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A B S T R A C T 

We obtain the exact statistical distribution of expected detection rates that may be obtained from the detection of ‘Oumuamua, 
which currently belongs to a class of objects that is only observed once in our Solar system. The deri v ation of the distribution 

of future detection rates starts from the assumption that the detection is a result of a Poisson process, and uses Bayes theorem 

along with information theory to get the result. We derive the probability for the next such observation along with the confidence 
limits of this prediction assuming that observations are done with the forthcoming Vera C. Rubin Observatory. This probability 

depends on the estimates of detection rates that existed prior to the ‘Oumuamua observ ation. Ho we ver, unless the constraints 
given by these model-based estimates are within an order of magnitude of the actual detection rate, they have a negligible effect 
on the probability of making a second observation. The results are generalized to the expected future case where more than one 
observation exists. 

Key words: methods: statistical – comets: general – minor planets, asteroids: general – protoplanetary discs. 
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 I N T RO D U C T I O N  

ur first interstellar interloper ‘Oumuamua was disco v ered in Octo- 
er 2017 (Meech et al. 2017 ; Williams 2017 ), and much effort has
ince gone into explaining its formation (Bialy & Loeb 2018 ; Ćuk
018 ; Raymond et al. 2018 ; Flekkøy, Luu & Toussaint 2019 ; Luu,
lekkøy & Toussaint 2020 ; Seligman & Laughlin 2020 ; Desch &
ackson 2021 ; Jackson & Desch 2021 ). Since all these formation
odels need to be consistent with the existing observation statistics, it 

ecomes important to get a quantitative handle on what this statistical
riterion implies. 

The statistical problem of extracting the information implied 
y a single events arose with the 2017 observation of 1I/2017 
1 (‘Oumuamua) (Williams 2017 ), the first, and so far the only,
on-cometary interstellar interloper observed in our Solar system. 
o we ver, it is also rele v ant in the context of radio emission from the
ilky Way (Jansky 1933 ), the detection of cosmic X-rays sources

Giacconi et al. ( 1962 )), and gamma-ray bursts (Klebesadel, Strong & 

lson 1973 ). In geophysics, the occurrence of large earthquakes 
rovides another example where small number statistics becomes 
he key tool to quantify the risk of repeated events (Habermann 
987 ; Sornette et al. 1996 ). The question of small number statistics
n the context of astrophysics was addressed by Gehrels ( 1986 ),
ho determined close approximations for the confidence limits of 

he expectation value 〈 n 〉 given n observations, and also by Kipping
 2021 ). 

The conclusions that may be drawn on the basis of a few, or
 single observation depend crucially on the type of assumptions 
hat it is natural to make prior to the observation. For instance, the
 priori assumption that the observed phenomenon may occur at 
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qually probable rates leads to a different result than the assumption
hat it may occur at equally probable intervals of time. 

The main purpose of this paper is to obtain the exact distribution
 n ( λ) for the expected observation rate λ after n ≥ 1 observations are
ade and the correct a priori assumption is identified, and to obtain

he expected recurrence time of objects similar to ‘Oumuamua by 
eans of the Vera C. Rubin Observatory/Large Synoptic Surv e y
elescope (LSST) programme. The first observation of ‘Oumuamua 
as made in 2017 by the Pan-STARRS project (Williams 2017 ),
hich was initiated in 2008. Many ground-based observations (Ban- 
ister et al. 2017 ; Jewitt et al. 2017 ; Knight et al. 2017 ; Meech et al.
017 ) followed the first 2017 observation. No other observations that
esemble that of ‘Oumuamua, have yet been made, although another 
nterstellar interloper has been observed, the comet 2I/Borisov, which 
as disco v ered in 2019 (Guzik et al. 2019 ). What sets ‘Oumumamua

part in a way that makes it natural to place it in its own class of
bjects, is in particular its extra-gravitational acceleration (Micheli 
t al. 2018 ) that was observed without any detectable outgassing, as
ell as its light-curve variability (Meech et al. 2017 ). 
The probability of making one or more similar observations 

ome time into the future requires identifying the correct a priori
istribution. This brings the problem beyond the simple application 
f Poisson statistics. Following Kipping ( 2021 ), we shall assume that
he observations are random and uncorrelated in time, in other words,
 Poisson process, and combine this with Bayes theorem. Ho we ver,
n order to minimize the implied bias in the a priori assumption, we
pply information theory (Shannon 1948 ; Shannon & Weaver 1949 ;
aynes 1957 ). The assumption that ‘Oumuamua like objects originate 
rom an unknown number of independent production sites leads to a
at a priori distribution where all rates are equally probable. 
In calculating the probability of observing one or more objects 

imilar to ‘Oumuamua based on its detection and a suitable prior
istribution, we must include the potential constraints given by 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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stimates of the population densities of non-cometary interstellar
bjects (ISOs) prior to the detection. Such population densities may
e converted to estimates of the future detection probabilities via
ssumptions on the velocity distribution, the detection volumes of
he surv e ys, the ratio of objects with and without cometary activity
nd their size distribution (McGlynn & Chapman 1989 ; Sen &
ana 1993 ; Moro-Martin, Turner & Loeb 2009 ; Cook et al. 2016 ;
ngelhardt et al. 2017 ). Ho we ver, we will argue that the constraints
n λ provided by these early estimates are too far from the actual
etection rate to have an impact on the future recurrence probability,
s the change of this probability due to the a priori constraints is less
han 5 per cent even when the uncertainty in these constraints are
gnored. 

These considerations are de veloped quantitati vely once we have
stablished the theoretical framework based on Bayes theorem and
he Shannon/Jaynes information theory . Finally , we obtain the actual
ecurrence probability as a function of time and the expected waiting
ime for the next observation, assuming the enhanced efficiency of
he Rubin Observatory surv e y relativ e to earlier programmes. 

 D E R I VAT I O N  O F  T H E  PR  O B  ABILITY  

ISTR IBU TION  

e derive the probability density for the observation rate λ given the
act that n observations have been made over a time period τ . This
s not the same as the probability that n observations will be made
iven a known observation rate λ, although the two probabilities are
losely linked. The link is provided by the classical Bayes theorem:
he probability of having two events A and B , happen may be written 

 ( A and B) = P ( A | B ) P ( B ) = P ( B| A ) P ( A ) , (1) 

he latter equality constituting the theorem. Here, P ( A | B ) is the con-
itional probability of A , knowing that B occurred, and reciprocally
or P ( B | A ), while P ( A )( P ( B )) is the independent probability that A ( B )
ccurred. 
In our context A is the rate λ, and B is the occurrence of the n events.

his means that our desired probability P n ( λ) = P ( A | B ) and P ( B ) =
 ( n ) is the a priori probability of making exactly n observations
uring the time τ , given the (lack of) knowledge at the beginning of
his period. On the other hand, P ( B | A ) = P λ( n ) is the probability that
 events occur given λ, and P ( A ) = P ( λ) is the a priori distribution of
. This distribution is the one taken for λ prior to any observations.
his leads to the expression 

 n ( λ) = 

P λ( n ) 

P ( n ) 
P ( λ) (2) 

or the distribution we wish to obtain. 

.1 Role of pre-existing constraints on ISO populations 

ngelhardt et al. ( 2017 ) estimated an upper limit on the interstellar
umber density of both cometary and non-cometary bodies based
n non-detections in Pan-STARRS, the Mt. Lemmon surv e y, and the
atalina Sky Survey, assuming a cumulative size distribution of such
odies N ( D ) ∝ D 

−2.5 (Dohnanyi 1969 ). Using this distribution the
esulting upper limit found by Engelhardt et al. ( 2017 ) on the density

of non-cometary bodies larger than 1 km ∼10 −2 au −3 translates
o an upper limit ρ < 0.5 au −3 for the density of bodies larger than
00 m. This the ef fecti ve spherical diameter of ‘Oumuamua Luu
t al. ( 2020 ) which has roughly the same cross-sectional area as its
ssumed oblate or prolate shape. 
NRASL 523, L9–L14 (2023) 
Moro-Martin et al. ( 2009 ) used models for the ejection of
rotoplanetary material to place an upper limit on the expected
etection rate of inactive/small albedo comets by the forthcoming
ubin Observatory. This limit was estimated to a maximum of 1
etection during its 10 yr of planned operation, while Cook et al.
 2016 ) derived an upper limit on the detection of interstellar active
omets at 1 detection per year, which is similar to that found later by
oo v er, Seligman & Payne ( 2022 ). 
While Moro-Martin et al. ( 2009 ) obtained the ISO density esti-
ates 5 × 10 −9 au −3 < ρ < 5 × 10 −5 au −3 , Sen & Rana ( 1993 ) found
< 1.6 × 10 −4 au −3 , and the estimates of Sen & Rana ( 1993 ) and
cGlynn & Chapman ( 1989 ) yield ρ < 10 −3 au −3 . Subsequently, Do,

ucker & Tonry ( 2018 ) used the ‘Oumuamua detection to estimate
he density of non-cometary ISOs to lie around ρ ≈ 0.2 au −3 .
s a consequence of the ‘Oumuamua observation, Do et al. ( 2018 )

uggested the ratio of dry to cometary ISO’s to be around 1000,
hich is 5–7 orders of magnitude abo v e the ratio that is believed

o describe the Oort cloud (Weissman & Levison 1997 ; Walsh et al.
011 ), exo-Oort clouds being assumed to be the sources of ISOs. 
It is important to distinguish between a priori assumptions based

n model-dependent estimates and a priori knowledge, as only the
atter may be used as hard constraints in the P ( λ) distribution.
ey assumption that went into the λmin and λmax estimates prior

o the 2017 ‘Oumuamua observation include assumptions on the
atio of dry to cometary ISO’s and the ability of interstellar radiation
o convert cometary objects to crusted dry ones. By implication,
hese assumptions presuppose specific formation scenarios of ejected
lanetesimals, which only include a few of those proposed for
Oumuamua. In particular, they do not include the possibility that
Oumuamua is an ultraporous fractal aggregate Luu et al. ( 2020 ), a
hunk of frozen N 2 ejected from an exo-Pluto like surface (Desch &
ackson 2021 ; Jackson & Desch 2021 ), a piece of pure H 2 ice
Seligman & Laughlin 2020 ), or a solid matrix releasing H 2 upon
ublimation (Bergner & Seligman 2023 ), nor the possibility that it is
 light sail developed by an alien civilization (Bialy & Loeb 2018 ).
o we ver, using the estimate of the density of ISOs found by Do et al.

 2018 ), Levine et al. ( 2021 ) estimate the expected Rubin Observatory
etection rates for ISOs with a range of different formation pathways,
lbeit with the inclusion of the information that ‘Oumuamua was
lready detected. 

In calculating the probability for another ‘Oumuamua observation
ased on (1) the a priori information on expected detection rates
nd (2) the actual detection, it would be inconsistent to include the
nformation of (2) in (1). While the actual detection will lead to
stimates of the interstellar density of similar bodies, the detection
ay not be included in the prior information. As we will show, the

re-existing constraints on detection rates must be within an order of
agnitude of the actual detection rate, in order to make a noticeable

ifference in the probability of making another similar detection.
he pre-existing model-based constraints are either too wide, or they
ave values that are not favoured by probability given the subsequent
bservation, as is apparent in the adjustments to ratio of cometary to
on-cometary bodies that followed the ‘Oumuamua observation (Do
t al. 2018 ). 

.2 Operational efficiency 

ollowing Trilling et al. ( 2017b ), we shall take the ef fecti ve opera-
ional period of Pan-STARRS to have started in 2012, thus accounting
or the increase in operational efficiency that had occurred before the
017 detection of ‘Oumuamua. This yields an ef fecti ve observ ation
ime of τ = 10 yr resulting in n = 1 observation. 
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The Rubin Observatory will surv e y 20 000 deg 2 up to a magnitude
4.5 repeatedly o v er 10 yr. The LSST detection limit is estimated
o be three magnitudes deeper than Pan-STARRS’ typical limiting 
agnitude of ∼21.5, which translates to a factor of three smaller in

he size of observable objects (Trilling et al. 2017b ). Assuming the
mall body size distribution N ( D ) ∝ D 

−2.5 it is possible to integrate
 v er the smaller observable sizes as well as the increased number
f visible objects. This leads to a yearly observational capacity 
f the Rubin Observatory surv e y that is roughly five times that
f Pan-STARRS (Trilling et al. 2017a ) in terms of the expected
umber of detections. We denote this performance increase by α. 
he value of α may be somewhat reduced by the fact that the

esidence time of ISOs will be larger within the accessible Rubin
bserv atory observ ation volume than within that of Pan-STARRS 

detecting the same object twice does not lead to an independent 
etection). This effect is ignored in the following, and we shall
imply assume that the enhanced capacity of the Rubin Observatory 
 v er earlier observational campaigns may effectively be represented 
s an increase α ≈5 in the future observational time period τ 1 ; in
ther words, that we may include it by the replacement τ 1 → ατ 1 , 
here τ 1 is the future time window. 

.3 The distribution P λ( n ) 

he long-time observation rate is λ = N / T where N 	 n is a large
umber of observations taken o v er a long time T 	 τ . The probability
hat one of these n events occurs within the time window τ is τ / T ,
nd so the probability to make exactly n observations o v er a time
indow τ may be written 

 λ( n ) = 

(
N 

n 

)( τ

T 

)n (
1 − τ

T 

)N−n 

→ 

( λτ ) n e −λτ

n ! 
, (3) 

hen N 	 n . This result is nothing but the well-known Poisson
istribution. 

.4 The a priori distributions 

he a priori distributions P ( λ) and P ( n ) of event rates λ and expected
umber of observations may result from some physical knowledge 
f the process producing them. Without such prior knowledge our 
ask becomes a v oiding to introduce it inadvertently by implication of
ur choice for P ( λ). The idea is to a v oid the introduction of arbitrary
nformation. 

Here, we shall simply assume that the rate comes from some 
nknown number N s of uncorrelated sources so that λ ∝ N s . In the
Oumuamua case such an assumption is natural regardless of the 
ssumed formation theory. In all of these theories, it is a natural
 priori assumption that the production sites are independent and 
heir total number unknown. The question of identifying P ( λ) then
ecomes equi v alent to finding the distribution Q ( N s ) of the source
umber. In the case where no prior knowledge exists, or is justified,
he choice of Q , should thus represent the least possible input of
nformation. 

Shannon (Shannon 1948 ; Shannon & Weaver 1949 ), and later, 
aynes (Jaynes 1957 ) formulated an information theory that quanti- 
es the amount of information, or rather uncertainty, that is contained 

n a certain probability distribution. The uncertainty function that 
he y deriv ed, has the same formal structure as the Gibbs entropy and
ay be written 

 = −K 

∑ 

N s 

Q ( N s ) log ( Q ( N s )) , (4) 
here K is a constant. Maximizing this uncertainty function with 
espect to Q , subject to the constraint of normalizability ∑ 

N s 

Q ( N s ) = 1 (5) 

eads to the variational problem with respect to Q ( N s ) 

H − γ δ( 
∑ 

N s 

Q ( N s )) = 0 , (6) 

here γ is a Lagrangian multiplier that may be determined by 
ormalization. The sum o v er N s must be constrained by some lower
nd upper limits. This then gives 

 log Q ( N s ) + K + γ = 0 , (7) 

r, in other words, Q = constant. This means that the probability
 ( λ) must be constant as well, and that all a priori event rates are
qually probable. This flat distribution corresponds to a minimum 

nput of information. In contrast, some peaked P ( λ) distribution
 ould al w ays produce a smaller uncertainty value H , corresponding

o the information present in the knowledge of the peak location. 
We may normalize the constant a priori distributions to get P ( λ) =

/( N max − N min ), or more precisely, 

 ( λ) = 

{
	λ

λmax −λmin 
when λmin < λ < λmax 

0 otherwise 
, (8) 

here N max = λmax T and N min = λmin T are the upper and lower bounds
n the expected number of observations during the long time interval
 . Abo v e, we hav e assumed that the total number N of observations
ay take equally probable values in the range N min ≤ N ≤ N max , and,

onsequently, the increment of λ, 	λ = 1/ T . 
Note that the a priori probability P ( n ) does not contain the informa-

ion of the existing observations. This information is introduced only 
y setting n = 1 (or some larger value) in the conditional probability
 n ( λ). Instead, the a priori probability P ( n ) is obtained by combining

he prior P ( λ) and equation ( 3 ), which yields 

 ( n ) = 

∫ λmax 

λmin 

d λP ( λ) P λ( n ) = 

∫ λmax 

λmin 
d λ( λτ ) n e −λτ

λmax − λmin 
. (9) 

hen λmax τ � 1 we get P ( n = 1) ≈ ( λmax τ + λmin τ )/2, which
s the rele v ant limit for most of the pre-existing constraints: Based
n estimates of the inactive comet population density Moro-Martin 
t al. ( 2009 ) estimates the Rubin Observatory detection rate at
ess than 10 −3 detection per year. Reducing that rate by a factor
 corresponding to the smaller capacity of P an-STARRS, giv es a
alue λmax = 2 × 10 −4 yr −1 . Using this a priori constraints sets the
robability of making the ‘Oumuamua observation at P ( n = 1) ∼ 0.1
er cent. Using instead the value of the population densities arrived
t by Sen & Rana ( 1993 ) yields P ( n = 1) ∼ 0.15 per cent, and that
y McGlynn & Chapman ( 1989 ) yields P ( n = 1) ∼ 1 per cent. These
o w v alues strongly suggest that the corresponding constraints on λ
re inadequate as hard constraints in our P ( λ) distribution. In the
ollowing, we will assume that the λmax and λmin values are in fact
loser to the actual detection rate in order to quantify their role. 

Inserting the a priori distributions in equation ( 2 ) yields the desired
istribution P n ( λ) = p n ( λ) 	λ with the probability density 

 n ( λ) = 

{ 

( λτ ) n e −λτ

∫ λmax 
λmin 

d λ( λτ ) n e −λτ
when λmin < λ < λmax 

0 otherwise 
(10) 

ith n = 1 until the next ‘Oumuamua-like observation is made. This
s our desired result for the rate distribution. This function takes
ts maximum at n / τ , and gives an average 〈 λ〉 = ( n + 1)/ τ , with a
MNRASL 523, L9–L14 (2023) 
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Figure 1. The rate distribution function of equation ( 10 ) plotted for different 
n as a function of the rate normalized by its maximum value. 
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tandard deviation 
√ 

n + 1 /τ . Note that the distribution p 1 ( λ) takes
ts maximum at λ = 1/ τ , which is the historical detection rate, while
he expectation value 〈 λ〉 = 2/ τ . The difference between the actual
nd expected occurrence rates is due to the skewness of the p ( λ)-
istrib ution. This distrib ution is plotted as a function of λ/ λmax in
ig. 1 , assuming that λmin τ � 1 and λmax τ 	 1. In the figure, p n ( λ)

s multiplied by λmax , so that the curves remain normalized when
nte grated o v er x = λ/ λmax . Note that on this scale, the curves become

ore peaked when n increases, reflecting a smaller uncertainty in the
ore probable λ-values relative to the maximum- or average value.
o we ver, e ven with only a single observation n = 1, the spread in
-values is finite. 
The assumption made by Kipping ( 2021 ) is that P ( λ) ∝ 1/ λ.

eing a power law, this distribution is scale-free, like ours, but
roduces a different end result. Also, this choice introduces a larger
mount of information as quantified by equation ( 4 ), than the flat
istribution and we therefore select the latter. This choice, which
s also known as the Bayes–Laplace uniform prior, was also made
y other authors (Cameron 2011 ) without the justification in terms
f information theory. In Cameron ( 2011 ), several non-informative
riors are assumed; by contrast, the Jaynes uncertainty maximization
ingles out just one of these. 

.5 Expected waiting times 

ow, P λ( m ) of equation ( 3 ) is the probability of making exactly m
bservations within a time τ , given a known value of λ. Replacing
by a future time interval τ 1 and summing o v er an y number of

e w observ ations m ≥ 1 gives the probability of making another
bservation or more, within the time τ 1 assuming a given λ value, 

 λτ1 ( m ≥ 1) = 

∞ ∑ 

m = 1 

( λτ1 ) m e −λτ1 

m ! 
= 1 − e −λτ1 , (11) 

here we have used the identity 
∑ ∞ 

m = 0 x 
m /m ! = e x . Averaging

his probability o v er all λ-values yields the probability that another
bservation is made within the future time window τ 1 : 

 τ1 ( m ≥ 1) = 

∫ 
d λp 1 ( λ) P λτ1 ( m ≥ 1) , (12) 

here p 1 ( λ) is given in equation ( 10 ) with n = 1. Doing the
ntegration, then gives 

 τ1 ( m ≥ 1) = 1 −
(

τ

τ1 + τ

)2 

+ εmin − εmax , (13) 
NRASL 523, L9–L14 (2023) 
here the correction terms due to the assumed constraint values of
min and λmax are 

max = 

(
τ

τ + τ1 

)2 

( λmax τ + 1) e −λmax τ

εmin = 

1 

2 

(
τ

τ + τ1 

)2 

λ2 
min 

(
2 ττ1 + τ 2 

1 

)
(14) 

n the limit when λmin τ � 1 and λmax τ 	 1. Note from equation ( 13 )
hat εmin enters as a positive correction while εmax is ne gativ e, as
n upper bound on λ will reduce detection probabilities, while a
ower bound does the opposite. When λmin τ < 0.1, εmin < 10 −3 ,
nd when λmax τ > 10, εmax < 4 × 10 −4 , assuming for simplicity
hat τ = τ 1 . This means that in order to affect the predicted
etection probability noticeable the a priori constraints on λ must
e within a factor 10 of the actual detection rate 1/ τ . Otherwise,
he actual ‘Oumuamua detection is the only piece of information
hat determines P m ≥ 1 ( t ), while the estimates of likely detection
robabilities based on estimates of the ISO populations by Moro-
artin et al. ( 2009 ) only yield a ∼0.1 per cent correction. 
The a posteriori ISO density estimate by Do et al. ( 2018 ) of ρ ≈ 0.2

u −3 was based on the actual λ ≈ 1/ τ observation rate. On the other
and, the upper bound of ρ < 0.5 au −3 obtained by Engelhardt et al.
 2017 ) was obtained before the ‘Oumuamua observation was made.
ince the detection rate is proportional to the population density when
ll other factors are equal, the factor of 2.5 between the ρ-values,
ay be taken to yield an estimated a priori upper bound λmax τ = 2.5

n this case. This gives εmax = 7 per cent if this λmax -value is taken
s a hard constraint. Ho we ver, while it is remarkable how close the
stimate of Engelhardt et al. ( 2017 ) is to the a posteriori estimate it
s hardly justified to use it has a hard upper bound, given the scatter
n the other prior ρ-estimates and the uncertainty in the underlying
odel assumptions. 
In the following, we well neglect the εmax and εmin terms and

eplace τ 1 → ατ 1 to account for the increased efficiency of the
ubin Observatory (VRO) surv e y. Also, the generalization to the case
here several observations n exist beforehand, is straightforward.
bo v e, we assumed that only n = 1 observation e xists. Giv en n
 1 observations all that is needed is to replace p 1 ( λ) by p n ( λ) in

quation ( 12 ), so that 

 

VRO 
τn 

( m ≥ 1) = 

∫ 
d λp n ( λ) P λ( ατn ) ( m ≥ 1) . (15) 

his integral is easily performed and gives 

 

VRO 
τn 

( m ≥ 1) = 1 −
(

τ

ατn + τ

)n + 1 

, (16) 

hich is the probability of making one or more observations by the
ubin Observatory during a time window τ n , provided n observations
ere already made during the previous time τ , given that Pan-
TARRS and other programmes made a single observation during

he time τ ≈ 10 yr. 
The hypothetical n > 1 case would apply if yet another ‘Oumua-
ua like observation were made by means of Pan-STARRS. If the

uestion is ‘what is the probability of making a third observation with
he Rubin Observ atory, gi ven that one observ ation was made by Pan-
TARRS and another by Rubin Observatory’, then the observation

ime τ would have to be scaled by a factor β > 1 to account for
eriod o v er which the observ ation ef ficiency was increased. 
Setting n = 1 again for the actual case, we obtain 

 

VRO 
τ1 

( m ≥ 1) = 1 −
(

τ

ατ1 + τ

)2 

, (17) 
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Figure 2. Expected minimum waiting time τmin 
1 , to make another observation 

by means of the Rubin Observatory telescope as a function of the confidence 
limit CL. This result, which is given in equation ( 19 ), is based on the 
information that the n = 1 observation was already made during the prior 
time τ = 10 yr. 

f
t

 

t
2
p  

a  

m
+  

i
 

s  

n  

e

τ

w  

c

τ

T  

o
a
p

3

W  

‘
a
t
t  

t
i
P
t
a  

t
w  

A
5

c  

a  

o  

t  

c
o
c  

t  

n
t  

a

A

W  

R
f
G
g

D

T
2  

w

R

B
B
B
C
C
C
D
D
D
E  

F
G
G  

G  

H
H
J
J
J
J  

W  

K
K
K  

L

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article/523/1/L9/7134080 by U
niversity of O

slo user on 19 February 2024
or the probability of making another ‘Oumuamua like detection by 
he Rubin Observatory during a future time window τ 1 . 

It is interesting to use the abo v e result to e v aluate the probability
hat Pan-STARRS should have made another observation during the 
017–2022 period after the first detection during the 2012–2017 
eriod (in which case n = 1, τ = 5 yr, τ 1 = 4 yr and α = 1). This gives
 probability P τ1 ( m ≥ 1) = 69 per cent. By contrast, the assumption
ade in Kipping ( 2021 ) leads to the prediction P m ≥ 1 ( t ) = 1 − τ /( τ 1 

 τ ) = 44 per cent. In either scenario, the lack of a second detection
s quite reasonable. 

The confidence level CL is the lower bound on P τ1 ( m ≥ 1),
ince this is a cumulative distribution over the time up to τ 1 after
 = 1 detection has been made. Equating CL and P 

VRO 
τ1 

( n ≥ 1) in
quation ( 16 ) gives the corresponding minimum waiting time 

min 
n = 

τ

α

( (
1 

1 − CL 

) 1 
n + 1 

− 1 

) 

, (18) 

hich decreases sharply with increasing n , as expected. In the n = 1
ase the minimum waiting time is 

min 
1 = τ

(
1 √ 

1 − CL 

− 1 

)
. (19) 

his behaviour is illustrated in Fig. 2 where n = 1, the current number
f detections. The Rubin Observatory observations should lead to 
 second ‘Oumuamua-like detection within 5 yr with 90 per cent 
robability, and one within 1.5 yr with a 66 per cent probability. 

 C O N C L U S I O N S  

e hav e deriv ed the probability distribution for the rate of future
Oumuamua-like detections, starting from the knowledge that such 
n event has indeed occurred. Looking forward to the possibility 
hat more detections are made, we have generalized this result to 
hat case where n > 1 observations exist. The theoretical basis for
he rate distribution is a combination of Bayes theorem, Shannons 
nformation theory, and the assumption that the events result from a 
oisson process. With this distribution in hand, we have also derived 

he corresponding probabilities for future events to take place as well 
s the confidence limits of these probabilities. Our main result is
he expected recurrence time using the Rubin Observatory program, 
hich is given in terms of the confidence limit in equation ( 18 ).
nother observation similar to that of ‘Oumuamua is expected within 
 yr at a confidence limit of 90 per cent. 
We have applied information theory to minimize the information 

ontent implied by the prior distribution, a process that yields a flat
 priori distribution o v er λ values. If, for some reason, knowledge
f time correlations is produced, the a priori distribution would need
o be changed accordingly. We have quantified the effect of the
urrent prior information relating to the nature of population densities 
f small interstellar bodies and found that this information must 
onstrain the detection rate λ to within an order of magnitude of
he actual detection rate (1 in 10 yr for ‘Oumuamua) to have a
oticeable effect on the predicted recurrence probability. Otherwise 
his prior information will be trumped by the information of the
ctual detection. 
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