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Extracting model-independent nuclear level densities away from stability
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The nuclear level density (NLD) is a fundamental measure of the complex structure of atomic nuclei at rela-
tively high energies. Here we present the first model-independent measurement of the absolute partial NLD for a
short-lived nucleus. For this purpose we adapt the recently introduced “shape method” for β-decay experiments,
providing the shape of the γ -ray strength function for exotic nuclei. In this work, we show that combining the
shape method with the β-Oslo technique allows for the extraction of the NLD of the populated states without
the need for theoretical input. This development opens the way for the extraction of experimental NLDs far from
stability with major implications in astrophysical and other applications. We benchmark our approach using
data for the stable 76Ge nucleus, finding excellent agreement with previous experimental results. In addition, we
present new experimental data and determine the absolute partial level density for the short-lived 88Kr nucleus.
Our results suggest a fivefold increase in the NLD for the case of 88Kr, compared to the recommended values
from semimicroscopic Hartree-Fock Bogoliubov calculations recommended by the RIPL3 nuclear data library.
However, our results are in good agreement with other semimicroscopic level density models. We demonstrate
the impact of our method on the 87Kr(n, γ ) neutron capture rate and show that our experimental uncertainties
for NLDs fulfill the requirements needed for astrophysical calculations predicting r-process abundances.

DOI: 10.1103/PhysRevC.107.L011602

I. INTRODUCTION

Nuclei are complex quantum many-body systems. For low-
excitation energies, their structure can be described using the
properties (energy, spin, parity, width) of individual levels.
However, moving to higher energies, where the levels get
closer and overlap, these properties need to be combined
into a statistical description of the nucleus [1]. One of the
most important statistical properties is the NLD as it car-
ries information about the structure of the nucleus, such as
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pair breaking, shell effects, shape changes, and collectivity.
In addition, the NLD is a critical input in nuclear reaction
calculations, in particular for neutron-capture reaction cross
sections and neutron-induced fission calculations. These re-
actions provide pivotal input for nuclear astrophysics and
applications in nuclear energy and security [2–6].

In 1936, Bethe first described the nucleus as a group of
noninteracting fermions [7,8]. Since then modern approaches
were developed which are typically semi-microscopic, e.g.,
[9–12], or shell-model based, e.g., [13–17]. While effective
shell model calculations are a powerful tool to describe NLDs
within a local area of the nuclear chart, semimicroscopic
approaches are preferred for large scale calculations, such as
calculating neutron-capture rates on nuclei far from stability,
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e.g., for the astrophysical r process [18], and for nuclear
energy production [5,6].

Available semimicroscopic NLD models use the Hartree-
Fock-Bogoliubov (HFB) plus combinatorial approach [19,20]
to extract energy-, spin-, and parity-dependent NLDs [10–12].
They reproduce existing experimental data along the valley
of stability, within two normalization factors, α (slope) and δ

(offset):

ρ(Ex, J, π ) = eα
√

Ex−δρ(Ex − δ, J, π ), (1)

where ρ is the NLD as a function of excitation energy Ex, spin
J , and parity π . A detailed study [11,12] of the α and δ nor-
malization parameters for 289 nuclei showed that the values
of the two parameters are centered around zero, but can also
deviate significantly from zero with major implications on the
absolute value of the NLD and, as a result, the neutron-capture
reaction rates.

Experimentally, measurements of the NLD are limited to
stable nuclei or their closest neighbors. Commonly used tech-
niques for extracting the NLD around stability are the Oslo
method [21–23], the particle-evaporation method [24,25], and
the direct measurement of neutron-resonance spacings close
to the neutron-separation energy. New experimental tech-
niques were developed that can provide NLDs on short-lived
nuclei (β-Oslo [26], inverse-Oslo [27]). However, all Oslo-
type techniques that can be applied to short-lived nuclei rely
on inputs from theoretical models. Here we present the first
model-independent approach for extracting a partial NLDs for
short-lived nuclei.

II. METHOD: DETERMINING ABSOLUTE PARTIAL
LEVEL DENSITIES

In the present work we make use of the β-Oslo method [26]
and combine it with the recently introduced “shape method”
[28] to eliminate any model dependencies in the extraction
of NLDs. In the β-Oslo method, the nucleus of interest is
populated via β decay, allowing one to do experiments with
nuclei far from stability, where the secondary beam intensities
can be as low as 1 pps [26,29]. A segmented total absorption
spectrometer is used to simultaneously measure the excitation
energy and individual γ -ray transitions of the populated nu-
cleus. Following the unfolding of the data with the detector
response [23], an iterative subtraction process allows for the
extraction of the first generation γ rays as a function of exci-
tation energy, Ex [22]. The extracted first generation (primary)
γ -ray matrix P(Ex, Eγ ) can be factorized as [21]:

P(Ex, Eγ ) ∝ T (Eγ )ρ(Ex − Eγ ), (2)

where ρ(Ex − Eγ ) is the NLD at the excitation energy af-
ter the first γ -ray is emitted and T (Eγ ) is the transmission
coefficient for γ emission. In β-decay experiments, ρ(Ex −
Eγ ) is a partial NLD, which includes spins that correspond
to the assumed allowed β-decay transitions, followed by a
dipole γ -ray emission. Consequently, T (Eγ ) corresponds to γ

emission of dipole nature. An infinite number of solutions are
possible for the above equation [21], and the physical solution
is obtained when normalizing the ρ(Ex − Eγ ) and T (Eγ ) to
known data with

ρ ′(Ex − Eγ ) = Aeα̃(Ex−Eγ )ρ(Ex − Eγ )

T ′(Eγ ) = Beα̃(Eγ )T (Eγ ), (3)

where A and B are constants and α̃ is a common slope parame-
ter. Typical normalization data used in the Oslo method are (1)
low-lying discrete levels, (2) the level density at the neutron
separation energy, ρ(Sn), calculated from neutron-resonance
spacing, D0, data where available, and (3) the average total
radiative width 〈�γ 〉 at Sn. When dealing with unstable nuclei,
typically the low-lying discrete levels are available, and the
magnitude of the γ -ray strength function (γ SF) can be con-
strained using Coulomb dissociation measurements in inverse
kinematics [29–33]. However, the second normalization point
that constrains the NLD at the neutron-separation energy, as
well as the slope of both the NLD and the γ SF, cannot be
provided experimentally for exotic nuclei. Consequently, the
absolute values of NLDs for unstable nuclei rely on theory,
alone. To eliminate this problem we combine here, for the first
time, the β-Oslo method with the shape method [28].

The shape method yields the energy-dependence or
“shape” of the γ SF, i.e. the γ SF up to an absolute normal-
ization constant, in a model-independent way. The traditional
shape method [34,35] uses particle-γ -γ data to determine the
excitation energy of the nucleus and the feeding to individual
discrete levels of the same spin and parity. Through this, the
dependence of the γ SF on Eγ is determined for each exci-
tation energy Ex. The different data points that correspond
to each excitation energy are then combined to extract the
complete shape of the γ SF. Note that the γ SF is assumed to
be independent of the excitation energy in any given nucleus
for the excitation energies of interest (Brink hypothesis [36]).
Here, we apply the shape method to β-decay data. In this case,
the excitation energy is extracted from the sum of the total
amount of energy deposited in the segmented total absorption
spectrometer SuN [37], and the individual γ -ray energy is
taken from each segment of the detector (Fig. 1). The shape
method relies on the observation of statistical γ ray decays
from the quasicontinuum into discrete, low-lying levels, Lj ,
with energies EL j . We assume that the primary γ decays into
the states, Lj , will be dominated by dipole transitions [38]. In
the present work we restrict the analysis to two discrete states
with identical spin, L1,2 = 2+

1,2, in the even-even daughter
nucleus. These transitions appear in our data as diagonals in
a two-dimensional (2D) matrix with excitation energy on the
y axis and γ -ray energy on the x axis, e.g., Fig. 1. We use
projections of the 2D matrix along the diagonals (Ex − Eγ ), as
shown in the same figure, for different excitation energies and
extract the γ -ray intensities NL j into the states of interest Lj .
The ratio of the intensities, NL j , along the diagonals, corrected
for the detector response, is related to the ratio R of the γ SFs,
f (Eγ ), for a given energy range Ex [34]:

R = f
(
Ex,i − EL1

)

f
(
Ex,i − EL2

) = NL1 (Ex,i )
(
Ex,i − EL2

)3

NL2 (Ex,i )
(
Ex,i − EL1

)3 . (4)
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FIG. 1. Left: Raw matrix of excitation energy vs γ -ray energy in
SuN after population of 76Ge. Right: Projections along the diagonal,
Ex − Eγ , for three different energy bins (all in keV) 3900 < Ex <

4400 (a), 4700 < Ex < 5100 (b), 5500 < Ex < 5900 (c). The peaks
at 563 keV and 1108 keV correspond to decays into the states 2+

1 and
2+

2 , respectively. The purple shaded areas were used to define a linear
background under each peak.

Equation (4) can be applied for n energy ranges with centroids
Emin < Ex,i < Qβ and widths 	Ex,i, with Emin representing
the minimum energy at which the population and γ decay of
the daughter nucleus behave statistically, and Qβ being the
Q value of the β decay. The E3

γ correction is based on the
assumption that the transitions are of dipole nature.

The γ SF is obtained via a “sewing” approach, where the
pairs of data points from each excitation energy bin are nor-
malized to each other via linear interpolation [28]. In this
work we use a “symmetric sewing” approach in which the
vertical distance of data points to the linear interpolation of
the neighboring pair of data points is equal. We found the
symmetric sewing algorithm to reliably reproduce test input
data with similar characteristics to the experimental data and
found that the induced uncertainties are small compared to the
uncertainties induced by the fluctuations in the experimental
spectra. After interpolation, the n pairs of values, f (Eγ ), re-
flect the shape of the γ SF of the final nucleus.

In the present work the shape method and the β-Oslo
technique are combined for the first time to extract a model-
independent partial NLD.

III. EXPERIMENTAL VALIDATION

The technique was applied to previously published data
for the stable nucleus 76Ge that is fed from the β-decay of
76Ga [26,39]. The original experiment was performed at the
National Superconducting Cyclotron Laboratory, at Michi-
gan State University using the Summing NaI (SuN) detector
[26,37,39].

Figure 1 (left) shows the raw 2D matrix created from the
SuN detector data by using the total deposited energy to deter-
mine Ex on the y axis and the individual segments to obtain Eγ

on the x axis. The diagonals from the feeding of the first two
excited states, 2+

1 and 2+
2 , from higher lying states in 76Ge are

clearly seen, shifted by 563 and 1108 keV, respectively, from

the 0+
1 ground state. A dedicated software program SHAPEIT

[40] was developed for this analysis.
Projections of the 2D matrix along the diagonal were cre-

ated for n bins with constant widths 	Exi [Fig. 1 (right)].
The projections are shown with Ex − Eγ on the x axis. Peaks
belonging to decays into Lj = (2+

1 , 2+
2 ) were fit using a Gaus-

sian with a linear background. In the case of decays into the
2+

1 state, peaks were fit as doublets with the close-lying first-
escape peak at Ex − Eγ = 511 keV. For each excitation energy
Ex,i, the γ SF-weighted average energy was determined and
ratios of values f (Eγ ) were calculated using Eq. (4). Applying
the above described sewing approach, the shape of the γ SF
was determined.

In this work we investigate to what extent the results of
the shape method behave statistically and are robust with
respect to the details of the analysis. Hence, we expanded
upon the analysis technique presented in [28] and repeated the
“sewing” analysis for a range of energy bins Ex,i with vary-
ing widths 400 � 	Ex,i � 800 keV in steps of 50 keV and
varying bin positions in steps of 50 keV. To display absolute
values, each individual γ SF is scaled via χ2 minimization to
the γ SF from the β-Oslo analysis using the actual full range
of γ -ray energies. For the final display of the γ SF values, the
convolution of all iterations is averaged over a fixed energy bin
of 250 keV. The error for each bin includes both the statistical
uncertainties as well as the standard deviation of γ SF values
of all iterations. The statistical uncertainties are included in
the Monte Carlo process, and they are small compared to the
error due to matching the γ SFs of all iterations

Figure 2 (top) shows the resulting γ SF of 76Ge (blue tri-
angles) compared to the results of the β-Oslo method [26],
as well as the Oslo results for 74Ge [41]. It should be noted
that the original publication for 76Ge using the β-Oslo method
used systematics and theoretical calculations to determine the
slope of the NLD and consequently the shape of the γ SF.
The shape method provides here a purely experimental ap-
proach to extracting the shape of the γ SF. Once the slope of
the γ SF is extracted we combine the result with the β-Oslo
method to extract the NLD via a Monte Carlo approach.
In each Monte Carlo iteration, the shape method analysis is
performed based on a randomized set of integration bins and
positions. Before sewing, for each data point the γ SF value
is randomized following its statistical error bar. In the next
step of the Monte Carlo iteration the γ SF from the β-Oslo
method is transformed via Eq. (3) to best match the γ SF of
the shape method. This χ2 fit of the α̃ parameter is performed
within a randomized γ -ray energy range with a lower energy
between 3.0 and 4.0 MeV, while no cutoff is applied at high
γ ray energies. The Monte Carlo approach finally results in
a near-Gaussian distribution of α̃ values, providing a mean
value and σ for this parameter.

Compared to the original β-Oslo analysis, the change in
the slope, δα̃, is 0.05(13). The corresponding absolute partial
NLD is shown in Fig. 2 (bottom). The good agreement of both
the γ SF and level densities to literature values serves as a
robust test of our approach and shows that the chosen level
density at the neutron separation energy in [26] agrees with
our absolute result.
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FIG. 2. γ SF (top) and total NLD (bottom) for 76Ge. Results from
the original publication [26] for 76Ge (blue bands) assume a specific
level density ρ(Sn) at the neutron separation energy from theory and
systematics, whereas the present results (blue triangles) are model
independent. In both cases the NLD populated in the experiment
includes spins 0 through 4, assuming allowed β-decay transitions
from the 2− ground state of 76Ga and dipole γ -ray emission. Our
results are also in good agreement with the NLD extracted from the
particle evaporation method [42] (red circles, bottom). The γ SF is
also compared to that of 74Ge extracted from the stable beam Oslo
method [41] (pink circles, top) in a broader energy range.

IV. FIRST APPLICATION ON AN UNSTABLE NUCLEUS

Following the successful validation of our new approach
we applied the shape method to the unstable nucleus 88Kr. The
new experiment was performed at the CARIBU [43] facility
at Argonne National Laboratory. A 88Br beam was implanted
into the SuNTAN tape transport system [44] at the center
of the SuN detector decaying into the nucleus 88Kr. Isobar
contaminants and daughter activity were removed from the
data by using appropriate tape cycles due to their different
half-lives compared to 88Br. Surrounding the implantation
point, a 3-mm-thick plastic scintillator barrel was used to
detect the emitted β particles. The signals from the plastic
barrel were collected by 32 wavelength-shifting optical fibers
and read by two photomultiplier tubes outside of SuN.

FIG. 3. Top: γ SF for 88Kr determined in this work using the
shape method (blue triangles). Also shown is the γ SF using the
β-Oslo technique (blue thin band, statistical uncertainties, only),
transformed via Eq. (3) to best match the blue triangles. Our results
are scaled to the literature data to guide the eye and allow a com-
parison of the general trend to data for 86Kr [45] (red circles) and
to data for 87Kr (pink band) [27]. Bottom: Measured absolute partial
level density for 88Kr (blue triangles) for the spins populated after β

decay from 88Br. The blue band is a 1σ uncertainty range, see Sec. V
for details. Recommended values from RIPL3 [11,46] are shown as a
black line, whereas two additional semimicroscopic models [10,12]
are shown in purple and orange solid lines, respectively (see text for
details). The pink band shows model predictions [11], constrained
via the known discrete levels, only.

The same analysis procedure that was outlined for 76Ge
was applied for 88Kr using the diagonals corresponding to
Lj = (2+

1 , 2+
2 ) at energies 775 and 1577 keV, respectively.

The resulting γ SF of all analysis iterations, averaged over a
fixed bin size of 320 keV, is shown in Fig. 3 (blue triangles,
top), and is compared to measurements of other neutron-rich
krypton isotopes [27,45]. Within the limitations of the large
uncertainties in the previous measurements, the general shape
of the γ SF is in good agreement.
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Following the same procedure as in 76Ge, the transformed
β-Oslo results are shown in the thin blue band of Fig. 3 (top).
Note that we only display the statistical uncertainties in case
of the β-Oslo analysis, as the systematic uncertainties due to
the normalization of γ SF and ρ are not relevant for the fitting
procedure. The absolute partial level density for 88Kr for the
states populated in β decay, i.e., of both parities, is shown in
the bottom of Fig. 3 (blue triangles). The extracted NLD was
normalized to the discrete levels in the 0–3.4 MeV range.

V. COMPARISON TO NUCLEAR LEVEL
DENSITY MODELS

In Fig. 3 (bottom) the NLD experimental results are
compared to calculations done with three semi-microscopic
models: HFB + Skyrme by Goriely et al. [10], HFB +
Skyrme combinatorial by Goriely et al. [11], and temperature-
dependent HFB+ Gogny by Hilaire et al. [12]. It can be
observed that two of the models agree well with our ex-
perimental results, while the HFB + Skyrme combinatorial
model falls significantly under the data. As mentioned in the
introduction, two normalization parameters are used in these
models to match experimental data [Eq. (1)]: a slope α and an
offset δ. We therefore investigate further the HFB + Skyrme
combinatorial model, which is recommended by the RIPL3
[46] database, by adjusting these two parameters.

In the original publication the authors of the HFB +
Skyrme combinatorial model performed a study using 289
nuclei for which experimental NLDs were available and pre-
sented the overall values of the α and δ parameters (Fig. 8
of Ref. [11]). Using 90% confidence levels the two parame-
ters are within the limits of −0.7 � α � +0.7 and −1.1 �
δ � +1.1 MeV. It is important to note that the deviation
of the α and δ parameters does not follow any systematic
trend (as a function of Z or A of nuclei). Due to the limited
knowledge of discrete levels in 88Kr, no slope (α) parameter
is recommended [46]. Following Ref. [46] the experimental
level scheme in 88Kr is considered complete up to 3.8 MeV.
Levels outside of the populated spin range 0–3 were excluded,
however, if the spin of a level was not known, that level
was still included in this analysis. Using the known discrete
levels between 2 and 3.8 MeV, we varied the slope within
the above mentioned 90% confidence levels and, in each step,
determined the best shift parameter δ. The resulting uncer-
tainty is displayed as a pink band in Fig. 3 (bottom). The
recommended level density [46], which has α = 0 [Fig. 3
(bottom), black line], is at the lower end of our discrete level
fits. This indicates that likely even levels at higher energies
have been taken into account when determining δ in [46].

Our result for the absolute partial level density allows
us to fit new recommended values for α and δ using the
HFB + Skyrme combinatorial model recommended by RIPL-
3. For the extraction of an uncertainty for those parameters
we again followed a Monte Carlo approach; this time, in each
iteration values for ρ were randomized based on the experi-
mental uncertainty at each data point. Then, in each iteration,
best values for α and δ are determined for the HFB + Skyrme
combinatorial model in comparison to the data. The blue band

FIG. 4. Neutron-capture cross section ratios relative to values
using the RIPL3 recommended level densities [46] (black solid line)
in comparison to using the experimental level density from this work
(blue band); see Sec. VI for details. Uncertainties for the case of
no known discrete levels are shown in yellow, whereas uncertainties
achieved using the experimental discrete levels are shown in pink. All
calculations were done using the same parameters in TALYS with the
exception of the NLD model.

in Fig. 3 represents a 1σ uncertainty band displaying the
model predictions for the best 2/3 (66%) in the α − δ plane.

VI. IMPACT ON NEUTRON-CAPTURE REACTION RATES

The nuclear level density is a critical input in neutron-
capture reaction rate calculations. Therefore, we investigate
the impact of the extracted α and δ parameters discussed in
Sec. V for the HFB + Skyrme combinatorial model [11]. For
this study we use the TALYS code [47], with all the default
parameters and only varying the NLD. We plot our results
as ratios compared to the default values of the aforemen-
tioned NLD model (Fig. 4). In the figure, the yellow band
corresponds to a completely unconstrained NLD using the
90% confidence levels in the α and δ parameters mentioned
in Sec. V. In this case the predictions vary by almost two
orders of magnitude, even when using a single NLD model.
However, even a relatively minor knowledge of discrete levels
up to approximately 4 MeV in 88Kr leads to a reduction of this
uncertainty by about one order of magnitude, as shown by the
pink band in Fig. 4. Using the NLD displayed by the blue band
in Fig. 3 of the present work provides a much narrower band
of neutron-capture cross section predictions (blue band).

It should be noted that, while the present work provides
only the partial NLD for spins J = 0–3 of both parities, the
conversion to a full NLD does not induce significant addi-
tional uncertainty; the six NLD models available in TALYS

predict that our spin range corresponds to 33–42% of the full
NLD.

VII. CONCLUSIONS

In summary, we have shown that the recently developed
shape method [28] delivers robust results for the γ SF in
unstable nuclei following β decay. In combination with the
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β-Oslo method, we were able to extract a model-independent
NLD for the partial spin range populated in 76Ge and unstable
88Kr. Thanks to the sensitivity of the β-Oslo technique in
combination with the shape method, our error bars are com-
parable with those achieved using the Oslo method in stable
beam experiments. This opens up a new avenue to study the
partial NLDs of a large number of unstable nuclei far away
from stability, with major impacts on our understanding of
nuclear structure, nuclear astrophysics, and nuclear applica-
tions. The NLD uncertainties achieved in this work are within
the required uncertainties for neutron-capture rates for the
r process [29] in the case where other input parameters of
Hauser-Feshbach calculations, like the absolute γ ray strength
function and optical model parameters, are constrained about
equally well. We also point out that already the measure-
ment of relatively few discrete levels in a nucleus achieves
a reduction in neutron-capture rate uncertainties of one order
of magnitude. Hence, future decay experiments with either
high-resolution or total-absorption spectrometers at the next-
generation radioactive ion beam facilities using beam rates as
low as a few particles per second will allow the acquisition
of highly sought after information on neutron-capture rates in
the r process [18].
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