
Full simulation of
a testbeam experiment including

modeling of the Bonn Atlas Telescope
and Atlas 3D pixel silicon sensors

Kyrre Ness Sjøbæk
k.n.sjobak@fys.uio.no

Department of Physics, University of Oslo

Beam

Optical table
for mounting

front
Cooling box

(planar)
DUT1

(FBK−3E7)
DUT3

DUT2
(STA−3E)

DUT4
(FBK−3EM5)

back
Cooling box

BAT6

BAT3 BAT1

Thesis presented for the Master of Science degree
in Experimental Particle Physics

September 2010

2

Abstract

3D silicon pixel sensors are a strong candidate for the sensor component of a new
B-layer in the ATLAS detector, and for the ATLAS sLHC tracker, as these sensors
can be highly radiation hard, fast, and sensitive to the edge. In order to characterize
the sensors before large-scale application, samples are mounted in small fixed-
target testbeam experiments. Here the samples are exposed to high-energy charged
hadrons, and the response to this radiation is measured. The hit position in the
sensor is estimated using a beam telescope, which measures the position of the
particle while in flight up- and downstream of the sample. The hit position is then
estimated by assuming that particle flies in a straight line between the telescope
measurements and the sample.

This thesis presents a full Geant4 simulation of the interaction between the
beam particles and the material in the testbeam, including but not limited to sen-
sors. The output from the simulation is then used for detailed modeling of the
signal formation and electronics response for both the 3D pixel sensor samples
and the beam telescope sensor. Predictions from these models are compared to
experimental data, indicating that the telescope models developed have a very high
accuracy.

This work has made it possible to estimate the telescope tracking resolution in
the sensor samples to approximately 6 [µm]. An off-line method that may reduce
the telescope hit position measurement uncertainty by subtracting common mode
noise is also described.

Having this simulation system enables experimenting with sensor sample re-
sponse models while monitoring how they behave from the perspective of data
analysis. The results so far, still inconclusive, indicates that polysilicon-filled elec-
trodes in full 3D sensors retain a non-zero efficiency.

3

4

Acknowledgments

In the two years of work and courses leading up to this thesis, I have been fortu-
nate enough to be a part of the ATLAS 3D pixel R&D collaboration. The people
forming this collaboration have given me a great learning environment, not only
teaching me a lot about detectors, silicon sensors, experiment operation, and data
analysis, but also taught me the process of research itself. I especially want thank
my supervisors Ole Røhne, Steinar Stapnes, and PhD student Håvard Gjersdal for
bringing me on board, answering lots of questions, sending me numerous times
to CERN and elsewhere, helping me write this thesis, and generally guiding me
through my adventures in this field of research.

Being a student at the Oslo experimental particle physics group have been also
been very important for me. Working, and at times living, together with you have
been a great experience, both scientifically and socially.

Last but not least, I want to thank my family, friends, and my girlfriend Helga
Holmestad, who have supported and motivated me through this project.

5

6

Contents

Abstract 3

Acknowledgments 5

Contents 7

1 Introduction 11
1.1 Particle physics detectors . 14

1.1.1 Detector output and reconstruction 18
1.1.2 Insertable B-layer . 18

1.2 Testbeam and testbeam simulation 19
1.3 Organization of material in thesis 21

2 Semiconductor radiation sensors 23
2.1 Interactions between radiation and matter 23
2.2 Silicon radiation sensors . 27

2.2.1 PN-junctions . 29
2.2.2 Signal creation . 33
2.2.3 The Fano factor . 36
2.2.4 Use of semiconductor sensors for position measurement . 36
2.2.5 3D pixel sensors . 37

2.3 The Monte-Carlo method . 41

3 Simulation of testbeam experimental setup 47
3.1 Physics models used in the simulation 48

3.1.1 Fano sampling . 49
3.1.1.1 Implementation errors in Fano sampling routine 51

3.1.2 Comparison of Geant4 physics models 52
3.2 Geometry description . 55
3.3 Beam . 59
3.4 Trigger setup . 61
3.5 Chosen simulation parameters 66
3.6 Conclusion . 67

7

8 CONTENTS

4 BAT telescope model 69
4.1 Simulation geometry . 70
4.2 Simulation of sensor response 71

4.2.1 Charge-sharing and signal generation 71
4.2.1.1 Electric field 72
4.2.1.2 Drift and diffusion of charge-clouds 75
4.2.1.3 Charge collection on implants 78
4.2.1.4 Capacitive coupling from implants to metal strips 80

4.2.2 Noise . 81
4.2.3 Data preprosessor FPGA 82

4.2.3.1 Off-line subtraction of common mode noise . . 83
4.3 Parameter tuning . 83

4.3.1 Observables . 86
4.3.1.1 sumADU . 86
4.3.1.2 ClusterMax, shoulder1 and shoulder2 spectrum 86
4.3.1.3 Mean cluster shape 87
4.3.1.4 dN/dη distribution 87
4.3.1.5 Consecutive number of strips above threshold . 87
4.3.1.6 No-hit CMC/N 87

4.3.2 Tuning strategy . 87
4.3.3 Sensitivity to parameters 88

4.4 Comparison of simulated data with real data 89
4.5 Conclusion . 89

5 Performance of the tracking and alignment 93
5.1 Alignment and hit resolution in BAT 94
5.2 Track resolution in DUTs . 97
5.3 Conclusion . 100

6 ATLAS Pixel simulation models 101
6.1 Simulation geometry . 101
6.2 Pixel response models . 102

6.2.1 Carrier cloud tracking models 102
6.2.2 Effective models . 104

6.2.2.1 HolePunch model 106
6.2.2.2 S-curve model 115

6.3 Pixel charge collection efficiency analysis 115
6.4 Conclusion . 118

7 Conclusions and outlook 121

CONTENTS 9

A TestBeamSim technical documentation 125
A.1 Installing TestBeamSim . 125
A.2 Configuring and running . 126
A.3 Output . 127

A.3.1 Detector modules . 127
A.3.1.1 BAT and DUT: PixelSD 128
A.3.1.2 Scintillators 129

A.3.2 Truth . 129
A.3.3 Performance data . 130
A.3.4 Metadata . 130

A.4 Internals . 130
A.4.1 Messenger . 131
A.4.2 Physics . 133
A.4.3 DetectorConstruction . 133
A.4.4 Detector modules . 133
A.4.5 PixelSD sensitive detector 135
A.4.6 UserActions . 137

A.4.6.1 PrimaryGeneratorAction 137
A.4.6.2 RunAction . 138
A.4.6.3 EventAction 138
A.4.6.4 SteppingAction 139

A.5 Benchmarking . 139

B TbAna technical documentation 141
B.1 Installation . 141
B.2 Initial configuration and overview 142
B.3 Using TbAna: Important executables 143

B.3.1 TbAna_digitizer . 143
B.3.1.1 Operation as a library 143
B.3.1.2 digiSyncMap.dat file output format 144

B.3.2 TbSim_runMaker . 144
B.3.3 TbAna_digiTune_BAT 145
B.3.4 TbAna_bdtHistos . 147
B.3.5 TbAna_physicsEngine 147
B.3.6 TbAna_globalFit . 147

B.4 Libraries . 148
B.4.1 Parsing of raw simulation data 148
B.4.2 Simulating detector response 148
B.4.3 Reading and writing raw experiment data (BDT) 150

C TbMon simulation extensions 153
C.1 Configuring simulation extensions 154
C.2 Analysis: Access to raw simulation data 154
C.3 SimDuts and pixel detector model testing 155

10 CONTENTS

D Description of the BDT file format 157
D.1 Main elements and structure . 157
D.2 Fragment header . 159
D.3 BAT data . 159

D.3.1 BORE . 160
D.3.2 DATA . 161

D.4 TPLL data . 163
D.4.1 BORE . 163
D.4.2 DATA . 163

E Dictionary of often used words 165

List of Figures 169

List of Tables 173

Bibliography 175

Chapter 1

Introduction

Through the history of natural science, mankind has always sought the most fun-
damental way possible for describing the world around us. This has taken us from
theories describing the world as composed of four elements with different proper-
ties, and into the modern understanding of a universe built up from a few elemen-
tary particles (figure 1.1(a)). These particles build up everything we know, includ-
ing ourselves. By describing how they interact with each other, it is in principle
possible to describe how they assemble larger and more complex systems such as
atoms, chemical molecules, rocks and organisms, planets and stars, galaxies, the
entire universe we see, and the light that makes it possible for us to see it.

�
��

�������

�

� �
�����

�����	��

�

� �
���

������	���

�

�

�
	�
�

��
����

��

� �
������

�������

�

�� �
������

����	��

�

��

��
��������
��������

�������

�

� ��
����

��������

���������

�

� ��
���

��������

��������

�

�

�
��������

��������

��

� �
����

��������

�

�� �
���

������	��

�

��

�
������

��

�

�

�
����

�

�

�

�
������	��

�

�

���
�����

�
�

����	��

�

��

���
�����

�����

�����

������

�
�
�
��
�

�
�
�
	

�
�

������	�
�����
��
����������������
��

�

�

�
�
�
�

��
�
��

� �� ���

�����

(a) The particles of the standard model
(Figure from Wikipedia)

(b) The structure of an atom
(Figure from “The Particle Adventure”)

Figure 1.1: The building blocks of matter

The way we figure out how things are made usually involves taking them apart,
either carefully as if examining the delicate mechanism of a watch, or with force if
examining the insides of a stone. This is also the general metaphor used when ex-
amining the particles building up the world; we build giant machines like the CERN
accelerator complex and the LHC (figure 1.2) for smashing particles to pieces, and

11

12 CHAPTER 1. INTRODUCTION

incredibly complicated detectors like ATLAS (see figure 1.3) for examining the
shards that get scattered from the collisions – all in hope to get a glimpse into the
secret life of the smallest parts.

But why is it not possible to carefully pick the atoms apart, laying the parts out
on a table, and examine them one at a time under a powerful microscope? It turns
out that there are several reasons why this does not work. The first one is that it
is not possible to make mechanical tools that are small enough – after all our tools
are also made of atoms, which are much larger than many of the particles we want
to study. Further, the light used in a normal microscope can be described as waves,
which has a certain size or wavelength. And just like it is not possible to detect
the presence of a narrow pole at sea by looking at long sea-waves that has passed
it, it is not possible to detect a single atom by looking at waves of light which
has passed it, as the waves used in ordinary light-microscopes are thousands of
times longer than the size of a single atom, and will thus not be changed. With the
particles composing the atoms, the differences in size are even larger. This could
in principle be solved by using shorter wavelengths, but when doing this, it turns
out that light itself is composed of particles known as photons – and light with
shorter wavelength means photons with higher energy. This energy will not just
“wiggle” the atoms like the longer wavelength light, but break them apart – just
like when smashing atoms together. Another problem is that some particles, such
as the neutrinos and gluons, do not even interact (directly) with photons – instead
the photons just pass by as if these particles where not there at all. The third and
last reason why this method does not work is that we do not only want to study
the particles composing normal matter; that is the electrons and nuclei composing
atoms, with the nuclei in turn composed of neutrons and protons, which in turn
is composed of “up” and “down” quarks bound together with gluons (see figure
1.1(b)). It turns out that when colliding particles at high enough energy, more
particles can be created. This way, heavy particles – such as the rest of the quarks
and leptons shown in figure 1.1(a), or heavy “force particles” such as W± or Z – can
be created and studied. This is due to that, as described by Einstein in the Theory
of Relativity, mass is a form of energy, stated in the iconic formula E = mc2. It is
thus possible to create new mass by supplying enough energy to the single particles
colliding – and this is exactly what a particle accelerator such as the LHC does.

The particles accelerated up to energies of 3.5 [TeV] by the LHC are protons,
which brings them up to 99.99 99 96 % of lightspeed. In the LHC there are two
such beams circulating in opposite directions, which are steered into collision at
four points along the machine. At these interaction points the protons collide at a
total energy of 3.5 + 3.5 = 7.0 [TeV]1. This is also the position of the detectors,

1 This is half its design energy; it is planned to go to 7 + 7 = 14 [TeV] after the 2012 winter
shutdown.

13

Figure 1.2: CERN particle accelerator complex, including transfer lines connect-
ing the different accelerators, and important experiments. (Figure by Christiane
Lefèvre)

Figure 1.3: The ATLAS particle detector, subdetectors named and placed. This
detector is sitting around one of the interaction points of the LHC accelerator at
CERN, where protons are collided head-on. The detector measures the remains
from these collisions. (Figure by Joao Pequenao)

14 CHAPTER 1. INTRODUCTION

which captures data from “interesting” collisions2 – collisions that might give an
insight to unknown physics.

On a sidenote, one should know that even if the combined energy of the pro-
tons is 7 [TeV], this is not the energy available for production of new particles, as
the interacting particles are usually not protons. As described above, protons are
composed of quarks and gluons (often reffered to as partons), and it is they who in-
teract, forming new particles. A proton is (to first approximation) consisting of two
up and one down quark, and these particles have to share the total momentum and
energy of the proton. To make matters even more complicated, the content of the
proton resolves into even more particles – quark- anti-quark pairs and gluons – as
the relative momentum of the probing particle (a parton contained within another
proton) increases. This results in that the momentum of each single quark or gluon
no longer have a certain value. Instead we get a probability distribution to find a
certain parton at a certain energy, so called “parton distribution functions”. This
does not just result in a lowering of the effective energy available in the collision,
but also in that the energy is different from one collision to the next. This makes
proton machines such as the LHC good tools for discovering new particles with
unknown properties, but as the collision energy and the identity of the colliding
particles has to be identified after the fact, not so good for precision measurements
of already discovered particles.

1.1 Particle physics detectors

When an “interesting” collision occurs, this usually means that some heavy and
therefore short-lived particle or resonance is created. This object quickly decays
into two or more new particles, and these continues into the detector as shown
in figure 1.4. These new particles carry information from the original underlying
event which produced them, and the purpose of the detector is to record as much
information as possible about the secondary particles. The recorded information is
later used in order to enable an offline reconstruction and analysis, which tries to
piece together as much information as possible about the original underlying event.

The detector itself consists of many sub-detectors, as seen in figure 1.4. These
sub-detectors have different purposes, and are therefore built using different tech-
nologies. There are two main types of detectors: Tracking detectors, which mea-
sures the position of particles where they traverse the sensitive parts of the detector,
and calorimeters, which stop particles in order to measure their energy. As the de-
tector is structured as an onion, the particles first have to go through the inner
tracking detector. Here their trajectory is bent into a helix by a magnetic field par-
allel to the beam axis. By fitting a helix to the measured points, it is possible to

2The detectors really capture data every 25 [ns], but a system known as trigger acts as a filter
which throws away most “uninteresting” collisions. This is done as it is impossible to download
from the detector, store, reconstruct, and analyze the full stream of approximatly 1.5 [MB/event]×
40 · 106 [events/sec] ≈ 60 [TB/sec].

1.1. PARTICLE PHYSICS DETECTORS 15

(a) Candidate Z → e+e− event in ATLAS 7 [TeV] run

(b) Event Cross Section in a computer generated image of the ATLAS detector
(Figure by Joao Pequenao)

Figure 1.4: Examples of events in ATLAS

16 CHAPTER 1. INTRODUCTION

Figure 1.5: ATLAS pixel detector

extract the momentum component transverse to the beam axis:

|P⊥| = qBr

Here q is the charge of the particle, B is the magnetic field, and r the radius of the
fitted helix. Further, the total momentum can be calculated by using the angle to
the beam axis (z-axis):

tan(θ) =
|dz|
dr

=
|~P‖|
|~P⊥|

⇒ |~P | = |~P⊥| ·
√(|dz|

dr

)2

+ 1

These measurements are one of the main goals of a tracking detector, such as the
ATLAS pixel detector shown in figure 1.5. Another important goal is vertex recon-
struction, which means finding the point(s) where the tracks cross each other. This
is likely to be point where the particles was created, either the collision point or the
decay position of a short-lived particle such as a B-meson.

In the real reconstructed ATLAS event shown in figure 1.4(a), the bending of
tracks can be clearly seen for some of the low-energy tracks. We see that there
are many tracks in the tracking detector – some bent, and some very straight. The
two tracks highlighted in yellow is probably high-energy electrons, as they are
very straight and is stopped in the electromagnetic calorimeter. By using the cal-
culated momentum from the tracker together with the energy measurement from
the calorimeter, the mass of the decayed original particle in its rest-frame can be
reconstructed. This is done by calculating the invariant mass of the two electrons,

1.1. PARTICLE PHYSICS DETECTORS 17

using the following relativistic formula:

M2c2 =(Pµ1 + Pµ2)2 = Pµ1 P1µ + Pµ2 P2µ + 2Pµ1 P2µ

=
E2

1

c2
− ~p2

1 +
E2

2

c2
− ~p2

2 + 2
(
E1E2

c2
− 2~p1 · ~p2

)
=m2

1c
2 +m2

2c
2 + 2

(
E1E2

c2
− 2~p1 · ~p2

)

From the text included in figure 1.4(a), the measured invariant mass of the two
electrons is Mee ≈ 89 [GeV], which is close to the mass of the Z boson (MZ =
91.19 [GeV]) [14]. As the Z boson is a very unstable particle, it does not have a
specific mass, but rather a distribution of possible masses. Thus this measurement
is compatible with being a Z created and decaying such as shown in the Feynman
diagram of figure 1.6. Here two constituent quarks from the two colliding protons
– one quark and one anti-quark3 – combine with the right energy to create a Z. This
Z then immediately decays, producing a pair of electrons, which is the measured
final-state.

q̄

q

Z

e−

e+

Figure 1.6: Feynman diagram of qq̄ → Z → e+e−

However, this is not the only possibility of producing such a signal in a de-
tector; for example one could replace the Z with a photon with the same invariant
mass. This then constitutes background to our measurement, which means that one
measurement with invariant mass of ≈ 91 [GeV] is not enough to claim discovery
of the Z. Instead one needs (at least) a histogram of the invariant masses across
many events, which should show a significant peak around the Z mass.

3 Even if the proton to first approximation only consists of normal quarks (two up and one down),
and no anti-quarks, it resolves into a more complicated structure also containing pairs of quarks and
anti-quarks when probing at higher energies, as discussed above.

18 CHAPTER 1. INTRODUCTION

1.1.1 Detector output and reconstruction

The output of a detector such as ATLAS is divided up in events, where each event
is roughly4 corresponding to one collision. One event is then further subdivided
into many detector digits, which is the smallest piece of information coming from
the detector. A digit contain one piece of information such as “channel XX of
subdetector YY read a value of ZZ”.

This information makes it possible to reconstruct the event, which means piec-
ing the digits together to make tracks and calorimeter energy measurements. To
do the reconstruction, a one needs general knowledge of the detector (position of
channels, detector response to different stimuli, how to decode digits, etc.), the be-
havior of the particles (equations of motion, scattering in material, etc.), and the
event data (the digits). This is necessary before one can do physics analysis, as
described above.

1.1.2 Insertable B-layer

The B-layer of the ATLAS pixel detector (figure 1.5) is the third and innermost
layer of pixel sensors. This layer is crucial for ATLAS physics performance, en-
abling accurate vertex reconstruction and jet quark flavor identification [43, 6].

The Insertable B-layer (IBL) is a proposed fourth layer of pixel sensors, which
is to be placed inside the current B-layer. This will increase the overall robustness
and performance of track reconstruction, helping dealing with both high occupancy
in the current B-layer due to high luminocities expected in the future by providing
an additional measurement, and also mitigating damage to the current B-layer from
radiation, beam losses etc. Additionally, as it is placed very close to the interaction
point, it will improve the tracking precision, boosting accuracy in determination of
the vertex point. This will thus increase sensitivity to physics channels, especially
those involving b-quark jets [6].

There are several tough constraints that have to be obeyed by the IBL design,
the main ones described below. Firstly, the space available is very tight, with an
outside envelope radius of only 43.5 [mm]. This space needs to fit the beam pipe
(with an outer envelope radius of 30 [mm]), sensors, electronics, services, and sup-
port structures [6]. Secondly, the material budget should be kept as low as possible,
in order to minimize interference with detector layers further from the interaction
point. Third, the sensors are be positioned very close to the interaction point, in-
creasing the radiation load and particle density. This means that radiation hard
detectors able to cope with high particle multiplicities are needed. One candidate
for the sensor component are 3D pixel sensors, described in Chapter 2.2.5.

4If the luminocity of the accelerator is large, there might be more than one collision each time two
proton bunches passes each other. This phenomenon is known as “pile-up”, and must be dealt with
in offline reconstruction and analysis. Generally this happens if there is more than one underlying
event inside the detectors sensitive time-window.

1.2. TESTBEAM AND TESTBEAM SIMULATION 19

1.2 Testbeam and testbeam simulation

In order to test the response and performance of new detector components, we
mount them in small fixed-target experiments known as testbeams. A picture of
one such setup is shown in figure 1.7, and it is sketched in figure 1.8.

Such experiments has been performed in the SPS H6 and H8 beamlines, situ-
ated at the CERN Prevessin site (“North Area” in figure 1.2). Here we get a beam
of reasonably monochromatic high-energy pions by illuminating a target material
with a proton beam from the SPS accelerator, and sorting the secondary particles
produced. The sensors samples under test is placed in this beam. Since the pi-
ons have a high kinetic energy, they produce a rather low amount of ionization
along their track, and can thus be taken as minimum ionizing particles (MIPs), as
described in Chapter 2.1.

The H8 beamline is equipped with a superconducting magnet with a 1.6 me-
ter bore [23], measured to a maximum field of 1.6 [T]. This makes it possible to
test sensor response in presence of a significant magnetic field, such as the condi-
tions they will operate in inside a HEP experiment. In order to provide trigger for
our experiment, we used scintillators: Two scintillators in coincidence mode was
placed in front of the devices under test in order to define the effective size of the
beam, and one large scintillator with a hole through it was placed behind the setup
in order to suppress showers and restrict the experiment’s angular acceptance. The
Bonn Atlas Telescope (BAT), described in Chapter 4, was used for tracking the
pions. With this we are able to estimate where the pions hit our device under test
with an accuracy of approximately 6 [µm] (see Chapter 5).

Using this setup we measured how the devices respond to MIPs as a function
of hit position, incident angle, and magnetic field strength, and thus measure hit
efficiencies, charge-sharing properties etc., as a function of these parameters. Some
results for this is discussed in Chapter 2.2.5 and Chapter 6.

With these quantities measured, we can make models predicting the sensor
response, and compare their output to the experimental data. One way of doing
this to making a full simulation of the testbeam, and comparing the simulated and
real data. If our models are good, they should be able to reproduce the testbeam
results. Such as simulation also enables testing hypothesis about sensor response
against the real data, excluding or strengthening them.

Having a good model for how sensors respond is necessary for making good
simulations of larger experiments such as ATLAS. This is necessary to predict their
sensitivity for different physics scenarios. The rest of this thesis will detail the
development and testing of a testbeam simulation system, including such device
models.

20 CHAPTER 1. INTRODUCTION

BAT telescope
for tracking

Devices under test

cooling box
(DUTs) in

Morpurgo magnet
~ 1.6 T

Trigger scintillators

Figure 1.7: Setup for SPS H8 testbeam, May 2009

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

Concrete blocks

~ 3.5 m

Trigger
scintillators
~ 27 cm dist.

Shower
supression
scintillator

Rails

Beam

Trigger1

Trigger2

~ 3.5 m

1.6 m

BAT6 BAT3
BAT1Pixel devices

0 4 8 12

Cooling box

~1 m

70 cm Optical table, 1.57 m

Morpurgo
magnet

Morpurgo
magnet

Figure 1.8: Sketch of setup for SPS H8 testbeam (not to any scale)

1.3. ORGANIZATION OF MATERIAL IN THESIS 21

1.3 Organization of material in thesis

The main part of this thesis describes the methods and results from a full sim-
ulation of the May 2009 H8 testbeam. This is organized in several chapters as
follows: Chapter 3 discusses the experimental setup, and how this is described
in the simulation. Chapter 4 and 6 describes simulation of the sensor response
to stimuli presented by energy deposits from the simulated particles. Chapter 5
describes characterization of the hit resolution in the plane of the sensor samples
under test, as reconstructed with the Bonn Atlas Telescope (BAT, see Chapter 1.2
or 4), using simulated data. Additionally, Chapter 2 discusses some background
material necessary for understanding semiconductor radiation sensors and Monte-
Carlo simulations in general.

Technical aspects of the software written is documented in Appendix A, B,
C and D. In addition to this, a short dictionary of many terms and abbreviations
is given in Appendix E. When a terms are used for the first time, this is usually
marked with italics text. Technical names referring to computer code, files, and
code examples are written in typewriter typeface.

Some of the material presented in this thesis also form the foundation of sev-
eral presentations given at ATLAS 3D Pixel R&D collaboration meetings, as well
as conference talks at Spåtind 2010 [32] and the 2009 annual meeting of the Nor-
wegian Physical Society [30]. Further, work not included in this thesis, such as
shifting, rigging, and data analysis at several test beam experiments using BAT and
EUDET telescopes has been discussed in several publications and conference talks
[13, 16, 18, 5, 28].

22 CHAPTER 1. INTRODUCTION

Chapter 2

Semiconductor radiation sensors

This chapter introduces the basic concepts and theory necessary to understand how
semiconductor radiation sensors work, and how they are used. 3D pixel sensors
are specially introduced, as this is a major motivation and topic for this thesis. Ad-
ditionally, the Monte Carlo method is briefly introduced at the end of the chapter.

2.1 Interactions between radiation and matter

When a charged particle passes through a material, it will interact with the electrons
and nuclei in the matter. This interaction mostly happens via the electromagnetic
force, but for hadronic projectiles “hard” interactions through the strong force also
sometimes happen. This results in that the impinging particles will loose energy
and get deflected.

The main mechanism for energy loss of charged particles passing through a ma-
terial is ionization and excitation of electrons in the material. As this is quantum-
mechanical in nature, the amount of energy lost by a traversing particle is a stochas-
tic quantity. For relatively thin slabs of material, such as a silicon tracking detector,
the probability for a particle to loose an amount of energy ∆ can be described by
the Landau distribution, which according to [21] is given by equation (2.1), con-
taining two parameters λ and ξ.

P (∆) = φ(λ)/ξ where φ(λ) =
1
π

∫ ∞
0

exp(−u log u−uλ) sin(πu) du (2.1)

The parameter ξ is the approximate mean1 energy loss, taken from the Bethe-Bloch
formula. It is defined by equation (2.2), where x is the thickness of material, ρ is
the material density, Z and A is the atomic -number and -weight of the absorbing
material, z is the charge of the projectile particle, Na is Avogadro’s number, re =
2.817 · 10−13[cm] the classical electron radius, and me the electron mass.

ξ = 2πNar
2
emec

2ρ
Z

A

(
z

β

)2

x (2.2)

1ξ is referred to as σ by the software package ROOT.

23

24 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

Further, the parameter λ, which occurs in the integral of equation (2.1), is given by
equation (2.3). Here γ = 0.577 is Eulers constant, and the parameter ε is defined
by equation (2.4). This uses the projectile speed β, the projectile mass m, and
the “mean excitation potential” I , which is depending on the quantum-mechanical
structure of the target atoms, and is in practice tabulated from experimental data.
The constant ∆0 is a location parameter for the Landau distribution2.

λ =
1
ξ

[∆− ξ(log ξ − log ε+ 1− γ)] ≡ ∆−∆0

ξ
(2.3)

log ε = log
(1− β2)I2

2mc2β2
+ β2 (2.4)

The Landau distribution, defined by equation (2.1) with parameters λ and ξ
from equations (2.3) and (2.2), is plotted in figure 2.1. This figure also shows data
from a full simulation, including hadronic interactions etc., using the simulation
system discussed in Chapter 3. Here we see that while the Landau distribution
is in shape very similar to both the distribution of lost kinetic energy ∆Ek3, and
also the distribution of deposited charge converted to units of energy4, the Landau
distribution is misplaced towards higher energy. One possible reason for this is
that equation (2.3), which describes the position parameter ∆0, is somewhat sim-
plified; for example, the density correction is not included. The density correction
takes into account that the material becomes polarized by the electric field of the
traversing particle, shielding electrons at larger distances from the full electric field
intensity [21]. Including this decreases the amount of energy lost by high-energy
particles quite a bit (see figure 2.2), especially in dense materials. Still, the simi-
larity in shape makes the Landau distribution a good choice when fitting both the
energy loss and charge deposit, as seen in the bottom panels of figure 2.1.

Figure 2.1 also shows that there is a considerable difference between the ioniz-
ing energy deposit and the amount of kinetic energy lost by the particle. This is to
be expected, as some of the energy lost by the particle leaves the detector block in
the form of high-energy electrons (“δ-rays”) or photons, especially in the case of a
thin detector with little material just in front of it in which the particle can produce
secondary radiation (δ-rays etc.) that later hits the detector.

The shape of the Landau distribution can be understood by considering the
physical mechanisms at work when a high-energy charged particle traverses a
block of material. This particle will interact many times with the electrons in the
material, transferring different amounts of energy to them. Usually there will be

2∆0 is referred to as MPV (Most Probable Value) by the software package ROOT, used for fitting
Landau distributions to histograms through this thesis. Note that the true most probable value of the
Landau distribution is given as ∆MP = ∆0 − 0.225 ξ [21].

3The Landau distribution is supposed to describe ∆Ek.
4The distribution describing the number of electron-hole pairs N0 created is converted into units

of energy by multiplying N0 with the mean energy w needed to produce an electron hole pair. This
equals the amount of energy used to produce the electron-hole pairs, up to a Gaussian smearing (with
standard deviation a function of energy) from the Fano factor (see Chapter 2.2.3).

2.1. INTERACTIONS BETWEEN RADIATION AND MATTER 25

Energy [MeV]
0 0.05 0.1 0.15 0.2 0.25 0.3

0

5

10

15

20

25

30

35

40

45

50 Energy deposit

Kinetic energy loss

Analytical energy loss

(a) Comparison of charge deposition, kinetic energy loss, and analytical Landau distribution.
All graphs normalized to unit area.

Constant 1.2± 144.4

MPV 0.00008± 0.08489

Sigma 0.000045± 0.006883

Energy [MeV]
0 0.05 0.1 0.15 0.2 0.25 0.3

0

5

10

15

20

25

Constant 1.2± 144.4

MPV 0.00008± 0.08489

Sigma 0.000045± 0.006883

(b) Kinetic energy lost by incident particle, fit-
ted with a Landau

Constant 2.1± 185.9

MPV 0.00009± 0.05829

Sigma 0.000047± 0.005251

Energy [MeV]
0 0.05 0.1 0.15 0.2 0.25 0.3

0

5

10

15

20

25

30

35

Constant 2.1± 185.9

MPV 0.00009± 0.05829

Sigma 0.000047± 0.005251

(c) Deposited charge (in units of energy), in-
cluding Fano factor, fitted with a Landau

Figure 2.1: Simulated energy deposits from 180 [GeV] π− in 210 [µm] thick slab
of Si. Done with detector geometry as shown in figure 6.2.

26 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

a set of many relatively small energy transfers, but sometimes a more energetic
interactions happens, resulting in a high-energy electron. This produces the tail of
the Landau distribution of energy loss. These high-energy electrons (δ-rays) can
move through several µm of material, and some examples of this can be seen in
figure 4.4.

Muon momentum

1

10

100

S
to

pp
in

g
po

w
er

 [
M

eV
 c

m
2 /

g]

L
in

dh
ar

d-
S

ch
ar

ff

Bethe Radiative

Radiative
effects

reach 1%

μ+ on Cu

Without δ

Radiative
losses

βγ
0.001 0.01 0.1 1 10 100 1000 104 105 106

[MeV/c] [GeV/c]

1001010.1 100101 100101

[TeV/c]

Anderson-
Ziegler

Nuclear
losses

Minimum
ionization

Eμc

μ−

Figure 2.2: Stopping power −〈dE/dx〉 for positive muons on copper as function
of βγ = p/mµc. Figure from PDG review of particle physics [14].

If one rather than looking at single particles looks at a large collection of parti-
cles, the most interesting number is the mean energy loss. This is well described for
relativistic particles by the Bethe-Block formula, plotted in figure 2.2. For ultrarel-
ativistic particles radiation losses (Bremsstrahlung) becomes significant, while for
lower energies the mechanisms gets more complicated. Note that bremsstrahlung
becomes important much earlier for electrons than for heavier particles such as
muons or pions, as the bremsstrahlung cross-section is proportional to 1/m2 [21].

Looking at the
〈−dE
dx

〉
graph of figure 2.2, one notices a minimum in energy

loss for particles of medium-high energy. Particles with energy around this min-
ima are known as Minimum Ionizing Particles (or just MIPs), and most interesting
particles in a tracker that are not electrons, can be viewed as MIPs.

A convenient unit when quoting the thickness of material is the radiation length,
which is defined as the distance over which the energy of an electron traversing the
material is reduced by a factor 1/e. This is convenient, as it will indicate how ef-
fective a given amount of the material in question is for stopping charged particle
radiation.

2.2. SILICON RADIATION SENSORS 27

2.2 Silicon radiation sensors

When a charged particle passes through a material, it will deposit energy in the
material as described in Chapter 2.1. This will result in ionization of the material,
which means that electrons in the material will gain energy and be exited to a higher
energy state (see figure 2.3). In semiconductor and gas detectors, this enables

Electron

Valence band

Conduction band
(empty)

Hole
(empty state in
valence band)

Electron exited to
conduction band by
energy deposited
by passing charged
particle

E
n

er
g

y

Position

B
an

dg
a

p
E

g

Figure 2.3: Excitation of an electron from the valence band into the conduction
band, leaving behind an unoccupied state (a hole) in the valence band.

the liberated charges to move around in the material, making it go from a non-
conducting state and into a conducting state. This is measured by the electronics
connected to the detector.

The main difference between semiconductor detectors and other detector ma-
terials such as gas, is that semiconductors are (as their name indicates) somewhat
conductive in their natural state, while most other detector materials are isolating.
The reason for this is related to the size of the materials bandgap5, shown in figure
2.3. For an intrinsic semiconductor (a semiconductor without impurities) at a tem-
perature of T = 0◦ [K] in a radiation-free environment, all the electrons are sitting
at the lowest free quantum-mechanical energy state. Further, the energy states of a
semiconductor material is split into two6 “bands”, and the number of states in the
lower-lying band (the valence band) is exactly equal to the number of electrons in
the material. Thus an intrinsic semiconductor at T = 0◦ [K] have no electrons in

5Gases does not really have a bandgap, as there are no higher energy state available in the material
in which the charges are mobile. Instead the gas atoms has to be completely ionized, which means
that the electrons has to be into the vacuum (and a bit beyond to prevent immediate recapture).

6There may be more than one split, but the bands below the valence band are almost always
completely full. Further, there is usually more than one conduction band, but these are usually
overlapping in energy.

28 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

the conduction band, all states in the valence band filled, resulting in that there are
no charges which is free to move, rendering the material nonconducting.

However if the temperature is increased, some of the electrons in the valence
band gain enough energy to “jump” across the bandgap and into the conduction
band. This results in a small equilibrium concentration7 n0 of electrons in the
conduction band (n0 = 10−10 [electrons/cm3] at T = 300◦ [K] for silicon), and an
equally small concentration p0 of empty states in the valence band, as described by
equation (2.5) [35]. Here Ec is the energy of the conduction band edge, and Nc the
effective density of states in the conduction band8. Note that Nc is also a function
of temperature, Nc ∝ T 3/2. Further EF is the Fermi level of the semiconductor,
which is the energy of a hypothetical quantum state that is 50% filled. This is
approximately EF = Ec − Eg/2 in an intrinsic semiconductor.

p0 = n0 = Nce
−(Ec−EF)/kT (2.5)

Now electrons can move around in both bands, as there are empty states available
for moving into. This produces two conduction mechanisms, the first one being just
electrons (negative charges) moving around in the conduction band. The second
mechanism is that an electron in the valence band can move into an unoccupied
state, which effectively results in a movement of the unoccupied state. This can be
treated as a “particle" with positive charge moving in the opposite direction of the
electron, and is known as a hole.

The main difference between an isolator and a (semi)conductor is then the size
of the bandgap Eg, isolating materials having large bandgaps, while conducting
materials having small or no bandgaps. In a material with a large bandgap fewer
electrons gets thermally exited across the bandgap, and this makes for a lower
density of movable charges, which in turn results in a lower conductivity σ as
indicated by equation (2.6) [35].

σ = q(nµn + pµp) (2.6)

This equation is dependent on the density of electrons n and holes p in the semi-
conductor, as well as the electron charge q, and the mobilities µn/p. The mobility
is (for a current with only one vector component) defined as µn/p = ∓ 〈v〉E , where
〈v〉 is the mean velocity of the charges, and E the magnitude of the electric field
component in the direction of conduction. This takes advantage of that the velocity
of the charges in a semiconductor is almost9 only dependent on the magnitude of
the electric field.

7This is a dynamic equilibrium, as electron-hole pairs (EHPs) are constantly created and recom-
bined. The equilibrium concentration is determined by the point of balance between the probability
of EHP creation from a large concentration of valence electrons and empty conduction band states,
and the probability that the much less concentrated EHPs recombine.

8Nc is defined from taking the actual electron density found in the material, as Nc is the number
of states per volume unit if they where all located at Ec, and distributed the electrons distributed
according to the Fermi distribution.

9Valid up to a certain limit in field strength, where velocity saturation becomes important and 〈v〉
as a function of E levels off.

2.2. SILICON RADIATION SENSORS 29

2.2.1 PN-junctions

Even if a semiconductor is naturally conductive, it can be made non-conductive
without having to cool it to 0◦ [K]. This is done by making a PN-junction in the
material, making the device into a diode.

An ideal diode is a device that lets current through one way, but blocks any
current going the other way. In the real world this is not the case (see figure 2.4), but
not too far from it. This figure shows the current through the device as a function of
bias voltage when in the reverse bias domain, which means the applied voltage is in
the blocking direction. This is the domain most semiconductor sensors are operated
in. We see that the current is very small to begin with, and that it is not really
increasing as a function applied voltage. But after increasing the voltage above a
certain point, a process known as breakdown occurs, suddenly rendering the device
conductive. This may damage the device, as the current going through can be
significant while the applied voltage across the device remains large, resulting in a
significant power dissipation.

Semiconductors used in detectors – such as silicon, germanium, or diamond
– all live in group IV of the periodic table, and thus have four valence electrons.
This means they can form closed diamond lattices where each atom bonds to four
nearby atoms, and this structure also provides the band-structure discussed above.
To make a PN-junction, small10 concentrations of impurities (also called dopants)
are introduced into the material, changing its properties. For example atoms from
group V in the periodic table, such as phosphorus or arsen, have five valence elec-
trons. When introduced into a silicon crystal, this extra electron will be given up
to the crystal, and the resulting ion bonded into the lattice. Likewise atoms from
group III, such as boron, will also be bonded into the lattice. But as these atoms
only have three valence electrons, an electron from the top of the crystal’s valence
band will be “eaten” into the bond, creating a hole and an ionized atom. Creating
either extra conduction-band electrons or extra holes results in a shift in the dy-
namic balance between electron- and hole-concentrations, according to equation
(2.7) [35], where ni is the concentration of electrons and holes in intrinsic silicon
at the same temperature.

n0 · p0 = n2
i (2.7)

Semiconductor crystals containing electron-donating dopants (donors) are known
as N-type material, while crystals containing electron-eating (hole-creating) dopants
(acceptors) are known as P-type. Putting P- and N-type material together creates a
PN-junction at the interface, as shown in figure 2.5. What happens is that electrons
and holes created by the dopants close to the interface diffuse over to the other
side and recombine, and this process removes movable charges in this region. This
results in an empty conduction band and a completely filled valence band, leaving
the charges of the ionized dopants exposed. This region of the device, where there

10Typical dopant concentrations in a doped semiconductor material is in the order of 1014 −
1017 [atoms

cm3] [35], which means approximately 1 dopant atom per 108 − 105 silicon atoms.

30 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

100 80 60 40 20 0
Voltage [Volt]

25

20

15

10

5

0
Cu

rr
en

t [
uA

]

Column number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Figure 2.4: I-V characteristic from Sintef 2E first-generation full ATLAS 3D pixel
sensor device in the reverse bias regime, measured at one pixel in every column
(see Chapter 3.2 and6.1 for description of ATLAS pixel sensor geometry) One
pixel measured per column, all showing typical diode IV characteristic until break-
down (Column 6 breaks down early). Measurements made in the Oslo EPF “clean-
room" lab by Håvar Gjersdal. Flat part of plot after breakdown due to sourcemeter
compliance at I ≈ 20 [µA].

are no mobile charges, but space-charge due to the exposed dopant atoms, is known
as the depletion region. The space-charge also results in an electric field inside the
depletion region. This field is also present when there are no external influences on
the device, and is known as the built-in or equilibrium field. The electric potential
due to this field is known as the built-in potential.

The width of the depletion region is controlled by a balance of two currents,
the first one being the diffusion current of electrons and holes “emitted” from the
edges of the undepleted areas at the side where they are in majority, and diffusing
across the depletion region against the electric field. This current is said to be
in the “forward” or conduction direction of the diode. The other current is the
drift current due to electrons and holes originating from the side where they are in
minority, and drifting in the electric field across the depletion region. This current
is said to be in the “reverse” or non-conducting direction of the diode. Under

2.2. SILICON RADIATION SENSORS 31

N-type:

E

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+Ion: Electron:

P-type:

E

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-Ion: Hole:

PN-junction:
E

position

V 0−V

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Depletion region

Electric field

+
V

S
ilicon substra te:

Figure 2.5: Bringing two pieces of N- and P-type semiconductor together, forming
an (abrupt or “metallurgical”) PN-junction. Energy levels and populations indi-
cated, together with charge distributions. External voltage supply shown to illus-
trate external bias voltage V in the forward/positive direction. The built-in potential
is denoted as V0.

32 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

equilibrium conditions these currents balance each other, so that the net current is
zero and the width of the depletion region is constant. In addition to these currents,
there is a small contribution to the drift current from electron-hole pairs (EHPs)
being thermally excited in the depletion region, and electrons and holes may also
recombine in this region.

Applying or increasing the reverse bias voltage will have the effect of increas-
ing the electric field in the sensor. As the field in the depletion region and the
voltage drop across it is fixed by the concentration of ions in this regions (Gauss’s
law), the rest of the voltage drop has to be in the undepleted regions. The resulting
electric field then removes majority carriers from these regions by collecting then at
the power supply, thus increasing the size of the depletion region. This continues
until enough space-charge has been “uncovered” in the depletion region to “ab-
sorb” almost11 all the applied voltage. Applying a large-enough reverse bias will
remove the mobile charges from the whole sensor interior volume (sensor bulk),
which puts the sensor into a fully depleted state. Increasing the reverse bias volt-
age beyond this point (overbiasing the sensor) does not result in increased depleted
volume, but increases the magnitude of the electric field.

If the sensor is biased in the reverse direction, the forward current component
due to diffusion becomes smaller as fewer charges are able to diffuse across the
wider depletion region and “taller” potential, while the reverse current stays con-
stant. With large-enough applied voltage, this results in that the reverse current as
a function of bias voltage becomes approximately constant, as seen in figure 2.4.
This current is equal in magnitude to the drift current described above.

When biased in the forward direction, the electric potential across the depletion
region is decreased. Thus a larger fraction of the majority carriers in the undepleted
regions have enough energy to travel “uphill” across the depletion region, resulting
in a forward current that grows exponentially as a function of the forward bias
voltage.

Putting this into a mathematical form, one can show that the current as a func-
tion of bias voltage is given as equation 2.8 [35]. This equation is valid as long as
the bias voltage is not positively large enough for removing the depletion region,
or negatively large enough to cause reverse breakdown, and the rate of generation
and recombination in the depletion region can be neglected.

I = I0

(
eqV/kT − 1

)
(2.8)

Overbiasing the sensor too far results in a large electric field magnitude in-
side the device. When the field becomes large enough, reverse breakdown occurs,
leading to a rapid increase of the current through the sensor, as seen in figure 2.4.
Reverse breakdown is a complex phenomenon, and outside the scope of this the-
sis. It should however be noted that as it is initiated by a strong electric field, it is
dependent on the electric field geometry. Further, breakdowns should normally be
avoided, as they may damage the sensor.

11There still has to be a tiny field in the undepleted regions to keep the reverse current going.

2.2. SILICON RADIATION SENSORS 33

The dopant concentration profiles portrayed in figure 2.5 are not particularly
realistic, as this is not the normal way to create semiconductor devices12. What is
normally done is to have a substrate (a wafer) which is “pre-doped” with a low con-
centration of N- or P-type dopant. The PN-junction is then created by introducing a
dopant at the surface of the wafer by the use of techniques such as diffusion (where
the sample is heated in an atmosphere with high concentration of dopant ions) or
ion implantation (where the wafer is bombarded by dopant ions from a small par-
ticle accelerator). The device is then annealed, which means that it is heated to
several hundred degrees Celsius in order to restore lattice damage created by the
doping process, and also for integrating the dopant atoms into the crystal lattice.
When this happens the dopant atoms become electrically active (meaning that they
can exchange electrons with the rest of the lattice atoms), and this is why annealing
is often referred to as “activation”. The dopant is thus distributed with a continuous
distribution in the device bulk.

2.2.2 Signal creation

As described in the beginning of this section, a charged particle passing through
a semiconductor will excite electrons from the valence band into the conduction
band, thus creating electron-hole-pairs (EHPs). When this happens inside the de-
pletion region of the sensor, the charges will start drifting and diffusing under the
influence of electromagnetic fields.

In order to collect the charges and transport it to electronics that can amplify
and measure the signal, conductive electrodes are “inserted” into the sensor bulk
and connected to the electronics. In practice these electrodes are just the non-
depleted part of the sensor, which means that the field lines in an overbiased sensor
ends on them. As the electrons and holes are more-or-less transported along the
electric field lines, this means that electrons and holes created in the sensor bulk
will be transported to electrodes, where they will be collected.

If one wants to calculate the time-dependence of the signal charge Qi(t) in-
duced on electrode i by a charge q in the bulk of the sensor, it should be noted that
Qi(t) is not equal to the sum of the charge that has arrived at the electrode at time
t. Instead one should apply Gauss’s law as shown in equation (2.9), where ~E is the
electric field from the charge q somewhere in the sensor bulk, and the integral clos-
ing around the volume containing the induced charge Qi(t) (the electrode) which
we want to calculate.

Qi(t) = ε

∮
~E(t) · d ~A (2.9)

This approach is problematic because it demands a detailed calculation of the
field ~E(t) for each of the timesteps we are interested in. However the problem can
be solved in a simpler way through the Shockley-Ramo theorem (SRT) [29, 26, 17],

12Although a similar effect can be achieved by growing an epitaxial layer of doped silicon on top
of a substrate with another doping.

34 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

as long as the charges are moving slowly enough that magnetic effects can be
ignored.

The SRT introduces a weighting potential ϕ0, and states that the charge Qi(t)
and current Ii(t) on electrode i due to a charge q at position ~x(t) can be calculated
according to equations (2.10) and (2.11).

Qi(t) = −qϕ0(~x(t)) (2.10)

Ii(t) = q~̇x · ~E0(~x(t)) (2.11)

Here the weighting field ~E0 is simply given as ~∇ · ~E0 = −ϕ0, and ~̇x is the time-
derivative of ~x. The weighting potential ϕ0 itself is defined as the electric potential
that would exist if the electrode of interest is at unit potential, while all other elec-
trodes are at zero potential, and all charges are removed. The weighting potential
is also taken to go to zero at infinity.

Thus to calculate the time-dependence of a induced signal Qi on electrode i,
we first need to calculate the weighting field and the true electric field inside the
device. When this is done, the drift-diffusion equations have to be solved for the
charges created by the energy deposit13. This yields the charges position ~x(t) as
a function of time, which can be inserted into equation (2.10) to get the induced
charge on the electrode of interest.

The number we are mostly interested in when studying the detector response
is not the charge on the electrode as a function of time, but rather the input to
the amplifier connected to the electrode. If the amplifier is ohmically coupled to
the electrode, the amplifier will act as a source of charges, supplying the induced
charge Qi to the electrode. This means the input of the amplifier gets a charge
Qinput = −Qi = −(−qϕ0(~x)) = +qϕ0(~x), which means it is of the same sign
as the charge (eventually) collected by the electrode. On the other hand, if the
amplifier is capacitively coupled to the electrode the sign is inverted.

HEP position sensing detectors normally use charge-integrating amplifiers that
react slower than the sensors charge-collection time. This means that time-dependence
of the signal is normally not so much of interest. Therefore the input to the ampli-
fier from an electron-hole-pair (EHP) is given by equation (2.12). Here the carrier
type collected on the electrode of interest is at position ~x1(tend), and the opposite
polarity carrier at position ~x2(tend), where tend is the end of the amplifier integra-
tion time.

Qinput = ±q [ϕ0(~x1(tend))− ϕ0(~x2(tend))] (2.12)

If all charges are collected, the number inside the square brackets of equation (2.12)
equals one. However, if some of the charges are trapped at a position ~xtrap, this
means that the amount of charge collected will be lowered, but not completely

13This could be done in several ways, either treating the electrons and holes as particles or as dis-
tributions (charge-clouds) containing many electrons or holes. The underlying equations is anyway
the diffusion equation and the Lorentz force, taking into account that carrier is (in most cases) given
by the product of the electric field and the carrier mobility. A treatment of this is given in Chapter 4
and 6.2.

2.2. SILICON RADIATION SENSORS 35

(a) Metal mask of 2x2 pixel cell of 3E device. Red box: One single pixel, covering 400× 50 [µm2];
Blue box: Quartercell off 3x3 cell used for calculation

0 100 200 300 400 500 600
0

25
50
75

(b) Weigthing field of 1E device 3x3 pixel quartercell. Units on x,y axis are in µm

0 100 200 300 400 500 600
0

25
50
75

(c) Weigthing field of 3E device 3x3 pixel quartercell. Units on x,y axis are in µm

(d) Colormap used in plots above. Additionally: White=0.0, Dark red=1.0

Figure 2.6: Two-dimensional numerical calculation of the weighting field of two
3D pixel sensor geometries. Plane of calculation parallel to sensor plane, perpen-
dicular to electrodes. Calculated using relaxation method, program code inspired
by [19], but extended to handle complicated boundaries and Von Neuman bound-
ary conditions at axis of symmetry. 1 × 1 [µm2] calculation grid used. Electrodes
taken to have a radius of 7 [µm].

36 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

gone. Trapping may happen in the case of radiation-damaged sensors, which can
contain additional energy levels inside the bandgap. These levels are localized
around the point of the defect, and there may be a high probability that some of the
created charges will transition into this trap. The charges then sit in the trap with
a decay-time that is significantly longer than the integration time of the amplifier,
resulting in an incomplete collection of the signal.

2.2.3 The Fano factor

When a charged particle deposits energy in a semiconductor, this energy has to be
transfered to the electrons in the valence band for exiting them into the conduction
band, thus creating EHPs as shown in figure 2.3. When this happens, one must
conserve both energy and momentum. This is made possible by the emission of
phonons, quanta of lattice vibrations, in addition to the excitation of electrons from
the “top” of the valence band into the conduction band. The result is that the mean
energy required to create one single EHP (w = 3.6 [eV] in silicon [8]) is larger
than the bandgap (Eg = 1.12 [eV]).

This sharing of energy between excitation of electrons across the bandgap, and
creation of phonons results in a a distribution in the number of EHPs created for a
given energy deposit ∆. For ∆ � Eionization = Eg one can with good approx-
imation assume that the number of EHPs created follows a Gaussian distribution
N (µ, σ2) with mean value µ and variance σ2, and it can be shown [33] that the
parameters are given by equation (2.13).

P (NEHPs) = N (µ, σ2) where µ =
∆
w

and σ2 = Fµ (2.13)

Here F is the Fano factor, which is measured to be F = 0.1 in Silicon [8].
The Fano factor thus presents an intrinsic energy limit to the energy resolution

of semiconductor photon detectors, avoidable only using materials with smaller F .

2.2.4 Use of semiconductor sensors for position measurement

Since their introduction for precise photon energy measurements the 1960s [21],
semiconductor sensors are today used in large areas of nuclear and particle physics,
usually connected to measuring the position and/or the energy of particles.

Measuring where a charged particle hit a silicon sensor is mostly done with
segmented sensors – sensors that have many electrodes, each electrode connected
to separate amplifier channels. Thus the charges created by a traversing particle are
collected on contacts close to the particles path, and by knowing the position of the
contacts, this yields an estimate for the hit position.

As an example, consider a silicon strip detector, such as shown in figure 2.8(a).
A charged particle passing through this detector leaves charges on nearby strips, so
a simple estimate for the hit position is the charge-weighted mean (equation (2.14))

2.2. SILICON RADIATION SENSORS 37

where xk is the position of strip k, and Q(k) is the signal on this strip.

x̂c =
∑

k xkQ
(k)∑

kQ
(k)

(2.14)

However this estimator has a problem if an unproportionally large amount of the
signal is collected by the strip closest to the path of the particle, as this biases the
estimator away from the centerline between the strips.

A way of correcting for this is the so-called η-correction described by Belau
et. al [3]. This can be understood by considering the case of sharing between
two strips “L” and “R” with a pitch δ, and wanting to estimate where in the space
between them the particle hit. This can be done by defining a variable η as equation
(2.15), similarly to x̂c for two strips only.

η ≡ QL
QL +QR

(2.15)

The goal is to find a mapping from η to a hit position estimator x̂η. This can
be done experimentally by using the distribution dN/dη (such as shown in figure
2.7(a)) for the detector, where N is the number of hits. Using the chain rule and
integrating yields:

dN
dη

=
dN
dx

dx
dη
⇒
∫ η

0

dN
dη′

dη′ =
∫ η

0

dN
dx

dx
dη′

dη′

This can be simplified by assuming that the beam intensity changes little over the
distance δ, which yields that dN/dx = N0/δ, where N0 is the number of tracks
intersecting the detector. Inserting this into the expression above and performing
the integration of the right hand side then yield an expression for x̂η as a function
of η, which is was we wanted.

xη(η, x(η = 0)) =
δ

N0

∫ η

0

dN
dη′

dη′ + x(η = 0) (2.16)

Thus the distribution dN/dη can be measured experimentally for the sensor
of interest, and the cumulative distribution function (CDF)

∫ η
0

dN
dη′ dη

′ found by
numerical integration. This is then inserted into (2.16), which for a given η yields
a position estimate.

2.2.5 3D pixel sensors

A pixel sensor used in high-energy physics is a device that measures the (x, y)
position of a passing particle. This is done by segmenting the electrodes of the
detector into a rectangular grid. The charges created by a passing particle are
then collected on a nearby electrode, and the hit position can then be inferred by
techniques such as discussed in Chapter 2.2.4.

38 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

η
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

(a) dN/dη distribution

η
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) CDF of normalized dN/dη distribution

Figure 2.7: dN/dη distribution and its cumulative distribution function, used for
η-correction. Data from BAT1 p-side, run705 May 2009, using common-mode
corrections described in Chapter 4.2.3.)

What differentiates a “3D” pixel sensor (described in [24, 20]) from a planar
pixel sensor is the geometry of the electrodes, illustrated in figure 2.8. In a pla-
nar geometry, the collecting electrodes are created by heavily doping areas of the
surface, while the bulk has a low doping concentration. This is changed in a “3D”
geometry, where the electrodes extend into the bulk of the sensor. This is achieved
by DRIE etching holes in the sensor with close to vertical walls, and doping the
walls of these electrodes to create a PN-junction around the holes. The electrodes
can then optionally be filled with a conducting material such as polysilicon.

There are currently two kinds of 3D pixel sensors being made, the full 3D
design (figure 2.9(a)), and the Double-side Double Type Column design (figure
2.9(b)). The full 3D design is processed on one side, with the electrodes fully
penetrating the sensor substrate. This was the original design proposed by S. Parker
and C. Kenny, and currently fabricated at Stanford Nanofabrication Facility and
Sintef. The DDTC design proposed and used by research organizations FBK and
CNM is processed from two sides (one bias- and one readout-side), the etched
electrode holes only partially overlapping. This provides a hybrid between planar
and fully 3D structures.

Additionally, the sensors with different number of readout electrodes per pixel
are being tested. An example of the layout of a “3E” sensor, which has three
readout electrodes per pixel, is shown in figure 2.6(a).

There are two main advantages of using this more complex production tech-
nique; radiation hardness [41] and the possibility of active edges. As mentioned in
Chapter 2.2.2, the main mechanism of radiation damage in a silicon sensor is the
creation of “trap” levels inside the bandgap that captures moving charges created
by the passing particle. In a planar sensor much of the charge has to travel through
a significant part of the wafer thickness, which leaves it more time to get caught in
a trap. The 3D sensor geometry helps this by making the inter-electrode distance

2.2. SILICON RADIATION SENSORS 39

Bias electrode

P
article track

Readout
electrode

Readout
electrode

Readout
electrode

Sensor bulk
(depleted silicon)

SiO
2

SiO
2

(a) Charge collection in a 2D (planar) semi-
conductor sensor

Oxide layer

B
ias ele ctrode

B
ias ele ctrode

R
eadou t electr ode

P
article track

Sensor bulk
(depleted silicon)

(b) Charge collection in a 3D semiconductor
sensor

Figure 2.8: Schematic comparison of ohmically coupled
2D- and 3D-sensor geometries

smaller, especially in the layouts with many electrodes. Further, radiation damage
also result in inversion of the effective bulk doping from n- to p-type, with the p-
type doping concentration gradually increasing over time [44]. This results in an
increasing space-charge, increasing the voltage needed to deplete the sensor until a
point where it no longer can be fully depleted is reached. This is a smaller problem
for 3D sensors, as they have a lower depletion voltage than planar sensors.

The second big advantage is the possibility of active edges, which means that
the sensor is active all the way to its edge. This is not possible in a conventional
planar sensor, as one needs to step down the bias voltage before reaching the edge
of the wafer. This is necessary due to defects in the silicon close to the sawcut
made when separating the sensors on a wafer, making this volume conducting. The
stepping down is done with the help of guard rings, which are consecutive rings of
implants [4, 43] running around the active area of the device, with stepwise lower
potential, as shown in figure 2.10.

One should also notice that 3D sensors collect the charges very quickly, which
with the right amplifiers could enable very high event rates. Further, no intrinsic
limit on the thickness of 3D sensors are imposed by charge collection. This could
be an advantage when building high-energy photon detectors with high efficiency.

Due to the electric field in a full 3D sensor being parallel to the device plane,
and the caging of bias electrodes around the active electrodes in a pixel, charges

40 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

(a) Full 3D (b) Double-side Double Type Column

Figure 2.9: Geometry concepts for 3D pixel sensors

Bias electrode

E
dg

e

E

Guard rings

Readout
electrode

Readout
electrode

(a) Planar sensor with guard rings

B
ias ele ctrode

R
eadou t electr ode

B
ias ele ctrode

R
eadou t electr ode

E
dg

e E

(b) 3D sensor with guard electrode at edge

Figure 2.10: Cutthrough view of the edge of sensors, showing microcracks that
make the edges conductive, and how this mitigated in different sensor technologies.

2.3. THE MONTE-CARLO METHOD 41

are mostly collected at the pixel being hit by a particle. This means lower charge
sharing than in planar geometries, especially for perpendicular tracks (see figure
2.11 and [13]). Lower charge sharing is a double edge sword; On one side there
is less information available for sub-pitch position estimation techniques such as
described in Chapter 2.2.4, but on the other hand the charges are not spread over
several amplifier channels, something that can result in failure to detect the particle.

Another special property of 3D sensors is that the the material inside the holes
are mostly14 insensitive to energy deposits, as it it not depleted. This effect is
clearly present when the track is perpendicular to the device, as the particle may
then only pass through dead material. However, if the track passes through the
device at an angle, it will also pass through some active material. This can be
seen in figure 2.12, which shows that the sensors have little or no dead areas with
angled tracks15, and is also discussed in Chapter 6.2.2.1. This effect is naturally
more present in the full 3D sensors than in the DDTC sensors, as the particle will
always pass through some active material in a DDTC (see figure 2.9), and this is
also visible in the data (figure 2.12).

2.3 The Monte-Carlo method

The Monte-Carlo method is a class of numerical techniques that use pseudo-random16

numbers to solve complicated mathematical problems. With the use of such meth-
ods it is often possible to approximate the solution of very complicated problems,
which is not possible or very hard to solve analytically or with ordinary determin-
istic numerical techniques.

The Monte-Carlo method is often referred to as a method of doing “computer
experiments”. This is due to the similarity of applying the method and the per-
formance of actual experiment. In an actual experiment you will usually repeat
the same measurement many times, and record the outcome. After doing this, you
can analyze the data to find probability distributions of the measured value(s), or
simply the mean and RMS.

As an example, take an experiment for measuring the distribution of the sum
of two dices. This example is possible to calculate analytically, but nevertheless
offers an opportunity to demonstrate the Monte-Carlo method. The probability of

14Some sensitivity may still be present due to diffusion of created minority carriers into the de-
pleted region

15It has been indicated in [13] that 3D silicon sensors respond very weakly to a magnetic field,
while the Lorentz force leads to a focusing of the charge-clouds in an angled planar sensor. Compar-
isons are therefore shown with the magnetic field turned on.

16As a computer is a deterministic machine following a set algorithm, it cannot generate true
random numbers. However numerical algorithms exist that generate number sequences with the
wanted statistical properties, such as being distributed according to a (usually flat) distribution, and
which have a very low correlation between numbers for most “patterns” below a certain length.

42 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

(a) Planar sensor, ≈ 0◦, magnet off.

(b) Planar sensor, ≈ 15◦, magnet on.

(c) Mask detail from full 3D sensor with 3 electrodes, 2x2 pixels centered on one pixel

(d) Full 3D sensor, ≈ 0◦, magnet off.

(e) Full 3D sensor, ≈ 15◦, magnet on.

(f) Palette used for plots

Figure 2.11: Measured sensor charge sharing probabilities as function of estimated
track position in 2x2 pixel cell, with tracks normal to sensor plane and no magnetic
field, and tracks tilted with respect to sensor plane and ≈ 1.6 [T] magnetic field.
Figures from [13], using data from May 2009 testbeam.

2.3. THE MONTE-CARLO METHOD 43

(a) Planar sensor, ≈ 0◦, magnet off. 99.9% efficiency

(b) Planar sensor, ≈ 15◦, magnet on. 100.0% efficiency

(c) Mask detail from full 3D sensor with 3 electrodes, 2x2 pixels centered on one pixel

(d) Full 3D sensor, ≈ 0◦, magnet off. 96.7% efficiency

(e) Full 3D sensor, ≈ 15◦, magnet on. 99.9% efficiency

(f) DDTC sensor, ≈ 0◦, magnet off. 99.2% efficiency

(g) DDTC sensor, ≈ 15◦, magnet on. 99.8% efficiency

(h) Palette used for plots

Figure 2.12: Measured sensor hit efficiencies as function of estimated track posi-
tion folded into a 2x2 pixel cell. Plots for tracks normal to sensor plane and no
magnetic field, and tracks tilted with respect to sensor plane and ≈ 1.6 [T] mag-
netic field. Hit efficiency defined as the probability of at least one non-noisy central
region pixel which is matching track position going above threshold. Figures from
[13], using data from May 2009 testbeam.

44 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

Listing 2.1: Python/pyROOT code for simulating
the probability distribution P (K) as defined in equation (2.17)

1 def DoMC(t r i a l s , h i s t o) :
2 f o r t r i a l in x ra ng e (t r i a l s) :
3 k1 = random . r a n d i n t (1 , 6)
4 k2 = random . r a n d i n t (1 , 6)
5 K = k1+k2
6 h i s t o . F i l l (K)
7 # Normal i z e t o t a l p r o b a b i l i t y t o u n i t y
8 h i s t o . S c a l e (1 . 0 / h i s t o . I n t e g r a l ())

a 6-sided dice giving a result k is:

P0(k) =
{

1
6 for k ∈ [1, . . . , 6]
0 else

Further, we can define the probability of rolling two 6-sided dices such that their
eyes sum up to K as P (K) = P (k1, k2), where K = k1 + k2. This probability
can be calculated by noting that P (K) is equal to the sum of the probabilities of
all possible ways of getting the dices to sum up K, which can be written as a
convolution of P0(K) with itself:

P (K) =
∞∑

s=−∞
P0(s)P0(K − s) (2.17)

A Monte-Carlo method for calculating this distribution is very analogous to
how one would do find it experimentally by throwing two real dices. A code frag-
ment is shown in listing 2.1. Here the variable trials is the number of virtual
dice-pairs to throw, and histo the histogram used to tally the results. In figure
2.13 the resulting histogram is shown for different numbers of trials.

One can also do Monte-Carlo methods for generating continuous probability
distributions. Here one start with a pseudo-random number generator which gen-
erates random numbers with a flat probability distribution in the interval [0, 1), and
transform these into the distributions wanted. There are several methods for doing
this transformation, where using the inverse cumulative distribution function, and
acceptance-rejection sampling are the most common [31, 19].

Using the Monte-Carlo method, more complicated distributions can be sim-
ulated by convolution or repeated application of several sampled distributions. If
one for example wants to study the probability distribution describing the final state
of a particle after traversing several layers of material, this can be effectively done
as long as the probability distributions describing what happens in each layer is
known. Assuming only one particle and no emission of secondaries or absorption
of the particle under study, one would start with an initial state described by the
particle’s energy-momentum four-vector. The particle will then be scattered by the

2.3. THE MONTE-CARLO METHOD 45

Sum of dices
2 4 6 8 10 12

P
ro

b
ab

ili
ty

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Exact result

100 trials

1000 trials

1000000 trials

Figure 2.13: Resulting distribution from a Monte-Carlo simulation of an exper-
iment to measure the distribution of the sum of two dices. PDFs estimated with
a different number of trials, and compared to the exact result. Note that different
estimated distributions are generated for each run of the simulation, as it is based
on pseudo-random numbers. Error bars are ±√N . The “core" simulation code is
shown in listing 2.1. All distributions normalized to unity.

46 CHAPTER 2. SEMICONDUCTOR RADIATION SENSORS

first layer of material, and the scattering process is described by a PDF which is de-
pending on the particle’s state before the scattering. Sampling this PDF will yield
new state, which is then further changed by the PDF describing the second pro-
cess etc. This is repeated until all layers of material is traversed, and the final state
reached. This is then a method of sampling the final state, and it is again similar to
the experiment one would perform in order to measure the final-state PDF.

Chapter 3

Simulation of testbeam
experimental setup

TbAna:
Simulation of

trigger,
detector responce,

and DAQ

TestBeamSim (Geant4)

deposits
Energy

Simulation

Detectors

Beam

DAQ/trigger

Actual experiment hardware

tbreco:
Allignment

and
reconstruction

tbmon:
Analysis

framework

Simulation−
extensions:

DUT model testing
Truth and

Entries 123745
Mean 58.83
RMS 22.35

Cluster charge [ToT]
0 20 40 60 80 100 120 140

T
ra

ck
s

0

500

1000

1500

2000

2500

3000

3500

Entries 123745
Mean 58.83
RMS 22.35

ntuples

Energy deposits, Truth

Digits

Digits

Figure 3.1: Data flow from experiment or simulation to analysis, showing the steps
taken from data production to analysis. Points of data creation and processing also
showed.

A simulation system (figure 3.1) has been written in order to enable bench-
marking of the testbeam setup (described in Chapter 1.2), and to test models de-
scribing sensor response. This framework is consisting of three main parts:

1. Simulation of interactions between beam particles and the material in the
experiment (sensors, mechanics, air, etc.).

2. Simulation and tuning of the telescope sensor and electronics response, and
simulation of the trigger/DAQ system.

47

48 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

3. Simulation and development of models describing ATLAS pixel device un-
der test (DUT) response.

The first part is done in a Geant4-based program called TestBeamSim, and
is the main topic of this chapter. In addition to this chapter, the technical aspects of
the program is documented in depth in Appendix A.

The second part is the domain of the program package TbAna. The telescope
response model used is described in Chapter 4, the file format used by the DAQ
system to store the digits (BDT) is described in Appendix D, and the trigger system
simulation is described in Chapter 3.4. Technical aspects of the TbAna software
package is described in Appendix B.

The third part of the simulation framework is the simulation support which has
been added to the testbeam data analysis framework TbMon. The technical parts
of this is described in Appendix C, and the model development in Chapter 6. In
addition to pixel device simulation, this analysis framework (with extensions) was
used to do the telescope performance analysis described in Chapter 5.

3.1 Physics models used in the simulation

The part of the simulation dealing with interaction between the beam particles and
material is handled by the program TestBeamSim. This program is based on the
Geant4 framework, and the code itself is documented in Appendix A.

Geant4 [2, 10, 12] is a C++ library for simulating the passage of high-energy1

particles through matter. To use it, one must specify a geometry built up from
volumes (shape, position, and material), the incident radiation, and the physics
describing the behavior of the radiation when passing through material. When this
has been specified, the Geant4 kernel can be instructed to simulate a set number of
events.

For each event simulated, the particles in the event are tracked through the ge-
ometry in a series of steps. For each step taken, the physics processes applied to the
tracked particle is allowed to change its state (energy, momentum direction, spin,
etc.), and can also to create new secondary particles. Internally in the processes, the
new state is selected with a Monte-Carlo method (see Chapter 2.3), which means
that two particles with identical initial states will usually have different final states.

As there are a large range of processes that can be applied to the particles,
many of which take multiple parameters, setting up the list of which processes
(including model parameters settings) applies to which particles can be quite com-
plicated. Therefore pre-made and validated physics lists are included in the Geant4
distribution. A comparison of some of these physics lists is found in Chapter 3.1.2.

The focus of Geant4 is the behavior of the simulated particles, not what hap-
pens to the material traversed by them. However at each step, Geant4 calculates

1The energy range for which the simulation is valid is depending on the physics model(s) used.

3.1. PHYSICS MODELS USED IN THE SIMULATION 49

the energy deposit in the material. This is the part of the energy lost in the step by
the tracked particle, which has not been transfered to new secondary particles.

As the number of low-energy secondaries (mostly low-energy δ-electrons) that
are created when a charged particle traverses a block of material can be very large
due to the large number of low-energy interactions, it is not computationally fea-
sible to simulate all of them in detail. A cutoff is therefore introduced to remove
some of these particles, implemented in a way that does not ruin accuracy. In
Geant4 this is done by a range cutoff at the production of new particles – a particle
is only simulated in detail if its energy is high enough so that its expected range in
the material is longer than a set range-cut, or if it can reach a new volume (which
may have a less dense material). The energy of the particles that are “killed” by
this cut is added to the energy deposit of the current step. This way of doing pro-
duction cuts ensures that the simulation is spatially accurate down to the selected
cutoff range, while avoiding divergence in the number of particles produced.

3.1.1 Fano sampling

To bridge the gap between the energy deposited by the tracked particles and the ef-
fect this has on the material (liberation of electron-hole pairs), a routine for generat-
ing “charge clusters” is used for silicon detectors, and is documented in Appendix
A.4.5. This routine takes the ionizing energy deposit in the step, and the position of
the step’s start- and end-points as input, and produces a number of smaller energy
deposits which are uniformly sampled along the step. Here the approximate size of
the smallest energy deposits wanted can be specified as an input parameter, in units
of number of electron-hole pairs. The routine then does a random sampling of the
size of each energy deposit, taking into account the Fano factor described in Chap-
ter 2.2.3. It is based on G4ElectronIonPair, but changed to produce clusters
of charges instead of single electron-hole pairs. This is done because it would be
too computationally expensive to handle O(104) EHPs separately in each sensor
and event, both for file I/O and also later when calculating sensor response.

The derivation of the method is based on the summation and linear transforma-
tion properties of Gaussian distributions, described in [42]. We start with assuming
an energy deposit E0, which we want to split across N charge clusters. The en-
ergy deposit E0 produces a total number of N0 electron-hole pairs, where N0 is a
stochastic variable following the distribution given by equation (2.13):

P (N0) = N
(
E0

w
,
E0

w
· F
)
≡ N (µ, σ2) (3.1)

HereN (µ, σ2) is a Gaussian distribution with mean µ and variance σ2, w the mean
ionization energy of the material, and F the Fano factor.

We then assume that the total energy E0 is split equally across the N charge-
clusters, and name the number of electron-hole pairs in cluster k asNk (k ≥ 1). Nk

is then another stochastic variable, which is distributed from the unknown distribu-
tion P (Nk). This distribution can then be found by requiring that the probability

50 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

distribution of the sum of all charges is equal to the probability distribution of N0:

P

(
N∑
k=1

Nk

)
= P (N0)

Due to the central limit theorem (CLT), this is possible as long as the Nks are
independent random variables with finite mean and variance. We then assume that
each of the Nks are distributed from Gaussian distributions, which is valid as long
as its mean µk � 1 (fractional electrons don’t make sense), and also the number
of charge clusters N � 1 (validity of CLT).

From the general summation properties of Gaussian distributions, we know
that if Z1, Z2, . . . , ZN is distributed following a Gaussian distribution with mean
µ and variance σ2, then Z ′ = Z1 + Z2 + . . . + ZN is also distributed following
a Gaussian distribution with mean N · µ and variance N · σ2. Assuming that
the energy is split equally, it we can assume that each Nk is also identical and
independently distributed with a Gaussian probability distribution P (Nk). This
distribution is then given as:

P (Nk) = N
(
N0

N
,
σ2

0

N

)
= N

(
E0

wN
,F

E0

wN

)
≡ N (µk, σ2

k

)
(3.2)

Due to the fact that Fano sampling was introduced after much of the device
simulation software for the BAT telescope was already mostly finished, output is
not in units of electron-hole pairs, but in units of energy. The effective energy of
the cluster is then given as E′k ≡ w ·Nk, which by use of the linear transformation
properties of Gaussian distributions can be shown to be distributed as:

P (E′k) = N (wµk, w2σ2
k

)
= N

(
E0

N
,
FE0w

N

)
≡ N (µEk , σ2

Ek

)
(3.3)

The number of sampled clusters N is calculated from the size of the total en-
ergy deposit in the step E0, so that that the mean size of the clusters stays approx-
imately constant and below a limit which is a parameter to the simulation. This
parameter is the maximum mean cluster size m, which is in units of electron-hole
pairs. Thus the smallest integer number of clusters N which yields a mean cluster
size below m is given by:

N = ceil
(
E0

wm

)
(3.4)

While uniform sampling along the step is used for charged particles, uncharged
particles such as photons are taken to have all its deposit at the end of the step.
Fano “smearing” of the deposit is still applied, in units of energy. This is done by
scalingN0 as defined in equation (3.1) byw, the mean energy necessary to produce
an electron-hole pair:

P (E′γ) ≡ P (w ·N0) = N (E0, FE0w) (3.5)

3.1. PHYSICS MODELS USED IN THE SIMULATION 51

3.1.1.1 Implementation errors in Fano sampling routine

Unfortunately a mistake was made in the first derivation of the Fano sampling
equations (3.3) and (3.5). This error was discovered too late for redoing the Monte
Carlo production, device simulation, BAT model tuning, track reconstruction, and
analysis. However, as seen in figure 3.2, the resulting total charge deposit spectra
does not seem to be affected. A comparison of the spread in charge cluster size
as a function of total charge deposit is shown in figure 3.3, showing the effect of
the error. Here the points below the horizontal “line” at 400 [e−] is due to that
the sampling is done per-step, while the total energy deposit is summed up over
all clusters in the step. This means that if there are more than one simulation
step inside the sensor, which happens if there are energy deposits from secondary
particles, or if the primary particle take two steps through the sensor, these “extra”
steps may have a mean cluster size below 400 [e−] if their energy deposit are small.

The mistake has since been corrected in the code, in a way that in the future will
enable new geometries and DUTs to use the correct Fano factor, while keeping the
old and technically wrong sampler for BAT planes in order not to invalidate device
simulation tunings2. This updated code has been used to produce some of the plots
in this thesis which are not depending on track reconstruction, such as figure 2.1
and the figures in Chapter 3.1.2.

For charged particles, this resulted in the effective Fano factor being Feff = F 2:

σ
(implemented)
E′k

= F

√
E0w

N
6= σ(correct)

E′k
=

√
F
E0w

N

Since F = 0.1 ⇒ Feff = 0.01 in Silicon, this effectively removes most effects of
smearing due to the Fano factor for charged particles. Note that the random sam-
pling of cluster position along the track and the mean cluster size remains correct,
which should be the most important part of this routine for device simulation. This
error makes that all charge clusters created from a step are of approximately the
same size, when there should have been a larger spread, as seen in figure 3.3. For
the overall charge distribution the effect should be small, as deposits in the high
energy tail is most affected. Here the distribution is relatively flat, so the effect of
not including this should average out after many events. This is seen in figure 3.2.

The output of the device models, such as discussed in Chapter 4 and 6, are still
valid, as their output are benchmarked and tuned against experimental data. Thus
conclusions based on simulation data, such as telescope resolution estimates, are
not invalidated by this error.

For uncharged particles, the effective Fano factor isFeff = F 2

w ≈ 0.0031 [eV−1],
as the mean energy per EHPw also dropped out of the expression. With the CLHEP
system of units, 1 [eV] is numerically represented as 10−6, as the base unit of en-
ergy used is MeV. This means that the numerical value of the effective Fano factor
becomes Feffective ≈ 3 · 103, which is way off. Luckily this only affects photons,

2For details, see Appendix A.4.5

52 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

and as there are relatively few high-energy photons incident on the sensor, and even
fewer stopping in it, the effect should be negligible.

It should be noted that G4ElectronIonPair, part of the Geant4 distribu-
tion, implements σN0 = 0.2

√
E0/w, which is also incorrect. This yields Feff =

0.22 = 0.04.

Energy [MeV]
0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

0

100

200

300

400

500

600

700

800

QGSP, with bug

QGSP, no bug

Deposited energy in DUT2

Figure 3.2: Comparison of total charge deposition spectrum in DUT2 with and
without error in Fano sampling code (see Chapter 3.1.1.1).

3.1.2 Comparison of Geant4 physics models

As stated above, setting up all the processes applying to all particles is a tedious and
error-prone process. The Geant4 distribution therefore come with a set of ready-
made physics lists [7], and a subset of these can be easily used with TestBeam-
Sim: QGSP, QGSC, and LHEP. These physics list all share the same standard
electromagnetic physics, but implements different hadronic physics. In addition
to these lists, _EMW variants of all the physics lists listed above are also available,
where the electromagnetic physics has been tuned to yield a better CPU perfor-
mance at the cost of slightly lower precision.

Both QGSP and QGSC use “string models” for modeling the interaction be-
tween high-energy hadrons. For low energy hadrons, they use a parameterized
model. They differ in how they treat de-excitation of excited nuclei – QGSP uses
a “precompound model for modeling nuclear de-excitation”, while QGSC treats
this with a “Chiral Invariant Phase Space” model [7]. The LHEP physics lists use

3.1. PHYSICS MODELS USED IN THE SIMULATION 53

(a) Fano sampling working correctly

(b) Fano sampling not working correctly

Figure 3.3: Spread in charge cluster size as a function of total charge deposit in
DUT2, QGSP physics model.

54 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

purely parameterized models for all hadronic interactions for all particles, both
high- and low-energy. The Geant4 webpage recommends using QGSP or QGSC
for HEP tracker simulations, and ATLAS uses QGSP_BERT [1]. QGSP_BERT is
a variant of the QGSP model, which uses a “Bertini cascade” to model interaction
of protons, neutrons, pions and Kaons below ≈ 10 [GeV].

A superficial comparison of the output of the different models have been made,
comparing values such as the incident energy on the last telescope plane (BAT3),
shown in figure 3.4, and the trigger efficiency shown in table 3.1. This indicates that
for the purposes of this simulation, there are no significant differences between the
models, but further studies comparing for example δ-electron production should be
made to say this conclusively.

Energy [MeV]
179.978 179.98 179.982 179.984 179.986 179.988 179.99

310×0

2000

4000

6000

8000

10000
QGSC
QGSC_EMV
QGSP
QGSP_EMV
LHEP
LHEP_EMV

Incident energy in BAT3

Figure 3.4: Incident energy in BAT3

A comparison of the time required to produce a single event is shown in figure
3.5. This shows that QGSP and QGSC behaves quite similarly, while LHEP mod-
els are slower. EMV variants are faster, as expected. It is surprising that LHEP is
slower, as this is the opposite of what is claimed on the Geant4 webpage3. Note that
the mean walltime per event, shown in table 3.2, is much larger than the most prob-
able walltime indicated in figure 3.5, due to a significant fraction of events taking
much more time. This benchmark was performed using TestBeamSim version
0.94, Geant4 version 9.3-p1 on a laptop with an Intel Core2 T7200 (2.00GHz)

3http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/
useCases.shtml

http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/useCases.shtml
http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/useCases.shtml

3.2. GEOMETRY DESCRIPTION 55

Model name Trigger Veto Trigger and no veto
QGSC 39978 5283 34695

QGSC_EMV 39978 5456 34522
QGSP 39986 5446 34540

QGSP_EMV 39988 5420 34568
LHEP 39985 5820 34165

LHEP_EMV 39986 5897 34089

Table 3.1: Number of events where the two trigger scintillators fired, the veto scin-
tillator fired, and where the two triggers fired but not the veto (good events), using
different physics models. All from runs with 40 000 simulated primary particles.

CPU, 4GB RAM, and Fedora 13 64-bit Linux. 40’000 events where generated for
each physics list.

Physics List Mean walltime per event [ms]
QGSC 79.26

QGSC_EMW 79.31
QGSP 70.29

QGSP_EMW 64.46
LHEP 71.93

LHEP_EMW 70.80

Table 3.2: Mean walltime needed to simulate one event with different physics lists

3.2 Geometry description

The geometry used for the simulation is a description of the May 2009 testbeam
at the SPS H8 beamline. A short description of this experiment, including pictures
and sketches, is found in Chapter 1.2. The device positions used are based on the
survey report, alignment files from tracking, and the logbook. Figure 3.6 shows a
computer rendering of the setup as it would look if one could remove the magnet,
and look at it from the “Jura” side4, while figure 3.7 also shows the scintillators.
The figures show the same events, including beam particles and some secondaries5.

To simplify the set-up of the tracking program, some simplifications where
made in the positioning of the devices perpendicularly to the beam axis, and they
are also taken to be oriented exactly perpendicularly to the beam axis. The sensor

4Jura side: Side of experiment closest to Jura mountains, left-hand side when standing at the
beam-axis with your back against the beam window (looking down-stream).

5 Red tracks: Negative particles. Green: Neutrals. Blue: Positive particles.

56 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

Time [us]
10000 15000 20000 25000 30000

0

500

1000

1500

2000

2500

3000

3500

Time to process one event
QGSC
QGSC_EMV

QGSP
QGSP_EMV

LHEP
LHEP_EMV

Figure 3.5: Walltime needed to simulate one event with different physics lists.

positions referred to in this section is the position of the geometric center of the
sensor active material. ATLAS pixel devices are referred to as Devices Under Test
(DUTs). In the horizontal direction, all DUTs are placed exactly on the beam
axis. The BAT telescope planes are placed so that they are aligned with each other,
3.5 [mm] closer to Jura than the DUTs. In the vertical direction, all DUTs are
also sitting on the beam axis, while BAT 3 and 6 is placed 6.3 [mm] below the
beam axis. BAT 1 is placed 3.9 [mm] above the beam axis, making a staggered
configuration with BAT 3 as shown in figure 4.1. BAT 1 is rotated 180◦ around the
axis pointing towards Jura. The scintillators are placed exactly on the beam-axis.
Their sizes and function is described in Chapter 3.4. The position of the devices
along the beam axis is given in table 3.3, and is taken from the tracking program
set-up used for experimental May 2009 data.

The orientation of BAT sensors have layer 0 (N-side) strips counting verti-
cally and increasing upwards (for BAT 3 and 6, BAT 1 increasing downwards),
while layer 1 (P-side) strips are counting horizontally, increasing towards Jura. The
DUTs have 400× 50 [µm2] pixels organized in 160 rows× 18 columns. They are
rotated so that the long side of the pixels are vertical, parallel to the magnetic field.
This is the same orientation relative to the magnetic field as if mounted inside a
large HEP tracking detector. The counting direction is then increasing horizontally
towards Jura for the rows, and vertically increasing upwards for columns.

The geometry also includes a description of the mechanics of BAT planes and

3.2. GEOMETRY DESCRIPTION 57

B
ea

m

O
p

ti
ca

l
ta

b
le

fo
r

m
o

u
n

ti
n

g

fr
o

n
t

C
o

o
li

n
g

 b
o

x

(p
la

n
ar

)
D

U
T

1

(F
B

K
−

3
E

7
)

D
U

T
3

D
U

T
2

(S
T

A
−

3
E

)
D

U
T

4
(F

B
K

−
3

E
M

5
)

b
ac

k
C

o
o

li
n

g
 b

o
x

B
A

T
6

B
A

T
3

B
A

T
1

Figure 3.6: Computer rendered drawing of the simulation geometry, seen from the
Jura side. Only the parts that are sitting on the optical table is shown, Morpurgo
magnet suppressed, scintillators outside of view.

58 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

Veto
scintillator

Trigger1 & Trigger2
scintillators

Optical table,
cooling box,
BATs & DUTs

Figure 3.7: Computer rendered drawing of the simulation geometry, looking down-
stream and also showing scintillators. Red lines: Negative charged particles, green
lines: neutrals. Both beam, scattered particles, and medium-energy secoundaries
shown. Perspective compressed due to “zoom” effect in rendering program.

Figure 3.8: Picture of the setup on the table: BAT planes, cooling box, and DUTs.

3.3. BEAM 59

Device name Z-position [mm]
Beam origin -5000.00
Trigger1 (“Pad”) -3770.00
Trigger2 (“Round”) -3500.00
BAT6 868.95
DUT1 (Planar) 1195.07
DUT2 (STA-3E) 1355.09
DUT3 (FBK-3E7) 1435.10
DUT4 (FBK-3EM5) 1515.09
Veto 4500.00

Table 3.3: Position of devices along beam axis, relative to origin in the middle of
the upstream opening of the Morpurgo magnet.

DUT test-boards, and is described in Chapter 4.1 and 6.1. The cooling box the
DUTs are mounted in are also included in the simulation. This is built from
10 [mm] thick aluminum plates, and 25.5 [mm] thick polystyrene thermal isola-
tion foam. The cooling box6 geometry is seen in figure 3.6 and 3.8. There are
six aluminum plates: Four sensor mounts just behind the DUT PCBs, which has
a 30 × 30 [mm2] hole for the beam, and two endplates with 150 × 150 [mm2]
holes. The sizes of these holes are guessed from pictures, as there was no ex-
act measurements or technical drawings available. The thermal insulation foam is
placed on the outside faces the endplates, but its density is in the simulation set
to 10 [g/m3], which is probably to low to affect anything – a more realistic value
would be 10 [kg/m3].

3.3 Beam

The initial state (position and momentum direction) of the primary particles in the
simulation is sampled from the probability distribution functions of equations (3.6)
and (3.7):

P (φ) =
1

2π
, P (R) =

{
N (0, σ2

R) for R ≤ Rc
0 for R > Rc

, P (z) = δ(z−z0) (3.6)

P (ϕ) =
1

2π
and P (θ) =

{
N (0, σ2

θ) for θ ≤ θc
0 for θ > θc

(3.7)

Here the stochastic variables φ, R, and z describes the initial position of the parti-
cle in cylindrical coordinates. This is distributed on a disk with radius Rc perpen-
dicular to the beam direction, with the angular coordinate distributed from a flat

6In the May 2009 testbeam, it was only used for mechanical mounting of the sensors, without
cooling.

60 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

distribution, and the radial coordinate distributed from a truncated Gaussian distri-
bution. For the momentum direction, this is described by the stochastic variables
ϕ and θ. The angular coordinate ϕ is distributed from a flat distribution, while the
azimuth angle θ, describing the angle of the emitted particle relatively to the beam
axis, is distributed from a Gaussian distribution truncated at θc.

This seems to be a reasonable approximation, as the experimental data shows
that the beam is approximately Gaussian in both profile and angle (see figure 3.9).
The “stripes” in the beam profile plot is due to noisy strips in n-side of BAT 3, seen
in the occupancy plot. These strips gets masked out by the reconstruction software,
reducing the acceptance of particles that can be tracked.

Comparing the experimental reconstructed beam profile and angle in DUT 1
(figure 3.9) to the same from simulation (figure 3.10), we see that they are differ-
ent. As expected, the simulation is symmetric between the horizontal and vertical
directions. Further, as the beam shape parameters σ and cuttoff in the simulation
is chosen so that σ � cutoff (see table 3.4), the true beam profile and angle distri-
butions are fairly flat, while the reconstructed distributions are not. This indicates
that most of the “modulation” of the distributions seen in figure 3.10 is due to ex-
periment acceptance, which is mostly controlled by the trigger scintillator setup
discussed in Chapter 3.4.

The effect of trigger acceptance includes the structures seen in the correla-
tion plots, showing a negative correlation corresponding to particles starting out
far right needing to have a trajectory pointing leftwards in order to hit the hole in
the veto scintillator and vice versa. In the simulation data this is a pure projec-
tion effect, as there are no correlations in the initial state. For the real data it is
quite probable that there is a real correlation, due to the focusing of the beam. Im-
plementing this in the simulation should lead to more realistic beamprofiles. The
simulation correlation plot also shows that the position acceptance is wider (in the
order of the veto hole diameter) for small-angle tracks, which is another projection
effect.

The spread of beam angles seen in the simulation is an order of magnitude
larger than in the real data, but are still very small, going up to approximately
0.06◦. Having to much beam spread is bad when trying to resolve electrode charge
collection efficiency in 3D sensors, as discussed in Chapter 6.2.2, but this is still so
low that it should not be very noticeable.

The cutoff parameters are mainly chosen to correspond to the acceptance of the
trigger system; the angular cutoff is θc = Radius hole in veto

Distance beam origin - veto = 10−3, while the
radial cutoff chosen is Rc = Radius hole in veto

2 = 0.5 [cm]. Looking at the plots in
figures 3.9 and 3.10 (which was not available before the whole simulation/analysis
chain was up and running), it seems reasonable that increasing the radial cutoff
slightly could be a good idea. This would reduce the ratio accepted triggers

number of simulated particles
(shown in table 3.1 for current settings), which would increase the computational
expense in the Geant4-part of the simulation per accepted track. The resulting
beamprofile after changing the cutoffs would then indicate if σ should also be

3.4. TRIGGER SETUP 61

changed.
The energy of the beam particles is fixed at 180 [GeV], and the particles are

taken to be negative pions, which are charged hadrons. It is thus assumed that
the beam is monochromatic; but the absolute beam energy should not matter very
much as long as the beam remains relatively “stiff” with respect to scatterings, and
the particles are well into the flat part of the Bethe-Block curve (see Chapter 2.1,
figure 2.2).

3.4 Trigger setup

The trigger setup used in both the simulation and the real experimental setup uti-
lizes three scintillators: Two “trigger” scintillators in front of the silicon detectors,
and one “veto” downstream of the rest of the setup. In the real experiment, scin-
tillators generate light when ionized by a passing particle, and this light is picked
up by the photomultipliers attached to them, generating an electrical signal. This
signal is then amplified and brought back to the electronics rack of the experiment,
where it is fed into NIM modules containing discriminator/shaper circuits. These
circuits sort out low-amplitude signals due to noise etc., and the output is a logic
signal which is active for a setable time. The output from the discriminator is then
fed through delay modules (extra cable length), and into a coincidence unit. Here
the signal from the three scintillators are combined, deciding whether to send a
trigger signal to the DAQ system to record an event. A trigger signal is sent to the
DAQ if both trigger scintillators are simultaneously active, while the veto remains
inactive.

The trigger scintillators are used pairwise in order to minimize the probability
of “fake” triggers from electronic noise, cosmics etc. The setup used is one large
“pad” scintillator with a volume of 10.5 × 10.0 × 2.5 [cm3]7 (Trigger1), and then
a smaller “finger”8 with a volume of 2.53 [cm3] (Trigger2). By adjusting how the
“finger” overlaps with the “pad”, the experiment acceptance can be shaped so that
most of the triggers will be particles intercepting the DUTs. This is important, as
recording an event takes a small amount of time in which the equipment cannot
detect new particles, which means that “junk” triggers should be avoided.

The veto scintillator, placed behind the rest of the experiment, is a large (30×
30 × 2.5 [cm3]) scintillator with a cylindrical hole (radius 1 [cm]9) in the middle.
Beam particles with a trajectory close to parallel to the beam axis passes through
this hole, while particles with a trajectory further from the beam axis miss the hole
and fire the scintillator. The scintillator will also most likely be fired if the particle
makes a hard interaction with the material, producing a shower or scattered at a

7 Scintillator sizes from the logbook – probably not 100% accurate. 2.5 [cm] is the dimension
parallel to the beam.

8Sometimes referred to as “round” in the logbook due to casing/light protection shape.
9 The hole radius is a guess, as it was missing from the logbook. A paper currently being written

states that it has a “15 [mm] hole”.

62 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

(a) Beam profile (b) Beam angle

[um]
-10000 -5000 0 5000 10000

0

1000

2000

3000

4000

5000

6000

(c) Beam profile (Projection onto vertical axis)

dx/dz
-0.0014 -0.0012 -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002

0

1000

2000

3000

4000

5000

6000

7000

(d) Beam angle (Projection onto vertical axis)

[um]
-5000 0 5000 10000 15000
0

1000

2000

3000

4000

5000

6000

7000

(e) Beam profile
(Projection onto horizontal axis)

dy/dz
-0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005

0

2000

4000

6000

8000

10000

12000

14000

(f) Beam angle
(Projection onto horizontal axis)

(g) Correlation beam angle versus position
(vertical)

(h) Correlation beam angle versus position
(horizontal)

Figure 3.9: Experimental beam profile and track angle extrapolated into the plane
of DUT1. Data from 2nd run with no field, and normal incidence at May 2009
testbeam. Origin at center of pixel (0,0). “Horizontal" (Y) and “vertical" (X) is
referring to direction of gravity. Tracks accepted by tracking program and with
χ2 < 15.0 are included.

3.4. TRIGGER SETUP 63

(a) Beam profile (b) Beam angle

[um]
-4000 -2000 0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

14000

(c) Beam profile
(Projection along vertical axis)

dx/dz
-0.001 -0.0005 0 0.0005 0.001

0

2000

4000

6000

8000

10000

(d) Beam angle
(Projection along vertical axis)

[um]
-4000 -2000 0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

14000

(e) Beam profile
(Projection along horizontal axis)

dy/dz
-0.001 -0.0005 0 0.0005 0.001

0

2000

4000

6000

8000

10000

(f) Beam angle
(Projection along horizontal axis)

(g) Correlation beam angle versus position
(vertical)

(h) Correlation beam angle versus position
(horizontal)

Figure 3.10: Simulated beam profile and track angle extrapolated into the plane
of DUT1. Normal incidence. Origin at center of pixel (0,0). “Horizontal"(Y)
and “vertical"(X) is referring to direction of gravity. Tracks accepted by tracking
program and with χ2 < 15.0 are included.

64 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

large angle.

The roles of different scintillators are therefore to provide trigger signal to the
experiments DAQ after something interesting have happened, where interesting is
defined as a “well-behaving” particle that passes through the DUTs, and have a
small angle to the beam axis.

[MeV]
0 1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

2000

2500

3000

3500

Figure 3.11: Energy deposit in Trigger1 scintillator

The simulation assumes the scintillators to be made of plastic. Further, a sim-
plified model for scintillator response is used, only examining the energy depo-
sition in the scintillator block. If this is above a (fairly arbitrary) threshold of
1.0 [MeV], the scintillator is assumed to be active. For simulating a high-energy
hadron testbeam this is enough, as the particle will either hit the scintillator and
produce a large energy deposit, or miss it completely (see figure 3.11). However,
if making a simulation using relatively low-energy particles, such as simulating
energy deposition from source-testing using β-radiation, this threshold can be im-
portant. This is shown in figure 3.12. Here selecting a too high trigger threshold
results in only particles which have deposited a low amount of energy in the rest
of the setup being able to reach the scintillator with enough energy to produce a
trigger.

3.4. TRIGGER SETUP 65

Energy Deposition [MeV]
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

C
o

u
n

ts

0

500

1000

1500

2000

2500

3000

3500

Trigger cut
0.0 [MeV]
0.001 [MeV]
0.002 [MeV]
0.01 [MeV]
0.05 [MeV]
0.1 [MeV]
0.2 [MeV]
0.5 [MeV]
1.0 [MeV]

Figure 3.12: Simulation of energy deposition spectra in a 250 [µm] thick sili-
con sensor, exposed to β radiation from a 90Sr source placed 15 [mm] above
the sensor. Sensor “mounted” on a test board such as shown in figure 6.2, with
a 23 [cm3] plastic scintillator directly underneath the PCB, and everything in
air. Different curves shows how the data looks with different trigger scintilla-
tor energy deposit thresholds applied. Produced with program EdepSpectra,
which is also based on Geant4, and can be found at svn+ssh://svn.cern.
ch/reps/atlas3dpix/simulation/EdepSpectra. Physics models are
standard electromagnetic, QGSC, and radioactive decay, used without any special
tuning.

svn+ssh://svn.cern.ch/reps/atlas3dpix/simulation/EdepSpectra
svn+ssh://svn.cern.ch/reps/atlas3dpix/simulation/EdepSpectra

66 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

Parameter Value Comment
detectorConstructionID 13 May2009 “Alligned”, with de-

tectorModules v2
particleSourceID 1 Gaussian beam
beam_energy 180 [GeV]
beam_primaries π−

beam_Rsigma 5 [cm]
beam_Rcut 0.5 [cm]
beam_ThetaSigma 1 [radian]
beam_ThetaCut 1 · 10−3 [radians] Approximate veto scintillator

acceptance
physicsSetupID 13 QGSP physics list
physicsCut 5.0 [µm]
clusterMaxCharge 400 electrons
truthWritingCut 10 [GeV]

Table 3.4: TestBeamSim reference parameters

3.5 Chosen simulation parameters

As discussed above, there are several parameters in the simulation that can be var-
ied. The final values chosen for the parameters is shown in table 3.4. Some of
these parameters, such as “detectorConstructionID” can be used to select between
completely different simulation geometries, while others control the beam shape
or physics used. Still others have no effect on the simulation itself, but can be used
for deciding what particles should produce truth output when traversing the sensor
(“truthWritingCut”). Many of these parameters (and more) are setable through the
class TestBeamSimMessenger, which is described in Appendix A.4.1.

The reasons for selecting the beam parameters described in Chapter 3.3. The
physics model “QGSP” was chosen as this list is one of the recommended lists
for tracker simulation, is used by ATLAS and should thus have been a through
validation. The physics production cut of 5.0 [µm] was chosen as a compromise
between computational cost and accuracy, and it should also be noted that the nor-
mal Geant4 physics models are not accurate at very low energies10 anyway. The
choice of clusterMaxCharge, the maximum mean charge-cluster size as defined by
m in equation (3.4), equal to 400 electrons is also a similar tradeoff between sim-
ulation accuracy and computational cost. The truth writing cut is set so high that it
will exclude δ electrons etc., while keeping MIP(s).

10There are special low-energy models available.

3.6. CONCLUSION 67

3.6 Conclusion

In this chapter a full simulation system based on Geant4 for test beam experiments
have been presented. This was applied to the May 2009 SPS H8 3D pixel testbeam,
and simulation results compared to the experimental data.

A method for sampling charge clusters along the path of the simulated particles,
taking the Fano factor into account is presented in Chapter 3.1.1.

The simulated beam and trigger scintillator setup is presented, and results com-
pared to experimental data. This showed that for the fairly flat beam profile simu-
lated, the measured profile is mostly controlled by experiment acceptance.

It is also shown that for low-energy particles, such as electrons from a β-source
used in a source test, the scintillator sensitivity can significantly change the mea-
sured energy deposition spectrum.

The output of the charge cluster sampling in this simulation is used as input to
the device simulation models presented in Chapter 4 and 6.

68 CHAPTER 3. SIMULATION OF TESTBEAM EXPERIMENTAL SETUP

Chapter 4

BAT telescope model

As described in Chapter 1.2, the Bonn Atlas Telescope (BAT) [38, 39] is used for
tracking charged particles in the testbeams that has been simulated. It is therefore
necessary to provide a good model of its response to MIP radiation in order to be
able to compare simulated pixel devices with real data, as the data is made using
this hardware.

The BAT telescope is composed of three modules/planes, as shown in figure
4.1. Each of this planes contains a Hamamatsu S6934 double-sided strip sensor
with a pitch of 50 [µm] and a sensitive area of 32 [mm]×32 [mm]×300 [µm] [15].
There are also electronics for providing power, readout of the sensor, data transfer
to the DAQ system, and a data preprocessor FPGA performing zero-suppression
and common-mode estimation.

Figure 4.1: Picture of two BAT planes, as mounted in the May 2009 testbeam

To make a simulation of a testbeam, a model of the beam particles interacting

69

70 CHAPTER 4. BAT TELESCOPE MODEL

with the planes (as described in Chapter 3), as well as how this creates a signal
in the sensors, and how the electronics respond to this, is necessary. This Chapter
describes such a model, including tuning of parameters in order to reproduce the
data.

4.1 Simulation geometry

For modeling the beam interaction with the telescope planes, describing their ge-
ometry to Geant is necessary. The simulation geometry used is shown in figure 4.2,
and a computer rendered drawing in figure A.1(a). The geometry is partly based on
measurements directly on the planes, and for the internals, figure 3.14 from [39].

Envelope

30cm

5c
m

2,
5c

m

20cm

10cm

Electronics
compartment

Sensor compartment

0
,8

cm

Sensor
300 µm thick

6c
m

sensor

Envelope

34.6 x 34.6 mm²,
active area:
32.0 x 32.0 mm²

8,
35

cm

2,35cm

3c
m

1,2cm

20cm 10cm

Electronics compartment Sensor
compartment

Sensor
hole

36cm

1
5c

m

30cm

12
,5

cm

Figure 4.2: BAT simulation geometry

In addition to what is shown in figure 4.2, there is a 100 [µm] thick kapton
foil covering the windows in the sensor compartments. The aluminum plates are
1.8 [mm] thick. As many parts of the modules are not directly in the beam, only
some of it has been included in the geometry model as an illustration. This is partly
done in order to simplify the model, and also because no good references on the
module/hybrid mechanics was available, meaning that implementing more details
of the module geometry would be dependent on a lot of guesswork. The “envelope”
of air around the module is there for technical reasons – it was the original intention
to run the simulation with increased resolution (shorter physics production cut-off
for δ-electrons etc.) within this envelope than used elsewhere. The envelope also
simplifies describing the module to Geant4, as the rest of the volumes are daughter
volumes to the envelope. However it does limit how close it can be placed to other

4.2. SIMULATION OF SENSOR RESPONSE 71

material objects, as volumes cannot overlap1. This geometry is implemented as the
detector module TestBeamSimDetectorModule_BAT_v2 in TestBeam-
Sim, as described in Chapter A.3.1.

In order to extract useful data for the simulation, the sensitive part of the sensor
has a TestBeamSimPixelSD Geant4 sensitive detector attached to it, described
in Chapter A.4.5. This provides a set of simulated energy depositions, and their
positions locally in the sensor volume.

4.2 Simulation of sensor response

To do anything useful with the simulated energy depositions from TestBeamSim,
it is necessary to have a digitization algorithm. This algorithm converts the sim-
ulation hits into detector digits, formatted the same way as the output of the real
telescope system, as shown in figure 4.4.

This is done by simulating the charge transport and collection in the semicon-
ductor, the electronic noise, and how the data preprocessing FPGA handles the
digitized input. This is implemented in a series of steps shown in the data flow
diagram of figure 4.3. Each of these steps is described in the subsections below,
and together they form a model for a BAT sensor.

4.2.1 Charge-sharing and signal generation

The input to the digitizer from TestBeamSim is a set of energy-depositions, and
their position in the sensor volume. These energy depositions can be assumed to
create localized charge-clouds of electrons and holes, which is then transported by
the electric field towards the implants. While in transport, these charge-clouds will
also diffuse laterally, and become larger and less concentrated until collected at the
implants (see figure 4.6). The implants are then capacitively coupled to the input
of the amplifiers. The goal of this part of the digitization algorithm is to calculate
how much charge is delivered to each amplifier channel.

In order to make the model manageable, certain simplifications has been made:

• Electrostatic repulsion between charges in the same cloud, and between dif-
ferent clouds ignored.

• Speed of charges to low for velocity saturation, as max field 0.6[kV
cm] with

parameters as in table 4.2.

• Recombination is negligible, as drift time is on the order of [ns] (see chapter
4.2.1.2), while minority carrier lifetime in silicon is on the order of [µs].

The method used is similar to the one developed in the article “Charge collection
in silicon strip detectors” by Belau et al. [3].

1Volumes cannot overlap unless they have a mother/daugther relationship. The overlap must then
be complete – the mother must contain the daughter.

72 CHAPTER 4. BAT TELESCOPE MODEL

Initialize storage:
Per strip ADU value

Capacitive charge sharing
(capasitive coupling, crosstalk)

Charge sharing

Add

Signal

Electronic noise
(pr. strip, CMC)

Add

Find
strips over
threshold

Extract strips
for readout

CMC
estimate

Digits

TestBeamSim (Geant) hits
(dE, position)

Figure 4.3: Main steps of BAT digitization algorithm. Arrows symbolize data flow,
rectangles process steps, parallelograms external data input, downward-pointing
triangles merging of data, upward-pointing triangles extraction of information, and
circle a connection to another program.

In order to know much charge is collected on each implant, it is necessary to
know the shape of the charge-cloud when it is collected. Thus the the drift and
diffusion equations for electron and hole charge-clouds have to be solved, which
yields the shape of the cloud as a function of time. This is dependent on the electric
field, which has to be found first. The charge-clouds themselves are sampled along
the path of the particle using a “Fano sampling” algorithm described in Chapter
3.1.1.

4.2.1.1 Electric field

BAT utilizes Hamamatsu S6934 silicon planar strip sensors [15]. By assuming
that its bulk has uniform n-type2 doping, that it is reversed biased beyond its full

2N-type sensors are the most common, and as shown in chapter 4.4 the model fits the data quite
well.

4.2. SIMULATION OF SENSOR RESPONSE 73

X [strips]
414 415 416 417 418 419

A
D

U
 c

ou
nt

0

500

1000

1500

2000

Digitized BAT event, Event#=64, BAT1 (N-side)

Y [strips]
245 246 247 248 249 250

A
D

U
 c

ou
nt

0

500

1000

1500

2000

Digitized BAT event, Event#=64, BAT1 (P-side)

(a) Typical event – straight track between two
strips, lots of sharing.

X [strips]
422 422.5 423 423.5 424 424.5 425 425.5 426

A
D

U
 c

ou
nt

0

500

1000

1500

2000

Digitized BAT event, Event#=64, BAT3 (N-side)

Y [strips]
245 245.5 246 246.5 247 247.5 248 248.5 249

A
D

U
 c

ou
nt

0

500

1000

1500

2000

Digitized BAT event, Event#=64, BAT3 (P-side)

(b) Typical event – straight track near center of
strip, low amount of sharing

X [strips]
447 448 449 450 451 452

A
D

U
 c

ou
nt

0

500

1000

1500

2000

Digitized BAT event, Event#=38, BAT6 (N-side)

Y [strips]
234 235 236 237 238 239 240

A
D

U
 c

ou
nt

0

500

1000

1500

2000

Digitized BAT event, Event#=38, BAT6 (P-side)

(c) Event with δ-electron that escapes the sen-
sor. Note that the correct hit position will be
hard to reconstruct.

X [strips]
334 335 336 337 338 339

A
D

U
 c

ou
nt

0

500

1000

1500

2000

Digitized BAT event, Event#=207, BAT3 (N-side)

Y [strips]
291 291.5 292 292.5 293 293.5 294 294.5 295

A
D

U
 c

ou
nt

0

500

1000

1500

2000

Digitized BAT event, Event#=207, BAT3 (P-side)

(d) Event with δ-electron that is stopped in the
sensor. Note that the energy loss increases to-
wards the tip of the track.

X [strips]
406 408 410 412 414 416 418 420

A
D

U
 c

ou
nt

0

5000

10000

15000

20000

25000

30000

Digitized BAT event, Event#=1322, BAT3 (N-side)

Y [strips]
252 254 256 258 260 262 264 266 268 270

A
D

U
 c

ou
nt

0

5000

10000

15000

20000

25000

30000

Digitized BAT event, Event#=1322, BAT3 (P-side)

(e) Event where hadronic shower starts inside
the sensor silicon. Note different scale on y-
axis (max ADC range is really 212 = 4096.
In the simulation, this truncation is done when
writing to file). This is a quite uncommon type
of event (examined 1400 events × 3 planes,
found two).

X [strips]
457 458 459 460 461 462

A
D

U
 c

ou
nt

0

500

1000

1500

2000

Digitized BAT event, Event#=42, BAT3 (N-side)

Y [strips]
180 181 182 183 184 185

A
D

U
 c

ou
nt

0

500

1000

1500

2000

Digitized BAT event, Event#=42, BAT3 (P-side)

(f) Event with non-perpendicular track

Figure 4.4: Gallery of plots showing energy simulated depositions and simulated
detector response. Each subfigure contains four elements: Leftmost elements is
showing the N-side, while the rightmost is showing the P-side. Topmost elements
is showing the simulated sensor response (including noise), while elements at the
bottom is showing the position of the energy deposits, projected so that strips are
in the direction perpendicular to the paper. The bottom element’s x-axis are scaled
to show all strips above threshold, and are thus not to scale with the y-axis which
always spans the sensor thickness. All data from simulation run 613, digitizer
tuning as in table 4.2. Plots inspired by [34].

74 CHAPTER 4. BAT TELESCOPE MODEL

depletion voltage, and neglecting the areas close to the implants where the field is
focused towards the implants3, it can be assumed that the electric field is uniform
and directed transversely into the sensor plane, as shown in figure 4.5.

n−doped
substrate
(depleted)

V0

Vd

Vd V0V = −

0

d

E

+

+

+

+

+
+

+
− − − − − − − − − − − − − − − − − − −

+ + + + + + + + + + + + + + + + + +

y

x

Figure 4.5: Geometry used for calculation of electric field, drift time etc. in BAT.
P-type Si (top) in red, n-type in blue (bulk and bottom).

By Gauss’s law, the electric field in a biased sensor with thickness d and charge-
density ρ due to a concentration Nd of donor atoms, each carrying one elementary
charge q, can be calculated:

dE
dy

=
ρ

ε
=
qNd

ε

⇒
∫ E(y)

E0

dE =
∫ y

0

qNd

ε
dy = E(y)− E0 =

qNd

ε
· y

⇒ E(y) =
qNd

ε
· y + E0

For a fully depleted sensor, the electric field E0 = E(y = 0) given a reverse bias
V ≥ Vd can be determined by the definition of electric potential:

−dV
dy

=E(y) =
qNd

ε
· y + E0

⇒ −
∫ Vd

V0

dV = V =
∫ d

0

qNd

ε
· y + E0 dy =

qNd

2ε
· d2 + E0 · d

⇒ E0 =
V

d
− qNdd

2ε

Thus the electric field can be written as:

E(y) =
qNd

ε
· y +

V

d
− qNdd

2ε
(4.1)

3This will be treated by introducing a cutoff when transporting the charges, see section 4.2.1.2

4.2. SIMULATION OF SENSOR RESPONSE 75

This can be simplified by relating it to the depletion layer thickness W of a p+n-
junction and the depletion voltage Vd, and assuming full depletion [35]:

W =

√
2εVj
q

(
1
Nd

+
1
Na

)
≈
√

2εVd
qNd

≈ d⇒ qNd

ε
=

2Vd
d2

Here the junction voltage Vj is given by Vj = Vc − Vextern, where the applied
voltage Vextern = −Vd, Vd � Vc, with Vc the contact potential of the junction.
Inserting this into equation (4.1) yields:

E(y) =
2Vd
d2
· y +

V − Vd
d

(4.2)

This is a more useful form, as the sensor thickness d = 300 [µm] and depletion
voltage Vd = 80 [V] is listed in the sensor datasheet [15]. The bias voltage setting
is however not documented anywhere, but should be somewhat larger than the
depletion voltage. The bias voltage V is therefore a tunable parameter.

4.2.1.2 Drift and diffusion of charge-clouds

Knowing the electric field affecting the charge clouds, their shape at the implants
where they will be collected can be calculated. Thus first the solution of the drift/d-
iffusion equations for the charge-clouds is necessary, which can be used to calculate
how much is collected on each electrode. An outline of this is shown in figures 4.6
and 4.8.

As the signal measured by the analog-to-digital converter (ADC) is determined
by the total charge collected on a strip, only the distribution of the charge cloud lat-
erally in the sensor plane, perpendicular to the strip that will collect the charges,
is of interest. Thus the distribution perpendicular the sensor plane and parallel
to the collecting strips can be neglected. The drift- and diffusion equations can
then be decoupled, as the electric field has no component in the sensor plane4. The
diffusion equation also reduces to a one-dimensional problem. A workable approx-
imation is then to first view the charge-cloud as a point-particle5, and calculate the
time it drifts from its point of creation (y0, x0) to where it is collected. This is then
the time available for diffusion. Putting this together then yields a description of
the shape of the charge-cloud arriving at the implants as function of its point of
creation.

The drift time can be found by integrating the equation of motion for an electron-
and hole cloud from its point of creation y = y0 and to the edge of the focused-field
region y = cn (electrons) or y = d−cp (holes), where the electric field gets a lateral
component which “focuses” the charges towards the closes strip, so that diffusion
no longer matters. This is shown in equation (4.3) for electrons, and in equation
(4.4) for holes.

4Neglecting electrostatic iteraction between charges
5The charge-cloud sizes are much smaller than the typical drift length, see figure 4.7

76 CHAPTER 4. BAT TELESCOPE MODEL

Focused-field region

Focused-field region

Hole
cloud

Electron
cloud

n

 p

y0

cn

d−c p

d

Charge-cloud
at t = 0

x

x0

0

Figure 4.6: Expansion under drift of an electron/hole charge-cloud in the BAT
sensor (clouds does not necessarily have the correct shape)

〈ve〉 =
dy
dt

= −µnE(y) = −µn
[

2Vd
d2
· y +

V − Vd
d

]
⇒
∫ t

0

µn
d2

dt′ =−
∫ cn

y0

dy
2Vdy + d(V − Vd)

⇒ te =
d2

2Vdµn
loge

(
2Vdy0 + d(V − Vd)
2Vdcn + d(V − Vd)

) (4.3)

〈vh〉 =
dy
dt

= µpE(y) = µp

[
2Vd
d2
· y +

V − Vd
d

]
⇒
∫ th

0

µp
d2

dt′ =
∫ d−cp

y0

dy
2Vdy + d(V − Vd)

⇒ th =
d2

2Vdµp
loge

(
2Vd(d− cp) + d(V − Vd)

2Vdy0 + d(V − Vd))
) (4.4)

Knowing for how long diffusion is active (te, th), the shape of the charge-cloud
when arriving at the implant strips can be calculated. This is done by solving the
1D diffusion equation, as only the spread normal to the strip direction is of interest.

The diffusion equation can solved by assuming that the initial charge cloud is
a delta function centered on the point (x0, y0), which is the point where the energy

4.2. SIMULATION OF SENSOR RESPONSE 77

is deposited. This yields the following demands on the charge-distribution C(x, t):

∂

∂t
C(x, t) = D

∂2

∂x2
C(x, t)∫ ∞

−∞
C(x, t) dx = 1

C(x, 0) = δ(x− x0)

(4.5)

Here D is the diffusion coefficient, which can be related to the carrier mobility µ,
the temperature T , and Boltzman’s constant kB by the Einstein relation [35]:

D

µ
=
kBT

q
(4.6)

Before solving equation (4.5), a substitution of variables x = x0 +ξ ⇒ ξ = x−x0

is done, so that the initial condition becomes C(ξ, 0) = δ(ξ). This is satisfied with
equation (4.7), as a Gaussian is a Green’s function of the diffusion equation.

C(x, t) =
1√

4Dπt
e
−ξ2
4Dt =

1√
4Dπt

e
−(x−x0)2

4Dt (4.7)

This Gaussian distribution describing the shape of the charge-cloud is characterized
by the two parameters – the variance increase of the charge cloud during drift
σ2

drift(t) = 2Dt, and the mean x0. In order to make it possible for the charge-cloud
to have a finite size at t = 0, one can make the substitution t → t + t0. Here the
relation between t0 and the variance σ2

0 ≡ σ2(t = 0) is σ2
0 = 2Dt0, and thus the

total variance becomes σ2(t) = 2D(t+ t0) = σ2
drift(t) + σ2

0 .
Using this, the drift time, and the Einstein relation, the variance of the Gaussian

describing the electron and hole distributions as a function of charge cloud creation
depth is then given by equations (4.8) and (4.9). These are also plotted in figure
4.7.

σ2
e = d2kBT

qVd
loge

(
2Vd y0+d(V−Vd)
2Vd cn+d(V−Vd)

)
+ σ2

0 for y0 > cn (4.8)

σ2
h = d2kBT

qVd
loge

(
2Vd(d−cp)+d(V+Vd)

2Vd y0+d(V−Vd)

)
+ σ2

0 for y0 < d− cp (4.9)

If an external magnetic field parallel to the strip direction is present, the Lorentz
force would act on the clouds with a force perpendicular to the strip direction. The
effect of this would be that the charge-clouds with the longest travel distance is
pushed more of-course than the ones created close to the implants. A standard way
of taking this into account is assuming that the charges drift through the sensor with
a constant, electric field-independent Lorentz-angle θL with respect to the electric
field [3], displacing the mean of the charge distribution x0 → x0 + ∆y · tan θL,
where ∆y is the distance from the point of creation to the surface of collection. This
is really only a good description of the electric field is close to constant (high over-
bias – bias voltage much larger than depletion voltage), or if the charges quickly
reach velocity saturation.

78 CHAPTER 4. BAT TELESCOPE MODEL

 m]µ [
0

Depth of creation y
0 50 100 150 200 250 300

 m
]

µ
 o

f
cl

u
st

er
 [

σ

0

1

2

3

4

5

6

7

8

9

10 Electrons

Holes

Figure 4.7: Cluster size as function of depth of creation. Plotted from equations
(4.8) and (4.9). Parameters as shown in table 4.2.

Alternatively, it might be possible to drop this assumption, and instead use that
the Hall-force in the strip-perpendicular direction x is given as FH = qvyBz =
m∗ d

2∆x
d2t

, inserting for vy(t) and integrating for 0 < t < tdrift. Here ∆x is the strip-
perpendicular displacement, and m∗ the effective electron or hole mass. Even if
this is possible, the integration probably has to be made numerically, which would
make the device simulation slower and more complicated.

However, a magnetic field dependence for BAT has not been implemented in
the digitization code, as the part of the simulation dealing with tracking particles
and creating energy deposits (see Chapter 3) currently does not support tracking
particles in the magnetic field configuration used in our experimental setup.

4.2.1.3 Charge collection on implants

Knowing the size and shape of a charge-cloud when it arrives, the amount of charge
deposited on each implant can be calculated. In principle, the gaussian charge-
distribution C(x) extends indefinitely in both directions, but as it has a rapid fall-
off the calculation is limited to the charge on the six strips closest to the deposit6.

6This is about 15σ in each direction, but during parameter tuning it was found that sharing across
this many strips improved the results. Number of strips to share across remains a tunable parameter
in the code (restricted to positive even integers).

4.2. SIMULATION OF SENSOR RESPONSE 79

This is done by assuming that the charge Qk0 deposited on strip k, centered on xk,
is given as

Qk0 = ∆ ·K
∫ xk+δ/2

xk−δ/2
C(x, tcollection) dx ≡ ∆ ·K · Ik (4.10)

where ∆ is the size of the charge-cloud in units of energy,K is a tunable calibration
constant with units ADC unit / energy, δ is the pitch of the sensor (50 [µm]), and
Ik a shorthand for the integral around xk.

x0 Δ 2Δ 3Δ- Δ- 2Δ- 3Δ

x
0

Gaussian charge-
cloud C(x,t

collection
)

I
1

I
2

I
3

I
4

I
5

I
0

Implants

0 ξ

Figure 4.8: Calculated collection of a charge-cloud by 5 closest strips. Areas “un-
der” the graph, between the limits (dashed lines) corresponding to the center-line
between two implants is denoted Ik. This is the part of the cloud that is collected
by the closest implant.

This integral is evaluated by exploiting that the charge distribution is gaussian,
which means that its integral is given by the error function, as shown in equation
(4.11). ∫ x

−∞
C(x′) dx′ =

1
2

[
1 + Erf

(
x− x0√

2σ2

)]
(4.11)

Thus the integral Ik defined by equation (4.10) for the charge collected on strip (if
N strips used) is given as:

Ik =

{ ∫ k−N/2+1
−∞ C(x) dx−∑0≤j<k Ij for 0 < k < N − 1

1−∑N−2
j=0 Ij for k = N − 1

(4.12)

80 CHAPTER 4. BAT TELESCOPE MODEL

4.2.1.4 Capacitive coupling from implants to metal strips

The BAT sensor is AC-coupled, which means that the amplifier is not directly
connected to the implants. In an AC coupled sensor, the implants are connected
to the bias voltage source, and the amplifier is connected to metal strips separated
from the implants by a thin layer of insulator (silicon dioxide [15]), as shown in
figure 4.9. Thus a chargeQi0 on implant strip i has to induce a charge on the nearby
metal strips by attracting opposite charges, which has to be supplied from the input
of the amplifier.

Q
0

i+2

Qi Qi+1 Qi+2Qi-1Qi-2

Q
0

i-1 Q
0
i Q

0
i+1Q

0
i-2

Metal strips

Silicon
substrate

Implants

S
iO

2

Figure 4.9: Capacitive couplings in BAT

This can be approximated by the repeating capacitor network shown in figure
4.9. If the capacitances is known, it is in principle possible to calculate the charges
on the metal strips from the charges on the implants by use of Kirchoff’s laws.
Assuming that the charges are removed from the metal strips by the power supply
much slower than the time needed by the amplifier, it can be shown that a matrix
C transforming the the vector of implant charges ~Q0 = (Q0

0, Q
1
0, . . . , Q

N−1
0) into

a vector of metal strip charges ~Q = (Q0, Q1, . . . , QN−1), as defined in equation
(4.13), can be found.

~Q = C ~Q0 (4.13)

However finding this matrix for a detector with N = 640 strips requires finding
the inverse of a 3196× 3196 matrix depending on the capacitances. Inverting this
matrix is certainly possible, and it only has to be done once, but as the capacitances
themselves are unknown, it would add at least five more unknown parameters to
the model.

A more viable way is to assume that a chargeQi0 on implant i is only distributed
across metal strips i − 2, i − 1, . . . , i + 2, and that the distribution is left-rigth
symmetric7. Thus the matrix C can be written as shown in equation (4.14), where
f0 is the fraction of charge from implant k collected at strip k, f1 is the fraction

7An asymmetry here could probably happen if the metal layer mask is shifted with respect to the
implant mask. However, the data shows no evidence of significant left-right asymmetry in the signal.

4.2. SIMULATION OF SENSOR RESPONSE 81

collected at each strip k + 1 and k − 1, and f2 the fraction collected at each strip
k+ 2 and k− 2. Conservation of charges then requires that f0 + 2f1 + 2f2 = 1⇒
f0 = 1− 2f1 − 2f2.

C =

f0 + f1 + f2 f1 f2 0 · · · 0

f1 + f2 f0 f1 f2 0
...

f2 f1 f0 f1 f2 0
0 f2 f1 f0 f1 f2 0

.
f2 f1 f0 f1 f2

... 0 f2 f1 f0 f1 + f2

0 · · · 0 f2 f1 f0 + f1 + f2

(4.14)

The input parameters to the simulation is “cShare1” and “cShare2”, where
cShare1 = 2 · f2 and cShare2 = 2 · f2. These are the two parameters that has to
be tuned to match the real data. As the matrix has such a simple form, it is in the
code implemented as a convolution rather than a matrix product.

4.2.2 Noise

In addition to the actual signal Qi delivered to each amplifier channel, there is also
noise. This both has a per-channel component, and a component that is correlated
between channels (“common mode”). From the data (see figures 4.11(g) or 4.12(g)
and 4.11(f) or 4.12(f)) both components are quite close to gaussian, so a usable
model for the noise in channel k is

nk = N (0, σ2
k) +N (µCM/N, σ

2
CM/N

2) (4.15)

where N (µ, σ2) is a normal distribution with mean µ and variance σ2, and N is
the number of strips.

The noise nk is then added on top of the signal Qk, so the total signal seen by
the ADC in channel k is given as:

sk = Qk + nk (4.16)

In the actual hardware, there is also a component of the signal that is constant
between events, but varies from channel to channel, known as pedestals. This
gives a shift in the signal to the ADC, and thus the mean of the single-channel
noise is not really zero. However, the data preprocessor FPGA (discussed below)
does make an attempt to subtract the pedestals from the signal. As the mean of
the common mode across events is found to be different from zero, this attempt is
not completely successful, but for the simulation just assuming µCM 6= 0 seems to
work well.

82 CHAPTER 4. BAT TELESCOPE MODEL

Threshold setting Threshold tk
0 −∞
1 128
2 256
3 512
4 ∞

Table 4.1: Threshold and threshold setting in BAT data preprocessor

4.2.3 Data preprosessor FPGA

When a signal sk has been created in all the channels, it is read by the ADC and a
digital representation is passed on to an FPGA. This FPGA then formats the data
in order to generate digits, which in presence of a trigger is written to file by the
DAQ system for offline analysis. The bottom row of figure 4.3 shows a simple
representation of the steps taken by the FPGA, and how this has been implemented
in the model.

Many things about what this FPGA did was unknown to the current BAT user
community. While making this model, documentation was rediscovered in the
the PhD thesis of Johannes Treis [39], which eliminated guesswork and reverse-
engineering of the FPGA output.

In order to save bandwidth on the bus connecting the BAT planes to the DAQ
system, the FPGA tries to determine which strips contain a real signal from a pass-
ing particle. These strips are read out, while data from strips assumed not to contain
any signal from a passing particle is discarded. The algorithm used to find which
strips should be read out is a simple one – the signal (after pedestal subtraction)
in all the strips is compared to a threshold tk, which is selected with a per-channel
threshold setting (see table 4.1). This means that if sk ≥ tk, channel k is “marked”
for readout. The strips neighbor to and next-to neighbor to a marked channel is
also read out8, in order not to loose information about the signal.

Further, a measurement of common mode noise is also made. This is done
by the “Common Mode Counter” (CMC), which sums up the signal over all the
channels.

CMC ≡
N−1∑
k=0

sk (4.17)

As this includes any channels that have a signal, it is a biased estimate of the
common mode. This can be corrected off-line, as discussed in Chapter 4.2.3.1.

In addition to these functions, which is performed during a run, the data pre-
processor also estimates the pedestal and noise of each channel at the beginning of

8It was previously believed that only the neighboring strips where read out, but examination of
raw data from BAT showed that the number of events where number of channels read out ∈ [0, 4]
was approximately zero in the data examined. This was confirmed by looking at printouts of raw
data, where a single “marked” channel was flanked by two unmarked channels on each side.

4.3. PARAMETER TUNING 83

each run. The pedestal of a channel is an offset in the measured value. For most
channels, the raw ADC value is in the order of a few 1000 ADC units when there
are no signal, and this number (estimated for every channel) is during a run sub-
tracted from the measured signal to get the signal sk. The noise in each channel
is also estimated as its RMS value. The results are then stored in the BAT BDT
BORE (see Appendix D.3.1).

4.2.3.1 Off-line subtraction of common mode noise

It is possible to estimate the common mode noise better by only looking at the
channels that are far from above-threshold-channels [39]:

ĈM ≡ CMC− sumADU
N − Number of channels read out

(4.18)

where

sumADU =
∑

k∈ channels read out

sk (4.19)

This means that it is then possible to subtract some of the noise in the detector
system, by taking the corrected signal to be:

s′k = sk − ĈM (4.20)

This is not done by the FPGA, but as the CMC value is stored in the data files,
it is possible to do off-line. From figure 4.10 we see that this correction does seem
to work, as the correlation between the signal and the noise disappears.

Figure 4.10(a) shows that the “raw” CMC is a biased estimator for the common
mode, as it has a clear correlation with sumADU. By correcting the CMC by sub-
tracting sumADU, as is done in equation 4.18, the correlation becomes weaker for
events with high sumADU, as is shown in figure 4.10(b). This corrects the com-
mon mode estimate, but it still remains to correct the signal itself using equation
(4.20), as is shown in figure 4.10(c).

Removing the common mode noise from the signal with equation (4.20) when
estimating the hit position could potentially improve the measurement resolution
of the telescope planes, but has not yet been tried.

4.3 Parameter tuning

As discussed in the previous sections, the BAT model contains quite a few param-
eters. These are listed in table 4.2, together with the settings that was found to
match the data best. Some of these parameters (such as sensor thickness and de-
pletion voltage) are given by the sensor datasheet [15], some (such as threshold

84 CHAPTER 4. BAT TELESCOPE MODEL

sumADU [ADC units]
0 500 1000 1500 2000 2500 3000 3500 4000

C
M

C
/s

tr
ip

 [
A

D
C

 u
n

it
s]

5

10

15

20

25

30

35

(a) CMC/N vs. sumADU

sumADU [ADC units]
0 500 1000 1500 2000 2500 3000 3500 4000C

M
C

/s
tr

ip
 (

co
rr

ec
te

d
 f

o
r

su
m

A
D

U
)

[A
D

C
 u

n
it

s]

5

10

15

20

25

30

35

(b) dCM (eq. (4.18)) vs. sumADU

sumADU (corrected for corrected common mode) [ADC units]
0 500 1000 1500 2000 2500 3000 3500 4000C

M
C

/s
tr

ip
 (

co
rr

ec
te

d
 f

o
r

su
m

A
D

U
)

[A
D

C
 u

n
it

s]

5

10

15

20

25

30

35

(c) dCM (eq. (4.18)) vs. sumADU− dCM× number of channels read out

Figure 4.10: Correlation plots between common mode estimates and signal esti-
mates, showing how the signal can be deconvolved from the common mode noise.
Data from BAT1 p-side, run705 May2009. Black: Scatterplot of common mode
vs. sumADU (with different corrections applied to the estimators). Red: Profile
plot of the same data.

4.3. PARAMETER TUNING 85

Parameter [Unit] N-side P-side
d [µm] 300
Vd [Volt] 85.0
V [Volt] 95.0
T [Kelvin] 300 300
σ0 [µm] 0.0 3.5
c [µm] 10 10
K [ADU/MeV] 9200 8700
cShare1 [Factor] 0.0625 0.04
cShare2 [Factor] 0.0 0.0
σk [ADU] 30 18
µCM/N [ADU] 10.0 13.5
σCM/N [ADU] 3.908 4.6
Threshold setting 2 1
Pedestal [ADU] 2000 2000

Table 4.2: Parameters used for BAT model

setting) is a setting from the DAQ system that is recorded in the BDT BAT BORE
(see Appendix D.3.1), while others (such as per-channel noise σk) is estimated by
the data preprocessor FPGA at the start of a run, and saved in the BDT BAT BORE.
The rest has to be estimated from the data, and this is the parameter tuning process.

The estimation of parameter values, also known as tuning, has to be done in
order to get the simulated and experimental data to match. This was done by using
plots like those shown in figures 4.11 and 4.12, which compares key distributions
from simulation with reference data. These plots where then produced for many
sets of parameters, by the help of the program described in Appendix B.3.3. The
parameters where then successively refined until a rather good match was achieved.

The reference data used for the tuning was run705 of the May 2009 testbeam,
BAT1. This run was selected because it was a run with no magnetic field/no sensor
tilt, and contains a decently sized data sample (10118 triggers). BAT1 was used in
preference of the other planes because of its lack of noisy strips and other defects.
The differences between the tune found seems to be closer to BAT1 than BAT1 is
to the other planes, so even if the model does not match BAT1 perfectly, it is still
representative for the response of a BAT plane.

Note that even if the histograms shown is a quite good match to the data, this
does not mean that the model is correct. This was particularly revealed when plot-
ting the no-signal CMC histogram for the P-side (see figure 4.12(g)), which showed
that the mean was quite a bit off. This was not discovered during tuning, due to
that this histogram was not drawn by program used for tuning.

86 CHAPTER 4. BAT TELESCOPE MODEL

4.3.1 Observables

As earlier mentioned, the tuning is done by examining a set of histograms. The
histograms used was extracted from the real and simulated BDT data files with the
help of the analysis program described in Chapter B.3.4.

Many of the histograms here refer to clusters. This is defined as a continuous
region of three strips or more, with signal values significantly above the back-
ground, centered around a peak in strip K. The significance demand is given by
that the the total s/n ratio for a 3-strip region is greater than 5.0;

sK−1 + sK + sK+1√
σ2
K−1 + σ2

K + σ2
K+1

> 5.0

where σk is a single-strip noise estimate from the BAT BDT BORE. Further, both
many analyses and the tracking software demand that there should only be only one
cluster. This excludes events with multiple particle hits or high-energy δ-electrons,
as these often give multiple peaks within one contiguous above-threshold region.

The histograms used are shown in figures 4.11 and 4.12, and discussed below.
Note that since all the histograms are fundamentally representing probability dis-
tributions (PDFs), they have been normalized so that

∫∞
−∞ h(x)dx = 1, as this

makes comparison between different devices, different runs, or between data and
simulation possible.

4.3.1.1 sumADU

The sumADU histogram, shown in figures 4.11(a) and 4.12(a), is the spectrum of
sum of the all the ADU-values read out (not suppressed), as defined by equation
(4.19). When tuning, this is very useful to find the calibration constant K, which
sets the scale of the energy deposits in ADC units.

4.3.1.2 ClusterMax, shoulder1 and shoulder2 spectrum

These histograms, shown in figures 4.11(d), 4.12(d) (ClusterMax), 4.11(e), 4.12(d)
(Shoulder1), 4.11(f) and 4.12(f) (Shoulder2) shows the spectrum of in different
strips in clusters.

If the cluster is centered around strip K (where the value of K varies from
event to event), ClusterMax is the spectrum in strip K, Shoulder1 is the spectrum
in strips K + 1 and K − 1 (histogram filled twice for every accepted event), and
Shoulder2 the spectrum in strips K + 2 and K − 2 (also filled twice).

These histograms are particularly useful when tuning the capacitive coupling
parameters cShare1 and cShare2, as the shape of the Landau tail changes signifi-
cantly when altering these parameters. Shoulder2 is also of good use when tuning
the noise width σCM/N , as there is very little signal here.

4.3. PARAMETER TUNING 87

4.3.1.3 Mean cluster shape

This plot, shown in figures 4.11(h) and 4.12(h) is a profile plot of the single-strip
spectra relative to its position within a cluster, as discussed for ClusterMax etc.
above. Thus this plot yields little information that is not already in these his-
tograms. It does show that there is no large left-right asymmetry of the clusters,
however this is better shown by plotting the difference between the left- and right-
shoulder1 or shoulder2 ADC count.

4.3.1.4 dN/dη distribution

These histograms, shown in figures 4.11(b) and 4.12(b), shows the dN/dη distri-
bution, as defined in section 2.2.4.

The specific definition of η used is taken from the reconstruction code. This
first finds a cluster, and calculates the charge-weighted mean x̂c for this by using
only the three center-most strips in the cluster (strips K − 1, K, K + 1). η is then
defined as:

η = x̂c/δ − floor (x̂c/δ)

This histogram is interesting, as it describes how the charge is shared between
strips. It is also the histogram used by the η-correction algorithm in the reconstruc-
tion, as described in section 2.2.4.

4.3.1.5 Consecutive number of strips above threshold

These plots, shown in figures 4.11(c) and 4.12(c), shows how often one, two, or
more consecutive strips get marked as above threshold by the data preprocessor
FPGA.

4.3.1.6 No-hit CMC/N

These histograms, shown in figures 4.11(g) and 4.12(g), shows the CMC value di-
vided by number of strips for events where nothing is read out. It was not available
in the reports produced by the program used for tuning. This is done to get the
most unbiased (given the data available) estimate for what the CMC distribution
looks like.

4.3.2 Tuning strategy

The strategy used is first to get approximate values for the most important param-
eters, while selecting something fairly neutral for the other parameters. Not all
parameters had to be tuned, as they where given by the datasheet [15], while others
are estimated by the planes and listed in BDT BAT BORE (see appendix D.3.1).
This is the threshold setting selected, the pedestal, and the per-strip noise σk. These
parameters are used as-is, and also written to the simulated BDT BAT BORE.

88 CHAPTER 4. BAT TELESCOPE MODEL

The parameters that must be tuned first, is the calibration constant K and the
mean of the common mode µCM/N , which is mostly tuned by comparing the posi-
tion of the peak and distribution shape in the sumADU histogram produced by the
simulation with experimental data. This decides the amount of contribution from
the signal and noise components, as seen from equation (4.16).

Another important parameter is the common mode spread σCM. This can be
fairly well estimated by looking at the shoulder2 histogram, as this contains mostly
noise. The CMC histogram for events which has no hits in it is also interesting,
although the amount of data is fairly low. A usable strategy is to get a first estimate
by fitting the no-signal CMC histogram with a Gaussian, and then assume this to
be a sum of a common mode noise and per-strip noises. This yields a first estimate
for the common mode noise dispersion

σCM

N
=

√√√√σ2
meas. −

1
N

N−1∑
k=0

σ2
k (4.21)

where σmeas. is the total width from the fit, and σk is the values found in the BDT
BAT BORE. This also shows the problem of trying to estimate the common-mode
noise and the per-strip noises, as they are convoluted in the data.

When an approximate value for K, µCM and σCM is obtained, the other pa-
rameters can be tuned in order to make the results as good as possible. This is
done by varying them over physically reasonable ranges, until the the histograms
from simulation output matches the data. For the “charge-cloud” parameters the
most important observable is the dN/dη histogram, and the clusterMax, shoulder1
and shoulder2 spectra. Somewhat easier to tune is the capacitive-sharing param-
eters cShare1 and cShare2, which is tuned by looking at the Landau tails of the
clusterMax/shoulder1/2 spectra.

As the parameters are anything but “orthogonal”, it is necessary to go back and
do tuning in several passes.

While tuning the parameters, it was several times found that the sensor model
used was too simple. Therefore an increasing amount of features and parameters
was gradually added as the tuning progressed, which often made it necessary to
redo some of the tuning. This means that making of the model and tuning it to
match the data is closely related, which also makes the process hard to automate,
as one always has to look out for interesting features in the histograms that may be
difficult to predict or describe. It also means that tuning/model-making is a highly
time-consuming activity, and one that cannot easily be fully automated.

4.3.3 Sensitivity to parameters

By scanning tuning parameters, it was seen that some parameters had a much
weaker influence on the output than others. The model seemed particularly in-

4.4. COMPARISON OF SIMULATED DATA WITH REAL DATA 89

sensitive to the applied voltage V in the range tested (85-100 [V])9, showing only
slight variations. The variations that did show up was mainly due to the blowup of
N-side cluster sizes due to the low-field region close to the N-side implants creat-
ing low drift speeds and high drift times, happening when V was very close to Vd,
as indicated by equation (4.8).

The temperature was also fairly insensitive to variations within “reasonable”
parameters. Increasing the temperature did increase the amount of charge-sharing,
as expected from equations (4.8) and (4.9).

The model is quite sensitive to σ0, the cluster size at t = 0. Making this higher
than ≈ 10[µm] created strange results in the dN/dη histogram, which became
mostly flat, sometimes with a sharp dip in the region around η = 0.5. The values
found is in the same range as the physics production range cutoff parameter in the
particle-matter interaction simulation, discussed in Chapter 3.1.

Introducing the cutoff made it possible to reproduce the “pit” in the dN/dη
histogram around η = 0.5. The values found is of the order expected for how close
it is necessary to be to the electrodes for a “pinch” in the field to be significant.
Increasing it too much leads to much larger probabilities for no charge-sharing, as
charges deposited inside the cutt-off region is completely collected by the nearest
electrode.

4.4 Comparison of simulated data with real data

As shown in figures 4.11 and 4.12 and discussed in section 4.3, the data and the
simulation generally does match quite well. The data used for comparison is taken
from the May 2009 testbeam, run705, BAT1.

Even if most is in good agreement, there are some histograms that does not look
as good. Notably, this includes figures 4.12(g) (P-side no-hit CMC/N distribution)
and 4.11(c)) (N-side consecutive number of strips marked as above threshold). The
first one is easy to explain – during parameter tuning this histogram was not moni-
tored, and the µCM/N parameter was significantly changed in order to make other
histograms look better. This is probably possible to fix by spending more time on
tuning. The second histogram is is worse, and has been there since the beginning
of model development. There are currently no good explanation for why this is
happening.

4.5 Conclusion

In this chapter, a detailed model for the response of Bonn Atlas Telescope (BAT)
modules to minimum ionizing particle radiation has been presented. This model

9This range was tested as the sensor datasheet [15] specified that 100[V] is the sensor breakdown
voltage, where the SiO2 separating the implants from the metal strips breaks down, and the amplifier
is saturated by connecting directly to the bias voltage. It was later discovered that the analog card
ground potential on either side is referenced to the bias on the same side, making this not a concern.

90 CHAPTER 4. BAT TELESCOPE MODEL

Sum of ADU values
200 400 600 800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

0.12
Data

Simulation

(a) sumADU (equation (4.19))

η
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

Data

Simulation

(b) 3-strip dN/dη

Number of strips above internal threshold
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

Simulation

(c) Consecutive number of strips marked as
above threshold

ADU value
200 400 600 800 1000 1200 1400 1600 1800

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Data

Simulation

(d) Spectrum of maximum-valued/central strip
of cluster

ADU value
-50 0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

Data

Simulation

(e) Spectrum in first shoulder strips of cluster

ADU value
-100 -50 0 50 100

0

0.05

0.1

0.15

0.2

0.25

Data

Simulation

(f) Spectrum in second shoulder strips of clus-
ter

ADU value
-5 0 5 10 15 20 25 30 35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Data

Simulation

(g) CMC/N spectrum for events without hits

Delta strip number (centered on maximum strip)
-4 -2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

Simulation

(h) Mean cluster shape profile

Figure 4.11: Comparison of between simulation and data, n-side

4.5. CONCLUSION 91

Sum of ADU values
200 400 600 800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

0.12
Data

Simulation

(a) sumADU (equation (4.19))

η
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

Data

Simulation

(b) 3-strip dN/dη

Number of strips above internal threshold
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

Simulation

(c) Consecutive number of strips marked as
above threshold

ADU value
200 400 600 800 1000 1200 1400 1600 1800

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Data

Simulation

(d) Spectrum of maximum-valued/central strip
of cluster

ADU value
-50 0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

Data

Simulation

(e) Spectrum in first shoulder strips of cluster

ADU value
-100 -50 0 50 100

0

0.05

0.1

0.15

0.2

0.25

Data

Simulation

(f) Spectrum in second shoulder strips of clus-
ter

ADU value
-5 0 5 10 15 20 25 30 35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Data

Simulation

(g) CMC/N spectrum for events without hits

Delta strip number (centered on maximum strip)
-4 -2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

Simulation

(h) Mean cluster shape profile

Figure 4.12: Comparison of between simulation and data, p-side

92 CHAPTER 4. BAT TELESCOPE MODEL

assumes zero magnetic field, and has been tested at single module level against
experimental data using a normal incidence beam. These tests shows good agree-
ment between the model output and data, indicating that all important processes
are accounted for.

The modeling effort has also lead to a better understanding of BAT, resulting
in an off-line method for subtraction of common mode noise, described in Chapter
4.2.3.1. This method will hopefully lead to a better position measurement resolu-
tion in the planes.

In order to fully qualify the model as a component of testbeam simulation,
we have to be compare the output of not only one single model, but the entire
experimental setup. If this is successful, we can then use the model to learn more
about the properties of the setup as a whole. This is the topic of the next chapter.

Chapter 5

Performance of the tracking and
alignment

The main objective for using a beam telescope like the BAT in a testbeam is to
estimate where the probe particle hits the device under test (DUT). It is therefore
important to know the characteristics of this hit position estimate, such as the track
error distribution. The detailed modeling of the telescope described in Chapter 4
was mainly undertaken to make the hit estimate as realistic as possible.

This Chapter compares the performance of the entire telescope system as de-
scribed in the simulation with what we get from the physical hardware, in order to
qualify both the model developed in Chapter 4, as well as the simulation geometry
etc. Further, the simulated system is used to estimate the track resolution in the
DUTs, which is useful when analyzing data generated with the physical hardware.

Tracking generally means fitting a line representing the particle trajectory to
measurement points. The reconstruction software used with BAT tries to fit the
measurements of the particle position to a straight line using a Kalman filter, which
is an optimal estimator of a linear system, equivalent to a global least squares fitter
[9, 37]. This line is then extrapolated into the DUTs, providing a hit position
estimate in these planes.

The measurements from the telescopes comes as numeric values representing
charges collected on a set of numbered strips . Thus, in order to produce a position
measurement usable for fitting, these has to be interpreted as one single measure-
ment. This is done by the eta-correction method described in Chapter 2.2.4, which
provides a hit position estimate in the local frame of the telescope sensor.

In order to fit the particle trajectory, the relative positions of the telescope sen-
sors then has to be known, and for extrapolating the track into the DUTs, the posi-
tion of these has to be known with respect to the telescope sensors. To find these
relative positions with high enough accuracy to preserve the accuracy of the tele-
scope system, an offline alignment process is used. This starts out with an estimate
of the plane positions using on-site survey measurements, which is then iteratively
improved by fitting tracks for many particles and looking at the resulting residual

93

94 CHAPTER 5. PERFORMANCE OF THE TRACKING AND ALIGNMENT

distributions. The alignment process is included in the program doing tracking.
For simulation, alignment is unnecessary as the position of the “sensors” are

completely known. This means that the simulation is expected to produce tracks
with smaller error than the real experiment, even if the single devices are perfectly
modeled. This becomes a problem when comparing simulated device models with
experimental data, where the plane positions are not known with perfect accuracy.
However, it turns out that the alignment process works well enough on the experi-
mental data for this not to be a huge issue.

5.1 Alignment and hit resolution in BAT

Before the simulation can be trusted to say anything about the error of the tracks ex-
trapolated into the DUTs, the telescope model, material distribution, and particle-
matter interaction model used must be validated against the real data. One possibil-
ity is to use two planes for extrapolating the path of the particle into the third plane.
This yields an unbiased estimate of the particle hit position in the third plane, which
can then can then be compared to a measured hit position from the plane itself in
order to get an unbiased residual. The distribution of this error estimate can then
be compared between simulation and experiment, as shown in figure 5.1.

Figure 5.1 show that see that the distribution matches in shape is fairly good,
but that the simulated distributions are somewhat more peaked. A likely explana-
tion for this is that the simulated telescope system is perfectly aligned, while the
real telescope is not. It is also seen in both the simulation and experimental data
that the residual distribution in plane 6 is much broader. This is to be expected
from the telescope configuration (see figure 1.8), as the fit from planes 1 and 3
has to be extrapolated over a long distance and through several layers of material
to reach plane 6. The angle is also poorly measured, due to the distance between
plane 1 and 3 is only being 5.9 [cm], which further reduces the accuracy of the
prediction. The simulation still reproduces the distribution, which indicates that
both scattering and measurement errors in the planes are well modeled.

Another validation opportunity is the χ2 distribution, shown in figure 5.2. The
χ2 variable is defined per-track by equation (5.1), which sums over both layers
(X- and Y- measurement) in the three telescope planes, and the hit error estimate
σhit is fixed to 5 [µm]. As selected tracks are required to have exactly one hit
in each plane and layer are rejected, the degrees of freedom, defined as ndof =
measurements−fitted variables is always the same, and equal to ndof = 6−4 = 2.

χ2 =
∑

All planes and layers

(x̂track − xmeasured)2

σ2
hit

(5.1)

From figure 5.2, we see that the distributions match almost perfectly over two
orders of magnitude. The non-matching parts are still quite close, and tracks in
this region will anyway be removed by a χ2-cut usually introduced by analysis
to remove “bad” tracks. Large χ2 values correspond to large deviations from a

5.1. ALIGNMENT AND HIT RESOLUTION IN BAT 95

 m]µ(track - hit) [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Data

Simulation

BAT-81, Unbiased residuals (zoom) (layer 0)

(a) BAT1, x-direction

 m]µ(track - hit) [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Data

Simulation

BAT-81, Unbiased residuals (zoom) (layer 1)

(b) BAT1, y-direction

 m]µ(track - hit) [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Data

Simulation

BAT-83, Unbiased residuals (zoom) (layer 0)

(c) BAT3, x-direction

 m]µ(track - hit) [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Data

Simulation

BAT-83, Unbiased residuals (zoom) (layer 1)

(d) BAT3, y-direction

 m]µTrack - hit [
-2000 -1500 -1000 -500 0 500 1000 1500 2000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Data

Simulation

BAT-86, Unbiased residuals (layer 0)

(e) BAT6, x-direction. Note different scale on
X-axis

 m]µTrack - hit [
-2000 -1500 -1000 -500 0 500 1000 1500 2000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Data

Simulation

BAT-86, Unbiased residuals (layer 1)

(f) BAT6, y-direction. Note different scale on
both axis

Figure 5.1: Comparison of unbiased BAT residuals for all planes and layers. X
and Y corresponds to coordinates used in tracking program and analysis software,
where X points skywards, and Y to the left when looking downstream. Layer 0 is
the N-side, and layer 1 is the P-side.

96 CHAPTER 5. PERFORMANCE OF THE TRACKING AND ALIGNMENT

0 5 10 15 20 25 30

-410

-310

-210

-110 Data

Simulation

2χTrack

Figure 5.2: χ2-distribution for track, from simulation and data, on a log scale

straight track, and there may be many contributions to why the experimental data
contain more of these tracks. It could for example be due to incomplete modeling
of particle scattering due to too little material in the simulation geometry, presence
of more noise-hits in the real BAT planes than in the model, desynchronization of
read out trigger numbers between BAT planes, and more.

Another interesting result is that the hit resolution (represented by the unbiased
residuals) is depending on the interstrip hit position, as shown in figure 5.4. This is
most probably due to a feature of the eta-correction method (described in Chapter
2.2.4) used to estimate the hit position. This method uses the charge-sharing to
resolve the hit position with sub-pitch accuracy, and as there is very little “real”
charge sharing when the particles passes close to the center of a strip (see the event
gallery in figure 4.4), this results in higher measurement errors for those events.

The plots in figure 5.4 also show that the estimated hit position is biased for
particles passing close by, but not on, the center of a strip. This can be explained
by that the amount of real charge-sharing is very low for particles passing close
to the center of a strip, so almost all the “charge sharing” seen when creating the
dN
dη distributions are really due to noise, increasing the values of η used to fill the
histogram. This results in broader side-peaks on the dN

dη histogram, which in turn
results in less steep slopes around η ≈ 0.0 or 1.0. When using this to correct a
hit position estimate, the value of η for the given hit is compared to the cumulative
distribution function (CDF) of the dN

dη distributions. But even if the noise has al-

5.2. TRACK RESOLUTION IN DUTS 97

tered the CDF, each and every measurement is not biased, as the noise have equal
probability to pull it in either direction. Thus the eta-corrected hit estimate is pulled
closer to the center of the closest strip than the correct value, as sketched in figure
5.3, and this gives at least one source of bias such as seen in figure 5.4.

η

CDF without noise

CDF with noise

H
it

 e
s
ti

m
a
te

Figure 5.3: Eta-correction cumulative distribution functions (CDF)s (cartoon, see
figure 2.7(b)), for cases with and without noise. Figure shows low-eta part of the
CDF.)

The plots in figure 5.4 are well reproduced by the simulation, which means that
unknown processes probably do not play a significant role in producing this result.

These plots probably also explains the long tails in the residual distributions
shown in figure 5.1. By comparing figures 5.1(a) and 5.4(a), we see that the region
in the first plot containing the tails (± 15 – 20 [µm]) is coinciding with a region in
the second plot containing biased hit estimates.

5.2 Track resolution in DUTs

From the discussion above, the simulation seems to be a good description of the
experiment. This means we can use it to compare the true hit position in the DUTs1

with the estimated hit position from telescope tracking. This defines the hit reso-
lution in the DUTs, and plots of this is shown in figure 5.5. As these distributions
are close to Gaussian, the standard deviation of a Gaussian fitted to this is taken as
the resolutions, which are listed in table 5.1.

In table 5.1, we note that the resolution get better as the device gets closer to
the telescope doublet BAT1/BAT3. This is reasonable, as two planes gives a tighter

1Point of intersection between particle trajectory and DUT sensor, see Appendix A.3.2.

98 CHAPTER 5. PERFORMANCE OF THE TRACKING AND ALIGNMENT

(a) X-direction

(b) Y-direction

Figure 5.4: Unbiased residuals (as shown in figure 5.1) versus estimated hit posi-
tion modulo strip pitch. Scatterplot with overlayered profile histogram of the same
data, error bars showing spread along the plot’s y-axis. Data from real experiment.

5.2. TRACK RESOLUTION IN DUTS 99

simResiduals_160_resX
Entries 399501
Mean 0.1129
RMS 6.737

 / ndf 2χ 1.206e+04 / 370
Constant 13.8± 6059
Mean 0.0102± 0.1028
Sigma 0.010± 6.371

 m]µTrack - truth [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

simResiduals_160_resX
Entries 399501
Mean 0.1129
RMS 6.737

 / ndf 2χ 1.206e+04 / 370
Constant 13.8± 6059
Mean 0.0102± 0.1028
Sigma 0.010± 6.371

Track vs. truth residuals (X)

(a) DUT1 (planar), X

simResiduals_160_resY
Entries 399501
Mean -0.01163
RMS 6.416

 / ndf 2χ 1.718e+04 / 371
Constant 15.2± 6405
Mean 0.00962± -0.01765
Sigma 0.010± 5.947

 m]µTrack - truth [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

simResiduals_160_resY
Entries 399501
Mean -0.01163
RMS 6.416

 / ndf 2χ 1.718e+04 / 371
Constant 15.2± 6405
Mean 0.00962± -0.01765
Sigma 0.010± 5.947

Track vs. truth residuals (Y)

(b) DUT1 (planar), Y

simResiduals_164_resX
Entries 391714
Mean -0.05993
RMS 6.117

 / ndf 2χ 3138 / 346
Constant 13.6± 6510
Mean 0.00955± -0.06792
Sigma 0.008± 5.946

 m]µTrack - truth [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

simResiduals_164_resX
Entries 391714
Mean -0.05993
RMS 6.117

 / ndf 2χ 3138 / 346
Constant 13.6± 6510
Mean 0.00955± -0.06792
Sigma 0.008± 5.946

Track vs. truth residuals (X)

(c) DUT2 (STA-3E), X

simResiduals_164_resY
Entries 391714
Mean -0.02551
RMS 5.807

 / ndf 2χ 4443 / 348
Constant 14.7± 6916
Mean 0.00897± -0.03194
Sigma 0.008± 5.578

 m]µTrack - truth [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

simResiduals_164_resY
Entries 391714
Mean -0.02551
RMS 5.807

 / ndf 2χ 4443 / 348
Constant 14.7± 6916
Mean 0.00897± -0.03194
Sigma 0.008± 5.578

Track vs. truth residuals (Y)

(d) DUT2 (STA-3E), Y

simResiduals_168_resX
Entries 387939
Mean -0.00987
RMS 5.922

 / ndf 2χ 2668 / 329
Constant 13.9± 6648
Mean 0.0093± -0.0142
Sigma 0.008± 5.774

 m]µTrack - truth [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

simResiduals_168_resX
Entries 387939
Mean -0.00987
RMS 5.922

 / ndf 2χ 2668 / 329
Constant 13.9± 6648
Mean 0.0093± -0.0142
Sigma 0.008± 5.774

Track vs. truth residuals (X)

(e) DUT3 (FBK-3E7), X

simResiduals_168_resY
Entries 387939
Mean 0.01255
RMS 5.641

 / ndf 2χ 3895 / 351
Constant 14.9± 7035
Mean 0.008781± 0.009066
Sigma 0.007± 5.439

 m]µTrack - truth [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

simResiduals_168_resY
Entries 387939
Mean 0.01255
RMS 5.641

 / ndf 2χ 3895 / 351
Constant 14.9± 7035
Mean 0.008781± 0.009066
Sigma 0.007± 5.439

Track vs. truth residuals (Y)

(f) DUT3 (FBK-3E7), Y

simResiduals_172_resX
Entries 384173
Mean 0.06718
RMS 5.87

 / ndf 2χ 3823 / 347
Constant 14.2± 6651
Mean 0.00924± 0.06602
Sigma 0.008± 5.699

 m]µTrack - truth [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

simResiduals_172_resX
Entries 384173
Mean 0.06718
RMS 5.87

 / ndf 2χ 3823 / 347
Constant 14.2± 6651
Mean 0.00924± 0.06602
Sigma 0.008± 5.699

Track vs. truth residuals (X)

(g) DUT4 (FBK-3EM5), X

simResiduals_172_resY
Entries 384173
Mean 0.01028
RMS 5.58

 / ndf 2χ 5741 / 348
Constant 15.3± 7025
Mean 0.008731± 0.009589
Sigma 0.008± 5.369

 m]µTrack - truth [
-50 -40 -30 -20 -10 0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

simResiduals_172_resY
Entries 384173
Mean 0.01028
RMS 5.58

 / ndf 2χ 5741 / 348
Constant 15.3± 7025
Mean 0.008731± 0.009589
Sigma 0.008± 5.369

Track vs. truth residuals (Y)

(h) DUT4 (FBK-3EM5), Y

Figure 5.5: Error on track in DUTs (defined as x̂track − xtruth), fitted to a Gaussian.

100 CHAPTER 5. PERFORMANCE OF THE TRACKING AND ALIGNMENT

Device name
Resolution [µm] Z-position Z-position

X Y rel. BAT6 [mm] rel. BAT1 [mm]
PLANAR 6.37 5.95 326.12 -516.98

STA-3G 5.95 5.58 486.14 -356.96
FBK-3E7 5.77 5.44 566.15 -276.95

FBK-3EM5 5.70 5.37 646.14 -196.96

Table 5.1: Estimated track resolution in DUTs from simulation, and DUT positions
relative to the two closest telescope planes. Device names and geometry: See table
3.3 and figure 3.6.

constrain on the track than one, and as the sensors are also closer to the doublet than
to BAT1.

As these estimates are made using simulated data only, the real values of the
track error might be somewhat larger, as seen in the unbiased residual plots. This
can for example be due to residual misalignment in the real system.

5.3 Conclusion

In this chapter, a validation of the simulation of particle trajectories and telescope
planes has been presented. The simulation passed this test very well, showing good
agreement with experimental observables.

This was then used to extract the tracking resolution in the DUTs, shown in
table 5.1, showing that the resolution is approximately 6 [µm]. Knowing this res-
olution is important when analyzing the response of DUTs to MIP radiation, or
comparing the output of DUT models to experimental data. This is the topic of the
next chapter.

Chapter 6

ATLAS Pixel simulation models

The main objective of the testbeam is to test the response and performance of
ATLAS 3D pixel sensors, described in Chapter 2.2.5. The testbeam simulation
includes the particles trajectory and energy loss, as well as the sensor responses.
Thus different models for sensor response can be tried and compared to what is
measured in the experiment. Doing this is useful for testing hypothesis about the
sensor response function, as well as developing response function models that can
be incorporated in larger systems such as ATLAS simulation.

This chapter introduces models describing pixel sensor response, including the
development of such models, and comparisons with data.

6.1 Simulation geometry

When used in a testbeam, the pixel sensors and frontend chips are mounted on
PCBs providing mechanical support, as well as making it possible to connect the
sensors to the DAQ and power systems. A picture of such a board is shown in
figure 6.1.

As with the Bonn Atlas Telescope, the geometry of the sensor as well as the
testboard must be described to Geant4. The geometry used is shown in figure
6.2, and a computer rendered drawing is shown in figure A.1(b). This includes a
sensor assembly which is the sensor itself, the frontend (FE) chip, and solder for
connecting them together and biasing the sensor. This is mounted on a a PCB,
which may have a hole for letting low-energy particles through to a scintillator
trigger when used in source-tests. A protective plastic cover is also mounted on the
PCB, covering the sensor and wirebonds. The solder used for connecting the sensor
to the FE is indium bumps, which after bump bonding are cylinders 7 [µm] tall and
18 [µm] in radius1, one for each of the 160× 18 = 2880 pixels. As modeling this
as 2880 separate volumes would create an unnecessary complicated simulation
geometry, this is modeled as a layer of indium covering the entire sensor/FE area,
with a total mass equal to the total mass of indium in the real geometry.

1Giovanni Darbo, private communications

101

102 CHAPTER 6. ATLAS PIXEL SIMULATION MODELS

The area of the sensor and FE is taken to be (nRows× 400)× (nCols× 50) =
(18× 400)× (160× 50) = 7.2× 8.0 [mm2], thus ignoring ganged- or extra-long
edge pixels, and bias overhang at the edges. Similarly, the FE is simply taken to be
aligned and of the same size as the sensor, no overhang for wirebonding is taken
into account.

The four devices under test (DUTs) have slightly different geometry, differ-
ing in the presence of a hole in the PCB behind the sensor, sensor thickness, and
the presence of a aluminum bias tab. The different geometry parameters used are
shown in table 6.1.

DUT ID Name Hole in PCB Sensor thickness [µm] Bias tab
1 Planar No 250 Yes
2 STA-3E No 210 No
3 FBK-3E7 Yes 200 Yes
4 FBK-3EM5 Yes 220 Yes

Table 6.1: Geometrical parameters of DUTs. DUT names and IDs defined in figure
3.6.

6.2 Pixel response models

Parallel to what is described in Chapter 4, models for the response of 3D pixel
sensors to energy depositions has been studied. These models, described in Chapter
6.2.2, are not as closely linked to the device physics (drift-diffusion etc.) as the
model developed for the BAT sensor, due to the more complex field geometry
in a 3D pixel sensor. They are instead so-called effective models, describing the
amount of charge collected on the hit pixel and its neighbours. An alternative,
which currently has not been implemented for pixel response, is to do a complete
simulation of drift-diffusion, trapping etc. for each carrier cloud.

6.2.1 Carrier cloud tracking models

As stated above, a full simulation of drift-diffusion etc. is possible, but computa-
tionally expensive and harder to implement. Thus this has unfortunately not been
implemented for pixel sensors due to time constraints in the thesis work.

A viable way to make a physical model of a 3D pixel sensor may be to treat
each carrier cloud as a particle, and solve its equations of motion until collection at
an electrode. This is essentially what was done for the BAT sensor (here using an
analytical approach), taking diffusion into account by letting the size and shape of
the carrier cloud evolve with time.

For a 3D sensor, this method of including diffusion is not possible due to the
field- and charge collection geometry. A possible solution is to add a random

6.2. PIXEL RESPONSE MODELS 103

Figure 6.1: Picture of the pixel module assembly

7c
m

1,6mm

4mm

Plastic
cover

PCB

Sensor assy.

5
m

m

0,5mm

S
en

sor
~

 2
0

0
 µ

m

F
E

-I3
195 µ

m

Al bias tab
1 µm
Optional

In bumps
7 µm
1.27 % density

S
en

so
r

as
sy

:
8

.0
 m

m
 x

 7
.2

 m
m

 x
 d

z

Figure 6.2: Pixel module assembly. Left panel: Overall geometry, including PCB
and plastic cover. Right panel: Thickness of parts in sensor assembly.

104 CHAPTER 6. ATLAS PIXEL SIMULATION MODELS

component in the drift-diffusion equation for the charge clouds, which can be done
by at each timestep sampling the new particle position from a Greens-function
describing the probability distribution of new positions after the timestep2. Further,
the Fano sampling of charge clouds (see Chapter 3.1.1) should be moved into the
device simulation code, making it more flexible for tuning without re-running the
whole simulation. This also enables adding a randomized transverse displacement
of the clouds initial position with respect to the line between the step points, similar
to the σ0 parameter in the BAT model.

Full 3D sensors have two features which is of importance if doing such a simu-
lation. The first one is that they have an essentially two-dimensional field geometry,
the second is that the amount of charge-sharing for hits in the pixel interior are very
low (see figure 2.11, 0◦ data).

The main advantage of having a two-dimensional field geometry is that the
fieldmap can be limited to two dimensions, making it much easier and faster to
generate and to access. Limiting the particle motion to two dimensions are also
possible, but only removes two variables (particle position and velocity transversly
to the sensor plane) from the simulation. The downsides of limiting particle motion
to two dimensions is that it makes it impossible to model drift transversly to the
sensor plane due to magnetic deflection. Oxide layer effects also become difficult,
as they depend on transverse position, and electrostatic interaction between charge-
clouds also becomes impossible to model.

The fact that 3D sensors really only see sharing at pixel edges can be used to
limit the domain of full simulation to the areas close to the edges. Such a hybrid
model should yield a major speedup, as the charge-clouds deposited in the central
area of a pixel can immediately be “collected” in this pixel. Further, charge-clouds
deposited in the edge areas then only needs to be tracked to the edge of a central
area, where it can be deposited. The problem for this method is how to simulate
trapping, which results in only a fraction of the total charge in a cloud being col-
lected at the electrode, described in Chapter 2.2.2. Simulating trapping correctly is
dependent on tracking the cloud all the way to collection at an electrode, since the
cloud (or more realistically, parts of it) has a certain probability for getting trapped
at each timestep.

6.2.2 Effective models

Effective models does not describe the detailed microscopic behavior of the elec-
trons and holes, but instead directly describe the response as a function of position
and amount of charge deposits.

The main parameter in such a model is the three-dimensional charge collection
efficiency, defined in equation (6.1). The number of charges created is here the

2This is similar to what is done in Metropolis-Hastings Monte-Carlo (MHMC) [31]. The equation
of interest must be solved is then the the Fokker-Planck equation (FPE), which describes the time
evolution of the probability density describing where to find a particle affected by both drift- and
diffusion.

6.2. PIXEL RESPONSE MODELS 105

clouds coming from Fano sampling, described in Chapter 3.1.1.

ε3 (~r) =
Number of charges collected
Number of charges created

(6.1)

The digital number output from each pixel above a threshold is not the number
of electrons collected, but something known as ToT or Time-over-Threshold. This
is the time (in units of 25 [ns]) the amplifier connected to the pixel has an output
voltage above a certain threshold value. The response, shown in figure 6.3, is not
completely linear, and is often fitted by the function given by equation (6.2)3. Here
Q is the charge injected into the amplifier.

ToT = a0
a1 +Q

a2 +Q
(6.2)

]
-

Injected charge [e
0 10000 20000 30000 40000

T
oT

0

20

40

60

80

100

120

Figure 6.3: Pixel ToT as a function of charge Q injected into the amplifier by a
capacitor inside the frontend chip. Data for the Stanford 3E device.

For the Stanford 3E device, the fitted parameters of equation (6.2) are given in
equation (6.3). The data is fitted in the range Q ∈ [4000, 45000].

a0 = 731.525, a1 = −1134.26, a2 = 230466 (6.3)

3Philippe Grenier, private communication

106 CHAPTER 6. ATLAS PIXEL SIMULATION MODELS

6.2.2.1 HolePunch model

The HolePunch (HP) model describes a sensor which has a 100% charge collection
efficiency outside the electrodes, and 0% inside. This leads to the charge-collection
efficiency described by equation (6.4). Here ∆ri is the distance between the center
of electrode cylinder ri and the point of deposit, and R the electrode radius. H(x)
is the Heaviside step-function, which is 1 for x > 0, and 0 for x < 0.

ε3(~r) =
∏
i

H(∆ri −R) (6.4)

Analytical study This model can be studied analytically in the case of a beam
without any divergence, leading to an analytical expression for the 2D charge col-
lection efficiency as well as the 1D charge collection efficiency.

2D charge collection efficiency for a divergency-free beam can be defined as:

ε2(x0, y0, θ) =

∫
λ ε3(~r) d~r∫
λ′ 1 d~r

(6.5)

The integrals in this equation are path-integrals, with λ being the path of a particle
parallel to z-axis (as defined in figure 6.4), passing through the point (x0, y0, 0).
θ is the tilt angle of the sensor around the y-axis, and λ′ is the path of a particle
passing perpendicularly through the sensor in an area which has ε3 = 1 along the
whole path; this integral serves to normalize the 2D charge collection efficiency to
unity for such a particle.

An analytical expression for ε2 can be found by parameterizing the four bound-
ary curves. This yields:

~v1 = t1ê1 − d
2 ê3 , ~v2 = t2ê1 +

d

2
ê3

~v3 = −r(y)ê1 + t3ê3 , ~v4 = r(y)ê1 + t4ê3

Here r(y) is the “radius” of the electrode along the x-axis at a given y-position,
and is given by:

r(y) =
√
R2 − y2

0

These vectors can then be rotated using a rotation matrix, and then solving for at
which value of t they intercept the line x = x0. This yields:

t1 = x0+ d
2

sin θ

cos θ , t2 =
x0 − d

2 sin θ
cos θ

t3 = x0+r(y) cos θ
sin θ , t3 =

x0 − r(y) cos θ
sin θ

Inserting this into the z-components of the boundaries yields the z-position of
the interception points (z1 through z4). As a path integral of length L through
a function of value 1 equals L, the 2D charge collection efficiency as defined by

6.2. PIXEL RESPONSE MODELS 107

R

d

x
0 x-axis

z-
ax

is

In
te

gr
at

io
n

pa
th

Figure 6.4: Geometry of analytical HolePunch-model

equation (6.5) can be calculated for the HP model. This leads to equation (6.6) if
0◦ < θ < 90◦ and the particle misses the hole (z4 > z2 or z1 > z3 or |y0| > R),
equation (6.7) if 0◦ < θ < 90◦ and it hits the hole, and equation (6.8) if θ = 0◦.
This function has been plotted in figure 6.5.

ε(HP)
2 (x0, y0, θ) =

z2 − z1

d
(6.6)

ε(HP)
2 (x0, y0, θ) =

1
d

[(z4 − z1)if > 0, else 0 + (z2 − z3)if > 0, else 0] (6.7)

ε(HP)
2 (x0, y0, θ) =

{
1 for x2

0 + y2
0 < R2

0 else
(6.8)

Further one can define the average charge collection efficiency as in equation
(6.9), which is normalized to 1 for a fully efficient sensor at normal incidence4.

ε1 =
1

Projected pixel area

∫∫
projected pixel area

ε2(x0, y0) dx0 dx0 (6.9)

Numerically integrating the efficiency maps shown in figure 6.5 and correcting for
integration area being less than the area per electrode, and the number of electrodes
per pixel, this leads to the curve shown in figure 6.6.

4Meaning that ε1 as defined here can go above 1 if the beam is not hitting the sensor at normal
incidence.

108 CHAPTER 6. ATLAS PIXEL SIMULATION MODELS

60 40 20 0 20 40 6010
5
0
5

10

(a) 0.0◦

60 40 20 0 20 40 6010
5
0
5

10

(b) 3.0◦

60 40 20 0 20 40 6010
5
0
5

10

(c) 5.0◦

60 40 20 0 20 40 6010
5
0
5

10

(d) 15.0◦

60 40 20 0 20 40 6010
5
0
5

10

(e) 30.0◦

(f) Color scale used in all plots. White = 0.0

Figure 6.5: 2D efficiency (as defined in equation 6.5) around a single electrode in
the HolePunch model. Analytical calculation using parameters R = 7 [µm] and
d = 210 [µm]. All units on axis in [µm].

6.2. PIXEL RESPONSE MODELS 109

0 5 10 15 20 25 30
Tilt angle [degrees]

0.90

0.95

1.00

1.05

1.10

1.15

Ch
ar

ge
-c

ol
le

ct
io

n
ef

fic
ie

nc
y

Readout electrodes per pixel
1
2
3
4

Figure 6.6: Mean collection efficiency (as defined in equation 6.9) as a function of
angle and number of readout electrodes per pixel. Curves cut before the projections
of electrode columns start to overlap.

This analytical model describes the charge collected from a particle depositing
a fixed amount of energy per unit length. It also assumes that all particles have
trajectories parallel to the z-axis, with no spread in angle. This is not true for a
charged particle traversing the sensor bulk, which have an uneven energy deposit
along its path. Neither is the actual beam completely parallel to the z-axis (see
Chapter 3.3); but it is still an useful exercise for interpreting the data. Note that the
scale of the x-axis as shown on the plots in figure 6.5 is different to the one used
in the plots from real data or simulation, as the reconstruction software rotates the
x-axis along with the device. Thus the plots of figure 6.5 is scaled (compressed)
by a factor cos θ along the x-axis when compared to plots from simulation or data.
This only affects the axis perpendicular to the axis of rotation.

Simulation results The HolePunch-model has been implemented in the simula-
tion as a simDut (see Appendix C.3), thus getting charge deposits from the Fano
sampling described in Chapter 3.1.1. Electronics noise etc. is not included in the
model. To make the HolePunch model, the three-dimensional charge collection
efficiency of equation (6.4) has been extended to include a possibility of a effi-

110 CHAPTER 6. ATLAS PIXEL SIMULATION MODELS

ciency εcol
3 inside the electrode columns, as this seems to be necessary in order

to reproduce the data. For calculating the ToT as a function of deposited charge,
equation (6.2) with the parameters of equation (6.3) is used for Q > 3200 e−. This
is the threshold setting of the frontend, and hits with charge deposit below this
value are not registered. This results in that the simulation model has no hits where
ToT(Q) < ToT(Q = 3200) = 6. The charge of a cluster is calculated by inverting
the transformation leading to equation (3.3), so that the number of electrons in a
cluster is Nk = E′k/w.

A comparison of the sum of the ToT values for pixels in clusters close to the
estimated hit position is shown in figure 6.7. Here the data is compared to the
HolePunch model with different values of εcol

3 . The curves do not overlap, which
is to be expected as this is a simple and untuned model. However, some features,
such as the extra “bump" shown in the data at low-ToT values, are reproduced
when εcol

3 > 0.0, but not when εcol
3 = 0.0. It has been shown [13] that this fea-

ture is connected to the electrodes, and the simulation further indicates that there
must be some efficiency in the undepleted columns. This claim is also further
strengthened by the charge collection efficiency analysis described in Chapter 6.3.
A possible explanation for this is that some of the minority carriers created when
a charged particle passes through the undepleted volume can diffuse to the edge of
the depletion zone, where they are swept away by the electric field and collected
at another electrode of opposite polarity, creating a signal. This is in analogy to
what happens in solar cells, where one normally assume that the volume of un-
depleted material within one diffusion length from the edge of the depletion zone
is also active [35]. Some testbeam papers [40, 22] have also suggested that un-
depleted electrodes might have some efficiency. The last paper cited speculates
that δ-electrons originating from inside the electrodes traveling into the depleted
volume might be the reason for an apparent efficiency. δ-electrons are included in
this simulation, but the bump is still not visible in the spectra for εcol

3 = 0.0, which
makes it less likely that the electrode efficiency observed is due to delta-electrons
instead of “true” efficiency. Further simulation studies with shorter secondary ra-
diation production cutoff (currently set to 5 [µm]) should be done to confirm or
dismiss this.

It should also be noted that the
∑

ToT-spectra from the data extends all the
way down to

∑
ToT = 0, while the simulation has a sharp cutoff at

∑
ToT = 6.

This means that there is a response below this threshold, which must be included
in an accurate model. The peak of the spectra is also displaced towards a lower
ToT-value, which might be due to a problem with the calibration used to get the
parameters in equation (6.3), charge multiplication in the real device leading to
ε3 > 0, or the amount of deposited energy in the simulation being too low.

Figures 6.8 and 6.9 shows the hit efficiency for both the real data and the
HolePunch model, as a function of hit position. The hit efficiency εh is defined as
the probability of getting one or more pixels close to the hit position above thresh-
old, and is related to the charge collection efficiency by equation (6.10). Here
P (Q) is the probability distribution describing the charge deposited in an event,

6.2. PIXEL RESPONSE MODELS 111

Cluster charge [ToT]
0 20 40 60 80 100 120 140

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Data

Simulation

(a) εcol
3 = 0.0

Cluster charge [ToT]
0 20 40 60 80 100 120 140

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Data

Simulation

(b) εcol
3 = 0.3

Cluster charge [ToT]
0 20 40 60 80 100 120 140

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Data

Simulation

(c) εcol
3 = 0.5

Figure 6.7: Comparison of cluster
∑

ToT spectra for clusters matched with tracks,
using data for different εcol

3 in the HolePunch model, electrode R = 7.0 [µm]. All
curves normalized to unit area.

112 CHAPTER 6. ATLAS PIXEL SIMULATION MODELS

(a) Sta-3E sensor (no field), real experiment.

(b) HolePunch model (εcol
3 = 0.0), true hit position.

(c) HolePunch model (εcol
3 = 0.0), simulated BAT for tracking.

(d) HolePunch model (εcol
3 = 0.1), simulated BAT for tracking.

(e) HolePunch model (εcol
3 = 0.15), simulated BAT for tracking.

(f) HolePunch model (εcol
3 = 0.2), simulated BAT for tracking.

(g) HolePunch model (εcol
3 = 0.3), simulated BAT for tracking.

(h) Colormap used in hit efficiency maps

Figure 6.8: 2D maps of hit efficiency for real data and HolePunch model with
electrode radius R = 7 [µm]. Both real data and simulation uses ≈ 0◦ beam
incidence. All units on axis in µm.

6.2. PIXEL RESPONSE MODELS 113

(a) Sta-3E sensor (no field), real experiment.

(b) HolePunch model (εcol
3 = 0.0), true hit position

(c) HolePunch model (εcol
3 = 0.0), simulated BAT for tracking

(d) HolePunch model (εcol
3 = 0.1), simulated BAT for tracking

(e) HolePunch model (εcol
3 = 0.15), simulated BAT for tracking

(f) HolePunch model (εcol
3 = 0.2), simulated BAT for tracking

(g) HolePunch model (εcol
3 = 0.3), simulated BAT for tracking

Figure 6.9: Same data as the plots in figure 6.8, projection onto x-axis of 10 [µm]
slices around the electrodes. Red = slice around readout electrodes, blue = slice
around bias electrodes.

114 CHAPTER 6. ATLAS PIXEL SIMULATION MODELS

Model Hit efficiency εhit [%]
Data (Sta-3E, no magnetic field) [13] 96.7
HolePunch, εcol

3 = 0.0 95.7
HolePunch, εcol

3 = 0.1 95.8
HolePunch, εcol

3 = 0.15 96.5
HolePunch, εcol

3 = 0.0 98.5
HolePunch, εcol

3 = 0.0 100.0

Table 6.2: Comparison of overall hit efficiencies for full 3D sensor and simulation
models. ≈ 0◦ angle of incidence used everywhere.

which is something close to a Landau distribution (see Chapter 2.1). Note that
equation (6.10) is valid both for the overall hit efficiency, and the hit efficiency as
a function of hit position. However one should change the normalization of the 2D
charge collection efficiency used in equation (6.5) so that it is normalized to unity5,
as the Landau distribution is depending on pathlength in both mean and shape (see
Chapter 2.1). The overall hit efficiency for the different models is listed in table
6.2.

εh =
∫ ∞

threshold
ε · P (Q) dQ (6.10)

Comparing the results shown in figures 6.8 and 6.9 to data is complicated by the
poorly understood low-ToT response of the frontend. However it seems likely that
the hole radius is approximately right, and also that the hole efficiency is smaller
than εcol

3 ≈ 0.2.
Comparing figures 6.8(b) versus 6.8(c) and 6.9(b) versus 6.9(c) clearly shows

the effect of uncertainty in hit position estimation by the telescope. Here the effect
of δ-electrons is also visible, as the hit efficiency does not go completely to 0, even
when εcol

3 = 0.0 and in the middle of the electrodes, as seen in figure 6.9(b).
A source of error in the interpretation of this data, especially the real exper-

imental data, is the angle distribution of the beam (discussed in Chapter 3.3). If
the sensors are mounted perfectly perpendicular to the beam, as they are in the
simulation, the angle distribution will cause some of the particles to travel some of
the distance inside the electrodes, and some inside the depletion zone. This leads
to an additional smearing of efficiency maps beyond what is caused by the track-
ing resolution, as seen in figure 6.9(b) (although this is probably also affected by
δ-electrons). The real beam does not only have an angular spread, but likely also
a non-zero mean angle. This leads to an apparent elongation of the projection of
the electrodes, as seen in the analytic results in Chapter 6.2.2.1, and maybe also in
figure 6.12(a).

5Change the path λ′ to being the actual path taken by the particle.

6.3. PIXEL CHARGE COLLECTION EFFICIENCY ANALYSIS 115

6.2.2.2 S-curve model

Another model of the efficiency which has been less studied, is the S-curve model
proposed by Vadim Kostyukhin. Here the efficiency is given by by equation (6.11),
which contain two parameters: The electrode radius R and the sharpness σ. The
effect of changing the new parameter σ is illustrated in figure 6.10. Here we see that
in the limit of small σ, the model tends towards the εcol

3 = 0.0 HolePunch model,
while for larger σ the charge collection efficiency in the center of the electrode is
not zero.

eff(~r) =
∏
i

1

1 + exp
(

∆ri−R
σ

) (6.11)

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

(a) σ = 0.5 [µm]

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

(b) σ = 1.0 [µm]

0 2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) σ = 3.0 [µm]

Figure 6.10: S-curve model, charge-collection efficiency as a function of distance
from electrode center in [µm] for different σ

This model shows a less peaked response in the low-ToT area, as seen in figure
6.11. However, the “hump” seen in the data is still not reproduced, as the peak is
smeared out. This is also seen in the charge collection efficiency analysis, figure
6.14.

6.3 Pixel charge collection efficiency analysis

When tuning pixel simulation models, the information provided by the hit effi-
ciency analysis (such as shown in figures 6.8 and 6.9 and table 6.2) is not sufficient.
This is because the main tunable parameter in an effective model is the charge col-
lection efficiency, of which the hit efficiency is a function (equation (6.10)).

An analysis addressing this has been implemented, histogramming the
∑

ToT
and

∑
Q value6 for a hit cluster as a function of hit position within a pixel. Results

from this analysis is shown in figures 6.13, 6.14 and 6.12.
Figure 6.13 clearly show that the low bump of the

∑
ToT spectra (figure 6.7)

is created in the area around the electrodes, and the shape of the spectra in this area
is also possible to recognize. This quite different in the HP model and the real data,
with the HP showing a more “peaked” low-ToT bump, a feature also seen in figure

6If the function ToT(Q) is known for the sensor

116 CHAPTER 6. ATLAS PIXEL SIMULATION MODELS

Cluster charge [ToT]
0 20 40 60 80 100 120 140

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Data

Simulation

(a) σ = 0.5 [µm]

Cluster charge [ToT]
0 20 40 60 80 100 120 140

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Data

Simulation

(b) σ = 3.0 [µm]

Figure 6.11: Comparison of cluster
∑

ToT spectra for clusters matched with
tracks, using data for different σ in the HolePunch model, electrode R = 7.0 [µm].
All curves normalized to unit area.

6.3. PIXEL CHARGE COLLECTION EFFICIENCY ANALYSIS 117

6.7. For the S-curve model (figure 6.14), this peak has been smeared out so much
that the bump is no longer visible.

Another interesting feature is how the spectra changes as a function of position
around the transition between column and bulk. Here the data shows a “lifting”
of the bottom edge of the distribution when approaching the edge of the columns.
This may indicate a smooth transition between low- and normal efficiency regions
of the sensor. This is not reproduced by the HP model, while the S-curve model
does reproduce it to some extent.

The εcol
3 = 0.0 plots in figure 6.13 is clearly different from the rest of the plots,

both data and simulation with higher column efficiency. As there are no efficiency
in the columns, this results in that only particles passing through the electrodes at
an angle so that it traverses sensitive material, or emits secondary radiation, are
being registered. On the other hand, particles passing straight through the columns
are not registered at all.

(a) Experimental data, Stanford 3E full 3D device, BAT telescope

(b) HolePunch model, εcol
3 = 0.3, simulated BAT

(c) HolePunch model, εcol
3 = 0.3, true hit position

(d) S-curve model, σ = 3.0, simulated BAT

(e) S-curve model, σ = 3.0, true hit position

Figure 6.12: Amount of hits with
∑

ToT < 25 and a hit cluster matching track
position. All units on axis in [µm].

Using this data, it may also be possible to make out the shape of the electrodes.

118 CHAPTER 6. ATLAS PIXEL SIMULATION MODELS

Plotting the estimated hit position within a pixel cell for tracks with deposit below a
set threshold, we can find an approximate shape of the electrodes. This is shown in
figure 6.12, and the electrode columns are clearly visible for both simulation and
experimental data. Looking at hits below a set threshold produces better results
than looking at hits above the same threshold, as the Landau distribution have
a rapid rise and a long high-energy tail, meaning that high-energy hits in low-
efficiency areas can fluctuate above the threshold, while the other way around is
much less probable.

Comparing the electrode shape seen in the simulation data using hit position
estimation from simulated BAT tracking versus true hit position, it is clear that
most of the smearing seen in the experimental plot (figure 6.12(a)) is not due to
the telescope resolution alone. It is not possible to conclusively say what causes
the “extra” smearing from these plots alone, but from the

∑
ToT-spectra it is clear

that the response function is more complicated than what is used in the simulation.
Another interesting feature in the experimental plot is that the electrodes are not re-
constructed as round, but has an oval shape. Whether this is an effect of projection
due to tracks intercepting the sensor at an angle, electrodes not being identical and
identically placed in different pixels, poor angular offline alignment of the sensor
tilt-angle around the axis which lies in the sensor plane and normal to the long
pixel direction, or something else, is up to further analysis to find out.

6.4 Conclusion

In this chapter, two models for charge collection efficiency have been presented
and compared to experimental data. These models have primarily been selected for
their simplicity, but are nevertheless a starting point for further study. This should
include a better described ToT(Q) function, electronic noise, charge sharing, and
crosstalk between pixels.

Further, the results strongly indicates that there are some real charge collec-
tion efficiency in the undepleted electrode columns. However, some further study
is necessary to say this conclusively, especially to understand any effect of low-
energy δ-electrons.

6.4. CONCLUSION 119

Figure 6.13: Output from pixel charge collection efficiency analysis, histograms
of
∑

ToT as function of hit position projected onto axis along pixel long direction,
for different models and data.
Left column: All data; Middle: Only hits in middle of pixel (short direction)
±5 [µm] (Readout electrodes); Right: Only hits along long edge of pixel ±5 [µm]
(Bias electrodes).
Top row: Experimental data, Stanford 3E full 3D device, BAT telescope; 2nd
row: HolePunch model, εcol

3 = 0.0, simulated BAT; 3rd row: HolePunch model,
εcol
3 = 0.3, simulated BAT; Bottom row: HolePunch model, εcol

3 = 0.3, true hit
position.

120 CHAPTER 6. ATLAS PIXEL SIMULATION MODELS

Figure 6.14: Output from pixel charge collection efficiency analysis, histograms
of
∑

ToT as function of hit position projected onto axis along pixel long direction,
for S-curve model with different parameters.
Left column: All data; Middle: Only hits in middle of pixel (short direction)
±5 [µm] (Readout electrodes); Right: Only hits along long edge of pixel ±5 [µm]
(Bias electrodes).
Top row: S-curve model, σ = 0.5, simulated BAT; 2nd row: S-curve model,
σ = 3.0, simulated BAT; Bottom row: S-curve model, σ = 3.0, true hit position.

Chapter 7

Conclusions and outlook

In the work described in this thesis, a Geant4-based full simulation system for test-
beams has been developed. This system is split in two parts, respectively handling
simulation of the passage of beam particles through matter, and sensor response
from the energy deposited by the particles. The system has been used to model and
characterize the experimental setup, particularly the Bonn Atlas Telescope (BAT),
and has also been used to test models of Device Under Test (DUT) response against
experimental data. This enables better understanding of the DUTs, and the mod-
eling process also helps pointing out where our understanding of the sensors are
lacking.

In order to find a model that describes the telescope sensor response well, the
real hardware had to be understood. This interplay between modeling and analysis
resulted not only in a detailed model describing the telescope sensor and readout
system (see Chapter 4), but also a method for off-line common-mode subtraction
on the telescope data (see Chapter 4.2.3.1). This method can potentially reduce the
telescope hit position measurement uncertainty in future data takings with BAT,
and as it is an off-line method, also makes it possible to go back and rerun the
reconstruction of earlier data with better results than previously possible.

The simulation system, including the BAT response model, was then used to
produce full simulation data for the testbeam setup. The simulated data was recon-
structed with the normal offline alignment and reconstruction software also used
for experimental data.

Having both reconstructed simulated and real experimental data presented a
validation opportunity for the simulation, comparing the residual distribution be-
tween the measured hit position and the unbiased track position in the telescope
plane. The simulation passed this test very well, reproducing experimental data
(figure 5.1) with high accuracy. Having the simulation thus enable many opportuni-
ties for testing the assumptions and robustness of the offline tracking and alignment
software in a completely controlled environment.

Further, comparisons of the estimated hit position in the DUTs with simulation
truth enabled studying of the hit position error distribution in the DUTs, shown in

121

122 CHAPTER 7. CONCLUSIONS AND OUTLOOK

figure 5.5. This provided estimates for the uncertainty of the hit position estimate
in DUTs, shown in table 5.1.

The simulation system itself is flexible, and can very easily be adapted to other
testbeam configurations using BAT (see Appendix A and B). Currently, the AT-
LAS pixel R&D groups are also starting to use the EUDET telescope [27]. Thus
implementing the EUDET geometry, telescope sensor response, and readout sys-
tem is important for the future usefulness of the software. Modeling the EUDET
is interesting for better understanding the performance of this telescope, just as it
helped understand BAT. This has not yet been undertaken.

Another potential for improving the simulation system is to replace the ASCII
file format currently used with a binary format. This will improve performance of
detector simulation greatly, and also avoid roundoff errors that may reduce accu-
racy. When redoing the energy deposition file output routines, moving the Fano
sampling routine (described in Chapter 3.1.1) out of the particle-matter interac-
tion simulation and into detector simulation is also a useful improvement that will
increase flexibility in detector response modeling.

Implementing propagation of the simulated particles and telescope response
in a magnetic field is also interesting. This will enable studies of DUT response
models under these conditions, as well as checking the performance of the off-line
tracking and alignment software for particles bent in a magnetic field.

Further, the energy deposition processes needs to be understood with finer spa-
tial resolution, both in the direction transverse to the particle’s path due to low-
energy δ-electrons, and also the modulation of the energy deposit density along
the particle’s path, which is currently described only taking into account varia-
tions around the mean deposit density along each step originating from the Fano
factor. This is important for simulation-supported studies of electrode efficiency,
especially of the boundary region between the electrodes and the depleted bulk, but
also when studying at Double-side Double Type Column 3D sensors, which have
a truly 3-dimensional geometry.

For the pixel sensor models, the results so far indicates that neither the “Hole
Punch” or the “S-curve” models described in Chapter 6.2.2 satisfactory describes
the data. Still, much have been learned from them, including what does not work,
and how the output from the given models look from the perspective of data anal-
ysis.

An important reason for the current mismatch between the models and the
data seems to be a lack of understanding of the detector charge response function
ToT(Q), especially for low values of deposited charge Q. A good starting point
for attacking this problem would be to study models currently in use for planar
sensors in ATLAS simulation, as they use the same frontend. Further, none of
these models currently describe charge sharing due to carrier drift-diffusion, noise,
or crosstalk. This also have to be addressed in order to get a realistic model of the
sensor response to high-energy charged particles.

It is worth noting that the early results from the modeling and analysis de-
scribed in Chapter 6 strongly indicates that some electrode charge collection effi-

123

ciency is necessary when comparing to experimental data.
There are many possibilities to be explored when making new models, includ-

ing the “carrier cloud tracking models” conceptually described in Chapter 6.2.1.
The main problem with this type of model is that while it has the possibility of
being very accurate, they are not as easy to understand and analyze as the effective
models. However, it is an interesting approach that should be explored.

To sum up, the simulation system provides an opportunity for studying the out-
put generated from different hypotethical response models, and directly compare
their output to the experimental data. This enable us to better utilize the data col-
lected in the test beam campaigns for learning how the sensors work. To do this
efficiently, a more systematic and less intuition-dependent approach than what has
been used in the modeling effort so far would be beneficial. This requires picking
some key observable numbers, for example fit parameters to model/experimental
distributions, and study how different model parameters in different models affect
these observables. This can then be used to find the optimal parameters and mod-
els. Having good models are useful both for understanding how the sensors work,
and is also important when simulating larger experimental setups such as ATLAS,
where the objective is to gain insight in detector physics performance.

Most of the challenges described above have been taken on by participants
of the ATLAS 3D Pixel R&D collaboration. It is therefore highly probable that
this modeling and simulation effort will continue with greater strength, answering
questions not yet solved, and uncovering new unknowns in the process.

124 CHAPTER 7. CONCLUSIONS AND OUTLOOK

Appendix A

TestBeamSim technical
documentation

TestBeamSim is the part of the simulation system dealing with particles and their
interaction with the surrounding environment – sensors and other material. It is
built with C++ using the Geant4 framework [2], which provides both physics mod-
els, a skeleton for the program, and many useful utilities.

TestBeamSim is meant to be quite configurable and flexible – allowing the user
to choose between multiple geometry setups at run-time, and to create new geome-
tries using ready-made “modules”, representing pixel devices, telescope planes,
scintillators etc. These modules are also responsible for recording data to file,
which is later used in TbAna (see Appendix B) and by the TbMon simulation ex-
tensions (see Appendix C). Another description of TestBeamSim, focusing more
on physics results, is found in Chapter 3.

A.1 Installing TestBeamSim

As TestBeamSim is built using the Geant4 framework, this needs to be installed
first. Installing Geant4 can be somewhat complicated (as it has its own dependen-
cies), but the process is documented in the installation guide [11]. For development
versions 9.2-patch1 and 9.3-patch1 of Geant4 was used, compiled from source on
RHEL5 and Fedora 13 Linux.

When Geant4 has been installed, installing TestBeamSim is the next step. The
TestBeamSim sources can be downloaded from the web (http://folk.uio.
no/kyrrens/master), or from SVN (svn+ssh://<CERN-user>@svn.
cern.ch/reps/atlas3dpix/simulation/TestBeamSim). You should
download it into your Geant4 workdir, which is usually found at $HOME/geant4/.
Once downloaded, compiling it should be as easy as typing gmake in the Test-
BeamSim folder. This will place the TestBeamSim executable in a place executable
from your $PATH, ready to be run.

125

http://folk.uio.no/kyrrens/master
http://folk.uio.no/kyrrens/master
svn+ssh://<CERN-user>@svn.cern.ch/reps/atlas3dpix/simulation/TestBeamSim
svn+ssh://<CERN-user>@svn.cern.ch/reps/atlas3dpix/simulation/TestBeamSim

126 APPENDIX A. TESTBEAMSIM TECHNICAL DOCUMENTATION

A.2 Configuring and running
Once Geant4 and TestBeamSim has been successfully installed and compiled, the
executable is ready to be run. It’s command usage is as follows:

$ TestBeamSim {i | <numEvents>} <preInitScript> (<postInitScript>)

Here the first argument decides whether to run in interactive- or batch-mode.
If this argument is an “i", interactive mode is selected. Here TestBeamSim ini-
tializes itself, and then presents an interactive Geant4 prompt, where the user may
enter commands starting runs, changing parameters etc. If the second argument
is an integer number batch mode is selected, where TestBeamSim initializes, then
generates the set number of events, and finally exits.

The second and third arguments are names of Geant4 macros; text-files con-
taining commands as interpreted by the Geant4 prompt. The preInitScript is
executed before Geant4 is fully initialized, enabling selection of geometry, beam,
physics processes, which folder to store output files in, and more. An example
preInitScript, mostly the same as preInitScript.mac (provided with
the sources), is shown below:

#G4 setup
/run/verbose 0
/event/verbose 0
/tracking/verbose 0

#TestBeamSim params:
/TBsim/outputFolder out
/TBsim/truthWritingCut 10 GeV

/TBsim/detectorConstructionID 3
/TBsim/particleSourceID 1
/TBsim/dutAngle 0 deg

/TBsim/surfChk true

/TBsim/physicsSetupID 13
/TBsim/physicsCut 5 um
/TBsim/physicsCut_modules 1 um #Not used

#Set to negative to disable:
/TBsim/stepLimitSensor -1 um
#In units of number of e-h pairs:
/TBsim/clusterMaxCharge 400

This exemplifies the syntax used by the Geant4 prompt, based on “folders” (such as
/TBsim/) containing commands (such as /TBsim/detectorConstruct-

A.3. OUTPUT 127

ionID) which takes an argument of some form, sometimes with a unit. For a
description of commands specific to TestBeamSim, see Appendix A.4.1.

The postInitScript, which is an optional argument to TestBeamSim and
may be omitted, specifies commands that should be ran after initialization but be-
fore starting a simulation run or presenting a prompt. This usually contains com-
mands to setup a visualization system, and two examples are provided with the
source:

postInitScript_OGLIX.mac Creates a OpenGL ImmediateX visualization (nice
for getting visual confirmation on setup, per-event display of particle tracks)

postInitScript_DAWN.mac Useful for creating high-quality illustrations.

A.3 Output

TestBeamSim produces output in the form of several ASCII files stored in a folder
specified in the preInitScript. These files contain the size and position of
energy deposits in sensors, truth data for particles hitting sensors, performance
data, and run metadata.

ASCII was chosen over a binary format because of ease of writing and parsing1,
and because compiling an application that is linked with both Geant4 and ROOT
proved difficult. It also had the advantage of being easy to inspect with a text editor
etc. The main disadvantages of ASCII compared to binary storage is that it is large,
that parsing is slow, and there is also a loss of numerical precision.

Software to decode the machine-readable output files (everything but metadata)
is provided with TbAna (see Appendix B) and the TbMon simulation extensions
(see Appendix C).

A common element in many of the output files (both modules and truth) are
real 3-vectors, which are stored as follows:

(<real_number>,<real_number>,<real_number>)

Note that there are no spaces in this representation. The decimal separator in use
for real numbers is everywhere “.” (period).

A.3.1 Detector modules

As said in the introduction to TestBeamSim, the experiment geometry is created
using “modules”. These modules generally represent one detector element, and
are responsible for managing their own file output. Each module writes one file,
which is stored in the output folder.

All of these modules have a unique name, which is reflected in the name of
the output file. There is three different kinds of modules: “BAT”, “DUT”, and

1Most of the text-parsing complexity is hidden in libraries, and Python (which TbAna is written
in) provides excellent text processing abilities.

128 APPENDIX A. TESTBEAMSIM TECHNICAL DOCUMENTATION

“Scint”. Thus the files are named TBsim_moduleBAT_<name>.dat, TBsim-
moduleDUT<name>.dat, or TBsim_moduleScint_<name>.dat, where
<name> is the unique name of the module. The format of these files is described
below.

A.3.1.1 BAT and DUT: PixelSD

As both BAT and DUT modules use the same same sensitive detector, PixelSD
(which is described in Appendix A.4.5), their output file format is identical. Their
output is a simulation of charge-clouds created in silicon detectors, including the
Fano-factor etc. This means that for each charged particle traversing the sensitive
volume of the detector, it samples many charge-clouds along each step, so that in
mean2 the sum of deposited charge (in units of energy) written to file equals the
ionizing energy deposit by the particle. For uncharged particles, all the ionizing
energy deposit in the step is taken to be at the step endpoint.

The structure of the files is:

<event number> <number of records in this event>
<record1>
<record2>
...

<next event number> <number of records>
<record1>
<record2>
...

...

Here each record has the following format:

<edep> <global pos.> <local pos.>

The fields used are:

event number Number of simulation event; integer starting at 0 and increasing by
one for each beam particle simulated.

number of records Number of lines with records (energy deposits) in this event.

edep Size of energy deposit in MeV (real number)

global pos. Position of energy deposit in the global frame, units mm (real 3-
vector)

local pos. Position of energy deposit in the local frame of the sensitive volume
(origo in the middle of the volume), units mm (real 3-vector)

2See Chapter 3.1.1

A.3. OUTPUT 129

A.3.1.2 Scintillators

Scintillator modules write a much simpler data format, using the following struc-
ture:

<event number> <edep>
<next event number> <edep>
...

The event number field is the same as for pixelSD-devices, while the edep field is
the total energy deposit in the scintillator during the current event.

A.3.2 Truth

In addition to energy deposit data used for further detector simulation (“digitiza-
tion”) in TbAna, TestBeamSim also writes truth data. The file is named TBsim-
_truth.dat, and contains data about the position, momentum direction, kinetic
energy, type etc. of particles transported in the setup. Data is recorded when a
particle with kinetic energy above a some threshold is transported either into or
out of a volume declared as a sensitive detector. The threshold is set through the
TBsim messenger (see Appendix A.4.1) in the preInitScript (see Appendix A.2),
command /TBsim/truthWritingCut.

The overall file structure is the same as written by pixelSD, but the fields in the
records are different:

<pos> <posLocal> <momDir> <momDirLocal> <kinE> <planeID>
<firstStep> <particleID> <particleType> <stepNum>

A linebreak is added to the text above in order to fit the page.
The fields used are:

pos Position of particle (global frame), units mm (real 3-vector).

posLocal Position of particle (local frame of detector), units mm (real 3-vector).

momDir Direction of particle momentum (global frame), (3-vector of unit length).

momDirLocal Direction of particle momentum (local frame of detector), (3-vector
of unit length).

kinE Kinetic energy of particle, in units MeV.

planeID Module unique name (string), as discussed in beginning of section A.3.1.

firstStep Boolean encoded as “1" (true) or “0" (false), indicating if this is first step
in volume (entering) or last step (exiting).

130 APPENDIX A. TESTBEAMSIM TECHNICAL DOCUMENTATION

particleID Unique ID (within the current event) for the transported particle. This
is an integer number from Geant4’s physics engine. Note that the particleID
may change in some interactions (even if there is only one particle of the
given kind in the initial and final-state of the interaction), something which
will also reset stepNum.

particleType PDG ID number of particle [14, “Monte Carlo particle numbering
scheme”].

stepNum Number indicating how many steps the particle has been transported by
the Geant4 physics engine.

A.3.3 Performance data

In addition to the physics data described above, some simple performance data
is also written. This is usable when benchmarking the code, comparing different
physics models, settings etc., and for verifying that nothing surprising happens
when making changes in the code.

The file is named TBsim_performance.dat, and has a simple structure
closely resembling that of scintillator modules:

<event number> <walltime>
<next event number> <walltime>
...

Here the event number is as explained above, while the “walltime” is the wall clock
time used for processing the event in microseconds.

A.3.4 Metadata

In addition to the files mentioned above, which are meant to be parsed by ma-
chines, a metadata file named TBsim_metadata.dat is written. This file con-
tains the settings used for the current run (along with text-descriptions for “numeric
switches”; see Appendix A.4.1), geometry information, the random number seed
used for the run, some rudimentary performance data, and version number of Test-
BeamSim.

A.4 Internals

As stated in the introduction, TestBeamSim is meant to be easily extendible by any-
one who knows C++ [36] and Geant4 [10]. This section assumes that C++/Geant4
basics are known, and describes the internal structure of TestBeamSim and how to
extend it.

The basic structure of all Geant4 programs is based around interface classes
provided by Geant4, which plugs into the Geant4 RunManager – the “kernel”

A.4. INTERNALS 131

of Geant4. G4RunManager is responsible for connecting the different classes
representing different parts of the simulation, calling defined functions in them at
the right time, and for controlling simulation runs, events, and steps.

As in any C++ program, there exists a main() function, which is located
in the file TestBeamSim.cc in the root directory of the sources. This parses
command line arguments, uses the messenger to parse the preInitScript, and
then starts setting up the program. This includes setting up the correct geometry,
physics list, and primary generator action (particle source), initializing the random
number generator3, and UserActions for writing truth and performance data.
When finished initializing these classes, main() kicks off a postInitScript
if one is specified by command line argument, and then either goes into interactive
mode or runs the number of events specified by command line argument. When
this is done (end of run or exit command / control-D if interactive), it writes
the metadata file, cleans up, and exits.

The rest of TestBeamSim is a set of classes, most of them specific implemen-
tations of Geant4 interfaces. Of these there is three main groups:

UserAction These classes are called at specific points of the simulation, such as
the start and end of a run, start and run of every event, at each simulation
step, generation of primary particle(s) etc.

UserInitialization These classes are used when initializing the simulation, and
provides descriptions of the geometry, defines which physics processes are
in use, and more.

Other classes In addition to the classes mentioned above, there are other things
such as messengers, sensitive detectors, hits, physics processes, and much
more.

The implementation of these used in TestBeamSim is described in the subsections
below. Note that there are some dependencies restricting the order of initialization;
especially TestBeamSimEventAction has to be initialized early as it serves
as an “information hub” for other classes. Also the messenger has to be initialized
before running the preInitScript, which has to be done before initializing
anything else (as this contains options etc. used by these classes, and in some cases
even decides which version of the classes should be used).

A.4.1 Messenger

The messenger class TestBeamSimMessenger is implemented in the files Test-
BeamSimMessenger.hh and TestBeamSimMessenger.cc. It is a single-

3TestBeamSim uses the RanLuxEngine from CLHEP. It is initialized at the beginning of the
run by use of the number of seconds since the UNIX Epoch (00:00 UTC, 1/1/1970).

132 APPENDIX A. TESTBEAMSIM TECHNICAL DOCUMENTATION

ton4 class, and is responsible for setting up the G4UIcommands that are used to
control the simulation from the preInitScript5. This includes the G4UI-
directory /TBsim/, and all the contained commands.

The commands defined are:

outputFolder Allows selection of where to store the output files (path name, rel-
ative or absolute).

detectorConstructionID ID number (integer) of wanted detector geometry.

physicsSetupID ID number (integer) of wanted physics list.

physicsCut Default production cut (expected stopping length).

physicsCut_modules Production cut in detector modules (expected stopping length)
(set to negative if just using default cut values everywhere) (Parameter cur-
rently ignored by the simulation).

stepLimitSensor Stepping limit within position sentitive volumes (set to negative
if not in use).

clusterMaxCharge Max number of electrons in a charged-particle energy de-
posit.

particleSourceID ID number (integer) for particle source wanted.

truthWritingCut Minimum energy of particle for writing truth info.

surfChk Run surface check during initialization? (produces lots of output) (true/-
false).

dutAngle DUT rotation angle about y-axis.

For the allowable values of the commands, and description of the identifiers, please
see the source code.

In addition to the commands themselves, two getters are provided for most
commands: One for getting the set value itself. with units etc. calculated in. The
other getter returns a G4String6 containing a nicely formatted version of the set
value including units etc. The string getter is useful when printing or logging the
current settings, and is defined for all commands operating on non-trivial datatypes
(number with a unit, vectors, etc.). For numeric IDs, the string also contain a short
description text.

If implementing a new command, its value should be printed from Test-
BeamSimMessenger::Print(), and be written to the metafile (end of main()).

4That a class is singleton means that there exists only one instance of the class. To get class
instance, use the class method TestBeamSimMessenger::Instance(), which will return
a reference to the existing instance, or create a new one if one does not exists. Do not use the
constructor directly!

5See Appendix A.2 for an example preInitScript.
6G4String is derived from the Rogue Wave implementation of RWCString.

A.4. INTERNALS 133

A.4.2 Physics

As Geant4 is intended to be as general as possible, the set of physics processes used
is not preset; but code for simulating many processes are included with Geant4.
This leaves it up to the application developer to pick and match processes and
particles, and to define his/her own processes or particles.

To get this right is a tedious and error-prone task, but luckily there are also
quite a few ready-made physics-lists included, which reduces the problem down to
selecting a best possible physics list. In TestBeamSim, this is mainly done through
TestBeamSimPhysicsListFactory, implemented in the files TestBeam-
SimModularPhysicsList.hh and TestBeamSimModularPhysicsList-
.cc.

The factory class TestBeamSimPhysicsListFactory sets up and re-
turns one of the applicable predefined Geant4 physics lists. Which one is used is
depending on the numeric identifier physicsSetupID from the messenger. In
addition, an extra physics process constructor StepLimiterBuilder is added
to the lists. This enables limiting the step length for charged particles in the sil-
icon detector volumes through the use of G4StepLimiter. Step limiting was
originally done in order to get more samples for simulating detector response, but
this way of sampling has later been obsoleted by the Fano sampling routine in
TestBeamSimPixelSD.

A.4.3 DetectorConstruction

Probably the most interesting class for anyone adapting TestBeamSim to a new
testbeam geometry is the class TestBeamSimDetectorConstruction, de-
fined and implemented in the files TestBeamSimDetectorConstruction-
.hh and TestBeamSimDetectorConstruction.cc. This class defines
the geometry the simulated experiment. Currently, this is done monolithically:
There is one large class with which defines all geometries. Several geometries
are implemented, and which is used is decided by the numeric identifier det-
ectorConstructionID from the messenger. Currently, all geometries are im-
plemented in TestBeamSimDetectorConstruction’s constructor, which
is unfortunately structured as one gigantic if-else.

The detector geometries are constructed with the usual Geant4 constructs (solids,
logical- and physical- volumes) for parts such as tables, mountings etc., and with
TestBeamSimDetectorModules (described below) for the active detectors.
This enables rapid and flexible description of new experimental setups.

A.4.4 Detector modules

Detector parts are often common between different test-beam setups, and also the
part of the setup with the most detailed description. It is therefore a good idea to
share this code between different setups, and this is accomplished by the use of
“detector modules”.

134 APPENDIX A. TESTBEAMSIM TECHNICAL DOCUMENTATION

A detector module is a class inheriting the interface TestBeamSimDetector-
Module, defined and implemented in the files TestBeamSimDetectorModule-
.hh and TestBeamSimDetectorModule.cc. This interface defines two im-
portant virtual functions: TestBeamSimDetectorModule (G4Logical-
Volume* LV_parent, G4Transform3D placement, G4String na-
me)which builds the module, and virtual void process_event (const
G4Event* event) which is a purely virtual method started at the end of each
event, responsible for writing any data to file. In addition, a virtual constructor
should be implemented for closing files and cleaning up memory.

The arguments taken by the constructor are things needed for all modules.
placement is the wanted position and orientation of the center of the active sen-
sor volume. LV_parent is the logical volume which the detector module should
be placed in. Note that the position specified by placement is relative to the
logical volume. name is the unique identifier discussed in Appendix A.3.1.

When implementing a new detector module, remember to call the interface
constructor from your constructor. This is best done when implementing your
constructor, using the syntax shown below:

1 I n h e r i t i n g _ m o d u l e : : I n h e r i t i n g _ m o d u l e (G4LogicalVolume * LV_parent ,
2 G4Transform3D placement ,
3 G 4 S t r i ng name ,
4 G4type myArg1 ,
5 G4type myArg2) :
6 Tes tBeamSimDetectorModule (LV_parent , p lacement , name) {
7 / / A c t u a l i m p l e m e n t a t i o n
8 }

The actual constructor implementation contains the code for setting up materi-
als, creating the geometry by placing volumes at positions determined by placement,
inside the volume LV_parent, opening output file, setting up the sensitivity, and
installing a step limiter if this is asked for. These classes also print some info at the
end of initialization.

The interface class is used for tasks common to all modules, such as registering
them with the EventAction, which calls process_event() on all modules
at the end of each event. It also keeps some common data fields, which is useful to
be able to access in a unified way across different modules:

LV_parent Parent logical volume, as described above.

placement Position and orientation for center of sensitive part of module.

name Unique name of module.

fileName Use this field to store the name of the output file in use, including folder
name (full or relative path).

ofile File stream for output file.

eventAction Pointer to TestBeamSimEventAction class in use.

A.4. INTERNALS 135

PV_sensitive Physical volume with sensitive detector

PV_envelope Physical volume of an “envelope”, if this is present. This is by
default set to NULL.

Some of these common fields has to be set explicitly by the implementing class
constructor.

Three main detector modules are provided with the TestBeamSim sources, all
named TestBeamSim_<modName>, where all possible <modname> are listed
below. The scintillator is provided in the same files as the interface class, while
version 2 of the BAT- and DUT- modules (see also figure A.1) is defined and im-
plemented in the files TestBeamSimDetectorModules_v2.hh and Test-
BeamSimDetectorModules_v2.cc.

scintillator This defines a (plastic) scintillator, which records the energy deposited
in this event. The size of the scintillator, and whether it has a hole in the
middle, is controlled by arguments to the constructor.

BAT_v2 This defines a single BAT plane

DUT_v2 This defines a single DUT (pixel device under test). The thickness of the
sensitive part, whether the PCB has a hole, and whether there is an aluminum
bias tab is controlled by arguments to the constructor.

For more information on these devices models see Appendix A.3.1, and Chapters
3.4, 4, and 6. In addition to the “version 2” DUT- and BAT- models mentioned,
there exists version 1 variants as well. These use a slightly different geometry7 and
a simpler sampler (TestBeamSim_BAT_SD) that only write energy deposition
samples at preStepPoints.

A.4.5 PixelSD sensitive detector

This class is used for handling “hits” in the position-sensitive silicon detectors
BAT_v2 and DUT_v2. It is derived from the interface G4VSensitiveDetector,
and is defined and implemented in the files TestBeamSimPixelSD.hh and
TestBeamSimPixelSD.cc.

As stated in Appendix A.3.1.1, the output of this sensitive detector is a set
of energy depositions and their positions in both the global- and local-8 coordinate
systems. For charged particles, these energy deposits are created by Fano-sampling
along each step taken within the sensitive volume, while for uncharged particles the
energy is taken to be deposited at the step endpoint.

7BAT version 1 has a more detailed geometry, but it is not entirely correct about sensor placement
relative to the rest of the chassis. DUT version 1 are slightly off with sensor size, and does not feature
a plastic cover. Neither features the air envelope originally intended to be used to define an area of
shorter physics cutoff. There are other differences as well.

8Sensitive-volume-local coordinates: Coordinate system specified by placement argument to
detector module. Centered in middle of the sensitive volume, rotated along with it.

136 APPENDIX A. TESTBEAMSIM TECHNICAL DOCUMENTATION

(a) Bonn Atlas Telescope (v.2) (b) Device Under Test (v.2)

Figure A.1: Detector modules used in simulation

Fano sampling is discussed more thoroughly in Chapter 3.1.1. In short, when a
charged particle makes a step through the sensitive volume, it deposits energy be-
cause of interactions with the material, determined by the active physics processes.

For charged particles this deposit is divided up intoN samples, which is spread
uniformly along the step. The number of samples N is calculated from equation
A.1.

N =
⌈

∆
m

⌉
(A.1)

Here ∆ is the ionizing energy deposit from Geant4, and m the maximum allowed
mean cluster charged (converted to units of energy).

The size of each single energy E′k deposit is then sampled from a normal dis-
tribution N (µ, σ2), with parameters as defined in equation A.2.

µ =
∆
N

, σ2 = Fµ · w (A.2)

Here F is the Fano factor, which has a value F = 0.1 for silicon [8]. w is the
mean energy deposit required to produce an ion pair, which according to [8] has
a value w = 3.62 [eV] in silicon. These values are stored as the class variables
fanoFactor and ePair.

For uncharged particles there is only one deposit, which is taken to be at the end
of the step. This is also smeared by the Fano factor, so the effective energy deposit

A.4. INTERNALS 137

is sampled from a normal distribution with parameters as defined in equation (A.3).

µ = ∆ , σ2 = F ·∆ · w (A.3)

Due to a bug in the original implementation, which is discussed at depth in
Chapter 3.1.1.1, a correction had to be made without invalidating the BAT device
model tunings. Thus a boolean flag sampleBug was added (with default value
false) to the constructor of TestBeamSimPixelSD. Setting this to true se-
lects the old and incorrect sampler, and this is done in the constructor of Test-
BeamSimDetectorModuleBAT_v2

A.4.6 UserActions

UserActions are classes that are called by the Geant4 RunManager at specific
points of the simulation. They may perform tasks that are critical to the simulation
(such as creating primary particles), or they may do other user-defined tasks such
as writing output data to files. The UserActions used in TestBeamSim is described
below.

A.4.6.1 PrimaryGeneratorAction

Three PrimaryGeneratorAction classes are available in TestBeamSim, and are se-
lectable by the preInitScript messenger command /TBsim/particleSourceID
<number>. Both GausGun and PointGun are defined and implemented in the
files TestBeamSimPrimaryGeneratorAction.hh and TestBeamSim-
PrimaryGeneratorAction.cc.

PointGun (ID 2) This particle source produces negative pions with kinetic energy
Ek = 180[GeV], momentum direction parallel to the z-axis, and initial position at
(−5, 0, 0)[m]. This is mostly useful as a help for checking alignment and geometry.

GausGun (ID 1) This particle source is similar to the PointGun, but the particles
have a randomized initial position and momentum direction. The PDFs used for
the initial position is given in polar form as equation (A.4), while the PDFs for the
initial momentum direction is given by equation (A.5).

P (φ) =
1

2π
, P (R) =

{
N (0, σ2

R) for R ≤ Rc
0 for R > Rc

, P (z) = δ(z−z0) (A.4)

P (ϕ) =
1

2π
and P (θ) =

{
N (0, σ2

θ) for θ ≤ θc
0 for θ > θc

(A.5)

Here the angular coordinate φ = arctan(y/x) of the initial position (x, y, z) fol-
lows a flat distribution, while the radius R =

√
x2 + y2 is distributed according

to a truncated normal distribution. For the initial momentum direction, the we see

138 APPENDIX A. TESTBEAMSIM TECHNICAL DOCUMENTATION

that the angular coordinate follows a flat distribution, while the azimut angle is
distributed according to a truncated normal distribution.

The parameters for the truncated normal distributions (σ and cutoff) are defined
in the user GausGun class constructor. The truncated normal distribution itself is
generated with a Gaussian RNG and a Von Neuman accept-reject Monte Carlo
method [19].

GeneralParticleSource (ID 3) This particle source, which is included with Geant4[25],
enables the user to setup all the parameters from the preInitScript. It is
included for doing radioactive source test simulations within the TestBeamSim
framework. To do this, one must also include G4RadioactiveDecayPhys-
ics in the physics list.

To setup a 90Sr radioactive source at the global origo, one could for example
use the following commands in the preInitScript:

#General Particle source config (90Sr)
/gps/position 0 0 0
/gps/energy 0 keV
/gps/particle ion
/gps/ion 38 90 0 0

Note that this does not take into account source material effects.
(90Sr is a β-emitter). Further, 90Sr will decay to the β-unstable isotope 90Y

within the same Geant4 event. As the half-life of 90Y is of the order of days,
these decays will not end up within the same trigger window, and a mechanism for
separating energy deposits according to its “mother ion” is therefore necessary for
accurate simulation of radioactive source tests, but is currently not provided with
TestBeamSim9.

A.4.6.2 RunAction

Methods in this class, defined and implemented in the files TestBeamSimRun-
Action.hh and TestBeamSimRunAction.cc, are called at the beginning
and end of every run. In TestBeamSim this is only used for calculating the mean
wall-time per event, which is reported in the metadata output file.

A.4.6.3 EventAction

Methods in this class, defined and implemented in the files TestBeamSimEv-
entAction.hh and TestBeamSimEventAction.cc, are called at the be-
ginning and end of every event. In TestBeamSim this is used for collecting perfor-
mance data, notifying other classes about the end of event so that they can write

9However, it is implemented in another Geant4-based program called EdepSpectra,
which is available at svn+ssh://svn.cern.ch/reps/atlas3dpix/simulation/
EdepSpectra

svn+ssh://svn.cern.ch/reps/atlas3dpix/simulation/EdepSpectra
svn+ssh://svn.cern.ch/reps/atlas3dpix/simulation/EdepSpectra

A.5. BENCHMARKING 139

their data to file, and for searching for detector module given a pointer to its sensi-
tive volume.

This role as a information hub and notifier makes it necessary that the Event-
Action is initialized before any detector modules and before the SteppingAction.

A.4.6.4 SteppingAction

Methods in this class, defined and implemented in the files TestBeamSimSt-
eppingAction.hh and TestBeamSimSteppingAction.cc, are called at
the end of each step. This is used for writing the truth file described in Appendix
A.3.2.

The SteppingAction is depending on EventAction for notifications about end
of event, and for mapping sensitive volumes into detector module unique names.

A.5 Benchmarking

As a rule of thumb one can expect a mean walltime of 0.1[s]10 pr. event when using
May2009 alligned geometry, QGSP physics, and Fano sampling. For a detailed
benchmark comparing different physics models, see Chapter 3.1.2.

10On stau.uio.no, a 3.00[GHz] dual-core Pentium D with 4 GB of RAM, running Geant
4.9.2-p1 on RHEL5.5

140 APPENDIX A. TESTBEAMSIM TECHNICAL DOCUMENTATION

Appendix B

TbAna technical documentation

TbAna is a collection of Python scripts and libraries, which forms a package capa-
ble of many things:

• Handling and analysis of TestBeamSim output

• Trigger- and detector-response simulation

• Tuning of detector response simulation parameters

• Encoding/decoding of raw detector data (BDT files)

• Automated production runs of TestBeamSim

• Visualization and pretty-plotting of results

Most of the general logic, such as I/O of different file-formats, are handled by
library functions. This means that it is relatively trivial to try out ideas, make new
plots etc. without duplicating common/core functionality.

B.1 Installation

In order to install TbAna, there are some dependencies which needs to be fulfilled
first. These include the following programs

• Python (version 2.5 on RHEL5 used for development)

• ROOT with Python support (version 5.24 used for development)

• numpy and scipy for some special math functions and array datatypes

When these are successfully installed, TbAna may be downloaded from the web
(http://folk.uio.no/kyrrens/master), or from SVN (svn+ssh://
<CERN-user>@svn.cern.ch/reps/atlas3dpix/simulation/TestBeamSim).
Install the folder TestBeamSim-analysis somewhere on your computer, and
it should be ready to use.

141

http://folk.uio.no/kyrrens/master
svn+ssh://<CERN-user>@svn.cern.ch/reps/atlas3dpix/simulation/TestBeamSim
svn+ssh://<CERN-user>@svn.cern.ch/reps/atlas3dpix/simulation/TestBeamSim

142 APPENDIX B. TBANA TECHNICAL DOCUMENTATION

B.2 Initial configuration and overview

Inside the folder TestBeamSim-analysis, there are three subfolders (bin,
lib, and plotters), containing a lot of .py-files. In addition to this, there is a
file pathsetup.sh. This file setups the current shell for running the TbAna soft-
ware, and contains the path of the installation directory. It typically looks similar
to what is shown below:

1 # ! / b i n / bash
2 export PATH=~/ m a s t e r / TestBeamSim−a n a l y s i s / b i n : $PATH
3 export PATH=~/ m a s t e r / TestBeamSim−a n a l y s i s / p l o t t e r s : $PATH
4 export PYTHONPATH=~/ m a s t e r / TestBeamSim−a n a l y s i s / l i b :$PYTHONPATH

For it to work on your setup, change the installation path ˜/master/Test-
BeamSim-analysis to the one used in your setup. The setup is then simply
done by sourcing this script, as in:

$ source ~/master/TestBeamSim-analysis/pathsetup.sh

When this is done, TbAna is ready to run, which can be verified by checking that
the TbAna executables show up:

$ Tb <hit TAB key twice>
TbAna_bdtHistos.py TbAnaPlot_bdtHistos_compareHistos.py
TbAna_bdtPrint.py TbAnaPlot_bdtHistos_etaPlot.py
TbAna_clusterBarchart.py TbAnaPlot_driftTimePlot.py
TbAna_digitizer.py TbAnaPlot_physicsEngine.py
TbAna_digiTune_BAT.py TbAna_test1.py
TbAna_globalFit.py TbMonPlot_chi2compare.py
TbAna_hitposEstimators.py TbMonPlot_histoCompare.py
TbAna_physicsEngine.py TbMonPlot_landauEdep.py
TbAnaPlot_bdtHistos_CMCcorrPlot.py TbSim_runMaker.py

As we see, TbAna is composed of several executable Python files. These can then
be called from everywhere in the filesystem, and it therefore simple (and advisable)
to keep the data separate from the TbAna installation directory.

The three subfolders bin, lib, and plotters contain python files with dif-
ferent functions:

bin This directory contains Python files meant to be executed as command line
programs, controlled by command line arguments. Common for these pro-
grams is that they are mostly geared towards data processing and analysis.

plotters These Python-files are also executables. They differ from those in bin
by purpose – these use histogram .ROOT files generated by other analysis to
make pretty plots for presentation, printing etc. Files named TbAnaPlot_*
are used for pretty-plotting output from TbAna, while TbMonPlot_* are
used for pretty-plotting output from TbMon.

lib These Python-files contain functions common to the programs in bin, such as
file I/O and detector simulation models.

B.3. USING TBANA: IMPORTANT EXECUTABLES 143

B.3 Using TbAna: Important executables

As stated above, TbAna contains many executable programs, performing various
tasks related to test beam simulation and analysis. Only the most important ones
are listed below, but they are all documented with usage-prompts and comments in
the sourcecode.

Note that many of these programs operate on runs from TestBeamSim. These
programs then generally takes the path to a “workdir” folder containing the data
(see Appendix A.3 for details), and often assumes that the filenames and device
positions are the same as in the TestBeamSim geometryID #3 (May2009 with
aligned devices).

B.3.1 TbAna_digitizer

This program uses simulated energy deposits from TestBeamSim to simulate
detector response and trigger decisions. The output is then written to the file
bdtOut.bdt, which is saved in the same directory as the input data. This file
contains simulated detector digits from BAT and DUTs, formatted identically to the
BAT DAQ system. It also writes out a file digiSyncMap.dat, which is used by
TbMon for synchronizing reading events by trigger number (as in the BDT) with
primary-particle-counter event number from the underlying Geant4 simulation.

It’s command usage is as follows:

$ TbAna_digitizer.py <workdir> { <maxEvents> }

Here <workdir> is the data directory containing the .dat-files, while the volun-
tary argument <maxEvents> is used to limit the number of simulated triggered
events.

B.3.1.1 Operation as a library

TbAna_digitizer is special in that it is also usable as a Python module (library),
because all the “working” code is encapsulated into one function, defined as:

1 def MakeDig i t s (workd i r , maxEvents = 0 , BATconfig=None , TPLLconfig=None , \
2 dummyID_BAT = −1, dummyID_TPLL = −1, wri teSyncMap= F a l s e) :
3 " " "
4 F u n c t i o n t h a t a c t u a l l y makes t h e d i g i t s ,
5 e i t h e r c a l l e d from t h i s modules main () ,
6 o r c a l l e d from a n o t h e r module i n b a t c h p r o c e s s i n g .
7
8 I f dummyID = −1, don ’ t use dummy d i g i t i z e r s
9 I f dummyID != −1, use dummy d i g i t i z e r on a l l OTHER modules

10 t h a n t h e one wi th headerName=dummyID
11 i f dummyID = −2, use dummy d i g i t i z e r on ALL modules o f t h i s c l a s s
12
13 I f wri teSyncMap=True , o u t p u t a f i l e digiSyncMap . d a t i n t h e working d i r ,
14 c o n t a i n i n g a mapping of BDT e v e n t numbers −> TestBeamSim eventNumbers .

144 APPENDIX B. TBANA TECHNICAL DOCUMENTATION

15 Th i s i s t h e n r e a d by t h e s i m B a s e B u i l d e r i n tbmon .
16 " " "
17 . . .

This means that it is simple to automate digitization of a run, and this is done
in TbSim_runMaker.py (see Appendix B.3.2) and TbAna_digiTune.py
(Appendix B.3.3).

B.3.1.2 digiSyncMap.dat file output format

The purpose of this file is to enable access of “raw” simulation data (truth and en-
ergy deposits) from TbMon. To do this, one must remember that the .bdt files
output from TbAna_digitizer does not contain all events from TestBeam-
Sim. This is due to that simulation events are corresponding to primary particles,
but not all primary particles produces a trigger. When this happens, we get a desyn-
cronization between event numbers in the .bdt file and the TestBeamSim out-
put. It is therefore necessary to have a mapping between those event numbers, so
that when we in TbMon can re-syncronize the two data streams.

The simple ASCII file format is as shown below, with event numbers counting
from 0 in integer steps, and BDT event number always increasing by 1 each line:

<BDT event number> <TestBeamSim event number>
<next BDT event number> <next TestBeamSim event number>
...

B.3.2 TbSim_runMaker

The purpose of this program is to run the Geant4-simulation (TestBeamSim)
several times; either with the same TestBeamSim configuration for generating
large amounts of statistics using the same configuration, or one run per physics list
for comparing them.

For generating statistics, its command line usage is:

TbSim_runMaker.py <runNumberStart> <numRuns> <numEvents>
{physicsSetupID=13} {clusterMaxCharge=400}
{dutAngle=0.0} {physicsCut=5.0}

For doing a physics list scan (lists 11-16), the command line usage is:

TbSim_runMaker.py PhysScan <runNumberStart> <numEvents>
{clusterMaxCharge=400} {dutAngle=0.0} {physicsCut=5.0}

Here <runNumberStart> is the ID-number of the first run generated, <num-
Runs> the number of runs to generate, and <numEvents> the number of pri-
mary particles to simulate in each run. The arguments shown as {optionNa-
me=defaultValue} are optional, and may be omitted. They correspond to

B.3. USING TBANA: IMPORTANT EXECUTABLES 145

configurations in the preInitScript used for TestBeamSim (see Appendix
A.2).

In addition to running TestBeamSim, it will run TbAna_ditigizer.py
and move all the resulting .bdt-files into a common folder named bdt when
in “statistics mode”, while it will run TbAna_physicsEngine.py when in
“PhysScan” mode.

B.3.3 TbAna_digiTune_BAT

This program is used for finding the optimum BAT configuration, as described in
Chapter 4. This is done by running the digitizer (using the “library mode” described
in Appendix B.3.1) several times over the same data, using several configurations/-
tunes. The resulting .bdt-files are then analyzed using TbAna_bdtHistos-
.py (described in Appendix B.3.4), and key distributions from the simulation and
from a reference real-data BDT is plotted on top of each other. The plots are then
presented as a web page, sorted by the digitizer configuration/tune used to make
them, as shown in figure B.1.

The output is a folder containing a report in html format named report-
.html, the plots as .svg vector files, the reference .bdt.root file, a .root
file with all the canvases used (for zooming or other processing), all created .bdt
and .bdt.root files, and a logfile that can be useful for debugging.

The command line usage of the program is (typed as one single line):

$ TbAna_digiTune_BAT.py -r <RefFile.[bdt | root]>
-d <RefDevice> -o <OutputName> {-n <NumEvents>}
{-s <N|P|B>} {-c "comment"}
-p:param1 <value1> -p:param2 <value2> ...

Here one needs to specify a reference file in BDT or ROOT format1, a reference
device (BAT plane BDT name – 1,3, or 6 in May2009 data), and the name of a
folder to store the output in.

Further, one usually want to change one or more of the parameters to the
BAT digitization. This is done by using the -p:param value interface, where
value can be a single value or describe a linear or logarithmic range2. Zero or
more parameters can be set, and unset parameters will assume the default value
from TbDigitizerConfig.py::TbDigitizerConfigBAT_v3.

When ranges are specified, parameter tuning points for each combination of
the parameters are used, labeled [p1, p2, . . . , pn]. Here pi is an index into the range
of parameter i, and n the total number of specifiable parameters.

In addition to the mentioned arguments, TbAna_digiTune_BAT.py can
also use arguments -c for providing a comment3 to the current tuning run (for

1If BDT data is specified for reference data, it will be analyzed by TbAna_bdtHistos.py,
which will create a ROOT file with the relevant histograms

2For information about the syntax, see the program usage string
3To provide a multi-word string as a comment, enclose the string in quotation marks.

146 APPENDIX B. TBANA TECHNICAL DOCUMENTATION

Figure B.1: Screenshot of example webpage created by TbAna_digiTune-
_BAT.py

B.3. USING TBANA: IMPORTANT EXECUTABLES 147

remembering the purpose of the tuning run), and -s for only showing plots for N-
or P-side in the HTML report.

B.3.4 TbAna_bdtHistos

This program directly analyzes BDT files, and outputs a .root file containing his-
tograms. The command line usage is:

$ TbAna_bdtHistos.py <BDTfile> {--batch} { <maxEvents>=0 }

If --batch is not used, a TBrowser is shown at the end of processing, allowing
the user to click through the plots.

The output of TbAna_bdtHistos is a .root file with the same name as the
input .bdt file, with .root appended. This file contains histograms from BORE and
DATA parts of the BDT file, both BAT and PLL.

B.3.5 TbAna_physicsEngine

This program is used for comparing different physics lists, as described in Ap-
pendix A.4.2. As input it uses a folder of output files from TestBeamSim, and
as output it produces a root file with histograms with information about what hap-
pens at each module (energy deposit, number of hits per event for PixelSDs and
kinetic energy of incident particle), and performance data (walltime per event, run-
ning average graph of walltime per event). These root files are useful for comparing
different physics models, and TbMonPlot_physicsEngine.py can be used
for plotting the distributions for sets of physics models on top of each other. The
command line usage is:

$ TbAna_physicsEngine.py <workdir> {<maxEvents>} {--batch}

Here the optional argument --batch disables using a TBrowser to click through
plots at the end of processing.

B.3.6 TbAna_globalFit

This program works as a simple tracking program. It makes “hits” in the planes by
clustering raw energy deposits based on proximity, and the energy-deposit weighted
mean of each cluster is taken to be the x-y hit position of the cluster4. One may
optionally enable smearing of the hits (convolution of the hit position with a gaus-
sian).

After making the hits in the local plane of the modules, it uses knowledge of the
position of the telescope planes (hard-coded into the program) to make a straight-
line global fit of the track. This track is then extrapolated into the DUT planes and
compared to the estimated hit position there.

4This is done by the “digitizer” TbDigitizerCluster, found in lib/TbDigitizers.py

148 APPENDIX B. TBANA TECHNICAL DOCUMENTATION

The program also simulates trigger the same way as TbAna_digitizer.py,
requiring that the energy deposit in the trigger scintillators is above a certain thresh-
old, and that the deposit in the veto scintillator is below a similar threshold.

The output of the program is a .root file containing histograms of the track
parameters, the residuals in all planes (x-, y- direction and

√
x2 + y2), and squared

sum of pulls in the same directions. This output was used to estimate the telescope
resolution in the DUTs for a Spåtind 2010 talk [32].

Command line usage:

$ TbAna_globalFit.py <workdir> {<maxEvents>}

B.4 Libraries

In order to avoid code duplication, the TbAna package includes Python libraries
for common functions like data I/O and digit generation. This is the files in the
lib subdirectory. There are a few different “sublibraries”, which are mostly inde-
pendent of each other, and described in the sections below.

B.4.1 Parsing of raw simulation data

An overview of the classes related to simulation data parsing and datastructure is
shown in B.2.

The classes inheriting from interface5 TbModule are parsing output files from
TestBeamSim, with different implementations reflecting different kinds of Test-
BeamSim output files (described in Appendix A.3). These are used by giving the
name of the datafile to read as an argument to the classes constructor. One can then
call ReadNextEvent() to read one event further from file, until this method
returns False at the end of file. A special implementation TbModuleList can
be used for easily getting data from multiple files synchronously.

When a module has parsed an event from file, it will store the data as a Tb-
Event in the field currentEvent. Again TbEvent is an interface, with im-
plementations for the different kinds of output files. Further, more complicated
kinds of output files may contain several hits per event, and these hits are stored in
a subclass of TbHit.

B.4.2 Simulating detector response

The most important function of TbAna is to test models for detector response sim-
ulation, and to simulate realistic hits for BAT telescope from the TestBeamSim
energy deposits.

5An interface is a class which defines a set of functions etc., but not how these functions act. Thus
you cannot have an instance of an interface class. However interface classes does not really exist in
Python, but the general idea has been implemented by having a set of classes defining names of data
fields and functions, but leaving the “virtual” functions “empty” by use of the pass Python keyword

B.4. LIBRARIES 149

Figure B.2: UML diagram of the analysis/digitization library, only the part dealing
with data input and storage.

150 APPENDIX B. TBANA TECHNICAL DOCUMENTATION

This is done by use of the classes shown in figure B.3. The most important
class here is TbDigitizer, which is an “interface” to different digitization al-
gorithms. The classes implementing this interface can then be pushed onto the
map TbEvent::digitizers, and ran by calling the digitizers method Do-
Digitize(). The digitizers then produce a set of TbDigits, which represents
individual digits. As the digitizers all have configurations and tunings, the interface
TbDigitizerConfig defines a mechanism for storing and accessing this.

Figure B.3: UML diagram of the analysis/digitization library, only the part deal-
ing with digitization simulation. Fields and methods in TbDigitizerConfig-
_BAT and TbDigitizerConfig_BAT_v2 not written out.

B.4.3 Reading and writing raw experiment data (BDT)

The Bonn Atlas Telescope DAQ system uses a format known as BDT to store its
data. This format is described in Appendix D. As TbAna needs to both write (Tb-
Ana_digitizer.py) and read (TbAna_bdtHistos.py) this format, there
are Python libraries to do it. An overview of the classes are shown in figure B.4.

This library is fully contained within the file TbBDTlib.py, which is de-
pending on TbDigits.py and TbDigitizerConfig.py. The main class is
BDTfile, which is representing a single BDT file. The name of this file is passed
as the argument to the constructor, along with a flag indicating whether to open the
file for reading or creating a new file for writing. For detailed documentation about
how to use this library, please see its source code.

B.4. LIBRARIES 151

BDTdevFrag+header:BDTfragHeader+eventNum:int+data:string+__init__(data:string=None)+__str__():string+MakeData()+DevFragFactory():BDTdevFrag

BDTfragHeader+evtType:int+name:int+kind:int+flag1:bool+flag2:bool+size:int+data:string+KIND_BORE:int=0x0+KIND_EORE:int=0x1+KIND_DATA:int=0X2+TYPE_GROUP:int=0X0+TYPE_DEPFET:int=0X2+TYPE_BAT:int=0X5+TYPE_TPLL:int=0XA+TYPE_TDC:int=0XB+TYPE_HPTDC:int=0XC+TYPE_HPTDC2:int=0xD+TYPE_UNKNOWN:int=0XF+__init__(data:string)+__str__():string+MakeData()

BDTfile+bore:BDTgroupFragment+eore:BDTgroupFragment+currentData:BDTgroupFragment+read:bool+dataPos:int+nextHeader:BDTfragHeader+filename:string+datafile:file+data:string+__init__(filename:string,read:bool=True)+__del__()+__str__():string+ReadNextEvent():bool+AddFragment(frag:BDTgroupFragment)

BDTgroupFragment+header:BDTfragHeader+eventNum:int+deviceFragments:BDTdeviceFragment[]+data:string+__init__(data:string=None)+__str__():string+MakeData() BDTdevFrag_TPLL_BORE+TPLL_BORE_ONLYSEEN_BODY:int+isTypical:bool~__init__()+__str__():string+FillDefault()+MakeData()BDTdevFrag_TPLL_DATA+digits:TbDigitTPLL[]+isChip:bool~__init__()+__str__():string+MakeData()
BDTdevFrag_BAT_DATA+digits:TbDigitBAT[]+n_CMC:int+p_CMC:int~__init__()+__str__():string+MakeData()

BDTdevFrag_BAT_BORE+ack_mode:int+n_pedestal:int[]+n_threshold:int[]+n_noise:int[]+p_pedestal:int[]+p_threshold:int[]+p_noise:int[]+BAT_SIDES:int=2+BAT_STRIPS:int=640+AMOD_FULL:int=0x00000000+AMOD_PEDSUB:int=0x00000001+AMOD_HIT:int=0x00000002+AMOD_SPARS:int=0x00000003+AMOD_COMP:int=0x00000004+AMOD_NOTSPE:int=0x55555555+AMOD_UNKNOWN:int=0xFFFFFFFF~__init__()+__str__():string+FillDefault(config:TbDigitizerConfigBAT=None)+MakeData()

+bore+eore

+nextHeader
+header
+header+currentData

Figure B.4: UML of the BDT reading/writing library

152 APPENDIX B. TBANA TECHNICAL DOCUMENTATION

Appendix C

TbMon simulation extensions

TbMon is the offline analysis framework used by the 3D pixel and PPS groups. Its
main purpose is to make data, cuts etc. easily available to analysis, thus avoiding
code duplication.

event

event

event

event

...

R
un

event

event

event

event

...

R
un

event

event

event

event

...

R
un

..
. ...

Data from one
experiment

Each event contains:
● Digits from DUTs
● Track information from telescope
● Timing information from HPTDC
● etc.

Loop over

events

Unpacking
&

formatting

Quality cuts,
cluster finding,

etc.

F
ile

 h
an

dl
in

g

Analysis

Analysis

Analysis

TbMon:

Results:

99,6 %
efficiency

Figure C.1: Overview of TbMon: Input, output, and schematical internal structure

TbMon assumes that the data is structured in configurations, which is
generally corresponding to one experiment or testbeam period. One single con-
figuration is built up of many runs, which are .root ntuples containing detector
digits and tracking information. In addition to the ntuple files, a configuration is

153

154 APPENDIX C. TBMON SIMULATION EXTENSIONS

also consisting of event builders that handle data I/O for these ntuples, and
sets cut flags on the events. The output of the event builders are an event
object, which contains all the relevant information for the current event and DUT.
These events are then passed on to one or more analysis, which makes plots, cal-
culations etc. based on data accumulated for a single DUT.

For more information on TbMon in general, please see the official documenta-
tion doc/tbmon.html inside the TbMon source folder. The presentation “Tb-
Mon offline analysis framework: Getting started, newly added features”, found at
http://folk.uio.no/kyrrens/master/talks/EudetTutorial_tbmon/
tbmon_moreStuff.pdf may also be useful. This presentation also contains
installation and configuration instructions. For the rest of this appendix, non-
simulation specific parts of TbMon is assumed known.

To effectively handle simulation data as well as real data, some extensions
have been added to TbMon. These enable reading the raw simulation data created
by TestBeamSim (described in Appendix A.3) and making it available, and an
infrastructure for rapidly developing and testing models for DUT response. All of
this is described in the sections below.

C.1 Configuring simulation extensions

For simulation extensions to work, they need access to the raw simulation data from
TestBeamSim in addition to the reconstructed ntuples. To do this, one must spec-
ify the path where the workdirs are located in the part of siteconfig.h for
the configuration, and also set the flag config.isSimulation. Further,
one needs to include at least the event builder called simBaseBuilder,
which synchronizes the event numbers for reconstructed and raw simulation data
(see Appendix B.3.1 for more information). To do something useful with the sim-
ulation data, the event builders simPixelEdepBuilder (gives access to the
raw charge clusters as output from PixelSD, see Appendix A.3.1.1) and sim-
TruthBuilder (gives access to truth information, see Appendix A.3.2) should
also be loaded. For testing pixel detector models (simDuts), simDutRunner is
required.

For an example of how to set this up, please see the configuration sim-
Bat2010 from driver.cc and siteconfig.h.example.

C.2 Analysis: Access to raw simulation data

The event builders all store their data in event objects, and this is also true
for simulation event builders. The simulation data interesting for analysis is stored
inside the simDataKeeper object pointed to by the field Event::simData.

Before accessing this object, the analysis should check that the flag config-
.isSimulation is set to True. If this is not the case, Event::simData will
be a NULL pointer.

http://folk.uio.no/kyrrens/master/talks/EudetTutorial_tbmon/tbmon_moreStuff.pdf
http://folk.uio.no/kyrrens/master/talks/EudetTutorial_tbmon/tbmon_moreStuff.pdf

C.3. SIMDUTS AND PIXEL DETECTOR MODEL TESTING 155

The simDataKeeper object itself contains vectors containing the data from
simEdepBuilder and simTruthBuilder. The fields of the elements con-
tained in this vector are mostly the same as in the output of TestBeamSim –
however note that TestBeamSim and TbMon use different coordinate systems.
This is solved by converting the local coordinates of the edeps and truthHits
inside the eventBuilders, before they are passed on to analysis.

C.3 SimDuts and pixel detector model testing

In order to test models for detector response given energy deposits, the TbMon
simulation extensions includes support for “simDuts”. These are classes that for
each event converts raw TestBeamSim edeps into pixel digits. These pixel
digits are then inserted into the event object, overwriting the digits from the ntuple.
This enables rapid development and testing of new device models, which can then
be analyzed with the same tools as used with real data.

To implement a new SimDut model, inherit the interface Simdut, and im-
plement the model inside the purely virtual function digitize(...). For an
example on how to do this, see the already included SimDuts in sourcecode.

In order to run the SimDut model, it has to be listed inside simDutRunner-
::init(...). It can then be ran by using the command line argument -P:B-
_simDutRunner_model <modelName>, and analyzed with the normal anal-
ysis classes. The output of the models can thus be compared to real data.

156 APPENDIX C. TBMON SIMULATION EXTENSIONS

Appendix D

Description of the BDT file
format

This appendix describes the BDT file format, used by the Bonn Atlas Telescope
(BAT) data acquisition system. It has mostly been reverse-engineered from the
SiTBeAn sourcecode, and python code parsing and writing the format has been
written, documented in Appendix B.4.3. This code seems to decode and encode
the format (version VER_2005) properly, as data produced with it is correctly read
back by both the SiTBeAn code, as well as the tbtrack software used for track-
ing and alignment of our testbeam campaigns. It has been tested on data from the
May 2009 BAT testbeam in the SPS H8 beamline.

D.1 Main elements and structure

The main element of a BDT file is a word, which is a 32-bit little-endian field.
These are in turn organized into fragments, which may have sub-fragments.

One fragment, as shown in figure D.1, is composed of first one frame header
word, followed by an optional padding, and then as many data words as necessary
(limited upwards to 220 − 1 words by the size field in the header).

Group header

(Trigger #)

Data

Data

Data

0

1

2

3

4

size

Word

Figure D.1: One BDT fragment

The file is built up from a set of events, which are written consecutively to

157

158 APPENDIX D. DESCRIPTION OF THE BDT FILE FORMAT

the file. Each event is represented by one group fragment, containing a number of
device fragments as its data words. The first event (called the BORE – Begin Of
Run Event) is special, and contains information about the setup used in the current
file. There should be one and only one BORE in each file. After the BORE, several
DATA fragments follows. There is also a possibility for a special End Of Run Event
(EORE), however this has not been seen in actual data.

An illustration of a group fragment containing several device fragments is
shown in figure D.2. When looking at several group fragments, all the devices

N
1

1
N + 1

1
N + 2

N
2

Device 2 header

(Trigger #)

Device N header
N

3

3
N + 1

(Trigger #)
N + 2

3

N
4

Device 2 data

Group header

Trigger #

Device 1 header

(Trigger #)

Device 1 data

Device N data

G
roup fragm

ent

D
evice 1 subfragm

ent

0

1

2

3

4

Figure D.2: A BDT group fragment containing several device sub-fragments

always writes a sub-fragment, and the sub-fragments always appear in the same
order across different group fragments. However, when looking at different files,
the order seems random.

All group fragments contains a «trigger number» word right after the header.
Also, each single DATA and EORE device fragment contains a trigger number.
This is a unsigned little-endian 32-bit integer, which is increased by one for each
event, starting at 0. It seems to be written by the DAQ software, as the «trigger
numbers» stays in sync even if the data itself is desynchronized. Where present in
BORE, it is set to 0x55555555.

D.2. FRAGMENT HEADER 159

D.2 Fragment header

Each header is composed of several fields (see figure D.3), describing the type and
contents of the fragment.

Fragment size
Flags

Kind
Name

Type

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

8162432 0
LSBMSB

Figure D.3: BDT fragment header

The first 20 bits1 contains the size of the fragment. This is the number of words
the fragment contains, inclusive the header, padding etc.

Bit 21 and 22 is known as flag1 and flag2. This is only used for Atlas pixel
device fragments. Here flag1=1, flag2=0 if and only if we have a single chip as-
sembly, and flag1=0, flag2=1 if and only if it is a pixel module. If it is not an Atlas
pixel device fragments, these fields are ignored and set to 0.

Bit 22 and 23 is the kind field. It tells whether this fragment belongs to a
BORE, EORE, or DATA event. It is set in both group- and sub-fragment headers.
The magic bits are listed in table D.1.

Name Bits
BORE 0x0
EORE 0x1
DATA 0x2

Table D.1: Kind field magic bits

Bit 24-28 is the name field. This is some 4-bit identifier, used for separating
different devices of the same type. It is ignored for group fragments (set to 0).

Bit 28-32 is the type field. Together with the kind field, it tells how to decode
the data contained in the fragment. The magic bits are listed in table D.2.

Note that the only type allowed at toplevel is GROUP. UNKNOWN means that
the device is unknown to the encoding program. The second last entry is probably
some kind of (HP)TDC, encountered in the May 2009 data.

D.3 BAT data

There are two kinds of BAT data packages written – one kind fore BORE events,
and another for DATA events (real, triggered events).

1The SiTBeAn package ignores bit 18. I have not found that this bit is used for anything else, and
therefore assumed that this is a bug. This assumption is also done in the tbtrack software.

160 APPENDIX D. DESCRIPTION OF THE BDT FILE FORMAT

Name Bits
GROUP 0x0
DEPFET 0x2

BAT 0x5
TPLL 0xA
TDC 0xB

HPTDC 0xC
??? 0xD

UNKNOWN 0xF

Table D.2: Type field magic bits

D.3.1 BORE

A BAT BORE data package contains information about the status of the BAT tele-
scope – the data format currently in use, and pedestals, thresholds, and noise mea-
surements for each strip. The general layout of the format is shown in figure D.4.

Pedestal 0x0000

ACK_MODE

Threshold

Noise

0x0000

0x0000

Noise

Pedestal

Threshold

Noise

Noise

0x0000

0x0000

0x0000

0x0000

0x0000

S
trip 1

S
trip 1

S
trip 640

S
trip 640

P
−

side
N

−
side

MSB
0

1

2

3

4

LSB

1921

1924

3841

16

Figure D.4: BAT BORE data

D.3. BAT DATA 161

The first word is the acquisition mode in use for the current run, and is one of
the magic words listed in table D.3. If AMOD_NOTSPE is specified, AMOD_COMP
is assumed. This is what is seen in the actual data files, and what will be docu-
mented here.

Name Bits
AMOD_FULL 0x00000000

AMOD_PEDSUB 0x00000001
AMOD_HIT 0x00000002

AMOD_SPARS 0x00000003
AMOD_COMP 0x00000004

AMOD_NOTSPE 0x55555555
AMOD_UNKNOWN 0xFFFFFFFF

Table D.3: BAT BORE acquisition mode magic word

The first word is followed by 3840 words of pedestals etc., all encoded as
signed 16 bit little-endian integers, with two bytes of zeroes appended. The data for
each strip is written in three words, as shown in figure D.4. The strips are written
consecutively, first the n-side, and later the p-side. There is no trigger number in
BAT BORE device fragments.

D.3.2 DATA

The BAT DATA data packages are a bit more complicated, and involves five dif-
ferent words. It is written in 16-bit half-words (HWs), if necessary with a fill HW
appended so that the number of half words fits into a whole number of words. A
rough sketch of such a package is shown in figure D.5. In addition to what is shown
here, there is a trigger number right after the header (before the start of the data).

The two first words are CMC values for the n- and p-side. These are encoded
as a little-endian 32-bit signed integers. After these the 16 bit HWs follow. These
are built up as shown in figure D.6. There are five kinds, possible to separate from
their header:

• Fill: These HWs have header = (1001)2. If neccessary, they are used at the
end of a DATA data package to match the word boundary.

• N-strip value: These HWs have header = (S0T0)2. They contain the ADU
(ADC Units) value of a read-out strip, with the pedestal subtracted. It looks
like it is initially encoded as 16-bit signed integer, but bit number 12-15
is overwritten by the header, effectively reducing it to a 212+1 bit signed
integer. The sign convention used is two’s compliments, so if the sign bit is
set, the possible conversion methods are either direct promotion to a 16 bit
signed int:

value = (HW & 0x0FFF) | 0xF000

162 APPENDIX D. DESCRIPTION OF THE BDT FILE FORMAT

n−side CMC

p−side CMC

H.W. 1 H.W. 2

H.W. 4H.W. 3

H.W. N−1 H.W. N

0

1

2

3

4

size − 2

MSBLSB 16

Figure D.5: BAT DATA data

Data

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

Header

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

08 41216

MSB LSB

Figure D.6: BAT DATA data half-word

, or the more mathematical approach

value = −(212 − HW)

, where HW is the 16-bit half-word.

The ADU values of the strips are written consecutively, so the reading pro-
gram needs to have a counter which is first set (or re-set) by a n-strip number
HW, and then incremented by one for each n-strip value encountered.

The bit marked “T” seems to indicate if this strip was above the threshold
for the zero-suppression or not. It is therefore set to 1 if this strip was above
threshold, and 0 if it was read out because a neighbour or next-to-neighbour
strip was above threshold. This bit seems to be ignored by the SiTBeAn
code.

• P-strip value: These HWs have header = (S1T0)2. Other than this they
are encoded the same way as the n-strip values. Note that the n- and p-strip
counters are separate.

D.4. TPLL DATA 163

• N-strip number: These HWs have header = (0001)2. They set which n-strip
value will be read next from the file. It is decoded as

n_strip = ((HW & 0x0FFF)− 21) /2

• P-strip number: These HWs have header = (0101)2. These set the strip
number counter for the p-side, similar to the n-strip number. They are de-
coded as

p_strip = ((HW & 0x0FFF)− 22) /2

D.4 TPLL data

There are two modes of writing TPLL (pixel) data – single chip and module. With
single chip mode, a separate TPLL (Turbo Pixel Low Level VME card) and TPCC
(Turbo Pixel Control Card) is used for each pixel sensor, while module mode is
used when each TPLL/TPCC controls several pixel sensors. In the BDT file, sin-
gle chip mode is indicated by setting flag1=1, flag2=0 in all device fragment head-
ers belonging to the device, while module mode is indicated by setting flag1=0,
flag2=1. The “module” mode is used in the May 2009 data, and is documented
below.

D.4.1 BORE

I have found (in May2009 data) these fragments to always be set like shown in
figure D.7.

Header

0x55555555

0x00000001

0x000000F0

MSB
0

1

2

3

4

LSB 16

Figure D.7: TPLL BORE fragment

D.4.2 DATA

TPLL single chip data has a rather simple format, where each data word represent a
pixel that has fired. This is encoded into the format shown in figure D.8. In addition

164 APPENDIX D. DESCRIPTION OF THE BDT FILE FORMAT

to simple «pixel hit» data, it is also possible to store “EOE” (End Of Event), and
ChipError. When decoding these data, remember that a single pixel device has 160
rows and 18 columns. In the data, they are counted from 0.

Reserved
TOT

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Reserved
Row

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

82432 0
LSBMSB

Column

16

7152028

Figure D.8: TPLL DATA word

Here EOE is encoded by setting row=225 or row=240, while chipError is en-
coded by setting row>159 (but not 225 or 240).

If several events with different LVL1 timestamps are read out, a EOE is emitted
when LVL1 is increased.

Appendix E

Dictionary of often used words

Word Description
ADC Analog Digital Converter, circuitry that converts

an analog signal (voltage, current, charge) into a
digital representation.

ADC unit Arbitrary unit used by an ADC – one ADC unit
is the increase in input necessary to increment the
output by one.

ATLAS A Toroidal LHC ApparatuS, Particle physics ex-
periment at the LHC

BAT Bonn Atlas Telescope; particle tracking system.
See Chapters 1.2 and 4.

BDT Binary data format used by BAT. Documented in
Appendix D.

BORE Begin Of Run Event; special type of “event” at
start of BDT file. See Appendix D.

CDF Cumulative Distristribution Fuction; For a proba-
bility distribution function (PDF) P (X), the CDF
CDF(x) is defined such that CDF(x) equals the
probability that a random number X drawn from
P is greater than or equal to x.

CLIC Compact LInear Collider. A possible design of a
new high-energy electron-positron collider.

CM, Common Mode Noise in an detector common for all channels in
an event.

CMC Common Mode Counter, function of the BAT
FPGA. Used to estimate the common mode. See
Chapter 4.2.3.

DAQ Data Acquisition; System collecting data from
sensors and storing them for analysis.

Digit Element of raw data from detector.

165

166 APPENDIX E. DICTIONARY OF OFTEN USED WORDS

Digitization Process of converting simulation hits (energy de-
posits) into detector digits.

DRIE etching Deep Reactive Ion Etch. Technology for etch-
ing steep-sided holes and threnches. The most
used DRIE technique, the Bosch process, works
by switching between two modes: Deposition of a
protecting substance everywhere, and a isotropic
plasma etch containing some ions attacking the
surface perpendicularly, removing the protecting
layer at the bottom of the holes but leaving it at
the side-walls.

EHP Electron-Hole-Pair. Created by exiting an elec-
tron from the valence band into the conduction
band, leaving behind a hole.

Fano factor Physical effect in semiconductors “smearing" the
amount of electrons produced for a certain energy
deposit. See Chapter 2.2.3.

FPGA Field-Programmable Gate Array; Integrated cir-
cuit (IC) that can change function by uploading
new “software”.

Frontend First stage of electronics in a detector, connected
directly to the sensor. In HEP silicon detectors
this is usually a chip containing all the analog
parts of the readout system (amplifiers etc.), and
also the ADC.

HEP High Energy Physics, the study of particle inter-
actions at high energy.

Hit A raw energy deposit in a sensor, or the estimated
position of where a particle intersected the sensor.

IBL Insertable B-Layer; a proposed fourth layer of
pixel sensors, which is to be placed inside the cur-
rent B-layer. See Chapter 1.1.2.

IC Integrated Circuit; small package with electronic
circuitry. Also known as (electronic) chip.

LHC Large Hadron Collider, Proton accelerator at
CERN in Geneva, Switzerland. See Chapter 1.

MIP Minimum Ionizing Particle; a relativistic particle,
having the “optimum” momentum for an as low
as possible 〈dE/dx〉. See Chapter 2.1 and figure
2.2.

167

NIM Nuclear Instrumentation Module; Electrical and
mechanical specification of type of electronics
modules often used in experimental physics. In
testbeams, trigger systems are often built using
such modules.

On-line A step in data processing that happens in real-
time while the data is recorded, or as a part of
the data recording process.

Off-line A step in data processing that happens indepen-
dently of the data taking, and may thus be re-
peated.

PCB Printed Circuit Board; Flat plastic/glass-fiber sub-
strate with conducting traces, providing electrical
interconnection and mechanical support for elec-
tronic components.

PDF Probability Distribution Function; A real-valued
function P (x) that describes the probabilities of
drawing random numbers from a distribution. If
X is distributed according to P (x), then P (xa ≤
X ≤ xb) =

∫ xb
xa
P (x)dx.

Pedestal In BAT: The signal value from a strip that has not
been hit by a particle. This is subtracted from the
signal when reading out runs, and its value is re-
ported in the BORE of the BDT file.

Pile-up The presence of more than one underlying event
inside one detector event.

SLHC Super LHC. A proposed upgrade of the LHC pro-
ton collider increasing its luminocity.

Spectrum Histogram representing the rate of occurrence of
different amounts of energy.

SVG Scalable Vector Graphics; XML-based vector
graphics format that with modern browsers can
be embedded in HTML pages.

TbAna_* Collection of Python programs handling digitiza-
tion and analysis not depending on tracking. See
Appendix B.

TestBeamSim Geant4-based simulation between the beam and
matter. See Chapter 3 and Appendix A.

ToT Time over Threshold; A measurement of signal
size, the amount of time an amplifier shows an
output voltage above some threshold value. See
Chapter 6.2.2.

168 APPENDIX E. DICTIONARY OF OFTEN USED WORDS

TPCC Turbo Pixel Control Card; PCB that sits between
the TPLL and one or several pixel test boards
(frontend and sensor).

TPLL Turbo Pixel Low Level VME card; VME card
that connects the TPCC to the VME bus (which
is connected to the DAQ PC). Also handles trig-
gering for the pixel devices.

Underlying event One single collision in a particle physics experi-
ments. See Chapter 1.

VME Computer bus standard, used for crates providing
power and communications between cards that
may perform various tasks.

δ-electron, δ-radiation When a charged particle traverses a material, it
may sometimes transfer a non-trivial amount of
energy to a single electron. This electron, which
now has a non-neglible kinetic energy, can then
travel through the material and produce more ion-
ization along its path. See section 2.1.

List of Figures

1.1 The building blocks of matter . 11
1.2 CERN accelerator complex . 13
1.3 ATLAS detector . 13
1.4 Examples of events in ATLAS 15
1.5 ATLAS pixel detector . 16
1.6 Feynman diagram of qq̄ → Z → e+e− 17
1.7 Setup for SPS H8 testbeam, May 2009 20
1.8 Sketch of setup for SPS H8 testbeam (not to any scale) 20

2.1 Simulated energy deposit from high-energy pions on silicon detector 25
2.2 Stopping power for µ+ on Cu . 26
2.3 Creation of EHPs . 27
2.4 I-V plot from Sintef 2E first-generation full 3D sensor 30
2.5 Schematic formation of PN-junction 31
2.6 Weigthing field in 3D pixel devices (1E and 3E) 35
2.7 η-corrections . 38
2.8 Comparison of 2D- and 3D- sensor geometries 39
2.9 Geometry concepts for 3D pixel sensors 40
2.10 Active edge . 40
2.11 Measured charge sharing probabilities 42
2.12 Measured hit efficiencies . 43
2.13 Sum of two dices . 45

3.1 Data flow from experiment or simulation to analysis 47
3.2 Fano bug: Total charge deposition spectrum 52
3.3 Spread in charge cluster size as a function of total charge deposit . 53
3.4 Incident energy in BAT3 . 54
3.5 Walltime needed to simulate one event with different physics lists. 56
3.6 Computer rendered drawing of simulation geometry (Jura side) . . 57
3.7 Computer rendered drawing of simulation geometry (downstream) 58
3.8 Picture of setup on optical table 58
3.9 Beam profile in DUT1, simulation 62
3.10 Beam profile in DUT1, simulation 63

169

170 LIST OF FIGURES

3.11 Energy deposit in Trigger1 scintillator 64
3.12 Energy deposition spectra in DUT with different trigger thresholds 65

4.1 Picture of two BAT planes, as mounted in the May 2009 testbeam 69
4.2 BAT simulation geometry . 70
4.3 Main steps of BAT digitization algorithm 72
4.4 Gallery of simulated energy deposits and sensor response 73
4.5 BAT E-field calculation geometry 74
4.6 Expansion of charge-cloud . 76
4.7 BAT cluster size vs. depth of creation 78
4.8 Charge collection . 79
4.9 Capacitive couplings in BAT . 80
4.10 CMC vs sumADU correlation 84
4.11 Comparison of between simulation and data, n-side 90
4.12 Comparison of between simulation and data, p-side 91

5.1 Comparison of unbiased BAT residuals for all planes and layers . 95
5.2 χ2-distribution for track, from simulation and data, on a log scale . 96
5.3 Eta-correction CDFs (cartoon) 97
5.4 Unbiased telescope residuals versus hit estimate 98
5.5 Track error in DUTs . 99

6.1 Picture of the pixel module assembly 103
6.2 Pixel module assembly . 103
6.3 Pixel ToT as a function of charge Q 105
6.4 Geometry of analytical HolePunch-model 107
6.5 Analytical 2D efficiency in HolePunch model 108
6.6 Analytical mean collection efficiency 109
6.7 SumToT spectra for data and HolePunch 111
6.8 Comparison of hit efficiency between real data and HolePunc model 112
6.9 Same data as figure 6.8, projection onto x-axis around electrodes . 113
6.10 S-curve Charge-collection efficiency as a function of ∆ri 115
6.11 SumToT spectra for data and HolePunch 116
6.12 Amount of hits with

∑
ToT < 25 117

6.13 SumToT as function of hit position 119
6.14 SumToT as function of hit position (S-curve model) 120

A.1 Detector modules used in simulation 136

B.1 Example webpage created by TbAna_digiTune_BAT.py . . . 146
B.2 UML diagram of analysis/digitization library, data input/storage . 149
B.3 UML diagram of analysis/digitization library, digitization part . . 150
B.4 UML of the BDT reading/writing library 151

C.1 Overview of TbMon . 153

LIST OF FIGURES 171

D.1 One BDT fragment . 157
D.2 A BDT group fragment containing several device sub-fragments . 158
D.3 BDT fragment header . 159
D.4 BAT BORE data . 160
D.5 BAT DATA data . 162
D.6 BAT DATA data half-word . 162
D.7 TPLL BORE fragment . 163
D.8 TPLL DATA word . 164

172 LIST OF FIGURES

List of Tables

3.1 Number of triggers for different physics models 55
3.2 Mean walltime per event, different physics lists 55
3.3 Position of devices along beam axis 59
3.4 TestBeamSim reference parameters 66

4.1 Threshold and threshold setting in BAT data preprocessor 82
4.2 Parameters used for BAT model 85

5.1 Estimated track resolution in DUTs 100

6.1 Geometrical parameters of DUTs 102
6.2 Overall hit efficiencies for full 3D sensor and simulation models . 114

D.1 Kind field magic bits . 159
D.2 Type field magic bits . 160
D.3 BAT BORE acquisition mode magic word 161

173

174 LIST OF TABLES

Bibliography

[1] Atlas simulation validation – performance benchmarking - plat-
form slc4-32bit. http://atlas-computing.web.cern.
ch/atlas-computing/packages/simulation/geant4/
validation/ComparisonsStable/ComparisonsSLC432.
html, March 2010.

[2] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce,
M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba,
J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma,
R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua,
G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fe-
sefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Gi-
annitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, G. Gracia
Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli,
P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen,
A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach,
N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent,
A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna,
T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo,
S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Fre-
itas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen,
T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech,
J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo,
G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko,
D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka,
E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Ur-
ban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch,
T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschi-
esche. G4–a simulation toolkit. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 506(3):250 – 303, 2003.

[3] E. Belau, R. Klanner, G. Lutz, E. Neugebauer, H.J. Seebrunner, A. Wylie,
T. Böhringer, L. Hubbeling, P. Weilhammer, J. Kemmer, U. Kötz, and

175

http://atlas-computing.web.cern.ch/atlas-computing/packages/simulation/geant4/validation/ComparisonsStable/ComparisonsSLC432.html
http://atlas-computing.web.cern.ch/atlas-computing/packages/simulation/geant4/validation/ComparisonsStable/ComparisonsSLC432.html
http://atlas-computing.web.cern.ch/atlas-computing/packages/simulation/geant4/validation/ComparisonsStable/ComparisonsSLC432.html
http://atlas-computing.web.cern.ch/atlas-computing/packages/simulation/geant4/validation/ComparisonsStable/ComparisonsSLC432.html

176 BIBLIOGRAPHY

M. Riebesell. Charge collection in silicon strip detectors. Nuclear Instru-
ments and Methods in Physics Research, 214(2-3):253 – 260, 1983.

[4] M Benoit, A Lounis, and N Dinu. Simulation of guard ring influence on the
performance of atlas pixel detectors for inner layer replacement. Journal of
Instrumentation, 4(03):P03025, 2009.

[5] E. Bolle, M. Borri, M. Boscardin, G.-F. Dalla Betta, G. Darbo, C. Da Vià,
O. Dorholt, S. Fazio, C. Gemme, H. Gjersdal, P. Grenier, S. Grinstein,
P. Hansson10, J. Hasi, F. Huegging, P. Jackson, C. Kenney, M. Kocian, A. La
Rosa, A. Mastroberardino, P. Nordahl, F. Rivero, O. Røhne, H. Sandaker,
K. Sjøbæk, T. Slaviec, D. Su, J. Tsung, D. Tsybychev, N. Wermes, and
C. Young. 3d pixels - recent results. In Proceedings of Science, Vertex 2009,
2009.

[6] ATLAS Collaboration. Atlas insertable b-layer technical design report (in
preparation). Technical report, CERN, 2010.

[7] Geant4 Collaboration. Reference physics lists.
http://geant4.cern.ch/support/proc_mod_catalog/
physics_lists/referencePL.shtml.

[8] International commison on radiation units (ICRU). Icru report 31: Average
energy required to produce an ion pair, May 1971.

[9] R. Fruhwirth. Application of kalman filtering to track and vertex fitting. Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 262(2-3):444–450, De-
cember 1987.

[10] Geant4 Collaboration. Geant 4 User’s Guide for Application Developers.

[11] Geant4 Collaboration. Installation Guide: For setting up Geant4 in your
computing environment.

[12] Geant4 Collaboration. Physics Reference Manual.

[13] H. Gjersdal, E. Bolle, M. Borri, C. Da Via, O. Dorholt, S. Fazio, P. Gre-
nier, S. Grinstein, P. Hansson, J. Hasi, F. Huegging, P. Jackson, C. Kenney,
M. Kocian, A. La Rosa, A. Mastroberardino, P. Nordahl, F. Rivero, O. Røhne,
H. Sandaker, K. Sjøbæk, T. Slaviec, D. Su, J. Tsung, D. Tsybychev, N. Wer-
mes, and C. Young. Tracking effciency and charge sharing of 3d silicon
sensors at different angles in a 1.4 tesla magnetic field. In Nuclear Instru-
mentation Methods A (proceedings), 2009.

[14] Particle Data Group. Review of particle physics. Elsevier, 2008.

http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/referencePL.shtml
http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/referencePL.shtml

BIBLIOGRAPHY 177

[15] HAMAMATSU PHOTONICS K.K., Solid State Division. Datasheet for
Hamamatsu Si Strip detector S6934 (AC-coupled double-sided Si strip de-
tector for particle tracking).

[16] P. Hansson, J. Balbuena, C. Barrera, E. Bolle, M. Borri, M. Boscardin,
M. Chmeissan, G.-F. Dalla Betta, G. Darbo, C. Da Via, E. Devetak,
B. DeWilde, D. Su, O. Dorholt, S. Fazio, C. Fleta, C. Gemme, M. Giordani,
H. Gjersdal, P. Grenier, S. Grinstein, J. Hasi, K. Helle, F. Huegging, P. Jack-
son, C. Kenney, M. Kocian, I. Korolkov, A. La Rosa, A. Mastroberardino,
A. Micelli, C. Nellist, P. Nordahl, F. Rivero, O. Rohne, H. Sandaker, D. Sil-
verstein, K. Sjoebaek, T. Slaviec, J. Stupak, I. Troyano, J. Tsung, D. Tsyby-
chev, N. Wermes, and C. Young. 3d silicon pixel sensors: Recent test beam
results. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, In Press,
Corrected Proof:–, 2010.

[17] Zhong He. Review of the shockley-ramo theorem and its application in semi-
conductor gamma-ray detectors. Nuclear Instruments and Methods in Physics
Research A, 463:250–267, 2001.

[18] K Helle, E Bolle, B Buttler, C Da Via, O Dorholt, S Fazio, G Gjersdal, J Hasi,
C Kenney, A La Rosa, D Miller, V Linhart, H Pernegger, O Rohne, K Sjobak,
H Sandaker, T Slavicec, B Stugu, M Tomasec, S Watts, and C Young. Test-
beam studies of 3d silicon sensors. Technical Report ATL-COM-UPGRADE-
2010-007, CERN, Geneva, Jun 2010. The spirit of the note is first of all to
make sure that this study is communicated to the tracker upgrade community.
If fit for ’PUB’ release , we would of course be happy to get it reclassified.

[19] M. Hjorth-Jensen. Lecture Notes in Computational Physics. (unpublished),
2010.

[20] C. Kenney, S. Parker, J. Segal, and C. Storment. Silicon detectors with 3-d
electrode arrays: fabrication and initial test results. Nuclear Science, IEEE
Transactions on, 46(4):1224 –1236, aug 1999.

[21] W.R. Leo. Techniques for Nuclear and Particle Physics Experiments (2nd
edition). Springer, 1994.

[22] M. Mathes, M. Cristinziani, C. Da Via, M. Garcia-Sciveres, K. Einsweiler,
J. Hasi, C. Kenney, S.I. Parker, L. Reuen, M. Ruspa, J. Velthuis, S. Watts,
and N. Wermes. Test beam characterization of 3-d silicon pixel detectors.
Nuclear Science, IEEE Transactions on, 55(6):3731 –3735, dec. 2008.

[23] M. Morpurgo. A large superconducting dipole cooled by forced circulation
of two phase helium. Cryogenics, July:411–417, 1979.

178 BIBLIOGRAPHY

[24] S. I. Parker, C. J. Kenney, and J. Segal. 3d – a proposed new architecture for
solid-state radiation detectors. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 395(3):328 – 343, 1997. Proceedings of the Third International
Workshop on Semiconductor Pixel Detectors for Particles and X-rays.

[25] QinetiQ. Geant4 general particle source. Electronic. http://reat.
space.qinetiq.com/gps/.

[26] Simon Ramo. Currents induced by electron motion. Proceedings of the I.R.E,
27:584–585, 1939.

[27] Philipp Roloff. The eudet high resolution pixel telescope. Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment, 604(1-2):265 – 268, 2009. PSD8
- Proceedings of the 8th International Conference on Position Sensitive De-
tectors.

[28] A. La Rosa, M. Boscardin, G.-F. Dalla Betta, G. Darbo, C. Gemme,
H. Pernegger, C. Piemonte, M. Povoli, S. Ronchin, A. Zoboli, N. Zorzi,
E. Bolle, M. Borri, C. Da Via, S. Dong, S. Fazio, P. Grenier, S. Grinstein,
H. Gjersdal, P. Hansson, F. Huegging, P. Jackson, M. Kocian, F. Rivero,
O. Rohne, H. Sandaker, K. Sjobak, T. Slavicek, W. Tsung, D. Tsybychev,
N. Wermes, and C. Young. Preliminary results of 3D-DDTC pixel detectors
for the ATLAS upgrade. PoS, RD09:032, 2009.

[29] William Shockley. Currents to conductors induced by a moving point charge.
Journal of Applied Physics, 9:635–636, 1938.

[30] Kyrre Ness Sjøbæk. 3d silicon: The future of radiation-hard silicon sen-
sors? http://folk.uio.no/kyrrens/diverse/roros_talk/
3d%20silicon.pdf, August 2009. Annual meeting of the Norwegian
Physical Society (Fysikermøtet) 2009.

[31] Kyrre Ness Sjøbæk. A system for variational monte carlo calculations.
Electronic, April 2009. http://folk.uio.no/kyrrens/kode/
vmc-classes/project1.pdf.

[32] Kyrre Ness Sjøbæk. Test of 3d silicon pixel detectors: Simulations
and measurements. http://folk.uio.no/kyrrens/diverse/
spaatind_talk/kyrre_spaatind.pdf, January 2010. Spåtind 2010
Nordic conference on particle physics.

[33] Helmuth Spieler. Semiconductor Detector Systems. Oxford Science Publica-
tions, 2005.

http://reat.space.qinetiq.com/gps/
http://reat.space.qinetiq.com/gps/
http://folk.uio.no/kyrrens/diverse/roros_talk/3d%20silicon.pdf
http://folk.uio.no/kyrrens/diverse/roros_talk/3d%20silicon.pdf
http://folk.uio.no/kyrrens/kode/vmc-classes/project1.pdf
http://folk.uio.no/kyrrens/kode/vmc-classes/project1.pdf
http://folk.uio.no/kyrrens/diverse/spaatind_talk/kyrre_spaatind.pdf
http://folk.uio.no/kyrrens/diverse/spaatind_talk/kyrre_spaatind.pdf

BIBLIOGRAPHY 179

[34] S Straulino, O Adriani, L Bonechi, M Bongi, S Bottai, G Castellini, D Fedele,
M Grandi, P Papini, S B Ricciarini, P Spillantini, F Taccetti, E Taddei, and
E Vannuccini. Spatial resolution of double-sided silicon microstrip detectors
for the pamela apparatus. Nucl. Instrum. Methods Phys. Res., A, 556(hep-
ex/0510012):100–114. 28 p, Oct 2005.

[35] Ben G. Streetman and Sanjay Kumar Banerjee. Solid state electronic devices
(6th edition). Pearson Prentice Hall, 2006.

[36] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
1997.

[37] The Analytic Sciences Corporation Technical Stapp. Applied Optimal Esti-
mation. MIT press, 1974.

[38] J. Treis, P. Fischer, H. Krüger, L. Klingbeil, T. Lari, and N. Wermes. A
modular pc based silicon microstrip beam telescope with high speed data
acquisition. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, 490(1-
2):112 – 123, 2002.

[39] Johannes Treis. Development and operation of a novel PC-based high speed
beam telescope for particle tracking using double sided silicon microstrip
detectors. PhD thesis, Universität Bonn, Physikalisches Institut, 2002.

[40] C. Da Via, E. Bolle, K. Einsweiler, M. Garcia-Sciveres, J. Hasi, C. Kenney,
V. Linhart, Sherwood Parker, S. Pospisil, O. Rohne, T. Slavicek, S. Watts,
and N. Wermes. 3d active edge silicon sensors with different electrode con-
figurations: Radiation hardness and noise performance. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 604(3):505 – 511, 2009.

[41] C. Da Viá, J. Hasi, C. Kenney, V. Linhart, Sherwood Parker, T. Slavicek, S.J.
Watts, P. Bem, T. Horazdovsky, and S. Pospisil. Radiation hardness proper-
ties of full-3d active edge silicon sensors. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 587(2-3):243 – 249, 2008.

[42] Eric W Weisstein. Normal sum distribution. From MathWorld–A Wolfram
Web Resource.
http://mathworld.wolfram.com/NormalSumDistribution.
html.

[43] Norbert Wermes and G Hallewel. ATLAS pixel detector: Technical Design
Report. Technical Design Report ATLAS. CERN, Geneva, 1998.

http://mathworld.wolfram.com/NormalSumDistribution.html
http://mathworld.wolfram.com/NormalSumDistribution.html

180 BIBLIOGRAPHY

[44] R. Wunstorf, M. Benkert, N. Claussen, N. Croitoru, E. Fretwurst, G. Lind-
ström, and T. Schulz. Results on radiation hardness of silicon detectors up to
neutron fluences of 1015 n/cm2. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 315(1-3):149 – 155, 1992.

	Abstract
	Acknowledgments
	Contents
	Introduction
	Particle physics detectors
	Detector output and reconstruction
	Insertable B-layer

	Testbeam and testbeam simulation
	Organization of material in thesis

	Semiconductor radiation sensors
	Interactions between radiation and matter
	Silicon radiation sensors
	PN-junctions
	Signal creation
	The Fano factor
	Use of semiconductor sensors for position measurement
	3D pixel sensors

	The Monte-Carlo method

	Simulation of testbeam experimental setup
	Physics models used in the simulation
	Fano sampling
	Implementation errors in Fano sampling routine

	Comparison of Geant4 physics models

	Geometry description
	Beam
	Trigger setup
	Chosen simulation parameters
	Conclusion

	BAT telescope model
	Simulation geometry
	Simulation of sensor response
	Charge-sharing and signal generation
	Electric field
	Drift and diffusion of charge-clouds
	Charge collection on implants
	Capacitive coupling from implants to metal strips

	Noise
	Data preprosessor FPGA
	Off-line subtraction of common mode noise

	Parameter tuning
	Observables
	sumADU
	ClusterMax, shoulder1 and shoulder2 spectrum
	Mean cluster shape
	dN / dEta distribution
	Consecutive number of strips above threshold
	No-hit CMC/N

	Tuning strategy
	Sensitivity to parameters

	Comparison of simulated data with real data
	Conclusion

	Performance of the tracking and alignment
	Alignment and hit resolution in BAT
	Track resolution in DUTs
	Conclusion

	ATLAS Pixel simulation models
	Simulation geometry
	Pixel response models
	Carrier cloud tracking models
	Effective models
	HolePunch model
	S-curve model

	Pixel charge collection efficiency analysis
	Conclusion

	Conclusions and outlook
	TestBeamSim technical documentation
	Installing TestBeamSim
	Configuring and running
	Output
	Detector modules
	BAT and DUT: PixelSD
	Scintillators

	Truth
	Performance data
	Metadata

	Internals
	Messenger
	Physics
	DetectorConstruction
	Detector modules
	PixelSD sensitive detector
	UserActions
	PrimaryGeneratorAction
	RunAction
	EventAction
	SteppingAction

	Benchmarking

	TbAna technical documentation
	Installation
	Initial configuration and overview
	Using TbAna: Important executables
	TbAna_digitizer
	Operation as a library
	digiSyncMap.dat file output format

	TbSim_runMaker
	TbAna_digiTune_BAT
	TbAna_bdtHistos
	TbAna_physicsEngine
	TbAna_globalFit

	Libraries
	Parsing of raw simulation data
	Simulating detector response
	Reading and writing raw experiment data (BDT)

	TbMon simulation extensions
	Configuring simulation extensions
	Analysis: Access to raw simulation data
	SimDuts and pixel detector model testing

	Description of the BDT file format
	Main elements and structure
	Fragment header
	BAT data
	BORE
	DATA

	TPLL data
	BORE
	DATA

	Dictionary of often used words
	List of Figures
	List of Tables
	Bibliography

