500km
load gamma
load gammaNorm
load gammaNorm2
load BDipole_avg.mat
load KPeriodic
load KConstant
load Gamma0SIM
%Constants
G = 6.67428e-11; %gravity constant [m^3kg^-1s^-2]
m_e = 5.9742e24; %earth mass [kg]
g_0 = G*m_e; %earth gravitation coefficient [m^3s^-2]
re_e = 6378.1e3; %earth equatorial radius [m]
re_p = 6356.8e3; %earth polar radius [m]
re_m = 6371.2e3; % Earth's mean radius [m]
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T_e = 86400; % earth period (1 day) [s]
w_e = 2*pi/T_e; %angular velocity [rad/s]
h_o = 500e3; %height above sea level [m]

%Satellite and orbit properties
dim=[0.200,0.10,0.10]; %length,width,height[m]
m_s=2.0;%mass[kg]
r_o = re_m + h_o; %orbit radius [m]
w_o = sqrt(g_0/(r_o^3)); %angular velocity [rad/s]
T_o = 2*pi/w_o; %Orbit period [s]
N = 2; %Number of orbits
T_t = T_o*N; %Total time [s]

%Inertia tensors
I_xx=m_s/12*(dim(2)^2+dim(3)^2);
I_yy=m_s/12*(dim(1)^2+dim(3)^2);
I_zz=m_s/12*(dim(1)^2+dim(2)^2);
%I_xx=0.007;
%I_yy=0.008;
%I_zz=0.003;
%I_xx = 60;
%I_yy = 70;
%I_zz = 5;
I=diag([I_xx,I_yy,I_zz]); %Matrix of intertia
k_x = (I_yy-I_zz)/I_xx;
k_y = (I_zz-I_xx)/I_yy;
k_z = (I_xx-I_yy)/I_zz;

%Magnetorquer properties
i_max = 0.06; %Maximum current [A]
N_x = 258; %Number of windings
N_y = 144; %Number of windings
N_z = 144; %Number of windings
A_x = 5329e-6; %mean Coil area [m^2]
A_y = 13724e-6; %mean Coil area [m^2]
A_z = 13724e-6; %mean Coil area [m^2]
mx_max = i_max*N_x*A_x; %Maximum
my_max = i_max*N_y*A_y; %Maximum
mz_max = i_max*N_z*A_z; %Maximum

%angular velocity inertial to orbit
w_o_io = [0,w_o,0]';
%initial angular velocity orbit to body
w_b_ob_0 = [0.0,0,0]';
%initial attitude orbit to body
euler_0 = pi/180*[10,-20,-10];
q_0 = euler2q(euler_0);

%initial rotation matrix, body to orbit
R_b_o = Rquat(q_0);
%initial rotation matrix, orbit to body
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R_o_b = R_b_o';
%initial angular velocity, inertial to body
w_b_ib_0 = w_b_ob_0 + R_o_b*w_o_io;

m_dipoleDist = [0,0,0]';

%Sun preassure coefficients
Pp = 4.5*10^-6;
Ap = 0.1*0.2;
Cp = 1.6;

%Aerodynamic drag coefficients
r = [0.005,0.001,0.001]';
%rho = 42.418*10^-11;%300 km
rho = 6.697*10^-13;%500 mean km
%rho = 1.170*10^-14;%800 km
Cd = 2.0;
v0 = 2*pi*r_o/T_o;

%Linearized dynamics
A = [0, 0, -w_o*k_x, -6*w_o^2*k_x, 0, 0;

0, 0, 0, 0, 6*w_o^2*k_y, 0;
-w_o*k_z, 0, 0, 0, 0, 0;
0.5, 0, 0, 0, 0, 0.5*w_o;
0, 0.5, 0, 0, 0, 0;
0, 0, 0.5, -0.5*w_o, 0, 0];

%dipole model parameters
T = round(T_o);
u_f=7.9*10^15;
i_m = (90-11)*pi/180;
i_0 = 11*pi/180;
t=1;

%LQRConstantGain
B = [I\BDipole_avg;zeros(3)];
R = eye(3)*10^1;
Q=diag([5000000,5000000,5000000,8500,200000,8500]);
K=-lqr(A,B,Q,R);

%Floquet with Rung-Kutta2
Phi = eye(6);
Ts = 100;
for k=1:Ts:T-1

Bs = [B_O_x(k),B_O_y(k),B_O_z(k)];
B = [I\skew3(Bs)*skew3(Bs);zeros(3)];
Ak = A + B*K;
k1 = Ak*Phi;
k2 = Ak*(Phi+Ts*Ak*Phi);



88 Chapter B MATLAB source code

Phi = Phi + Ts*(k1+k2)/2;
end
maxE=max(abs(eig(Phi)))

%FPGA K
K_FPGA = [9500,-0.123,-3404.7,36.1,-3.6e-4,5.75;...

-0.04,19726,0.079,-1.53e-5,66.7,-2.6e-4;...
-359.4,0.0067,13977.8,-21.96,1.53e-5,7.63];

%PD
Bs = R_o_b*[B_O_x(1),B_O_y(1),B_O_z(1)]';
Gamma0 = skew3(Bs)'*skew3(Bs)/norm(Bs)^2;
eps = 0.001;
k_v1 = 0.01;
k_v2 = 0.2;
k_v3 = 0.1;
k_p1 = 0.2;
k_p2 = 0.4;
k_p3 = 0.2;

KPeriodic.m

global T_o u_f r_o i_m i_0 I A
%Calculate the periodic LQR gain
T = round(T_o);
K1=zeros(3,6,T);
b_0=zeros(3,1);
for t = 0:T-1

b_0 = u_f/r_o^3*[cos(w_o*(t-i_0/w_o))*sin(i_m),...
-cos(i_m),2*sin(w_o*(t-i_0/w_o))*sin(i_m)]';
as(1:3,t+1)= b_0;
B = [I\skew3(b_0)*skew3(b_0)/norm(b_0);zeros(3,3)];
p=1*10^-15;
k_1=1;
k_2=0.01;
Q=p*diag([k_1,k_1,k_1,k_2,k_2,k_2]);
R = eye(3);
K1(:,:,t+1) = -lqr(A,B,Q,R);

end
KP=0;
KP(1:3,1:6,1:T)=K1;
for i = 1:14

KP(1:3,1:6,end+1:end+T) = K1;
end
%}
save('K1.mat','K1')
save('KPeriodic.mat','KP')
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igrfFieldOrbit.m

%calculate the magnetic field using the igrf11 model
clear all;
close all;
G = 6.67428e-11; %gravity constant [m^3kg^-1s^-2]
m_e = 5.9742e24; %earth mass [kg]
g_0 = G*m_e; %earth gravitation coefficient [m^3s^-2]
T_e = 86400; % earth period (1 day) [s]
w_e = 2*pi/T_e; %angular velocity [rad/s]
lon0 = w_e*180/pi;
%300km
alt300 = 6371.2e3 + 300e3;
w_s300 = sqrt(g_0/(alt300^3));
lat300_0 = w_s300*180/pi;
%500km
alt500 = 6371.2e3 + 500e3;
w_s500 = sqrt(g_0/(alt500^3));
lat500_0 = w_s500*180/pi;
%800km
alt800 = 6371.2e3 + 800e3;
w_s800 = sqrt(g_0/(alt800^3));
lat800_0 = w_s800*180/pi;
T_s = 2*pi/w_s500;
T_s300 = 2*pi/w_s300;
T_s500 = 2*pi/w_s500;
T_s800 = 2*pi/w_s800;
%w_s300*T_s300=¬2pi
%2*pi/(w_e*T_s)=15.2450 orbits
%300km
for i = 1:T_s300*15

lon = lon0*i;
lat300 = lat300_0*i;
B300 = igrf_m(lon,lat300,alt300*10^-3,2010,'-Fxyz')*10^-9;
box300(i) = B300(1);
boy300(i) = B300(2);
boz300(i) = B300(3);
time300(i) = i;

end
%500km
for i = 1:T_s500*15

lon = lon0*i;
lat500 = lat500_0*i;
B500 = igrf_m(lon,lat500,alt500*10^-3,2010,'-Fxyz')*10^-9;
box500(i) = B500(1);
boy500(i) = B500(2);
boz500(i) = B500(3);
time500(i) = i;

end
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%800km
for i = 1:T_s800*15

lon = lon0*i;
lat800 = lat800_0*i;
B800 = igrf_m(lon,lat800,alt800*10^-3,2010,'-Fxyz')*10^-9;
box800(i) = B800(1);
boy800(i) = B800(2);
boz800(i) = B800(3);
time800(i) = i;

end

savefile = 'igrf11-300km.mat';
save(savefile, 'time300', 'box300', 'boy300', 'boz300');

savefile = 'igrf11-500km.mat';
save(savefile, 'time500', 'box500', 'boy500', 'boz500');

savefile = 'igrf11-800km.mat';
save(savefile, 'time800', 'box800', 'boy800', 'boz800');

figure(1)
hold on
grid
legend('x(T)','y(T)','z(T)')
plot(box300,'b')
plot(boy300,'g')
plot(boz300,'r')

figure(2)
hold on
grid
legend('x(T)','y(T)','z(T)')
plot(box500,'b')
plot(boy500,'g')
plot(boz500,'r')

figure(3)
hold on
grid
legend('x(T)','y(T)','z(T)')
plot(box800,'b')
plot(boy800,'g')
plot(boz800,'r')

BDipoleavg.m

%Bavg computes the average B matrix in the linearized satellite dynamics
%using the geomagnetic field model data over one orbit period.
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%The average of the B matrix divided with the 2-norm of the magnetic
%field, and he average of the B matrix divided with the squared 2-norm
%of the magnetic field are also calculated.
%Fredrik Stray 2010

global T_o i_m r_o u_f w_o i_0

%Calculating over one period
for t = 0:T_o

b = u_f/r_o^3*[cos(w_o*(t-i_0/w_o))*sin(i_m);...
-cos(i_m);2*sin(w_o*(t-i_0/w_o))*sin(i_m)];
S = skew3(b)'*skew3(b)';
S11(t+1)=S(1,1);
S12(t+1)=S(1,2);
S13(t+1)=S(1,3);
S21(t+1)=S(2,1);
S22(t+1)=S(2,2);
S23(t+1)=S(2,3);
S31(t+1)=S(3,1);
S32(t+1)=S(3,2);
S33(t+1)=S(3,3);

end

%Calculating the averages and saving
BDipole_avg=[sum(S11),sum(S21),sum(S31);

sum(S12),sum(S22),sum(S32);
sum(S13),sum(S23),sum(S33)]/t;

save('BDipole_avg.mat','BDipole_avg')

Bavg.m

%Bavg computes the average B matrix in the linearized satellite
%dynamics using the geomagnetic field model data over one orbit
%period. The average of the B matrix divided with the 2-norm of
%the magnetic field,
%and he average of the B matrix divided with the squared 2-norm of the
%magnetic field are also calculated.
%Fredrik Stray 2010

%The geomagnetic field model data is loaded.
load igrf11-2010-500km

%Calculating over one period
for i = 1:length(B_O_x)

vec=[B_O_x(i),B_O_y(i),B_O_z(i)]';
S = skew3(vec)*skew3(vec)';
S11(i)=S(1,1);
S12(i)=S(1,2);
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S13(i)=S(1,3);
S21(i)=S(2,1);
S22(i)=S(2,2);
S23(i)=S(2,3);
S31(i)=S(3,1);
S32(i)=S(3,2);
S33(i)=S(3,3);

S = skew3(vec)*skew3(vec)'/norm(vec)^2;
Ss11(i)=S(1,1);
Ss12(i)=S(1,2);
Ss13(i)=S(1,3);
Ss21(i)=S(2,1);
Ss22(i)=S(2,2);
Ss23(i)=S(2,3);
Ss31(i)=S(3,1);
Ss32(i)=S(3,2);
Ss33(i)=S(3,3);

S = skew3(vec)*skew3(vec)'/norm(vec);
Sss11(i)=S(1,1);
Sss12(i)=S(1,2);
Sss13(i)=S(1,3);
Sss21(i)=S(2,1);
Sss22(i)=S(2,2);
Sss23(i)=S(2,3);
Sss31(i)=S(3,1);
Sss32(i)=S(3,2);
Sss33(i)=S(3,3);

end

%Calculating the averages and saving
gamma=[sum(S11),sum(S21),sum(S31);

sum(S12),sum(S22),sum(S32);
sum(S13),sum(S23),sum(S33)]/i;

save('gamma.mat','gamma')

gammaNorm2=[sum(Ss11),sum(Ss21),sum(Ss31);
sum(Ss12),sum(Ss22),sum(Ss32);
sum(Ss13),sum(Ss23),sum(Ss33)]/i;

save('gammaNorm2.mat','gammaNorm2')

gammaNorm=[sum(Sss11),sum(Sss21),sum(Sss31);
sum(Sss12),sum(Sss22),sum(Sss32);
sum(Sss13),sum(Sss23),sum(Sss33)]/i;

save('gammaNorm.mat','gammaNorm')

skew3.m
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function S = skew3(vec)

S=[0 -vec(3) vec(2);
vec(3) 0 -vec(1);
-vec(2) vec(1) 0];

Wq.m

function W = Wq(q)
W = 0.5*[q(4) -q(3) q(2);

q(3) q(4) -q(1);
-q(2) q(1) q(4);
-q(1) -q(2) -q(3)];

euler2q.m

function q = euler2q(in)
% q = EULER2Q(phi,theta,psi) computes the unit quaternions
%q = [eps1 eps2 eps3 eta]
% from Euler angles phi, theta and psi
%
% Author: Thor I. Fossen
% Date: 8th June 2000
% Revisions: 6 October 2001, T I. Fossen - eta as first element in q
% 2010 Fredrik Stray
phi=in(1);
theta=in(2);
psi=in(3);
R = Rzyx(phi,theta,psi);
R(4,4) = trace(R);
[Rmax,i] = max( [R(1,1) R(2,2) R(3,3) R(4,4)] );
p_i= sqrt(1+2*R(i,i)-R(4,4));
if i==1,

p1 = p_i;
p2 = (R(2,1)+R(1,2))/p_i;
p3 = (R(1,3)+R(3,1))/p_i;
p4 = (R(3,2)-R(2,3))/p_i;

elseif i==2,
p1 = (R(2,1)+R(1,2))/p_i;
p2 = p_i;
p3 = (R(3,2)+R(2,3))/p_i;
p4 = (R(1,3)-R(3,1))/p_i;

elseif i==3,
p1 = (R(1,3)+R(3,1))/p_i;
p2 = (R(3,2)+R(2,3))/p_i;
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p3 = p_i;
p4 = (R(2,1)-R(1,2))/p_i;

else
p1 = (R(3,2)-R(2,3))/p_i;
p2 = (R(1,3)-R(3,1))/p_i;
p3 = (R(2,1)-R(1,2))/p_i;
p4 = p_i;

end

q = 0.5*[p1 p2 p3 p4]';
q = q/(q'*q);

Rzyx.m

function R = Rzyx(phi,theta,psi)
% R = Rzyx(phi,theta,psi) computes the Euler angle
% rotation matrix R in SO(3) using the zyx convention
%
% Author: Thor I. Fossen
% Date: 14th June 2001
% Revisions:

cphi = cos(phi);
sphi = sin(phi);
cth = cos(theta);
sth = sin(theta);
cpsi = cos(psi);
spsi = sin(psi);

R = [...
cpsi*cth -spsi*cphi+cpsi*sth*sphi spsi*sphi+cpsi*cphi*sth
spsi*cth cpsi*cphi+sphi*sth*spsi -cpsi*sphi+sth*spsi*cphi
-sth cth*sphi cth*cphi ];

Rquat.m

function R = Rquat(q)
% R = Rquat(q) computes the quaternion rotation matrix R in SO(3)
% for q = [eps1 eps2 eps3 eta]
% Fredrik Stray 2010
eps = q(1:3);
eta = q(4);

S = skew3(eps);
R = eye(3) + 2*eta*S + 2*S^2;
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q2euler.m

function euler = q2euler(q)
% [phi,theta,psi] = Q2EULER(q) computes the Euler angles from the unit
% quaternions q = [eps1 eps2 eps3 eta]
%
% Author: Thor I. Fossen
% Date: 14th June 2001
% Edited by Fredrik Stray 2010

R = Rquat(q);

phi = atan2(R(3,2),R(3,3));
theta = -asin(R(3,1));
psi = atan2(R(2,1),R(1,1));

euler=180/pi*[phi theta psi];
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Appendix C

SIMULINK source code
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Figure C.1: Top-Level Block Diagram
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DSP builder source code
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Figure D.3: Block Diagram of the FPGA matrix calculation
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