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SUMMARY

Prenatal paracetamol exposure has been associated with neurodevelopmental outcomes in childhood.
Pharmacoepigenetic studies show differences in cord blood DNA methylation between unexposed
and paracetamol-exposed neonates, however, causality and impact of long-term prenatal paracetamol
exposure on brain development remain unclear. Using a multi-omics approach, we investigated the ef-
fects of paracetamol on an in vitro model of early human neurodevelopment. We exposed human em-
bryonic stem cells undergoing neuronal differentiation with paracetamol concentrations corresponding
to maternal therapeutic doses. Single-cell RNA-seq and ATAC-seq integration identified paracetamol-
induced chromatin opening changes linked to gene expression. Differentially methylated and/or
expressed genes were involved in neurotransmission and cell fate determination trajectories.
Some genes involved in neuronal injury and development-specific pathways, such as KCNE3, overlap-
ped with differentially methylated genes previously identified in cord blood associated with prenatal
paracetamol exposure. Our data suggest that paracetamol may play a causal role in impaired
neurodevelopment.

INTRODUCTION

Paracetamol (also known as acetaminophen) is the most widely used analgesic and antipyretic during pregnancy, and it is considered safe for

use as the first line option for pregnant women in need of mild analgesics or antipyretics.1–4 A number of large epidemiological studies have

reported an association between long-termmaternal paracetamol use during pregnancy and increased risk of adverse neurodevelopmental

outcomes, such as attention deficit/hyperactivity disorder (ADHD), in the child.5–13 The association is reported to be stronger with long-term

exposure and higher dose.14 In 2019, the EUs pharmacovigilance safety committee (PRAC) reviewed all the available evidence, including non-

clinical and epidemiological studies, regarding the impact of prenatal paracetamol exposure on impaired neurodevelopment in offspring.

PRAC concluded that the available evidence is inconclusive, and recommended that the summary of product characteristics (SmPC) of para-

cetamol containing products should be updated to reflect the current state of scientific knowledge; ‘‘Epidemiological studies on neurode-

velopment in children exposed to paracetamol in utero show inconclusive results’’ (PRAC, 2019).15 More recently, a group of researchers
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Figure 1. Neuronal differentiation of hESC to model neurodevelopmental effects of paracetamol

(A) Schematic illustration of the different phases of the neuronal differentiation protocol from Day 0 to Day 20. Cells were exposed to 100 or 200 mMparacetamol

from Day 1 and onwards. The effect of paracetamol on gene expression and epigenetic profiles was evaluated at Day 7 and Day 20.

ll
OPEN ACCESS

2 iScience 26, 107755, October 20, 2023

iScience
Article



Figure 1. Continued

(B) Representative brightfield images of the differentiation timeline for control, P100 or P200 cells during differentiation at Day 2, 4, 7, 8, 10, 13, 14, 17 and 20 (scale

bar corresponds to 100 mM).

(C) ddPCR results from 4 to 6 replicates ofmRNA expression of selectedmarker genes fromDays 0, 7, 13 and 20. Significant comparisons aremarkedwith asterisks

(Student’s t test, *: p % 0.05, ***: p % 0.001).
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published a consensus statement and literature review in Nature Reviews Endocrinology concluding that there is growing evidence support-

ing the hypothesis that in utero exposure to paracetamol can impair fetal development.16 This conclusion is still highly debated and contested

by others (ENTIS, 2021)17–19 reflecting a need for further research.

Using samples from the Norwegian Mother, Father and Child cohort (MoBa) biobank, we have previously shown differences in DNA

methylation (DNAm) in cord blood from children diagnosed with ADHD who have been exposed to paracetamol (>20 days) during pre-

natal development compared to unexposed children.20 These findings suggest that DNAm might be involved in the pathogenesis of

ADHD, but the causality and effect on neuronal differentiation and brain development is not known. It is well established that normal pre-

natal neurodevelopment involves cellular differentiation and establishment of cell-type specific epigenetic patterns, and that these events

are prone to influences by environmental factors. For instance, maternal smoking has been shown to induce DNAm changes and modulate

risk of neurodevelopmental disorders (NDDs).21–23 If and how paracetamol modulates the apparent increased risk of NDDs is currently

unknown.

Although paracetamol has been used for more than a hundred years, the mechanisms of action still remain unclear and appear to involve

numerous physiological pathways, that vary among in vitro and in vivo studies.24,25 Following administration of therapeutic doses, paracet-

amol is primarily metabolized into pharmacologically inactive glucuronide and sulfate conjugates, while a small portion is oxidized to form the

highly reactive metabolite, NAPQI.26 Although the precise neurotoxic mechanism of action for paracetamol and its metabolites remains un-

clear, it is known that deacetylation of paracetamol by N-deacetylase yields p-aminophenol, later conjugated with arachidonic acid by FAAH

to form the active metabolite N-arachidonoylphenolamine (AM404).27 Paracetamol, once it crosses the blood-brain barrier,28 may provide

neuroprotection at low doses, whereas high doses may induce neurotoxicity,29 possibly through oxidative stress. Furthermore, to our knowl-

edge no studies have addressed whether and how the different cell populations derived from hESCs during early neuronal differentiation

could potentially metabolize paracetamol and form bioactive compounds.

Recently, we established a protocol for neuronal differentiation of human embryonic stem cells (hESCs), which can be used in neurophar-

macological studies.30 In the present study, we have used thismodel systemof early humanbrain development and investigated the effects of

paracetamol exposures on transcriptional and epigenetic regulation. Paracetamol doses were selected to reflect therapeutic maternal doses

and fetal in utero exposures.31–33 By integrating multiple omics methods (bulk RNA-seq, bulk DNAm, single-cell RNA-seq and ATAC-seq,

Table 1) we observed time and dose effects of paracetamol exposure during neuronal differentiation.

RESULTS

Neuronal differentiation exposure, timeline, and morphology

We investigated epigenetic and transcriptomic effects of exposure to paracetamol using an in vitro neuronal differentiation protocol that

drives hESCs toward anterior neuroectoderm.30,34 The neuronal differentiation is divided into three stages: the neural induction phase

(Stage I) ends at Day 7, the self-patterning phase (Stage II) ends at Day 13, and the FGF2/EGF2-induced maturation phase (Stage III) ends

at Day 20 (Figure 1A). We replaced culture media daily, and the cells were exposed to 100 or 200 mM paracetamol during differentiation

from Day 1 and onwards. These concentrations have been documented to be in the range of therapeutic plasma concentrations.31–33 Unex-

posed (control) and paracetamol-exposed cells were harvested for downstream analyses on Day 7 and 20. We also harvested control cells at

the onset of differentiation (hESCs; Day 0), and on the intermediate timepoint that cells were passaged (Day 13) to assess whether paracet-

amol exposed cells had mRNA abundance changes related to proliferation or delayed differentiation.

The timeline of brightfield images of the control cells versus cells exposed to 100 (P100) or 200 mM paracetamol (P200) documents the

morphological changes and cell culture density at differentiation Days 2, 4, 7, 8, 10, 13, 14, 17 and 20 (Figure 1B). Tightly packed neuro-

epithelial cells form the neural rosettes by Day 7 reassembled at the next stage under high density cell passaging and proceeded to matu-

ration. We did not observe any distinct morphological changes in the differentiating cultures exposed to 100 (P100) or 200 mM paracetamol

(P200). However, preliminary paracetamol titration experiments showed that exposing the differentiating cells to 400 mM paracetamol

increased cell death and unpatterned morphology in cells and were thus discontinued. A set of representative images following the

20-day timeline in control cultures and 100, 200 and 400 mM paracetamol-exposed cells is presented in supplemental information

(Figures S1A–S1C).

Validation of differentiation markers

The effect of paracetamol on gene expression at Days 7 and 20 was assayed using digital droplet PCR (ddPCR) (Figure 1C). Expression of the

pluripotency transcription factors (TFs) POU5F1 and NANOG decreased significantly after neural induction. As anticipated, we observed an

increase in expression of the neural markers SOX2,OTX2, FOXG1, andMAP2 on Day 7 and VIM, TUBB3, andNEUROD1 on Day 13. Notably,

the expression of FOXG1, MAP2, and NES was significantly different between exposed and control cells on Day 7. Differential expression

upon paracetamol exposure was also documented for filament NES, PAX6, and NEUROD1 on Day 20.
iScience 26, 107755, October 20, 2023 3



Table 1. Overview over presented datasets

Day Control P100 P200

0 RNA-seq (5), DNAm (6)

7 RNA-seq (6), DNAm (6), scRNA-seq (2) RNA-seq (5), DNAm (6), scRNA-seq (2) RNA-seq (5), DNAm (5), scRNA-seq (2)

13 RNA-seq (4), DNAm (4)

20 RNA-seq (4), DNAm (6), scRNA-seq (2),

scATAC-seq (1)

RNA-seq (4), DNAm (6), scRNA-seq (2),

scATAC-seq (1)

RNA-seq (6), DNAm (4), scRNA-seq (2),

scATAC-seq (1)

P100; 100 mM paracetamol, P200; 200 mM paracetamol. Number of replicates are shown in parentheses.
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Paracetamol-induced gene expression changes in genes involved in neural development

To delineate the effect on gene expression, we performedbulk gene expression analysis using RNA-seq in controls and paracetamol exposed

cells (P100 and P200; Figures 2 and S2; Table S1). Principal component analysis showed that samples clustered according to differentiation

day (Figure S2A; STAR Methods). Overall, when we compared gene expression from P100 versus control we identified 121 differentially ex-

pressed genes (DEGs, Figure 2A) and 1 433 DEGs between Day 7 and Day 20 P200 versus control (Figure 2B) (Table S1). Of these, 67 DEGs

overlapped between P100 and P200 compared to control (Figure 2C). Pairwise comparisons between paracetamol (P100 and P200) and con-

trol at each day are shown in Figures S2B and S2C. The bulk RNA-seq analysis of the previously selected marker genes (Figure 1B) correlated

well with the ddPCR results of selected marker genes (Figure S1D).

Gene set enrichment analyses (GSEA) identified downregulated biological processes (BPs) involved in synaptic organization, transmission,

and regulation in theP100 time-responseanalysis (Figure2D).Notably, oneupregulatedBP in theP200 time-responseanalysiswereenriched for

forebrain regionalization, whereas downregulated BPs were enriched for synaptic signaling, regulation of transsynaptic signaling, regulation of

synaptic plasticity and regulation of neurotransmitter levels (Figure 2E).Moreover, theDEGs associatedwith P100 andP200 reflectedBP enrich-

ment of transmitter transport and regulation, synaptogenesis, synaptic organization, and plasticity. We also performed g:profiler35 analysis of

BPs on up and downregulated DEGs for P100 time-response and P200 time-response (Tables S1H and S1I). Top P100 time-response downre-

gulated GO terms were generation of neurons, nervous system development, neuron differentiation and for P200 time-response downregu-

latedGO termswere nervous systemdevelopment, transsynaptic signaling and synaptic signaling (Tables S1J andS1K).Of the 46BPs for down-

regulated DEGs P100 time-response, 40 overlapped with downregulated P200 time-response correlating with many overlapping GO terms

identified above. There were no upregulated BPs for P100 time-response DEGs, and top identified BPs for upregulated P200 time-response

GO terms were anatomical structure morphogenesis, animal organ morphogenesis and animal organ development (Table S1J and S1K).

The bulk RNA-seq pairwise comparisons of the P100 and P200 paracetamol-exposed cells to controls, showed an overlap of several DEGs

(Figures S2D–S2F). Exposure to paracetamol was associated with downregulation of genes previously linked to migration and neural devel-

opment (e.g.,NTRK3, PMEL,36CCDC184,37MYT138,39) (Figures 2F and S2G). Furthermore, we identifiedDEGs linked to synaptic organization

and transduction (e.g.,MYO16,40 HS3ST441, SORCS342), metabolism (GCK43), neuronal survival, dendrite branching, axonal growth and neu-

ral projection in development (e.g., NSG1,44 TMEM3C6,45 TMOD146, PLPPR447, NEBL,48 NRN1,49 and GFRA250) and channelopathies (e.g.,

CACNA1B/C,51 SCN3A52) (Figures 2F and S2C). Thus, these bulk RNA-seq analyses revealed transcriptional dysregulation of genes related to

possible developmental delays between control and paracetamol-exposed cells.
Single-cell RNA sequencing reveals dose-specific changes in several major cellular processes after paracetamol exposure

To explore cell-type specific gene expression and maturation signatures over time, we performed single-cell RNA sequencing (scRNA-seq)

analysis of control and paracetamol-exposed cells (P100 and P200) at Days 7 and 20 (Table S2). Specifically, our aimwas to determine whether

paracetamol exposure caused deviations in neuronal differentiation compared to control cells. A total of 15 201 cells (n = 6 924 Day 7 cells,

n = 8 277Day 20 cells) from two time-course experimentswere aggregated andprojected in UniformManifold Approximation and Projections

(UMAPs, Figure 3; STARMethods). The scRNA-seq datamay also be visualized in the open access webtool (hescneuroparacet), where expres-

sion of genes can be explored per cell, cluster, and time point.

The cells clustered according to differentiation day and not exposure to paracetamol (Figure 3A). Consistent with previous results,34

Seurat-predicted cell cycle phase showed an increase in G1 cells at Day 20 (Figure 3B). However, the existing cell cycle analysis tools are un-

able to decipher the proportion of neurons that are in G0 phase. Using CytoTRACE pseudotime differentiation trajectory analysis, the most

differentiated cells were found at Day 20 (Figure 3C). The composite neuronal differentiation P1-P13 clusters were manually annotated with

genes CRABP1, PAX6, TYMS, KIF20A, FGF17, HES5, WNT5A, ASCL1, GNG8, DLX1, SRSF9, VEPH1 and TAGLN2, respectively (Figure 3D). At

Day 7, we observed a shift in cell composition from P1 to P2 in the cells exposed to paracetamol (Figure 3E). The effect wasmore prominent at

Day 20, albeit not statistically significant (Tables S2I and S2J and STAR Methods),53 with a higher proportion of paracetamol-exposed cells

compared to controls annotated to cluster P5 and a more prominent effect at P200 exposure, whereas a lower proportion were annotated

to P6, P9 and P10 for both concentrations (Figure 3E).

To further investigate cell identity, the data were juxtaposedwith a scRNA-seqHumanBrain dataset54 (STARMethods and hescneuropara-

cet). Most cells at Day 7 resembled neuronal progenitors, whereas cells at Day 20 were similar to neuronal progenitors, neuroblasts and
4 iScience 26, 107755, October 20, 2023
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Figure 2. Paracetamol exposure of differentiating hESCs modulates expression of genes involved in neural development

(A and B) Volcano plots of longitudinal differences in gene expression difference between Day 7 and Day 20 (Day 20 minus Day 7) in A) P100 and B) P200 cells

compared to control cells. Marked in red are significantly differentially expressed genes with an FDR <0.05.

(C) Corresponding Venn diagram shows the number of overlapping DEGs between the P100 and P200 time-response (TR) comparisons (Day 20 minus Day 7

compared to control).

(D and E) Top 20 enriched BPs based on GSEA in (D) P100 cells and (E) P200 cells compared to control cells over time (Day 20 minus Day 7). Normalized

enrichment scores are represented as bars with FDR q-values.

(F) Gene expression levels of selected DEGs in both P100 and P200 cells compared to control cells over time (TR) (overlapping area in C).
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neurons (Figure 3F). At Day 20, there was a subtle shift from cells annotated as neuroblasts toward the less differentiated neuronal progenitors

in paracetamol-exposed cells compared to controls (Figure 3G). UMAPplots of the dual co-expression of the genes ID2/ID4,CDK1/CDKN1C,

HES1/STMN2, REST/NEUROD1, NKX2-1/WNT7B, and NTRK1/DLX6-AS1 indicate agreement between these maturation signatures and the

CytoTRACE trajectory analysis (Figures 3C and 3H).

The analysis of the top DEGs per cluster (Figure S4) and data exploration (Figure S5), showed that paracetamol exposure induced changes

in several major processes at the selected timepoints. We identified dose-dependent changes that link paracetamol exposure to cell-cycle

transition important in neuronal maturation (MKI67, PCNA, TP53, CDK1, MYBL2 and GJA1) neural induction differentiation, or its inhibition

(REST, RAX, PAX6, HES1, HES5, ID3 and ID4), neurite outgrowth and cortical neurogenesis (GBA2, ASPM), neuronal maturation (CDKN1C,

POU2F1, POU3F1, ROBO1, STMN2 and STMN4) and WNT and FGF signaling (FRZB, WNT4, WNT7B, FGF8 and FGFRL1) (Figure S5). We

observed a differential and dose dependent expression of crucial spatiotemporally regulated transcription factors associated with brain

development (e.g., NKX2.1, OTX2, FOXG1, ASCL1, ISL1, EMX2 and HOXA1), neurotransmitter transporter expression (SAT1, SLC2A1).

Finally, we found differential expression of genes related to cellular response to toxic insults (e.g., DDR1; Figure S5).
Paracetamol exposure is associated with differential expression of neural lineage markers

Performing GO analyses, we identified enrichment of BPs after paracetamol exposure in the scRNA-seq datasets. First, we identified the 10

most upregulated and downregulated BPs between control cells and P100 or control cells and P200 cells at Day 7 (Figures S3A and S3B,

respectively). Notably, BPs involved in DNA replication and cell-cycle regulation were upregulated in cells exposed to both paracetamol

doses, whereas we identified a downregulation of a BP which involves generation of neurons. DEGs in P100 cells compared to control cells

were enriched for more neuronal specific annotations. Furthermore, P200 compared to control cells identified upregulated GO terms

involved in cellular responses to toxic insults andDNA checkpoint activation. At Day 7, the relative gene expression of top 20 DEGs between

P100 (Figure S3C) and P200 (Figure S3D) is shown. Furthermore, the gene expression of the top overlappingDEGs between the P100 and P200

cells compared to control cells at Day 7 (Figure S3E) identifiedgene specific similarities.We found changes in crucial genes, such as themaster

gene of forebrain development FOXG155 and genes of the HES and ID gene families involved in differentiation and neurogenesis.56

Next, we extracted the top 10 upregulated anddownregulated BPs among theDEGs at Day 20 between control and P100 cells (Figure S3F)

or control and P200 cells (Figure S3G). In both comparisons, downregulated GO terms included neuron/nervous system development and

microtubule polymerization or depolymerization. Of the top 20 DEGs at Day 20 between paracetamol-exposed and control cells, we found

major patterning TFs, such as NKX2-1 and EMX2 (Figures S3H and S3I). Moreover, genes that belong to the ZIC family, among other genes

involved in Notch andWnt signaling, were also identified (Figures S3H and S3I). The gene expression of the top overlapping genes between

P100 and P200 cells were compared to control cells at Day 20 (Figure S3J). The analysis of GO terms delineated gene specific changes, such as

upregulation of SELENOW (Figure S3D), previously associated with neuroprotection from oxidative stress.57 Paracetamol exposure induced

differentiation lag as evidenced by the PAX6 expression in some P200 cells (Figure 1C). We also observed a downregulation of tissue-

and stage-specific genes, such as FABP7, ISL1, STMN2 and INA. In addition, TUBB1A, the isotype associated with postmitotic neurons,58

and TUBB2B, that constitutes 30% of all brain beta tubulins,59 were also found among the downregulated genes. Interestingly, PEG10 and

C1orf61 andMIR9-1HG appear in the Day 20 P200 comparisons, genes which have recently been linked to cortical migration and intercellular

communication,60 further documenting how the P200 dose of paracetamol could affect proper network formation and cell-to-cell signaling.
Integration of scATAC- and scRNA-seq link paracetamol-induced changes in chromatin opening to transcriptional activity at

Day 20

To understand whether paracetamol exposure during differentiation influenced the chromatin landscapes at Day 20 we performed single-cell

assay for transposase-accessible chromatin using sequencing (scATAC-seq).61We obtained 3 042 nuclei for Day 20 control and 3 480 and 4 282

nuclei forDay 20 exposed to 100 mM (P100) and 200 mMparacetamol (P200), respectively. First, we reanalysed scRNA-seqdata fromDay 20 con-

trols, P100 and P200, and remapped the P3-P13 clusters (Figures 4A and 4B and webtool hescneurodiffparacet). The maturation trajectory

cohered with the initial Day 7-Day 20 time point analysis (Figures 3C and 4C). Next, we mapped the scATAC-seq data (Figure 4D) to 15 scA-

TAC-seq clusters (C1-C15; Figure S6A) thatwe integratedwith the annotated scRNA-seqP3, P5, P9, P10andP13 clusters (Figure 4E). Thequality

of the combined scATAC-seq datasets was documented with an even distribution of integrated clusters (P3, P5, P9 and P10) over TSS, pro-

moters, exons, introns, anddistal genomic regions (Figures S6B and S6C). The P13 cluster is represented by very fewnuclei anddisplayed lower

enrichment across all genomic regions.
6 iScience 26, 107755, October 20, 2023



Figure 3. scRNA-seq analysis revealed shifts in cell type composition of differentiating cells exposed to paracetamol

(A–E) Day 7 and Day 20 control cells and cells exposed to 100 mM (P100) or 200 mM (P200) paracetamol were visualized with UMAP and colored by (A) sample

identity, (B) Seurat predicted cell cycle phase, (C) CytoTRACE pseudotime differentiation trajectory, (D) defined Seurat clusters at resolution 0.4 with

corresponding gene annotations and (E) cell proportions per cluster.

(F) UMAP plots of cells colored by SingleR cell annotation to Early Human Brain reference with corresponding cell annotations. Cell types starting with ‘‘e’’

are hESC derived cells and cell types starting with ‘‘h’’ are in vivo human embryo cell types. Nb1-4; neuroblasts, Prog1-2; neuronal progenitors, Rglf; radial
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Figure 3. Continued

glia-like cells, SCa; stem cells, NbM; medial neuroblasts, NbML1; mediolateral neuroblasts, NProg; neuronal progenitors, OMTN; oculomotor and trochlear

nucleus.

(G) Corresponding cell proportions per cell type.

(H) UMAP plots of dual gene co-expression for ID2/ID4, CDK1/CDKN1C, HES1/STMN2, REST/NEUROD1, NKX2.1/WNT7B and NTRK.1/DLX6-AS1 indicate that

maturation signatures agree with the CytoTRACE trajectory analysis.
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To further explore the differential chromatin accessibility across the genomes, we correlated distal accessible regions to gene expression.

Cis-regulatory interactions with active genes were predicted by the integrative single-cell analysis using ArchR.62 This allows for identification

of putative cis regulatory element (CREs) – gene pairs (peak-to-gene links (P2GLs) for biological and functional comparisons of Day 20 control

cells with P100 and P200 exposed cells.We grouped P2GLs into five clusters and plotted heatmaps of gene expression and gene scores for all

three datasets (P2GLs represent actively expressed genes linked to chromatin opening, Figures 4G–4I). Heatmaps show differential gene

expression to the left, and gene scores for chromatin opening to the right, for CRE-gene pairs across cell clusters P3, P9 and P10 for control,

and P3, P5, P9 and P10 for P100 and P200. The rows represent k-means 1–5 and are based on z-score-scaled associated gene expression

levels. The scores for scRNA-seq and scATAC-seq were nicely correlating within the k-mean clusters showing good integration of the two

modalities. When we integrated the scATAC-seq and the scRNA-seq datasets for Day 20, the clusters P3, P5, P9 and P10 and P13 were map-

ped (Figure 4E). Notably, the heatmaps of control and P100 and P200 cells were different with an absence or presence of the integrated cell

cluster P5, also described as having differential prominence in the scRNA-seq data (Figure 3E).

We observed relatively similar numbers of putative CREs in controls (n = 30,771), P100 (n = 26,216) and P200 (n = 28,883) (Figures 4G–4I).

Only 6,960 of the putative CREs overlapped between the three datasets, whereas 4,732, 3,435, and 6,534 putative CREs specifically overlap-

ped between control and P100, control and P200, and P100 and P200, respectively (Figure 4J; Tables S3A–S3C). Moreover, we observed that

many of the putative CREs were only detected in individual datasets (Day 20 control; n = 15 644, P100; n = 10 460 and P200; n = 12 304 CREs).

These variations in putative CREs suggests that paracetamol exposure results in changes in chromatin accessibility. For example, in the locus

of the neuronal marker gene STMN2,which showed higher gene expression in unexposed cells compared to exposed cells, showed changes

in chromatin opening peaks in paracetamol exposed cells (Figures S3J, S5, and S6D). Furthermore, accessibility peaks in the ELAVL4 locus

displayed differential chromatin opening in clusters P3, P5, P9, and P10. We also identified putative CREs in the exposed cells that correlated

with higher ELAVL4 expression in control cells compared to P100 or P200 cells (Figure 4K; Tables S3A–S3C).

Paracetamol affects region-specific chromatin accessibility

The putative enhancer-gene interactions identified likely represent chromatin regulomes in the control and the paracetamol-exposed cells.

We therefore compared the level of overlap of linked genes to better understand the effect of paracetamol exposure on chromatin regu-

lation. Linked genes are defined as actively expressed genes by scRNA-seq that have linked chromatin accessibility regions in proximity to

the gene locus. A larger proportion of linked genes overlapped between the Day 20 control and paracetamol exposed cells (n = 4,047),

and the P100 (n = 1 224) and P200 (n = 1,048) cells (Figure 4L; Tables S3A–S3C and S3V). GO analyses of the linked genes revealed a

common enrichment of BPs, such as nervous system development, biological regulation, neurogenesis, and neuron differentiation, varying

in the different k-means (km) clusters (Figure S6D; Tables S3D–S3F). Linked genes identified in paracetamol exposed cells (P100, n = 652;

P200, n = 915 and 1424 for both P100 and P200) indicate exposure-induced changes in gene expression. Interestingly, linked genes

including neuronal lineage transcription factors (e.g., PAX6, NEUROD4, NEUROG1, SOX9, and SOX2) and genes involved in chromatin

modification (e.g., histone H3K27 acetyltransferase EP300,63 Histone H3K27me3 demethylase KDM6A64 and chromatin remodeller SNF2

subfamily member SMARCAD165), suggest that paracetamol may contribute to modulation of transcriptional regulation and chromatin

structure (Table S3V). In addition, GO analysis of the putative CREs identified enrichment of BPs per k-means group and sample are shown

in Tables S3G–S3U.

Enriched TF motifs in the CREs may infer binding events that regulate gene expression programs. We identified TFs (n = 29) that were

common for control, P100 and P200 cells, includingNEUROD1,NEUROG1, SOX9, HMGA1 andmembers of theONECUT andNHLH families,

which have previously been described in the neuronal differentiation protocol.34 TFs were found to be common between P100 and P200 cells

(n = 18) or dependent on paracetamol dose (Figures 4M, 4N, S3I, and S6F; Table S4). The TF footprinting predicts binding events due to the

protection of the TF from Tn5 transposition in accessible chromatin.62 Based on the differential TF enrichment in P100 and P200 cells (Fig-

ure 4N), we generated TF footprints for OTX2, TBR1, and EMX2 as aggregate of genome-wide binding sequences adjusted for Tn 5 bias

in the different integrated clusters (Figure 4O). Moreover, the UMAP plots for Motif Matrix show that these factors have binding events

that are enriched in open chromatin in different integrated clusters. The OTX2 motifs were more enriched in clusters P3 and P10, whereas

TBR1 motifs were mainly detected in cluster P9 and EMX2 motifs were found in clusters P9 and P10 (Figure 4O) suggesting that these TFs

may potentially have cluster specific gene expression regulation. The computed sequence logos identified for these factors across enriched

clusters are shown below each TF (Figure 4O).

Paracetamol induced changes in DNAm during neuronal differentiation

To assess whether exposure of hESCs undergoing neuronal differentiation to paracetamol inducedDNAmchanges, we analyzed control cells

and cells exposed to 100 (P100) and 200 mM paracetamol (P200) at Day 7 and 20. The experimental set-up included analysis of control cells
8 iScience 26, 107755, October 20, 2023
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Figure 4. Effects of paracetamol on chromatin accessibility and integration with scRNA-seq at Day 20

(A–C) scRNA-seq UMAP plots colored by A) sample identity, B) scRNA-seq clusters or C) CytoTRACE pseudotime differentiation trajectory.

(D and E) scATAC-seq UMAP plots of colored byD) sample identity and E) remapped clusters following constrained alignment of cell populations by scATAC-seq

and scRNA-seq integration.

(F) Supervised pseudotime trajectory of integrated clusters.

(G–I) Heatmaps of scATAC-seq and scRNA-seq side-by-side representing peak to gene links (P2GLs) in G) control cells, H) P100 cells and I) P200 cells. Rows were

clustered using k-means (k = 5).

(J) Overlap of putative CREs from P2GLs analyses of Day 20 control versus P100 and P200.

(K) ELAVL4 locus browser view (GRCh38.p13) from 5000 cells with ATAC-seq signals in integrated clusters. Differential chromatin opening (black triangles), ATAC

peaks (red), P2GLs (arcs) and putative CREs enriched in P200 or P100 and P200 cells (colored triangles) are shown. The bar plot to the right shows the

corresponding percentage of cells expressing ELAVL4, and the plot below represent the expression levels.

(L) A Venn diagram representing overlap of linked genes.

(M) Venn diagram of TF regulators identified from P2GLs integrative analysis.

(N) A selection of positive TF regulators computed using gene integration scores with motifs in the putative CREs.

(O) Footprints for selected TF regulators OTX2, TBR1 and EMX2 demonstrating preferential opening per cluster; below are the corresponding ArchR motif

deviation scores, motif matrix and representative sequence logos identified in the scATAC-seq dataset.
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harvested at Day 0 and 13 as reference points of possible dysregulation (Figures 5 and S7; Table S1). Assessment of principal component

analysis showed clustering of samples according to differentiation day (Figure S7C; STAR Methods). Overall, the distribution of average

global DNAm was indistinguishable across exposed and control cells at all time points regardless of paracetamol dose (Figure S7A). In

contrast, non-CpGDNAm levels decreased during differentiation and were lower in cells exposed to 200 mMparacetamol compared to con-

trol cells at Day 20 (Figure S7B).

To investigate whether the cells exposed to different doses of paracetamol (P100 and P200) respond differently than control cells fromDay

7 toDay 20, we performed aDNAm time-response analysis.We observed no significant DNAmchanges in P100 compared to control between

Day 7 and Day 20 (not shown). In contrast, 3 113 CpGs responded differently to P200 compared to control cells over time (Figure 5A). CpGs

showing an increase in DNAm are annotated to genes with key functions in dynamic cellular redox changes in the developing brain, such as

the neural specification gene PRDM1666 enriched for GO terms such as synaptic signaling and chemical synaptic transmission (Figure 5B).

CpGs showing a decrease in DNAm are annotated to genes enriched for gene ontology (GO) terms involved in synaptic regulation,

GABAergic signaling, and cell morphogenesis (Figure 5B). Overall, when we assessed DNAm levels at all CpGs (Figure 5C) compared to

all significant CpGs (Figure 5D), we found a general dose-dependent increase in DNAm levels at significant sites in paracetamol-exposed

cells compared to controls at both Day 7 and Day 20. The annotation of differentially methylated CpGs (DMCs) in relation to genes and

CpG islands was similar across the different comparisons (Figures S7D and S7E).

Next, we performed comparisons of DNAm levels in paracetamol-exposed cells to controls at Day 7 (Figures S7F and S7H; Table S1) and

Day 20 (Figures S3G and S3I; Table S1) for the different doses. As expected, we observedmore significant DNAm changes after longer expo-

sure (Day 20) and at higher concentration of paracetamol (P200) (Table S1). We found no dose-dependent DMCs at Day 7 whereas at Day 20 a

larger number of CpGs (n = 8 940) were differentially methylated between P100 and P200. Moreover, there was some overlap between DMCs

at 7 andDay 20 (Figure S7J). To define a regulatory role of paracetamol inducedDNAmchanges on gene expression, we assessed the overlap

betweenDEGs and differentially methylated genes (DMGs) for the pairwise comparisons and time-response analyses (Table S1). The percent-

age of DMGs overlapping with DEGs varied between 3 and 63% for the different comparisons. The P200 time-response analysis revealed 180

overlapping genes, and some selected genes are visualized in Figure 6. DNAm levels forGRIK3,CACNA1D,ABAT,MAPT, andANKRD6were

inversely correlated with gene expression, whereas DNAm levels for PAX7, CDH2 and WNT7B were positively correlated with gene expres-

sion at Day 20. GLI3 had DNAm levels that correlated with both negative and positive regulation (Figure 6).

Overlap of dysregulated genes in differentiating hESCs and cord blood from children exposed to paracetamol during

pregnancy

We have previously identified an association between differential DNAm in cord blood and long-term paracetamol exposure during preg-

nancy in children with ADHD.20 To assess the translational potential and causality of these findings, we compared the dysregulated genes

identified in the present model to the DMGs associated with paracetamol exposure in cord blood. In brief, the DMCs and the DEGs in para-

cetamol-exposed differentiating cells at Day 20 were correlated with DMCs/DMGs in cord blood.20 Interestingly, we identified 20 genes that

were both differentially methylated and differentially expressed in Day 20 paracetamol-exposed cells which overlapped with DMGs identified

in cord blood between paracetamol-exposed children with ADHD versus controls (Figure 7A). Furthermore, and only one gene (KCNE3) over-

lapped betweenDay 20 DMCs, Day 20 DMGs and paracetamol-exposed childrenwith ADHD versus ADHD controls in cord blood (Figure 7B).

We assessed the expression of these 20 overlapping genes in scRNA-seq data (Figure 7C) and RNA-seq data (Figure 7D). Notably, genes

involved in differentiation, such asGAB267, orNotch andHedgehog signaling pathways (for example,NOTCH4,68 PTCH2,69 SHISA270) show a

dose-dependent downregulation of expression in paracetamol-exposed cells compared to controls. This high variation in expression levels

after paracetamol exposure compared to controls, indicates a dose effect. Among genes identified in Day 7 P200 cells, we observed upre-

gulation of ZDHHC1471 and SGK1,72 that are associated with control of neuronal excitability and neuronal response to injury, respectively.

Several toxic insult response genes were also upregulated at Day 20 in the P200 treated cells, such as IER3,73 SPRED2,74 GPR130,75 and

SLC22A23.76
10 iScience 26, 107755, October 20, 2023



Figure 5. Exposure to paracetamol induces changes in DNAm over time during neuronal differentiation

(A) Volcano plot showing the effect of 200 mM paracetamol from Day 7 to Day 20. CpGs with adjusted p value <0.05 were considered significant.

(B) Corresponding enriched GO-terms for CpGs showing a decrease in DNAm (top) or an increase in DNAm (bottom) over time (Day 20 – Day 7) in P200 cells

compared to control cells. Adjusted p-values are indicated by color.

(C) Average DNAm levels per sample for all CpGs across differentiation for Day 0, 7, 13, and 20.

(D) Average DNAm levels per sample for all significant CpGs (paracetamol-exposed cells vs. control comparisons) at Day 0, 7, 13, and 20. (C and D) *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001.
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DISCUSSION

Stem cell based systems for toxicological studies of medications allow for more realistic testing of concentrations in vitro and are often moni-

tored using multi-omics approaches.77 Due to the inaccessibility of early human neurodevelopment for studies of the effects of paracetamol

we have utilized a well characterized neuronally differentiating hESC protocol30 as an easily accessible and 3R’s compliant source. To our

knowledge, this is the first multi-omics study investigating how paracetamol exposure affects epigenetic and transcriptional programmes

using an in vitro hESC model of neuronal differentiation.34

We identified differential expression of genes enriched for BPs involved in transmitter transport and regulation, synaptic organization and syn-

aptogenesis and synaptic plasticity. Interestingly, in cells exposed to the high dose of paracetamol (P200), we also identified enrichment of GO

categories reflecting possible patterning deviations from forebrain differentiation. Thus, we observe an effect of paracetamol exposure on tran-

scriptional dysregulation and possible developmental delays during neuronal differentiation. Additionally, among the commonDEGs, irrespec-

tive of paracetamol dose, we identified SORCS3,which encodes a brain-expressed transmembrane receptor associated with neuronal develop-

ment andplasticity that has been previously identified in aGWASmeta-analysis of ADHD significant risk loci.78 The scRNA-seq analysis identified

dose-dependent DEGs involved in several major processes during neuronal differentiation. Exposure to paracetamol resulted in a subtle shift in

cell populations from P1 to P2 at Day 7. At Day 20 the P6, P9 and P10 clusters decreased whereas P5 markedly increased in P200. The DEGs link

paracetamol exposure to genes involved in cell-cycle length and phase transition and genes important for neuronal maturation, neurite

outgrowth, cortical neurogenesis, expression of neurotransmitter transporters and WNT and FGF signaling. Further, the data also

documented dose-dependent differential expression of crucial spatiotemporally regulated TFs associated with neuronal differentiation. These

findings provide evidence of transcriptomic dose-dependent effects of paracetamol exposure related to cellular response to toxic insults and

fate-determinationdeviationqueuesatDay20. Furthermore, the results identifiedan impactofparacetamolexposureon the regulationof central,

autonomic and sympathetic nervous system development, which are all central to finetuning human cognition and associated with ADHD.79–81
iScience 26, 107755, October 20, 2023 11
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Figure 6. DNAm and gene expression for selected overlapping DMCs and DEGs

(A–I) Change in DNAm and gene expression levels between control and P100 or P200 for (A)GRIK3, (B) PAX7, (C) CDH2, (D) CACNA1D, (E)WNT7B, (F)GLI3, (G)

ABAT, (H)MAPT and (I) ANKRD6. Each point represents a matched replicate between RNA-seq and DNAm and black lines represents a linear regression line of

the mean of values.
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To further characterize and investigate epigenetic mechanisms involved in altered cellular heterogeneity and differentiation, we per-

formed scATAC-seq to map CREs and compare the chromatin landscape changes between control and cells exposed to P100 and P200

at Day 20 (hescneurodiffparacet). Interestingly, the results from these analyses identified differences in several chromatin accessible regions
12 iScience 26, 107755, October 20, 2023
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Figure 7. Overlap with differentially methylated genes in cord blood

(A and B) Venn diagrams showing the overlap between Day 20 DEGs and DMCs for paracetamol comparisons and (A) paracetamol-exposed children with ADHD

versus controls and (B) paracetamol-exposed children with ADHD versus ADHD controls in cord blood from MoBa.

(C and D) Gene expression levels of overlapping genes identified in cord blood derived from (C) RNA-seq and (D) scRNA-seq data.
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in genes previously associated with fate mapping and neurogenesis, which have been identified in risk determination studies focusing on

cognition and autism spectrum disorders (e.g., DLK1, DIO3, IPW82,83) and ADHD (e.g., MEG384).

Genome-wide association studies (GWASs) suggest that cognitive disorders might also result from the cumulative effect of gene variant

regulation and parent-of-origin effect,84 which in ADHD has been associated with genes such as DDC, MAOA, PDLIM1, and TTR. We also

identified chromatin openness differences related to genes identified in the paracetamol exposed cells. For example, PCDH7, which acts

as a cue for axonal guidance via roles in cell adhesion, was among the genes that were both differentially expressed and had different chro-

matin openness in Day 20 P200 cells. Dysregulation of PCDH7 could be relevant to the semaphorin-plexin signaling documented by the en-

riched BPs in the P100 cells, and it is noteworthy as it has also been associated to ADHD.78
iScience 26, 107755, October 20, 2023 13
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We also identified dose-dependent differences in chromatin accessibility of the neural specification gene locus PRDM16, which correlates

well with DNAm analyses where exposure to paracetamol was associated with increased DNAm at CpGs annotated to PRDM16. This gene

has been linked to regulation of transcriptional enhancers activating genes involved in intermediate progenitor cell production and repres-

sing genes involved in cell migration.66 Themolecularmechanism of PRDM16 remains unknown but has been associatedwith reactive oxygen

species regulation in the embryonic cortex.85

Integrative analyses of scRNA-seq and scATAC-seq to explore the links between chromatin accessibility and gene expression docu-

mented high correlation and showed an overlap between scATAC-seq and scRNA-seq cell clusters. This analysis identified many putative

CREs, and linked genes affected by paracetamol exposure. Although a portion of linked genes overlapped between the control and exposed

cells, there was only a small overlap between the putative CREs. This suggest that many local changes in chromatin opening were affected by

paracetamol exposure and that these CREs may regulate different gene expression programmes in control and paracetamol exposed cells.

How paracetamol regulates chromatin opening is not known, and we have limited knowledge on the effect of paracetamol on the TFs recog-

nition of DNAmotifs. However, our data suggest that genes linked to putativeCREs that were affectedby paracetamol exposure have a role in

regulation of transcription and chromatin. In particular, a linked gene specific for paracetamol exposure was EP300, which codes for a histone

acetyltransferase responsible for the active enhancer mark H3K27ac.86 EP300 expression decreased subtly upon paracetamol exposure both

at Day 7 and 20, and these changes in EP300 levels may change the number of active enhancers in the paracetamol exposed cells. Further-

more, we identified TFs such as EMX2, TBR1 and OTX2 whose regulatory activity is affected by paracetamol exposure at the differentiation

endpoint. This is suggestive of a mechanism for how paracetamol exposure may change gene expression programmes in early brain devel-

opment. More work is needed to follow up the functional role of paracetamol exposure on the enhancer regulation and gene expression.

We found a general dose-dependent increase in DNAm in paracetamol exposed cells compared to controls at bothDay 7 andDay 20. The

genes were enriched for BPs involved in cell morphogenesis and adhesion, but also synaptic transmission and signaling with a focus on cat-

echolamines and GABAergic transmission. Considering that this is an in vitro system, the findings are compelling since structural cortical

changes and catecholaminergic transmission have been the target of various epidemiological studies and drug clinical trials, both in children

and adults with ADHD.87–90 It is biologically plausible that medications that cross the placenta and the blood-brain barrier, may interfere with

normal fetal brain neurodevelopment, previously shown for valproic acid, and more recently for topiramate.91 This is especially relevant for

substances that cross the blood-brain barrier, which is considered functional by the 8th week of gestation.92 However, invasive testing of the

fetal compartment in human is rarely indicated, which makes data on safety during pregnancy for most substances scant. Thus, most phar-

macoepigenetic studies address associations of DNAmdifferences in cord blood or placenta from neonates delivered at term exposed to the

maternal medication during pregnancy, which is also the case for paracetamol.93–95

We previously found DMGs in cord blood from children with ADHD exposed to long-term maternal paracetamol use.20 However, the cau-

sality, and relevance of such findings to brain development are not known. The hESCs used in our experiments represent the inner cell mass

(ICM) of Day 6 preimplantation-blastocysts.96 The ICM is known to differentiate to form the primitive ectoderm around Day 7.5 post fertiliza-

tion,97 but placental circulation is not established before Day 17–20.98 Prior to this, the fraction of paracetamol that reaches the developing

embryo does so via passive diffusion.99 Interestingly, irrespective of the temporal differences of the two models,100 comparing the differentially

expressed and methylated genes identified in our study revealed overlap of several genes identified in cord blood with potential compelling

relevance to early brain development. Notably, identification of a dose-specific effect on several genes have previously been shown to be asso-

ciated with neural injury and toxic-insult response.101–103 To our knowledge this is the first study that has identified an effect of paracetamol on

differential DNAm of KCNE3 in a neuronal differentiation model of hESCs. Differential DNAm at KCNE3 was also identified in our MoBa study

in cord blood.20 Furthermore, KCNE3 was also identified in a DNAm analysis of extremely low gestational age new born (ELGAN) cohort.93

KCNE3 is an interesting candidate, which encodes a voltage-gated ion channel with important functions in regulating release of neurotrans-

mitters and neuronal excitability.104,105 Among the overlapping genes, there was also IER3, whose differential DNAmethylation at specific CpG

sites has been previously associated with in utero exposure to bisphenol A (BPA).106 The same study had identified TSPAN15, which is also

significantly differentially methylated between control and P200 cells in our neuronal differentiation model.

We also compared our results to previously published studies by exploring expression of relevant genes in the webtool (hescneuropara-

cet). In a rat model of fetal paracetamol exposure,107 dysregulation in specific ABC efflux transporters and related enzymes was found after

chronic treatment of the mothers in E19 fetal brain and choroid plexus. In our model of paracetamol exposure, we also identified differential

expression of the relevant genes ABCA1, ABCC5, ABCD3, and GSTM3. Moreover, the expression of ABCC4, which encodes the multidrug

resistance-associated protein MPRP4, known to play a role in paracetamol efflux was also upregulated at Day 20.108 In another model assess-

ing chronic paracetamol exposure effects in E15-19 rat brains,109 similar to our findings, an increased expression of genes related to prolif-

eration (e.g.,MKI67,MTDH), cytoskeletal structural genes (e.g.,NEFL at Day 20), metabolic stress alleviation (e.g., PFKP at Day 7) or decrease

in genes related to differentiation (SOX12 at Day 7) migration and dendrite orientation (such as CRMP1 at Day 20) was found. Notably, a sig-

nificant increase in APOE expression at P200 cells at Day 7 was observed indicating stress or neuronal damage,110 and a similar response by

the increased expression for glutamate transporter EAAT4.111 A DNA repair gene, RAD54L, was upregulated in P200 treated cells at Day 7

(Table S2C), and interestingly this gene was also found differentially expressed in the prefrontal cortex of paracetamol-exposedmice.112 Also,

a stress response transcription factorATF4was found significantly downregulated in P200 cells at Day 7 (Table S2C) and has been shown to be

differentially expressed in a single-cell study ofmice hepatocytes upon paracetamol overdose.113Moreover, the significant IL6ST (GP130) and

MEF2A114 upregulation and the similarities of our findings to the other in vivo models, validate both the trajectories identified by our

approach, and the chosen paracetamol neurotoxicity platform for early development studies.
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Abiding by the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles, we provide full access to the scRNA-seq and

scATAC-seq datasets in open access shiny web platforms for scRNA-seq (hescneuroparacet) and integrative scATAC-seq/scRNA-seq (hesc-

neurodiffparacet).115,116 These webtools allow for data correlation with other published gene expression datasets, and enable plotting, ex-

porting, and downloading high resolution figures of gene expression and gene co-expression analysis UMAPs of any gene. Furthermore,

there are multiple options for dataset exploration and visualization, such as heatmaps, violin-, box-, proportion- and bubble plots in different

tabs, where gene expression may be viewed per cell, cluster, treatment and timepoint. Chromatin opening can be explored for genomic loci

of interest for input sample, ATAC clusters or integrated clusters in a genome browser view with peak-to-gene link annotations (instantly

plotted for 500 random cells each time). In addition, the processed datasets and code are made available for customization and integration

with other studies. To our knowledge this is the first in vitro study of paracetamol exposure of hESCs under neuronal differentiation, that pro-

vides access to scRNA-seq and scATAC-seq data via interactive webtools.

Limitations of the study

Our study has several limitations and strengths. First, paracetamol is metabolized into inactive glucuronide and sulfate conjugates and the

highly reactive metabolite, NAPQI, in the liver, but the presence of the required enzymes, transporters and breakdown molecules, were not

measured in this study. Future studies are needed to characterize paracetamol metabolism in hESCs and potential effect of paracetamol con-

jugates and metabolites on neuronal differentiation. Moreover, the protein expression changes, and enzyme activities were not explored, as

this was beyond the scope of this study. This study aimed to delineate the epigenetic impact of paracetamol on early human cortical devel-

opmental events. We used both bulk- and scRNA-seq and comparing these two datasets identified a varying degree of overlapping DEGs

from 1 to 27%, confirming that both datasets are complementary to detect transcriptomic changes induced by paracetamol. Using a multi-

omics approach, we unveiled the diversified transcriptional networks related to paracetamol exposure. We could not accurately classify the

maturation properties of the cells, or the proportion of cells in G0 phase, highlighting the necessity of new tools to deconvolute the neuronal

G0 phase. The results of scATAC-seq analysis presented here are inherently limited by the relatively low genome-per-cell coverage. That

means that some open chromatin regions that could have proved relevant for the individual cells or cell populations, may have been missed.

Finally, the in vitro results presented here need to be validated by in vivo models and targeted human dataset exploration in future studies.

This could confirm whether the pathways identified can explain the paracetamol-induced adverse effects in the early human brain.

In conclusion, using an in vitro hESCmodel of neuronal development, we identified altered gene expression, DNAm and chromatin open-

ness involved in key neuronal differentiation processes at bulk and single-cell RNA levels. An overlap of genes identified in this model and in

the cord blood of neonates exposed long-term to paracetamol during pregnancy, points toward altered epigenetic regulation of early brain

development. Identification of commonDNAmmodification sites and chromatin openness regions with a regulatory role on gene expression

can identify loci and underlying mechanisms involved in neurotoxicity of drugs on the developing fetus with potential effect on long-term

outcomes. Such findings could strengthen causal inference and clinical translation of altered DNAm, such as in cord blood, on brain devel-

opment. However, these in vitro results need further validation for potential clinical translation.
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32. Trettin, A., Böhmer, A., Suchy, M.T., Probst,
I., Staerk, U., Stichtenoth, D.O., Frölich, J.C.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Geltrex� LDEV-Free, hESC-Qualified, Reduced

Growth Factor Basement Membrane Matrix

ThermoFisher A1413302

KnockOut� DMEM ThermoFisher 10829018

PBS, no calcium, no magnesium ThermoFisher/GIBCO 14190

Dimethyl -sulfoxide, DMSO Sigma-Aldrich/ Merck D8418

Accutase� Cell Detachment Solution STEMCELL Technologies 7920

UltraPure 0.5 M EDTA, pH 8.0 ThermoFisher 15575020

Paracetamol Sigma-Aldrich/Merck A7085

RHO/ROCK Pathway Inhibitor Y-27632 STEMCELL Technologies SCM075

Essential 8� Medium ThermoFisher A1517001

Poly-L-ornithine hydrobromide Sigma-Aldrich/ Merck P3655

Fibronectin (Bovine Protein, Plasma) ThermoFisher 33010018

N2 supplement (100X) ThermoFisher 17502048

Advanced DMEM/F-12 ThermoFisher 12634028

GlutaMAX� Supplement GIBCO/ ThermoFisher 35050061

Penicillin Streptomycin (10,000 U/mL) ThermoFisher 15140122

LDN-193189 STEMCELL Technologies 72148

SB 431542 (hydrate) Sigma-Aldrich / Merck S4317

XAV939 STEMCELL Technologies 72674

B-27� Supplement (50X), serum free ThermoFisher 17504044

Recombinant Human FGF basic Peprotech 100-18B

Recombinant Human EGF, Animal-Free Peprotech AF-100-15

Critical commercial assays

Countess� Cell Counting Chamber Slides ThermoFisher C10312

RNeasy Mini Kit Qiagen 74106

RNAse-Free DNase Set Qiagen 79254

RNA/DNA purification kit Norgen Biotek Corp. 298-48700

RNase-Free DNase I Kit Norgen Biotek Corp. 298-25720

Qubit� RNA BR Assay Kit ThermoFisher/Invitrogen Q10211

QuantiTect Reverse Transcription Kit Qiagen 205311

ddPCR Supermix for Probes (no dUTP) BioRad 186-3024

Droplet Generation Oil for Probes BioRad 186-3005

TruSeq Stranded mRNA Library Prep Kit Illumina 20020595

IDT for Illumina – TruSeq RNA UD Indexes Illumina 20022371

NovaSeq 6000 S1 Reagent Kit v1.5 (200 cycles) Illumina 20028318

Infinium MethylationEPIC BeadChip Kit (96 samples) Illumina WG-317-1003

30 mm MACS SmartStrainers Miltenyi Biotech 130-110-915

Chromium Single Cell 30 Library & Gel Bead Kit v3 10x Genomics 1000075

Chromium i7 Multiplex Kit 10x Genomics 120262

NextSeq 500/550 High Output Kit (150 Cycles) Illumina 20024907

Next GEM Chip H Single Cell Kit 10x Genomics 1000162

(Continued on next page)
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Next GEM Single Cell ATAC Library & Gel Bead Kit v1.1 10x Genomics 1000176

Chromium i7 Multiplex Kit N Set A 10x Genomics 1000084

NovaSeq 6000 SP Reagent Kit (100 cycles) Illumina 20028401

Deposited data

RNA-seq, DNAm, Infinium Methylation EPIC,

scRNA-seq & scATAC-seq

This paper NCBI GEO: GSE220027 (Subseries GSE220023,

GSE220024, GSE220025, GSE220026)

RNA-seq, DNAm, Infinium Methylation EPIC,

scRNA-seq & scATAC-seq

Samara et al.34 NCBI GEO: GSE192858 (Subseries GSE192854,

GSE192855, GSE192856, GSE192857)

Experimental models: Cell lines

Human embryonic cells, HS360, 46XY. Stockholms Medicinska

Biobank / Sweden

HS360

Oligonucleotides

POU5F1 ThermoFisher/TaqMan� Hs00999632_g1

SOX2 ThermoFisher/TaqMan� Hs01053049_s1

NANOG ThermoFisher/TaqMan� Hs04399610_g1

NES ThermoFisher/TaqMan� Hs04187831_g1

FOXG1 ThermoFisher/TaqMan� Hs01850784_s1

TUBB3 ThermoFisher/TaqMan� Hs00801390_s1

MAP2 ThermoFisher/TaqMan� Hs00258900_m1

PAX6 ThermoFisher/TaqMan� Hs00240871_m1

OTX2 ThermoFisher/TaqMan� Hs00222238_m1

VIM ThermoFisher/TaqMan� Hs00958111_m1

NEUROD1 ThermoFisher/TaqMan� Hs01922995_s1

RPL30 ThermoFisher/TaqMan� Hs00265497_m1

RAF1

F: tgggaaatagaagccagtgaa

R: cctttaggatctttactgcaacatc

Eurofins Probe 56 4688538001

Software and algorithms

R Programming language R Core Team117 https://www.r-project.org/

ArchR1.0.1 Granja et al.62 https://www.archrproject.com

Seurat Version 4 Hao et al.; Stuart et al.118,119 https://github.com/satijalab/seurat

Signac Stuart et al.120 https://satijalab.org/signac/

BSgenome1.58.0 Pages121 https://rdrr.io/bioc/BSgenome/

ShinyCell Ouyang et al.122 https://github.com/SGDDNB/ShinyCell

ShinyArchR.UiO Sharma et al.116 https://github.com/EskelandLab/ShinyArchRUiO

CytoTRACE R package (v0.3.3) Gulati et al.123 https://cytotrace.stanford.edu

10x Genomics Cell Ranger -Count and 10x Genomics

Cell Ranger -Count ATAC

10x genomics https://www.10xgenomics.com

BSgenome.Hsapiens.UCSC.hg38 https://doi.org/10.18129/

B9.bioc.BSgenome.Hsapiens.

UCSC.hg38 (The Bioconductor

Dev Team, 2021)124

https://bioconductor.org/packages/release/data/

annotation/html/BSgenome.Hsapiens.UCSC.

hg38.html

EnsDb.Hsapiens.v86 https://doi.org/10.18129/B9.

bioc.EnsDb.Hsapiens.v86

(Rainer, 2017)125

https://bioconductor.org/packages/release/data/

annotation/html/EnsDb.Hsapiens.v86.html

(Continued on next page)
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clustree Zappia and Oshlack126 https://cran.r-project.org/web/packages/clustree/

vignettes/clustree.html#references

scater McCarthy et al.127 https://bioconductor.org/packages/release/bioc/

html/scater.html

DEseq2 Love et al.128 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

GSEA Subramanian et al.129 https://www.gsea-msigdb.org/gsea/index.jsp

Minfi Aryee et al.130 https://www.bioconductor.org/packages/release/

bioc/html/minfi.html

Limma Ritchie et al.131 https://bioconductor.org/packages/release/bioc/

html/limma.html

methylGSA Ren and Kuan et al.132 https://bioconductor.org/packages/release/bioc/

html/methylGSA.html

SingleR Aran et al.133 https://github.com/dviraran/SingleR and

http://bioconductor.org/books/release/

SingleRBook/sc-mode.html

Harmony Korsunsky et al.134 https://github.com/immunogenomics/harmony

GREAT McLean et al.135 http://great.stanford.edu/public/html/

Intervene Khan and Mathelier136 https://github.com/asntech/intervene-shiny

g:Profiler Kolberg et al.; Raudvere

et al.35,137
https://biit.cs.ut.ee/gprofiler/gost

MACS2 Feng et al.138 https://pypi.org/project/MACS2/

https://github.com/macs3-project/MACS

refdata-cellranger-atac-hg38-version refdata- 10x genomics https://support.10xgenomics.com/single-cell-

atac/software/downloads/

JASPAR Bryne et al.139 https://bioconductor.org/packages/release/data/

annotation/html/JASPAR2020.html

http://jaspar.genereg.net

Single Cell Experiment Amezquita et al.140 https://bioconductor.org/packages/release/

bioc/html/SingleCellExperiment.html

Escape https://doi.org/10.18129/

B9.bioc.escape135 141

https://github.com/ncborcherding/escape

ggseqlogo Waight142 https://CRAN.R-project.org/package=ggseqlogo

TFBSTools https://doi.org/10.18129/

B9.bioc.TFBSTools

https://bioconductor.org/packages/release/

bioc/html/TFBSTools.html

uwot James Melville (https://github.

com/jlmelville/uwot)

https://CRAN.R-project.org/package=uwot

viridisLite Garnier et al.143 https://cran.r-project.org/web/packages/

viridisLite/index.html

ShinyGO Ge et al.144 http://bioinformatics.sdstate.edu/go/

Python3 Van Rossum and Drake145 https://www.python.org/downloads/

10x Genomics Loupe Browser 10x genomics https://www.10xgenomics.com

ComplexHeatmap Gu; Gu et al.146,147 https://jokergoo.github.io/ComplexHeatmap-

reference/book/

ggplot2 Wickham148 https://cran.r-project.org/web/packages/

ggplot2/index.html

igraph igraph https://igraph.org

(Continued on next page)
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IRanges Lawrence et al.149 https://bioconductor.org/packages/release/

bioc/html/IRanges.html

Reticulate Tomasz Kalinowski, R Studio https://CRAN.R-project.org/package=reticulate

tidyverse Wickham et al.150 https://www.tidyverse.org/packages/

ggpubr Kassambara151 https://cran.r-project.org/web/packages/

ggpubr/index.html

SARTools Varet et al.152 https://github.com/PF2-pasteur-fr/SARTools

pheatmap Raivo Kolde (https://github.

com/raivokolde/pheatmap)

https://CRAN.R-project.org/package=pheatmap

lluminaHumanMethylationEPICmanifest Hansen153 https://bioconductor.org/packages/release/

data/annotation/html/IlluminaHuman

MethylationEPICmanifest.html

IlluminaHumanMethylationEPICanno.ilm10b5.hg38 EPIC annotation 1.0 B5 https://github.com/achilleasNP/IlluminaHuman

MethylationEPICanno.ilm10b5.hg38

Rstudio RStudio Team https://www.rstudio.com/

Propeller Phipson et al.53 https://github.com/phipsonlab/speckle

Shiny single-cell tools for visualisation of datasets. This paper Custom scripts for computational analysis are

available at https://github.com/EskelandLab/

Neuralparacet. The single-cell data can be

explored in webtools for scRNA-seq (

hescneuroparacet) and integrative scATAC-seq/

scRNA-seq (hescneurodiffparacet) at

https://cancell.medisin.uio.no/.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Ragnhild Eskeland

(Ragnhild.Eskeland@medisin.uio.no).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The single-cell RNA-seq/ATAC-seq, RNA-seq and DNA-methylation data reported in this study cannot be deposited in a public repository

because the data could be potentially traced back to a single embryo and the donor. To request access, contact the lead author and the

StockholmMedical Biobank. It may be required to establish a Personal Data processing (PDP) Agreement and/or Data Transfer Agreement

(DTA) according to General Data Protection Regulation (GDPR). Processed datasets have been deposited at NCBI’s GEO. Accession

numbers are listed in the key resources table. Single-cell data are shared for visualization in two open access webtools at https://

cancell.medisin.uio.no: (hescneuroparacet) https://cancell.medisin.uio.no/scrna/hescneuroparacet/ and (hescneurodiffparacet) https://

cancell.medisin.uio.no/scatac/hescneurodiffparacet/.

d All original code can be found at https://github.com/EskelandLab/Neuralparacet. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

hESC culture and maintenance

hESCs HS360 (Karolinska Institutet, Sweden, RRID:CVCL C202)96,154 were cultured as described by Samara et al., 2022.30 In brief, cells were

maintained in Essential 8�Medium, on Geltrex pre-coated culture plates. Cells were routinely passaged at 75-85% confluency using 0.5 mM

ethylenediaminetetraacetic acid (EDTA) in ratios between 1:3 to 1:6. When hESCs were collected for initiation of the differentiation protocol

and Accutase was used to detach and dissociate cells. Mycoplasma tests were routinely performed.
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Neuronal differentiation of hESCs and exposure to paracetamol

hESCs HS360 were differentiated, as described,30 in two separate time-course experiments, to investigate the in vitro effects of paracetamol

exposure in physiologically relevant concentrations to long-term exposure in vivo. Since paracetamol crosses the placenta and the blood-

brain barrier and has an insignificant plasma protein binding, maternal plasma/serum and cord blood concentrations can be used as

estimates for the amount of paracetamol that reaches the developing fetal brain.155–158 Physiological plasma peak concentration range of

paracetamol in vivo were determined to be 100 mM and 200 mM, respectively, corresponding to one intermediate and one high peak plasma

concentration.31–33 Thus, cells undergoing neuronal differentiation were exposed to changes of medium only (control) or medium containing

100 or 200 mM paracetamol from Day 1 to Day 20. Control cells were harvested at day 0, 7, 13 and 20, while cells exposed to 100 or 200 mM

paracetamol were harvested at Day 7 and 20 (Table 1).
METHOD DETAILS

DNA/RNA isolation

Genomic DNA and total RNA were isolated by direct lysis in the culture vessels followed by column-based isolation using RNA/DNA

purification kit (Norgen Biotek). RNase-Free DNase I Kit (Norgen Biotek) was applied for on-column removal of genomic DNA contami-

nation from RNA isolates. Five RNA isolates were processed using the RNeasy Mini Kit (Qiagen) followed by DNase-treatment

using the RNAse-Free DNase Set (Qiagen). All isolations were performed according to the manufacturer’s instructions. Nucleic acid quan-

tification was performed using Qubit (ThermoFisher Scientific), purity was measured using Nanodrop 2000 (ThermoFisher Scientific), while

RNA and DNA integrity was assessed using 2100 Bioanalyzer (Agilent Technologies) and 4200 TapeStation (Agilent Technologies),

respectively.
ddPCR and RNA expression analysis

Reverse transcription of total RNAwas performedusingQuantiTect Reverse Transcription Kit (Qiagen). Subsequent ddPCR reactionswere set

up using ddPCR Supermix for Probes (No dUTP) (BioRad) and Taqman assays (ThermoFisher) or Universal Probes (Roche) in combination with

target primers (Eurofins) as outlined in key resources table. Droplets for ddPCR amplification were generated using theQX200Droplet Gener-

ator (BioRad). Data acquisition andprimary analysis was done using theQX200Droplet Reader (BioRad) andQuantaSoft software (BioRad). All

steps were performed according to themanufacturer’s instructions. To calculate the number of target copies per ng RNA input, samples were

normalized using RPL30 and RAF1 as normalization genes.159 Statistical comparisons were performed in R using t-test in ggpubr package

v.0.4.0.151 Results were visualized in R using the tidyverse package.150
Bulk RNA-seq

The sequencing library was prepared with TruSeq Stranded mRNA Library Prep (Illumina) according to manufacturer’s instructions. The li-

braries (n=39) were pooled at equimolar concentrations and sequenced on an IlluminaNovaSeq 6000 S1 flow cell (Illumina) with 100 bp paired

end reads. The quality of sequencing reads was assessed using BBMap v.34.56160 and adapter sequences and low-quality reads were

removed. The sequencing reads were then mapped to the GRCh38.p5 index (release 83) using HISAT2 v.2.1.0.161 Mapped paired end reads

were counted to protein coding genes using featureCounts v.1.4.6-p1.162 Differential expression analysis was conducted in R version 3.5.1163

using SARTools v.1.6.8152 and the DESeq2 v.1.22.1.128 For the time-response analysis, the time effect of 100 or 200 mMparacetamol compared

to control (no paracetamol) from Day 7 to Day 20 (Day 7 as reference), was modelled using the following design: ‘‘� Concentration + Day +

Concentration:Day’’ using the interaction term to find any treatment-specific differences over time. Genes were considered significantly

differentially expressed with an FDR < 0.05. Normalized counts were visualized using the tidyverse package v.1.3.150 The heatmaps were

generated using the pheatmap package version 1.0.12.164 The Wald-test was used to calculate p-values and Benjamini-Hochberg was

used to correct for multiple testing. The Gene Set Enrichment Analysis (GSEA) analysis was performed using pre-ranked gene lists, based

on p-values and direction of expression change by a competitive test, into GSEA software v.4.1.0129 to identify enrichment of BP terms.

The size of the analysed gene sets was restricted to 15-1000 genes, and the chip annotation used was ‘‘Human_ENSEMBL_Gene_ID_

MSigDB.v7.2.chip’’. Moreover, we performed analysis of BPs on differentially expressed genes from cells exposed to 100 or 200 mM paracet-

amol compared to control cells over time (Day 7 - Day 20) (Tables S1H and S1I) analysed using a server based g:Profiler53 showing results with

correlation greater than 0.45_significant.
Bulk DNAm analysis

DNAm status of 43 samples were assessed using the Infinium MethylationEPIC BeadChip v.1.0_B3 (Illumina). Quality control and pre-pro-

cessing of the raw data was performed in R using Minfi v.1.36.0.130 No samples were removed due to poor quality (detection

p values >0.05). Background correction was performed using NOOB method165 and b values (ratio of methylated signal divided by the

sum of the methylated and unmethylated signal) were normalized using functional normalization.166 Probes with unreliable measurements

(detection p values >0.01) (n = 12,538) and cross-reactive probes (45) (n = 42,844) were then removed, resulting in a final dataset consisting

of 810,477 probes and 43 samples. Probes were annotated with Illumina Human Methylation EPIC annotation 1.0 B5 (hg38). Differential

DNAm analysis for pairwise and time-response comparisons was performed on the M values (log2 of the b values) using the limma
26 iScience 26, 107755, October 20, 2023
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package131 with the following design: ‘‘�0+group’’, where the group was Day + Treatment combined. The contrast matrix specified time-

response comparisons the following way:

‘‘TR = (PX_Day20 – PX_Day7) -(Control_Day20 - Control_Day7)’’ , where PX is either 100 or 200 mM paracetamol. CpGs were considered

significantly differentially methylated with an FDR < 0.05. GO analysis of BP terms was performed using p-values of increasing or decreasing

CpGs (DMCs) as input to methylRRA function implemented in the methylGSA package version 1.14.0.132

Collection of cells and scRNA-seq

Cells were washed twice in wells with 1x PBS and detached using Accutase (STEMCELL Technologies) at 37�C for 7 min. Cells were triturated

10-15 times to separate into single cells and transferred to centrifuge tubes containing the appropriate base media with 0.05 % BSA (Sigma-

Aldrich). Counts were performed using Countess II FL Cell Counter (ThermoFisher Scientific) before cells were centrifuged at 300x g for 5 min

and the supernatant was discarded. Cell pellets were then resuspended in base medium containing 0.05 % BSA and cell aggregates were

filtered out using MACS SmartStrainers (Miltenyi). The cells were recounted and processed within 1 hour on the 10x Chromium controller

(10x Genomics). Approximately 2,300 cells were loaded per channel on the Chromium Chip B (10x Genomics) to give an estimated recovery

of 1,400 cells. The Chromium Single Cell 30 Library &Gel Bead Kit v3 (10x Genomics) and Chromium i7Multiplex Kit (10x Genomics) were used

to generate scRNA-seq libraries, according to the manufacturer’s instructions. Libraries from 16 samples were pooled together based on

molarity and sequenced on a NextSeq 550 (Illumina) with 28 cycles for read 1, 8 cycles for the I7 index and 91 cycles for read 2. For the second

sequencing run, libraries were pooled again based on the number of recovered cells to give a similar number of reads per cell for each sample

(33,000 - 44,000 reads/cell).

scRNA-seq data analysis

The Cell Ranger 3.1.0 Gene Expression pipeline (10x Genomics) was used to demultiplex the raw base-call files and convert them into

FASTQ files. The FASTQ files were aligned to the GRCh38 human reference genome, and the Cell Ranger Count command quantified

single-cell read counts using default parameters for Days 7 and 20. Cell ranger aggregate was used for aggregating counts of replicates.

The Seurat Package v.4.1.0119 was used to perform quality control and normalization on the count matrices. We filtered cells with number

of RNA counts >= 2000 & <= 50000 to remove dead cells, doublets and multiplets. The cells expressing fewer genes (less than 200) and

genes expressed in less than 3 cells were excluded from the downstream analysis. Outlier cells with high Mitochondrial percentage was

computed using Scater package 1.0.4 ‘‘isoutlier’’ function with nmads parameter of 5.127 Counts were adjusted for cell-specific sampling

using the SCTransform function with regression of Cell cycle genes and Mitochondrial content.167,168 We used a resolution of 0.4 to cluster

cells, obtained by determining the optimum number of clusters (cells grouped together sharing similar expression profiles) in the dataset

using the Clustree R package.126 Principal component analysis was performed using the RunPCA function, followed by FindClusters and

RunUMAP functions of Seurat package to perform SNN-based UMAP clustering. We used Propeller53 and plotCellTypeProps functions of

Propeller package to compute differences in cell cluster proportions using default logit transformation of proportions. One-way analysis of

variance (ANOVA) was performed for all statistical tests on different groups i.e., paracetamol exposure at Day 7 and Day 20 versus control

Day 7 and Day 20.

FindMarkers from the Seurat R package were used to perform differential expression analysis between groups. For DE between exposure

groups, thresholds were set to the following: min.pct = 0.25, min.diff.pct = -Inf, logfc.threshold = 0.1. For top overlapping DE genes per Day

(Figures 6E and 6I), thresholds were set to the following: min.pct = 0.25, min.diff.pct = -Inf, logfc.threshold = 0.25. Genes with an adjusted

p-value < 0.05 were considered significant. GO analysis was performed using the DEenrichRPlot function of the mixscape R package with

the "GO_Biological_Process_2018’’ database with the following thresholds: logfc.threshold = 0.25, max genes = 500. The SingleR R pack-

age133 was used to annotate the cells against reference data sets from an Early Human Brain dataset (hESDB)54 from the scRNAseq R pack-

age.169 Cell types with < 15 cells annotated were excluded from the UMAP plot (Figure 3F). Four full singleR plots using reference dataset for

annotation relevant for neuronal cell types can be viewed in the webtool (hescneuroparacet) in the tab cell informations: SingleR.hESCs,

hEMBs and hESBD (single-cell data from neuronally differentiating embryonic stem cells, early human ventral midbrain or combined

respectively)54 and SingleR.HPCA (Human Primary Cell Atlas, from microarray samples, 38 main cell types and 169 subtypes).133 Cell num-

ber/statistics can be viewed by pressing the toggle button.

scATAC-seq library preparation and sequencing

Cells were washed twice with 1xPBS and detached to single cell suspension by application of Accutase (STEMCELL Technologies) at 37�C for

7 min. The detached cells were washed with appropriate base media with added 0.04% BSA (Sigma-Aldrich) and filtered using MACS

SmartStrainers (Miltenyi Biotech) to remove cell aggregates. Nuclei isolation was done according to the 10x Genomics protocol

CG000169 (Rev D) using 2 minutes of incubation in a lysis buffer diluted to 0.1x and 0.5x for Day 0 and Day 20 cells, respectively. Countess

II FL Cell Counter (ThermoFisher Scientific) was used to quantify nuclei and confirm complete lysis andmicroscopy to confirm high nuclei qual-

ity. Nuclei were further processed on the 10x Chromium controller (10x Genomics) using Next GEM Chip H Single Cell Kit (10x Genomics),

Next GEM Single Cell ATAC Library & Gel Bead Kit v1.1 (10 x Genomics) and Chromium i7 Multiplex Kit N Set A (10x Genomics) according to

the Next GEM Single Cell ATAC Reagent Kits v1.1 User Guide (CG000209, Rev C). The targeted nuclei recovery was 5,000 nuclei per sample.

The resulting 4 sample libraries were sequenced on a NovaSeq Sp flow cell (Illumina) with 50 cycles for read 1, 8 cycles for the i7 index read,

16 cycles for the i5 index read and 49 cycles for read 2.
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Cell Ranger ATAC version 1.2.0 with reference genomeGRCh38-1.2.0 was used to pre-process scATAC-seq raw sequencing data into FASTQ

files. Single-cell accessibility counts for the cells were generated from reads using the cellranger-atac count pipeline. Reference genome

HG38 used for alignment and generation of single-cell accessibility counts was obtained from the 10x Genomics (https://support.

10xgenomics.com/single-cell-atac/software/downloads/). Downstream analysis of the scATAC-seq data was performed using the R package

ArchR v1.0.1.62 A tile matrix of 500-bp bins was constructed after quality control, removal of low-quality cells and doublet removal using the

doubletfinder function of ArchR. The ArchR Project contained the filtered cells that had a TSS enrichment below 3 and <1000 fragments. We

utilized a layered dimensionality reduction approach using Latent Semantic Indexing (LSI) and Singular Value Decomposition (SVD) applied

on Genome-wide tile matrix on the single cell ATAC-seq data. Uniform Manifold approximation and projection (UMAP) was performed to

visualize data in 2D space. Louvain Clusteringmethods implemented in R package Seurat119 were used for clustering of the single-cell acces-

sibility profiles. g:Pprofiler GO term analysis of "linked genes" from Day 20 control, P100 and P200 for K-mean clusters 1-5, was performed

with g:Profiler R package137 displaying results with correlation greater than 0.45_significant. GREAT135 pathway enrichment tool was used for

analysis of mapped peak to gene links (P2GLs) in k-mean clusters.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed in R version 4.1.2117 applying SARTools v.1.6.8,152 DESeq2 v.1.22.1,128 Limma131, ArchR,62 Seurat,118,119

Propeller53 and ggpubr package v.0.4.0.151 Details are described in the relevant methods sections above.
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