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Precursory patterns to vortex nucleation in stirred Bose-Einstein condensates
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Within the Gross-Pitaevskii theory, we study precursory pattern formations to the nucleation of vortex dipoles
in a two-dimensional Bose-Einstein condensate stirred by a Gaussian potential. We introduce a smooth superfluid
vorticity field and its conservative current, which capture very well the gradual process of vortex nucleation as a
mechanism of topological singularities acquiring smooth cores. This is characterized by the localization of the
superfluid vorticity into core regions which harbor the phase slips. For more impenetrable obstacles, we find that
there are additional phase slips that do not acquire cores, thus remaining pinned as ghost vortices to the potential.
We show that the vortex kinematics is slaved to the superfluid vorticity current, which determines not only the
onset of nucleation but also the shedding dynamics.
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I. INTRODUCTION

Topological defects are the fingerprints of broken con-
tinuous symmetries and are widely encountered in ordered
systems, such as disclinations in liquid crystals [1,2], disloca-
tions in solid crystals [3–5], orientational defects in biological
active matter [6–8], quantized vortices in quantum fluids
[9–11], or cosmic strings [12]. The formation and dynamics
of topological defects during phase ordering kinetics through
temperature quenches from the disordered phase have been
well studied for decades [13]. Going beyond the relaxation to
equilibrium, more recent theoretical approaches have focused
on the collective behavior in driven ordered systems through
the dynamics of topological defects.

The topological defects in an atomic Bose-Einstein con-
densate (BEC) are quantum vortices where the condensate is
locally melted while loosing its phase coherence. This induces
persistent circulating superfluid flow about the vortex cores
[14]. With the advent of tailored experimental realizations of
BECs comes also a surge in theoretical studies focused on un-
derstanding and tracking nonthermal nucleation and dynamics
of quantized vortices in driven Bose-Einstein condensates.
Two main frameworks are currently applied to study the vor-
tex nucleation in two-dimensional BECs, either by rotating
the condensate [15–17] or by coupling the condensate with
a moving obstacle [18–22]. The nucleation criterion is based
on the energetic argument that the superfluid flow reaches a
critical velocity above which the condensate phase gradient
undergoes phase slips. In rotating BEC systems, vortices of
the same circulation are created when the total amount of
angular momentum exceeds a critical threshold for the vor-
tex formation. Same-sign vortices form at the edge of the

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

condensate and migrate into the bulk, where they eventually
form vortex lattices after reequilibration [15,23–26].

The vortex nucleation in condensates stirred by a moving
obstacle has also been studied [27–31] and observed experi-
mentally [21,22]. Here, the nucleation criterion relies on the
height U0 of the repulsive Gaussian potential representing
the coupling of the stirring obstacle to the condensate. A
hard potential corresponds to an almost impenetrable obstacle
when U0 > μ, where μ is the chemical potential, such that
the condensate density rapidly decreases and nearly vanishes
inside the potential. By contrast, a soft potential corresponds
to a penetrable obstacle for U0 < μ such that the condensate
density is gently depleted inside the obstacle. The onset of
vortex nucleation induced by a hard obstacle occurs when
the local condensate velocity reaches the critical velocity for
phonon emission, whereas for the soft obstacle this is a neces-
sary but not a sufficient requirement [27,28]. Stirring obstacles
are typically modelled as Gaussian potentials with varying
height and width [30,31]. In Ref. [31] the vortex nucleation in-
duced by a repulsive Gaussian potential of different strengths
is studied numerically. It is found that near the critical velocity
for vortex nucleation, the energy gap between the ground state
and the exited state goes to zero as a power law, while ghost
vortices, i.e., phase slips, are formed inside the potential. By
contrast, no such ghost vortices develop in the case of soft
potentials. In addition to tuning the degree of permeability of
the obstacle, different vortex shedding regimes, from vortex
dipoles, pairs, and clusters [32–34], can be induced by varying
the size of the obstacle through the width of the potential,
which also changes the critical stirring velocity [21,35]. Once
vortices are being shed into the condensate they interact with
each other, forming dynamic clusters that sustain energy cas-
cades and two-dimensional quantum turbulence [11,34,36–
39].

Even though compressibility effects, due to shock waves
and phonons, are particularly important in the nucleation and
the annihilation of vortex dipoles, they are typically over-
looked in the quantum turbulence regime where turbulent
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energy spectra and clustering behavior is attributed mostly to
the mutual interactions between vortices [37,40]. The point
vortex modeling approach has been employed to characterize
different quantum turbulence regimes [41–45]. In point vortex
models, vortices are reduced to charged point particles with an
overdamped dynamics where their velocity is determined by
the mutual interaction potential or external potentials. While
the point vortex approach is suitable for studying collective
vortex dynamics, it cannot model fast processes such as vortex
annihilation or creation events without ad hoc rules since, by
construction, it overlooks the finite vortex core and compress-
ibility effects, which are crucial to fast events.

An accurate, nonperturbative method of deriving the ve-
locity of topological defects directly from the evolution of
the order parameter of the O(2) broken rotational symmetry
has been developed by Halperin and Mazenko [46–48]. Topo-
logical defects are located as zeros in the 2D vector order
parameter, where the magnitude of order vanishes to regular-
ize the core region where the phase of the order parameter
becomes undefined. The defect velocity is determined by the
magnitude of the defect density current at the defect position.
In the frozen-phase approximation, where the phase of the
order parameter is stationary apart from its moving singu-
larities, the vortex kinematics determined by the evolution of
the order parameter reduces to a point vortex model [45,47].
Within the Gross-Pitaevskii theory, the order parameter is the
condensate wave function, and the frozen-phase approxima-
tion is the regime where the dynamics of phonon modes can
be neglected. This is a versatile formalism which has been
applied to various systems, from tracking of point dislocations
[4] and dislocation lines [5] in crystals, point orientational
defects in active nematics [49] and active polar systems [50],
disclination lines in nematic liquid crystals [51] and vortex
lines in BECs [52].

In this paper we adopt the Halperin-Mazenko formalism
to gain further theoretical insights into the process of vor-
tex nucleation as a mechanism by which phase singularities
acquire a finite core to form a vortex. In Sec. II we present
this formalism for two-dimensional (2D) BECs and show that
the defect density field D represents a generalized, smooth
vorticity, defined as the curl of the superfluid current, and its
evolution determines the vortex velocity. This method circum-
vents the need of operating directly with the singularities in
the condensate phase, which are harder to manipulate both
theoretically and numerically. In Sec. III we study the pattern
formations developed in the superfluid vorticity D and its
current density J(D) during the nucleation process and show
that the superfluid vorticity condensed into well-defined cores
which harbor phase slips. In Sec. IV we show that the su-
perfluid vorticity current which determines vortex dynamics
reduces to the point vortex model in the frozen-phase ap-
proximation and derive the kinematics of point vortices in the
presence of both superfluid flow and nonuniform condensate
density. Concluding remarks and a summary are presented in
Sec. V.

II. VORTICES AS MOVING ZEROS

The superfluid flow and the topological structure of a
weakly interacting BEC are described by the evolution of

its macroscopic wave function ψ = |ψ |eiθ , where |ψ | is the
magnitude of the condensate wave function and θ is the con-
densate phase. Disturbances in the condensate phase generate
a superfluid flow with a current (momentum) density

J = |ψ |2∇θ = Im(ψ∗∇ψ ), (1)

such that gradients in the condensate phase define the super-
fluid flow velocity, which is irrotational everywhere except at
the points rα where the condensate phase looses its coherence
and becomes undetermined (singular), namely,

∇ × ∇θ = 2πqαδ2(r − rα ). (2)

This phase singularity has a topological nature determined by
a 2πqα phase jump upon going counterclockwise around a
loop Cα enclosing it, where qα = ±1 is the topological charge
of the lowest energy quantum vortex, namely,

2πqα =
∮

Cα

dθ =
∮

Cα

dl · ∇θ, (3)

which is equivalent to the differential form in Eq. (2). Thus,
for configurations of well-separated vortices punctuating an
otherwise uniform condensate, the singular vortex charge den-
sity field is a superposition of δ functions centered at the
vortex positions,

ρv (r, t ) =
∑

α

qαδ2[r − r(α)(t )], (4)

and it represents the singular vorticity field as the curl of
the superfluid flow velocity. From the single-valuedness of
the condensate wave function everywhere, it follows that the
condensate density vanishes where the condensate phase is
undetermined. Hence, quantum vortices are located at zeros
of the condensate wave function ψ as exploited by Halperin
and Mazenko [46,47]. By representing the complex ψ field
as an O(2)-symmetric real vector field �� = [�1; �2], where
�1 = Re(ψ ) and �2 = Im(ψ ), we notice that ��(r) maps a
point r to a point in the (�1, �2) disk centered at the origin
and of unit radius (i.e., the uniform condensate density in
rescaled units). Regions of uniform condensate density map to
the unit circle, whereas vortices located at various positions rα

in the real space reside at the origin of the (�1, �2) disk. The
coordinate transformation between the physical (x, y) space to
the (�1, �2) disk is determined by the Jacobi determinant

D =
∣∣∣∣∂x�1 ∂x�2

∂y�1 ∂y�2

∣∣∣∣ = εi j∂i�1∂ j�2 = εi j

2i
∂iψ

∗∂ jψ, (5)

where εi j is the Levi-Civita tensor and Einstein’s summation
convection is used. The D field is a scalar field that van-
ishes in regions of uniform condensate phase and is non zero
otherwise, as it is the case around vortices. By a coordinate
transformation of the Dirac δ function in Eq. (4), we can
rewrite the singular vortex density in terms of the zeros of
the �� as

ρv (r, t ) = D(r, t )δ2( �� ). (6)

In fact, the D field is a measure of the nonsingular vorticity
as the curl of the superfluid current [52]

εi j∂ jJi = εi jIm(∂iψ
∗∂ jψ ) = 2D. (7)
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FIG. 1. Snapshot of (a) D field and (b) condensate density |ψ |2
around a stirring Gaussian potential when vortex dipoles are being
shed. The vector fields are (a) defect current J(D) and (b) director of
the superfluid current J , respectively. Negative vortices move in the
opposite direction of J(D). System size is represented in units of the
healing length.

This is also reflected in the fact that the singular, topological
structure in the condensate phase is regularized by vanishing
density which introduces a finite core size of the condensate
vortices. The D field as a superfluid vorticity locates both
the core and the circulation of the vortices as illustrated in
Fig. 1(a). To show that the D field indeed captures the topolog-
ical phase slips, we integrate Eq. (7) over an area S containing
vortices∫

S
d2rD = 1

2

∫
∂S

dl · J = 1

2

∫
∂S

|ψ |2∇θ · dl. (8)

In the assumption that the contour ∂S enclosing the area S
is sufficiently far away from well-separated vortices, i.e., the
superfluid density equals its uniform bulk value |ψ0|2 = 1
along the integration contour, the above integral reduces to

∫
S

d2rD = π
∑
α∈S

qα, (9)

where the sum is over all vortices inside the contour. Equiva-
lently, integrating the absolute value of D, we obtain instead
the total number N of vortices enclosed by the contour,∫

S
d2r|D| =

∑
α

qα

∫
Sα

d2rD = Nπ, (10)

which is the limit case of a uniform condensate punctuated by
well-separated vortices.

However, the generalized vorticity D field picks up not
only topological defects but any phase gradient (flow) dis-
turbances modulated by the superfluid density, which may
be induced by compressible modes, trapping, or stirring
potentials. These nonsingular contributions become particu-
larly important for the nucleation of vortices as discussed in
Sec. III and have been overlooked in earlier studies using the
Halperin-Mazenko formalism.

Flow disturbances with a topological origin can be disso-
ciated from the rest by the value of the generalized vorticity
determined by the condensate density profile near a vortex.
Namely, if we consider Eq. (8) for a disk S of radius much
smaller than the healing length and centered at an isolated
vortex in an otherwise homogeneous condensate, we find that
the value of the D field reaches in magnitude a value given by

|D0| = �2 ≈ 0.7, (11)

using the near-vortex profile of the condensate |ψ |(r) = �r
[53], and the numerical value for the steepness � of the
density gradients taken from Ref. [39].

This superfluid vorticity is a topologically conserved quan-
tity given by [47]

∂t D = −∂iJ
(D)
i , (12)

with its corresponding superfluid vorticity current

J (D)
i = εi jIm(∂tψ∂ jψ

∗), (13)

determined uniquely by the evolution of the ψ field and ac-
curately tracking the motion of the vortices as also illustrated
in Fig. 1(a) for a snapshot of a stirred condensate with several
dipoles. This current density is nonzero where the superfluid
flow is nonuniform, particularly through the vortex cores
where there are phase slips, as seen in Fig. 1(a). Figure 1(b)
represents a color map of condensate density and the vector
field of the normalized superfluid current showing vortical
flow around vortices for the same snapshot as in panel (a).
The Gaussian stirring potential is the larger indentation in the
condensate density.

When the D field tracks vortices, it determines the topo-
logical invariance of the singular defect charge density ρv ,
namely, that

∂tρv = −∂iJ
(ρv )
i , (14)

with the corresponding singular vortex current density being
(see Appendix)

J(ρv )(r, t ) = J(D)(r, t )δ2( �� )

=
∑

α

qα

J(D)(rα )

D(rα )
δ2(r − rα ). (15)
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In the frozen-phase approximation, the vortex core is rigid
and the equilibrium vortex wave-function profile remains sta-
tionary in the vortex comoving frame. In this case the vortex
current is identical to the advective current

∑
α qαvαδ2(r −

rα ) [54]. Within this approximation, the velocity is uniform
or slowly varying through the vortex core and given as

vα = J(D)(rα )

D(rα )
. (16)

This relation provides an accurate measurement of the vor-
tex velocity and can be reduced to the point vortex model
as discussed further in Sec. IV. Within the Gross-Pitaevskii
theory, the evolution of the condensate wave function ψ in the
presence of a potential field U (r, t ) containing both a static
trapping potential and a time-dependent stirring potential can
be described by a damped Gross-Pitaevskii equation (dGPE),
which in dimensionless units reads as [11,38,39]

∂tψ = (i + γ )
[

1
2∇2ψ + (1 − U − |ψ |2)ψ

]
, (17)

where the damping coefficient γ is an effective thermal drag
that represents the coupling of the condensate with a static
thermal bath and particle exchanges [55]. The dimensional
units used in the rescaling are given by the chemical potential
μ, the healing length ξ = h̄/

√
mμ and the sound velocity

c = μ/m. The wave function is rescaled in units of
√

μ/g,
where m is the mass of the bosons and g is an effective
scattering parameter for the interactions between bosons.

By inserting Eq. (17) into the conservation law of the D
field in Eq. (12), we express the evolution of the generalized
superfluid vorticity as

∂t D = −1

2
εi j∂i∂kRe(∂kψ

∗∂ jψ ) + εi j

2
∂iU∂ j |ψ |2

+ γ

2
∇2D + 2γ D[1 − U − 2|ψ |2]

+ γJ · ∇⊥U + γ

2
εi jIm[∂i∂kψ∂ j∂kψ

∗]. (18)

The first term on rhs is a sink/source superfluid vorticity
coming from the kinetic energy. The second term corresponds
to the coupling with an external potential and gives a nonzero
contribution (as a sink/source) only when the gradient in
the condensate density is normal to the gradient force. The
remaining terms are the different contributions of the thermal
damping to the dissipation of superfluid vorticity, such as
diffusion, sink/sources from the coupling with a potential U ,
and a thermal drag induced by superfluid flow.

Since the condensate density vanishes at the vortex posi-
tion, the only nonzero contribution to the generalized vorticity
current density at the vortex position comes from the kinetic
energy; thus the general formula for the vortex velocity can be
expressed as

vα = i
Re(∇2ψ∗∇⊥ψ ) + γ Im(∇2ψ∇⊥ψ∗)

∇ψ∗ · ∇⊥ψ

∣∣∣∣∣
r=rα

, (19)

and reduces in certain approximations to the point vortex
dynamics as detailed in Sec. IV. However, the sink/source
contribution from the external potential U plays an important
role in the nucleation and shedding of vortices as discussed
next.

FIG. 2. Numerical setup of the condensate in the comoving
frame of the Gaussian potential (uniform flow direction shown by
the arrows). The color map represents the condensate density. The
dotted lines show the thermal buffer interfaces.

III. VORTEX NUCLEATION

To study the onset of vortex nucleation, we consider a
uniform Bose-Einstein condensate at zero temperature that is
coupled with a Gaussian potential moving at a constant speed
V0 along the x axis. Using the Galilean invariance of the GPE
at γ = 0, we can transform it to the comoving frame by boost-

ing the wave function with the phase factor exp(iV0x + iV 2
0
2 t )

to account for the shift in the kinetic energy [56]. The form of
the GPE is invariant under Galilean transformation only when
γ = 0.

In the comoving frame, this is equivalent to having a static
potential in a uniform superfluid flow described by

∂tψ + V0∂xψ = i

[
1

2
∇2 + (1 − |ψ |2) − U0e− (r−r0 )2

d2

]
ψ, (20)

where d is the width of the potential and U0 is the coupling
strength.

In numerical simulations we consider a thermal buffer on
the edge of the periodic domain where the damping coefficient
is nonzero to avoid recirculation of the shed vortex dipoles
and to dampen wave interference as illustrated in Fig. 2. A
similar computational trick was used in previous studies of
the vortex shedding [33] and the formation of a phonon wake
[56]. The width of the stirring potential is set to d = 4, and
we vary its speed V0 and its height U0. We use a rectangular
domain [−128, 128] × [−64, 64] (corresponding to a 512 ×
256 rectangular grid) and a fixed time step dt = 0.01. The
potential is centered in the middle of the domain at (x0, y0) =
(50, 0). For the dissipative buffer we set the thermal drag to
γ (r) = max[γx(x), γy(y)], which is effectively equal to 1, as
shown in Fig. 2. The smooth, but sharp transition between the
buffer and bulk values is mediated by the interfacial profiles
along the x and y directions given by

γx(x) = 1
2 (2 + tanh[(x − wx )/�] − tanh[(x + wx )/�]),

and similarly for γy(y). Here x = ±wx and y = ±wy locate
the positions of the top and bottom buffer interfaces along
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FIG. 3. (a) D field and (b) condensate phase θ around a hard potential at t = 19 prior to a nucleation. Two dipoles of phase slips reside
inside the potential. (c) D field and (d) θ at t = 28 (at the nucleation onset) when one dipole of phase slips have migrated to occupy the two
vorticity blobs. White/black circle is the radius where the potential becomes e−1. The vector field in (a), and (c) represents the superfluid
vorticity current. The potential strength is U0 = 10, and the stirring speed is V0 = 0.4, slightly above the estimated critical speed for this value
of U0, V0c ≈ 0.38.

the x direction, while � is the width of interface. The buffer
parameters are set to wx = 100, wy = 50, and � = 7.

We start by relaxing the initial Thomas-Fermi ground state
in imaginary time to find the steady state at V0 = 0 and then
evolve the condensate wave function according to Eq. (20) for
a given V0. However, since the initial state is not the ground
state of this equation, there will be an initial disturbance form-
ing around the potential which may lead to defect nucleation
even below the critical velocity. Thus we first let the system
relax this initial disturbance before we analyze the nucleation
process. The regime with U0 > 1 (in units of the chemical
potential) corresponds to a hard potential whereby the conden-
sate density almost vanishes inside the obstacle, akin to the
homogeneous boundary condition imposed at an impenetra-
ble boundary which melts the condensate phase coherence at
any stirring velocity. Conversely, for soft-indenting potentials
equivalent to U0 < 1, the condensate density is more gently
depleted such that phase coherence is preserved below a crit-
ical speed. The transition from soft to hard potential obstacle
occurs around U0 ∼ 1, where the potential induces a dipole of
phase slips pinned inside the obstacle [35].

The superfluid vorticity D field and its current density
turn out to be advantageous tools to unravel and explore the
distinct precursory patterns to the onset of vortex nucleation
and shedding for different stirring conditions as discussed
next. For hard potentials, one dipole of phase slips develops
and remained pinned inside the obstacle where the conden-
sate density is close to zero for stirring velocities above and
slightly below the critical value as visualized in Figs. 3(b)

and 3(d) (above the critical velocity) and Fig. 4(b) (below the
critical velocity). However, it turns out that the presence of
this dipole does not necessarily lead to nucleation. From the
profile of the superfluid vorticity D field around the stirring
potential, we can get a more in-depth understanding of the dy-
namical pattern formation leading to the nucleation of a vortex
dipole. Below the critical speed we observe that a steady-state
profile of the superfluid vorticity concentrated in a diffuse halo
surrounding the edge of the potential such that the circulation
changes sign symmetrically about the direction of motion as
shown the Fig. 4(a). In this steady state, the superfluid vor-
ticity current vanishes and results in no shedding event, even
though there is one dipole of phase slips pinned in the middle
of the potential [see Fig. 4(b)]. For this reason, this dipole was
also termed as a ghost vortice in Ref. [31]. Above the critical
velocity, which depends on U0 as studied in Ref. [35], there is
no steady state in the superfluid vorticity. Instead, the diffusive
halo around the potential tends to localize over time into two
blobs of opposite circulation as shown in Figs. 3(a) and 3(c),
corresponding to the formation of two vortex cores. While the
cores are forming on the edge, two dipoles of phase slips have
formed inside the potential, where one detaches and migrates
towards the vorticity cores while the other stays pinned. The
onset of vortex nucleation corresponds to the moment when
the two vorticity cores are hosting one phase slip each. The
subsequent vortex shedding is precisely determined by the
D-field current, which endows the vortices with a net velocity
away from the potential as shown in Fig. 3(c). Thus the vortex
shedding pattern and frequency could be further studied from
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FIG. 4. (a) Steady-state profile of the D field for a hard potential
U0 = 10 with the stirring speed V0 = 0.35 (below the critical value).
(b) Ghost dipole of phase slips inside the hard obstacle.

the D-field current. We also note that this formalism allows us
to make a clear distinction between real versus ghost vortices.
The latter are really due to the hard potential breaking the
phase coherence. It is the second dipole of phase slips which
controls the nucleation process.

As argued earlier, the important distinction of soft and hard
potentials is the presence of ghost vortices. The D field is
a powerful tool to further investigate the influence of ghost
vortices on the nucleation mechanism, which is a challenging
task. We can do this by contrasting it with the scenario where
there are no ghost vortices, as is the case for soft-indenting po-
tentials. Here, the D field develops two smeared-out regions of
superfluid vorticity with alternating circulating and spanning
the stirring potential. This is accompanied by smooth phase
gradients as shown in Figs. 5(a) and 5(b). The locations of the
regions with opposite superfluid vorticity are determined by
the phase gradients through the curl of the superfluid current,
as predicted by Eq. (7). Below a critical speed, this D-field
pattern remains stable with its corresponding vorticity current
J(D) vanishing as illustrated in Fig. 6. Notice that the pattern
in the D field is also symmetric about the direction of motion,
which also determines the orientation of the phase-slip dipole.
At sufficiently high V0 a dipole of phase slips forms inside the
soft potential and corresponds to the localization of the D field
around two blobs with opposite circulation [Figs. 5(c) and
5(d)]. Interestingly, in this case the phase slips develop already

inside the vorticity cores to form vortices. Since the D-field
current tracks the motion of these vortices, it also reveals
the direction in which vortices are being shed, as shown in
Fig. 5(c).

Based on this analysis, we get new insights into the vortex
nucleation as a fundamental gradual process of topological
singularities acquiring a finite core. This basic mechanism is
common to both hard and soft potentials. The main difference
is that for the soft potential, the phase slips develop inside
the vorticity core, whereas for the hard potential, the phase
slips form inside the potential and migrate to vorticity cores.
In this case phase slips can form as ghost vortices without
there being any vorticity localization, as seen in Fig. 4(b). We
have considered the homogeneous vortex nucleation and shed-
ding away from a stirring potential in a uniform condensate.
Because of the symmetry of the initial configuration, only
dipoles are being nucleated and shed. However, a small noise
added to the uniform condensate wave function breaks the
symmetry of the initial state and may lead to vortex nucleation
beyond simple dipoles [32,33]. The nucleation event re-
mains symmetrical through the formation of dipoles of phase
slips inside the potential. However, the shedding can become
more irregular depending on the noise amplitude and stirring
velocity.

To get a more quantitative measure of the nucleation event,
we use the spatial average of the magnitude of the generalized
vorticity |D| as a proxy to the total number of nucleated
vortices. The deviation from the theoretical prediction from
Eq. (10) corresponding to a uniform superfluid punctuated
by well-separated vortices informs us about the presence of
additional density heterogeneities due to compressible modes
or induced by the obstacle potential, as discussed earlier and
shown in Figs. 3–5. In Fig. 7 we have plotted this global
measure as a function of time for a soft versus hard potential
and for different stirring speeds. The integration domain is a
square surrounding the obstacle of size l = 40, i.e., the same
domain that is shown in Figs. 3–6.

Below the critical speed V0 < V0c, the net circulation
plateaus at a value lower than the predicted threshold for
vortices. This corresponds to the regime where superfluid
vorticity is smeared diffusively around the potential in the
absence of any phase slips or vortex nucleation, as is the case
for soft potentials and illustrated in Fig. 7(a).

As V0 approaches the critical speed from below (in the
absence of noise), the net circulation reaches above the 2π

threshold, signaling the presence of a vortex dipole. This is
common to both soft and hard potentials as shown in Figs. 7(a)
and 7(b). Once the nucleated vortex dipole drifts out of the in-
tegration domain, the value of the circulation drops and shows
only the contribution of the vorticity around the potential.
When V0 > V0c, the gradual process of phase slips acquiring
finite cores becomes recurrent and results in repeating vortex
nucleation and shedding. Periodic shedding is observed near
the critical speed, and more irregular shedding occurs with
higher speeds, as shown in Figs. 7(a) and 7(b).

IV. VORTEX KINEMATICS

Using the formalism presented in Sec. II, we now derive
a closed expression for the vortex kinematics in the presence
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FIG. 5. D field with defect current (a), (c) and condensate phase (b), (d) around the soft potential during a dipole nucleation. Before the
phase slips formed, t = 5 (a), (b), the D field spreads diffusively inside the potential. This region condenses into two cores which detach from
the potential after they acquire phase slips at t = 29 (c), (d). Potential strength is U0 = 0.8 and stirring speed is V0 = 0.42, slightly above the
estimated critical value V0c ≈ 0.4.

of both background superfluid flow and heterogeneities in the
condensate density. In this section we also consider the dissi-
pative effect of the thermal drag on the vortex dynamics. First
we consider a uniform condensate punctuated at the origin
with a vortex. The profile of the condensate wave function
near the defect is approximated as ψ0 ≈ reiqθ , where r is the
distance to the vortex with circulation q = ±1 and r 
 1,
which is a solution of the stationary vortex, ∂tψ0 = 0. We now
introduce a smooth phase perturbation ψ (r, t ) = ψ0(r)eiφ(r,t )

which accounts for the net superfluid flow at the vortex posi-
tion while keeping the steady-state density profile. Near the
defect position, the time evolution of the wave function is
dominated by the kinetic energy contribution,

∂tψ |r=0 ≈ (i + γ ) 1
2∇2ψ = (−1 + iγ )∇ψ0 · ∇φeiφ. (21)

Thus, evaluating the vorticity current using the near-vortex
evolution of the condensate wave function we arrive at the
following expression:

J (D)
i = εi j[−ε jkD + γ qεklε jkD)]∂kφ, (22)

which together with Eq. (16) implies that the vortex velocity
is determined by the phase gradients,

vi = (∂iφ + γ qεi j∂ jφ)r=0, (23)

which is the basic overdamped vortex dynamics in the point
vortex model [57,58]. However, this model does not include
the effect of condensate density disturbances due to the pres-
ence of trapping or stirring potentials.

We now apply the same method to compute the contri-
bution of density variations to the vortex velocity. For this,
the wave function is perturbed both in magnitude and phase:

ψ = ψ0eλ+iφ , where φ and λ are smooth real fields [45,48].
The generalized vorticity D field acquires an additional con-
tribution from the density perturbations and is given by

D = e2λ 1

2i
εi j∂iψ0∂ jψ0. (24)

The corresponding vortex velocity becomes

vi = (∂iφ − γ ∂iλ + γ qεi j∂ jφ + qεi j∂ jλ)r=0, (25)

which is consistent with the dissipative vortex dynamics
obtained by a different approach in Ref. [59]. A similar dis-
sipative dynamics in the absence of density variations has
also been used in Ref. [60] to study the diffusive expansion
of a vortex cluster and compare with experimental observa-
tions. This equation reduces to the expressions obtained in
Refs. [45,48] for γ = 0. In Ref. [45] it was shown that the
density inhomogeneities due to an harmonic trap induces an
orbital motion or a vortex imprinted in the condensate. This
is precisely determined by last term in Eq. (25) due to the
spatial profile of the condensate density. The effect of thermal
drag is that it makes oppositely charged vortices attract each
other according to the third term in Eq. (25). Also, vortices
move down gradients in the background condensate density as
given by the second term. For the harmonic trap this implies
that vortices have instead a spiral motion towards the edge of
the trap.

To illustrate this we track the trajectory of a single vortex
imprinted in a BEC coupled to a harmonic potential. At zero
temperature the vortex moves in a orbit of constant radius
around the center of the harmonic trap. As a dissipative effect
of the effective thermal drag, the vortex acquires a radial
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FIG. 6. (a) Steady-state profile of the D field for a soft potential
U0 = 0.8 at velocity V0 = 0.38 (below the estimated critical value
≈0.4). (b) Smooth-steady-state profile of the condensate phase.

velocity and spirals out towards the edge of the trap. The
angular vθ and radial vr velocity components as functions of
time are shown in Fig. 8. We notice that velocity obtained by
the slope of the vortex trajectory is a noisy signal compared to
the velocity from Eq. (16).

V. DISCUSSION AND CONCLUSIONS

In summary, we have extended the Halperin-Mazenko
formalism to characterize the nucleation and dynamics of
vortices in a stirred Bose-Einstein condensate. We introduce
a smooth superfluid vorticity D field as a topologically con-
served quantity with its associated current density which
tracks all the localized disturbances in the condensate both
singular (vortices) and nonsingular (shock waves and distur-
bances induced by external potentials).

When the uniform condensate is stirred by a Gaussian
potential, the onset to vortex nucleation is signalled by the
precursory pattern formations in the superfluid vorticity D
field which captures the process of phase slips acquiring finite
cores. The D field is nonzero only around the stirring poten-
tial, where it develops two diffusive regions with alternating
vorticity distributed symmetrically about the direction of mo-
tion. This also determines the orientation of the phase slip
nucleating first inside the potential. The onset to nucleation is
signaled by the localization of the superfluid vorticity into two

FIG. 7. Net generalized vorticity for soft potential U0 = 0.8
(a) and hard potential U0 = 10 (b) for different V0 just below (blue),
just above (orange), and well above (green) the critical speed. The
integral is preformed over the area around the potential shown in
Figs. 3 and 5. The dotted line is the expected value corresponding to
a single vortex dipole at the critical speed.

blobs that harbor the dipole of phase slips. While this process
of acquiring a finite core occurs inside the potential, the actual
nucleation is manifested into the condensate by the shedding
of the vortex dipole.

In addition, for the hard potential, the D field localizes
around the rim, signaling the presence of a ghost dipole of
phase slips forming near and above the critical velocity. This
ghost dipole is pinned to obstacle and aligns perpendicular to
the stirring direction. Above the critical velocity an additional
dipole of phase slips develops at the onset of nucleation and
the previous ghost dipole is quickly migrating where vorticity
localizes into vortex cores.

The superfluid vorticity current J(D) plays an important
role during the process of acquiring a core since it develops
the vortex cores harboring phase slips. It also controls the
vortex kinematics and thus is the quantity that dictates the
shedding direction and frequency. From the general relation
to this current density, we derive closed expressions for the
vortex velocity depending on phase gradients and density
disturbances. It is worth noting that the Halperin-Mazenko
formalism may be extended also to analyzing experimental
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FIG. 8. (a) Radial velocity component vr and (b) angular veloc-
ity component vθ of a single vortex in a harmonic potential with
Rt f = 60 obtained from Eq. (16) (blue line) and from tracking the
position of the defect (turquoise diamonds). The thermal drag is set to
γ = 0.05.

data and identifying different types of condensate distur-
bances.
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APPENDIX

Here we derive the expression of the defect density current,

J(ρv )(r, t ) = J(D)(r, t )δ2( �� ),

where δ2( �� ) = δ(�1)δ(�2). We first start by multiplying
Eq. (12) with δ2( �� ),

δ2( �� )∂t D = −(
∂iJ

(D)
i

)
δ2( �� )

∂tρv − D∂tδ
2( �� ) = −∂i

(
J (D)

i δ2( �� )
) + J (D)

i ∂iδ
2( �� ), (A1)

where the last term on the right-hand side can be expressed as

J (D)
i ∂iδ

2( �� ) = εi jεkl∂ j�k∂t�l∂i�m
d

d�m
δ2( �� )

= εkl (εi j∂i�m∂ j�k )∂t�l
d

d�m
δ2( �� ). (A2)

Note that ∂ j and ∂i acting on the same �� component lead to
a vanishing term due to the Levi-Civita tensor. Thus the only
nonzero contributions contain D = εi j∂ j�1∂i�2 and therefore

J (D)
i ∂iδ

2( �� ) = −D∂tδ
2( �� ). (A3)

Inserting this into Eq. (A1), we arrive at

∂tρv = −∂i
(
J (D)

i δ2( �� )
)
,

from which the current density of ρv follows.
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