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Abstract. The aim of Reverse Mathematics (RM for short) is to find the min-

imal axioms needed to prove a given theorem of ordinary mathematics. These
minimal axioms are almost always equivalent to the theorem, working over the

base theory of RM, a weak system of computable mathematics. The Big Five

phenomenon of RM is the observation that a large number of theorems from
ordinary mathematics are either provable in the base theory or equivalent to

one of only four systems; these five systems together are called the ‘Big Five’.

The aim of this paper is to greatly extend the Big Five phenomenon as follows:
there are two supposedly fundamentally different approaches to RM where the

main difference is whether the language is restricted to second-order objects

or if one allows third-order objects. In this paper, we unite these two strands
of RM by establishing numerous equivalences involving the second-order Big

Five systems on one hand, and well-known third-order theorems from analy-

sis about (possibly) discontinuous functions on the other hand. We both study
relatively tame notions, like cadlag or Baire 1, and potentially wild ones, like

quasi-continuity. We also show that slight generalisations and variations of the
aforementioned third-order theorems fall far outside of the Big Five.

1. Introduction and preliminaries

1.1. Short summary. The aim of the program Reverse Mathematics (RM for
short) is to find the minimal axioms needed to prove a given theorem of ordinary
mathematics. In a nutshell, the aim of this paper is to greatly extend the so-called
Big Five phenomenon, a central topic in RM according to Montalbán, as follows.

[...] we would still claim that the great majority of the theorems
from classical mathematics are equivalent to one of the big five.
This phenomenon is still quite striking. Though we have some
sense of why this phenomenon occurs, we really do not have a clear
explanation for it, let alone a strictly logical or mathematical reason
for it. The way I view it, gaining a greater understanding of this
phenomenon is currently one of the driving questions behind reverse
mathematics. (see [67, p. 432])

In more detail, there are at least two supposedly fundamentally different1 ap-
proaches to RM where the main difference is whether the language is restricted
to second-order objects or if one allows third-order objects. In this paper, we
unite these two strands of RM by establishing numerous equivalences involving the
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second-order Big Five systems on one hand, and well-known third-order theo-
rems from analysis about (possibly) discontinuous functions on the other hand. We
both study relatively ‘tame’ notions, like cadlag and Baire 1, and potentially ‘wild’
ones, like quasi-continuity. We also show that slight generalisations and variations
of the aforementioned third-order theorems fall far outside of the Big Five and much
stronger (second- and higher-order) systems. The reader will agree that while our
results are comprehensive, they only scratch the surface of what is possible and lead
the way to a whole new research area. In evidence, we sketch analogous results for
the RM of the second-order weak weak König’s lemma and the third-order Vitali
covering theorem for uncountable coverings in Section 2.3.3.

Finally, we discuss the detailed aim and motivation of this paper within RM in
Section 1.2 and introduce essential definitions in Section 1.3.

1.2. Aim and motivation. Reverse Mathematics (RM for short) is a program
in the foundations of mathematics initiated by Friedman ([28, 29]) and developed
extensively by Simpson and others ([23, 93, 94]); an introduction to RM for the
‘mathematician in the street’ may be found in [95]. We assume basic familiarity
with RM, including Kohlenbach’s higher-order RM introduced in [55], while a brief
sketch may be found in Section 1.3.1. Recent developments in higher-order RM,
including our own, are in [70–76]. All equivalences are proved over Kohlenbach’s
base theory RCAω

0 (or slight extensions), as defined in the appendix (Section A.1).

The biggest difference between ‘classical’ RM and higher-order RM is that the
former makes use of the language of second-order arithmetic, while the latter uses
the language of higher-order arithmetic (see Section 1.3.1 for details). Thus, higher-
order objects are only indirectly available via so-called codes or representations
in classical RM. It is then a natural question -in the very spirit of RM- what
the connection is between third-order objects and their second-order codes. Now,
continuous functions constitute perhaps the most basic case study and Kohlenbach
in [53, §4] studies the connection between:

• third-order functions on Baire or Cantor space that satisfy the standard
‘epsilon-delta’ definition of continuity,

• second-order codes for continuous functions on Baire or Cantor space, fol-
lowing the definition from [94, II.6].

Kohlenbach shows that weak König’s lemma (WKL for short) suffices to show that
a (third-order) continuous function on Cantor space can be represented by a code.
In Section 2.2, we adapt some of Kohlenbach’s results to the unit interval, which
turns out to be surprisingly hard. The representation of the reals in (both second-
and higher-order) RM may be found in Section A.2.

With these ‘coding results’ on [0, 1] in place, we establish in Section 2.3 equiv-
alences between the second Big Five system WKL and the following third-order
theorems; all definitions may be found in Section 1.3.2.

• A cadlag function on the unit interval is bounded (or: Riemann integrable).
• A cadlag function on the unit interval has a supremum.
• A regulated function on the unit interval is bounded.
• A bounded upper semi-continuous2 function on [0, 1] has a supremum.
• A bounded Baire 1 function F : [0, 1] → R has a supremum.

2A ‘famous’ recent reference for the study of semi-continuity is Villani’s work [99].
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• A bounded upper semi-continuous function on the unit interval that has a
supremum, attains it.

• Cousin’s lemma for cadlag (or: lower semi-continuous) functions.

• Cousin’s lemma for regulated F : [0, 1] → R such that F (x) = F (x−)+F (x+)
2

for all x ∈ [0, 1].
• Cousin’s lemma for quasi-continuous functions.
• Cousin’s lemma for Baire 1 functions.
• . . .

While cadlag -or even Baire 1- functions can be said to be ‘close to continuous’,
quasi-continuous functions can be quite exotic, as discussed in Remark 2.13.

We obtain similar equivalences for the other Big Five systems, namely ACA0

(Section 2.4), ATR0 (Section 2.6), and Π1
1-CA0 (Section 2.5), involving the Jordan

decomposition theorem, Cousin’s lemma, and supremum principles. We suggest
many other possible equivalences involving third-order theorems, i.e. this paper may
be lengthy but only scratches the surface of what is possible. In evidence, we sketch
similar results for WWKL0 and the Vitali covering theorem in Section 2.3.3. Thus,
the distinction between second- and third-order statements does not seem that
crucial to RM as there are many interesting equivalences across this distinction.

Now, many of the aforementioned results are based on the higher-order RM of
the following central axiom from [55]:

(∃E : NN → {0, 1})(∀f ∈ NN)
(
(∃n ∈ N)(f(n) = 0) ↔ E(f) = 0

)
. (∃2)

The functional E : NN → N is discontinuous at f = 11 . . . and is usually called
‘Kleene’s quantifier ∃2’. Kohlenbach shows the equivalence between the existence
of a discontinuous function on R and (∃2) in [55, §3]. We establish a number of
interesting equivalences for (∃2) in Section 2.7, including the well-known fact that
the Riemann integrable functions are not closed under composition.

Finally, we show in Section 2.8 that slight variations or generalisations of all the
aforementioned third-order statements cannot be proved from the Big Five or (∃2),
and much stronger systems. This is done by deriving from these statements the
following version of the uncountability of the reals:

NIN[0,1] : there is no injection from the unit interval [0, 1] to N.

Basic mathematical fact as NIN[0,1] may be, it cannot be proved in Zω
2 from Sec-

tion A.3, which is a conservative extension of second-order arithmetic Z2. As a
side-result, many well-known inclusions among function spaces, like the statement
all regulated functions are Baire 1, also imply NIN[0,1]; these inclusions can therefore
not be proved in the Big Five and much stronger systems.

In conclusion, many third-order statements fall into the Big Five classification,
while slight variations or generalisations of the former fall far outside this classifi-
cation. We have no explanation for this phenomenon at this point.

1.3. Preliminaries. We briefly discuss Reverse Mathematics (Section 1.3.1) and
introduce some mainstream definitions (Section 1.3.2).

1.3.1. Introducing Reverse Mathematics. We refer to [95] for a basic introduction
to RM and to [23, 93, 94] for an overview of RM. We expect familiarity with RM,
including Kohlenbach’s higher-order RM from [55]. A more detailed description
of the latter, including the definition of the base theory RCAω

0 , can be found in a
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technical appendix (Section A). We do introduce the language of higher-order RM,
namely as follows.

First of all, in contrast to ‘classical’ RM based on L2, the language of second-
order arithmetic Z2, higher-order RM uses Lω, the richer language of higher-order
arithmetic. Indeed, while L2 is restricted to natural numbers and sets of natural
numbers, Lω can accommodate sets of sets of natural numbers, sets of sets of sets
of natural numbers, et cetera. To formalise this idea, we introduce the collection of
all finite types T, defined by the two clauses:

(i) 0 ∈ T and (ii) if σ, τ ∈ T then (σ → τ) ∈ T,

where 0 is the type of natural numbers, and σ → τ is the type of mappings from
objects of type σ to objects of type τ . In this way, 1 ≡ 0 → 0 is the type of
functions from numbers to numbers, and n+ 1 ≡ n → 0. Viewing sets as given by
characteristic functions, we note that Z2 only deals with objects of type 0 and 1.

Secondly, the language Lω includes variables xρ, yρ, zρ, . . . of any finite type
ρ ∈ T. Types may be omitted when they can be inferred from context. The
constants of Lω include the type 0 objects 0, 1 and <0,+0,×0,=0 which are intended
to have their usual meaning as operations on N. Equality at higher types is defined
in terms of ‘=0’ as follows: for any objects xτ , yτ , we have

[x =τ y] ≡ (∀zτ11 . . . zτkk )[xz1 . . . zk =0 yz1 . . . zk], (1.1)

if the type τ is composed3 as τ ≡ (τ1 → . . . → τk → 0). Furthermore, Lω also
includes the recursor constant Rσ for any σ ∈ T, which allows for iteration on type
σ-objects. Formulas and terms are defined as usual.

Thirdly, while not strictly speaking necessary, it is often convenient to explicitly
include types for finite sequences of objects. For a given type ρ, the associated
type ρ∗ is the type of finite sequences of type ρ objects. We discuss the latter and
related notations in detail in Notation A.5.

Finally, sets of objects of any finite type can be represented via characteristic
functions in Lω, an approach well-known from measure and probability theory and
adopted in this paper as in Definition 1.5.

1.3.2. Some definitions. We introduce some standard definitions from analysis, all
rather mainstream and taking place in RCAω

0 .

First of all, we use the standard definition of (uniform) continuity as follows,
where I ≡ [0, 1] is the unit interval.

Definition 1.1. [Continuity]

• A function F : [0, 1] → R is continuous at x ∈ [0, 1] if

(∀k ∈ N)(∃N ∈ N)(∀y ∈ [0, 1])(|x− y| < 1
2N

→ |F (x)− F (y)| < 1
2k
). (1.2)

A function F : [0, 1] → R is continuous if (1.2) holds for all x ∈ [0, 1]
• A modulus of continuity is any G : (N × R) → N such that G(k, x) = N as
in (1.2), for k ∈ N, x ∈ [0, 1].

• A function F : [0, 1] → R is uniformly continuous if:

(∀k ∈ N)(∃N ∈ N)(∀x, y ∈ [0, 1])(|x− y| < 1
2N

→ |F (x)− F (y)| < 1
2k
). (1.3)

3We recall the convention of right associativity of the type arrow, i.e. the type τ ≡ (τ1 →
. . . → τk → 0) stands for τ1 → (τ2 → (. . . → (τk → 0) . . . )).
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• A modulus of uniform continuity is any h : N → N such that h(k) = N as
in (1.3) for any k ∈ N.

Secondly, we shall study the following weaker notions, many of which are well-
known and hark back to the days of Baire, Darboux, Hankel, and Volterra ([4, 5,
20, 37, 38, 101]). We will use ‘sup’ and related operators in the same ‘virtual’ or
‘comparative’ way as in second-order RM (see e.g. [94, X.1]). In this way, a formula
of the form ‘supA > a’ makes sense as shorthand for a formula in the language of
all finite types, even when supA need not exist in RCAω

0 . As in [6,7], the definition
of Baire n-function proceeds via (external) induction over standard n. Sets are
defined in Definition 1.5 below, namely via characteristic functions.

Definition 1.2. For f : [0, 1] → R, we have the following definitions:

• f is upper semi-continuous at x0 ∈ [0, 1] if f(x0) ≥R lim supx→x0
f(x),

• f is lower semi-continuous at x0 ∈ [0, 1] if f(x0) ≤R lim infx→x0
f(x),

• f is quasi-continuous at x0 ∈ [0, 1] if for ϵ > 0 and an open neighbourhood U
of x0, there is a non-empty open G ⊂ U with (∀x ∈ G)(|f(x0)− f(x)| < ε).

• f is cliquish at x0 ∈ [0, 1] if for ϵ > 0 and an open neighbourhood U of x0,
there is a non-empty open G ⊂ U with (∀y, z ∈ G)(|f(y)− f(z)| < ε).

• f is regulated if for every x0 in the domain, the ‘left’ and ‘right’ limit
f(x0−) = limx→x0− f(x) and f(x0+) = limx→x0+ f(x) exist.

• f is càdlàg if it is regulated and f(x) = f(x+) for x ∈ [0, 1).
• f is Darboux if it has the intermediate value property, i.e. if a, b ∈ [0, 1], c ∈

R are such that a ≤ b and either f(a) ≤ c ≤ f(b) or f(b) ≤ c ≤ f(a), then
there is d ∈ [a, b] with f(d) = c.

• f is Baire 0 if it is a continuous function.
• f is Baire n+1 if it is the pointwise limit of a sequence of Baire n functions.
• f is effectively Baire n (n ≥ 2) if there is a sequence (fm1,...,mn

)m1,...,mn∈N

of continuous functions such that for all x ∈ [0, 1], we have

f(x) = limm1→∞ limm2→∞ . . . limmn→∞ fm1,...,mn
(x).

• f is Baire 1∗ if4 there is a sequence of closed sets (Cn)n∈N such [0, 1] =
∪n∈NCn and f↾Cm

is continuous for all m ∈ N.
• f is continuous almost everywhere if it is continuous at all x ∈ [0, 1] \ E,
where E is a measure zero5 set.

• f is pointwise discontinuous if for any x ∈ [0, 1] and ε > 0, there is y ∈ [0, 1]
such that f is continuous at y and |x− y| < ε (Hankel, 1870, [37]).

As to notations, a common abbreviation is ‘usco’ and ‘lsco’ for the first two
items, while one often just writes ‘cadlag’, i.e. without the accents. Moreover, if a
function has a certain weak continuity property at all reals in [0, 1] (or its intended
domain), we say that the function has that property.

Regarding the notion of ‘effectively Baire n’ in Definition 1.2, the latter is used,
using codes for continuous functions, in second-order RM (see [6, 7]). Baire him-
self notes in [4, p. 69] that Baire 2 functions can be represented by effectively

4The notion of Baire 1∗ goes back to [24] and equivalent definitions may be found in [50]. In
particular, Baire 1∗ is equivalent to the Jayne-Rogers notion of piecewise continuity from [46].

5A set A ⊂ R is measure zero if for any ε > 0 there is a sequence of basic open intervals
(In)n∈N such that ∪n∈NIn covers A and has total length below ε. Note that this notion does not
depend on (the existence of) the Lebesgue measure.
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Baire 2 functions. By Theorem 2.34, there is a significant difference between the
latter two notions. Similarly, cliquish functions are exactly those functions that can
be expressed as the sum of two quasi-continuous functions ([10, 64]). Nonetheless,
comparing Theorems 2.14 and 2.34, these notions behave fundamentally different in
RM. Analogously, functions continuous almost everywhere are exactly those func-
tions that can be expressed as the sum of two ‘strong’ quasi-continuous functions
(see [35] for the latter notion).

Thirdly, the notion of bounded variation (abbreviated BV ) was first explicitly6

introduced by Jordan around 1881 ([47]) yielding a generalisation of Dirichlet’s
convergence theorems for Fourier series. Indeed, Dirichlet’s convergence results
are restricted to functions that are continuous except at a finite number of points,
while functions of bounded variation can have (at most) countable many points of
discontinuity, as already studied by Jordan, namely in [47, p. 230]. Nowadays, the
total variation of f : [a, b] → R is defined as follows:

V b
a (f) := supa≤x0<···<xn≤b

∑n−1
i=0 |f(xi)− f(xi+1)|. (1.4)

If this quantity exists and is finite, one says that f has bounded variation on [a, b].
Now, the notion of bounded variation is defined in [69] without mentioning the
supremum in (1.4); see also [11, 12, 57]. Hence, we shall distinguish between the
following notions. Jordan seems to use item (a) of Definition 1.3 in [47, p. 228-229].

Definition 1.3. [Variations on variation]

(a) The function f : [a, b] → R has bounded variation on [a, b] if there is k0 ∈ N
such that k0 ≥

∑n−1
i=0 |f(xi) − f(xi+1)| for any partition x0 = a < x1 <

· · · < xn−1 < xn = b.
(b) The function f : [a, b] → R has a variation on [a, b] if the supremum in

(1.4) exists and is finite.

The fundamental theorem about BV -functions (see e.g. [47, p. 229]) is as follows.

Theorem 1.4 (Jordan decomposition theorem). A function f : [0, 1] → R of
bounded variation is the difference of two non-decreasing functions g, h : [0, 1] → R.

Theorem 1.4 has been studied extensively via second-order representations in e.g.
[36,57,69,104]. The same holds for constructive analysis by [11,12,39,85], involving
different (but related) constructive enrichments. Now, arithmetical comprehension
suffices to derive Theorem 1.4 for various kinds of second-order representations of
BV -functions in [57, 69]. By contrast, the results in [75–78] show that the Jordan
decomposition theorem is even ‘explosive’: combining with the Suslin functional
from Π1

1-CA
ω
0 (see Section A.3), one derives Π1

2-CA0.

Fourth, we shall make use of the following notion of (open and closed) set, which
was studied in e.g. [75–78,89].

Definition 1.5. [Sets in RCAω
0 ] We let Y : R → R represent subsets of R as follows:

we write ‘x ∈ Y ’ for ‘Y (x) >R 0’ and call a set Y ⊆ R ‘open’ if for every x ∈ Y ,
there is an open ball B(x, 1

2N
) ⊂ Y with N ∈ N. A set Y is called ‘closed’ if the

complement is open.

6Lakatos in [59, p. 148] claims that Jordan did not invent or introduce the notion of bounded
variation in [47], but rather discovered it in Dirichlet’s 1829 paper [21].
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For open Y as in the previous definition, the formula ‘x ∈ Y ’ has the same
complexity (modulo higher types) as in second-order RM (see [94, II.5.6]), while
given (∃2) from Section 1, the former becomes a ‘proper’ characteristic function,
only taking values ‘0’ and ‘1’. Hereafter, an ‘open set’ refers to Definition 1.5,
while ‘RM-open set’ refers to the second-order definition from RM. For simplicity,
we sometimes assume ACAω

0 ≡ RCAω
0 +(∃2) and work with characteristic functions

of open sets directly. Nonetheless, combining Theorem 2.2 and [94, II.7.1], an
RM-open set is indeed an open set as in Definition 1.5, working over RCAω

0 .

Next, the notion of ‘countable set’ can be formalised in various ways, namely via
Definitions 1.6 and 1.7.

Definition 1.6. [Enumerable sets of reals] A set A ⊂ R is enumerable if there
exists a sequence (xn)n∈N such that (∀x ∈ R)(x ∈ A → (∃n ∈ N)(x =R xn)).

This definition reflects the RM-notion of ‘countable set’ from [94, V.4.2]. We note
that given µ2 from Section A.3, we may replace the final implication in Definition 1.6
by an equivalence. Our definition of ‘countable set’ is now as follows in RCAω

0 .

Definition 1.7. [Countable subset of R] A set A ⊂ R is countable if there exists
Y : R → N such that (∀x, y ∈ A)(Y (x) =0 Y (y) → x =R y). If Y : R → N is also
surjective, i.e. (∀n ∈ N)(∃x ∈ A)(Y (x) = n), we call A strongly countable.

The first part of Definition 1.7 is from Kunen’s set theory textbook ([58, p. 63])
and the second part is taken from Hrbacek-Jech’s set theory textbook [44] (where
the term ‘countable’ is used instead of ‘strongly countable’). For the rest of this
paper, ‘strongly countable’ and ‘countable’ shall exclusively refer to Definition 1.7,
except when explicitly stated otherwise.

2. Main results

2.1. Introduction. We obtain the following results in Sections 2.2-2.8.

• We study the connection between continuous functions on the reals and
their codes in Section 2.2, mostly working over RCAω

0 or assuming WKL.
• We obtain numerous equivalences involving the Big Five and third-order
theorems about (possibly) discontinuous functions (Sections 2.3-2.6).

• We obtain equivalences for (∃2) in Section 2.7 where the associated princi-
ples also stem from mainstream mathematics.

• In Section 2.8, we show that slight variations or generalisations from the
third-order statements in the previous three items cannot be proved from
the Big Five, (∃2), and much stronger systems, like Zω

2 from Section A.3.

As discussed in Remark 2.13, some of our results deal with functions ‘close to
continuous’, like the cadlag ones, while other results deal with functions that can
be ‘far from continuous’, like the quasi-continuous ones.

Finally, we discuss some known results due to Kohlenbach regarding continuous
and discontinuous functions in the following remark.

Remark 2.1. First of all, Kohlenbach establishes a number of interesting ‘coding
results’ for functions on 2N and NN in [53, §4], as follows.

• By [53, Theorem 4.4], RCAω
0 proves the equivalence between the following

for a functional Y : NN → N continuous on Baire space NN:
– the functional Y has a continuous modulus of continuity,
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– there is a total RM-code ([94, II.6.1]) that equals Y on NN,
– there is a total Kleene associate ([53, Def. 4.3]) that equals Y on NN.

• Using a construction due to Dag Normann, RCAω
0 + WKL proves that a

continuous Y : 2N → NN has a modulus of (uniform) continuity ([53,
Prop. 4.10]). By the previous items, there is also an RM-code that equals
Y on 2N. In this way, the usual second-order RM-results apply to such Y ,
namely via the aforementioned code. For instance, over RCAω

0 +WKL, such
Y is bounded on 2N by [94, IV.2.2], and similar results apply immediately.

Secondly, working over RCAω
0 , Kohlenbach establishes a number of interesting equiv-

alences involving discontinuous functions in [55, §3], as follows.
• The axiom (∃2) from Section 1 is equivalent to the existence of a discon-
tinuous function on R, like e.g. Heaviside’s function.

• The axiom (∃2) from Section 1 is equivalent to (µ2), i.e. the existence of
Feferman’s mu-operator from Section A.3.

Using classical logic, the first item yields that ¬(∃2) is equivalent to Brouwer’s
theorem, i.e. the statement that all functions on R are continuous. In the below, we
will make use of the above facts, often without very detailed references.

2.2. From codes to continuous functions and back again. We establish the
following connections between continuous functions on the reals and their codes.

• A code for a continuous function on R represents a third-order continuous
function, working over RCAω

0 (Theorem 2.2).
• A third-order continuous function on [0, 1] can be represented by an RM-
code (Theorem 2.3), working over RCAω

0 +WKL.
• Over RCAω

0 , WKL is equivalent to basic properties of (third-order) contin-
uous functions on the unit interval (Theorem 2.8).

The proof of Theorem 2.3 is rather involved, while similar results like the bound-
edness of continuous functions, have (more) basic proofs by Theorems 2.6 and 2.7.

First of all, RCAω
0 is a conservative extension of RCA0 (see e.g. Remark A.3). In

this light, it is desirable that theorems of RCA0 also yield theorems of RCAω
0 . Given

the coding practise of RM, this is not always straightforward and we therefore
establish Theorem 2.2, which expresses that (second-order) codes for continuous
functions give rise to third-order continuous functions, working in the base theory.
Our definition of ‘RM-code for continuous function’ is the standard one ([94, II.6.1])
and as in the latter, we often identify a code and the function it represents. The
following proof is also evidence for the necessity of QF-AC1,0 in RCAω

0 .

Theorem 2.2 (RCAω
0 ). Let Φ be an RM-code for an R → R-function. There is a

third-order F : R → R such that F (x) equals the value of Φ at x for any x ∈ R.

Proof. For total RM-codes of functionals NN → N, one applies QF-AC1,0 to:

‘the RM-code is defined at each point of NN’

to obtain a third-order functional Ψ : NN → N equal to the (value of the) code ev-
erywhere; this argument may be found in e.g. the proof of 1) → 3) in [53, Prop. 4.4].
We now show that the same procedure works for RM-codes of [0, 1] → R-functions.
Indeed, a code for an R → R-function is a set Φ ⊂ [N×Q×Q+ ×Q×Q+] satisfying
certain properties. The formula ‘Φ is total on R’ has the following form (which is
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suitable for QF-AC1,0):

(∀x ∈ R, k ∈ N)(∃(n, a, r, b, s) ∈ Φ)(d(x, a) <R r ∧ s <Q
1
2k
). (2.1)

Intuitively, the fourth component b ∈ Q of Φ contains rational approximations to
the value of the code Φ at x ∈ R, while s ∈ Q is an upper bound on the difference
between b and the value of Φ at x ∈ R. Hence, apply QF-AC1,0 to (2.1) to obtain
G such that G(x, k) is the quintuple as in (2.1). Note that G(x, k)(4) may not be
extensional on the reals as in item (e) in Definition A.4. Now define F : R → R
by [F (x)](k) := G(x, k + 1)(4) and note that F is indeed extensional on the reals.
Clearly, F (x) equals the value of Φ at every x ∈ R. □

Unfortunately, the theorem does not generalise to codes for Baire 1 functions (in
the sense of [6, 7]). Indeed, by Theorem 2.28, (∃2) is equivalent to the statement
that a code for a Baire 1 function represents a third-order function.

Secondly, by Theorem 2.2, we can make the leap from ‘second-order codes for
continuous functions’ to ‘third-order continuous functions’ without problems. The-
orem 2.3 expresses that the other direction is possible too, additionally assuming
weak König’s lemma WKL in the base theory. As will become clear, the associated
proof is based on that of [53, Prop. 4.10], which is in turn based on a construction
due to Dag Normann, as noted in [53, p. 94].

Theorem 2.3 (RCAω
0 +WKL). Any F : R → R continuous on [0, 1] has a modulus

of uniform continuity h : N → N on [0, 1].

Proof. First of all, [53, Prop. 4.10] establishes that, working over RCAω
0 +WKL, any

F : NN → NN continuous on 2N has a modulus of uniform continuity. In the proof
of [53, Prop. 4.4], there is an explicit formula for an RM-code defined in terms of
such a modulus. For completeness, we now sketch the proof of [53, Prop. 4.10],
which consists of two steps. As a first step, the formula A(k, σ) in (2.2) is a slight
modification of the innermost universal formula in the definition of continuity for
F on 2N, where σ0∗ ≤0∗ 1 is a finite binary sequence:

(∀g, h ≤1 1)(g|σ| =0∗ σ =0∗ h|σ| → F (g)(k) = F (h)(k))
]
. (2.2)

By definition, we have (∀f ≤1 1, k0)(∃N0)A(k, fN). Despite the quantifiers in

(2.2), WKL suffices to define its characteristic function χ
(0×0∗)→0
A , i.e. we have

(∀σ0∗ ≤0∗ 1, k0)(χA(k, σ) = 0 ↔ A(k, σ)). (2.3)

The existence of χA is proved in the next paragraph of this proof. Now, σ ∈ Tk ↔
¬A(k, σ) defines a 0/1-tree Tk, which has no path by the above. By WKL, the tree
Tk is finite for any k0, implying (∀k0)(∃N0)(∀f ≤1 1)A(k, fN). The latter yields

(∀k0)(∃N0)(∀σ0∗ ≤0∗ 1)[|σ| = N → A(k, σN)],

and applying QF-AC0,0 readily yields the required modulus of uniform continuity.

As a second step, we now establish the existence of χA as in (2.3). Due to the
continuity of F , it suffices to prove the existence of χ such that:

(∀σ0∗ ≤ 1, k0)
(
χ(σ, k) = 0 ↔ (∀τ0

∗
≤ 1)(F (σ ∗ τ ∗ 00 . . . )(k) = F (σ ∗ 00 . . . )(k))

)
.

Now define a sequence of 0/1 trees as follows: τ ∈ Tk,σ in case either of the following:

• (∀γ0∗ ≤ 1)
(
|γ| ≤ |τ | → F (σ ∗ τ ∗ 00 . . . )(k) = F (σ ∗ γ ∗ 00 . . . )(k)

)
,
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• (∃γ̃0∗ ≤ 1)(∃l ≤ |τ |)
(
τ = γ̃ ∗ 00 . . .l with |γ̃| minimal such that:

F (σ ∗ γ̃ ∗ 00 . . . )(k) ̸= F (σ ∗ 00 . . . )(k)
)
.

Now, each tree Tk,σ is infinite and by the sequential version of WKL (equivalent to
WKL by [54, Prop. 3.1]), there is a sequence of paths fk,σ in Tk,σ for k ∈ N and

σ0∗ ≤ 1. Using the continuity of F , one readily verifies that for σ0∗ ≤ 1, k0:

(∀τ0
∗
≤ 1)(F (σ∗τ ∗00 . . . )(k) = F (σ∗00 . . . )(k)) ↔ F (σ∗f)(k) = F (σ∗00 . . . )(k).

which is as required to obtain (2.3). For the next paragraph, we point out the
following, assuming a fixed enumeration of all finite sequences: if we require that
in the second item defining Tk,σ, the sequence γ̃ is the minimal sequence with the
stated property, measured by sequence number, then ¬A(k, σ) implies that Tk,σ

has a single branch witnessing ¬A(k, σ), while if A(k, σ) holds, any branch in Tk,σ

will witness A(k, σ).

Finally, we modify the previous paragraph to accommodate functions continuous
on the unit interval. For convenience, we work with ternary trees where a tree
element σ ∈ {−1, 0, 1}<N is a finite sequence in the alphabet {−1, 0, 1}. Similarly,
f ∈ {−1, 0, 1}N means that f(k) ∈ {−1, 0, 1} for all k ∈ N. Clearly, each f ∈
{−1, 0, 1}N codes a real number ρ(f) = 1/2+

∑∞
n=0 f(n)2

−(n+2), where the partial
sums form a fast converging Cauchy-sequence as in Definition A.4. Now, it is well-
known in computer science that any k-ary tree admits a representation as a binary
tree (see [51, 63]), and the associated (effective) conversion is sometimes called the
Knuth transform ([81, p. 146]). As expected, the latter is readily formalised in
RCA0 and hence WKL is equivalent to the existence of a path for infinite ternary
trees, and the same for the associated sequential versions from [54, Prop. 3.1].

Next, fix F : R → R continuous on [0, 1] and consider the formula:

A(σ, n) ≡ (∀g ∈ {−1, 0, 1}N)[|F (ρ(σ ∗ 00 . . . ))− F (ρ(σ ∗ g))| ≤ 1
2n ].

We now use WKL to prove the existence of a function B(0∗×0)→0 such that for all
σ ∈ {−1, 0, 1}<N and n ∈ N:

A(σ, n+ 1) → (B(σ, n) = 0) → A(σ, n). (2.4)

Using (2.4), one readily finds a modulus of uniform continuity for F as in the first
part of the proof. In order to define B satisfying (2.4), we define a sequence Sσ,n of
infinite ternary trees. By WKL, these have a sequence of infinite branches, and the
actual B depends on which sequence of branches we select. We use the convention
that the elements of {−1, 0, 1}<N are enumerated first by length, and then by the
lexicographical ordering.

We now define Sσ,n as follows: for the (finite) set of sequences γ ∈ {−1, 0, 1}<N

of length k ∈ N, there are two cases to be considered, namely items (1) and (2).

(1) If for all γ ∈ {−1, 0, 1}<N of length k, we have that for all l ≤ k,∣∣[F (ρ(σ ∗ 00 . . . ))](l)− [F (ρ(σ ∗ γ ∗ 00 . . . ))](l)
∣∣ ≤Q 2−n + 21−l

then all γ ∈ {−1, 0, 1}<N of length k are in Sσ,n.
(2) If the previous item is false, there is a least γ′ of length ≤ k such that for

some l ≤ k we have that∣∣[F (ρ(σ ∗ 00 . . . ))](l)− [F (ρ(σ ∗ γ′ ∗ 00 . . . ))](l)
∣∣ >Q 2−n + 21−l

We then let the extension γ′ ∗ 0 · · · 0 to a sequence of length k be in Sσ,n.
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We now make two important observations about the trees Sσ,k. Firstly, if for a
fixed k ∈ N, there is a sequence of length k in Sσ,n following item (2), then the
same sequence, only extended with zeros, will be the single sequence of length k′

for any k′ > k. In this case, the only branch in Sσ,n is a ternary g1 such that
|F (ρ(σ ∗ 0∗))− F (ρ(σ ∗ g))| > 2−n. Secondly, if |F (ρ(σ ∗ 00 . . . ))− F (ρ(σ ∗ g))| ≤
2−(n+1) holds for all ternary g1, then this formula holds for all branches g in Sσ,n.

Now, let gσ,n be a branch in Sσ,n provided by sequential WKL. Then at least
one of the following two items is the case:

• |F (ρ(σ ∗ 00 . . . ))− F (ρ(σ ∗ gσ,n))| < 2−n,

• |F (ρ(σ ∗ 00 . . . ))− F (ρ(σ ∗ gσ,n))] > 2−(n+1).

The n + 4-th rational approximation of |F (ρ(σ ∗ 00 . . . )) − F (ρ(σ ∗ gσ,n))| tells us
which item holds. In case the first item holds, we put B(σ, n) = 0, and 1 otherwise.
This function B satisfies (2.4) and we are done. □

The following remark discusses the representation used in the previous proof.

Remark 2.4 (Representations). Regarding the proof of Theorem 2.3, the use of
sequences based on {−1, 0, 1} and the map ρ is known as the negative binary rep-
resentation. The set of such representations is a computable retract of the set of
representations as given in Section A.2; this representation is useful for representing
[0, 1] over a compact space, or R over a σ-compact space, as in e.g. the proof of
item (xxiii) of Theorem 2.9.

As an exercise, the reader can verify that a continuous increasing function on
[0, 1] has a modulus of continuity in RCAω

0 . The following corollary is useful.

Corollary 2.5 (RCAω
0 +WKL). For a sequence (Fn)n∈N of continuous [0, 1] → R-

functions, there is a sequence of RM-codes (Φn)n∈N such that Fn(x) equals Φn(x)
for all x ∈ [0, 1] and n ∈ N.

Proof. One readily defines an RM-code from a modulus of uniform continuity for
a [0, 1] → R-function. The principle WKL is equivalent to the ‘sequential’ version
of WKL, i.e. that for a sequence of infinite 0/1-trees, there is a sequence of paths
through the respective trees ([54, Prop. 3.1]). The latter readily yields the required
sequence of RM-codes, via a sequence of moduli of uniform continuity. □

Thirdly, a continuous function on [0, 1] has a modulus of uniform continuity by
Theorem 2.3 but the proof is rather involved. As it happens, the proof that con-
tinuous functions are bounded is easier, and (mostly) suffices for the development
of higher-order RM.

Theorem 2.6 (RCAω
0 +WKL). A continuous F : [0, 1] → R is bounded.

Proof. For F as in the theorem, define G : 2N → N by

G(f) := ⌈[F (r(f))](2)⌉+ 1, (2.5)

where r(f) :=
∑∞

n=0
f(n)
2n+1 can also be found in Definition A.4. We now split the

proof in two cases. First of all, if G as in (2.5) is discontinuous on 2N, we obtain
(∃2) as the latter is equivalent to the existence of a discontinuous function on NN by
[55, Prop. 3.7]. Suppose F is unbounded on [0, 1]; by the continuity of the former,
we have (∀n ∈ N)(∃q ∈ Q ∩ [0, 1])(|F (q)| >R n). Applying QF-AC0,0, we obtain a
sequence (qn)n∈N such that (∀n ∈ N)(qn ∈ [0, 1]∧|F (qn)| > n). Since (∃2) → ACA0,
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we may use the well-known (second-order) convergence theorems by [94, III.2.7].
Thus, (qn)n∈N has a sub-sequence with limit y ∈ [0, 1]. Clearly, F is discontinuous
at y, a contradiction. Hence, F is bounded on [0, 1].

Secondly, if G as in (2.5) is continuous on 2N, then it has a modulus of uniform
continuity by [53, Prop. 4.11]. Hence, G is bounded on 2N, implying that F is also
bounded on [0, 1]; the latter follows by contradiction and the fact that individual
real numbers have binary representations in RCA0 (see [41]). □

Fourth, we recall that WKL is equivalent to the statement for a code of a uni-
formly continuous function, there is a modulus of uniform continuity ([94, IV.2.9]).

Theorem 2.7 (RCAω
0+WKL). A uniformly continuous F : [0, 1] → R has a modulus

of uniform continuity.

Proof. Let F : [0, 1] → R be uniformly continuous. In particular, we have

(∀k ∈ N)(∃g ∈ 2N)(∀x, y ∈ [0, 1] ∩ Q)(|x− y| < r(g) → |F (x)− F (y)| ≤ 1
2k
), (2.6)

where r(f) :=
∑∞

n=0
f(n)
2n+1 is a real number in [0, 1]. As noted in [94, Table 4, Notes],

WKL is equivalent to Π0
1-AC0, where the latter is:

(∀n ∈ N)(∃X ⊂ N)φ(n,X) → (∃(Zn)n∈N)(∀n ∈ N)[φ(n,Zn) ∧ Zn ⊆ N],

for any φ ∈ Π0
1. The underlined formula in (2.6) is Π0

1, as λq.F ((q, q, . . . )) is merely
a sequence of reals if q is a variable over Q. Hence, apply Π0

1-AC0 to (2.6) and note
that the resulting function yields a modulus of uniform continuity. □

Fifth, we obtain the following equivalences.

Theorem 2.8 (RCAω
0 ). The following are equivalent to WKL.

• A continuous F : [0, 1] → R is bounded.
• A uniformly continuous F : [0, 1] → R has a modulus of uniform continuity.
• A continuous F : [0, 1] → R is Riemann integrable ([94, IV.2.7]).

Proof. That WKL implies the first two items from the theorem, follows from Theo-
rems 2.6 and 2.7. To obtain the third item from WKL, use Corollary 2.5, combined
with the second-order results for Riemann integration ([94, IV.2.5]). To show that
the first item implies WKL, note that an RM-code Φ for a continuous function on
[0, 1] yields a (third-order) continuous function F : [0, 1] → R by Theorem 2.2.
Then F is bounded and so is the function represented by Φ. We now obtain WKL
via [94, IV.2.3]. An analogous proof goes through for the second and third items.
Indeed, the latter for codes are equivalent to WKL by [94, IV.2.7 and IV.2.9]. □

In conclusion, we have adapted some of Kohlenbach’s ‘coding results’ from [53,
§4], namely from 2N to [0, 1]. We have presented a fairly constructive but lengthy
proof (Theorem 2.3). We have also obtained shorter but less constructive proofs of
similar results (Theorems 2.6 and 2.7). Along the way, we have shown that WKL
is equivalent to third-order statements (see Theorem 2.8). The consensus view
here seems to be that (third-order) continuous functions are ‘really’ second-order,
as evidenced by Corollary 2.5. In this way, equivalences like Theorem 2.8 do not
really connect second- and third-order arithmetic. The aim of the next section is
to exhibit ‘more real’ connections, i.e. equivalences between WKL and third-order
theorems that do not have an obvious second-order counterpart.
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2.3. Equivalences for weak König’s lemma. We obtain equivalences between
WKL and certain third-order statements in higher-order RM (Sections 2.3.1 and 2.3.2).
In Section 2.3.3, we sketch similar results for the RM of weak weak König’s lemma
(WWKL for short) from [94, X.1].

2.3.1. Boundedness and supremum principles. We establish our first series of third-
order statements equivalent to WKL (Theorem 2.9), the former being boundedness
and supremum principles from analysis. We note in passing that the textbook proof
that BV -functions are bounded on [0, 1] (see e.g. [2]) goes through in RCAω

0 .

While some of the theorems under study are basic, others like item (xx) seem
advanced as the class of quasi-continuous functions goes far beyond even the Borel
or measurable functions, as discussed in Remark 2.13. Quasi-continuity goes back
to Baire ([4]) and is used in domain theory ([17,30,31,60]).

Regarding item (xvi), the assumption F (x) = F (x−)+F (x+)
2 and variations is

found in e.g. [2,33,34,102]. Regarding item (xxi), cadlag functions are an important
class in stochastics and econometrics while Remark 2.13 explains why items (ii)-
(iv), (vi)-(vii), (ix), (x), (xviii), and (xix) are non-trivial. Regarding item (xxiv),
Darboux sub-classes are topics of study in their own right (see e.g. [1, 64, 65, 79]).
The fragment of countable choice QF-AC0,1 is defined in Section A.1 while the exact
role of the Axiom of Choice is discussed in Remark 2.10.

Theorem 2.9 (RCAω
0 + QF-AC0,1). The following are equivalent to WKL.

(i) A regulated F : [0, 1] → R is bounded.
(ii) A regulated and continuous almost everywhere F : [0, 1] → R is bounded.
(iii) A regulated and pointwise discontinuous F : [0, 1] → R is bounded.
(iv) A regulated and not everywhere discontinuous F : [0, 1] → R is bounded.
(v) Any usco F : [0, 1] → R is bounded above.
(vi) Any usco and not everywhere discontinuous F : [0, 1] → R is bounded above.
(vii) Any usco and pointwise discontinuous F : [0, 1] → R is bounded above.
(viii) Any lsco F : [0, 1] → R is bounded below.
(ix) Any usco and Baire 1 function F : [0, 1] → R is bounded above.
(x) Any usco and effectively Baire n F : [0, 1] → R is bounded above (n ≥ 2).
(xi) A regulated and usco F : [0, 1] → R is bounded.
(xii) A regulated and quasi-continuous F : [0, 1] → R is bounded.
(xiii) A bounded usco function on [0, 1] that has a supremum, attains it.
(xiv) A bounded regulated usco function on [0, 1] with a supremum, attains it.
(xv) A bounded lsco function on [0, 1] that has an infimum, attains it.

(xvi) A regulated F : [0, 1] → R such that F (x) = F (x−)+F (x+)
2 for all x ∈ (0, 1),

is bounded.
(xvii) A regulated and lsco F : [0, 1] → R is bounded.
(xviii) A regulated and Baire 1 function F : [0, 1] → R is bounded.
(xix) A regulated effectively Baire n function F : [0, 1] → R is bounded (n ≥ 2).
(xx) A bounded and quasi-continuous F : [0, 1] → R has a sup (and inf ).
(xxi) A cadlag function F : [0, 1] → R is bounded ([83, Problem IV.3]).
(xxii) A cadlag function F : [0, 1] → R has a sup (and inf ).
(xxiii) A bounded Baire 1 function F : [0, 1] → R has a supremum.
(xxiv) A bounded Darboux Baire 1 function F : [0, 1] → R has a supremum.

We do not use QF-AC0,1 in relation to items (xii), (xvi), (xvii), and (xx)-(xxiv).
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Proof. First of all, item (i) readily implies WKL as F (x+) = F (x) = F (x−) for
all x ∈ (0, 1) in case F is continuous; Theorem 2.8 now yields WKL. For the
reversal, assume WKL and fix some regulated F : [0, 1] → R. In case the latter
is continuous, it is also bounded by Theorem 2.8. In case F is discontinuous, we
have access to (∃2) by [55, §3]. Now suppose (∀n ∈ N)(∃x ∈ [0, 1])(|F (x)| > n)
and apply QF-AC0,1 to obtain (xn)n∈N such that |F (xn)| > n for all n ∈ N. Use
µ2 to guarantee F (xn+1) > max(n + 1, F (xn)) for all n ∈ N, if necessary. Since
(∃2) → ACA0, we have access to the well-known second-order convergence theorems
(see [94, III.2]). Thus, there is a convergent sub-sequence (yn)n∈N of (xn)n∈N, say
with limit y ∈ [0, 1]. Then either there are infinitely many n ∈ N such that yn < y or
infinitely many m ∈ N such that ym > y; note that this case distinction is decidable
using ∃2. In the former case (the latter being symmetric), F (yn) becomes arbitrarily
large as n → ∞. In particular, F (y−) does not exist, a contradiction, and F must
be bounded on [0, 1], and item (i) follows.

Secondly, the equivalence for item (v) (and items (ii)-(iv), (vi)-(vii), (viii)-(xi),
and (xviii)-(xix)) follows in the same way as for item (i). Indeed, item (v) for in-
stance implies WKL since a continuous function is trivially usco (and lsco, Baire 1,
cadlag, or effectively Baire n), while WKL already follows in [94, IV.2.3] from the
existence of an upper bound. For the reversal, one proceeds as in the previous para-
graph, noting that F cannot be usco at the limit point y ∈ [0, 1]. The equivalence
involving items (viii)-(xi) and (xviii)-(xix) is now immediate.

Thirdly, item (xiii) readily implies WKL as a continuous function is trivially usco,
i.e. combining Theorem 2.2 and [94, IV.2.3] yields WKL. For the reversal, assume
WKL and fix an usco function f : [0, 1] → [0, 1] that has a supremum y0 ∈ [0, 1].
In case f is continuous, WKL yields an RM-code (Corollary 2.5). Hence, the well-
known second-order result in [94, IV.2.3] yields the required maximum. In case
F is discontinuous, we have access to (∃2) by [55, §3]. By definition, we have
(∀n ∈ N)(∃x ∈ [0, 1])(f(x) ≥ y0 − 1

2n ). Apply QF-AC0,1 to obtain a sequence

(xn)n∈N such that (∀n ∈ N)(f(xn) ≥ y0 − 1
2n ). Since (∃2) → ACA0, we have access

to the well-known second-order convergence theorems (see [94, III.2]). Let (zn)n∈N

be a convergent sub-sequence of (xn)n∈N, say with limit w0. By assumption (f
being usco and y0 its supremum), we have

y0 ≥ f(w0) ≥ lim supx→w0
f(x) ≥ lim supn→∞ f(zn) ≥ limn→∞ y0 − 1

2n = y0,

which implies f(w0) = y0 as required for item (xiii). The equivalence involving
items (xiv) and (xv) is now immediate.

Fourth, for items (xii), (xvi), (xvii), and (xxi), the equivalence is proved as for
items (i) and (v) with the only modification that (∀n ∈ N)(∃x ∈ [0, 1])(|F (x)| > n)
implies (∀n ∈ N)(∃q ∈ [0, 1] ∩ Q)(|F (q)| > n) due to the extra conditions in these
items. Hence, we can apply QF-AC0,0 (rather than QF-AC0,1), included in RCAω

0 .

Fifth, for item (xx), the latter yields WKL by [94, IV.2.3]; indeed, Theorem 2.2
converts an RM-code for a continuous function into a third-order continuous func-
tion, which is trivially quasi-continuous. Now assume WKL and let F : [0, 1] → R be
quasi-continuous and bounded. In case the latter is also continuous, Theorem 2.3
provided a modulus of uniform continuity and [94, IV.2.3] provides the required
supremum. In case F is discontinuous, we obtain (∃2) by [55, §3]. The usual
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interval-halving technique (using ∃2) then readily yields the required supremum as

(∃x ∈ [0, 1])(F (x) > r) ↔ (∃q ∈ [0, 1] ∩ Q)(F (q) > r), (2.7)

for any r ∈ R, as cadlag implies quasi-continuity. An analogous proof goes through
for item (xxii), as cadlag functions are quasi-continuous.

For item (xxiii), let F : [0, 1] → R be the pointwise limit of (Fn)n∈N, where each
Fn : [0, 1] → R is continuous on [0, 1]. Let Φn be an RM-code for Fn and Mn

be the modulus of uniform continuity for Fn, all provided by Corollary 2.5 (and
Remark 2.1). We may assume that F is not continuous, whence we have access to
∃2 by [55, §3]. We now show that for r ∈ Q, supx∈[0,1] F (x) > r is definable in ∃2;
the proof is based on the equivalence between items (A) and (B) below.

Now, ∃2 can (uniformly) convert between various representations of real numbers
(see [41] for the latter). Thus, we may assume that any x ∈ [0, 1], which actually
is a fast converging sequence of rational numbers (see Definition A.4), is obtained
from a negative binary representation fx as in Remark 2.4. Note that there is a
bijective correspondence between the negative binary representations and the fast
converging sequences obtained from them.

We let I(x, k) be the interval of reals y ∈ [0, 1] represented by a negative binary
representation extending that of fxk. We assume Φn to be given as a set of pairs of
intervals ⟨[a, b], [c, d]⟩ with rational endpoints such that, in addition to an approx-
imation requirement, if y ∈ [a, b] then Fn(y) ∈ [c, d]; this is the most frequently
used domain representation. Using ∃2, the latter representation is equivalent to
any other (RM-)representation.

We now show that the following are equivalent:

(A) supx∈[0,1] F (x) > r,

(B) There exists x ∈ [0, 1], n, k ∈ N such that for m ≥ n and ⟨[a, b], [c, d]⟩ ∈ Φm,
if j = Mm(k + 1) and I(x, j) ∩ [a, b] ̸= ∅, then [c, d] contains an element
≥ r + 2−(k+1).

To show that (A) → (B), assume for some x ∈ [0, 1] that F (x) > r and let n, k ∈ N
be such that Fm(x) > r − 2−k for all m ≥ n. We now verify (B) for this choice of
n, k and x. Let m ≥ n and ⟨[a, b], [c, d]⟩ ∈ Φm with j = Mm(k + 1) be such that
I(x, j) ∩ [a, b] ̸= ∅. Let y ∈ [0, 1] be in this intersection, implying |x− y| < 1

2j and

hence |Fm(x) − Fm(y)| < 2−(k+1). Since Fm(y) ∈ [c, d] and Fm(y) > r + 2−(k+1)

by the triangle inequality, (B) follows for the aforementioned choice of n, k, x.

To show that (B) → (A), let x, n and k be as stated in (B). We show that
F (x) > r by showing that Fm(x) ≥ r+2−(k+2) for allm ≥ n. Let ⟨[a, b], [c, d]⟩ ∈ Φm

be such that x ∈ [a, b] and |d− c| < 2−(k+2). Clearly [a, b] ∩ I(x, k) ̸= ∅, since e.g.
x is in both sets. Since Fm(x) ∈ [c, d] and [c, d] contains an element ≥ r+ 2−(k+1),
we must have that Fm(x) ≥ r + 2−(k+2).

In (B), we first have existential quantifiers for x, n and k, then universal quanti-
fiers over N and Q4 and the remaining matrix is decidable in the parameters. As
‘(∃x ∈ [0, 1])’ actually is a quantifier over {−1, 0, 1}N and the latter is computably
identifiable with 2N, the equivalence (A) ↔ (B) shows that supx∈[0,1] F (x) > r can
be expressed as a second-order formula of the form

(∃n ∈ N)(∃f ∈ 2N)(∀m ∈ N)R(r, n, f,m),
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where R is Turing computable in the second-order objects (Φk)k∈N and (Mk)k∈N.
By WKL, the formula (∃f ∈ 2N)(∀m ∈ N)R(r, n, f,m) is equivalent to:

(∀k ∈ N)(∃σ ∈ 2<N)
[
|σ| = k ∧ (∀m ∈ N)R(r, n, σ ∗ 00 . . . ,m)

]
,

which is arithmetical. This shows the existence of supx∈[0,1] F (x) for F : [0, 1] → R
in Baire 1, given as the limit of a sequence of continuous functions, assuming ∃2.
The previous goes through for item (xxiv) since continuous functions on [0, 1] are
Darboux, which follows by imitating the second-order intermediate value theorem
as can be found in [94, II.6.6]. □

In light of Theorem 2.9, a single second-order equivalence from analysis can give
rise to many different equivalences in higher-order RM. There is however a limit:
while the supremum principle for effectively Baire 2 functions is equivalent to the
Big Five system Π1

1-CA0 (see Theorem 2.22), the former principle for Baire 1∗ or
Baire 2 functions is not provable in Zω

2 by Theorem 2.32. Nonetheless, the third-
order RM of WKL can only be called extremely robust following Section 1.1.

In the next remark, we discuss the role of the Axiom of Choice in Theorem 2.9.

Remark 2.10 (On the Axiom of Choice). The Axiom of Choice (AC for short)
plays an interesting role in Theorem 2.9, namely related to the results in [72, 73].
As in the latter, we say that a statement T in the language of finite types exhibits
the Pincherle phenomenon if the following two items are satisfied.

• The statement T is provable without AC but only in relatively strong sys-
tems, namely T is provable in ZΩ

2 , but not in Zω
2 (see Section A.3).

• The statement T is provable in weak systems assuming (fragments of) AC,
namely the system RCAω

0 +WKL+ QF-AC0,1 proves T .

In short, the Pincherle phenomenon is the observation that AC makes certain the-
orems ‘easier to prove’ even though we do not strictly need AC. We first observed
this phenomenon in [73] for a theorem by Salvatore Pincherle from [82, p. 67], while
many examples may be found in [72] and elsewhere.

One readily verifies that the Pincherle phenomenon is exhibited by items (i), (v),
(viii), (xi), (xiii), and (xiv) from Theorem 2.9. Indeed, the model Q∗ of Zω

2 from
[76] is such that there is an unbounded regulated function on [0, 1], i.e. item (i) is
not provable in Zω

2 and the same for the other items. More interestingly, items (ix),
(x), (xviii), and (xix) exhibit a kind of weak Pincherle phenomenon as these items
are already7 provable in RCAω

0 + Σ1
1-AC0, which is conservative over ACA0. Thus,

the extra ‘Baire 1’ condition in these items makes them ‘easier to prove’, where we
note that the addition of this condition is non-trivial by Remark 2.13.

Next, we have an important corollary to Theorem 2.9, where a set is ‘Baire 1’ if
the characteristic function is Baire 1. The general notion of Baire set may be found
in [52, p. 21, Def. 4] under a different name; we refer to [62] for an introduction and
to [22, §7] for equivalent definitions, including that of Borel set in Euclidean space.

Theorem 2.11 (RCAω
0 + WKL). For any open Baire 1 set O ⊂ [0, 1], there exist

(an)n∈N, (bn)n∈N such that x ∈ O ↔ (∃n ∈ N)(x ∈ (an, bn)) for all x ∈ [0, 1].

7The use of QF-AC0,1 can be replaced by Σ1
1-AC0 in light of the equivalence (A)↔(B) from

the proof of Theorem 2.9.
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Proof. We make use of item (xxiii) of Theorem 2.9. In particular, the proof of this
item immediately generalises to infima involving rational parameters, i.e. we have:

for a bounded Baire 1 function f : [0, 1] → R, there is F : Q2 → R such that for all
p, q ∈ Q ∩ [0, 1], the real F (p, q) equals infx∈[p,q] f(x).

To see this, we observe that when p < q for p, q ∈ Q, the formula x ∈ [p, q]
can be expressed by a Π0

1-formula in the negative binary representation fx from
Remark 2.4. Now let O be an open Baire 1 set and note that the representation
is trivial in case O = ∅. Hence, we may assume there is x0 ∈ O and m0 such that
B(x0,

1
2m0

) ⊂ O. Let
(
(pn, qn)

)
n∈N

be an enumeration of all intervals in [0, 1] with
rational end-points. Now define the following sequence of intervals:

(an, bn) :=

{
B(x0,

1
2m0

) in case infx∈[pn,qn] 1O(x) <
1
2

(pn, qn) in case infx∈[pn,qn] 1O(x) > 0
. (2.8)

Note that the case distinction in (2.8) is decidable (in RCAω
0 ) and that in each case

(an, bn) ⊂ O. The theorem is now immediate. □

Theorem 2.11 essentially expresses that a Baire 1 open set can be represented
by a code for an open set (see [94, II.5.6]). The general case for arbitrary open sets
is not provable in Zω

2 from Section A.3 (see [72]). Nonetheless, assuming WKL, any
applicable second-order theorem generalises from ‘codes for open sets’ to ‘third-
order open sets that are Baire 1’. Examples include the Heine-Borel theorem for
countable coverings of closed sets ([13, Lemma 3.13] and [94, IV.1.5]), the Tietze
extension theorem ([32]), the Urysohn lemma ([94, II.7.3]), and the Baire category
theorem ([94, II.4.10]). The same holds mutatis mutandis for open sets with quasi-
continuous characteristic functions or open sets as in Definition 1.5 where Y : R → R
is Baire 1. The following theorem establishes a similar theorem for countable sets;
enumerating general (strongly) countable sets cannot be done in Zω

2 (see [75,77]).

Theorem 2.12 (ACAω
0 ). For any Baire 1 set A ⊂ [0, 1] and Baire 1 function

Y : [0, 1] → N injective on A, there is (xn)n∈N which includes all elements of A.

Proof. Let A ⊂ [0, 1] and Y : [0, 1] → N be as in the theorem. The standard
proof shows that the product of Baire 1 functions is Baire 1. Thus, Theorem 2.9
guarantees that inf [p,q](1A(x)Y (x)) makes sense for rational p, q ∈ [0, 1]. Assuming

A ̸= ∅, we have inf [0,1](1A(x)Y (x)) = n0 > 0. Now replace [0, 1] by [0, 1
2 ] and [ 12 , 1]

to check in which of the latter sub-intervals the unique x0 ∈ A with Y (x0) = n0 is
to be found. The usual interval-halving technique now provides this real and repeat
for inf [0,1](1A\{x0}(x)Y (x)) = n1 to enumerate A. □

Finally, we finish this section with some conceptual remarks.

Remark 2.13. First of all, it is a basic fact that BV , usco, lsco, and regulated
functions are Baire 1, but this cannot be proved from the Big Five or (∃2), and
much stronger systems by Theorem 2.34. To be absolutely clear, ACAω

0 + Π1
1-CA0

and much stronger systems are consistent with the existence of BV , usco, lsco, and
regulated functions that are not Baire 1, explaining e.g. items (ix) and (xviii) in
Theorem 2.9. Similar results hold for ‘effectively Baire n’, explaining for instance
item (xix) in Theorem 2.9.

Secondly, the cadlag functions are arguably ‘close to continuous’, but one should
be careful with such claims: by Theorem 2.38, it is consistent with the Big Five
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and much stronger systems that there is a regulated (or usco) function that is
discontinuous everywhere (see also [92]), explaining items (ii)-(iv) and (vi)-(vii) in
Theorem 2.9. Furthermore, quasi-continuous functions can be quite ‘wild’: if c is the
cardinality of R, there are 2c non-measurable quasi-continuous [0, 1] → R-functions
and 2c measurable quasi-continuous [0, 1] → [0, 1]-functions (see [43]). Also, the
class of quasi-continuous functions is closed under taking transfinite limits ([68]).

Thirdly, the regulated functions boast many sub-spaces (see [2]) and the same for
the Baire 1 functions (see [48]); one can presumably formulate a version of items (i)
or (xviii) for many of those. In general, many variations of Theorem 2.9 are possible,
based on any function space containing the continuous functions. For instance, one
can replace ‘quasi-continuity’ by the weaker notion ‘lower quasi-continuity’ (see
[26]) in most equivalences in this paper. Moreover, derivatives that are continuous
almost everywhere, are quasi-continuous ([66]), suggesting many possible variations.
The notion of strong quasi-continuity also seems very promising, especially in light
of its intimate connection to continuity almost everywhere ([35]), as well as the
notion of countably continuous and related concepts ([97]).

Fourth, we have studied the (countable) Axiom of Choice in higher-order RM in
[76]. We believe that the choice principle NCC from the latter, which is provable in
ZF, can replace QF-AC0,1 in Theorem 2.9 and the below.

2.3.2. Covering lemmas. We show that WKL is equivalent to a number of third-
order covering lemmas (Theorem 2.14). We have shown in [70] that the general
case, called Cousin’s lemma, is not provable from WKL and much stronger systems.

First of all, WKL is equivalent to compactness results like the Heine-Borel theo-
rem for countable coverings ([94, IV.1]) and Cousin’s lemma for (codes of) contin-
uous functions ([6, 7]). In general, Cousin’s lemma ([19]) is formulated as follows.

For Ψ : [0, 1] → R+, the covering ∪x∈[0,1]B(x,Ψ(x)) of [0, 1] has a finite
sub-covering, i.e. there are x0, . . . , xk ∈ [0, 1] where ∪i≤kB(xi,Ψ(xi)) covers [0, 1].

Secondly, we establish the following theorem to be contrasted with items (i)-(vi) in
Theorem 2.34. We stress that Cousin’s lemma deals with uncountable coverings.
Recall Remark 2.13 which explains why items (iv)-(viii) are non-trivial.

Theorem 2.14 (RCAω
0 ). The following are equivalent to WKL.

(i) Cousin’s lemma for RM-codes of continuous functions.
(ii) Cousin’s lemma for continuous functions.
(iii) Cousin’s lemma for lsco functions.
(iv) Cousin’s lemma for lsco Baire 1 functions.
(v) Cousin’s lemma for lsco effectively Baire n+ 2 functions.
(vi) Cousin’s lemma for lsco functions that are continuous almost everywhere.
(vii) Cousin’s lemma for lsco functions that are pointwise discontinuous.
(viii) Cousin’s lemma for lsco functions that are not everywhere discontinuous.
(ix) Cousin’s lemma for quasi-continuous functions.
(x) Cousin’s lemma for cadlag functions.

(xi) Cousin’s lemma for regulated F : [0, 1] → R such that F (x) = F (x−)+F (x+)
2

for all x ∈ [0, 1].
(xii) Cousin’s lemma for regulated F : [0, 1] → R such that for all x ∈ [0, 1]:

min(F (x−), F (x+)) ≤ F (x) ≤ max(F (x−), F (x+)).

(xiii) Cousin’s lemma for Baire 1 functions.
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Proof. Zeroth of all, the equivalence between WKL and item (i) has been proved in
[6, 7]. The combination of Theorems 2.2 and 2.3 then establishes the equivalence
between WKL and item (ii).

First of all, assume item (iii) and note that by Theorem 2.2, an RM-code for
a continuous function equals a (third-order) continuous function. The latter is
trivially lsco and item (iii) establishes Cousin’s lemma for RM-codes of continuous
functions, and hence WKL. Now assume WKL and fix lsco Ψ : [0, 1] → R+. If
the latter is continuous, item (ii) provides a finite sub-covering. If the latter is
discontinuous, we have access to (∃2) by [55, §3]. In case (∃N ∈ N)(∀q ∈ [0, 1] ∩
Q)(Ψ(q) ≥ 1

2N
), item (iii) is immediate as enough rational numbers form a finite sub-

covering. Finally, in case (∀N ∈ N)(∃q ∈ [0, 1] ∩ Q)(Ψ(q) < 1
2N

), apply QF-AC0,0

included in the base theory to obtain a sequence of rationals (qn)n∈N such that
Ψ(qn) < 1

2n for all n ∈ N. Since (∃2) → ACA0, we have access to the usual
second-order convergence theorems (see [94, III.2]), i.e. (qn)n∈N has a convergent
sub-sequence (rn)n∈N, say with limit y ∈ [0, 1]. Then Ψ(y) = 0 as Ψ is lsco and Ψ
comes arbitrarily close to 0 close to y, a contradiction, and we are done.

Secondly, item (ix) implies WKL in the same way as for item (iii). Now assume
WKL and fix quasi-continuous Ψ : [0, 1] → R+. In case the latter is also continuous,
Theorem 2.3 provides a modulus of uniform continuity and [94, IV.2.3] implies
that infx∈[0,1] Ψ(x) > 0, which readily yields the finite sub-covering. In case F is

discontinuous, we obtain (∃2) by [55, §3]. Now consider the following for any r ∈ R:

(∃x ∈ [0, 1])(Ψ(x) > r) ↔ (∃q ∈ [0, 1] ∩ Q)(Ψ(q) > r), (2.9)

which holds due to the definition of quasi-continuity. In this light, use µ2 to define
G(x) as the least N ∈ N such that

(∃q ∈ Q ∩ [0, 1])( 1
2N

< |x− (q +Ψ(q))| ∧ x ∈ B(q,Ψ(q))). (2.10)

Now define an increasing sequence (rn)n∈N of rationals via r0 := 1
2G(0) and rn+1 :=

rn + 1
2G(rn) . In case this sequence stays in [0, 1], it converges to some y ∈ [0, 1],

which leads to a contradiction. Hence, rn0
> 1 for some n0 ∈ N, readily yielding

a finite sub-covering. Since cadlag functions are (trivially) quasi-continuous, the
equivalence for item (x) also follows. Similarly, one readily observes that (2.9) also
holds for functions as in items (xi) and (xii), i.e. the above proof for item (ix) yields
the equivalences involving items (xi) and (xii). An alternative proof of items (iii)
and (ix) proceeds by noting that one can restrict ∪x∈[0,1]B(x,Ψ(x)) to rationals

for quasi-continuous or lsco Ψ : [0, 1] → R+, yielding a countable sub-covering
∪q∈[0,1]∩QB(q,Ψ(q)) of [0, 1] to which the second-order Heine-Borel theorem from
[94, IV.1] applies; this is relevant to the proof of Corollary 2.35.

Thirdly, for item (xiii), it suffices to prove the latter from WKL as continuous
functions are trivially Baire 1. To establish item (xiii), in case Ψ : [0, 1] → R+ is
continuous, use item (ii). In case Ψ : [0, 1] → R+ is discontinuous, we obtain (∃2) by
[55, §3], and hence ACA0. Let (Ψn)n∈N be a sequence of continuous functions with
pointwise limit Ψ. Corollary 2.5 converts this sequence into a sequence (Φn)n∈N of
codes for continuous functions. However, the latter is a code for a Baire 1 function
in the sense of [6,7]. By the latter, Cousin’s lemma for codes for Baire 1 functions, is
also equivalent to ACA0, i.e. Cousin’s lemma for Ψ now follows via the second-order
lemma for (Φn)n∈N as (∃2) → ACA0. □
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Now, Cousin’s lemma for codes for Baire 1 functions, is equivalent to ACA0

([6,7]). Moreover, by Theorem 2.28, (∃2) is equivalent to the statement: a code for
a Baire 1 function denotes a third-order function. Hence, following item (xiii) of
Theorem 2.14, the use of second-order codes changes the logical strength of Cousin’s
lemma. We obtain sharper results on Cousin’s lemma in Section 2.8.3.

Finally, Theorem 2.11 expresses that open Baire 1 sets have RM-codes, assuming
WKL. Now, consider the following version of the (countable) Heine-Borel theorem:

let (On)n∈N be a sequence of open Baire 1 sets, the union of which covers [0, 1].
Then there is m ∈ N such that ∪n≤mOn covers [0, 1].

This is a direct generalisation of [94, V.1.5] and can be included in Theorem 2.14.
The general case, i.e. with ‘Baire 1’ omitted, exhibits the Pincherle phenomenon
from Remark 2.10, as shown in [72].

2.3.3. More on covering lemmas. We show that WWKL is equivalent to a number
of third-order covering theorems (Theorem 2.15), where the former is weak weak
König’s lemma as in [94, X.1.7]. We conjecture that RCAω

0 +WWKL cannot prove
Theorem 2.3, i.e. we cannot use the associated coding results in this section.

First of all, as suggested by its name, WWKL is a certain restriction of WKL,
namely to trees of positive measure. Montalbán states in [67] that WWKL is robust,
i.e. equivalent to small perturbations of itself, in the same way as the Big Five are;
WWKL0 is even called the ‘sixth Big system’ in [87]. Now, WWKL is equivalent
to the Vitali covering theorem for countable coverings, and to numerous variations
(see [94, X.1] and [87, Lemma 8]), including the following.

Let
(
(an, bn)

)
n∈N

be a sequence of open intervals that covers [0, 1]. Then for any

ε > 0, there is m ∈ N such that ∪n≤m(an, bn) has measure > 1− ε.

The following generalisation to uncountable coverings, in the spirit of Cousin’s
lemma, is not provable from the Big Five and much stronger systems (see [72]).

For Ψ : [0, 1] → R+ and ε > 0, there are x0, . . . , xk ∈ [0, 1] such that
∪i≤kB(xi,Ψ(xi)) has measure 1− ε.

Vitali indeed considers uncountable coverings in [100], going as far as expressing
his surprise regarding the uncountable case. We shall refer to the second centred
statement as Vitali’s principle as it constitutes the ‘combinatorial essence’ of the
Vitali covering theorem, in our opinion. The first centred statement will be called
Vitali’s principle for countable coverings.

Secondly, we establish the following theorem to be contrasted with Corollary 2.35.
Recall Remark 2.13 which explains why items (iv)-(viii) are non-trivial.

Theorem 2.15 (RCAω
0 ). The following are equivalent to WWKL.

(i) Vitali’s principle for RM-codes of continuous functions.
(ii) Vitali’s principle for continuous functions.
(iii) Vitali’s principle for lsco functions.
(iv) Vitali’s principle for lsco Baire 1 functions.
(v) Vitali’s principle for lsco effectively Baire n+ 2 functions.
(vi) Vitali’s principle for lsco functions that are continuous almost everywhere.
(vii) Cousin’s lemma for lsco functions that are pointwise discontinuous.
(viii) Vitali’s principle for lsco functions that are not everywhere discontinuous.
(ix) Vitali’s principle for quasi-continuous functions.
(x) Vitali’s principle for cadlag functions.
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(xi) Vitali’s principle for regulated F : [0, 1] → R such that F (x) = F (x−)+F (x+)
2

for all x ∈ [0, 1].
(xii) Vitali’s principle for regulated F : [0, 1] → R such that for all x ∈ [0, 1]:

min(F (x−), F (x+)) ≤ F (x) ≤ max(F (x−), F (x+)).

(xiii) Vitali’s principle for Baire 1 functions.

Proof. We establish the equivalences involving WWKL and items (i) and (ii). Invok-
ing the law of excluded middle as in (∃2)∨¬(∃2) then finishes the proof. Indeed, in
the former case, (∃2) → ACA0, which makes WWKL and all items outright provable
in light of Theorem 2.14. In case ¬(∃2), all functions on R are continuous ([55, §3])
and items (iii)-(xiii) reduce to item (ii).

Assume WWKL and fix continuous Ψ : [0, 1] → R+. To show that the countable
union ∪q∈[0,1]∩QB(q,Ψ(q)) covers [0, 1], consider x ∈ [0, 1] and apply the definition

of continuity of Ψ for k such that 1
2k

≤ Ψ(x)/2, i.e. we obtain N ∈ N such that

for y ∈ B(x, 1
2N

), we have |Ψ(x)−Ψ(y)| < Ψ(x)/2. Then for any q ∈ B(x, 1
2N

) ∩ Q
close enough to x, we have x ∈ B(q,Ψ(q)), as required. As noted above, WWKL
is equivalent to Vitali’s principle for countable coverings ([94, X.1]), i.e. we may
apply the latter to ∪q∈Q∩[0,1]B(q,Ψ(q)) to obtain item (ii). For item (i), apply
Theorem 2.2 and use item (ii).

For the reversals, these essentially follow from the proof of [7, Theorem 4.2],
which takes place in RCA0 and establishes that Cousin’s lemma for (codes for)
continuous functions, impliesWKL. In more detail, in the aforementioned proof, one
fixes a countable covering ∪n∈N(an, bn) of [0, 1] and defines a continuous function
δ : [0, 1] → R+. This function is then shown to have an RM-code and to satisfy:

(∀x ∈ [0, 1])
[
δ(x) > 1

2k
→ B(x, δ(x)) ⊆ ∪m≤k(am, bm)

]
. (2.11)

In light of (2.11), a finite sub-covering for ∪x∈[0,1]B(x, δ(x)) immediately yields a
finite sub-covering for ∪n∈N(an, bn), i.e. Cousin’s lemma for (codes for) continuous
functions implies the Heine-Borel theorem for countable coverings, and hence WKL
via [94, IV.1.1]. Now, the definition of the RM-code of δ and the proof of (2.11)
take place in RCA0, i.e. we may simply apply item (i) to ∪x∈[0,1]B(x, δ(x)) and
obtain Vitali’s principle for countable coverings, and hence WWKL via [94, X.1]. In
light of Theorem 2.2, item (ii) also yield WWKL. □

Finally, certain equivalences from Theorem 2.15 can be proved (or expanded)
using [88, Cor. 2.6], where it is shown that WWKL is equivalent to Vitali’s principle
restricted to Ψ : [0, 1] → R+ that are continuous almost everywhere.

2.4. Equivalences for arithmetical comprehension. In this section, we estab-
lish some equivalences between arithmetical comprehension ACA0 and third-order
theorems from analysis, including the Jordan decomposition theorem as in Theo-
rem 1.4. We have shown in [75] that the general case of the latter cannot be proved
from the Big Five and much stronger systems like Zω

2 . Regarding definitions, the
system ACAω

0 is defined as RCAω
0 + (∃2) and basic properties are in Section A.3.

First of all, we need the following theorem, where a jump discontinuity of a
function f : R → R is a real x ∈ R such that the left and right limits f(x−) and
f(x+) exist, but are not equal. By [75, §3.3], listing all points of discontinuity of
BV -functions cannot be done in in the Big Five and much stronger systems.
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Theorem 2.16 (ACAω
0 ). If f : [0, 1] → R is regulated, there is a sequence of reals

containing all jump discontinuities of f .

Proof. Let f : [0, 1] → R be regulated. We say that x ∈ (0, 1) is a jump if
Jump(f, x) := |f(x+)− f(x−)| is > 0, which is equivalent to the following:

(∃k ∈ N)(∀m ∈ N)(∃q, r ∈ [0, 1]∩Q)(q < x < r ∧ |q− r| < 1
2m ∧ |f(q)− f(r)| > 1

2k
),

where we note that f only occurs with rational inputs. Hence, the set of jumps is
arithmetically definable from f .

In the below, p, q, a, b and δ > 0 etc. are assumed to be variables over the
rationals, while x is a variable over the reals. First of all, we prove that items (1)
and (2) as follows are equivalent.

(1) There is exactly one jump x ∈ (a, b) with Jump(f, x) ≥ δ.
(2) (a) For all n ∈ N there are p, q such that a < p < q < b, q − p < 2−n, and

|f(p)− f(q)| > δ − 2−n.
(b) There is an n ∈ N such that for all pairs (p1, q1) and (p2, q2) satisfying

(a) with respect to n, δ, a, b and f , we have that (p1, q1)∩ (p2, q2) ̸= ∅.
Assume item (1) and note that (2).(a) follows from the fact that there is at least
one point in (a, b) with a jump ≥ δ. To prove (2).(b), we use the fact there is only
one x ∈ (a, b) with a jump ≥ δ. To prove this uniqueness, we show that:

there is n ∈ N such that (p, q) satisfying (2 ).(a) contains an x with jump ≥ δ.

Suppose the centred claim is false. Then for each k, there will be pk < qk such that
|f(pk) − f(qk)| > δ − 2−k, qk − pk < 2−k, and x ̸∈ (pk, qk). Since we may pick a
convergent sub-sequence (provable in ACAω

0 by [94, III.2]), we can, without loss of
generality, assume that (pk)k∈N has a limit y. If y is one of the objects a or b ,
both pk and qq will approximate y from the same side, violating the assumption of
one-sided limits. If y = x, then for each k both pk and qk will be on the same side
of x, and then infinitely many will approach x from the same side, again violating
the assumption of one-sided limits. For any other value of y we can either argue
as above, or obtain that there is also a jump at y of a size ≥ δ, contradicting the
assumption of item (1).

Now assume (2) and note that by (2).(a) there cannot be more than one jump
x in (a, b) with Jump(f, x) ≥ δ. Now, let n be as in (2).(b) and note that there
is a pair pk < qp of rational points for each k ≥ n satisfying (2).(b). We can find
such pk, qk via an effective search, and by (2).(b) we must have that both (pk)k≥n

and (qk)k≥n converge, and to the same limit x. Clearly, using arguments as in the
previous paragraph, x is a jump in (a, b) with Jump(f, x) ≥ δ.

Having established the equivalence between (1) and (2), we see that the set of
triples (a, b, δ) such that (a, b) contains exactly one jump x with Jump(f, x) ≥ δ
is arithmetically definable from the restriction of f to the rationals, and using the
characterisation we see that the unique x then is definable from the same restriction
using ∃2. In this way, we can enumerate the set of jumps. □

We can now generalise Corollary 2.5 as follows.
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Corollary 2.17 (RCAω
0 +WKL). A cadlag function f : [0, 1] → R has a modulus

of cadlag, i.e. there is G : (R × N) → N such that

(∀k ∈ N, x, y, z ∈ [0, 1])

 y, z ∈ (x− 1
2G(x,k) , x) → |f(y)− f(z)| < 1

2k

∧
y ∈ (x, x+ 1

2G(x,k) ) → |f(x)− f(y)| < 1
2k

 . (2.12)

Proof. In case f : [0, 1] → R is continuous, use Corollary 2.5 to obtain a modulus of
continuity, which readily yields a modulus of cadlag. In case f : [0, 1] is discontin-
uous, we obtain (∃2) by [55, §3] and we may use the theorem to obtain a sequence
(xn)n∈N that lists all points of discontinuity of f . Now define a modulus of cadlag
G : (R × N) → N based on the following case distinction.

• In case x ̸= xn for all n ∈ N, then G(x, k) is the least N ∈ N such that for
all y ∈ (x− 1

2N
, x+ 1

2N
) ∩ Q, we have |f(x)− f(y)| < 1

2k+1 .
• In case x = xn0

for some n0 ∈ N, then G(x, k − 1) is the least N ∈ N such
that the formula in big square brackets in (2.12) holds for all y, z ∈ Q∩[0, 1].

Then G is as required by the corollary and we are done. □

One can also use the previous theorem and corollary to show that cadlag func-
tions are Baire 1 in a relatively weak system, but the technical details are somewhat
tedious. This should be contrasted with Theorem 2.34 as by the latter the Big Five
cannot prove that e.g. regulated functions are Baire 1. One similarly establishes
(part of) the Lebesgue decomposition theorem (see e.g. [61]).

Secondly, Theorem 2.16 has interesting consequences, e.g. Theorem 2.19, which
should be contrasted with Theorem 2.37. We shall make (seemingly essential) use
of the following fragment of the induction axiom, which also follows from QF-AC0,1.

Definition 2.18. [IND2] Let Y
2, k0 satisfy (∀n ≤ k)(∃f ∈ 2N)(Y (f, n) = 0). There

is w1∗ such that (∀n ≤ k)(∃i < |w|)(Y (w(i), n) = 0).

We note that the class NBV from [2, Def. 1.2], [84, §1.1], or [27, p. 103], is
essentially the intersection between BV and the cadlag functions. As discussed in
[2], the classical Riemann-Stieltjes integral provides a natural one-to-one correspon-
dence between the dual of the space C([a, b]) of continuous functions and the space
NBV ([a, b]) of (normalized) BV -functions.

Theorem 2.19 (RCAω
0 + IND2). The following are equivalent to ACA0.

• The Jordan decomposition theorem for cadlag BV -functions.
• The Jordan decomposition theorem for BV -functions satisfying the equality

f(x) = f(x+)+f(x−)
2 for x ∈ (0, 1).

• The Jordan decomposition theorem for quasi-continuous BV -functions.

We do not need IND2 for the first item.

Proof. We establish the equivalence between ACA0 and the first item based on
Theorem 2.16 and the observation that cadlag functions do not have removable
discontinuities. One proceeds analogously for the second and third item, as the
functions therein also do not have removable discontinuities. As shown in [75,
Theorem 3.33], a BV -function is regulated assuming IND2.

First of all, assume ACA0 and fix a cadlag BV -function f : [0, 1] → R. In case
the latter is continuous, Corollary 2.5 provides an RM-code. We can now apply the
second-order RM results from [69, §3] to obtain codes for (continuous) increasing
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functions g, h : [0, 1] → R such that f = g−h on [0, 1]. Theorem 2.2 thus yields the
first item from the theorem, in this case. In case f : [0, 1] → R is discontinuous, we
have access to (∃2) by [55, §3]. By Theorem 2.16, there is a sequence (xn)n∈N of all
reals in [0, 1] where f is discontinuous; indeed, since f is cadlag, it only has jump
discontinuities by definition. Given (xn)n∈N, the supremum in (1.4) can be replaced
by a supremum over Q and N. As a result, we can define V b

a (f) as in (1.4) using
∃2, where a, b ∈ [0, 1] are parameters. Clearly, g(x) := λx.V x

0 (f) is an increasing
function, and the same for h(x) := g(x)−f(x) via an elementary argument. Hence,
f = g − h in this case as well, and the first item follows.

Secondly, assume the first item of the theorem. We now invoke the law of
excluded middle as in (∃2)∨¬(∃2). In the former case we are done, as (∃2) → ACA0

is trivial. In the latter case, i.e. we have ¬(∃2), all functions on R are continuous
by [55, §3]. Hence, the first item now expresses:

a continuous f : [0, 1] → R of bounded variation is the difference of two continuous
non-decreasing g, h : [0, 1] → R.

Now fix some code Φ for a continuous BV -function and use Theorem 2.2 to obtain
third-order f : [0, 1] → R that equals the value of Φ everywhere. By the centred
statement, there are two continuous non-decreasing g, h : [0, 1] → R such that
f = g − h on [0, 1]. Now consider:

(∀x ∈ [0, 1], k ∈ N)(∃N ∈ N)(|g(x)− g(x+ 1
2N

)| < 1
2k

∧ |g(x)− g(x− 1
2N

)| < 1
2k
).

Applying QF-AC1,0, one obtains a (continuous) modulus of continuity for g, as g is
non-decreasing. Following Remark 2.1, this readily yields an RM-code for g (and
h), i.e. we have also established the second-order version of the centred statement.
The latter implies ACA0 by [69, §3], and we are done. □

One possible addition to the previous theorem is as follows: a real function is
usco if and only if it is sequentially usco, i.e. the pointwise limit of a descreasing
sequence of continuous functions (see e.g. [25, p. 62]). This sequential notion goes
back to Baire’s equivalent definition of usco (see [5]) and the associated restriction
of Jordan decomposition theorem is readily8 seen to be equivalent to ACA0. A
similar result can be obtained for Baire 1∗ formulated using RM-codes for closed
sets, in light of [78, Lemma 4.11].

Next, Theorem 2.16 has the following consequence. We refer to [94, p. 136] for
the details on Riemann integration in RCA0.

Theorem 2.20 (RCAω
0 ). The axiom WKL is equivalent to:

• a code for a continuous function on the unit interval is Riemann integrable.
• a continuous function on the unit interval is Riemann integrable.
• a cadlag function on the unit interval is Riemann integrable.

8Fix f ∈ BV and let (fn)n∈N be a decreasing sequence of continuous functions with pointwise

limit f . By Theorem 2.16, we only need to enumerate the removable discontinuities of f . Using

∃2, one readily enumerates the strict local maxima of a continuous g : [0, 1] → R ([91, p. 272]), i.e.

those x ∈ [0, 1] such that (∃N ∈ N)(∀y ∈ B(x, 1
2N

))(x ̸= y → g(y) < g(x)). Now let (xm)n∈N be

an enumeration of all strict local maxima of all fn. For any m ∈ N, xm is a removable discontinuity
of f if and only if there is n0 ∈ N such that xm is a strict local maximum of fn for n ≥ n0.
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Proof. The equivalence for the first item is immediate by [94, IV.2.7]. For the
second item, one additionally uses Theorem 2.2 and Corollary 2.5.

Now assume the third item and fix some code Φ for a continuous function on
[0, 1]. Use Theorem 2.2 to convert the latter into a continuous third-order function,
which is trivially cadlag. By the first item, this function is Riemann integrable, and
hence so is the function represented by Φ. We obtain WKL by the first item.

Now assumeWKL and let f : [0, 1] → R be cadlag. If the latter is also continuous,
we may use the second item to obtain the third one. In case f is discontinuous,
we obtain (∃2) by [55, §3]. Use Theorem 2.16 to obtain a sequence (xn)n∈N which
enumerates all the points where f is discontinuous (as cadlag functions do not
have removable discontinuities). The usual ‘epsilon-delta’ proof now goes through
assuming a modulus as provided by Theorem 2.17. □

Finally, we mention some related results from the RM of ACA0.

Remark 2.21. The RM of ACA0 involves some theorems from analysis, like e.g.
[94, IV.2.11 and III.2.2]. In the same way as above, one shows that the following are
also equivalent to ACA0 over RCA

ω
0 . We use ‘RM-closed’ to refer to the second-order

definition of codes for closed set in RM ([94, II.5.6]).

• Let F : C → R be cadlag where C ⊂ [0, 1] is an RM-closed set. Then
supx∈C F (x) exists.

• Let F : C → R be cadlag and usco where C ⊂ [0, 1] is an RM-closed set.
Then F attains a maximum value on C.

• Let (fn)n∈N be a Cauchy sequence (relative to the sup norm) of continuous
functions. Then the limit function exists and is continuous.

• Let (fn)n∈N be a Cauchy sequence (relative to the sup norm) of cadlag
functions. Then the limit function exists and is cadlag.

Another promising theorem is the compactness theorem ([8, Theorem 14.3]) for
the Skorohod space (of cadlag functions), which is presented as a generalisation of
the Arzelà-Ascoli theorem. The latter is part of the RM of ACA0 by [94, III.2.9].
Similarly, a version of the Arzelà-Ascoli theorem for quasi-continuous functions
exists, namely [42, Prop. 2.22] and related theorems.

2.5. Equivalences for Π1
1-comprehension. We establish some equivalences for

Π1
1-CA0 involving third-order theorems from analysis.

First of all, we establish Theorem 2.22 to be contrasted with Theorem 2.32. Here,
Σ1

1-IND is the induction axiom for Σ1
1-formulas and IND2 is as in Definition 2.18.

As to notation, fix (rn)n∈N, a standard injective enumeration of the non-negative
rational numbers. For B ⊂ Q+, we say that ‘B is Σ1

1 with parameter x ∈ NN’, if
A = {a : ra ∈ B} is Σ1

1 with parameter x. Since we do not always have access to
Σ1

1-comprehension, we refer to both A and B as (defined) classes.

Theorem 2.22 (ACAω
0 ). The following are equivalent.

(i) For any x ∈ NN, any bounded Σ1,x
1 -class in Q+ has a supremum.

(ii) A bounded effectively Baire 2 f : [0, 1] → R has a supremum.
(iii) For n ≥ 2, a bounded and effectively Baire n f : [0, 1] → R has a supremum.

Assuming IND2 +Σ1
1-IND, these items are equivalent to Π1

1-CA0.

Proof. We first prove that item (i) implies items (ii) and (iii). Let f : [0, 1] → [0, 1]
be effectively Baire 2, i.e. there is a double sequence (fn,m)n,m∈N of continuous
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functions such that f(x) = limn→∞ limm→∞ fn,m(x) for x ∈ [0, 1]. Now consider
the following for r ∈ Q:

(∃y ∈ [0, 1])(f(y) > r)

↔ (∃x ∈ [0, 1])(∃n ∈ N)(∀i ≥ n)(∃m ∈ N)(∀j ≥ m)(fi,j(x) > r). (2.13)

By Corollary 2.5, we can replace fi,j by a sequence of RM-codes, rendering (2.13)
part of the language of second-order arithmetic. Using ∃2, (2.13) is equivalent to a
Σ1

1-formula, i.e. we may form the set {r ∈ Q : (∃y ∈ [0, 1])(f(y) > r)} using item (i),
from which the supremum of f is readily defined using ∃2, i.e. item (ii) follows.
Item (iii) is proved in the same way, where (2.13) becomes more complicated due
to the presence of more arithmetical quantifiers originating from the definition of
‘effectively Baire n’.

Secondly, we prove that item (ii) implies item (i). Let B = {ra : a ∈ A} be
bounded, where A is Σ1

1 and given by:

a ∈ A ↔ (∃x ∈ 2N)(∀m ∈ N)(∃n ∈ N)R(a, x,m, n),

where R is primitive recursive. We now construct continuous functions Fn,m :
2N → R such that the double limit F = limm→∞ limn→∞ Fn,m is well defined
and such that supF = supB. Identifying 2N with the Cantor set, we extend
each Fn,m to a continuous function fn,m : [0, 1] → R by extending the graph
with straight lines. Note that all limits commute with this extension and that
the corresponding extension f of F is Baire 2 with the same supremum. For each
a ∈ N, let Ga(x) = limm→∞ limn→∞ Ga,n,m(x) be the characteristic function of the
set {x ∈ 2N : (∀m ∈ N)(∃n ∈ N)R(a, x,m, n)}, where

Ga,n,m(x) :=

{
1 if (∀i ≤ m)(∃j ≤ n)R(a, x, i, j)

0 otherwise.
.

We now define Fn,m : [0, 1] → R by cases as follows.

• If x is of the form 1 ∗ · · · ∗ 1︸ ︷︷ ︸
m + 1 times

∗ y, we define Fn,m(x) := 0.

• If for a ≤ m, x is of the form 1 ∗ · · · ∗ 1︸ ︷︷ ︸
a times

∗ 0∗y, define Fn,m(x) := raGa,n,m(y).

If x = 11 . . . then Fn,m(x) = 0 for all n,m ∈ N, so in the double limit we have
that F (x) = 0. If not, x is of the form 1 ∗ · · · ∗ 1︸ ︷︷ ︸

a times

∗0 ∗ y for some a ≥ 0. For all

m ≥ a and all n ∈ N we have that Fn,m(x) = raGa,n,m(y). Then F (x) = ra if
(∀m ∈ N)(∃n ∈ N)R(a, y,m, n), and 0 otherwise. Then supF = supB, so the latter
exists by the assumption that the former exists.

Thirdly, item (i) clearly follows from Π1
1-CA0 and it is a tedious but straightfor-

ward verification that the reversal goes through assuming IND2 +Σ1
1-IND. □

We note that the use of (∃2) as part of the base theory in Theorem 2.22 is
necessary: in isolation, items (ii) and (iii) do not exceed WKL0 in terms of second-
order consequences. This follows via the ECF-interpretation from Remark A.3.

Secondly, we have the following corollary to Theorem 2.22, to be contrasted
with Theorem 2.33. We say that a set is ‘effectively Baire n’ if the characteristic
function has this property. The notion of Baire set may be found in [52, p. 21] under
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a different name; we refer to [62] for an introduction and to [22, §7] for equivalent
definitions, including that of Borel set in Euclidean space.

Theorem 2.23 (ACAω
0 +Π1

1-CA0). For any open effectively Baire n set O ⊂ [0, 1],
there exists an RM-code (n ≥ 2).

Proof. We make use of the items in Theorem 2.22. In particular, the proof of these
immediately generalises to infima involving rational parameters, i.e. we have

For a bounded effectively Baire n function f : [0, 1] → R, there is F : Q2 → R such
that for all p, q ∈ Q ∩ [0, 1], the real F (p, q) equals infx∈[p,q] f(x) .

Now consider the sequence in (2.8) as in the proof of Theorem 2.11. □

The previous proof essentially establishes that an effectively Baire n open set can
be represented by a code for an open set (see [94, II.5.6]). Hence, any theorem from
the RM of Π1

1-CA0 immediately generalises from ‘codes for open sets’ to ‘third-order
open sets that are effectively Baire n’. The RM of Π1

1-CA0 contains considerable
results on codes for open and closed sets sets (see [13–15,94]), including the Cantor-
Bendixson theorem. The same holds mutatis mutandis for open sets with quasi-
continuous characteristic functions. One can similarly generalise Theorem 2.12 to
effectively Baire n functions.

2.6. Equivalences for arithmetical transfinite recursion. We establish equiv-
alences for ATR0 involving third-order theorems from analysis. We also establish
Theorem 2.26 which shows that adding the extra condition ‘Baire 1’ converts the-
orems about BV -functions from ‘not provable in Zω

2 ’ to ‘provable from ATR0 plus
induction’. Remark 2.13 again explains why there is no contradiction here.

First of all, we have a corollary to [7, Theorem 6.5], to be contrasted with
item (vi) from Theorem 2.34. Here, ∆1

2-IND is the induction axiom for ∆1
2-formulas.

Theorem 2.24 (ACAω
0 + ∆1

2-IND). The following are equivalent to ATR0.

• Cousin’s lemma for codes for Baire 2 functions.
• Cousin’s lemma for effectively Baire 2 Ψ : [0, 1] → R+.
• Cousin’s lemma for effectively Baire n Ψ : [0, 1] → R+ (n ≥ 2).

Proof. It is known that ATR0 is equivalent to Cousin’s lemma for codes for Baire 2
(or: any n ≥ 2) functions, working over RCAω

0 plus ∆1
2-induction (see [6, 7]). Now,

a code for a Baire n function is essentially an effectively Baire n function where the
continuous functions are given by codes. As noted below [7, Def. 6.1], ACA0 suffices
to show that a code for a Baire n function has a (unique) value. Hence, ∃2 readily
defines a third-order function taking these values everywhere on [0, 1]. Similarly, an
effective Baire n function readily becomes a code for a Baire n function by replacing
the continuous functions by codes for continuous functions (see Corollary 2.5). In
this way, the base theory connects the items from the theorem and we are done. □

By the previous, (full) Cousin’s lemma plus (∃2) implies ATR0 assuming some
induction. The use of (∃2) is again essential as Cousin’s lemma in isolation does
not exceed WKL0 in terms of second-order consequences. By Theorem 2.28, (∃2) is
equivalent to the statement that a code for a Baire 1 (or Baire n) function denotes
a third-order function. Hence, the strength of Cousin’s lemma for codes for Baire 2
functions is actually due to the coding of Baire 2 functions.
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Secondly, we obtain equivalences involving ATR0 and the Jordan decomposition
theorem, to be contrasted with Theorem 2.37. Moreover, Theorem 2.25 also shows
that the RM of ATR0 is a special case of the higher-order RM of the (full) Jordan
decomposition theorem, where the latter is developed in [75, §3.3]. In the below,
notions like arithmetical, Σ1

1, etc. are based on the ‘standard’ definition, i.e. with
the understanding that we (only) allow parameters of type 0 and of type 1. We
say that a function f : [0, 1] → R is Σ1

1 if its graph is Σ1
1, which is equivalent to the

graph being ∆1
1, and to being Borel measurable.

Theorem 2.25 (ACAω
0 + IND2 +Σ1

2-IND). The following are equivalent to ATR0.

(i) For arithmetical formulas φ such that

(∀n ∈ N)(∃ at most one X ⊂ N)φ(X,n), (2.14)

the set {n ∈ N : (∃X ⊂ N)φ(X,n)} exists.
(ii) For arithmetical f : [0, 1] → R in BV, there is a sequence (xn)n∈N enumer-

ating all points where f is discontinuous.
(iii) For a Σ1

1-function f : [0, 1] → R in BV, there is a sequence (xn)n∈N enu-
merating all points where f is discontinuous.

(iv) The Jordan decomposition theorem (Theorem 1.4) restricted to arithmetical
(or: Σ1

1) functions in BV .
(v) A non-enumerable arithmetical set in R has a limit point.

Proof. The equivalence between ATR0 and item (i) is found in [94, V.5.2]. Now
assume item (ii) and fix arithmetical φ such that (2.14). Note that we can use µ2

to find those n ∈ N such that (∃X ⊂ N)φ(X,n) and there is m0 such that X(m) = 1
for m ≥ m0 ∈ N, so without loss of generality we may assume that there are no
such n. Define the function f : [0, 1] → R as follows:

f(x) :=

{
1

2n+3 the least n ∈ N such that φ(b(x), n)

0 otherwise
, (2.15)

where b : [0, 1] → 2N converts real numbers to a binary representation, choosing a
tail of zeros if applicable. In light of (2.14), for every n ∈ N, there is at most one

x ∈ [0, 1] such that f(x) = 1
2n . Hence, the sum

∑k−1
i=0 |f(xi)−f(xi+1)| as in (1.4) is

at most
∑k

n=1
1
2n , which is at most 1. By definition, f is arithmetical and item (ii)

provides a sequence (xm)m∈N with all points where f is discontinuous. Hence, we
have for all n ∈ N that

(∃X ⊂ N)φ(X,n) ↔ (∃m ∈ N)φ(b(xm), n),

where, as we assumed, X in the left-hand side will not have a tail of 1’s.

Item (iv) implies item (iii) as ∃2 allows us to enumerate the points of discontinuity
of increasing functions (see [77, Lemma 7]). Of course item (iii) implies (ii). We
also have that item (iii) implies item (iv) as follows: the sequence in item (iii) allows
us to replace the supremum in (1.4) by one over N and Q. Hence, ∃2 can define the
increasing function g(x) := λx.V x

0 (f). By noting that h := f − g is also increasing,
item (iv) follows.

Finally, assume item (i) and fix a Σ1
1-function f ∈ BV with bound k0 = 1 as in

Definition 1.3. Now consider the set

Dk := {x ∈ [0, 1] : |f(x+)− f(x−)| > 1
2k
}, (2.16)
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where we note that IND2 suffices to show that f ∈ BV is regulated ([75, Theo-
rem 3.33]). The set Dk is Σ1

1 because the graph of f is. Moreover, since each
element x ∈ Dk contributes at least 1

2k
to the variation of f , Dk can have at most

2k many elements. Using Σ1
2-induction, one obtains

9 an enumeration of Dk for fixed
k ∈ N. By [94, V.4.10], which is provable in ATR0, ∪k∈NDk can now be enumerated,
and item (iii) follows.

For item (v), fix φ as in (2.14) and define the set A ⊂ R by putting x ∈ A in
case x ∈ [n+ 1, n+ 2) and φ(b(x− (n+ 1)), n). Since A∩ [0, n] contains at most n
elements, A has no limit points, i.e. item (v) readily yields item (i). For the reversal,
let A ⊂ R be a set without limit points. By contraposition, A ∩ [−n, n] is finite for
each fixed n ∈ N (for which we use Σ1

1-AC0). As in the previous paragraphs of the
proof, we can enumerate A = ∪n∈N

(
A ∩ [−n, n]

)
. □

As above, (∃2) is essential for the equivalence in Theorem 2.25 as the Jordan
decomposition theorem in isolation cannot go beyond ACA0 in terms of second-order
consequences, a fact observed again using ECF from Remark A.3.

Thirdly, we obtain a version of Theorem 2.16 for BV -functions that are also in
Baire 1. As discussed in Remark 2.13, while BV -functions are Baire 1, this basic
fact is not provable in ACAω

0 and much stronger systems like Zω
2 . By [75, §3.3],

listing all points of discontinuity of BV -functions similarly cannot be done in Zω
2 .

Theorem 2.26 (ACAω
0 + IND2 + Σ1

2-IND + ATR0). For Baire 1 f : [0, 1] → R in
BV , there is a sequence (xn)n∈N enumerating all points where f is discontinuous.

Proof. Let f : [0, 1] → R be Baire 1 and in BV , say with variation bounded by 1.
In light of Theorem 2.16, we only need to enumerate the ‘removable’ discontinuities
if f , i.e. those x ∈ (0, 1) for which f(x) ̸= f(x+) and f(x+) = f(x−). Let (fn)n∈N

be a sequence of continuous functions with pointwise limit f on [0, 1]. Now consider
the following formula

(∃n0 ∈ N)(∀n,m ≥ n0)(∀q ∈ B(x, 1
2m ) ∩ Q)(|fn(x)− f(q)| > 1

2k
), (2.19)

which holds in case f has a removable discontinuity at x ∈ (0, 1) such that |f(x)−
f(x+)| > 1

2k
. There can only be 2k many pairwise distinct x ∈ [0, 1] such that

(2.19), as each such real contributes at least 1
2k

to the total variation. Clearly, the
formula (2.19) is equivalent to (second-order) arithmetical as f only occurs with
rational input and fn can be replaced uniformly by a sequence of codes Φn. Using
Σ1

2-induction, one can enumerate all reals satisfying (2.19) for fixed k ∈ N, as in the
proof of Theorem 2.25 and Footnote 9. Again using [94, V.4.10], we can enumerate
all reals satisfying (2.19), and we are done. □

With some effort, one generalises Theorem 2.26 from ‘Baire 1’ to ‘effectively Baire
n’; it goes without saying that (2.19) becomes more complicated. The same goes

9For X ⊂ R, N ∈ N, define the notation ‘|X| ≤ N ’, i.e. X has at most N elements, as:

(∀w1∗ )
([
|w| > N ∧ (∀i, j < |w|)(i ̸= j → w(i) ̸= w(j))

]
→ (∃k < |w|)((w(k) ̸∈ X))

)
. (2.17)

Using (2.17), let φ(n,X) be the following formula:

|X| ≤ n → (∃v1
∗
)(∀x ∈ R)

([
x ∈ X → (∃i < |v|)(v(i) = x)

]
∧ |v| ≤ n

)
, (2.18)

expressing that a set with at most n elements can be enumerated by a finite sequence of length

n. Then (2.17) is Π1
1 if X is Σ1

1 while (2.18) is then Σ1
2. Hence, for X in Σ1

1, Σ
1
2-induction on

φ(n,X) establishes the desired enumeration.
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for the generalisation from ‘BV ’ to ‘regulated’, which seems to require QF-AC0,1.
Unfortunately, Theorem 2.26 cannot be pushed down to ACA0 as the union of enu-
merable arithmetical sets does not necessarily10 have an arithmetical enumeration.

Finally, we now establish the following, to be contrasted with the final item
of Theorem 2.32, Theorem 2.37, and Theorem 2.38. We again stress Remark 2.13
which explains why there is no contradiction here: rather strong systems are unable
to prove that BV or usco functions are in fact Baire 1.

Theorem 2.27 (ACAω
0 + IND2 +Σ1

2-IND+ ATR0). The following are provable.

• The Jordan decomposition theorem (Theorem 1.4) for BV -functions in
Baire 1.

• A bounded Baire 1 BV -function F : [0, 1] → R has a supremum.
• For a Riemann integrable BV -function f : [0, 1] → [0, 1] in Baire 1 with∫ 1

0
f(x)dx = 0, there is x ∈ [0, 1] such that f(x) = 0.

Proof. For the first item, the sequence provided by Theorem 2.26 allows one to
replace ‘supremum over R’ by ‘supremum over N’ in (1.4). Hence, we can define
g(x) := λx.V x

0 (f) using ∃2. Now, g is (trivially) increasing and one readily verifies
the same for h = f − g, i.e. a Jordan decomposition is immediate. The second item
follows in the same way. The third item follows by using [94, II.4.10] to obtain a
real y ∈ [0, 1] not in the sequence provided by Theorem 2.26; by definition, f must
be continuous at y, and f(y) = 0 readily follows. □

With some effort, one generalises Theorem 2.27 from ‘Baire 1’ to ‘effectively
Baire n’. It goes without saying that the proof becomes more complicated.

2.7. Equivalences for Kleene’s arithmetical quantifier. We establish inter-
esting equivalences for (∃2). To this end, Thomae’s function as follows is useful:

f(x) :=

{
0 if x ∈ R \ Q
1
q if x = p

q and p, q are co-prime
. (2.20)

Thomae introduces this function around 1875 in [96, p. 14, §20]) to show that
Riemann integrable functions can have a dense set of discontinuity points. As in
the previous, the coding of Baire n functions is taken from [6,7].

Theorem 2.28 (RCAω
0 +WKL). The following are equivalent to (∃2).

(i) There exists Riemann integrable f : [0, 1] → [0, 1], g : [0, 1] → R such that
g ◦ f is not Riemann integrable.

(ii) There exists a function that is not Riemann integrable.
(iii) There exists regulated f : [0, 1] → [0, 1], g : [0, 1] → R such that g ◦ f is not

regulated.
(iv) There exists a function that is not regulated.
(v) There exists f : [0, 1] → [0, 1], g : [0, 1] → R in Baire 1 such that g ◦ f is not

in Baire 1.
(vi) There exists a function f : [0, 1] → R that is not Baire 1.
(vii) There exists usco f : [0, 1] → [0, 1], g : [0, 1] → R such that g ◦ f is not usco.

10To see, let X = ⟨X1, ..., Xn⟩ be in An if and only if X1 = ∅ and for all i < n, Xi+1 is the

Turing jump of Xi. This constitutes the first n elements in the jump hierarchy, coded as one
object, and An is arithmetical of a complexity independent of n. Now, each An is a singleton

with an arithmetical element, but the union does not have any arithmetical enumeration.



THE BIGGEST FIVE OF REVERSE MATHEMATICS 31

(viii) There exists a function that is not usco.
(ix) There exists a function that is not quasi-continuous.
(x) There exists a function that is not cliquish.
(xi) There exists a function f : [0, 1] → R that is unbounded.
(xii) There exists a Baire 1 function f : [0, 1] → R that is unbounded.
(xiii) There exists a function f : [0, 1] → R that is not locally bounded11.
(xiv) There exists Darboux functions f : [0, 1] → [0, 1], g : [0, 1] → R such that

g + f is not Darboux.
(xv) There is a bounded Darboux f : [0, 1] → R which does not attains its sup.
(xvi) For a code for a Baire 1 function on [0, 1], there exists a third-order function

that equals the value of the code on [0, 1].
(xvii) For a code for a Baire n function on [0, 1], there exists a third-order function

that equals the value of the code on [0, 1] (n ≥ 2).

We only need WKL for the items (i), (ii), (xi), (xii), (xv).

Proof. First of all, assume (∃2) and consider Thomae’s function f as in (2.20);
one readily verifies that f is Riemann integrable (with integral equal to zero) and
regulated (with zero as left and right limits) on any interval. Now define g : [0, 1] →
R as 0 in case x = 0, and 1 otherwise; this function is trivially Riemann integrable
and regulated. However, g ◦ f is Dirichlet’s function 1Q, i.e. the characteristic
function of the rationals, which is readily shown to be not Riemann integrable and
not regulated. Thus, (∃2) implies items (i)-(iv).

Secondly, assume item (iii) (similar for item (iv)) and note that g ◦ f must
be discontinuous, as continuous functions are trivially regulated. However, the
existence of a discontinuous function on R yields (∃2) by [55, §3]. Similarly, for
items (i) and (ii), WKL suffices to obtain an RM-code for a continuous function on
Cantor space (see [53, §4]); the same goes through mutatis mutandis for functions
on [0, 1] by Corollary 2.5. Hence, WKL suffices to show that a continuous function
on [0, 1] is Riemann integrable by [94, IV.2.6]. Thus, g ◦ f must be discontinuous,
which yields (∃2) by [55, §3]. Similarly, for items (v) and (vi), a function not in
Baire 1 must be discontinuous, as continuous functions are trivially Baire 1; in this
way, we obtain a discontinuous function and hence (∃2) by [55, §3]. The first six
items now each imply (∃2), the first two using WKL as noted above.

Thirdly, assume (∃2) and note that Thomae’s function is Baire 1. In particular,
finding a sequence of continuous functions converging to f as in (2.20) is straight-
forward (using ∃2). The same holds for g : [0, 1] → R defined as 0 in case x = 0,
and 1 otherwise. We now show that 1Q = g ◦f is not Baire 1, establishing items (v)
and (vi). To this end, suppose (fn)n∈N is a sequence of continuous functions with
pointwise limit 1Q. We first prove the following statement in the next paragraph.

For any non-empty [a, b] ⊂ [0, 1], there is an arbitrarily large N ∈ N and a
non-empty [c, d] ⊂ [a, b] such that fN ([c, d]) = [ 14 ,

3
4 ].

To establish the previous centred statement, fix a non-trivial interval [a, b] ⊂ [0, 1]
and fix x < y such that x ∈ Q ∩ [a, b] and y ∈ [a, b] \ Q. Since (fn)n∈N converges
pointwise to 1Q, there exists arbitrarily large N ∈ N such that fN (x) ≥ 3

4 and

fN (y) ≤ 1
4 . By the intermediate value theorem (provable in RCA0 for RM-codes by

11A function f : [0, 1] → R is locally bounded if for all x ∈ [0, 1], there is N ∈ N such that

(∀y ∈ B(x, 1
2N

) ∩ [0, 1])(|f(y)| ≤ N).
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[94, II.6.6], and hence in ACAω
0 for continuous functions), there exists an interval

[c, d] ⊆ [x, y] ⊂ [a, b] such that fN ([c, d]) = [ 14 ,
3
4 ]. The previous centred statement

has been proved, working in ACAω
0 .

By [56, §3], (∃2) is equivalent to the existence of a functional witnessing the
intermediate value theorem. Hence, following the previous paragraph, ∃2 readily
yields a functional that returns the numbers N ∈ N and c, d ∈ [0, 1] as in the centred
statement on input [a, b] and m ∈ N, where N ≥ m. Using the latter functional,
one readily obtains sequences (cn)n∈N, (dn)n∈N, and g ∈ NN such that g(n) ≥ n,
fg(n)([cn, dn]) = [ 14 ,

3
4 ], and |cn−dn| < 1

2n for all n ∈ N. However, if c = limn→∞ cn,

then 1Q(c) = limn→∞ fg(n)(c) ∈ [ 14 ,
3
4 ], a contradiction. Hence, we have proved item

(v) and (vi). Since 1Q is not usco (or quasi-continuous or cliquish), the equivalence
between (∃2) and items (vii)-(x) follows in the same way.

To prove item (xii) (and item (xi)) from (∃2), let fn(x) be 22n in case x ∈ [0, 1
2n ]

and 1/x if x ∈ ( 1
2n , 1]. Then each fn : [0, 1] → R is continuous and the sequence

converges pointwise to the function which is 1/x for x > 0 and 0 otherwise. The
latter is unbounded and Baire 1. To prove (∃2) from item (xii) (or item (xi)), note
that the function provided by the latter must be discontinuous by Theorem 2.6.
However, a discontinuous function yields (∃2) by [55, §3]. The equivalence for items
(xiii) follows in the same way, but without using WKL as continuous functions are
trivially locally bounded.

For item (xiv), use (∃2) to define the following functions f, g : [0, 1] → R

f(x) :=

{
sin( 1x ) x ̸= 0

1 x = 0
g(x) :=

{
− sin( 1x ) x ̸= 0

0 x = 0
.

Clearly, f(x) + g(x) = 1{0}, which is not Darboux. For the reversal, a continuous
function has the intermediate value property, which is provable in RCAω

0 + WKL
by combining Corollary 2.5 with the second-order intermediate value theorem ([94,
II.6.6]). Hence, a function that is not Darboux, is discontinuous, yielding (∃2) by
[55, §3]. Note that we can avoid the use of WKL by imitating the proof of [94, II.6.6]
in RCAω

0 for (third-order) continuous functions.

For item (xv), consider f : [0, 1] → [0, 1] defined by f(0) = 0 and f(x) :=
e−x cos( 1x ) for x > 0 using (∃2). For the reversal, a continuous function is Darboux
as in the previous paragraph, and attains is supremum by combining Cor. 2.5 and
the second-order results in [94, IV.2.3]. Hence, item (xv) expresses the existence of
a discontinuous function, and (∃2) follows by [55, §3].

For items (xvi) and (xvii), a code for a Baire n function is essentially an effec-
tively Baire n function where the continuous functions are given by codes. As noted
below [7, Def. 6.1], ACA0 suffices to show that a code for a Baire n function has a
(unique) value. Hence, ∃2 readily defines a third-order function taking these values
everywhere on [0, 1]. For the reversal, define a ‘Baire 1 code for the Heaviside func-
tion’ in RCAω

0 and use items (xvi) or (xvii) to obtain the (discontinuous) Heaviside
function, yielding (∃2) by [55, §3]. □

The previous theorem yields the following strange result by contraposition:

if all functions on R are Baire 1, then all functions on R are continuous.

In this light, Brouwer’s theorem is not an isolated event, but rather the limit of a
certain restriction process.
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Finally, one cannot generalise item (vi) of Theorem 2.28 to Baire 2 by Theo-
rem 2.30. One can generalise the latter item to ‘effectively Baire 2’ by considering
a well-known effectively Baire 3 function: the characteristic function of Borel’s nor-
mal numbers ([9]). The technical details are however tedious and the same holds
for ‘effectively Baire n’, where examples of such functions are given in [49].

2.8. Beyond the Big Five.

2.8.1. Introduction. In the above, we have obtained equivalences between well-
known second-order principles like the Big Five on one hand, and a number of
third-order theorems on the other hand. This was based on the higher-order RM
of (∃2), which we have also developed. In this section, we show that similarly basic
third-order statements or slight generalisations, go far beyond the RM of the Big
Five and (∃2). We do so by deriving from the former the following:

(∀Y : [0, 1] → N)(∃x, y ∈ [0, 1])(x ̸= y ∧ Y (x) = Y (y)), (NIN[0,1])

which expresses that there is no injection from [0, 1] to N. By [74, §4], NIN[0,1] is
not provable in relatively strong systems like Zω

2 , which is a conservative extension
of Z2 (see Section A.3). The following list provides some interesting examples.

• The existence of a function not in Baire 1 is equivalent to (∃2) (Theo-
rem 2.28), while the existence of a function not in Baire 2 (or Baire 1∗)
implies NIN[0,1] (Theorem 2.30).

• Cousin’s lemma for lsco (or: quasi-continuous) functions is equivalent to
WKL (Theorem 2.14), while this lemma for usco (or: cliquish) functions
implies NIN[0,1] (Theorem 2.34).

• Cousin’s lemma for effectively (or: codes for) Baire 2 functions is part of
the RM of ATR0 (Theorem 2.24) while the generalisation to Baire 2 (or
Baire 1∗) functions implies NIN[0,1] (Theorem 2.34).

• The supremum principle for effectively (or: codes for) Baire 2 functions
is part of the RM of Π1

1-CA0 (Theorem 2.22) while the generalisation to
Baire 2 (or Baire 1∗) functions implies NIN[0,1] (Theorem 2.32).

• Jordan’s decomposition theorem for cadlag BV -functions is equivalent to
ACA0 (Theorem 2.19), while this theorem for usco BV -functions implies
NIN[0,1] (Theorem 2.37).

In our opinion, these examples show that one should not put too much emphasis on
the distinction ‘second- versus third-order’, as there are plenty equivalences between
second- and third-order theorems. The real fundamental ‘divide’ is whether a given
theorem follows from conventional comprehension alone (say up to Zω

2 ), or whether
it implies NIN[0,1] or similar principles not provable in Zω

2 .

An important side-result of this section (see Theorem 2.34) is that many well-
known inclusions among function spaces, like the statements BV -functions are
Baire 1 and Baire 1∗ functions are Baire 1, also imply NIN[0,1]. In this way, such
inclusions cannot be established in the Big Five and much stronger systems.

Finally, we mention in passing that the results in this section also identify certain
problems with the representation or coding of (slightly) discontinuous functions in
the language of second-order arithmetic.
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2.8.2. Beyond Baire 1 functions. In this section, we show that the equivalences in
Theorems 2.9 and 2.28 cannot be generalised to Baire 2 or Baire 1∗.

First of all, we shall need the following fragment of the induction axiom, also
studied in [75, §2.2.2] with some non-trivial equivalences.

Definition 2.29. [IND0] Let Y
2 satisfy (∀n ∈ N)(∃ at most one f ∈ 2N)(Y (f, n) =

0). For k ∈ N, there is w1∗ with |w| = k such that for m ≤ k, we have:

(w(m) ∈ 2N ∧ Y (w(m),m) = 0) ↔ (∃f ∈ 2N)(Y (f,m) = 0).

We now have the following result, to be contrasted with item (vi) in Theorem 2.28.
There is no contradiction here: Baire 1∗ functions are of course Baire 1, but by
Theorem 2.34, this is not provable from the Big Five and much stronger systems.

Theorem 2.30 (ACAω
0 + IND0). The principle NIN[0,1] follows from either:

• there is a [0, 1] → R function that is not Baire 2,
• there is a [0, 1] → R function that is not Baire 1∗.

Proof. Fix an arbitrary function f : [0, 1] → R and let Y : [0, 1] → N be injective.
Now define fn(x) as f(x) in case Y (x) ≤ n, and 0 otherwise. Clearly, f is the
pointwise limit of the sequence (fn)n∈N. Now fix some n0 ∈ N and use IND0 to
enumerate all x ∈ [0, 1] such that Y (x) ≤ n0. With this finite sequence, one readily
defines a sequence of continuous functions converging to fn0

, which shows that the
latter is Baire 1. This shows that any function f : [0, 1] → R is Baire 2 assuming
¬NIN[0,1]. Now define the closed set Cn := {x ∈ [0, 1] : Y (x) = n} and note
that f↾Cn is indeed continuous for all n ∈ N. Hence, f is also Baire 1∗ assuming
¬NIN[0,1], and we are done. □

We believe the first item in Theorem 2.30 is related to the Vitali-Carathéodory
theorem as in [105, Cor. 4], but we can only conjecture a connection.

Secondly, we study the following supremum principle which Theorem 2.22 estab-
lishes for effectively Baire n functions assuming Π1

1-CA0. Theorem 2.32 shows that
slight generalisations are not provable in Zω

2 .

Principle 2.31 (Supremum principle for Γ). For bounded f : [0, 1] → R in Γ, there
is F : Q2 → R such that for p, q ∈ Q ∩ [0, 1], the real F (p, q) equals infx∈[p,q] f(x).

The following theorem is to be contrasted with items (v), (xx), and (xxiii) of
Theorem 2.9 and with Theorem 2.22. There is no contradiction here as NIN[0,1]

follows from the fact that regulated or usco functions are Baire 1 by Theorem 2.34.

Theorem 2.32 (ACAω
0 + IND0). The principle NIN[0,1] follows from either:

• The supremum principle (Princ. 2.31) for Baire 1∗ or Baire 2 functions.
• The supremum principle (Princ. 2.31) for cliquish functions.
• The supremum principle (Princ. 2.31) for regulated functions.
• The supremum principle (Princ. 2.31) for usco functions.
• The supremum principle (Princ. 2.31) for BV -functions.

The theorem still goes through if we limit the items to functions that are pointwise
discontinuous or continuous almost everywhere.

Proof. First of all, let Y : [0, 1] → N be an injection and define f(x) := 1
2Y (x)+5 ,

which is Baire 2, Baire 1∗, usco, regulated, cliquish, and BV , as we show next.
Indeed, for fixed x0 ∈ [0, 1], IND0 can enumerate the finitely many reals that are
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mapped below n0 := Y (x0) by Y . Thus, f is arbitrary close to 0 in a small enough
punctured neighbourhood of x0, readily implying that it is usco, regulated, and
cliquish. Moreover, since Y is an injection, the sums

∑n−1
i=0 |f(xi)− f(xi+1)| as in

(1.4) are bounded by
∑n

i=0
1

2i+5 , which is at most 2, i.e. f is in BV . For the Baire 2
property, define fn(x) as f(x) in case Y (x) ≤ n, and define fn(x) as 0 if Y (x) > n.
Clearly, for fixed n0 ∈ N, the function fn0 has got at most finitely many points
of discontinuity, which can be enumerated using IND0. Using this finite list, one
readily defines a sequence of continuous functions converging to fn0

, i.e. the latter
is Baire 1 and f is Baire 2. That f is Baire 1∗ follows as for Theorem 2.30.

Secondly, supx∈[0,1] f(x) is 1
2n1+5 where n1 ∈ N is the least number such that

Y (x1) = n1 for some x1 ∈ [0, 1]. Comparing supx∈[0, 12 ]
f(x) and supx∈[ 12 ,1]

f(x),

we obtain the first bit of the binary expansion of x1. Using the usual interval-
halving technique, we then obtain x1 itself. Now repeat this process for f replaced
by f1 : [0, 1] → R which is f for x ̸= x1 and 0 otherwise. Thus, we obtain an
enumeration of [0, 1] and by [94, II.4.9], there is y ∈ [0, 1] not in the latter sequence,
a contradiction, and the items from the theorem follow.

Thirdly, for the final sentence in the theorem, define g : [0, 1] → R as g(x) := 0
if x ∈ Q ∩ [0, 1], and g(x) := f(x) otherwise. Then g is continuous at each rational
number and thus pointwise discontinuous, which one readily establishes using IND0.
In the same way as for f in the previous paragraph, the function g is BV , usco,
regulated, Baire 2, and cliquish. Repeating the ‘sup construction’ from the previous
paragraph for f replaced by g, one obtains an enumeration of [0, 1]\Q, which yields
the required contradiction.

Finally, for the restriction to functions continuous almost everywhere, let C be the
Cantor (middle-third) set, which has an RM-code and is recursively homomorphic
to Cantor space, all in RCA0 by [94, I.8.6]. Let Y : C → N be an injection and
define h : [0, 1] → R as 0 in case x ̸∈ C and 1

2Y (x)+1 otherwise. In the same way as
for f and g, the function h is BV , usco, regulated, Baire 2, and cliquish. Since C
is closed and has measure zero, h is continuous almost everywhere. Repeating the
‘sup construction’ from the previous paragraph for f replaced by h, one obtains an
enumeration of C, which yields a contradiction by [94, II.5.9]. Moreover, in case C
is not countable, neither is 2N and [0, 1] by the results in [90], and we are done. □

One can derive NIN from the fact that a Baire 2 function has a supremum, i.e.
not involving parameters, but the technical details are somewhat messy. Now, The-
orem 2.32 identifies a problem with the coding of Baire 2 functions in the language
of second-order arithmetic. Indeed, comparing Theorems 2.22 and 2.32, we observe
that the logical properties of the supremum principle for Baire 2 functions changes
dramatically upon restriction to effectively Baire 2 functions; the latter using codes
for continuous functions is essentially the second-order representation used in [6,7].

Thirdly, we have the following theorem to be contrasted with Theorem 2.23.
Note that Zω

2 + IND0 cannot prove NIN[0,1] by [76, §3].

Theorem 2.33 (ACAω
0 +Π1

1-CA0 + IND0). The principle NIN[0,1] follows from:

for any open Baire 2 set in R, there is an RM-code. (2.21)

Proof. Fix A ⊂ [0, 1] and Y : [0, 1] → N injective on A. Note that we can use µ2

from Section A.3 to remove any rationals from A. Note that we can also guarantee
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that Y maps to N \ {0, 1}. Now define the closed set C ⊂ R as follows:

y ∈ C ↔ (∃n ∈ N)(n < y < n+ 1 ∧ (y − n) ∈ A ∧ Y (y − n) = n).

Since Y is an injection on A, each interval (n, n + 1) for n ≥ 2 contains at most
one y ∈ C. Clearly, C is closed and O := R \ C is open. For fixed n0 ∈ N, we
can enumerate the (at most n0) reals in C ∩ (0, n0 + 1) using IND0. With the
finite list, one readily defines a sequence of continuous functions that converges to
1O∩(0,n0+1), i.e. the latter is Baire 1. Then 1O is Baire 2 and an RM-code for O
(and hence C) is provided by the centred item. Suppose O = ∪n∈N(an, bn) where
the latter intervals have rational end-points. Use Π1

1-CA0 to form the following set
B := {m ∈ N : (∃x ∈ R)φ(x,m)}, where

φ(x,m) ≡ (m < x < m+ 1 ∧ x ∈ R \ ∪n∈N(an, bn))

is (equivalent to) an L2-formula. Now apply Σ1
1-AC0, provable in ATR0 by [94,

V.8.3], to (∀m ∈ B)(∃x ∈ R)φ(x,m). The resulting sequence readily yields an
enumeration of A. By [94, II.4.9], there is y ∈ [0, 1] not in this enumeration, and
hence we can find z ∈ [0, 1] \ A. In this way, for any countable set A ⊆ [0, 1]
(Def. 1.7), there is y ∈ [0, 1] \A. Thus, there is injection from [0, 1] to N. □

One can replace R in (2.21) by [0, 1] and still obtain NIN[0,1]; we leave this as an
exercise to the reader.

In conclusion, we have shown that certain slight generalisations or variations of
the third-order theorems from Sections 2.3-2.7 go far beyond the RM of the Big
Five or (∃2). It is however hard to draw a ‘borderline’: Theorem 2.30 involves a
super-class, namely Baire 2, and a sub-class, namely Baire 1∗, of Baire 1. Now,
Baire 1∗ functions are of course Baire 1, but only in strong enough systems by
Theorem 2.34. A similar result can be obtained for Baire 1∗∗ functions ([80]).

2.8.3. Variations on a theme. In this section, we establish the results sketched in
Section 2.8.1, i.e. we show that slight generalisations or variations of the third-
order theorems from Sections 2.3-2.7 are not provable from any Big Five system,
the axiom (∃2), and much stronger systems.

First of all, we have the following theorem, where the first five items are to be
contrasted with Theorem 2.14. Regarding items (xi)-(xv), we recall that Zω

2 cannot
prove NIN[0,1], i.e. ATR0 is relatively weak in comparison.

Theorem 2.34 (ACAω
0 + IND0). The following statements imply NIN[0,1].

(i) Cousin’s lemma for BV -functions Ψ : [0, 1] → R+.
(ii) Cousin’s lemma for regulated functions Ψ : [0, 1] → R+.
(iii) Cousin’s lemma for usco Ψ : [0, 1] → R+.
(iv) Cousin’s lemma for cliquish Ψ : [0, 1] → R+.
(v) Cousin’s lemma for Baire 1∗ Ψ : [0, 1] → R+.
(vi) Cousin’s lemma for Baire 2 Ψ : [0, 1] → R+.
(vii) All usco (or: lsco) functions f : [0, 1] → R are Baire 1.
(viii) All BV -functions f : [0, 1] → R are Baire 1.
(ix) All regulated functions f : [0, 1] → R are Baire 1.
(x) All Baire 1∗ functions f : [0, 1] → R are Baire 1.
(xi) All usco cliquish f : [0, 1] → R are Baire 1.

Given ATR0 +∆1
2-IND, the principle NIN[0,1] also follows from the following.

(xi) All BV (or: regulated, usco, or lsco) f : [0, 1] → R are effectively Baire 2.
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(xii) All BV (or: regulated, usco, or lsco) f : [0, 1] → R are eff. Baire n+ 2.
(xiii) All BV (or: regulated, usco, or lsco) f : [0, 1] → R have a Borel code.
(xiv) All Baire 2 f : [0, 1] → R are effectively Baire 2 (Baire, [4, p. 69]).
(xv) All Baire 2 f : [0, 1] → R are effectively Baire n (n ≥ 3).

The theorem still goes through if we limit items (i)-(xi) to functions that are point-
wise discontinuous or continuous almost everywhere.

Proof. Let Y : [0, 1] → N be an injection and define Ψ(x) := 1
2Y (x)+5 . Recall that Ψ

is usco (and cliquish, regulated, and BV ) as shown in the proof of Theorem 2.32.
Now, for distinct reals x0, . . . , xk ∈ [0, 1] we must have that ∪i≤kB(xi,Ψ(xi)) has
measure at most 1/2, since Ψ(x0), . . . ,Ψ(xk) are all distinct due to Y being an
injection. However, item (iii) provides a finite sub-covering of ∪x∈[0,1]B(x,Ψ(x)),
which must have measure at least 1, a contradiction. Thus, there is no injection
from [0, 1] to N, i.e. NIN[0,1] follows from item (iii). The same proof goes through
for items (i), (ii), and (iv). That f is Baire 1∗ follows as for Theorem 2.30, i.e.
item (v) also follows in the same way.

For item (vi), one shows that Ψ(x) := 1
2Y (x)+5 as above, is Baire 2 in the same

way as in the proof of Theorem 2.30. Indeed, define Ψn(x) as Ψ(x) if Y (x) ≤ n,
and 0 otherwise. Clearly, Ψ is the pointwise limit of Ψn while the latter has at most
n + 5 points of discontinuity. For fixed n ∈ N, the discontinuity points of Ψn can
be enumerated using IND0, which readily yields a sequence of continuous functions
that converges to Ψn. In this way, Ψ as above is Baire 2, and NIN[0,1] follows.

For item (vii), we derive item (iii) from the latter. To this end, fix usco Ψ :
[0, 1] → R+ and let (Ψn)n∈N be a sequence of continuous functions with pointwise
limit Ψ. Use Corollary 2.5 to obtain a sequence (Φn)n∈N of codes for continuous
functions. The latter sequence is a code for a Baire 1 function in the sense of
[6, 7]. Since ACA0 proves Cousin’s lemma for codes for Baire 1 functions (see
[6, 7]), we obtain Cousin’s lemma for usco functions and hence NIN[0,1] by item
(vii). By definition, for usco f : [0, 1] → R with upper bound N ∈ N (provided by
Theorem 2.9), g(x) := N −f(x) is lsco, i.e. item (vii) can be formulated with either
lsco or usco.

For items (viii)-(xi), the same proof as for item (vii) goes through for regulated
or BV -functions. In particular, Ψ(x) := 1

2Y (x)+5 is BV (and regulated, cliquish,
and Baire 1∗) in case Y : [0, 1] → N is an injection by the proof of Theorem 2.32.

For item (xi), recall that ATR0 + ∆1
2-induction proves (second-order) Cousin’s

lemma for codes of Baire 2 (or even Borel) functions ([6,7]). Moreover, we note that
∃2 can convert an effectively Baire 2 function into a code for a Baire 2 function (by
uniformly replacing the continuous functions by codes). Hence, assuming item (xi),
we obtain the Cousin lemma for BV (or: regulated, or: usco) functions, and hence
NIN[0,1] by the results for item (i) (and items (ii) and (iii)). The case for lsco
functions implies the case for usco functions as for item (vii). Items (xii) and (xiii)
follow in the same way. Items (xiv) and (xv) follow in the same way, in combination
with the fact that item (vi) proves NIN[0,1].

For the final sentence, the supremum principle for Baire 1 functions is provable in
RCAω

0 +WKL by Theorem 2.9. Hence, items (vii)-(xi) yield the supremum principle
for the associated classes. We now obtain NIN[0,1] via Theorem 2.32. For items

(ii)-(vi), let Y : 2N → N be an injection and recall the Cantor set C from the proof
of Theorem 2.32, with associated recursive homomorphism H : 2N → [0, 1] defined
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as H(f) :=
∑∞

n=0
2f(n)
3n+1 . Now define Ψ : [0, 1] → R+ using (∃2) as:

Ψ(x) :=

{
d(x, C) x ̸∈ C

1
2Y (I(x))+5 otherwise

, (2.22)

where I(x) is the unique f ∈ 2N such that H(f) = x in case x ∈ C, and 00 . . .
otherwise. As in the proof of Theorem 2.32, Ψ is continuous almost everywhere,
pointwise discontinuous, and has the properties required for items (ii)-(vi). To show
that Ψ is in BV , note that λx.d(x, C) is Lipschitz (with constant 1) and hence BV
as the textbook proof goes through in RCAω

0 ([2, p. 74]). Since Y is an injection,
the function λx.

(
Ψ(x)− d(x, C)

)
is also in BV . The sum of two BV -functions is in

BV , as the textbook proof goes through in RCAω
0 ([2, Prop. 1.3]).

Finally, by the definition of Ψ in (2.22), if x ∈ [0, 1] \ C, then C ∩ IΨx = ∅.
Hence, let z0, . . . , zm be those yi ∈ C for i ≤ k and note that ∪j≤mIΨzj covers C.
Then I(z0), . . . , I(zm) yields a finite sub-cover of ∪f∈2N [f(Y (f)+5)]. However, the

measure of the latter is below 1/2, a contradiction. Moreover, in case 2N is not
countable, neither is [0, 1] by the results in [90], i.e. NIN[0,1] follows. □

We could restrict item (i) in Theorem 2.34 to functions continuous on a set of
positive measure; this would mean replacing the Cantor set C in (2.22) by a ‘fat’
Cantor set, i.e. having positive measure. Item (vii)-(xi) are also robust in that they
still imply NIN[0,1] upon replacing ‘Baire 1’ by the equivalent definition (involving
perfect sets) provided by the Baire characterisation theorem ([5]).

Recall the Vitali principle from Section 2.3.3, which yields the following imme-
diate corollary, to be contrasted with Theorem 2.15.

Corollary 2.35 (ACAω
0 + IND0). The following statements imply NIN[0,1].

(i) Vitali’s principle for BV -functions Ψ : [0, 1] → R+.
(ii) Vitali’s principle for regulated functions Ψ : [0, 1] → R+.
(iii) Vitali’s principle for usco Ψ : [0, 1] → R+.
(iv) Vitali’s principle for cliquish Ψ : [0, 1] → R+.
(v) Vitali’s principle for Baire 1∗ Ψ : [0, 1] → R+.
(vi) Vitali’s principle for Baire 2 Ψ : [0, 1] → R+.

Proof. The proof of Theorem 2.34 goes through: the single use of Cousin’s lemma
can be replaced by the associated version of Vitali’s principle for ε > 1

2 . □

We note that the Theorem 2.34 identifies a significant problem with the coding
of Baire 2 functions in the language of second-order arithmetic. Indeed, Cousin’s
lemma for codes for Baire 2 functions is equivalent to ATR0 ([6,7]). In light of item
(vi) of Theorem 2.34, this coding seriously changes the logical strength of Cousin’s
lemma for Baire 2 functions. We do have the following nice corollary to the theorem
and Theorem 2.24, to be contrasted with the fact that Zω

2 cannot prove NIN[0,1].

Corollary 2.36. For n ≥ 2, the system ACAω
0 + ATR0 +∆1

2-IND proves that there
is no effectively Baire n function Y : [0, 1] → Q that is injective on [0, 1].

Proof. By Theorem 2.24, the system at hand proves Cousin’s lemma for effectively
Baire n functions. As in the (first paragraph of the) proof of the theorem, one
obtains the relevant restriction of NIN[0,1], and we are done. □

Secondly, we have the following theorem, to be contrasted with Theorem 2.19.
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Theorem 2.37 (ACAω
0 + IND0). The principle NIN[0,1] follows from the following:

Jordan decomposition theorem (Theorem 1.4) restricted to usco BV -functions.

Proof. Let Y : [0, 1] → N be an injection and define f(x) := 1
2Y (x)+5 . In the

same way as in the proof of Theorem 2.32, f : [0, 1] → R is usco and BV . The
centred statement from Theorem 2.37 now provides non-decreasing g, h : [0, 1] → R
such that f = g − h on [0, 1]. By [75, Lemma 3], ∃2 can enumerate the points of
discontinuity of non-decreasing functions. As in [94, II.4.9], this enumeration is not
all of [0, 1], i.e. there is y ∈ [0, 1] such that g and h are continuous at y. Hence f
is continuous at y, but this is a contradiction as there are points z arbitrarily close
to y such that f(z) is arbitrarily small (use IND0 to establish this claim). □

There are a number of similar ‘decomposition theorems’, e.g. implying that
cliquish and usco functions can be expressed as the sum of two quasi-continuous
functions ([10, 64]). One readily shows that the latter decompositions also yield
NIN[0,1], even when restricted to BV -functions.

Thirdly, by Theorems 2.19 and 2.20, RCAω
0 +ACA0 proves certain basic properties

of the Riemann integral and BV -functions. By contrast, Theorem 2.38 shows that
other basic properties do not follow from the former and much stronger systems.
We note that the negation of the first item implies a very strong ‘non-uniqueness’
of the Riemann integral. Similarly, the negation of the second item states that
BV -functions need not be differentiable anywhere. A version of the second item,
called Lebesgue’s theorem, involving codes is provable in WKL0 by [69, §6].

Theorem 2.38 (ACAω
0 + IND0). The following principles imply NIN[0,1].

• For a Riemann integrable BV -function f : [0, 1] → [0, 1] with
∫ 1

0
f(x)dx =

0, there is x ∈ [0, 1] such that f(x) = 0.
• For f : [0, 1] → [0, 1] in BV , there is x ∈ [0, 1] where f is differentiable.
• For regulated f : [0, 1] → [0, 1], there is x ∈ [0, 1] where f is continuous.
• For usco f : [0, 1] → R, there is x ∈ [0, 1] where f is continuous.

Proof. Let Y : [0, 1] → N be an injection and define f(x) := 1
2Y (x)+5 . As in the

proof of Theorems 2.34 and 2.37, this function is in BV and regulated and usco.

To show that f is Riemann integrable with integral equal to zero, use the ‘epsilon-
delta’ definition of Riemann integrability and (essentially) the same argument why
f is in BV . However, f(x) > 0 for all x ∈ [0, 1] by definition, i.e. we obtain a
contradiction from the first item of Theorem 2.38.

Similarly, the second and third item imply there is y ∈ [0, 1] where f is contin-
uous. This is a contradiction as there are points z arbitrarily close to y such that
f(z) is arbitrarily small (use IND0 to establish this claim). □

It is an interesting exercise to show that in the final two items, continuity can
be replaced by much weaker properties, including feeble continuity as in [97, §24,
p. 53]. As noted in the latter, every R → R-function is feebly continuous at all but
countably many reals, i.e. we are dealing with a very weak continuity notion. These
results go back to Young ([103], 1907) with a (historical) overview in [18].

We note that Theorems 2.37 and 2.38 identify a problem with the coding of func-
tions in the language of second-order arithmetic. Indeed, we observe that the logical
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properties of Cousin’s lemma for Baire 2 functions, the Jordan decomposition theo-
rem for BV -functions, and Lebesgue’s (differentiability) theorem for BV -functions
change dramatically upon introducing second-order codes.

Finally, while the main focus of [76] is the study of NIN[0,1, some results are
obtained for NBI[0,1], i.e. the statement there is no bijection from [0, 1] to N. By

[76, §4], RCAω
0 + QF-AC0,1 proves NBI[0,1] but Zω

2 cannot. In this way, NBI[0,1]
exhibits the Pincherle phenomenon from Remark 2.10. Now, we have used item (a)
in Definition 1.3 as our definition of BV -functions. One could define ‘strong BV ’
as item (b) in Definition 1.3, i.e. the supremum (1.4) must additionally exist. One
readily verifies that e.g. Cousin’s lemma for strong BV -functions (see item (i) in
Theorem 2.34) implies NBI[0,1]. Similarly, we can derive NBI[0,1] from any of the
above theorems implying NIN[0,1], even after replacing ‘BV ’ by ‘strong BV ’.
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Appendix A. Higher-order Reverse Mathematics

We introduce the base theory of higher-order RM (Section A.1), some essential
notations (Section A.2), and some axioms (Section A.3).

A.1. The base theory of higher-order Reverse Mathematics. We introduce
Kohlenbach’s base theory RCAω

0 , first introduced in [55, §2].

Definition A.1. The base theory RCAω
0 consists of the following axioms.

(a) Basic axioms expressing that 0, 1, <0,+0,×0 form an ordered semi-ring with
equality =0.

(b) Basic axioms defining the well-known Π and Σ combinators (aka K and S
in [3]), which allow for the definition of λ-abstraction.

(c) The defining axiom of the recursor constant R0: for m
0 and f1:

R0(f,m, 0) := m and R0(f,m, n+ 1) := f(n,R0(f,m, n)). (A.1)

(d) The axiom of extensionality : for all ρ, τ ∈ T, we have:

(∀xρ, yρ, φρ→τ )
[
x =ρ y → φ(x) =τ φ(y)

]
. (Eρ,τ )

(e) The induction axiom for quantifier-free formulas of Lω.
(f) QF-AC1,0: the quantifier-free Axiom of Choice as in Definition A.2.

Note that variables (of any finite type) are allowed in quantifier-free formulas of the
language Lω: only quantifiers are banned. Recursion as in (A.1) is called primitive
recursion; the class of functionals obtained from Rρ for all ρ ∈ T is called Gödel’s
system T of all (higher-order) primitive recursive functionals.

Definition A.2. The axiom QF-AC consists of the following for all σ, τ ∈ T:

(∀xσ)(∃yτ )A(x, y) → (∃Y σ→τ )(∀xσ)A(x, Y (x)), (QF-ACσ,τ )

for any quantifier-free formula A in the language of Lω.
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As discussed in [55, §2], RCAω
0 and RCA0 prove the same sentences ‘up to lan-

guage’ as the latter is set-based and the former function-based. This conservation
result is obtained via the so-called ECF-interpretation discussed in Remark A.3.

Remark A.3 (The ECF-interpretation). The (rather) technical definition of ECF
may be found in [98, p. 138, §2.6]. Intuitively, the ECF-interpretation [A]ECF of a
formula A ∈ Lω is just A with all variables of type two and higher replaced by type
one variables ranging over so-called ‘associates’ or ‘RM-codes’ (see [53, §4]); the
latter are countable representations of continuous functionals. Thus, the formula
[A]ECF is just A in case A ∈ L2. The ECF-interpretation connects RCAω

0 and RCA0

(see [55, Prop. 3.1]) in that if RCAω
0 proves A, then RCA0 proves [A]ECF, again ‘up to

language’, as RCA0 is formulated using sets, and [A]ECF is formulated using types,
i.e. using type zero and one objects. In light of the widespread use of codes in RM
and the common practise of identifying codes with the objects being coded, it is
no exaggeration to refer to ECF as the canonical embedding of higher-order into
second-order arithmetic.

A.2. Notations and the like. We introduce the usual notations for common
mathematical notions, like real numbers, as also introduced in [55].

Definition A.4 (Real numbers and related notions in RCAω
0 ).

(a) Natural numbers correspond to type zero objects, and we use ‘n0’ and
‘n ∈ N’ interchangeably. Rational numbers are defined as signed quotients
of natural numbers, and ‘q ∈ Q’ and ‘<Q’ have their usual meaning.

(b) Real numbers are coded by fast-converging Cauchy sequences q(·) : N →
Q, i.e. such that (∀n0, i0)(|qn − qn+i| <Q

1
2n ). We use Kohlenbach’s ‘hat

function’ from [55, p. 289] to guarantee that every q1 defines a real number.
(c) We write ‘x ∈ R’ to express that x1 := (q1(·)) represents a real as in the

previous item and write [x](k) := qk for the k-th approximation of x.
(d) Two reals x, y represented by q(·) and r(·) are equal, denoted x =R y, if

(∀n0)(|qn − rn| ≤ 2−n+1). Inequality ‘<R’ is defined similarly. We some-
times omit the subscript ‘R’ if it is clear from context.

(e) Functions F : R → R are represented by Φ1→1 mapping equal reals to equal
reals, i.e. extensionality as in (∀x, y ∈ R)(x =R y → Φ(x) =R Φ(y)).

(f) The relation ‘x ≤τ y’ is defined as in (1.1) but with ‘≤0’ instead of ‘=0’.
Binary sequences are denoted ‘f1, g1 ≤1 1’, but also ‘f, g ∈ C’ or ‘f, g ∈ 2N’.
Elements of Baire space are given by f1, g1, but also denoted ‘f, g ∈ NN’.

(g) For a binary sequence f1, the associated real in [0, 1] is r(f) :=
∑∞

n=0
f(n)
2n+1 .

(h) Sets of type ρ objects Xρ→0, Y ρ→0, . . . are given by their characteristic

functions F ρ→0
X ≤ρ→0 1, i.e. we write ‘x ∈ X’ for FX(x) =0 1.

For completeness, we list the following notational convention for finite sequences.

Notation A.5 (Finite sequences). The type for ‘finite sequences of objects of type
ρ’ is denoted ρ∗, which we shall only use for ρ = 0, 1. Since the usual coding of
pairs of numbers goes through in RCAω

0 , we shall not always distinguish between
0 and 0∗. Similarly, we assume a fixed coding for finite sequences of type 1 and
shall make use of the type ‘1∗’. In general, we do not always distinguish between
‘sρ’ and ‘⟨sρ⟩’, where the former is ‘the object s of type ρ’, and the latter is ‘the
sequence of type ρ∗ with only element sρ’. The empty sequence for the type ρ∗ is
denoted by ‘⟨⟩ρ’, usually with the typing omitted.
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Furthermore, we denote by ‘|s| = n’ the length of the finite sequence sρ
∗
=

⟨sρ0, s
ρ
1, . . . , s

ρ
n−1⟩, where |⟨⟩| = 0, i.e. the empty sequence has length zero. For

sequences sρ
∗
, tρ

∗
, we denote by ‘s∗t’ the concatenation of s and t, i.e. (s∗t)(i) = s(i)

for i < |s| and (s∗t)(j) = t(|s|−j) for |s| ≤ j < |s|+|t|. For a sequence sρ∗
, we define

sN := ⟨s(0), s(1), . . . , s(N − 1)⟩ for N0 < |s|. For a sequence α0→ρ, we also write
αN = ⟨α(0), α(1), . . . , α(N−1)⟩ for any N0. By way of shorthand, (∀qρ ∈ Qρ∗

)A(q)
abbreviates (∀i0 < |Q|)A(Q(i)), which is (equivalent to) quantifier-free if A is. For
sequences f1, g1, the sequence f ⊕ g is f(0) ∗ g(0) ∗ f(1) ∗ g(1) ∗ . . . .

A.3. Some comprehension functionals. In second-order RM, the logical hard-
ness of a theorem is measured via what fragment of the comprehension axiom is
needed for a proof. For this reason, we introduce some axioms and functionals
related to higher-order comprehension in this section. We are mostly dealing with
conventional comprehension here, i.e. only parameters over N and NN are allowed
in formula classes like Π1

k and Σ1
k.

First of all, the following functional is clearly discontinuous at f = 11 . . . ; in
fact, (∃2) is equivalent to the existence of F : R → R such that F (x) = 1 if x >R 0,
and 0 otherwise ([55, §3]). This fact shall be repeated often.

(∃φ2 ≤2 1)(∀f1)
[
(∃n)(f(n) = 0) ↔ φ(f) = 0

]
. (∃2)

Related to (∃2), the functional µ2 in (µ2) is also called Feferman’s µ ([3]) and can
be found in Hilbert-Bernays’ Grundlagen ([40, Supplement V]).

(∃µ2)(∀f1)
[
(∃n)(f(n) = 0) → [f(µ(f)) = 0 ∧ (∀i < µ(f))(f(i) ̸= 0)] (µ2)

∧ [(∀n)(f(n) ̸= 0) → µ(f) = 0]
]
,

We have (∃2) ↔ (µ2) over RCAω
0 and ACAω

0 ≡ RCAω
0 + (∃2) proves the same

sentences as ACA0 by [45, Theorem 2.5].

Secondly, the functional S2 in (S2) is called the Suslin functional ([55]).

(∃S2 ≤2 1)(∀f1)
[
(∃g1)(∀n0)(f(gn) = 0) ↔ S(f) = 0

]
, (S2)

The system Π1
1-CA

ω
0 ≡ RCAω

0 + (S2) proves the same Π1
3-sentences as Π1

1-CA0 by
[86, Theorem 2.2]. By definition, the Suslin functional S2 can decide whether a
Σ1

1-formula as in the left-hand side of (S2) is true or false. We similarly define the
functional S2k which decides the truth or falsity of Σ1

k-formulas from L2; we also

define the system Π1
k-CA

ω
0 as RCAω

0 +(S2k), where (S
2
k) expresses that S

2
k exists. We

note that the operators νn from [16, p. 129] are essentially S2n strengthened to return
a witness (if existant) to the Σ1

n-formula at hand. The operator νn is essentially
Hilbert-Bernays’ operator ν (see [40, Supplement V]) restricted to Σ1

n-formulas.

Thirdly, full second-order arithmetic Z2 is readily derived from ∪kΠ
1
k-CA

ω
0 , or from:

(∃E3 ≤3 1)(∀Y 2)
[
(∃f1)(Y (f) = 0) ↔ E(Y ) = 0

]
, (∃3)

and we therefore define ZΩ
2 ≡ RCAω

0 + (∃3) and Zω
2 ≡ ∪kΠ

1
k-CA

ω
0 , which are con-

servative over Z2 by [45, Cor. 2.6]. Despite this close connection, Zω
2 and ZΩ

2 can
behave quite differently, as discussed in e.g. [70, §2.2]. The functional from (∃3)
is also called ‘∃3’, and we use the same convention for other functionals. Hilbert-
Bernays’ operator ν (see [40, Supplement V]) is essentially Kleene’s ∃2, modulo a
non-trivial fragment of the Axiom of (quantifier-free) Choice.
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[3] Jeremy Avigad and Solomon Feferman, Gödel’s functional (“Dialectica”) interpretation,

Handbook of proof theory, Stud. Logic Found. Math., vol. 137, 1998, pp. 337–405.
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[9] Émile Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rendiconti

del Circolo Matematico di Palermo (1884-1940) 27, 247-271.
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[42] Ľubica Holá and Dušan Holý, Pointwise convergence of quasicontinuous mappings and Baire

spaces, Rocky Mountain J. Math. 41 (2011), no. 6, 1883–1894.
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