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Law of compensation: 

No calculation is ever a complete failure; It can always serve as a bad example. 

-Anon- 
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Abstract 
Damages from ionizing radiation to the sugar part of the DNA molecule may result in strand 

breaks. These are damages that can lead to mutations, cancer or cell death. Sugar damages in 

DNA can be studied experimentally by use of electron paramagnetic resonance (EPR) 

spectroscopy. In order to obtain a more complete understanding of the processes that occur 

immediately after irradiation, quantum chemical calculations are also more and more 

becoming an indispensable tool. 

 

When carbohydrates in the condensed phase are oxidized by ionizing radiation, cation radicals 

and free electrons are generated. These products then partake in subsequent chemical 

reactions. In order to restore charge balance, the cations may send off a proton, deprotonate.  

Deprotonation reactions from hydroxyl groups (leaving neutral oxygen-centered 

radicals) have been studied in the carbohydrate α-L-rhamnose (C3H12O5). Rhamnose has four 

hydroxyl groups; all are possible positions for deprotonation reactions. The radiation-induced 

radicals in this sugar have been examined by EPR spectroscopy (Samskog and Lund 1980; 

Budzinski and Box 1985), but only one oxygen-centered radical was found, indicating that 

deprotonation selectively occurs from one of the four possible positions.  

Theoretical quantum chemical calculations based on density functional theory (DFT) 

later confirmed (Pauwels et al. 2008) that the oxygen-centered radical in rhamnose is 

deprotonated at the O4 position, yet no explanation was found for the observed selectivity. 

 

In the present work, the electronic ground-state energy profiles for deprotonation from all four 

hydroxyl groups in rhamnose have been examined theoretically by means of DFT 

calculations. Both periodic boundary conditions, a two-layered cluster approach (ONIOM) 

and single molecule calculations have been used. Calculations of EPR properties of the 

obtained structures indicate that the periodic calculations are able to describe the 

experimentally observed radical. The energy profiles for the four different deprotonation 

reactions clearly indicate that deprotonation from O4 is both thermodynamically and 

kinetically preferred.  

Although these calculations would explain the observed preference for the O4-centered 

radical, the calculated energy barrier for the deprotonation reaction is still much higher than 

the thermal energy available at the typically low temperature of the experiments (4 K and 77 
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K). Hence, in the electronic ground state, the deprotonation reaction would not be likely to 

occur. 

 

One possible explanation is that excited states are involved in the radical formation. The 

deprotonation may well occur before the molecule relaxes into the electronic and vibrational 

ground states after the initial ionization event. In order to investigate the possible role of 

excited electronic states of the cation, the excited states of have been examined by time-

dependent DFT (TDDFT).  

The excited states were calculated throughout the deprotonation reactions and energy 

profiles were made. The attention has been focused on finding states with a lower energy 

barrier for the deprotonation reactions than the ground state and/or conical intersections with 

the ground state potential energy surface. So far, no such state has been found, but analyses 

still remain to be done. 

 In order to get a better understanding for the abilities and potential of the TDDFT 

method, benchmark calculations have also been performed on three small molecules (H2O, 

CH3 and CO+) for which experimental data are available for comparisons.  
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1 Introduction 
1.1 General motivation 
When ionizing radiation deposits energy by interactions with matter, positively (cationic-) 

and negatively (anionic-) charged products are formed. Such products are called primary 

charged radicals. These primary species are subsequently involved in various reactions; the 

most common are characterized by electron- and proton transfers, leading to neutral radicals. 

The newly formed species are sill highly reactive and will partake in chemical reactions that 

may lead to significant changes in the molecular structures.  

 

If the radiation target is the DNA molecule, the molecular alterations that are induced might 

lead to biological consequences. Of special interest are changes created in the sugar-

phosphate backbone of the molecule, as they can lead to irreparable damages to the DNA 

polymer. This is why an understanding of the basic physical- and chemical processes initiated 

by irradiation is important. One of the ambitions of radiation biophysics is to understand how 

the radiation deposits its energy in molecules of biological importance, how this leads to the 

formation of the very first (primary) radiation induced radicals and finally how these lead to 

chemical changes with biological consequences.  

 Part of the work of the electron paramagnetic resonance (EPR) laboratory at the 

Department of Physics in Oslo has been to investigate primary radiation damages to a variety 

of systems that act as model systems for the sugar-phosphate backbone of the DNA molecule. 

Most often these model systems are carbohydrates or derivatives of carbohydrates. EPR 

spectroscopy is a method for observing and identifying the (charged or neutral) radicals that 

are created during irradiation. This EPR-experimental research program has been 

complemented by advanced ground state quantum chemistry modeling to obtain a better 

mechanistic understanding of the processes. 

  

By EPR spectroscopy, many different radicals are now known to be created upon irradiation 

DNA and DNA model systems. Still, the radical formation is highly selective given the large 

number of hypothetical products one could imagine and the much smaller number of actually 

observed products. This selectivity is in many respects unexplained, but experimental 

evidence implies that properties of the primary charged radicals occurring just after irradiation 

are crucial. At that point the inflicted molecules are in excited states which might influence 



2 
 

the electron- and proton transfer processes, thus playing an important role in deciding which 

neutral radicals are formed. 

 

In order to promote the understanding of the mechanistics of the physical and chemical 

processes, several quantum chemical calculation methods have been developed over the last 

50 years. These are both semiempirical and ab initio methods which can be used to calculate 

reaction pathways as well as electronic distribution in the ground- and excited states of 

molecules. 

 

In the present work, modern quantum chemical methods, mainly density functional theory 

(DFT) and time-dependent DFT (TDDFT) have been used to study reactions that lead to the 

formation of a specific neutral oxygen-centered radical in the carbohydrate α-L-rhamnose. In 

this molecule, only one out of four possible oxygen-centered radicals has been observed 

experimentally.  

The goal has been to understand the specificity by describing the reaction path from 

the primary cation radical that exists just after ionization, into the four different neutral 

oxygen-centered radicals. A subsidiary goal has been to learn how to use the recently 

developed TDDFT method to describe excited states for both isolated geometrical 

configurations of molecules and along reaction paths. There is still little experience with the 

use of this computational scheme. A large part of the present master project has been to 

perform calculations on test molecules at different levels of theory, whereupon the results 

have been compared with published experimental and theoretical data. 

 

The rest of this chapter is devoted to describing some basic concepts and introduce the reader 

to terms and notations of the scientific language in this thesis. In the following chapters the 

essential methodologies are described in some more detail, followed by chapters describing 

and discussing the obtained results. 

 

1.2 Ionizing radiation 
The information presented here is mainly based on the textbooks by Attix, Henriksen and 

Henriksen and Hall and Giaccia (Attix 1986; Henriksen and Henriksen 1998; Hall and 

Giaccia 2006). 
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1.2.1 Effects of ionizing radiation on biological molecules 

Ionizing radiation is radiation that is capable of creating ions when it interacts with matter. 

This is the case for fast charged particles such as electrons, α-particles and heavier ions, but 

also neutral particles such as neutrons can be ionizing. Electromagnetic radiation with energy 

above the ionization potential for molecules (a few eV) is also ionizing. This includes UV in 

the low energy end, but usually only X-rays and γ-rays are considered as electromagnetic 

ionizing radiation.  

We are surrounded by ionizing radiation both from particles in cosmic radiation and 

from radioactive sources both inside and outside our own bodies. These natural sources have 

been present throughout time, and are weaker today than what they were when life appeared 

on this planet. Today ionizing radiation is also being used extensively for different practical 

purposes, especially in medicine and research. X-rays enable us to see things that are hidden 

behind an opaque surface and are therefore among other things, used for diagnostic purposes 

in hospitals. In cancer therapy the deadliness of large doses of ionizing radiation is exploited 

to kill cancer cells. 

 

It is assumed that the prime target for radiation in living cells is the DNA molecule. The DNA 

molecule is built as a twisted ladder. The steps are made from base pairs that are hydrogen 

bound to each other and the backbone consists of sugar-phosphate-chains to which the bases 

are attached. There are four different bases present in the DNA molecule, adenine, cytosine, 

guanine and thymine. It is the ordering of these bases along the molecule that creates the 

genetic code. Figure 1 shows a picture of a nucleotide which consists of a sugar molecule and 

a phosphate group with a guanine base attached, and Figure 2 shows how these building 

blocks form the DNA helix. The hydrogen bonds between the bases (creating base pairs) hold 

the two intertwined sugar-phosphate backbone strings together; creating the helix structure. 

The hydrogen bond network is such that only adenine-thymine and guanine-cytosine pairs can 

be formed. This means that each of the two strand of the DNA hold all genetic information 

separately, as they are complementary to each other. 
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Figure 1: The deoxyribonucleotides are the building blocks of the DNA molecule. 
Here a nucleotide is shown with its three building blocks (from the left) the 
phosphate group, the deoxyribose and the nucleobase (guanine in this case).  

Damages by ionizing radiation to DNA occur from direct and indirect interactions with the 

radiation. The direct damages are consequences of interaction of radiation with the DNA 

molecule itself, whereas the indirect damages are caused by chemical reactions between DNA 

and damaged molecules in the surroundings (mostly water). 40-50 % of all damages to DNA 

are consequences of direct interactions (Sagstuen and Hole 2009). Strand breaks are breaks in 

the sugar-phosphate backbone of the DNA, if two strand breaks occur close to each other; 

they are called double strand breaks. Dimers are damages where two bases above each other 

in the ladder are linked together, and base damages cover many different types of chemical 

changes in the bases.  

There are several repair mechanisms in the cell, and these make sure that most of the 

damages that occur do not hurt the biology. The repair mechanisms are enabled by the fact 

that the two strands of the DNA are complementary. So if one strand is broken, it can be 

rebuilt by use of its “mirror image”. For this reason, double strand breaks are more difficult to 

repair than the other damages. The damages that are not repaired, or incorrectly repaired, can 

lead to serious biological effects such as cell death, mutation or cancer.  

Ionization of the sugar (deoxyribose) part of the DNA molecule appears to be an 

essential starting point for several reaction routes which eventually lead to strand breaks 

which are especially difficult to repair (Sagstuen and Hole 2009). It is estimated that about 15 

% of the direct damages to the DNA are to the deoxyribose part of the molecule (Close 1997). 

It is desirable to know the exact processes that occur in DNA just after irradiation and 

to understand how these lead to damages that may or may not be repaired. Unfortunately the 

DNA molecule is so complex that it is not always feasible to study these processes at the 
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molecular level for the entire system. One is often restricted to study the building blocks of 

DNA separately, or even molecules that resemble the building blocks. Carbohydrates are 

often used for this purpose as they have many similarities with the (deoxy)ribose units of the 

sugar-phosphate chains in the DNA molecule. It has been shown that radiation damages both 

to the bases and to the phosphoribose backbone are essential for the formation of strand 

breaks in DNA (Bernhard and Close 2003). 

 

 
 

 

Figure 2: Illustrations (Wikipedia) of how two strings of nucleotides are 
connected by hydrogen bonds to form a double-helix structure of the DNA 
molecule. Adenine can only bind to thymine (two H-bonds) and guanine can 
only bind to cytosine (three H-bonds) and vice versa. 

 

1.2.2 Interaction processes of ionizing radiation 

Immediately after irradiation, the influenced molecules are in excited states. Some of them 

have been ionized by the radiation, others just excited. There are different kinds of 

excitations, as will be discussed in a later section (1.5); here the focus will be on electronic 

excitations.  

The removal of an electron from a molecule will leave the molecule in an 

electronically excited state, see Figure 3. The ionizing radiation creates excited cation 

radicals and free electrons. If the ejected electrons have sufficiently high energy, they will 

ionize the material further. If the electrons have low energy, they will meet up with other 

molecules and either re-establish charge balance in cation radicals, or create anion radicals 

(also in excited states). These cation- and anion radicals are called primary radicals. The 
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primary radicals will de-excite into their ground state by transferring energy either to 

vibrationally excited states or by emission of photons. The radicals will take part in chemical 

reactions with each other or with undamaged molecules giving rise to secondary radicals.  

 

 
Figure 3: Simplified picture of an ionization process. The electrons occupy 
molecular orbitals (or energy states) indicated by horizontal lines where the higher 
lines have a higher energy. Initially each orbital contains two electrons with opposite 
spins. An electron is “knocked out” of the molecule leaving a hole in the electronic 
structure which is later moved upwards in the energy levels through de-excitation. 

 

Ionizing radiation is divided into directly ionizing radiation and indirectly ionizing radiation. 

Directly ionizing radiation is charged particles which interact with the material through 

Coulombic interactions. Indirectly ionizing radiation is photons and neutrons, and they are 

called indirectly ionizing because they have relatively few interactions with the matter. In 

these interactions they transfer their energy to charged particles in the material which then go 

on to ionize further.  

The interaction of radiation with matter is stochastic. There are many possible ways of 

interaction, and which one will occur in each incident is impossible to predict since it is 

governed by quantum mechanics. But because the radiation field consists of many particles 

and the number of incidents is large, the stochastic description is good. 

 

For electromagnetic radiation the three most important types of interaction with matter are 

Compton scattering, photoelectric effect and pair production. These three processes have 

different regions of the photon energy spectrum in which they dominate, see Figure 4. In 

biological tissue, the photoelectric effect dominates for photon energies below 100 keV, pair 
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production for energies above 10 MeV, and the Compton effect dominates between these 

values.  

 

 
Figure 4: Relative importance of the three major types of X- and γ-ray interaction. 
The curves show the values of Z (effective atomic number) and Eγ (photon energy) 
for which two types of effects are equally important. (Evans 1955) 

In a Compton scattering process, an incident photon hits an electron; this puts the electron in 

motion and creates a scattered photon with a lower energy than the incident photon (which 

has disappeared). Figure 5 shows how the kinetic energy of the electron varies with the energy 

of the incoming photon. For low photon energies, most of the energy is transmitted to the 

scattered photon, but for higher photon energies, most of the energy is transferred to the 

electron. In the theoretical treatment of the Compton effect it is assumed that the electron is 

originally unbound, which is obviously not the case in matter. However the effect of the 

binding energy is most important for low energy radiation, and in this region it is the 

photoelectric effect that dominates.  

 
Figure 5: Mean fraction of the incident photon’s energy given to the recoiling 
electron in Compton interactions. (Attix 1986) 
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In the photoelectric effect a molecule is excited or ionized through the absorption of a photon. 

In the case of ionization, the ejected electron is given a kinetic energy that corresponds to the 

difference in energy between the incoming photon energy and the binding energy of the 

electron: 

 , , , ,kinetic electron binding electron kinetic atom binding electronE h E E h Eν ν= − − ≈ − . (1.1) 

If the electron that is ejected in a photoelectric process is an inner shell electron, de-excitation 

of a less tightly bound electron will release energy. This energy can be released either as a 

photon (characteristic X-ray) or by ejection of loosely bound electrons (Auger effect). If the 

Auger effect comes into play, the molecule will be multiply charged. The creation of Auger 

electrons is more probable if the material has a low effective atomic number1

In a pair production process a photon interacts with the Coulomb field of an atomic 

nucleus or an electron, the photon disappears and a positron-electron pair is produced. This 

process can only occur if the photons have energy higher than

 (which is the 

case for biological tissue).  

22 1.022em c MeV= , if the 

process occurs in the vicinity of a nucleus, and 24 em c  in the vicinity of an atomic electron. 

 

Whereas indirectly ionizing photons interact with matter sporadically, in events where large 

portions of the energy is lost, charged particles such as electrons (including those set into 

motion by incident photons) transfer some of their energy to almost every molecule they pass, 

leaving a trail of excited and ionized molecules behind them. For electrons, the three most 

important ways of interactions are soft-collisions, hard-collisions and bremsstrahlung 

production.  

Soft-collisions are glancing collisions between electrons and molecules. They are 

numerous, and lead mainly to excitations, but can also result in ionization by ejection of 

valence electrons. Hard-collisions are processes where the electrons pass through the 

molecules. They are fewer, but the energy transferred to matter in these collisions is larger, 

and ionization is frequent. As for the photoelectric effect, the hard collisions lead to 

characteristic X-ray emission and/or Auger electrons whenever an inner shell electron is 

ejected. Bremsstrahlung production occurs when an electron passes near an atomic nucleus 

and X-ray photons are produced. Bremsstrahlung production is not significant in materials 

with low effective atomic number if the electron energy is below 10 MeV.  

 

                                                 
1 The effective atomic number is the average atomic number in the molecule. 
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1.3 EPR spectroscopy 
Electron paramagnetic resonance (EPR) spectroscopy is a method for observing and 

characterizing molecules containing one or more unpaired electrons. In molecules, the 

electrons organize in pairs, such that their spins cancel. This makes EPR spectroscopy 

impossible for most molecules. But in molecules containing an uneven number of electrons 

(radicals) and in a few other molecules (where not all of the electrons pair up), EPR 

measurements are possible2

 

. This is why EPR is useful for investigating molecules exposed to 

ionizing radiation. For a more thorough description of the method than what is presented here 

Atherton’s textbook (Atherton 1993) or other textbooks on the subject should be consulted. 

The electron possesses a magnetic moment which aligns with the spin of the particle. This is 

what is being exploited in EPR spectroscopy. Through their magnetic moment, the electrons 

can interact with an external magnetic field. The electron is a spin ½ particle, which means 

that it has two eigenstates. These correspond to the component of the spin, along a chosen 

axis, being either +½ or -½ in units of ℏ. These states are denoted as up or down, α or β or (in 

the presence of a magnetic field) parallel or anti-parallel to the field. In these two states the 

magnetic moment will point in opposite directions, and the magnetic potential energy will be 

different in the presence of an outer magnetic field. This is known as the Zeeman effect. The 

magnetic potential energy of a single electron in a magnetic field is  

 , 0
1
2pot mag e BE g Bµ(±) = ±  (1.2) 

where 0B is the field strength of the external magnetic field, Bµ  is the Bohr magneton and eg

is the g-factor which is 2.0023 for a free electron. In a sample containing many radicals, both 

energy levels will be occupied. However, since the spins that are oriented parallel to the 

magnetic field are higher in energy than the ones that are oriented anti-parallel, there will be 

more electrons with spin down than spin up. The difference in occupancy is determined by the 

Boltzmann distribution. Transitions between these two states can be induced by applying 

radiation with a frequency corresponding to the energy difference between the two states; this 

is known as the resonance condition: 

 0e Bh g Bν µ= . (1.3) 

                                                 
2 Atoms or molecules with unpaired electrons exhibit a permanent magnetic moment and are called 
paramagnetic. 
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Because the occupancy of the two states differs, there will be a net absorption of radiation in 

the system; this is what creates the EPR signal. 

 

The equations presented above are only valid for free electrons. In molecular systems, the 

electron magnetic moment will be affected by interaction both with the magnetic moment of 

nuclei (for those nuclei that possess a magnetic moment), the orbital angular momentum of 

the electron and the electronic environment of the molecule. The g-factor for an electron in a 

molecule will differ from the g-factor for a free electron, and might also depend on the spatial 

orientation of the magnetic field with respect to the molecular frame of reference. If this is the 

case, then it is referred to as the g-tensor which describes the variation in the g-factor with the 

magnetic field orientation.  

The interaction of the electronic magnetic moment with that of the nuclei is called the 

hyperfine coupling. The hyperfine coupling causes a splitting of the EPR signal which is 

characteristic to the interacting nucleus. The hyperfine coupling may also be dependent of 

orientation and is hence described by the hyperfine coupling tensor. 

 

The EPR spectrum is usually recorded keeping the frequency of the incoming radiation fixed 

and varying the magnetic field strength. This gives rise to an absorption signal when the 

resonance criterion is met. The different g-tensors for different molecular systems shift the 

resonance frequency from that in Eq. (1.3), and the hyperfine coupling tensor causes splitting 

of the signal. In this way it is possible to determine what kind of species that are present in the 

sample. By using oriented crystal samples, the different components of the g- and hyperfine 

coupling tensors can be determined, which makes it possible to attain even more information 

about the molecular structure.  

Radicals are usually very reactive species; the reactions are driven by available 

thermal energy. When investigating radicals formed after irradiation, it is necessary to remove 

this energy by cooling down the sample, in order to observe the primary radicals. Liquid 

helium (T = 4.2 K) or nitrogen (T = 77 K) is used for this purpose. 

 

1.4 α-L-rhamnose 
α-L-rhamnose is a pyranose, a carbohydrate with a six-membered ring containing a ring 

oxygen. In its crystalline form it is monoclinic with a unit cell consisting of two asymmetrical 

units each consisting of a rhamnose molecule and a crystal water. The chemical structure of 
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rhamnose is shown in Figure 6. The crystal structure has been determined by neutron 

diffraction (Takagi and Jeffrey 1978). The unit cell parameters are a = 7.901 Å, b = 7.922 Å, 

c = 6.670 Å and β  = 95.52 °. The crystal structure is governed by extensive hydrogen 

bonding between the molecules. In particular there are two infinite hydrogen bond chains 

through the crystal, see Figure 7, these follow the crystal axes. 

 

 
Figure 6: The structure of α-L-rhamnose with carbon atom and hydroxyl group 
numbering indicated. 

 

Upon ionizing radiation, many different radical forms of rhamnose have been observed by 

single crystal EPR spectroscopy. Of special interest for the present work, is the observation of 

an oxygen-centered radical on O4, see Figure 6. This is the only observed oxygen-centered 

radical, and has been suggested to result from a primary radical cation through deprotonation3

Figure 8

 

from the same oxygen. In a theoretical study using density functional theory (DFT) (Pauwels 

et al. 2006) all the possible oxygen centered radicals (see ) were examined through 

calculation of  EPR parameters (g- and hyperfine coupling tensors) and compared to 

experimental observations. Only structure d) in Figure 8  was found to match with 

experiment. 

 

                                                 
3 Deprotonation is the removal of a hydrogen atom nucleus. 
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Figure 7: Hydrogen bond chains shown in a <2a2b2c> super cell of the crystal 
structure viewed down the a-axis, the b-axis is horizontal. 

 

 

 
Figure 8: The four different radicals that might occur after deprotonation from a 
hydroxyl group in a rhamnose cation. 

 

The oxygen centered radical has been measured by EPR techniques upon X-irradiation at 

temperatures of 77 K (Samskog and Lund 1980) and 4 K (Budzinski and Box 1985). 

Although these two observations reported different g- and hyperfine coupling tensors, a later 

DFT study has indicated that they are in fact representing the same radical, only differing in 

the electronic structure as a consequence of differing environments (Pauwels et al. 2008). In 

the same work it was suggested that the radical is formed upon a proton transfer reaction 
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along the infinite hydrogen bond chain in the b-direction of the crystal as a way of removing 

the excess charge from the cation, creating a neutral radical.  

The calculations were performed using a periodic approach. Using a supercell that was 

doubled in length in the b-direction, the study showed a stable structure after three proton 

transfers along the chain. Using a cell that was tripled in the b-direction instead resulted in a 

stable structure after five proton transfers. This led the authors to suggest that in a real life 

crystal, the proton can move far away from the original cation position. The difference in EPR 

properties of the experimentally reported radicals is then explained as a result of reorientation 

of the waters and hydroxyl groups taking part in the proton transfer process, which might be 

possible at a temperature of 77 K, but not at 4 K.  

In the same paper it is also pointed out that the energy barrier for the deprotonation 

reaction to take place is about 0.4 eV. This energy barrier is quite high, leading the authors to 

suggest that excited-state dynamics or tunneling might be involved in the reaction. 

 

1.5 Physics of molecular excited states 
For more detailed descriptions of the following phenomena, see for instance the textbook by 

Atkins and Friedman (Atkins and Friedman 2005). 

 

The nuclei of the atoms in molecules move much slower than the electrons due to the 

difference in masses. This means that the calculation of molecular energies may be simplified 

by calculating the electronic energy while the nuclei are held fixed, and then adding the 

potential energy of the nuclei as a classical term. This is the Born-Oppenheimer 

approximation (BO approx). Under the BO approx. the electronic wave function will depend 

only parametrically on the nuclear coordinates, and a certain set of nuclear coordinates 

corresponds to a specific molecular energy. The molecular energy (excluding the kinetic 

energy of the nuclei) as a function of nuclear coordinates is called the potential energy surface 

(PES). Stable geometries correspond to minima and changing nuclear coordinates (as is what 

happens in a chemical reaction) corresponds to moving around on the surface.  

 

Excited states in molecules arise from rotational, vibrational and electronic excitations. The 

energy gaps between the levels of excitation are ordered as: 

 rot vib elecE E∆ < ∆ < ∆Ε . (1.4) 
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In a crystal, the rotational degrees of freedom are all frozen. A molecule consisting of NA 

atoms has 3NA-6 vibrational degrees of freedom. These vibrations can to a first approximation 

be described as harmonic vibrations in a vibrational coordinate4

In the electronically excited state, the alignment of the spins need not be the same as in 

the ground state. Ground state conformations of molecules containing an even number of 

electrons are usually singlet states (spin 0), but in the excited states, the spins might align 

differently so that the electron spins do not cancel and we may get triplet states (spin 1) or 

even higher. In radicals the ground state is usually a doublet state (spin ½), also here the 

excited states can contain higher spin.  

. There is an infinite number 

of electronically excited states which arise from moving one or more electrons from an 

electron orbital that is occupied in the ground state into one that is unoccupied (these are 

known as virtual orbitals and are higher in energy than the occupied orbitals).  

 

 
Figure 9: Excited state diagram that shows the PESs for three electronic states as a 
function of a vibrational coordinate. The vibrational states for each electronic state 
are drawn as horizontal lines. See the text below for further description. 

Since the electron configuration is different in the electronically excited state, the Coulomb 

field from these electrons will change. This affects the shape of the PES. Figure 9 illustrates 

how the PES for the different electronic states can be different. The excited states typically 

have their minimum at a larger bond distance than the ground state, because of more anti-

bonding character of the electronic state. The vibrational levels for each electronic state are 

                                                 
4 A vibrational coordinate is a linear combination of the coordinates of the nuclei in a molecule 
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drawn as horizontal lines. Drawn in the picture is an excitation due to the capture of a photon. 

The electronic excitation is assumed to happen without movement of the nuclei (because it is 

too fast). This means that the excitation does not occur to the vibrational ground state of the 

new electronic state, which is known as the Franck-Condon principle. The excitation is called 

vertical when there are no changes in nuclear coordinates. The energy difference between the 

vibrational ground states of the two electronic states is called the adiabatic excitation energy.  

All excited states have a finite life time, this means that they have to de-excite 

eventually. The Franck-Condon principle is followed for radiative excitation and de-

excitation, whereas non-radiative de-excitation involves nuclear motion, often transmission of 

energy into vibrational modes and then to surrounding molecules. This is possible because the 

vibrational levels of different electronically excited states overlap.  

The larger the molecule is, the more closely spaced the electronic states will be. 

 

1.6 Object of this thesis 
The EPR laboratory at the Department of Physics, UiO, has initiated a research program 

investigating experimentally and theoretically radiation damages to carbohydrates. 

Carbohydrates are considered as plausible model systems for the sugar-phosphate chain of the 

DNA molecule.  

Even though EPR spectroscopy is an excellent tool for analyzing radiation induced 

products, theoretical modeling can give insight as to why the observed products occur 

compared with a large number of other possible products. Early proton transfer processes in 

carbohydrates appear to be associated with high activation barriers, which points in the 

direction of pristine excited states playing an important part in the reactions. The excited 

states are difficult to examine experimentally, but can be modeled theoretically. These 

calculations are complex but lately they have been made possible through new methods. 

In order to describe physics at the molecular level, quantum mechanics is needed. 

Many different approaches have been developed for this purpose, some of which are 

presented in chapters 2 and 3. By calculating the PESs of the different states, the behavior of 

the system can possibly be predicted and to some extent explained. In this thesis, density 

functional theory (DFT) and time-dependent density functional theory (TDDFT) have been 

applied to describe the ground state and the electronically excited states of the α-L-rhamnose 

cation radical.  
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The object of this thesis has been to examine the four possible sites for deprotonation from 

oxygen in the rhamnose cation radical, with the intention of understanding why only 

deprotonation from O4 is observed. This is done by examining the profiles of the PES through 

each of the four deprotonations leading to each of the four different possible products (see 

also Figure 8).  

In addition, excited states of the system along the reaction paths have been calculated. 

This has been done to investigate the possibility of an electronically excited state being a 

mediator for the reactions. From the relatively large energy barrier for deprotonation found by 

Pauwels et al. (Pauwels et al. 2008) for the reaction, it seems that excited states (being 

vibrational or electronic in form) must play a part. It would be quite interesting to see if there 

is an electronically excited state with an energy profile for the proton transfer that does not 

have an energy barrier, or at least a smaller one than the ground state. If such a state exists for 

only one of the deprotonation reactions (the one from O4), that might explain the selectivity 

observed in the radical formation. 

In order to examine excited states, the TDDFT method was used. This is a relatively 

new computational method with the ability to treat quite large systems. There is still little 

experience with the use of TDDFT, and a large part of the work and even the motivation for 

starting this thesis project has been to learn how to employ the method. This has been done by 

comparing computational results at different levels of theory with each other and with data 

found in literature (both calculated and experimental). 
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2 Quantum chemistry – Ground 
state calculations 
Computational chemistry, or quantum chemistry, tries to use quantum mechanics to describe 

molecules. This is not an easy task, since the Schrödinger equation (SE) cannot be solved 

analytically for systems containing more than two charged particles. There are, however, 

numerous approaches for solving quantum mechanical problems for molecules using different 

approximations. Some of these will be briefly described here. For more detailed information, 

authoritative textbooks on the subject should be consulted, e.g. those of Pople and Beveridge, 

Cramer and Atkins and Friedman (Pople and Beveridge 1970; Cramer 2004; Atkins and 

Friedman 2005). 

 

There are two major types of quantum mechanical computational methods, the ab initio 

methods and the semiempirical methods. In the ab initio methods the SE and a chosen model 

for the wave function is used along with only fundamental constants and information about 

which atoms are present. On the other hand, semiempirical methods rely on results from 

experiments through parameters included in the calculation approach. 

 

As was mentioned in section 1.5, the Born-Oppenheimer approximation (BO approx) enables 

calculations of the electronic energy while the nuclei are held fixed. The electronic wave 

function will then depend parametrically on the nuclear coordinates, and the potential energy 

of the nuclei is added to the electronic energy as a classical term. Unfortunately, even this 

approximation does not make the problem solvable in most cases, and further approximations 

are needed. 

 

According to quantum mechanics, a physical system is completely described by the wave 

function ψ, which is the solution to the SE. In practice one usually tries to solve the time 

independent, non-relativistic SE under the BO approx. This is what will be meant by the SE 

throughout the rest of this text, unless otherwise is stated. Throughout this chapter and the 

next, atomic units will be used, unless otherwise is specified. A list of the units is included in 

Appendix A. 
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2.1 Hartree-Fock theory 
2.1.1 The basic Hartree-Fock method 

In the Hartree-Fock (HF) method, the total wave function for the system is written as a Slater 

determinant of spin orbitals which again is comprised of molecular orbitals (MOs) 
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where χ is a spin orbital, being a product of the MO, ψ, and the spin function, ξ, for the 

electron occupying that orbital. 

 i i iχ ψ ξ=  (2.2) 

Writing the wave function as a Slater determinant makes sure that it is antisymmetric, as is 

required since electrons are fermions. All the MOs are orthogonal, and in closed shell 

systems, doubly occupied by electrons of different spins. Electrons have two possible spin 

states, referred to as α-spin and β-spin. There are more MOs than there are electrons, and the 

unoccupied orbitals are often referred to as virtual orbitals. The occupied orbitals are the ones 

that are lowest in energy. The highest occupied molecular orbital is called the HOMO and the 

lowest unoccupied orbital is referred to as the LUMO. 

 

Under the BO approx. the Hamiltonian for a molecular system is 

 21 1
2

electrons electrons nuclei electrons electrons
A

i
i i A i j iiA ij

Z
r r>

− ∇ − +∑ ∑ ∑ ∑ ∑ , (2.3) 

and when the wave function is approximated by a Slater determinant, the total energy is given 

by Eq. (2.4). 
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1 and 2 represent different electrons and i and j represent different orbitals and n is 

the number of occupied orbitals. J is called the Coulomb interaction, and K is the quantum 

mechanical exchange integral. As can be seen from Eq. (2.4)  the energy for each MO is 

dependent of the shape of the other MOs. The best MOs are found by varying all the orbitals 

until the energy reaches a stable minimum. When this is achieved, the orbitals are said to be 

self-consistent.  

In practice one starts out with a guess on the MOs, and these are used to calculate new 

and improved ones. When the change in energy from one iteration to the next is sufficiently 

small, the wave function has converged. This procedure is called the self-consistent field 

(SCF) procedure. 

  

Finding the orbitals is a variational problem, and it turns out that the best MOs are 

eigenfunctions of the Fock operator  

 21ˆ ˆ ˆ2
2

A
i i j j

A jiA

ZF J K
r

= − ∇ − + ( − )∑ ∑ , (2.5) 

and the HF equations are the eigenvalue equations for the Fock operator, where the 

eigenvalues are the orbital energies  

 2 .
n

i ii ij ij
j

E H J K= + ( − )∑  (2.6) 

 

The Fock operator only lets the electrons interact with an effective average of the other 

electrons in the system, and not directly with each other. This means that it does not give the 

exact energy of the system, and the energy that is calculated is often referred to as the HF-

energy. 

 

To simplify the calculations, the molecular orbitals are commonly written as linear 

combinations of basis functions ϕ , 

 .i icν ν
ν

ψ φ=∑  (2.7) 

Determining the molecular orbitals is then reduced to finding the set of coefficients, cνi, which 

minimizes the HF energy. Inserting these basis functions for the orbitals and using a 

variational approach to find the coefficients leads to what is known as the Roothaan equations 

or the secular equations 
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 0i iF E S cµν µν ν
ν

( − ) =∑ , (2.8) 

where the overlap integral 

 11 1S dµν µ νφ φ= ( ) ( )∫ r  (2.9) 

and 
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Hµν is defined by 
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P is known as the density matrix,  

 2
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i

P c cµν µ ν
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and 

 1 2
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are two-electron integrals. There are N4 such two-electron integrals to be evaluated (N is the 

number of basis functions). The implications of this on the choice of basis set (both in shape 

and size) will be discussed later on. For now, this means that the HF method scales as N4 with 

respect to time, which is troublesome for large systems. It is therefore necessary to find a 

faster computational method for doing calculations on large systems.  

HF theory as discussed above treats only doubly occupied orbitals and is called restricted HF 

(RHF). But there are ways of treating systems with one or more singly occupied orbitals such 

as radicals. In restricted open-shell HF (ROHF), the approach is about the same as for the 

closed-shell systems, but the fact that some of the orbitals are only singly occupied is taken 

into account when the calculations are performed. The alternative is unrestricted HF (UHF) 

which allows for the orbitals for the α- and β-spins to be different, giving twice as many MOs 

as RHF. UHF opens up for the possibility of spin polarization in the molecule, whereas 

ROHF does not. On the down side, UHF is vulnerable to spin contamination, which is to say 

that the resulting wave function is not an eigenfunction of the spin operator. ROHF does not 

have this deficiency. 
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2.1.2 Semiempirical methods 

Because of the very many integrals to calculate in the HF method, the calculations can take a 

lot of time for large systems. That is why the semiempirical methods were developed. What 

these have in common is that they do not calculate all integrals explicitly but either set them 

to zero (if they are likely to be very small) or assign them parametrically. The distinction 

between the methods is made by which integrals are calculated, which parameters are used 

and which basis set is used. These simplifications make the calculations much faster, but also 

less accurate for systems that do not closely resemble the systems they are calibrated for. 

Comparison of results is especially dangerous because errors might not cancel, but add to 

each other. The computational time for the Parameterized Model 3 (PM3) (Stewart 1989) 

which is a commonly used semiempirical method, scales as N2 (Cramer 2004). 

 

2.1.3 Beyond Hartree-Fock 

Because the HF method does not take electron correlation, other than exchange, into account, 

the calculated energy will not be the correct energy for the system. There are different so-

called post Hartree-Fock methods which have their basis in the HF method and manage to 

include some of this correlation. These methods are even slower than HF, and therefore not 

well suited for calculations on large systems. What the post-HF methods have in common is 

that they all start out with the HF wave function, and then improve upon that.  

The configuration interaction (CI) method, writes the new wave function as a linear 

combination of Slater determinants with different occupation numbers in the molecular 

orbitals. In the HF determinant it is always the energetically lowest orbitals that are occupied. 

Multiconfiguration SCF (MCSCF) is similar to CI, but here the orbitals in the determinants 

with occupation numbers different from the HF occupation numbers, are re-optimized. In 

Møller Plesset perturbation theory (MP) the Fock operator is used as the non-interacting 

Hamiltonian. First order MP (MP1) returns the HF-energy, while going to higher orders 

(usually MP2 or MP4) improves upon this. In coupled-cluster (CC) theory, the new wave 

function is found by operation on the HF wave function with a “cluster operator”. This 

method is similar, but more robust than CI. While HF scales as N4, CI with single and double 

excitations scales roughly as N6, as do CC with single and double excitations, MP2 scales 

roughly as N5 (Cramer 2004). 
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2.2 Density functional theory 
Density functional theory (DFT) is another ab initio method, representing an alternative to HF 

theory. The rationale of the DFT method is to use the total electron density to predict the 

properties of a given system rather than the wave function. This means that in order to 

determine a specific property of the system at hand (e.g. a molecule) by DFT, it is necessary 

to know how this property depends on the electron density. In HF theory, all that is needed is 

the appropriate quantum mechanical operator. 

 

In DFT all the electrons are treated as if they interact with each other and an external 

potential. This external potential may for instance be set up by the atomic nuclei in a 

molecule. DFT is built on two theorems by Hohenberg and Kohn, the Existence theorem and 

the Variational theorem (Hohenberg and Kohn 1964). The Existence theorem states that the 

external potential (and thereby the Hamiltonian) of the system is determined completely by 

the non-degenerate ground state electron density. In short this means that the ground state 

energy and all other electronic properties associated with the ground state, is uniquely 

determined by the electron density (which depends only on three spatial coordinates). The 

Variational theorem states that the electron density fulfils a principle of variation in the same 

way as the molecular orbitals in HF theory. 

 

2.2.1 Kohn-Sham: Self-consistent field 

The Existence theorem states that it is possible to do calculations on a molecule with the 

electron density as the starting point. It does not give any clues as to how this may be done. In 

practice, DFT calculations are performed by the so-called Kohn-Sham (KS) method (Kohn 

and Sham 1965). This method gives rise to equations that look quite similar to those of the HF 

method. The motivation behind the KS method is the realization that the Hamiltonian would 

look a lot simpler, had the system been one of non-interacting electrons. Therefore it starts 

with a fictitious system of non-interacting electrons with the same density as the real system 

(consisting of interacting electrons). The Hamiltonian for the real, interacting system can be 

divided into smaller parts, which gives an expression for the total energy of this form: 

 [ )] [ )] [ )] [ )] [ )] [ )]ni ne ee eeE T V V T Vρ ρ ρ ρ ρ ρ( = ( + ( + ( + ∆ ( + ∆ (r r r r r r . (2.14) 

The energy is here expressed as a functional of the electron density ρ of the system (a 

functional is a function of one or more functions, as opposed to variables), hence the name 

Density Functional Theory. The first three terms represent the kinetic energy of the non-
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interacting electrons (the sum of the kinetic energy for each of the electrons), the 

classical electron-nuclear repulsion energy and the classical electron-electron repulsion 

energy. The fourth term contains the correction to the kinetic energy originating in the 

interaction between the electrons. The last term contains all corrections due to quantum 

mechanical exchange-, correlation- and classical self interaction energy. The two last terms 

are often replaced by a single term, [ )]xcE ρ(r , which is the sum of all corrections to the 

energy of the non-interacting system. This term is called the exchange-correlation (XC) 

functional, or just the functional. In this manner, all the difficult parts of the Hamiltonian are 

lumped together in one term. And by introducing the KS orbitals χ, which are electron orbitals 

resembling those of HF theory, Eq. (2.14) transforms to 
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where n is now the number of electrons in the system. The connection between the KS 

orbitals and the electron density is  
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Eq. (2.15) motivates the introduction of the KS operator, which is a one-electron operator 

(analogous to the Fock operator) defined by 
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The KS method is formally similar to the HF method, but the KS operator replaces the Fock 

operator. The KS orbitals are expressed through basis functions in the same way as the 

molecular orbitals of HF theory. The orbital coefficients are optimized by solving the secular 

equations 
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in an iterative SCF process. The electron density is then calculated from the orbitals that make 

up the solution to the secular equations. 
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Still missing is the XC functional, Exc, and this is the heart of DFT’s problems. It is also 

where there is a clear divide between DFT and the HF method. In the HF method it is 

assumed that the electrons do not interact directly with each other, but only with some kind of 

average of all the other electrons in the system. The Hamiltonian is approximated to the Fock 

operator, but the Fock operator problem is in turn solved exactly (with the exceptions of 

numerical problems and the problems of a limited basis set). DFT, on the other hand, employs 

an exact expression for the Hamiltonian, but in turn uses approximations for solving the 

problem. The approximation is the functional Exc, which is unknown in its exact form. The 

challenge of the method is to create a functional which includes both exchange (the way HF 

theory does) and also electron correlation (which is not included in the HF method). 

 

2.2.2 The exchange-correlation functionals 

There are different ways of constructing an XC functional. Most functionals ignore the ΔT 

term in Eq. (2.14) - or include this in the other terms by adjusting parameters. The functional 

is expressed as an integral over the product of the electron density and energy density: 
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The electron density, ρ, is a density per volume, while the energy densities, ε, are densities per 

particle. Eq. (2.19) shows how the exchange and correlation energy densities are sometimes 

separated, but they can also be kept together in one term. 

 

Except for maybe assuming a constant electron density, the local density approximation 

(LDA) is the simplest possible approximation to a functional. In this approximation, the 

energy density, εxc, at a given point, is only dependent on the electron density at this point. 

This makes it possible to find an analytic expression for εx by for instance using the 

expression for the energy density of a uniform electron gas. When it comes to εc, there is no 

simple analytical expression, even for a uniform electron gas. But there are functionals made 

from complicated expressions made from Monte Carlo calculations (Vosko et al. 1980). 

It is possible to expand the LDA by including the possibility for the electron density to 

be independent of the electron spin. This is done by introducing an electron density which 

depends on whether the electrons have α-spin or β-spin. The spin polarization function is 

defined as 
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and represents a kind of normalized spin density. This may be included in the expressions for 

εxc, and when it is used, the method is referred to as the local spin density approximation 

(LSDA). 

 

A natural step beyond the LSDA is to let the energy density depend, not only on the electron 

density at the point of interest, but also on the electron density gradient at this point. This is 

called the generalized gradient approximation (GGA), and the energy density is then 

expressed as 
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Functionals denoted by ”B”, are GGA exchange functionals developed by Becke (Becke 

1988) , these also contain an empirical parameter. The abbreviation ”LYP” denotes a GGA 

correlation functional developed by Lee, Yang and Parr (Lee et al. 1988). LYP is not a 

correction to the LDA, but calculates all the correlation energy and contains four empirical 

parameters adapted to the helium atom. 

 

Rather than expanding the functional further by including the second derivative with respect 

to the density (these methods are called meta-GGA (MGGA)), or to include a dependency on 

the kinetic energy in the functional, HF exchange is often included. These functionals are 

referred to as hybrid functionals, because they mix HF and DFT exchange by using a set of 

parameters. A good example of a hybrid functional is B3LYP (Becke 1993): 

 3 (1 ) (1 )B LYP LSDA HF B LSDA LYP
xc x x x c cE a E aE b E c E cE= − + + ∆ + − − . (2.22) 

B3LYP has three parameters, a, b and c, which are 0.20, 0.72 and 0.81 respectively. B3LYP 

is a quite robust functional, which is somewhat surprising since the parameters are actually 

not optimized for this functional, but for another similar hybrid functional. Even though the 

hybrid functionals include parameters, the methods are not referred to as semiempirical. 

 

2.2.3 Advantages and disadvantages of using DFT 

Time-wise, DFT scales as N3 from the matrix diagonalization it takes to solve the secular 

equations, whereas HF scales as N4 because of the two-electron integrals. This makes DFT 
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very advantageous when it comes to calculations on larger systems. Of course, including HF 

exchange in the functional makes DFT scale as N4 as well, but it is still a lot faster than the 

HF based methods that include correlation.  

Another advantage of DFT is its ability to treat systems where the total spin is 

different from zero without being exposed to spin contamination the way that UHF is.  

In HF-based methods it is important to use basis functions where the two-electron 

integrals can be calculated efficiently. In DFT, on the other hand, these integrals do not 

appear, and the choice of basis functions need not depend on this property. The choice is freer 

to depend on other qualities of the functions without increasing the computational time. This 

is of course no longer the case if a hybrid functional (which includes HF- exchange) is used. 

With DFT the limit where expanding the basis set does not result in any significant 

improvements, is reached quicker than with HF. This reduces the necessary size of the basis 

set, and thereby the computational time for DFT calculations. 

 

A great disadvantage of DFT is that there is no method for systematically improving the 

accuracy of the calculations in a similar manner as for the HF method. To improve upon a 

calculation, the functional may be swapped for a more advanced version (for instance going 

from LDA to GGA and MGGA), but in general this is not systematic once the hybrid 

functionals are included.  

The KS method is also quite poor for describing systems that are not well described by 

a single Slater determinant, for instance systems containing a lot of non-dynamic correlation. 

This is partially corrected for by allowing different orbitals for α- and β-spin.  

Another disadvantage of the DFT method is that it does not model weak interactions 

between molecules, and therefore often finds strange structures for instance for large bio-

molecules. This is because the functionals do not include long distance interactions in the 

electron density. Van der Waals interactions, for instance, are very important for the 

geometrical structures of such large bio-molecules. Adding HF exchange to the functional 

improves on this weakness because HF is a non-local theory, as opposed to LDA and GGA, 

but the problem is not removed.  

 

2.3 Geometry optimizations 
Geometry optimizations are used to find stable geometrical conformations for molecules. A 

result of the BO approx. is that each set of nuclear coordinates, corresponds to a specific 
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energy for the system. Calculations of the energy for a certain set of nuclear 

coordinates are called single point (SP) calculations. The potential energy surface (PES) 

describes the potential energy of the molecule as a function of its geometry (the kinetic 

energy of the nuclei is not included). A minimum on this surface corresponds to a stable 

geometry conformation. A PES will in general have several minima, all corresponding to 

stable geometries, but it is the global minimum that represents the equilibrium geometry of 

the molecule. 

There are different methods for finding the minima on the PES. What they have in 

common is that they rely on calculating the energy of the system for different nuclear 

conformations and forces on the nuclei in terms of derivatives of the energy with respect to 

the nuclear coordinates. Because there are several minima on most PESs, the initial geometry 

(given to the computer by the user) is important in the geometry optimizations, since this is 

the point at which the computer will start its search. Which minimum is found, depends on the 

starting geometry, but also on the method for finding the electronic energy used.  

 

2.4 Influence from the surroundings 
Any system is influenced by its surroundings, also the orbitals in molecules. This means that 

when modeling a molecule (or larger system), the model will always be better if more detailed 

descriptions of the surroundings are included. Especially during geometry optimizations, the 

surroundings of the molecule will play an important part, since these will limit the available 

space and exert forces on the molecule. 

 

In single molecule (SM) calculations, only the molecule of interest is modeled, completely 

without surroundings. This corresponds to a gas phase calculation, and is not a particularly 

good approximation if one is trying to model a solid or a liquid where there is a lot of 

interaction between the molecules. The SM model may be improved upon by adding one or 

more layers of molecules around the central molecule, this is called a cluster calculation. And 

even though the central molecule now has surroundings, the molecules around the edges do 

not. These molecules will then be modeled erroneously, and this error will to a small or large 

extent be transferred inwards in the model.  

A cluster model gets better and better with larger cluster size, but of course the 

computational time goes up as well. To save time, when using a cluster model, it is possible to 
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model the different parts of the cluster, at different levels of theory5

Another way of modeling large systems is by using periodic calculations. In that case 

the molecules that are picked out fit into a box. When information from outside the box is 

needed, the information is collected from the other side of the box instead. In this way, a 

system of infinite size is simulated. In practice, the model will become better and better as the 

size of the initial box

, and even to freeze the 

coordinates in part of the system. This will lower the computational cost, but often also the 

quality of the results. As an alternative to a cluster model, there are models in which the 

single molecule is emerged into virtual surroundings either from discrete charges or a 

continuum. 

6

 

 increases, but the computational time will increase as well. When 

modeling a charged molecule, the total system will exhibit an infinite charge, which is 

counterbalanced by a uniformly distributed charge of the opposite sign. In these cases it is 

very clear that the size of the box is important to put a sufficient distance between the periodic 

images of the charged molecule. 

2.5 Basis sets 
The choice of basis set is one of the most important choices when doing a calculation. It is the 

collection of basis functions that will be used to approximate the molecular orbitals in HF 

theory, or the KS orbitals in DFT. The bigger the basis set, the more accurate the calculations 

will be, but they will also require a longer computational time. The construction of basis sets 

is done on two main criteria. First of all, one often desires a basis set where the functions 

resemble real atomic orbitals as much as possible. Secondly, one desires a basis set consisting 

of functions that are easy to do calculations on.  

The first wish is granted by choosing so-called Slater Type Orbitals (STO). These are 

of the form 

 1( , , ) ( , ),n r m
lr r e Yζφ θ ϕ θ ϕ− −∝  (2.23) 

the same form as the eigenfunctions of the hydrogen atom. n, l and m are the quantum 

numbers for the orbitals, ζ is a constant which can be adapted and ( , )m
lY θ φ  are the spherical 

harmonic functions. The STOs have no general analytic solution for the two-electron integrals 

that need to be calculated in the HF method, this makes them computationally expensive. 

                                                 
5 By level of theory one means the computational method and basis set employed in the calculations. 
6 This box is referred to as a supercell in crystal calculations, since it may be larger than the unit cell of the 
crystal. 
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Another type of orbitals in common use, being less computationally 

expensive just because the two-electron integrals have general analytic solutions, is the 

Gaussian Type Orbitals (GTO). These are Gaussian functions of the form 

 
2 2 2( )( , , ) ,i j k x y zx y z x y z e αφ − + +∝  (2.24) 

where i, j, and k are positive integers which indirectly give the angular momentum of the 

orbital.  

A common compromise between the STOs and the GTOs is to make specific linear 

combinations of GTOs designed to resemble the STOs. These basis functions are called 

contracted basis functions, while the GTOs that make them up are called primitive functions. 

The (mathematical) flexibility of the contracted basis sets is increased by adding several basis 

functions for each level (1s, 2s, 2px, 2py, 2pz, …). If all the primitive functions are used in a 

single contracted basis function, the set is called single-ζ. If the same set of primitives is used 

for two basis functions for each level, the set is called a double-ζ basis set, and so on. Using 

double- or triple-ζ basis sets does not increase the number of integrals to be calculated, but it 

gives more secular equations to be solved. 

Even more (mathematical) flexibility can be added to the basis sets by including 

polarization functions and diffuse functions. Polarization functions are basis functions 

corresponding to higher angular momentum than the valence orbitals. An alternative is to 

introduce functions that are not centered on the atomic nuclei. Polarization functions are 

especially useful for achieving good geometries. Diffuse functions are used to represent 

electron density far away from the nuclei. They are made up of GTOs where α of Eq. (2.24) is 

up to a factor four lower than for the rest of the functions. Including polarization functions 

and/or diffuse functions rapidly increases the size of the basis set. 

 

Two of the main classes of basis functions that are in common use are the Dunning sets and 

the Pople sets. The main difference between these are that the Pople sets use so-called 

segmented contraction whereas the Dunning sets use general contraction. A segmented 

contraction means that each primitive is only used in one contracted basis functions, and 

general contraction means that the all the contracted basis functions contain some of all the 

primitives, only with different weights. 

 

The basis sets described above, are atom centered basis sets which simulate atomic orbitals. 

Off course, this is not the only possible kind of basis set. Maybe the most commonly used 

alternative is plane waves. The plane waves are of the form 
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 ieφ ⋅( ) ∝ k rr , (2.25) 

where the wave number k gives the wave length of the function. Plane waves are very useful 

for periodic calculations, but a large number of them are needed in order to model a function 

that changes quickly. This is for instance the case near the atomic nuclei where the electronic 

wave function changes rapidly.  

When plane waves are used, they are sometimes used together with so-called 

pseudopotentials. This means that the inner electrons in the molecules are not modeled 

explicitly, but the potential from the nucleus is instead replaced by a total potential from the 

atomic core, acting on the outer electrons. The use of pseudopotentials will to a certain extent, 

but mostly in the core region, affect the shape of the molecular orbitals. The change is such 

that the orbitals do not change rapidly as they would without the pseudopotentials, thus 

removing some of the problems in using plane wave basis sets. Since it is mostly the core 

region that is affected by the pseudo-potentials, the chemical bonds will not be severely 

affected, and chemical properties of molecules may still be modeled in a good way. 
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3 Excited state calculations and 
time-dependent DFT 
A molecule that is not in its electronic ground state is said to be in an excited state. In the MO 

picture, this means that the electrons are not occupying the molecular orbitals with the lowest 

energy available; at least one electron is occupying an orbital of higher energy than the lowest 

lying one that is vacant. To describe these electronic states, one needs to go beyond simple 

HF and DFT, because both of these methods assume that the electrons are in the lowest 

available states.  

By demanding a certain symmetry or spin multiplicity for the system (different from 

that of the ground state), both HF and DFT are able to describe the lowest excited state of this 

configuration. These are very restricted possibilities, especially for large molecules lacking 

symmetry. Therefore other, newer methods for calculating excited states have been 

developed. The natural extension of DFT into the realm of excited states is known as time-

dependent density functional theory (TDDFT). TDDFT scales roughly as N3 (Dreuw 2006), 

which makes it suitable for large systems. 

 

3.1 How to describe an electronically excited state 
Excitation energy 

The excited states are higher in energy than the ground state, and the energy that separates 

them is called the excitation energy.  Just as for the ground state, the excited state wave 

function, and thereby the energy, will depend on the nuclear conformation for the molecule. 

This means that the excited states have their own PES, different from that of the ground state. 

In general there is one PES per electronic configuration. It is also possible for the PESs for 

different states to cross each other, such that the energetic ordering of the states is different for 

different geometrical conformations of the nuclei. It is not even certain that the state which is 

the ground state for one conformation is so for another nuclear conformation. Also the stable 

geometrical conformations will differ for the different states. The point at which two PESs (of 

different electronic states in the same molecule) touch or even cross, is known as a conical 

intersection. At these intersections transition between the states is probable, and they 

therefore play an important role in non-radiative de-excitation processes. 
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Oscillator strength 

The intensity of a radiative transition (involving the absorption or emission of a photon) in a 

molecule is proportional to the square of the electric dipole transition moment 

 ˆfi f i=< >µ µ| | , (3.1) 

where f represents the final electronic state, i represents the initial state and µ̂  is the 

electronic dipole moment operator. The oscillator strength for the transition from a state n into 

the ground state (denoted by 0) is defined as 

 2
0 0 0

2
3n n nf E E µ= ( − )| | , (3.2) 

where 

 2 2 2 2
0 ˆ ˆ ˆn x y zn n nµ µ µ µ=< 0 > + < 0 > + < 0 >| | | | | | | | . (3.3) 

The oscillator strength is a dimensionless quantity which is a measure for the radiative 

transition probability both from state n into 0 and the other way. 

 

Radiative transitions are not the only way for a molecule to change its electronic 

configuration. De-excitation may occur through non-radiative transitions which involve 

transmission of energy into rotational and vibrational modes and then into the surrounding 

molecules. 

 

Electronic configuration 

In general the electronic configuration of an excited state will be a superposition of many 

excitations from occupied orbitals into virtual orbitals. This is especially the case in DFT, 

where the molecular orbitals are not physical or chemical quantities but rather mathematical 

aids.  

It is customary to describe the electronic configuration in an excited state as a linear 

combination of states involving specific excitations in the molecular orbitals. The different 

terms in the sum may consist of single- or double excitations (or even higher numbers) where 

more than one electron is excited into a virtual orbital at the same time. 
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3.2 Time-dependent DFT 
3.2.1 Foundation 

TDDFT is a calculational method for determining the behavior of a system under the 

influence of time dependent electromagnetic fields. The most frequent kind of TDDFT in use 

is the time-dependent density functional response theory (TDDFRT) also known as linear 

response TDDFT (LR-TDDFT). The equations to solve in this method emerge from 

perturbing the system with an oscillating electric field and calculating the linear response of 

the system to this perturbation.  

 

The polarizability of a molecule is its ability to respond to an electric field and acquire a 

dipole moment. The dynamic polarizability (α ω( ) ) is the response to an oscillating electric 

field with frequencyω . And the mean dynamic polarizability is given by 

 0n

n no

fα ω
ω ω

( ) =
−∑ ` , (3.4) 

the prime on the summation indicates that 0n =  should not be included in the summation. 

nof  is the oscillator strength of the transition and 0nω is defined by 

 0
0

n
n

E Eω −
=


. (3.5) 

The dynamic polarizability is dependent on both the oscillator strengths and excitation 

energies of the excited states of the system. And if α ω( )  is known it is possible to derive the 

excitation energy and oscillator strength from this. Using LR-TDDFT the dynamic 

polarizability of the system is calculated by the use of the density matrix see Eq. (2.12) in 

section 2.1.1. 

 

TDDFT is an excited state theory made to resemble ground state DFT. Its foundation is the  

Runge Gross theorem (Runge and Gross 1984), which is an analogue to the existence theorem 

of Hohenberg and Kohn for DFT. It states that the (now time dependent) charge density 

determines the external potential up to an additive time dependent function. This means that 

all spatial dependence is determined by the density. The wave function is then determined up 

to a time-dependent phase factor. This again means that the expectation value of any operator 

that does not contain a derivative or integral operator in time is uniquely determined by the 
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electron density. For an introduction to the formal theory of TDDFT see for instance (Casida 

1995). 

The exchange correlation functional is also time dependent in TDDFT. This functional 

is (as usual) not known. But in the limit of a slowly changing external potential, it is valid to 

replace the time-dependent functional with the time-independent functional evaluated at the 

current electron density (Casida 1995) . This is a local approximation in time, and it is called 

the adiabatic local density approximation (adiabatic approximation/ALDA) 

 
[ ]xc t

xc
t

E
v t

δ ρ
ρ

δρ
( ) ≈

( )r
. (3.6) 

As can be seen from Eq.(3.6), time is taken into account by always using the current electron 

density, but there is no “memory” in the functional. The adiabatic approximation also works 

well beyond its domain of rigorous foundation (Casida 1995). 

In linear response TDDFT using the adiabatic approximation, the excited states are 

described by a linear combination of only singly excited states. This would not be the case 

had the exact XC functional been used (Casida 2005). Being limited to use only single 

excitations somewhat reduces the applicability of the method, as will be mentioned later. 

 

In TDDFT the excitation energies and oscillator strengths are calculated from the dynamic 

polarizability, and not from the wave function or electron density of the excited state, as 

would be intuitive. It is therefore not necessary to calculate each excited state by converging 

wave functions (one at a time) in order to find the excitation energies and oscillator strengths. 

Instead; it remains until after the excitation energies are calculated to decide which excited 

state is which in terms of electronic configuration. One advantage of this approach is that the 

entire energy spectrum is available at once, which is useful if the excitation energies and 

oscillator strengths can be used to determine whether a certain state is interesting or not. Since 

the calculation of the electronic configuration is time-consuming, the selection possibility 

may save a lot of computational time. 

 

3.2.2 Applicability 

For valence excited states7

                                                 
7 Excited states involving outer (valence) electrons. 

, where the excitation energy is small compared to the ionization 

energy, TDDFT performs relatively well. The excitation energies have errors of about 0.2 – 

0.8 eV. The shift in energy relative to experimental results is often systematic, so that it is 
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possible to compare the states to each other (Dreuw 2006). Even so, it is still 

necessary to used large basis sets including many virtual orbitals in order to achieve good 

accuracy (Dreuw and Head-Gordon 2005). 

In general it can be said that TDDFT has difficulties in describing states with diffuse 

molecular orbitals. The errors can reach up to several eV for Rydberg states8, valence states of 

molecules exhibiting extended π-systems9, doubly excited states and charge-transfer (CT) 

states10

 

 (Dreuw and Head-Gordon 2005). These errors also affect the curvature of the PES. 

Rydberg excited states are so high in energy, that the excited electron is barely bound. This 

means that the orbital this electron occupies, is very diffuse. These states are not described 

very well by TDDFT.  

A CT state is a state in which the electron is excited into an orbital that does not 

overlap with the originally occupied orbital. Hence the excitation results in a transfer of 

electron density (and then also charge) from one area in the molecule to another. CT states are 

a particular problem for TDDFT; both the size of the excitation energy and the shape of the 

PES are unreliable. The excitation energies in the CT states are usually underestimated 

(Dreuw et al. 2003). Including non-local HF-exchange in the XC potential will reduce the 

long range problems in the PES. New functionals have been developed that split the Coulomb 

operator in two parts, so that more exact HF exchange can be included at long-range (Dreuw 

2006). One such functional is CAM-B3LYP (Yanai et al. 2004) which is known to perform 

quite well for CT excited states (Dreuw and Head-Gordon 2005).  

 

Since LR-TDDFT within ALDA only includes singly excited states, it cannot model doubly 

excited states. It also has problems modeling excited states of molecules with an open-shell 

ground state because many-electron excited states are required to describe these (Casida 

2009). However it should be noted that this failure of TDDFT does not affect calculations of 

singly excited states of radicals (Kumar and Sevilla 2008; Ipatov et al. 2009). 

 

As with ground state DFT, the choice of functional is crucial to achieve a viable result using 

TDDFT. Some of the problems described above require special functionals designed 

                                                 
8 Singly excited states that have excitation energies close to the ionization potential. 
9 In π-systems the electrons occupy orbitals that are not centered on specific atoms but rather spread out along a 
chain of atoms. 
10 CT excited states result from excitations involving displacement of the charge from one part of the molecule to 
another. 
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especially for this type of problem. Including exact HF exchange is necessary in many cases 

using TDDFT. The B3LYP functional is found to perform quite well (Bauernschmitt and 

Ahlrichs 1996).  It is later found that the PBE0 functional which will be introduced in section 

4.4, is capable of handling vertical excitations into Rydberg states quite well, also in 

comparison to B3LYP  and functionals designed to improve upon long-range problems in 

TDDFT (Adamo et al. 1999).  The CAM-B3LYP functional is one of the functionals which is 

in quite wide use and performs well (Dreuw and Head-Gordon 2005). It was developed 

especially for TDDFT and the long range problematic in some excitations. In general it is a 

good idea to use several different functionals for the same calculations when using TDDFT, 

in order to get the full “true” picture, as the optimal functional depends on the type of 

excitation being modeled. This functional selectivity must be regarded as a strong 

disadvantage of the TDDFT method. 

 

3.2.3 TDDFT versus other excited state methods 

Some of the HF based methods which include correlation, described in the previous chapter 

(section 2.1.3), are also able to describe excited states. These methods are in use for that 

purpose, and yield more accurate results than TDDFT can offer. What the HF based methods 

have in common is that they can model many-electron excitations. This enables them to 

describe states that TDDFT is not immediately able to handle. But as was noted before, these 

methods are very time consuming, and are not suited for large molecules. The advanced HF 

based methods are not suited for treating systems larger than 10-20 atoms. 

 

TDDFT is able to treat systems of up to 200 first row atoms (Dreuw and Head-Gordon 2005). 

For systems of this size, only two other ab initio methods may be applied; configuration 

interaction singles (CIS) and the random phase approximation (RPA) also known as time-

dependent HF.  

The CIS method uses the orbitals from the ground state HF solution. These orbitals are 

used to construct the wave function for the excited state as a linear combination of single 

excitations.  

In the RPA the equations are obtained from linear response of the orbitals using time-

dependent perturbation theory to first order. This method strongly resembles TDDFT, but 

does not include any correlation effects (since HF does not do so either). For excited states 

with excitation energy lower than ½ the ionization potential, TDDFT performs better than 

these two HF based methods (Bauernschmitt and Ahlrichs 1996). 



37 
 

 

3.2.4 Some applications to biomolecules 

None of the high level excited state-methods are applicable to large molecules such as DNA 

and DNA model systems. TDDFT is therefore a method which is increasing in use for excited 

state calculations on these large molecules; a few applications are presented here. Since 

TDDFT is well suited for examining excited states of cation radical with low excitation 

energy (Kumar and Sevilla 2008), the method is good for examining radiation damage, which 

corresponds to states where one electron is moved from an occupied orbital into the first 

unoccupied orbital. 

 

Radicals on the sugar molecules in DNA can result in strand breaks (Kumar and Sevilla 

2008). Several TDDFT studies have been performed that discuss how a radical stabilized on 

the nucleobase, can be transferred to the sugar via photo excitation (Adhikary et al. 2005; 

2006; 2006; Kumar and Sevilla 2006; Adhikary et al. 2008). The smallest systems modeled 

were nucleosides (a nucleobase with an attached sugar), but also larger systems were included 

(nucleotides and systems including several bases). In these studies, the geometrical structure 

was optimized in the ground state where the radical cation is localized on the nucleobase; then 

vertical excitation energies were calculated.  

It is pointed out (Adhikary et al. 2005) that the excitation energies and oscillator 

strengths found using a double-ζ basis set without diffuse functions do not change much (on 

average the excitation energies change 0.05 eV) upon going to a triple-ζ basis set including 

diffuse functions.  

In the above mentioned studies it was found that excited states involving excitation 

from a low MO into the singly occupied MO (SOMO) of the radical corresponds to electron 

hole transference from the base to the sugar. This is expected to be followed by a 

deprotonation from the carbon atom with the lowest electron density. None of these studies 

modeled the deprotonation reactions; which would have been very time-consuming 

considering the size of the systems. 

 

Mechanisms for non-radiative decay of adenine  has also been studied by doing TDDFT 

calculations on geometries optimized with ground state DFT and CASSCF  (Sobolewski and 

Domcke 2002). By investigation of the excited state energy profiles, conical intersections 

were found that might enable radiation-free de-excitation. 
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A study of a proton transfer process from –keto to –enol forms of guanine has been 

performed in order to decide whether this reaction might be facilitated by an excited state 

(Shukla and Leszczynski 2005). This was done by using TDDFT and the B3LYP functional 

to calculate barrier heights for the reaction. The barrier heights were in this case calculated by 

using vertical excitation energies with TDDFT on –keto, transition state and -enol geometries 

for the first excited state optimized the using CIS. The first excited singlet state of the system 

was not found to facilitate the transition, but the TDDFT results were found to be in good 

agreement with experimental data.  

 

The efficiency of TDDFT to other numerical methods for excited state calculations has made 

it possible to perform dynamic simulations of excited states with this method. An 

implementation using local basis sets (Meng and Kaxiras 2008) scales linear with the number 

of electrons in the system, thus making dynamic simulations of larger molecules, such as 

biomolecules, possible. 
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4 Methods used 
The work presented in this thesis is DFT and TDDFT calculations on oxidized rhamnose. The 

calculations have been performed using two different computer programs; CP2K (the CP2K 

developers group 2009) and Gaussian03 (G03) (Frisch et al. 2004). The calculational 

methods used in these two programs differ slightly, even though they are all DFT 

calculations. This means that the results cannot be expected to be identical, but if both 

programs (and the methods used in each of them) are performing well, then the results should 

be comparable. The term “level of theory” (LOT) is taken to mean the quantum chemical 

method and basis set used for the calculations, in the case of DFT and TDDFT the functional 

used is also part of the level of theory. 

 

Unless otherwise is specified, the calculations on rhamnose have all been performed with a 

specified spin multiplicity of 2 (spin ½) and charge +1, this corresponds to the cation radical. 

And the unrestricted KS method has been used, meaning that α- and β electron orbitals are 

allowed to differ in their spatial distribution.  

 

4.1 Ground state calculations 
4.1.1 Periodic calculations 

The periodic calculations on the ground state of rhamnose have been performed using CP2K 

and the Quickstep method (VandeVondele et al. 2005). All were performed using the hybrid 

Gaussian and plane wave scheme (GPW)  (Lippert et al. 1997). This means that the KS 

orbitals have been expanded in a Gaussian basis set, whereas the electron density is expressed 

in a plane wave basis set. The GPW method also implies that pseudo-potentials are used to 

treat the core electrons and that only the valence electrons are modeled through the basis 

functions. The motivation behind this mix is that the electron-electron interaction energy 

calculations are more easily performed in a plane wave basis set, whereas the kinetic energy 

calculations and the calculations describing the interactions with the nuclei (in this case the 

atomic core) are more easily performed using the gaussian functions.  

 

The starting geometry for the CP2K calculations was the experimentally determined structure 

for the intact crystal (Takagi and Jeffrey 1978).  The geometry was then optimized for the 

radical cation. This optimized geometry was used as the first input for the constrained 
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geometry optimizations that were performed later. Successively, the previously attained wave 

functions were used for the next step in the calculation. Re-using wave functions like this 

saves computational time, but may also influence the results in that the new wave function 

will most likely resemble the starting wave function in character. The constrained geometry 

optimizations were bond elongations where one bond length in the molecular structure was 

constrained using a harmonic restraint. A restraint works in the fashion that a penalty 

function for the energy is imposed if the restrained coordinate changes from its nominal 

value. That the restraint is harmonic, means that it has the form of a classical spring. The 

restraint was placed on a bond length that was increased in steps of 0.1 Å, thus a scan of the 

PES was performed. Also here the wave functions attained in the previous step were used as 

input for the next step in the calculations. The geometry optimization method used is the 

LBFGS method (Byrd et al. 1995). 

 

4.1.2 Cluster- and single molecule calculations 

G03 was used for calculations on single molecules (SM) and clusters. Both single point (SP) 

calculations, constrained geometry optimizations and unconstrained geometry optimizations 

were made. In G03 the Berny algorithm for geometry optimizations (Peng and Schlegel 1993; 

Peng et al. 1996) is used. To produce PES profiles, two different approaches were employed. 

One was to make constrained geometry optimizations using the “ModRedundant” option. The 

other was to simply do SP calculations on the geometries achieved by just moving the 

hydrogen core away from the molecule in steps using the “Scan” option. The latter method 

was used when the constrained geometry optimizations resulted in geometries that did not 

correspond to the conformation that was to be investigated; for instance in some of the SM 

calculations the rhamnose molecule fell apart and formed three new molecules. Also here the 

bond elongations were performed in steps of 0.1 Å. 

 

ONIOM 

ONIOM (Svensson et al. 1996) is a method for speeding up the calculations on large clusters 

by not treating the entire cluster at the same LOT. This method lets the user specify different 

layers in the cluster; the central layer will usually be treated at the highest LOT, and the outer 

layers (farthest from the central molecule) only at a low LOT. For the work in this thesis, two-

layered ONIOM was employed to perform geometry optimizations for clusters. Four different 

energies are calculated in the two-layered ONIOM scheme: The energy for the inner layer at 



41 
 

the high LOT, ,inner highE , the energy for the inner layer at the low LOT, ,inner lowE , the 

energy for the entire system at the low LOT, ,cluster lowE , and then the total energy, ONIOME , as a 

sum of these 

 , , ,ONIOM cluster low inner low inner highE E E= −Ε + . (4.1) 

In this way, the interactions between the molecules in the inner layer and the rest of the 

cluster are to some extent modeled. For the ONIOM calculations performed in this work, the 

semiempirical model PM3 (Stewart 1989) was applied for the low level calculations. 

 

4.1.3 Calculation of hyperfine coupling tensors 

The hyperfine coupling tensors associated with the deprotonated oxygen-centered radical 

resulting from the OH4 deprotonation were calculated using G03. The stable geometries of the 

periodic calculations and the ONIOM cluster calculations were used. The hyperfine coupling 

tensor calculations were performed as B3LYP/6-311++G** single point calculations on the 

isolated neutral radical (22 atoms) only. 

 

4.2 Excited state calculations 
All the excited state calculations presented in this thesis are single point TDDFT calculations 

performed in G03. It would have been desirable to be able to use CP2K for excited state 

calculations on the geometries optimized in this program, but attempts to use TDDFT in this 

program resulted in convergence problems. Due to a quote found on the CP2K discussion 

group by one of the developers of the TDDFT code (Hutter 2009);  

The TDDFT code has not been worked on for three years.  
The performance is not very good and the oscillator strength calculation is missing.  

attempts to circumvent the convergence problems were eventually abandoned. Rather than 

using CP2K to calculate the excited states, geometries from the CP2K geometry optimizations 

were used for SP calculations in the G03 program. This is not ideal since these geometries 

will not represent stable conformations in G03, but it is the best we can do for now.  

 

The calculations on small molecules (H2O, CH3 and CO+) were performed to see how 

different basis sets and functionals influence the results. Diffuse basis functions play a 

significant role in describing excited states, but the inclusion of these greatly increase the size 
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of the basis set and thereby the computational time. After these test calculations it was 

decided to use a double-ζ basis set including diffuse functions and polarization functions for 

the calculations on rhamnose. 

Because the excited state calculations were performed as SP calculations (for each of 

the geometries in the bond elongation processes) separately, it was not trivial to follow the 

excited states from one geometry to the next. G03 numbers the states by excitation energy and 

they are relatively close to each other in energy. The program is not able to determine the spin 

multiplicity of the excited states and there is no symmetry present, so it is impossible to use 

any of these quantities to tell the different states apart. To solve this problem the bond 

elongation should be performed at sufficiently small steps so that the tracking of the excited 

states is made possible. This is computationally very expensive, and some time was saved by 

doing linear interpolation between two adjacent optimized geometries instead of making new 

geometry optimizations for all these points. The excited states were then calculated also for 

all these interpolation points.  

For the first four steps in the deprotonation reaction 20 interpolated points were used 

between the steps, and after that only 10 interpolated points were used.  Figure 10 shows the 

result of the TDDFT calculations using interpolated geometries for one of the deprotonation 

processes. It was then possible to see clearly where the states might cross each other in 

energy. In order to determine whether the crossings were real, the electric-, magnetic- and 

velocity transition dipole moment to the ground state were used to tell the states apart, under 

the assumption that the transition dipole moment should be continuous. 
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Figure 10: Vertical excitation energies for the first 20 excited states during the OH4 
deprotonation reaction for the rhamnose cation calculated in the single chain model. 
Geometries from optimizations in periodic code are at the positions of the vertical 
lines with interpolated points in between. 

 

4.3 Basis sets 
For the calculations using CP2K, a TZVP basis set (VandeVondele and Hutter 2007) was 

used with GTH pseudo-potentials (Goedecker et al. 1996; Hartwigsen et al. 1998; Krack 

2005). The basis set is a Dunning set with triple-ζ valence and polarization functions. The 

electron density is expressed in a plane wave basis set, and the cutoff of 400 Ry corresponds 

to the highest frequency of this basis, giving a shortest wave length of about 2.3 Å.  

 

For the calculations using G03, Pople basis sets have been used. The two most frequently 

used were 6-311G** (Krishnan et al. 1980) and 6-31++G** (Hehre et al. 1972; Hariharan and 

Pople 1973; Clark et al. 1983). Other basis sets that are used were 6-311G, 6-311++G, 6-

311++G** and 6-31G**11

                                                 
11 For references, see those for 6-311G** and 6-31++G**. 

. In the Pople sets, the first number (in this case 6) is the number of 

primitives used in the contracted core functions. The numbers after the hyphen indicates how 

many Gaussian functions are used in each valence function.  This means that 6-311G has six 
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primitive Gaussian functions for each core function, and one core function for each core 

orbital. There are three basis functions for each valence orbital (triple-ζ), one of these is a 

contraction of three Gaussian functions and the other two are scaled Gaussian functions. Stars 

in the designations of the Pople sets indicate the presence of polarization functions. One star 

means that there are added d-orbitals in addition to the p-orbitals that are already there, two 

stars means that p-orbitals are added on hydrogen and helium atoms as well. One or two plus 

signs indicate the presence of diffuse s- and p-functions. One plus sign indicates the presence 

of diffuse functions on heavy atoms, and two plus signs indicate the added presence of diffuse 

s-functions on hydrogen atoms. (Cramer 2004) 

 

4.4 Functionals 
A part of the work in this thesis has been to test the performance of different exchange-

correlation functionals. The ones used are BLYP, B3LYP, PBE and PBE0. BLYP is a 

combination of the Becke's exchange functional (Becke 1988) and the correlation functional 

of Lee, Yang and Parr (Lee et al. 1988). B3LYP (Becke 1993) is a hybrid functional based on 

the exchange and correlation functionals that make up BLYP (see section 2.2.2). B3LYP 

includes HF exchange and is a quite robust functional despite the fact that the parameters used 

in this functional are in fact not optimized for B3LYP, but rather for a similar functional. PBE 

(Perdew et al. 1996; Perdew et al. 1997) is a GGA functional proposed by Perdew, Burke and 

Ernzerhof. The PBE0 (Adamo and Barone 1999) functional is a hybrid functional based on 

PBE, including exact HF exchange. This hybrid functional does not include empirical 

parameters. 

 

4.5 Spin and charge analysis 
Charge and spin will not necessarily be distributed evenly in molecules. Some atoms attract 

electrons more efficiently than others (have a higher electronegativity) and can create 

polarization of the molecule; this is the origin of hydrogen bonds between molecules. 

Especially ions and radicals are exposed to this since all the molecular orbitals cannot be 

doubly occupied. Consequently there is a need for a method to determine the spin- and charge 

distribution of molecules.  

The electron density and spin density functions provide three-dimensional information 

about the distributions. Nevertheless, in many situations it is convenient to have some notion 

of the net charge and the net spin on a certain atom, this analysis is known as population 
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analysis. In the present work, Mulliken population analysis (Mulliken 1955) has 

been used, among other things to determine whether it is a proton transfer or a hydrogen 

transfer process that is being studied. In a Mulliken analysis, the number of electrons 

“belonging” to a certain nucleus is calculated from the atomic orbitals centered on that 

nucleus contributing to the occupied molecular orbitals.  

 It would have been very interesting to be able to describe the charge distribution of the 

excited states as well as that of the ground state. This could have contributed to the 

understanding of the mechanisms for the deprotonation reactions, but in the present work, 

such a method has not been found.  
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5 Results and analyses 
This chapter consists mainly of three parts. The first part presents the results of the ground 

state calculations on the rhamnose cation radical. The calculations are mainly focused on 

establishing energy profiles for four different deprotonation reactions from the cation. The 

deprotonations in question are those from the four hydroxyl groups in the molecule (see 

Figure 11 for numbering scheme). These deprotonation reactions are the main focus of this 

thesis. The second part of this chapter contains benchmark calculations using TDDFT on 

three small molecules (H2O, CH3 and CO+) where the performance of different functionals 

and basis sets is tested. The third section contains TDDFT calculations of the excited states of 

rhamnose in the deprotonation reactions mentioned above. 
 

5.1 Ground state calculations on rhamnose  
Ground state calculations were performed in order to describe the possible deprotonation 

routes from each of the four hydroxyl groups (OH1, OH2, OH3 and OH4) in the rhamnose 

cation (see Figure 11). The calculations were performed as partially constrained geometry 

optimizations, in which specific constraints were placed on the bond lengths of the original 

OH groups only. The calculations were performed at (roughly) three different system sizes, 

where the most accurate description was expected to be obtained from the largest system. The 

smallest system was a single molecule, the intermediate system was a multi-molecular cluster 

consisting of altogether 294 atoms, and the largest system was a supercell containing 416 

atoms used for the periodic calculations. 

 
Figure 11:  The structure of α-L-rhamnose with carbon atom and hydroxyl group 
numbering indicated. This figure is identical to Figure 6, repeated here for 
convenience. 
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5.1.1 Periodic calculations using CP2K 

The periodic calculations for the rhamnose crystal were performed using CP2K within the 

GPW approach. The periodic supercell used consisted of the crystalline unit cell doubled in 

every direction (with axis lengths thus being 15.802 Å, 15.844 Å and 13.340 Å). This 

supercell contains 16 rhamnose molecules and 16 water molecules, altogether 416 atoms. The 

functional used was BLYP, and the basis set was TZVP-GTH with a cutoff at 400 Ry. 

 

The crystal structure geometry was optimized without constraints for both the intact structure 

(charge 0, spin 0) and with one cation (charge 1, spin ½). These geometries will be referred to 

as the intact geometry and the cation geometry.  The energies of the cation structure at these 

two geometries are given in Table 1. The difference between the energies is a measure of the 

kinetic energy available if the cation is left in its ground state just after ionization; there will 

be an energy excess of 0.01 eV available for moving around on the PES (energetically 

allowed movement of the nuclei). 

 

Table 1: Energies of the cation (charge 1, spin ½) structure for two optimized 
geometriesa. 

Geometry Energy /Hartree Energy / eV 

Intact geometry -2214.285407 - 

Cation geometry -2214.285882 - 

Energy difference -0.000475 -0.01 
a Intact geometry refers to the geometry found by geometry optimization of the intact 
structure, cation geometry corresponds to the geometry found by geometry 
optimization of the cation structure. 

 

In addition to full geometry optimizations of the crystal structure (both for the intact structure 

and the cation), partially constrained geometry optimizations were performed on the cation 

structure. This in order to model the deprotonation reactions from each of the four hydroxyl 

groups separately, starting from the fully optimized cation geometry. The constrained 

coordinate was that of the OH bond distance of the original hydroxyl group in focus. The 

imposed constraint was a harmonic restraint. The bond elongations were performed in steps of 

0.1 Å from 1.0 Å to 2.0 Å, with constrained geometry optimizations in each point. The 

resulting energy profiles are shown in Figure 12.  
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For three of the deprotonation reactions (1, 2 and 4), a local drop in energy 

was observed as the bond distance increased beyond about 1.7 Å. For all three of them, new 

unconstrained geometry optimizations were subsequently performed, starting from the point 

lowest in these local minima. This led to modified minimum-energy geometries, represented 

in Figure 12 as single diamonds. The proton did not return to its original position when the 

constraint was removed in any of these three cases. In Appendix D, tables showing the 

energies plotted in Figure 12 are presented. 

 

 
Figure 12: Ground state energy profiles for all four routes for deprotonation from 
hydroxyl groups in the rhamnose cation. The profiles are computed using CP2K and 
geometry optimizations constrained by imposing harmonic restraints on the OH 
bond length of the original hydroxyl groups. The calculated points are shown as dots, 
and the lines represent linear interpolations between these points. The diamonds 
represent geometries optimized without constraints starting from the lowest point in 
the local minimum beyond 1.7 Å for each curve. 
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Cation deprotonation at OH1 

 

 
Figure 13: Unconstrained optimized structure for the OH1 deprotonation process at 
an OH1 bond length of 1.7 Å. Two proton transfers have taken place, indicated by 
arrows. 

For the OH1 deprotonation process, the proton is pushed towards the oxygen of the OH2 group 

on a neighboring rhamnose molecule, see Figure 13. Once the proton is approaching the 

oxygen atom, the proton originally bonded to the oxygen of this hydroxyl group starts moving 

towards the oxygen of the next water molecule in the hydrogen bond chain. And as this 

proton attaches to the oxygen in the water molecule, there is a concomitant drop in the 

potential energy of the molecule (see Figure 12).  

When the constraint on the OH-bond is removed, the geometry converges to that 

shown in Figure 13. As illustrated in the figure, the process consists of a two-proton transfer; 

only the first proton transfer was imposed by constraints in the geometry optimizations. The 

energy barrier for this two-proton transfer reaction was calculated to be 0.93 eV. Upon re-

optimization from the local minimum structure without constraints, a structure was found 

with an energy 0.84 eV higher than the starting point for the deprotonation reaction, as can be 

seen from Figure 12. 
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Cation deprotonation at OH2 

 

 
Figure 14: Unconstrained optimized structure for the OH2 deprotonation process at 
an OH2 bond length of 1.7 Å. Two proton transfers have taken place, indicated by 
arrows. 

For the OH2 deprotonation reaction, the proton is pushed towards the oxygen atom of the 

water molecule to which it is hydrogen bonded. As the proton approaches the oxygen atom, 

one of the protons in the water molecule starts moving towards the oxygen atom of the OH4 

hydroxyl group of the next rhamnose molecule in the hydrogen bond chain, see Figure 14. 

And as this proton attaches to the oxygen of the hydroxyl group, there is a concomitant drop 

in the potential energy of the molecule (see Figure 12).  

As the constraint on the OH-bond is removed, the geometry converges to that shown 

in Figure 14. The figure shows that the process consists of a two-proton transfer, while only 

the first proton transfer was imposed by constraints in the geometry optimizations. The energy 

barrier for this reaction is 0.68 eV and the re-optimized local minimum structure is 0.52 eV 

higher than the starting point for the deprotonation reaction, see Figure 12. 
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Cation deprotonation at OH3 

For the OH3 deprotonation reaction, the proton is hydrogen bonded to the ring oxygen of the 

adjacent rhamnose molecule in the crystal. The ring oxygen does not have a proton to eject 

further. As the proton is moved towards the ring oxygen, there is a monotonic raise in energy. 

The bond between the ring oxygen and C1 of the receiving molecule breaks and the proton12

Figure 15

 

of the OH1 hydroxyl group of this molecule starts moving towards its hydrogen bonded 

neighbor. A schematic view of this reaction is shown in .  

 

 
Figure 15: Schematic view of the OH3 deprotonation reaction. a) The starting point 
(before deprotonation). The arrows indicate the proton transfer directions. b) The 
molecular structures after constrained geometry optimization. The configuration 
shown is not stable, and the reaction is reversed when the constraints on the 
optimization are removed. See also Figure 16. 

 

An attempt was made to see if the completion of this proton transfer might cause a reduction 

in the potential energy also for this deprotonation reaction by applying constraints both on the 

OH bond distance and by forcing the ring open by constraint. But while this led to a stable 

structure in the presence of the constraints (shown in Figure 16), the reaction was reversed 

when the constraints were removed. The calculations therefore do not indicate any possibility 

for deprotonation of the cation from the OH3 group. 

 

                                                 
12 It is difficult to see from the charge analysis whether it is a proton that moves or a hydrogen atom. 
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Figure 16: The unstable structure for the OH3 deprotonation process, as 
schematically depicted in Figure 15b. The original proton-donating molecule is 
shown by sticks only. 

 

Cation deprotonation at OH4 

For the OH4 deprotonation reaction, the proton is pushed towards the oxygen of the adjacent 

water molecule. As the proton approaches this water, one of the water protons starts moving 

towards the oxygen atom of the OH4 group of the next rhamnose molecule in the hydrogen 

bond chain, see Figure 17.  

As can be seen from Figure 12, the energy exhibits a local minimum at about 1.7 Å. 

This corresponds to a conformation where the original rhamnose proton has moved on to the 

water molecule, and one of the water protons has been transferred from the water molecule to 

the neighboring rhamnose molecule. Also in this case only the first of these proton transfers 

was constrained in the calculation.  
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Re-optimization from this geometry without constraints resulted in no noticeable 

change in geometry. This implies that the two proton transfer starting from the OH4 group of 

the cation leads to a stable conformation. The unconstrained optimization was attempted first 

by using the wave functions from the constrained optimizations as the initial guess (as was 

done for all the other reactions). When this did not result in any significant change in the 

geometry, new wave functions produced by the computer program were used in a second 

attempt; this did not result in a changed geometry either. The stable structure is depicted in 

Figure 17. 

 
Figure 17: Re-optimized structure following the deprotonation from OH4 of the 
rhamnose cation. Two proton transfers have taken place as indicated by arrows. 

The energy of this stable structure is 0.46 eV above the energy of the starting point for the 

reaction, and to reach this structure, there is a barrier of 0.53 eV. Pauwels and co-workers 

(Pauwels et al. 2008) have performed similar calculations, using a different computer 

program (CPMD). In that work, the stable geometry did not occur after only two proton 

transfers, but rather after three transfers. Therefore, in the present work attempts were made to 

“push” the next proton in the chain towards its hydrogen bonding partner (this time on a water 

molecule) by adding a new constraint. However this did not lead to a stable structure once the 

constraints were removed. 
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Table 2: Calculated hyperfine coupling tensors for the isolated OH4-deprotonated 
rhamnose cation structures (22 atoms). Hyperfine coupling tensor calculations were performed for the 
optimized structures obtained in the periodic calculations (a) and in the ONIOM-cluster approach (b). 
For comparison, corresponding results from a previous computational study of the same deprotonation 
process (c) (Pauwels et al. 2008) and the experimental values found by Pauwels et al. to be relevant 
for comparison (d) (Samskog and Lund 1980) are given. 

 

a: Results from periodically optimized geometry 

in the present study 

c: Theoretical results of Pauwels et al (RO4 

radical) 

   Eigenvectors   Eigenvectors 

Atom Aiso Aaniso a* b c Aiso Aaniso a* b c 

H2 34.30 -2.48 0.7388 -0.4884 -0.4643 50.4 -3.5 0.692 -0.528 -0.492 

  -0.34 0.3408 -0.3236 0.8827  -0.3 0.579 -0.001 0.851 

  2.82 0.5813 0.8104 0.0727  3.8 -0.431 0.849 -0.305 

H3 -4.43 -9.75 -0.2187 0.1811 0.9588 -1.7 -10.3 -0.160 0.150 0.976 

  -0.73 0.9093 0.3943 0.1330  -0.3 0.943 0.316 0.106 

  10.49 -0.3540 0.9010 -0.2509  10.6 -0.293 0.937 -0.192 

H4 73.16 -5.96 0.3792 0.8336 -0.4017 87.1 -5.9 0.443 0.881 0.163 

  -3.67 -0.1960 0.4967 0.8455  -4.6 -0.209 -0.075 0.975 

  9.63 0.9043 -0.2419 0.3517  10.5 0.872 -0.466 0.151 

HO3 -3.10 -5.30 -0.5563 0.8194 0.1379 -4.0 -6.6 -0.460 0.865 0.202 

  0.75 0.8027 0.4870 0.3442  0.9 0.881 0.474 -0.024 

  4.54 -0.2149 -0.3022 0.9287  5.7 0.116 -0.167 0.979 

           

 

b: Results from cluster-optimized geometry in the 

present study d: Experimental results from Samskog and Lund 

   Eigenvectors    

Atom Aiso Aiso a* b c Aiso     

H2 39.00 -2.82 0.6964 -0.5420 -0.4703 39     

  -0.29 0.4141 -0.2317 0.8802      

  3.10 0.5861 0.8078 -0.0632      

H3 -8.62 -10.78 -0.1290 0.2866 0.9493      

  -1.44 0.9074 0.4202 -0.0035      

  12.22 -0.3999 0.8610 -0.3142      

H4 62.20 -5.39 0.3874 0.8025 -0.4537 112     

  -3.86 -0.1653 0.5446 0.8222      

  9.24 0.9070 -0.2435 0.3437      

HO3 -0.57 -5.43 -0.4940 0.8523 0.1721      

  0.20 0.8678 0.4710 0.1585      

  5.24 -0.0540 -0.2276 0.9723      
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Hyperfine coupling tensors were calculated for the freely optimized deprotonated radical 

structure (isolated radical with no environment present) by a SP calculation in G03. Table 2 

holds a summary of the results and the relevant experimental data and theoretical results 

found in the literature. A comparison of the calculated hyperfine couplings with the 

experimental results indicates that the description of the OH4 deprotonation process in the 

present work provides a realistic description of the experimentally observed radicals. 

 

Summary 

Figure 12 implies that deprotonation reactions from the hydroxyl groups OH1, OH2 and OH4 

of the rhamnose cation may lead to stable conformations, whereas only the deprotonation 

from OH4 has been observed experimentally (Samskog and Lund 1980; Budzinski and Box 

1985). The OH4-deprotonated structure yields calculated EPR parameters in fair agreement 

with the experimental data of Samskog and Lund as well as the previous calculational data by 

Pauwels and co-workers.  

The energy barriers associated with the deprotonation reactions are fairly high (0.53 – 

0.93 eV). For this reason, the reactions are not expected to occur at the very low temperatures 

at which deprotonation from OH4 experimentally observed (as low as 4 K). On the other 

hand, energetically the calculations show a clear preference for the OH4 reaction as compared 

to the other two. Table 3 shows the calculated relative abundances of the different products at 

the temperatures used in the experiments and at room temperature. According to these data, 

the experimental observation of only the OH4 deprotonation product easily can be understood. 

 

Table 3: Expected relative abundances of the radicals resulting from the different 
deprotonation reactions based on relative energies at the freely optimized points for 
the deprotonated structures. 

Temperature /K 4 77 300 

OH4/OH1 - 1025 107 

OH4/OH2 1082 1004 101 

 

5.1.2 Cluster and single molecule calculations using G03 

Due to the large size of the supercell in the periodic calculations, and also to the problems 

with computing excited states in CP2K, several attempts have been made to reproduce the 

results from the CP2K ground state calculations using Gaussian03 single molecule- and 

cluster calculations.  
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Single molecule calculations 

The SM calculations were all performed on the B3LYP/6-31++G** LOT. The calculations 

were performed with and without geometry optimizations. The bond elongations were 

performed with step lengths of 0.1 Å. None of these calculations led to any reliable results: 

Geometry optimization of just a single rhamnose cation radical led to ring opening by a 

rupture of the C4-C5 bond.  

Performing constrained geometry optimizations for the four OH bond elongations 

from the ring-opened structure resulted in just uphill energy profiles for OH1 and OH4. For 

OH2 and OH3 the proton jumped sideways to the oxygen of the adjacent hydroxyl group (the 

OH2 and OH3 groups are adjacent), see Figure 18. In an attempt to circumvent this problem 

the C3C2OC2HOC2 dihedral angle was frozen for the OH2 case and the analogue (opposite) was 

done for the OH3 case. This simply resulted in a complete destruction of the ring structure 

with the release of a water molecule, see Figure 19. 

 

After these attempts, energy profiles with bond elongations from the molecular geometry in 

the experimentally observed crystal structure, with imposed spin and charge (cation radical), 

were performed. All these calculations resulted in uphill energy profiles. The charge analysis 

indicated that it is actually a hydrogen atom that is transferred, not a proton.  

 

 
 

 
 

Figure 18: Result of bond elongation with 
constraint placed only on the OH2 bond 
distance for a rhamnose cation radical. 

 

Figure 19: Result of bond elongation with 
constraint on the OH2 bond distance and 
the C3C2OC2HOC2 dihedral angle for a 
rhamnose cation radical. 

 

It is not considered surprising that the single molecule calculations do not reproduce the 

results from the periodic calculations since no proton acceptors are present. Also, the 
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considerable movements of the molecule during the SM geometry optimizations indicate that 

the surroundings ought to be included for stability purposes. It was decided to investigate 

whether it was possible to reproduce the results from CP2K using a cluster model. This 

calculation was made for the most interesting deprotonation reaction, OH4, only. 

 

Cluster calculation  

In deciding on the size and shape of the cluster, two main issues were considered. The cluster 

should include all three molecules directly involved in the deprotonation reaction; these 

molecules will be referred to as the central molecules. In the case of the OH4 deprotonation 

from the cation radical, this meant rhamnose-water-rhamnose as in see Figure 17. The three 

molecules alone add up to 49 atoms. It was also desirable to include all molecules that are 

hydrogen bonded to the central molecules in the crystal structure. The cluster size then 

became 294 atoms.  

This cluster is shown in Figure 20 with the central atoms highlighted. The size of this 

cluster is so large that it was decided to treat all molecules not directly involved in the 

deprotonation reaction at the PM3 level, whereas the central molecules were treated at the 

B3LYP/6-311G** LOT using ONIOM. The geometry optimization was started from the last 

point in the CP2K scan (after two proton transfers, with an OH bond length of 2 Å). All the 

molecules in the outer PM3 layer were held fixed, while the three inner molecules were 

allowed to relax freely. This resulted in the geometry shown in Figure 20. 

 

As a result of the ONIOM geometry optimization, the protons moved slightly back towards 

their original crystal positions, and the structure stabilized with three protons on the water 

oxygen. The original OH bond distance is reduced from 2.0 Å to 1.5 Å. From this geometry a 

relaxed scan of the PES was then performed by imposing a constraint on the OH bond 

distance of the original fourth hydroxyl group. This bond length was reduced in steps of 0.1 Å 

in six steps. The resulting energy profile is shown in Figure 22.  

Also these calculations show an energy barrier for the deprotonation reaction. 

However, in this case the energy barrier is 0.02 eV, which is negligible in comparison to the 

barriers resulting from the CP2K calculations. A closer inspection of the structure before and 

after the initial ONIOM geometry optimization reveals that there is a considerable amount of 

movement also of heavier atoms, see Figure 21. This is most likely due to the fact that the 

hydrogen bonds between the three central molecules and the environment are not well 

represented at the PM3 level, making the calculation behave more like a gas phase calculation 
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rather than that of a solid state structure. Figure 21 also shows that the “bridge” on 

which the positive charge moves, is “flattened out”. This might be, at least part of, the reason 

why the energy barrier is lower in the cluster calculations. 

 

Hyperfine coupling tensors were calculated for the deprotonated neutral radical (isolated, 

without any environment included, 22 atoms) at the B3LYP/6-311++G** LOT for the 

geometry optimized without constraints in the cluster. These results are given in Table 2. It 

appears from the data in Table 2 that; these results do not agree well with neither the relevant 

experimental data and theoretical results found in literature, nor with the results obtained from 

calculations using the periodic optimization (section 5.1.1). 

 
Figure 20: The molecular cluster used to describe the OH4 deprotonation reaction 
using G03 for the (ONIOM) optimization and PES scan. The structure shown is the 
G03 optimized structure where only one proton transfer has taken place, indicated by 
an arrow. The molecules treated at the PM3 level are shown as sticks; these are held 
fixed during the geometry optimizations. 
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Figure 21: Changes in geometry as a result of the geometry optimization using G03 
for the three central molecules. The surrounding PM3 layer is not shown in this 
figure as it is kept fixed in space. The starting point of the optimization, being the 
last point of the CP2K scan, is shown as a ghost. 

 
Figure 22: Ground state energy profile for the deprotonation from the OH4 group of 
the rhamnose cation. Energies are calculated using the cluster shown in Figure 20 
with G03 and ONIOM in a two-layered cluster. The calculated points are shown as 
dots, and the line represents linear interpolations between these points. The diamond 
(the last point) represents the geometry optimized without constraint, starting from 
the last point in the corresponding calculation performed in the periodic code. 
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5.2 Excited states 
5.2.1 Test calculations on small molecules 

TDDFT calculations on H2O, CH3 and CO+ were performed with the purpose of examining 

how the choices of basis set and functional affect the results. All calculations presented in this 

chapter used Gaussian03. For all three molecules a geometry optimization was first performed 

using B3LYP/6-311G**, and subsequently TDDFT calculations were performed as SP 

calculations at these optimized geometries. For H2O, a geometry optimization was also 

performed using PBE/6-311++G** with the intention of checking the effect of slightly 

differing geometries for the TDDFT calculations. The resulting geometries are shown in Table 

4.  
Table 4: Optimized geometries using the G-311G** basis set in G03, the functional 
used is given in parentheses. 

Molecule Bond distance / Å Bond angle / degrees 

Dihedral angle / 

degrees 

H2O (B3LYP) 0.96176 103.82084 - 

H2O (PBE) 0.96996 104.19528 - 

CH3 (B3LYP) 1.08063 120.01110 0.00078 

CO+  (B3LYP) 1.11047 - - 

 

The functionals and basis sets used for the TDDFT calculations were B3LYP, BLYP, PBE 

and PBE0 and 6-311G, 6-311G**, 6-311++G, 6-311++G** and 6-31++G**, respectively. 

The results of the calculations presented in this section are compared to the results reported by 

Hirata and Head-Gordon (Hirata and Head-Gordon 1999) where both experimental and 

calculated results are given. 

 

H2O 

For H2O the first five singlet excited states were calculated, in two different series. The first 

series used B3LYP and all different basis sets, and for the second series, all functionals were 

used together with the 6-311++G** and 6-31++G** basis sets. Both series were made using 

the B3LYP/6-311G** geometry. In addition a SP PBE/6-311++G** calculation of the excited 

states using the PBE/6-311G** optimized geometry was made for comparison. All results are 

tabulated Table 16, Table 17 and Table 18 in Appendix D.  
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It appears that one of the excited states of the H2O molecule has zero oscillator 

strength. This state is marked with grey shading in Table 5 and Table 6.  Table 5 shows a 

summary of the results where a comparison of the different basis sets using B3LYP is made.  

The second and third excited states are very close in energy, and their ordering changes when 

going from the simplest basis set 6-311G to any of the other (larger) sets. The presence of 

diffuse functions in the basis sets also lead to changes in the fifth excited state. In general, the 

excitation energies are lowered by 0.5-1 eV when diffuse functions are added to the basis sets. 

Adding polarization functions to the basis set leads to a relatively smaller increase in the 

excitation energies. Reducing the basis from triple- to double-ζ valence does not affect the 

excitation energies by more than 0.1 eV. 

 
Table 5: Excitation energies (in eV) for the first five singlet excited states of H2O. 
B3LYP and different basis sets were used in SP calculations on the B3LYP/6-
311G** optimized geometry. The numbers marked in grey correspond to states with 
zero oscillator strength. The calculations were performed using G03. 

6-311G 6-311G** 6-311++G 6-311++G** 6-31++G** 
7.10 7.35 6.69 6.88 6.83 

9.13 9.24 8.34 8.42 8.36 

9.13 9.68 8.61 9.06 9.02 

11.28 11.61 10.24 10.58 10.54 

13.66 13.59 10.95 11.08 11.17 

 

A comparison of the excitation energies calculated on the two different geometries (PBE/6-

311G** and B3LYP/6-311G**) results in the same excited states with more or less identical 

excitation energies. These results are included in Table 6 and are also presented in more detail 

in Appendix D. 

 

Table 6 shows the changes in excitation energies with functionals, and also how these energies 

compare to excitation energies presented by Hirata and Head-Gordon (Hirata and Head-

Gordon 1999). In comparison to the experimental values, it appears that PBE0 performs better 

than the other functionals. It is also apparent from the table that the TDDFT results deviate 

from the experimental values by roughly 1 eV. 
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Table 6: Excitation energies (in eV) for the first five singlet excited states of H2O. 
Results from using different functionals are compared to reported values (including 
experimental values).  The numbers marked in grey correspond to states with zero 
oscillator strength.  

PBE c BLYP a B3LYP a PBE a PBE0 a BLYP b B3LYP b EXP b 

6.36 6.25 6.88 6.40 7.14 6.18 6.83 7.4 

7.82 7.66 8.42 7.85 8.70 7.26 8.18 9.1 

8.52 8.39 9.06 8.56 9.36 8.04 8.84 9.7 

9.95 9.79 10.58 10.00 10.90 7.67 8.69 10.0 

10.59 10.48 11.08 10.65 11.34 8.31 9.08 10.17 
a Basis set used was 6-311++G**, and the geometry was found using B3LYP/6-
311G**. The calculations were performed using G03. 
b Results from (Hirata and Head-Gordon 1999), where the basis set 6-
311(2+,2+)G**  was used for the calculated values. 
c Basis set used was 6-311++G**, and the geometry was found using PBE/6-
311G**. The calculations were performed using G03. 

 

CH3 

For CH3, TDDFT calculations of the first ten excited states were performed. The large 

numbers of excited states were calculated since many of the first excited states had zero 

oscillator strengths, and were therefore assumed not to be comparable with experimental 

observations. What will later be referred to as the first two excited states for CH3 are actually 

the first two states with oscillator strength different from zero. For the B3LYP functional, all 

basis sets were used, and a summary of the results are presented in Table 7. Then, calculations 

were performed using all functionals with the two basis sets 6-311++G** and 6-31++G**; a 

summary of these results is given in Table 8. More extensive results, including those states 

that have zero oscillator strengths, can be found in Table 19 and Table 20 in Appendix D.  

 

The choice of basis set severely affected the results for CH3, both with respect to the values of 

the excitation energies and oscillator strengths and which states appeared, as can be seen from 

Table 7. The presence of polarization functions changed the results marginally, the difference 

in energy being of the order of 0.1 eV. Diffuse functions, on the other hand, changed the 

results considerably. The energies of the states were lowered with as much as 1 eV when the 

diffuse functions were present; and the numbering of the excited states changed because new 

states (involving the diffuse functions) appeared. The oscillator strengths were also affected 

by the presence of the diffuse functions. Comparing basis sets with double- and triple- ζ 

valence, the change in energy for the excited states is of the order of 0.1 eV. 
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Table 7: Excitation energies (in eV) of the first two excited states of CH3 with 
oscillator strengths different from zero. B3LYP and different basis sets were used in 
SP calculations on the B3LYP/6-311G** geometry. The calculations were 
performed using G03. 

6-311G 6-311++G 6-311G** 6-311++G** 6-31++G** 

6.34 5.26 6.37 5.25 5.19 

11.07 8.76 10.98 8.73 9.00 

 

For CH3 it is not clear which functional performs better relative to experimental values. Table 

8 shows that PBE0 gives the better result for the first excited state, but is farthest off for the 

second state. Since all the functionals overestimate the energy for the second excited state, 

this may be due to the fact that what is labeled as the second state in Table 7 and Table 8 is not 

the second calculated state, but in fact the ninth excited state. It is possible that there is a 

lower lying excited state that should have been picked instead, but was ignored because of its 

small oscillator strength. This suspicion is backed by the differences in the calculated energies 

in this work and in the work of Hirata and Head-Gordon. 

 

Table 8: Excitation energies (in eV) of the first two excited states of the CH3 radical. 
Results from using different functionals are compared to reported values (including 
experimental values). 

BLYP a B3LYP a PBE a PBE0 a BLYP b B3LYP b EXP b 

4.79 5.25 5.00 5.54 4.66 5.16 5.73 

8.23 8.73 8.43 8.98 5.53 6.17 7.44 

 
a Basis set used was 6-311++G**, the two states are the first and the ninth excited 
states. These are the first two states with oscillator strengths different from zero. The 
geometry was found using B3LYP/6-311G**. The calculations were performed 
using G03. 
b Results from (Hirata and Head-Gordon 1999) , where the basis set 6-
311(2+,2+)G** is used for the calculated values. 
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CO+ 

The first five excited states of CO+ were calculated using TDDFT. The first two states turned 

out to be nearly degenerate and are regarded as one state; and what is really the third excited 

state is referred to as the second state. This re-numbering of states simplifies the comparison 

of the results with those of Hirata and Head-Gordon, who do not speak of degenerate states. 

For the B3LYP functional, all basis sets were used, and a summary of the results are 

presented in Table 9. Then calculations were performed using all functionals with the two 

basis sets 6-311++G** and 6-31++G**. A summary of these is to be found in Table 10. More 

extensive results are given in Table 21 and Table 22 in Appendix D.  

 

For this molecule, the presence of polarization functions in the basis sets had a larger effect 

on the energies than did the diffuse functions, see Table 9 for details. The polarization 

functions lowered the excitation energies by some tenths of an eV, and also lowered the 

oscillator strengths for the first excited state. The list of the excited states still contained the 

same states in the same order when diffuse functions were added to the basis set, and the 

energies changed by less than 0.1 eV. The oscillator strengths remained the same with and 

without diffuse functions. In the case of CO+, the difference between double- and triple-ζ 

valence was smaller than for CH3. 

 
Table 9:  Excitation energies (in eV) of the first two excited states of the CO+ cation 
radical. B3LYP and different basis sets were used in SP calculations on the 
B3LYP/6-311G** geometry. The first excited state is actually the first and the 
second which are nearly degenerate.  The calculations were performed using G03. 

6-311G 6-311++G 6-311G** 6-311++G** 6-31++G** 

3.69 3.68 3.38 3.38 3.35 

5.52 5.53 5.62 5.64 5.56 

 

When it comes to the performance of the different functionals, it seems that B3LYP is the 

best choice in the case of CO+. Table 10 shows that all the functionals overestimated the 

excitation energy of the first excited state, but B3LYP was closer to the experimental values 

than PBE and PBE0, and is also quite close for the second excited state. Also in the case of 

CO+ it appears that the theoretical calculations of the excitation energies can be off with about 

1 eV. 
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Table 10: Excitation energies (in eV) of the two first excited states of the CO+ cation 
radical. Results from using different functionals are compared to reported values 
(including experimental values). 

BLYP a B3LYP a PBE a PBE0 a BLYP b B3LYP b EXP b 

3.14 3.38 3.43 3.81 3.50 3.76 2.26 

5.08 5.63 5.38 6.02 5.11 5.79 5.82 
a Basis set used was 6-311++G**. The first excited states are the two first calculated 
states as they are nearly degenerate, the second state is really the third calculated 
excited state. The geometry was found using B3LYP/6-311G**. The calculations 
were performed using G03. 
b Results from (Hirata and Head-Gordon 1999) , where the basis set 6-
311(2+,2+)G** was used. 

 

Summary 

All in all it is apparent that the results from the TDDFT calculations can miss the 

experimental values by up to about 1 eV. This difference is much larger than the variations 

that appear from changing the basis set and functionals. It is thus difficult to pick one 

functional that should perform better than the others based on these results. When it comes to 

basis sets, it is apparent that both diffuse and polarization functions are important in 

describing the excited states. Reducing from triple- to double-ζ results in energy changes of 

about 0.1 eV, which is a small change compared to the differences between experimental and 

calculated values for the excitation energies. 

 

5.2.2 TDDFT on rhamnose 

Because of difficulties using TDDFT in CP2K, all the excited state calculations were 

performed in G03. The excited state calculations were all performed as SP calculations on 

geometries optimized for the ground states. The goal was to see how the excited states 

behaved throughout the different deprotonation reactions. Geometries from all four CP2K 

scans and also from the cluster scan in G03 were used in the calculations. Only the three 

reactions that led to stable structures (OH1, OH2 and OH4) were examined by TDDFT.  

TDDFT calculations are quite time demanding, therefore it was necessary to choose 

just a few molecules to be included in the calculations. The systems that will be referred to as 

single chains contain the three molecules directly involved in the deprotonation process (49 

atoms) and there is one such model for each reaction see Figure 23. The system that will be 
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referred to as the star shaped model combines the three single chains (101 atoms), see Figure 

24.  

All the excited state calculations on rhamnose have been performed using the basis set 

6-31++G**. At this point, analysis to link the different excited states of the different 

geometries together has only been performed for the OH4 deprotonation reaction on the CP2K 

geometries using the B3LYP basis set. This is due to the problems mentioned in section 4.2 

making the analysis time consuming. Plots of the energies of the excited states versus bond 

length for all sets of calculations are shown in Appendix D, but the states corresponding do 

different geometries are not linked in those plots. 

 

 
a) 

 
b) 

 
c) 

Figure 23: Single chain models for a) OH1 reaction b) OH2 reaction and c) OH4 
reaction. All models comprise of two rhamnose molecules and a water molecule (49 
atoms). 

 

 
Figure 24: Star shaped model. This model consists of four rhamnose molecules and 
three water molecules (101 atoms). These are all the molecules directly involved in 
the three deprotonation reactions (OH1, OH2 and OH4). 
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All the observed excited states for all the systems presented in this chapter and in Appendix D 

are states in which an electron is excited from a β-orbital into the first virtual β-orbital, the β-

LUMO. For all the excited state plots presented here and in the appendix, examination of the 

oscillator strengths have been performed in order to see whether one or more states stand out 

as a possible mediator for the proton transfer process. No state was found in which the 

oscillator strength was small for the un-deprotonated structure and large for the deprotonated 

structure without the deprotonation also including a drastic increase in the energy of the 

excited state.  

Charge and spin analyses have not been performed for the excited states, but for the 

OH4 deprotonation an attempt was made to study the orbitals involved in the excitations in 

order to describe how the spin and charge localization changes both upon excitation and 

through the deprotonation reaction. This analysis revealed that the molecular orbitals is a very 

unreliable tool for this type of investigation. From one step in the deprotonation reaction to 

the next, the involved orbitals had often changed severely, including into linear combinations 

of each other. This is most likely due to the fact that the orbitals used in DFT calculations are 

not real molecular orbitals but KS orbitals that are mainly mathematical aids in the 

calculations. 

 

Single chain models 

For the OH4 deprotonation, excited states were calculated on two different sets of geometries. 

The first set consisted of eleven geometries from the deprotonation reaction calculated in 

CP2K. The second set consisted of six geometries from the deprotonation reaction calculated 

in the G03 cluster. For the CP2K geometries, three different functionals (PBE, BLYP and 

B3LYP) were used, and the results were compared. For the BLYP and PBE functionals, 

convergence was not reached for the first five steps in the deprotonation reaction. As a 

consequence, B3LYP was chosen as the functional to be used for the rest of the calculations, 

since this converged in all steps except for one (the first). For the G03 geometries only 

B3LYP was used.  

OH4  

 

Figure 25 and Figure 26 show plots of how the first nine excited states behave through the 

deprotonation reaction for the CP2K geometries in the case of the B3LYP functional. What is 

different in the two figures is that Figure 25 shows the ground state energy calculated in G03 

at the same time as the excited states were calculated, while in Figure 26 the ground state 
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energy from CP2K is used as the base. The reason for this use of two plots is that 

the ground state energy calculated in G03 is guaranteed to be unphysical because none of the 

interactions with the environment are taken into account. The first point on the curves is 

missing, because the excited states did not converge in this point. 

In the plots, one excited state stands out in its resemblance to the ground state, 

whereas all the other excited states remove themselves from the ground state through the 

deprotonation reaction (the excitation energies increase). Even the first excited state has an 

energy barrier for the deprotonation that is higher than that of the ground state energy. This 

implies that none of these excited states aid the proton transfer processes. 

 

For the TDDFT calculations on the CP2K geometries all three functionals (BLYP, B3LYP 

and PBE) indicated the presence of a first excited state that was similar to the ground state, 

and that all the other states increased in excitation energy through the deprotonation reaction. 

The plots indicating this are given in Appendix D (Figure 34, Figure 35 and Figure 36). Still, 

more analysis (linking the different states together) has to be performed of the results from all 

three functionals in order to compare the results properly.  

Comparing the results from the CP2K geometries with the results of the calculations 

performed on the G03 geometries is difficult as the ground state energy profiles are very 

different. But in the last two points of the reaction path from the G03 geometries (1.38 and 

1.48 Å) the emergence of a first excited state that is a lot closer to the ground state is visible 

to the trained and optimistic eye also in these calculations. The plot of the excited states for 

the G03 geometries is shown in the Appendix D, Figure 38. 

 

Distinct differences are apparent when comparing the excited state energies for OH1 and OH2 

(given in Appendix D for the interested reader) with those of OH4. For the OH4 there is a 

clear two-fold grouping of the states after deprotonation has occurred; the ground state and 

first excited state, and the all the other states. For OH1 this was not at all the case; all the 

states are spread out evenly. For OH2 a similar pattern as for OH4 was observed, but with the 

second excited state in the middle forming its own group. What this grouping of the states 

means for the chemistry of the system is difficult to say.  

OH1 and OH2 

Other than what is mentioned above, more analysis is necessary before it is possible to 

discuss these results any further. The calculations on the OH1 and OH2 deprotonation 

reactions were all performed using B3LYP. 
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Figure 25: First nine excited states followed through the OH4 bond elongation. 
Excited state calculations were performed in G03 on geometries from optimizations 
in CP2K. The excitation energy is added to the ground state energy from the G03 SP 
calculations. A table of excitation energies can be found  (Table 23) in Appendix D. 
The excitation energies calculated at optimized geometries are shown as dots, and 
the lines represent linear interpolations between these points. 

 

Figure 26: First nine excited states followed through the OH4 bond elongation. 
Excited state calculations were performed in G03 on geometries from optimizations 
in CP2K. The excitation energy is added to the ground state energy from the CP2K 
calculations. A table of excitation energies can be found (Table 23) in Appendix D. 
The excitation energies calculated at optimized geometries are shown as dots, and 
the lines represent linear interpolations between these points. 
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Star shaped model 

For the star shaped model, excited state calculations were performed on all three 

deprotonation reactions using the CP2K geometries. These calculations were all performed 

with the B3LYP functional. However, a full analysis in which all excited states were 

completely followed during the bond elongations proved too expensive from a computational 

point of view, to fit within the time frame of this thesis. As such, preliminary results are 

presented in a rough form in Appendix D. A strikingly similar pattern can be recognized with 

respect to the single chain models, only now the excited states are a lot closer to each other 

and a bit lower in energy. This is as expected since the molecular system is larger. The first 

excited states that stand out in the OH4 and OH2 deprotonation reactions also seem to be 

present in the star shaped model. A full analysis would be necessary to verify this. 
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6 Discussion and conclusions 
Quantum chemistry is a research field which enables prediction of the electron configurations 

of molecular systems. Comparison of theoretical calculations and experimental data may 

support or invalidate the interpretations of the experimental data, with respect to specific 

physical properties of the molecule. However, due to the complexity of mulitiatom-

multielectron systems, such calculations have been hampered with much uncertainty, as all 

calculational methods are based on various approximations.  

The approximations start already at the Born-Oppenheimer approximation, which is 

the starting point for almost all quantum chemical approaches. The introduction of the Fock 

operator is the major approximation in all HF based theories and many attempts have been 

made to improve the accuracy using the HF-framework. DFT inherently should be better 

suited in this respect, but the unknown XC potential introduces approximations to this 

method. In addition, there are the approximations associated with the limited basis sets, the 

limited size of the model systems as well as numerical issues, since the problems cannot be 

solved analytically. 

In spite of the uncertainties involved, quantum chemistry calculations have over the 

years become an indispensable tool for experimentalist as well as theoreticians. 

Experimentalists may find additional evidences for accepting or rejecting proposed models, 

by performing new, specifically designed experiments. Theoreticians have been able to model 

previously not understood structures and processes and make predictions for experimental 

verification. Conscious and careful use of these calculational methods has become a 

cornerstone in modern physical-, chemical- and biological research. For this reason, the 

scientific community continuously strives for improvements of the theoretical methods. Still, 

it is essential to remember that only experiment can tell us something indisputable about 

nature, and experimental data should always be the point of reference.  

 

For the work on rhamnose in this thesis, the only experimental observations with which the 

results obtained can be compared are the observation of the radical centered on O4. The 

calculated hyperfine tensors for the OH4 deprotonated rhamnose cation may be compared to 

both theoretical and experimental results for the O4-centered radical in the literature. The 

present hyperfine coupling tensor calculations on the periodically optimized geometry are in 

good agreement with the theoretical results presented by Pauwels and co-workers (Pauwels et 

al. 2008), and comparable (though not quite as close) to the experimental results attained at 



74 
 

77 K (Samskog and Lund 1980). g-tensor calculations were, due to time constraints, not made 

in the present work. 

 There is a peculiar disagreement between the two sets of experimental data for the O4 

deprotonated rhamnose cation reported in the literature. The results by Budzinski and Box 

(Budzinski and Box 1985) were obtained at 4 K and deviate significantly from those obtained 

by Samskog and Lund (Samskog and Lund 1980) at 77 K. Pauwels and co-workers have 

discussed this situation, and here it is only suggested (in agreement with Pauwels et al.) that 

the Budzinski and Box results describe a radical structure for which the EPR parameters 

cannot be modeled by a single molecule, as is done in the present work. Consequently, 

comparisons with experimental data are limited to those presented by Samskog and Lund, for 

the present work.   

The calculations using the cluster-optimized geometry are not in a similarly good 

agreement with the literature data as those for the periodically optimized structures. Base on 

these quite preliminary hyperfine coupling tensor data it is concluded that apparently the 

periodically optimized structure represents a better approximation to the real radical structure 

as produced and characterized experimentally.  

 

6.1 Size of the model system 
It is important to realize that calculations made at different levels of theory may provide 

different results due to different approximations being involved. It is hence important to 

compare calculations performed at the same levels of theory, as well as within the same 

model systems and computer programs. 

The SM calculations on the rhamnose cation radical were performed at the B3LYP/6-

31++G** LOT using G03. The cluster calculations were performed at the 

ONIOM(PM3:B3LYP/6-311G**) LOT using G03. Finally, the periodic calculations were 

performed at the GPW BLYP/TZVP-GTH LOT using CP2K. This variation in both LOT, 

model system and computer program makes direct comparison of the results difficult.  

Within the framework of this thesis, there was no room for repeating any of the 

calculations at different levels of theory. Thus since the different sets of calculations gave 

quite different results there is no way of deciding strictly to what extent the LOT is decisive 

for the results, and to what extent the differences arise from the different model systems and 

computer programs. Still, with the information at hand, an attempt has been made to decide 

how the size of the model system affects the results. 
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The geometry optimization of the cation radical structure in the SM calculations resulted in 

large changes in the molecular geometry (including ring-opening). Similar large geometrical 

changes were not observed in the periodic calculations, but were to some extent in the cluster 

calculations. In the cluster calculations the interactions with the surroundings were modeled at 

the PM3 level. The importance of the surrounding molecules is expected due to the extensive 

hydrogen bonding in the crystal structure.  

 

Also other interactions than the hydrogen bonds in the crystal seem to be important, as Figure 

21 in section 5.1.2 shows that not only the hydrogen- and oxygen atoms in the molecules, but 

also the carbon atoms move significantly when going from a periodic optimization scheme to 

the cluster scheme. It appears that the PM3 method is not able to model these intermolecular 

interactions good enough to fully maintain the crystal structure. Although it is not definite 

whether the periodical calculation yield a more correct structure, these calculations are 

expected to include the chemical interactions with the surroundings in a better way. It should 

be noted that in Figure 21 the two geometries displayed correspond to different OH bond 

lengths. A more relevant comparison might have been to display the CP2K geometry 

corresponding to a bond length closer to the one achieved with the cluster in G03, but these 

data are currently not available. 

 

For the TDDFT calculations on rhamnose in this work, two different model systems have 

been tested, referred to as the single chain models and the star shaped model. In principle, 

only the star shaped model can be reliably employed for direct comparisons of the three 

different deprotonation reactions, as only this model is the same for all reaction processes. 

However, it was found from a preliminary analysis, that the results from the two models are 

very similar. None of these models include any surroundings other than those molecules 

directly involved in the proton transfer processes.  

Attempts were made to create a model system consisting of the star shaped model (101 

atoms) with all hydrogen bonding partners of the central atoms included (but with the 

neighboring rhamnose molecules reduced to water molecules). The size of this new cluster 

was 194 atoms, which turned out to be too computer expensive and were for calculations, and 

was therefore abandoned. 
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6.2 Ground state energy profiles for proton transfer 
reactions 
When comparing the calculated energy profiles for the bond elongations in the three different 

model systems (SM, periodical and cluster), it is important to note that they were achieved 

using different approaches.  

In the SM approach two different schemes were employed. First the radical cation 

structure was optimized starting from the experimental crystal structure. This was done prior 

to examination of the PES using constrained geometry optimizations with the constraint 

placed on the OH bond length in question. The bond length was increased in steps of 0.1 Å. In 

the other scheme the geometry from the experimentally observed crystal structure was used as 

is, and the PES was examined without performing any geometry optimizations, only 

constrained bond elongations. Both types of calculations suggest that proton abstraction into 

empty space (that is, without any proton acceptor available) will not occur easily from any of 

the oxygen positions in the rhamnose cation as the energy profiles for these reactions were 

just uphill. 

In the periodic approach the radical cation geometry was also optimized from the 

experimental crystal structure prior to performing constrained geometry optimizations with 

successively longer bond lengths, to examine the PES. This resulted in energy profiles 

showing local minima after deprotonation for the OH1, OH2 and OH4 reactions but only an 

uphill energy profile for OH3 (Figure 12). 

In the cluster approach calculations were only performed for the OH4 deprotonation 

reaction. No optimization of the cation from the initial crystal structure was performed. 

Rather, the geometry optimization of the radical cation structure was started from the last 

point in the CP2K bond elongation process for the OH4 reaction, where the bond distance was 

2 Å. This resulted in a stable structure (within this approach this means hat the proton 

stabilized after only one proton transfer), and the PES profile was attained from transferring 

the proton back to its original position using constrained geometry optimizations. 

Since wave functions were successively re-used in the proton transfer reaction 

calculations, the starting point of the optimizations might affect the results. This is because 

the spin and charge is more easily localized by the programs when the proton is removed from 

its original position, resulting in wave functions that are of a different nature in the two first 

approaches as compared to the cluster approach. 
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The cluster and periodic calculations resulted in PES profiles where the 

deprotonation reaction for OH4 has a local minimum after deprotonation, after crossing an 

energy barrier. In the case of the cluster calculations, the stable structure occurs after only one 

proton transfer, whereas in the periodic calculations the stable structure corresponds to two 

proton transfers. There is also a very large difference in the heights of the energy barriers 

resulting from the two approaches. The energy barrier from the cluster calculations is 0.02 eV 

whereas the energy barrier from the periodic calculations is 0.53 eV. This means that the 

cluster calculations model a system where the deprotonation reaction may almost occur 

spontaneously from the ground state, which is not the case for the periodic calculations. 

 

As mentioned above, the differences between the results from the cluster- and periodic 

calculations cannot be assigned solely to differences in the model systems, since other 

parameters in the calculations also differed. However, it appears that the size of the model 

system plays an important role in the calculations. Also, the need for a proton acceptor to be 

present seems evident from the SM calculations. As for the comparison of the two energy 

profiles attained from the cluster- and the periodic calculations for OH4 deprotonation 

reaction; it is not clear from these calculations alone which one is the most reliable one. 

Calculated hyperfine coupling tensors indicate that the results from the periodic calculations 

are more reliable. 

  

6.3 Comparison of ground state calculations with 
literature 
As previously described (section 1.4) Pauwels and co-workers performed periodical 

calculations similar to those presented here for the OH4 bond elongation (Pauwels et al. 

2008). These calculations were, however, performed using a different computer program (and 

also at a different LOT). The results obtained in the periodic approach in this thesis are 

similar to the results of Pauwels et al. in that a quite high energy barrier (0.4 eV versus 0.5 eV 

in the present work) must be surpassed in order to reach a local minimum on the PES.  

The main difference between the two studies is that Pauwels et al. had a description of 

three proton transfers after the barrier was surpassed in a <2a2b2c>13

                                                 
13 a, b and c are the crystallographic axes. 

 supercell, and as much 

as five proton transfers if the cell was elongated to <a3bc>, whereas only two proton 
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transfers were observed in the simulations in this thesis (in a <2a2b2c> supercell). In fact the 

cluster calculations in this study showed only one proton transfer.  

The results of Pauwels et al. appear to be reliable, as these authors also performed g-

and hyperfine coupling tensor calculations of their resulting species which compared 

relatively well with experimental data. Also, the many proton transfers observed allowed for 

asking whether, in a real crystalline system, the proton would be able to move sufficiently far 

away from the radical to be absorbed in a another molecule. This is an important issue 

because the energy barrier for returning to the original cation radical from the deprotonated 

species is much lower than the barrier for the deprotonation. Even though only two proton 

transfers were observed in this thesis (for the periodic approach), the findings are in line with 

the suggestion by Pauwels et al. that the excess proton travels throughout the crystal along the 

“infinite” hydrogen bond chain and is trapped at a distance from the radical. 

 

6.4 Desired properties of the calculated excited 
states 
The periodic ground state calculations resulted in three energy profiles (OH1, OH2 and OH4) 

showing the possibilities for stable structures after two proton transfers. The three energy 

profiles all have quite high energy barriers (0.5 – 0.9 eV), implying that the proton transfers 

are unlikely to occur from the ground state. The thermodynamical analysis given in Table 3 in 

section 5.1.1 suggests an explanation for the experimental observation of only one of the 

radicals (centered on O4). However, this analysis is only valid if there is some driving force 

present that mediates the reactions, along with a mechanism for stabilizing the local minima 

so that the relatively small energy barrier for back transfer cannot be overcome. Otherwise the 

occurrence of any of the three oxygen centered radicals at such low temperatures as 4 K 

cannot be explained. The driving force necessary to overcome the energy barriers may be 

present since the cation radical is in an excited state immediately after irradiation.  

 

6.4.1 Excited states resulting from ionization 

In an ionization process, an electron is abruptly removed from the molecule. The molecule is 

left in the geometrical state of the intact electronic structure, which is no longer the 

equilibrium geometry. The potential energy will be higher than the potential energy of the 

equilibrium geometry; this excess energy will become kinetic energy of the nuclei as the 

cation radical approaches equilibrium. This means that there is excess energy available for 
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surpassing small barriers on the PES even if the cation radical should be in its 

electronic ground state. Table 1 in section 5.1.1 indicates that the magnitude of this energy 

excess is 0.01 eV in the case of rhamnose, which is nowhere near enough to surpass the 

barrier for the proton transfer.  

This energy excess is actually within the computational error margin, which can be 

seen from comparing the energy of the cation in the freely optimized structure and the first 

points in the ground state PES scans (given in tables in Appendix D). This comparison shows 

that the energy calculated in the first points in the PES scans (with the presence of a harmonic 

restraint) is actually lower than the energy of the freely optimized structure, which is an 

unphysical situation. This error is most likely due to a better convergence in the restrained 

calculations, as these started from the already converged wave functions of the freely 

optimized structure. The energy difference is about 0.01 - 0.02 eV.  

 

The excited states resulting from ionization are described as single excitations from a doubly 

occupied orbital into the singly occupied orbital (SOMO) of the radical electronic structure. 

This type of excitation is illustrated in Figure 27. It is the abrupt way in which the electron is 

removed in an ionization process that leads to a state of the above described character. 

Therefore, in examining the calculated excited states for the system, only such states are 

interesting in the description of the deprotonation process14

                                                 
14 This is a truth with limited validity, but provides a usable starting point for the analyses. 

. There is a random nature to 

which orbital the electron will be ejected from, but it seems fair to assume that different types 

of interactions will lead to a preference for outer or inner shell electrons.  
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Figure 27: Diagram showing an electronically excited state resulting from an 
ionization process of a neutral molecule. The electron is knocked out of an originally 
doubly occupied orbital that is not the highest in energy, resulting in a state 
corresponding to an excitation from a doubly occupied orbital in the radical cation 
ground state into the singly occupied molecular orbital (SOMO). 

 

The radiation to which the rhamnose crystals have been exposed prior to the experimental 

observation of the oxygen centered radical on O4 (Samskog and Lund 1980; Budzinski and 

Box 1985) is X-rays with keV photon energies. Thus, photoelectric effect is the most 

important photon interaction process, and the secondary electrons released in the photon 

interaction processes will interact with the material through collision processes. These types 

of interactions may ionize deep or high, or even just excite the molecule in question. As 

mentioned in section 1.2.2, ejection of a tightly bound electron will lead to Auger-electron 

production in materials with low effective atomic number (Attix 1986). Auger-electron 

production would also lead to multiply charged molecules, and do therefore not correspond to 

the system that is studied in this work.  

There is a possibility that the oxygen centered radical is a product of a multiply 

charged molecule/radical which has deprotonated before absorbing electrons arising from 

radiation interactions with other molecules, so as to re-establish charge balance. But as 

mentioned, this is not what is studied here. The excited states of the cation radical under 

investigation in the present study are those resulting from an excitation from an energetically 

high (occupied) orbital into the SOMO. 

 

A state that would be likely to lead to a deprotonation (by lowering the energy barrier) would 

be a state in which the spin and positive charge of the radical cation are located on the oxygen 

from which the proton transfer occurs. This argument has been used to suggest from 
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theoretical calculations, the occurrence of a certain deprotonation reaction from 

deoxyribose in a guanine nucleoside radical cation without explicitly modeling the proton 

transfer reaction (Adhikary et al. 2005). In the work of Adhikary et al. the nature of the 

excited state was determined by comparing the shape of the molecular orbital from which the 

electron was excited with that of the SOMO. 

 

6.4.2 Reaction mediating states 

If there is excited state that is aiding the reaction, it is most likely an electronically excited 

state considering the height of the energy barriers. In a scenario where the deprotonation 

reaction occurs while the molecule is in the electronically excited state, this state should 

possess some of the following features: First of all, the oscillator strength of the state should 

be small in the region of the PES corresponding to the cation radical, so that de-excitation is 

unlikely to occur before the deprotonation. Secondly, the possibility for deprotonation should 

be better in this excited state than in the ground state, either by exhibiting a lower energy 

barrier or no energy barrier at all. Thirdly, there should be some route for de-excitation into 

the ground state after the deprotonation has occurred, leaving the molecule in the local energy 

minimum for the ground state.  

De-excitation from an electronically excited state can occur by several different routes. 

Radiative de-excitation, with the emission of one or more photons, is more probable when the 

oscillator strength of the state is high. Non-radiative de-excitation can occur in a conical 

intersection, where the two states are degenerate, or through internal conversion if the 

vibrationally excited states of the two electronic states overlap. Some of these ideas are 

illustrated in Figure 28. 

A second scenario for the de-excitation is one where non-radiative de-excitation from 

an electronically excited state occurs before deprotonation, for instance by internal 

conversion. This de-excitation might free enough energy (transfer it to kinetic energy of the 

nuclei) to surpass the energy barrier. 
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Figure 28: Two ways in which electronically excited states might contribute to the 
deprotonation reaction. State 1 is the ground state which has a local minimum for a 
long OH bond length (here represented by r) corresponding two proton transfers.  

State 2 is an electronically excited state which has a different PES than the 
ground state. Two interesting features are shown in this state: First of all it has a 
lower energy barrier for the deprotonation reaction than the ground state. Secondly it 
has a conical intersection with the ground state after the energy barrier of the ground 
state is passed, making a non-radiative de-excitation at this geometry a possible way 
of reaching the local minimum in the ground state.  

State 3 is one where the deprotonation reaction is spontaneous, and a 
radiative de-excitation afterwards might bring the molecule back to the stable 
geometry of the ground state. States 2 and 3 have in common that de-excitation into 
the ground state is improbable before the proton transfer has occurred. 

 

6.5 Observed excited state properties 
As was mentioned in section 5.2.2, analyses made in the present work have shown that using 

the MOs for analysis of the charge and spin localization of a given state is a very unreliable 

method. The KS orbitals can only be considered as aids in the calculations, as they do not 

correspond to eigenstates of the Hamiltonian of the system.  

Furthermore, the calculations on the radical structure have been performed in the 

unrestricted KS procedure, which means that the α- and β electron orbitals need not have the 

same spatial distribution. This is illustrated in Figure 29. In fact, it was found that the KS α-
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HOMO and the β-LUMO, which in a spin restricted picture would be the same 

orbital referred to as the SOMO, in some cases have completely different spatial distributions. 

It would therefore be misleading to say that the “electron hole” is localized in the β-LUMO 

orbital, the “hole” may be (and usually is) distributed over several orbitals. In the present 

work, the implication of this has been that no charge- or spin analyses of the excited states 

have been made. 

 
Figure 29: The picture of the orbitals as singly and doubly occupied is ruined when 
considering an unrestricted KS calculation. The α and β orbitals of the same level 
need not have exactly the same energy. The spatial distribution of the α- and β 
orbitals might also be different. 

The tools that are left for analysis of the excited states are therefore the occupation numbers 

of the orbitals, the excitation energy, the oscillator strengths and the dipole transition 

moments between the excited state and the ground state.  

 The energies of the excited states along the proton transfer trajectories examined in 

this work (section 5.2.2), do not seem to suggest the possibility for a deprotonation reaction 

from any of the electronically excited states of the molecular system. Since there is no 

electronically excited state with an appropriate shape (Figure 28) for the deprotonation 

reaction, examinations of the oscillator strengths are of secondary interest, as they would only 

indicate if an excited state may de-excite more or less rapidly.  

The occupation numbers have been used in the analysis to determine whether the 

excited state under investigation, is one that could be formed as a direct consequence of an 

ionization process (Figure 27). It is found that all the states examined are of this kind. 

The dipole transition moments have been employed to determine if conical 

intersections in the PES profiles for the proton transfer process from OH4 occur. No conical 

intersections between the excited state and the ground state have been observed. 
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It is concluded that the excited state calculations provide no evidence for the first 

scenario described in section 6.4.2. Based on that conclusion, it is most probable that the 

energy necessary to drive the deprotonation processes arise from immediate de-excitation 

from a vibrationally excited state of the ground state or from an electronically excited state. 

 

6.6 TDDFT benchmark calculations 
Section 5.2.1 holds the results from the TDDFT test calculations on H2O, CH3 and CO+. The 

results demonstrate by comparison with experimental results that the TDDFT results are off in 

the excitation energies by about 1 eV.  

Different functionals were used to test their individual performances, and it was found 

that functionals tested performed differently for different molecules. In particular PBE0 

appeared to work better for water whereas B3LYP worked better for CO+. It is therefore not 

possible to decide upon a functional (out of the ones tested) to be the best TDDFT functional 

from this limited study. It is interesting to notice that for CH3 no functional was found to 

perform equally well for both states where experimental results were available. Rather, 

different functionals provided good approximations for the two different states. This is in line 

with the discussion of section 3.2.2 where it is pointed out that different functionals perform 

better for different types of excitations.  

When it comes to basis sets, the presence of diffuse- and polarization functions 

showed a noticeable impact on the results, both with regard to excitation energies and to 

which excited states appear as well as to their ordering. Whether it was polarization functions 

or diffuse functions that were more important varied with the system studied, but the 

differences in excitation energies could be as great as 1 eV. It was also shown that the 

difference between using double- or triple-ζ valence was relatively small, only about 0.1 eV. 

This compares well with reported results for the guanine nucleoside where going from the 6-

31G+ basis set to 6-311++G** in the B3LYP functional gave energy differences for the 

excited states of about 0.05 eV on average (Adhikary et al. 2005). 

 

From the results for the small molecules, it was decided that the B3LYP functional along with 

a double-ζ basis set including both diffuse and polarization functions on all atoms should be 

appropriate to get a reasonable description of the excited states of the rhamnose cation radical. 

 Worth noting is the magnitude of the excitation energies attained for rhamnose, see 

Table 23 in Appendix D. The excitation energies were as small as 0.1 eV. It is expected that 
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excitation energies are smaller for larger molecules. However, energies of the 

order of tenths of an eV are much smaller than the deviations relative to the experimental data 

for the small molecules. With this in mind, the TDDFT results cannot be lent much weight 

with respect to absolute energies, even if the ordering of the levels (and their dependence on 

the molecular geometries) still may be more reliable. The ordering of the states may be 

expected to be preserved, at least for valence excited states (Dreuw 2006), but other than that, 

there is little benchmark that implies that this conservation of the ordering is necessarily be 

the case. 

 

6.7 Reliability of the calculations 
Can any of the model systems presented in this thesis, with the appropriate computational 

results, be considered reliable? Starting with the ground state results, comparison to another 

work is possible for the OH4 deprotonation reaction, the periodic calculations in the present 

work agree fairly well with the reference work (Pauwels et al. 2008). The presence of an 

energy barrier of a comparable height indicates that the present periodic results are quite 

reliable, if those of Pauwels et al. are. In addition, Pauwels et al.  have obtained data 

providing for an explanation for how the neutral radical can stabilize (by indicating that the 

proton carrying the excess positive charge, is allowed to move far away from the radical site). 

No such explanation can be offered from the results of this thesis, though the attempts at 

doing corresponding calculations were limited. 

Even though the periodic calculations offer a relatively good agreement with the 

results of Pauwels and co-workers, which again are in fair agreement with experimental data 

(Samskog and Lund 1980; Budzinski and Box 1985), Pauwels et al. do not put forward any 

explanation for the formation of the O4-centered radical, an explanation which is necessary 

due to the high energy barrier that must be surpassed. This high energy barrier was as outlined 

in chapter 1, one of the motivating factors for the TDDFT calculations in the present work, 

since such calculations may allow us to investigate whether an electronically excited state can 

mediate the deprotonation reaction.  

With respect to the energy barrier, the present cluster calculations offer a better 

situation, since this calculated energy barrier is much smaller than what is the case in the 

periodic calculations. The difference in the height of the energy barriers found in the cluster 

calculations and the periodic calculations might arise from the fact that the PES profiles are 

scanned in opposite directions in the two cases. The stable structure obtained by the cluster 
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approach, however, differs significantly from that obtained by the periodic approach and also 

from that of Pauwels et al.. Calculations of EPR parameters for the stable structures of both 

the cluster calculations and the periodic calculations imply that the results of the periodic 

calculations are the more reliable ones.  

 

As for the rhamnose excited state calculations no experimental evidence is present for 

comparison. The additional fact that the calculations were performed in the single molecule 

approximation further reduces the credibility of the results. It should also be noted that all of 

these calculations are performed as SP calculations at different levels of theory and in a model 

system different from that used for the geometry optimizations as well as in a different 

computer program. The calculations on water presented in section 5.2.1 show that a small 

difference in geometry does not affect the excited states severely. However, the geometrical 

differences for H2O were rather small as compared to what was observed for the rhamnose 

calculations (see for instance Figure 21 in section 5.1.2). 

  The lack of charge and spin analysis of the excited states makes it impossible to 

determine whether there were charge-transfer states present, in the results. If there where such 

states, appropriate functionals (e.g. CAM-B3LYP) should be applied in order to get a fair 

description of these states. The calculations for the OH4 deprotonation reaction were 

performed with three different functionals (PBE, BLYP and B3LYP). Still no high-level 

functionals including more HF exchange were tried, tough the use of at least one such 

functional would add to the reliability of the results. 

 

6.8 Conclusive remarks 
The major result from the periodic ground state calculations is that deprotonation reactions 

from the rhamnose cation radical are possible from three out of four oxygen sites (O1, O2 and 

O4) and that  the energy barriers for each of these reactions are different even if their 

magnitudes are not necessarily accurate. This calculational result may explain the selectivity 

in the radical formation in this molecule leading to a preferred structure (O4-centered radical) 

in agreement with experimental data.  

According to the ideas presented above on the possible role of excited states for 

overcoming the energy barriers, the excited state calculations performed in this study did not 

turn out to be sufficiently conclusive for confirming or excluding the possibility of excited 

states mediating the proton transfer reactions.  
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An energy barrier of about 0.5 eV should in principle not be difficult to 

overcome since the radiation to which the crystal is subjected, contains photons with energy 

of the order of keV (X-rays), and deposition of only a small part of this energy should yield 

sufficient energy for overcoming the energy barrier. In that case the selective stabilization of 

only one radical type (O4-centered) may be understood by the thermodynamics presented in 

Table 3 in section 5.1.1. It is however, necessary to devise a mechanism avoiding back-

transfer of the proton. 

 

6.9 What now? 
Considering the results presented in this thesis, it is apparent that more work is required in 

order to draw full conclusions. This includes more comprehensive and detailed calculations of 

EPR parameters, including the g-tensor of the deprotonated structures, in order to compare 

this with experimental data. In addition, it should be considered whether it is possible to 

obtain a new set of experimental data for the O4-centered radical formed in rhamnose crystals 

in the temperature interval 10-77 K so as to resolve the ambiguity of the presently available 

experimental results.  

Further analyses of the excited state energies are also of interest, but such large 

computational and laborious tasks require more time. 

 

It would also be of interest to compare the results from the exited state calculations with 

calculations using a higher LOT; both HF-based calculations and TDDFT calculations using 

triple-ζ basis sets and different XC functionals (such as CAM-B3LYP). One particular feature 

worth investigating closer is the first excited state during the OH4 deprotonation reaction. This 

state is close to the ground state in energy, and it is important to determine whether this is a 

real state, or just a computational artifact of the LOT that is being used in the calculations. 

 In addition to this, the excited state calculations should be extended to systems 

including more surroundings. The star-shaped model with hydrogen bonded water molecules 

proved to be very computationally expensive, however, the similarity of the results from the 

star-shaped model and the single chain models could be exploited to add hydrogen bonding 

partners surrounding these single chains, making the cluster significantly smaller. 

Finally, devising a convenient method for determining the spin and charge distribution 

of the excited states would be very desirable. 
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Appendix A: List of units 
Units 

c 2.997 924 58 × 108 m/s Speed of light in vacuum 

eV 1.602 176 5 × 10-19 J  

ge -2.002 319 304 g-factor of free electron 

ℏ 1.05457160 × 10-34 Js  

Hartree 4.359 × 10-18 J 

=2 Ry 

=27.211 eV 

Atomic unit for energy 

K 0° C =  273.15 K Absolute temperature 

me 9.109 389 7 × 10-31 kg Electronic rest mass 

Ry 2.1799 × 10-18 J  

Å 10-10 m  

μB  

2 e

e
m


= 9.274 009 0 × 1024 J/T 
Bohr magneton 
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Appendix B: List of acronyms and 

abbreviations 
A Adenine, DNA base 

ALDA Adiabatic local density approximation 

B3LYP Hybrid exchange correlation functional  

BLYP Exchange-correlation functional  

BO approx.  Born Oppenheimer approximation 

C Cytosine, DNA base 

CAM-B3LYP Exchange-correlation functional 

CC Coupled cluster 

CI Configuration interaction 

CIS Configuration interaction singles 

CP2K Computer program 

CT Charge-transfer 

DFT Density functional theory 

DNA Deoxyribonucleic acid 

EPR Electron paramagnetic resonance 

G Guanine, DNA base 

G03 Gausian03, computer program 

GGA Generalized gradient approximation 

GPW Gaussian and plane wave 

GTO Gaussian type orbital 

HF Hartree-Fock 

HOMO Highest occupied molecular orbital 

hν Photon energy 

KS Kohn-Sham 

LBFGS Geometry optimization method 

LDA Local density approximation 

LOT Level of theory 

LR-TDDFT Linear response time-dependent density functional theory 

LSDA Local spin density approximation 

LUMO Lowest unoccupied molecular orbital 

MCSCF Multiconfiguration self-consistent field 

MGGA Meta-generalized gradient approximation 
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MO Molecular orbital 

MP1/2/4 Møller Plesset perturbation theory of 1st, 2nd or 4th order 

N Number of basis functions 

ONIOM Multilayered method for geometry optimizations 

P Phosphate (on the DNA backbone) 

PBE Exchange-correlation functional  

PBE0 Exchange-correlation functional 

PES Potential energy surface 

PM3 Parameterized model 3 (semiempirical model) 

RHF Restricted Hartree-Fock 

ROHF Restricted open-shell Hartree-Fock 

RPA Random phase approximation 

S Sugar (on the DNA backbone) 

SCF Self-consistent field 

SE Schrödinger equation 

SM Single molecule 

SOMO Singly occupied molecular orbital 

SP Single point 

STO Slater type orbital 

T Thymine, DNA base 

TDDFRT Time-dependent density functional response theory 

TDDFT Time-dependent density functional theory 

TZVP Triple-ζ valence basis set with polarization functions 

UHF Unrestricted Hartree-Fock 

XC Exchange-correlation 

α  Spin-up (electron) 

β  Spin-down (electron) 
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Appendix C: Programs most used 
• ChemBioDraw Ultra 12.0 

Program used for drawing molecular structures.  

www.cambridgesoft.com 

• ChemCraft 1.5 

 Program used for visualization of output from CP2K and Gaussian03. 

www.chemcraftprog.com 

• CP2K 2.0.1 (Development version) 

Freely available program used for performing DFT calculations with periodic 

boundary conditions. 

• Gaussian03 

http://cp2k.berlios.de/ 

Program for used for performing DFT and TDDFT calculations. 
www.gaussian.com 

• Gaussview 4.1 

Program used for making input and visualizing data from Gaussian03. 
www.gaussian.com 

• MATLAB R2009b 

Program used for making plots of results. 
www.mathworks.com 

• Paint 

Simple drawing program used for editing illustrations, comes with Windows operating 
system. 

• Microsoft Office 2007 

This thesis is written in MS Word, and some illustrations are made using MS 

PowerPoint. MS Excel was also used for analyzing data. 

• VMD for WIN32 1.8.7 

Program used for visualization and making illustrations of chemical structures 

resulting from calculations in CP2K and Gaussian03 

 

http://www.ks.uiuc.edu/Research/vmd 

 

http://www.cambridgesoft.com/�
http://www.chemcraftprog.com/�
http://www.gaussian.com/�
http://www.gaussian.com/�
http://www.mathworks.com/�
http://www.ks.uiuc.edu/�
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Appendix D: Results 
Ground state calculations on the rhamnose radical 

Table 11: Table of energies for the PES profile of the OH1 deprotonation reaction, corresponding to the plot in 
Figure 12 (section 5.1.1). The results are from restrained geometry optimizations using CP2K, periodical 
boundary conditions, BLYP/TZVP-GTH. The structure under the bar was optimized without constraints. 

Bond length / Å Energy / Hartree Normalized energy/ eV  

1.000 -2214.286440 0  

1.080 -2214.283199 0.0882  

1.174 -2214.275538 0.2967  

1.278 -2214.266530 0.5418  

1.386 -2214.262268 0.6577  

1.487 -2214.257819 0.7788  

1.593 -2214.254218 0.8768  

1.694 -2214.252116 0.9340  

1.799 -2214.253806 0.8880  

1.897 -2214.252777 0.9160  

1.994 -2214.251021 0.9638  

1.713 -2214.255672 0.8372 (structure optimized from 1.8 Å) 

 

Table 12: Table of energies for the PES profile of the OH2 deprotonation reaction, corresponding to the plot in 
Figure 12 (section 5.1.1). The results are from restrained geometry optimizations using CP2K, periodical 
boundary conditions, BLYP/TZVP-GTH. The structure under the bar was optimized without constraints. 

Bond length / Å Energy / Hartree Normalized energy/ eV  

1.000 -2214.286444 0  

1.080 -2214.283044 0.0925  

1.176 -2214.275564 0.2961  

1.285 -2214.268256 0.4949  

1.393 -2214.264579 0.5950  

1.497 -2214.263697 0.6190  

1.597 -2214.262577 0.6494  

1.697 -2214.262080 0.6630  

1.797 -2214.261601 0.6760  

1.897 -2214.266181 0.5514  

1.996 -2214.265124 0.5801  

1.731 -2214.267319 0.5204 (structure optimized from 1.9 Å) 
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Table 13: Table of energies for the PES profile of the OH3 deprotonation reaction, corresponding to the plot in 
Figure 12 (section 5.1.1). The results are from restrained geometry optimizations using CP2K, periodical 
boundary conditions, BLYP/TZVP-GTH. 

Bond length / Å Energy / Hartree 

Normalized 

energy/ eV 

0.997 -2214.286353 0 

1.075 -2214.282089 0.1160 

1.168 -2214.272263 0.3834 

1.285 -2214.264964 0.5820 

1.393 -2214.261066 0.6881 

1.496 -2214.259846 0.7213 

1.594 -2214.258303 0.7633 

1.694 -2214.256725 0.8062 

1.794 -2214.254865 0.8568 

1.892 -2214.252235 0.9284 

1.992 -2214.251068 0.9601 

 

 
Table 14: Table of energies for the PES profile of the OH4 deprotonation reaction, corresponding to the plot in 
Figure 12 (section 5.1.1). The results are from restrained geometry optimizations using CP2K, periodical 
boundary conditions, BLYP/TZVP-GTH. The structure under the bar was optimized without constraints. 

Bond length / Å Energy / Hartree Normalized energy/ eV  

1.000 -2214.286438 0  

1.081 -2214.283374 0.0834  

1.176 -2214.275647 0.2936  

1.290 -2214.271024 0.4194  

1.396 -2214.268228 0.4955  

1.498 -2214.267017 0.5285  

1.599 -2214.266816 0.5339  

1.700 -2214.269694 0.4556  

1.798 -2214.269202 0.4690  

1.898 -2214.268600 0.4854  

1.997 -2214.267447 0.5168  

1.700 -2214.269704 0.4553 (structure optimized from 1.7 Å) 
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Table 15: Table of energies for the PES profile of the OH4 deprotonation reaction, corresponding to the plot in 
Figure 22  (section 5.1.2). The results are from restrained geometry optimizations using Gaussian03, 
ONOIM(PM3: B3LYP/6-311G**). The last structure in the table was optimized without constraints.  

Bond length / Å Energy / Hartree Normalized energy/ eV  

0.98 -1304.353141 0.0722  

1.08 -1304.355796 0  

1.18 -1304.355293 0.0137  

1.28 -1304.355203 0.0161  

1.38 -1304.355555 0.0066  

1.48 -1304.355756 0.0011 (structure optimized from the 2.0 Å 

geometry optimized in CP2K ) 
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H2O 

The tables all show SP TDDFT calculations of the first five singlet excited states of H2O. 

Geometries can be found in Table 4 (section 5.2.1). The first tables show results from 

calculations performed using the B3LYP-optimized geometry with different functionals and 

basis sets, and the last table shows results using PBE/6-311++G** for both geometries. 

 
Table 16: See explanation on the next page. 

B3LYP 
    6-311G 6-311G** 6-311++G 6-311++G** 6-31++G** 

 Excited State   1 
7.1014 eV  f=0.0212 

 Excited State   1 
7.3500 eV  f=0.0263 

 Excited State   1 
6.6941 eV  f=0.0339 

 Excited State   1 
6.8807 eV  f=0.0415 

 Excited State   1 
6.8286 eV  f=0.0443 

       5 ->  6         0.69193        5 ->  6         0.69329        5 ->  6         0.69586        5 ->  6         0.69714        5 ->  6         0.69736 
      Excited State   2 
9.1252 eV  f=0.0885 

 Excited State   2 
9.2414 eV  f=0.0000 

 Excited State   2 
8.3394 eV  f=0.0000 

 Excited State   2 
8.4204 eV  f=0.0000 

 Excited State   2 
8.3608 eV  f=0.0000 

       4 ->  6         0.68862        5 ->  7         0.70111        5 ->  7         0.69896        5 ->  7         0.70006        5 ->  7         0.70171 
      Excited State   3 
9.1267 eV  f=0.0000 

 Excited State   3 
9.6792 eV  f=0.0848 

 Excited State   3 
8.6061 eV  f=0.0927 

 Excited State   3 
9.0637 eV  f=0.0894 

 Excited State   3 
9.0238 eV  f=0.0889 

       5 ->  7         0.70045        4 ->  6         0.69011        4 ->  6         0.69366        4 ->  6         0.69499        4 ->  6         0.69519 
      Excited State   4 
11.2767 eV  f=0.0590 

 Excited State   4 
11.6110 eV  f=0.0510 

 Excited State   4 
10.2400 eV  f=0.0283 

 Excited State   4 
 10.5836 eV  f=0.0227 

 Excited State   4 
 10.5393 eV  f=0.0222 

       4 ->  7         0.69196        4 ->  7         0.69552        4 ->  7         0.70157        4 ->  7         0.70222        4 ->  7         0.70244 
      Excited State   5 
13.6590 eV   f=0.2387 

 Excited State   5 
13.5921 eV   f=0.2322 

 Excited State   5 
10.9471 eV  f=0.0150 

 Excited State   5 
11.0812 eV  f=0.0126 

 Excited State   5 
11.1699 eV  f=0.0008 

       3 ->  6         0.69035        3 ->  6         0.69197        5 ->  8         0.68758        5 ->  8         0.67953        5 ->  8         0.70161 

  
       5 -> 11         0.13293        5 -> 11         0.17488 

  

 
Table 17: See explanation on the next page. 

BLYP 
 

B3LYP 
 6-311++G** 6-31++G** 6-311++G** 6-31++G** 

 Excited State   1 
6.2450 eV  f=0.0407 

 Excited State   1 
6.1829 eV  f=0.0432 

 Excited State   1 
6.8807 eV  f=0.0415 

 Excited State   1 
 6.8286 eV  f=0.0443 

       5 ->  6         0.69908        5 ->  6         0.69896        5 ->  6         0.69714        5 ->  6         0.69736 
     Excited State   2 
7.6648 eV  f=0.0000 

 Excited State   2 
7.5943 eV  f=0.0000 

 Excited State   2 
8.4204 eV  f=0.0000 

 Excited State   2 
8.3608 eV  f=0.0000 

       5 ->  7         0.70717        5 ->  7         0.70727        5 ->  7         0.70006        5 ->  7         0.70171 
     Excited State   3 
  8.3890 eV  f=0.0833 

 Excited State   3 
8.3375 eV  f=0.0832 

 Excited State   3 
9.0637 eV  f=0.0894 

 Excited State   3 
9.0238 eV  f=0.0889 

       4 ->  6         0.69393        4 ->  6         0.69439        4 ->  6         0.69499        4 ->  6         0.69519 
     Excited State   4 
9.7901 eV  f=0.0192 

 Excited State   4 
9.7379 eV  f=0.0187 

 Excited State   4 
10.5836 eV  f=0.0227 

 Excited State   4 
10.5393 eV  f=0.0222 

       4 ->  7         0.70322        4 ->  7         0.70347        4 ->  7         0.70222        4 ->  7         0.70244 
     Excited State   5 
10.4829 eV  f=0.0103 

 Excited State   5 
10.5951 eV  f=0.0000 

 Excited State   5 
11.0812 eV  f=0.0126 

 Excited State   5 
11.1699 eV  f=0.0008 

       5 ->  8         0.69706        5 ->  8         0.70270        5 ->  8         0.67953        5 ->  8         0.70161 
       5 -> 11         0.10098 

 
       5 -> 11         0.17488 
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Table 16: Results from SP TDDFT calculation on H2O using the B3LYP functional and different basis 

sets. All calculations were performed using geometries optimized at the B3LYP/6-311G** LOT. The 

results shown are excitation energies, oscillator strengths and numbers of the orbitals taking part in the 

excitation. The results are discussed in section 5.2.1. 

 

Table 17: Results from SP TDDFT calculation on H2O using the different functionals and the 6-

311++G** and 6-31++G** basis sets. All calculations were performed using geometries optimized at 

the B3LYP/6-311G** LOT. The results shown are excitation energies, oscillator strengths and 

numbers of the orbitals taking part in the excitation. The results are discussed in section 5.2.1. 

 

Table 18: Results from SP TDDFT calculation on H2O using the PB3 functional and the 6-311++G** 

basis set for geometries optimized at the B3LYP/6-311G** and PBE/6-311G**   LOT. The results 

shown are excitation energies, oscillator strengths and numbers of the orbitals taking part in the 

excitation. The results are discussed in section 5.2.1. 

 

 

 

 

 
 

 
 

PBE 
 

PBE0 
 6-311++G** 6-31++G** 6-311++G** 6-31++G** 

 Excited State   1 
6.2450 eV  f=0.0407 

 Excited State   1 
6.1829 eV  f=0.0432 

 Excited State   1 
6.3970 eV  f=0.0419 

 Excited State   1 
6.3329 eV  f=0.0436 

       5 ->  6         0.69908        5 ->  6         0.69896        5 ->  6         0.70030        5 ->  6         0.70021 
     Excited State   2 
7.6648 eV  f=0.0000 

 Excited State   2 
7.5943 eV  f=0.0000 

 Excited State   2 
7.8538 eV  f=0.0000 

 Excited State   2 
7.7799 eV  f=0.0000 

       5 ->  7         0.70717        5 ->  7         0.70727        5 ->  7         0.70721        5 ->  7         0.70729 
     Excited State   3 
8.3890 eV  f=0.0833 

 Excited State   3 
8.3375 eV  f=0.0832 

 Excited State   3 
8.5654 eV  f=0.0835 

 Excited State   3 
8.5139 eV  f=0.0831 

       4 ->  6         0.69393        4 ->  6         0.69439        4 ->  6         0.69527        4 ->  6         0.69568 
     Excited State   4 
9.7901 eV  f=0.0192 

 Excited State   4 
9.7379 eV  f=0.0187 

 Excited State   4 
10.0007 eV  f=0.0188 

 Excited State   4 
 9.9493 eV  f=0.0189 

       4 ->  7         0.70322        4 ->  7         0.70347        4 ->  7         0.70362        4 ->  7         0.70371 
     Excited State   5 
 10.4829 eV  f=0.0103 

 Excited State   5 
10.5951 eV  f=0.0000 

 Excited State   5 
10.6478 eV  f=0.0094 

 Excited State   5 
10.7564 eV  f=0.0000 

       5 ->  8         0.69706        5 ->  8         0.70270        5 ->  8         0.69770        5 ->  8         0.70346 
       5 -> 11         0.10098 
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Table 18: See explanation on the previous page. 

B3LYP GEO PBE GEO 
 Excited State   1 

6.3970 eV  f=0.0419 

 Excited State   1 

6.3559 eV  f=0.0411 

       5 ->  6         0.70030        5 ->  6         0.69998 

   Excited State   2 

7.8538 eV  f=0.0000 

 Excited State   2 

7.8150 eV  f=0.0000 

       5 ->  7         0.70721        5 ->  7         0.70706 

   Excited State   3 

8.5654 eV  f=0.0835 

 Excited State   3 

8.5183 eV  f=0.0845 

       4 ->  6         0.69527        4 ->  6         0.69454 

   Excited State   4 

10.0007 eV  f=0.0188 

 Excited State   4 

9.9523 eV  f=0.0202 

       4 ->  7         0.70362        4 ->  7         0.70322 

   Excited State   5:    

10.6478 eV  f=0.0094 

 Excited State   5:    

10.5876 eV 117. f=0.0105 

       5 ->  8         0.69770        5 ->  8         0.69814 

 

 

CH3 

The tables show SP TDDFT calculations of the first ten excited states of CH3 using different 

basis sets and functionals. Geometries can be found in Table 4 (section 5.2.1). The first two 

states with oscillator strengths different from zero are highlighted. 

 

Table 19: Results from SP TDDFT calculation on CH3 using the B3LYP functional and 
different basis sets. All calculations were performed for geometries optimized at the 
B3LYP/6-311G** LOT. The results shown are excitation energies, oscillator strengths and 
numbers of the orbitals taking part in the excitation. The results are discussed in section 5.2.1. 

Table 20: Results from SP TDDFT calculation on CH3 using the different functionals and the 
6-311++G** and 6-31++G** basis sets. All calculations were performed for geometries 
optimized at the B3LYP/6-311G** LOT. The results shown are excitation energies, oscillator 
strengths and numbers of the orbitals taking part in the excitation. The results are discussed in 
section 5.2.1.  
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Table 19: See explanation on the previous page.  
B3LYP  
6-311G 6-311++G 6-311G** 6-311++G** 6-31++G** 
Excited State   1 
 6.3359 eV   f=0.0162 

Excited State   1 
5.2552 eV  f=0.0320 

Excited State   1 
6.3379 eV  f=0.0181 

 Excited State   1 
 5.2540 eV  f=0.0344 

 Excited State   1 
5.1853 eV  f=0.0391 

      5A ->  6A        0.99739       5A ->  6A        0.99641       5A ->  6A        0.99876       5A ->  6A        0.99695       5A ->  6A        0.99813 
      2B ->  5B       -0.10678 

 
  

 
  

 Excited State   2 
7.0866 eV   f=0.0000 

 Excited State   2 
6.4347 eV  f=0.0000 

 Excited State   2 
6.9712 eV  f=0.0000 

 Excited State   2 
 6.4309 eV  f=0.0000 

 Excited State   2 
 6.3649 eV  f=0.0000 

      5A ->  7A        0.19524       5A ->  7A        0.90526       5A ->  7A        0.17368       5A ->  7A        0.90514       5A ->  7A        0.98102 
      5A ->  8A       -0.10013       5A ->  8A        0.38094       4B ->  5B        0.99428       5A ->  8A        0.34860       3B ->  5B       -0.19522 
      4B ->  5B        0.98742       3B ->  5B       -0.13496         3B ->  5B        0.18256   
        4B ->  5B       -0.12966         4B ->  5B       -0.16642   

 Excited State   3 
 7.0879 eV    f=0.0000 

 Excited State   3 
 6.4348 eV  f=0.0000 

 Excited State   3 
6.9725 eV  f=0.0000 

 Excited State   3 
 6.4310 eV  f=0.0000 

 Excited State   3 
6.3653 eV  f=0.0000 

      5A ->  7A        0.10026       5A ->  7A       -0.38102       5A ->  8A       -0.17377       5A ->  7A       -0.34877       5A ->  8A        0.98087 
      5A ->  8A        0.19536       5A ->  8A        0.90522       3B ->  5B        0.99426       5A ->  8A        0.90504       4B ->  5B        0.19583 
      3B ->  5B        0.98739       3B ->  5B        0.12933         3B ->  5B       -0.16594   
        4B ->  5B       -0.13533         4B ->  5B       -0.18317   

 Excited State   4 
 8.0612 eV  f=0.0000 

 Excited State   4 
 6.9993 eV  f=0.0000 

 Excited State   4 
8.0513 eV  f=0.0000 

 Excited State   4 
 6.8740 eV  f=0.0000 

 Excited State   4 
 6.9266 eV  f=0.0000 

      5A ->  7A        0.96378       5A ->  8A        0.16731       5A ->  7A        0.96843       5A ->  8A        0.22209       5A ->  8A       -0.18792 
      5A ->  8A       -0.17383       4B ->  5B        0.98083       5A ->  8A       -0.17661       4B ->  5B        0.97046       4B ->  5B        0.97975 
      4B ->  5B       -0.18801       4B ->  9B       -0.10589       4B ->  5B       -0.16585       4B ->  9B       -0.10738       4B ->  9B       -0.11586 

 Excited State   5 
 8.0617 eV  f=0.0000 

 Excited State   5 
 7.0006 eV  f=0.0000 

 Excited State   5 
 8.0518 eV  f=0.0000 

 Excited State   5 
 6.8752 eV  f=0.0000 

 Excited State   5 
 6.9278 eV  f=0.0000 

      5A ->  7A        0.17379       5A ->  7A        0.16685       5A ->  7A        0.17658       5A ->  7A       -0.22135       5A ->  7A        0.18732 
      5A ->  8A        0.96376       3B ->  5B        0.98092       5A ->  8A        0.96842       3B ->  5B        0.97066       3B ->  5B        0.97990 
      3B ->  5B       -0.18816       3B ->  9B       -0.10592       3B ->  5B        0.16596       3B ->  9B       -0.10741       3B ->  9B       -0.11580 

 Excited State   6 
 11.0738 eV  f=0.0002 

 Excited State   6 
 7.3079 eV  f=0.0000 

 Excited State   6 
 10.9781 eV  f=0.0002 

 Excited State   6 
 7.3121 eV  f=0.0000 

 Excited State   6 
 7.3244 eV  f=0.0000 

      4A ->  6A       -0.68902       5A ->  9A        0.99481       3A ->  8A       -0.10449       5A ->  9A        0.99490       5A ->  9A       -0.99355 
      3B ->  8B        0.10796         4A ->  6A       -0.68720     
      4B ->  6B        0.71148 

 
      4A ->  7A        0.10486 

 
  

      4B ->  7B       -0.10829 
 

      3B ->  8B       -0.11422 
 

  
  

 
      4B ->  6B        0.71078 

 
  

  
 

      4B ->  7B       -0.11454 
 

  

 Excited State   7 
 11.0753 eV  f=0.0002 

 Excited State   7 
 7.9054 eV  f=0.0000 

 Excited State   7 
10.9796 eV  f=0.0002 

 Excited State   7 
 7.8435 eV  f=0.0000 

 Excited State   7 
 8.1308 eV  f=0.0000 

      3A ->  6A        0.68900       5A -> 10A        0.99833       3A ->  6A        0.68717       5A -> 10A        0.99890       5A -> 10A        0.99501 
      3B ->  6B       -0.71146         3A ->  7A        0.10491         5A -> 11A       -0.10058 
      3B ->  7B       -0.10819 

 
      4A ->  8A        0.10454 

 
  

      4B ->  8B       -0.10818 
 

      3B ->  6B        0.71076 
 

  
  

 
      3B ->  7B        0.11448 

 
  

  
 

      4B ->  8B       -0.11440 
 

  

 Excited State   8 
 11.9249 eV  f=0.2204 

 Excited State    
  7.9060 eV  f=0.0000 

 Excited State   8 
 11.8411 eV  f=0.2237 

 Excited State   8 
 7.8440 eV  f=0.0000 

 Excited State   8 
 8.1312 eV  f=0.0000 

      4A ->  6A        0.70477       5A -> 11A        0.99833       4A ->  6A        0.70541       5A -> 11A        0.99889       5A -> 10A        0.10057 
      4B ->  6B        0.68649         4B ->  6B        0.68627         5A -> 11A        0.99504 

 Excited State   9 
 11.9264 eV  f=0.2204 

 Excited State   9 
 8.7634 eV  f=0.1400 

 Excited State   9 
 11.8425 eV  f=0.2234 

 Excited State   9 
 8.7295 eV  f=0.1453 

 Excited State   9 
 9.0023 eV  f=0.0455 

      3A ->  6A        0.70476       5A -> 12A        0.99856       3A ->  6A        0.70540       5A -> 12A        0.99379       5A -> 12A        0.99237 
      3B ->  6B        0.68650         3B ->  6B       -0.68624       5A -> 13A        0.11425       5A -> 13A       -0.10130 

 Excited State  10 
12.2108 eV  f=0.0000 

 Excited State  10 
 9.1486 eV  f=0.0346 

 Excited State  10 
 12.5401 eV  f=0.0000 

 Excited State  10 
 9.1381 eV  f=0.0184 

 Excited State  10 
 10.0144 eV  f=0.1187 

      3A ->  7A       -0.21295       5A -> 13A        0.98258       5A ->  9A        1.00451       5A -> 12A       -0.11411       5A -> 12A       -0.10989 
      3A ->  8A       -0.41665       2B ->  5B       -0.19874         5A -> 13A        0.98017       5A -> 13A       -0.96871 
      4A ->  7A       -0.41782 

 
        2B ->  5B       -0.18213       2B ->  5B        0.26684 

      4A ->  8A        0.21346 
 

  
 

      5A -> 13A       -0.96871 
      2B ->  6B       -0.11624 

 
  

 
      2B ->  5B        0.26684 

      3B ->  7B        0.27726 
 

  
 

  
      3B ->  8B        0.46237 

 
  

 
  

      4B ->  7B        0.46372 
 

  
 

  
      4B ->  8B       -0.27795 

 
  

 
  

 



108 
 

Table 20: See explanation on previous page. 

BLYP 
 

B3LYP 

6-311++G** 6-31++G** 6-311++G** 6-31++G** 
Excited State   1 
 4.7928 eV  f=0.0329 

 Excited State   1 
 4.7147 eV  f=0.0381 

 Excited State   1 
 5.2540 eV  f=0.0344 

 Excited State   1 
 5.1853 eV  f=0.0391 

      5A ->  6A        1.00310       5A ->  6A        1.00384       5A ->  6A        0.99695       5A ->  6A        0.99813 

 
      

       
 Excited State   2 
 5.8979 eV  f=0.0000 

 Excited State   2 
 5.8237 eV  f=0.0000 

 Excited State   2 
 6.4309 eV  f=0.0000 

 Excited State   2 
 6.3649 eV  f=0.0000 

      5A ->  7A        1.00018       5A ->  7A        1.00147       5A ->  7A        0.90514       5A ->  7A        0.98102 
      3B ->  5B        0.11567       3B ->  5B       -0.11482       5A ->  8A        0.34860       3B ->  5B       -0.19522 
          3B ->  5B        0.18256   

 
        4B ->  5B       -0.16642   

 
      

       
 Excited State   3 
 5.8981 eV  f=0.0000 

 Excited State   3 
 5.8247 eV  f=0.0000 

 Excited State   3 
 6.4310 eV  f=0.0000 

 Excited State   3 
 6.3653 eV  f=0.0000 

      5A ->  8A        1.00016       5A ->  8A        1.00138       5A ->  7A       -0.34877       5A ->  8A        0.98087 
      4B ->  5B       -0.11588       4B ->  5B        0.11511       5A ->  8A        0.90504       4B ->  5B        0.19583 
          3B ->  5B       -0.16594   

 
        4B ->  5B       -0.18317   

 
      

       
 Excited State   4 
 6.7024 eV  f=0.0000 

 Excited State   4 
 6.7534 eV  f=0.0000 

 Excited State   4 
 6.8740 eV  f=0.0000 

 Excited State   4 
 6.9266 eV  f=0.0000 

      5A ->  8A        0.10042       4B ->  5B        1.00648       5A ->  8A        0.22209       5A ->  8A       -0.18792 
      4B ->  5B        1.00451         4B ->  5B        0.97046       4B ->  5B        0.97975 
          4B ->  9B       -0.10738       4B ->  9B       -0.11586 

 
      

       
 Excited State   5 
 6.7036 eV  f=0.0000 

 Excited State   5 
 6.7545 eV  f=0.0000 

 Excited State   5: 
6.8752 eV  f=0.0000 

 Excited State   5 
 6.9278 eV  f=0.0000 

      5A ->  7A       -0.10021       3B ->  5B        1.00653       5A ->  7A       -0.22135       5A ->  7A        0.18732 
      3B ->  5B        1.00454         3B ->  5B        0.97066       3B ->  5B        0.97990 
          3B ->  9B       -0.10741       3B ->  9B       -0.11580 

 
      

       
 Excited State   6 
 6.9023 eV  f=0.0000 

 Excited State   6 
 6.9298 eV  f=0.0000 

 Excited State   6 
 7.3121 eV  f=0.0000 

 Excited State   6 
 7.3244 eV  f=0.0000 

      5A ->  9A        0.98901       5A ->  9A        0.98645       5A ->  9A        0.99490       5A ->  9A       -0.99355 
        
 Excited State   7 
 7.3804 eV  f=0.0000 

 Excited State   7 
 7.6633 eV  f=0.0000 

 Excited State   7 
 7.8435 eV  f=0.0000 

 Excited State   7 
 8.1308 eV  f=0.0000 

      5A -> 10A        1.00565       5A -> 10A        0.70537       5A -> 10A        0.99890       5A -> 10A        0.99501 
        5A -> 11A       -0.71945         5A -> 11A       -0.10058 
       
 Excited State   8 
 7.3809 eV  f=0.0000 

 Excited State   8 
 7.6636 eV  f=0.0000 

 Excited State   8 
 7.8440 eV  f=0.0000 

 Excited State   8 
 8.1312 eV  f=0.0000 

      5A -> 11A        1.00565       5A -> 10A        0.71941       5A -> 11A        0.99889       5A -> 10A        0.10057 
        5A -> 11A        0.70538         5A -> 11A        0.99504 
       
 Excited State   9 
 8.2307 eV  f=0.1370 

 Excited State   9 
 8.5132 eV  f=0.0508 

 Excited State   9 
 8.7295 eV  f=0.1453 

 Excited State   9 
 9.0023 eV  f=0.0455 

      5A -> 12A        1.00336       5A -> 12A        1.00312       5A -> 12A        0.99379       5A -> 12A        0.99237 
          5A -> 13A        0.11425       5A -> 13A       -0.10130 

 
      

       
 Excited State  10 
8.7598 eV  f=0.0277 

 Excited State  10 
 9.4921 eV  f=0.0075 

 Excited State  10 
 9.1381 eV  f=0.0184 

 Excited State  10 
 10.0144 eV  f=0.1187 

      5A -> 13A        0.98928       4A ->  6A       -0.48855       5A -> 12A       -0.11411       5A -> 12A       -0.10989 
      2B ->  5B       -0.19334       4B ->  6B        0.87649       5A -> 13A        0.98017       5A -> 13A       -0.96871 

 
        2B ->  5B       -0.18213       2B ->  5B        0.26684 

 
          5A -> 13A       -0.96871 

 
          2B ->  5B        0.26684 
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PBE   PBE0 
 6-311++G** 6-31++G** 6-311++G** 6-31++G** 

Excited State   1 
 4.9954 eV  f=0.0358 

Excited State   1 
 4.9127 eV  f=0.0392 

Excited State   1 
 5.5412 eV  f=0.0369 

 Excited State   1 
5.4769 eV  f=0.0400 

      5A ->  6A        1.00585       5A ->  6A        1.00624       5A ->  6A        0.99614       5A ->  6A        0.99737 
    

 
      5A -> 12A       -0.11187 

       
 Excited State   2 
  6.1467 eV  f=0.0000 

 Excited State   2 
 6.0665 eV  f=0.0000 

 Excited State   2 
 6.7378 eV  f=0.0000 

 Excited State   2 
 6.6831 eV  f=0.0000 

      5A ->  7A        0.96841       5A ->  7A        0.97622       5A ->  7A        0.55604       5A ->  7A        0.64550 
      5A ->  8A        0.23079       5A ->  8A        0.21464       5A ->  8A        0.73189       5A ->  8A        0.70276 
      3B ->  5B        0.11051       3B ->  5B       -0.10720       5A -> 14A        0.13912       5A -> 14A        0.11454 
      4B ->  5B       -0.13012       4B ->  5B       -0.10350       4B ->  5B       -0.38459       3B ->  5B       -0.11543 
            4B ->  5B       -0.27857 
       
 Excited State   3 
 6.1468 eV  f=0.0000 

 Excited State   3 
 6.0666 eV  f=0.0000 

 Excited State   3 
 6.7380 eV  f=0.0000 

 Excited State   3 
 6.6832 eV  f=0.0000 

      5A ->  7A       -0.23085       5A ->  7A       -0.21467       5A ->  7A        0.73249       5A ->  7A        0.70304 
      5A ->  8A        0.96841       5A ->  8A        0.97621       5A ->  8A       -0.55612       5A ->  8A       -0.64547 
      3B ->  5B       -0.12985       3B ->  5B        0.10331       5A -> 15A        0.13905       5A -> 15A       -0.11446 
      4B ->  5B       -0.11073       4B ->  5B       -0.10737       3B ->  5B        0.38319       3B ->  5B       -0.27775 
            4B ->  5B        0.11582 
       
 Excited State   4 
 6.7901 eV  f=0.0000 

 Excited State   4 
 6.8483 eV  f=0.0000 

 Excited State   4 
 7.0560 eV  f=0.0000 

 Excited State   4 
 7.1051 eV  f=0.0000 

      5A ->  8A        0.12204       5A ->  8A        0.11071       5A ->  7A        0.15729       5A ->  8A        0.27468 
      4B ->  5B        1.00135       4B ->  5B        1.00554       5A ->  8A        0.35201       4B ->  5B        0.95520 
          4B ->  5B        0.92119       4B ->  9B       -0.12960 
          4B -> 11B       -0.11763   
        
 Excited State   5 
 6.7914 eV  f=0.0000 

 Excited State   5 
 6.8495 eV  f=0.0000 

 Excited State   5 
 7.0571 eV  f=0.0000 

 Excited State   5 
 7.1063 eV  f=0.0000 

      5A ->  7A       -0.12177       5A ->  7A        0.11050       5A ->  7A       -0.35064       5A ->  7A        0.27381 
      3B ->  5B        1.00141       3B ->  5B        1.00558       5A ->  8A        0.15677       3B ->  5B        0.95548 
          3B ->  5B        0.92182       3B ->  9B       -0.12969 
          3B -> 11B       -0.11775   
        
 Excited State   6 
 7.0044 eV  f=0.0000 

 Excited State   6 
 7.0424 eV  f=0.0000 

 Excited State   6 
 7.4989 eV  f=0.0000 

 Excited State   6 
 7.5173 eV  f=0.0000 

      5A ->  9A       -0.99026       5A ->  9A        0.98683       5A ->  9A        0.99668       5A ->  9A        0.99531 
        
 Excited State   7 
 7.5903 eV  f=0.0000 

 Excited State   7 
 7.8793 eV  f=0.0000 

 Excited State   7 
 8.1404 eV  f=0.0000 

 Excited State   7 
 8.4345 eV  f=0.0000 

      5A -> 10A        1.00502       5A -> 10A        1.00676       5A -> 10A        0.99524       5A -> 10A        0.99673 
          5A -> 14A       -0.10910       5A -> 14A       -0.10599 
        
 Excited State   8 
 7.5909 eV  f=0.0000 

 Excited State   8 
 7.8801 eV  f=0.0000 

 Excited State   8 
 8.1411 eV  f=0.0000 

 Excited State   8 
 8.4353 eV  f=0.0000 

      5A -> 11A        1.00501       5A -> 11A        1.00675       5A -> 11A        0.99525       5A -> 11A        0.99673 
          5A -> 15A        0.10903       5A -> 15A       -0.10591 
        
 Excited State   9 
 8.4266 eV  f=0.1449 

 Excited State   9 
 8.7538 eV  f=0.0571 

 Excited State   9 
 8.9781 eV  f=0.1506 

 Excited State   9 
 9.2959 eV  f=0.0525 

      5A -> 12A        1.00268       5A -> 12A        1.00451       5A -> 12A        0.98412       5A ->  6A        0.11811 
          5A -> 13A        0.17498       5A -> 12A        0.99008 
            5A -> 13A       -0.11171 
       
 Excited State  10 
 8.9486 eV  f=0.0128 

 Excited State  10 
 9.6234 eV  f=0.0005 

 Excited State  10 
 9.3999 eV  f=0.0075 

 Excited State  10 
 10.2148 eV  f=0.1076 

      5A -> 13A        0.98921       4A ->  6A        0.67288       5A ->  6A       -0.11467       5A -> 12A        0.12287 
      2B ->  5B       -0.20401       4B ->  6B       -0.74615       5A -> 12A       -0.17469       5A -> 13A        0.96604 
          5A -> 13A        0.96860       2B ->  5B       -0.28089 
          2B ->  5B       -0.18768   
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CO+ 

The tables show SP TDDFT calculations of the first ten excited states of CO+ using different 

basis sets and functionals. Geometries can be found in Table 4 (section 5.2.1). The first two 

states with oscillator strengths different from zero are highlighted. Note that states 1 and 2 are 

practically degenerate, and correspond to the same excitations with opposite signs of the 

excitation coefficients. 

 

Table 21: Results from SP TDDFT calculation on CO+ using the B3LYP functional and 

different basis sets. All calculations were performed for geometries optimized at the 

B3LYP/6-311G** LOT. The results shown are excitation energies, oscillator strengths and 

numbers of the orbitals taking part in the excitation. The results are discussed in section 5.2.1. 

 

Table 22: Results from SP TDDFT calculation on CO+ using the different functionals and the 

6-311++G** and 6-31++G** basis sets. All calculations were performed for geometries 

optimized at the B3LYP/6-311G** LOT. The results shown are excitation energies, oscillator 

strengths and numbers of the orbitals taking part in the excitation. The results are discussed in 

section 5.2.1. 
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Table 21: See explanation on the previous page. 

B3LYP 
    6-311G 6-311++G 6-311G** 6-311++G** 6-31++G** 

Excited State   1 
 3.6850 eV  f=0.0071 

Excited State   1 
 3.6768 eV  f=0.0070 

Excited State   1 
3.3756  f=0.0049 

Excited State   1 
3.3789 eV  f=0.0048 

Excited State   1 
3.3466 eV  f=0.0049 

      4A ->  8A       -0.12554       4A ->  8A       -0.12433       4A ->  8A       -0.11250       4A ->  8A       -0.11210       4A ->  8A       -0.11391 
      5B ->  7B        0.97514       5B ->  7B        0.96646       5B ->  7B        1.02513       5B ->  7B        1.02539       5B ->  7B        1.02938 
      6B ->  7B        0.31749       6B ->  7B        0.34337       6B ->  7B        0.10682       6B ->  7B        0.10384 
      Excited State   2 
3.6867 eV  f=0.0071 

 Excited State   2 
3.6785 eV  f=0.0070 

 Excited State   2 
3.3759 eV  f=0.0049 

 Excited State   2 
3.3793 eV  f=0.0048 

 Excited State   2 
3.3468 eV  f=0.0049 

      4A ->  9A       -0.12551       4A ->  9A       -0.12429       4A ->  9A       -0.11249       4A ->  9A       -0.11209       4A ->  9A       -0.11390 
      5B ->  7B       -0.31741       5B ->  7B       -0.34329       5B ->  7B       -0.10681       5B ->  7B       -0.10383       6B ->  7B        1.02933 
      6B ->  7B        0.97492       6B ->  7B        0.96623       6B ->  7B        1.02508       6B ->  7B        1.02534   
          Excited State   3 
 5.5185 eV  f=0.0129 

 Excited State    
5.5262 eV  f=0.0128 

 Excited State   3 
5.6220 eV  f=0.0132 

 Excited State   3 
5.6354 eV  f=0.0130 

 Excited State   3 
5.5647 eV  f=0.0136 

      5A ->  8A        0.28884       5A ->  8A        0.28969       5A ->  8A        0.28786       5A ->  8A        0.28869       5A ->  8A        0.28200 
      6A ->  9A        0.28883       6A ->  9A        0.28968       6A ->  9A        0.28786       6A ->  9A        0.28869       6A ->  9A        0.28200 
      4B ->  7B        0.97259       4B ->  7B        0.97190       4B ->  7B        0.97259       4B ->  7B        0.97173       4B ->  7B        0.97353 
          
 Excited State   4 
7.6358 eV  f=0.0042 

 Excited State   4 
7.6274 eV  f=0.0042 

 Excited State   4 
7.6769 eV  f=0.0049 

 Excited State   4 
7.6667 eV  f=0.0050 

 Excited State   4 
7.6722 eV  f=0.0049 

      5A ->  8A        0.52906       5A ->  8A        0.52668       5A ->  8A        0.53376       5A ->  8A        0.53187       5A ->  8A        0.51917 
      6A ->  9A        0.52911       6A ->  9A        0.52673       6A ->  9A        0.53379       6A ->  9A        0.53189       5A ->  9A        0.12295 
      4B ->  7B       -0.24438       4B ->  7B       -0.24828       4B ->  7B       -0.24799       4B ->  7B       -0.25199       6A ->  8A       -0.12296 
      5B ->  8B       -0.19125       5B ->  8B       -0.20988       5B ->  8B       -0.27454       5B ->  8B       -0.26278       6A ->  9A        0.51920 
      5B ->  9B       -0.54804       5B ->  9B       -0.53927       5B ->  9B       -0.50195       5B ->  9B       -0.50578       4B ->  7B       -0.24588 
      6B ->  8B        0.54812       6B ->  8B        0.53935       6B ->  8B        0.50198       6B ->  8B        0.50582       5B ->  9B       -0.56524 
      6B ->  9B       -0.19123       6B ->  9B       -0.20986       6B ->  9B       -0.27455       6B ->  9B       -0.26278       6B ->  8B        0.56528 
          
 Excited State   5 
8.3184 eV  f=0.0000 

 Excited State   5 
8.3035 eV  f=0.0000 

 Excited State   5 
8.2533 eV  f=0.0000 

 Excited State   5 
8.2354 eV  f=0.0000 

 Excited State   5 
8.2446 eV  f=0.0000 

      5A ->  8A        0.65092       5A ->  8A        0.64883       5A ->  8A        0.66053       5A ->  8A        0.66002       5A ->  8A        0.66756 
      5A ->  9A        0.12727       5A ->  9A        0.13936       5A ->  9A        0.12839       5A ->  9A        0.13251       6A ->  9A       -0.66753 
      6A ->  8A        0.12727       6A ->  8A        0.13936       6A ->  8A        0.12839       6A ->  8A        0.13251       5B ->  8B       -0.11989 
      6A ->  9A       -0.65087       6A ->  9A       -0.64878       6A ->  9A       -0.66050       6A ->  9A       -0.66000       5B ->  9B       -0.37348 
      5B ->  9B       -0.41171       5B ->  9B       -0.40968       5B ->  8B       -0.15537       5B ->  8B       -0.15118       6B ->  8B       -0.37345 
      6B ->  8B       -0.41165       6B ->  8B       -0.40962       5B ->  9B       -0.36111       5B ->  9B       -0.36022       6B ->  9B        0.11989 

  
      6B ->  8B       -0.36109       6B ->  8B       -0.36019 

 
  

      6B ->  9B        0.15536       6B ->  9B        0.15116 
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Table 22: See explanation on previous page. 

BLYP 
 

B3LYP 
 6-311++G** 6-31++G** 6-311++G** 6-31++G** 

Excited State   1 
3.1427 eV  f=0.0046 

Excited State   1 
3.1101 eV  f=0.0046 

Excited State   1  
3.3789 eV  f=0.0048 

Excited State   1 
3.3466 eV  f=0.0049 

      4A ->  8A       -0.11554       4A ->  8A        0.11823       4A ->  8A       -0.11210       4A ->  8A       -0.11391 
      5B ->  7B        1.03673       5B ->  7B        1.01058       5B ->  7B        1.02539       5B ->  7B        1.02938 

 
      6B ->  7B       -0.25537       6B ->  7B        0.10384 

      Excited State   2 
3.1429 eV  f=0.0046 

 Excited State   2 
3.1102 eV  f=0.0046 

 Excited State   2 
 3.3793 eV  f=0.0048 

 Excited State   2 
3.3468 eV  f=0.0049 

      4A ->  9A       -0.11552       4A ->  9A        0.11823       4A ->  9A       -0.11209       4A ->  9A       -0.11390 
      6B ->  7B        1.03669       5B ->  7B        0.25537       5B ->  7B       -0.10383       6B ->  7B        1.02933 
        6B ->  7B        1.01055       6B ->  7B        1.02534   
       Excited State   3 
  5.0838 eV  f=0.0181 

 Excited State   3 
5.0436 eV  f=0.0184 

 Excited State   3 
5.6354 eV  f=0.0130 

 Excited State   3 
5.5647 eV  f=0.0136 

      5A ->  8A        0.22613       5A ->  8A        0.22554       5A ->  8A        0.28869       5A ->  8A        0.28200 
      6A ->  9A        0.22613       6A ->  9A        0.22554       6A ->  9A        0.28869       6A ->  9A        0.28200 
      4B ->  7B        0.97542       4B ->  7B        0.97423       4B ->  7B        0.97173       4B ->  7B        0.97353 
        

    
    
         Excited State   4 
7.9001 eV  f=0.0024 

 Excited State   4 
  7.8973 eV  f=0.0023 

 Excited State   4 
7.6667 eV  f=0.0050 

 Excited State   4 
7.6722 eV  f=0.0049 

      5A ->  8A        0.53827       5A ->  8A        0.52553       5A ->  8A        0.53187       5A ->  8A        0.51917 
      6A ->  9A        0.53824       5A ->  9A        0.11515       6A ->  9A        0.53189       5A ->  9A        0.12295 
      4B ->  7B       -0.14245       6A ->  8A       -0.11516       4B ->  7B       -0.25199       6A ->  8A       -0.12296 
      5B ->  8B       -0.50270       6A ->  9A        0.52556       5B ->  8B       -0.26278       6A ->  9A        0.51920 
      5B ->  9B       -0.25208       4B ->  7B       -0.14292       5B ->  9B       -0.50578       4B ->  7B       -0.24588 
      6B ->  8B        0.25207       5B ->  9B       -0.55921       6B ->  8B        0.50582       5B ->  9B       -0.56524 
      6B ->  9B       -0.50269       6B ->  8B        0.55924       6B ->  9B       -0.26278       6B ->  8B        0.56528 
        
 Excited State   5 
8.4806 eV  f=0.0000 

 Excited State   5 
8.4812 eV  f=0.0000 

 Excited State   5 
8.2354 eV  f=0.0000 

 Excited State   5 
 8.2446 eV  f=0.0000 

      5A ->  8A       -0.61952       5A ->  8A        0.62669       5A ->  8A        0.66002       5A ->  8A        0.66756 
      5A ->  9A       -0.12408       6A ->  9A       -0.62667       5A ->  9A        0.13251       6A ->  9A       -0.66753 
      6A ->  8A       -0.12408       5B ->  8B       -0.12335       6A ->  8A        0.13251       5B ->  8B       -0.11989 
      6A ->  9A        0.61953       5B ->  9B       -0.40210       6A ->  9A       -0.66000       5B ->  9B       -0.37348 
      5B ->  8B        0.35901       6B ->  8B       -0.40207       5B ->  8B       -0.15118       6B ->  8B       -0.37345 
      5B ->  9B        0.21474       6B ->  9B        0.12335       5B ->  9B       -0.36022       6B ->  9B        0.11989 
      6B ->  8B        0.21476 

 
      6B ->  8B       -0.36019 

       6B ->  9B       -0.35905 
 

      6B ->  9B        0.15116 
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PBE 
 

PBE0 
 6-311++G** 6-31++G** 6-311++G** 6-31++G** 

Excited State   1 
 3.4331 eV  f=0.0048 

Excited State   1 
3.3998 eV  f=0.0049 

Excited State   1 
3.8111 eV  f=0.0052 

Excited State   1 
3.7673 eV  f=0.0053 

      4A ->  8A       -0.12481       4A ->  8A        0.12621       4A ->  8A       -0.11787       4A ->  8A       -0.11867 
      7A ->  8A       -0.10083       5B ->  7B        1.04140       5B ->  7B        0.98885       5B ->  7B        1.01829 
      5B ->  7B        1.03822 

 
      6B ->  7B        0.28853       6B ->  7B        0.16222 

     Excited State   2 
3.4334 eV  f=0.0048 

 Excited State   2 
3.4000 eV  f=0.0049 

 Excited State   2 
3.8116 eV  f=0.0052 

 Excited State   2 
3.7677 eV  f=0.0053 

      4A ->  9A       -0.12480       4A ->  9A        0.12620       4A ->  9A       -0.11786       4A ->  9A       -0.11867 
      7A ->  9A       -0.10083       6B ->  7B        1.04137       5B ->  7B       -0.28851       5B ->  7B       -0.16221 
      6B ->  7B        1.03817         6B ->  7B        0.98877       6B ->  7B        1.01823 
       
 Excited State   3 
5.3845 eV  f=0.0171 

 Excited State   3 
5.3359 eV  f=0.0175 

 Excited State   3 
 6.0240 eV  f=0.0086 

 Excited State   3 
5.9548 eV  f=0.0093 

      5A ->  8A        0.26192       5A ->  8A        0.26063       6A ->  8A        0.39266       6A ->  8A        0.38181 
      6A ->  9A        0.26192       6A ->  9A        0.26063       7A ->  9A        0.39266       7A ->  9A        0.38181 
      4B ->  7B        0.96362       4B ->  7B        0.96304       4B ->  7B        0.91024       4B ->  7B        0.91886 
          5B ->  8B       -0.10425       5B ->  9B       -0.17836 

  
      5B ->  9B       -0.17272       6B ->  8B        0.17835 

  
      6B ->  8B        0.17270   

  
      6B ->  9B       -0.10426 

       Excited State   4 
7.9319 eV  f=0.0040 

 Excited State   4 
7.9322 eV  f=0.0037 

 Excited State   4 
7.6904 eV  f=0.0101 

 Excited State   4 
7.6900 eV  f=0.0096 

      5A ->  8A        0.52728       5A ->  8A        0.51926       6A ->  8A       -0.47976       6A ->  8A       -0.48058 
      6A ->  9A        0.52726       6A ->  9A        0.51929       7A ->  9A       -0.47979       7A ->  9A       -0.48062 
      4B ->  7B       -0.19907       4B ->  7B       -0.19673       4B ->  7B        0.42728       4B ->  7B        0.40889 
      5B ->  8B       -0.37638       5B ->  8B       -0.18597       5B ->  8B        0.28386       5B ->  8B        0.18916 
      5B ->  9B       -0.41874       5B ->  9B       -0.53267       5B ->  9B        0.47019       5B ->  9B        0.52086 
      6B ->  8B        0.41874       6B ->  8B        0.53270       6B ->  8B       -0.47024       6B ->  8B       -0.52091 
      6B ->  9B       -0.37637       6B ->  9B       -0.18597       6B ->  9B        0.28385       6B ->  9B        0.18916 
        
 Excited State   5 
8.5330 eV  f=0.0000 

 Excited State   5 
8.5373 eV  f=0.0000 

 Excited State   5 
8.1424 eV  f=0.0000 

 Excited State   5 
8.1577 eV  f=0.0000 

      5A ->  8A       -0.62508       5A ->  8A        0.62847       6A ->  8A        0.67641       6A ->  8A        0.68074 
      5A ->  9A       -0.11577       6A ->  9A       -0.62844       6A ->  9A        0.12965       7A ->  9A       -0.68070 
      6A ->  8A       -0.11577       5B ->  8B       -0.17418       7A ->  8A        0.12965       5B ->  8B       -0.15626 
      6A ->  9A        0.62509       5B ->  9B       -0.37777       7A ->  9A       -0.67638       5B ->  9B       -0.34905 
      5B ->  8B        0.23230       6B ->  8B       -0.37775       5B ->  8B       -0.15273       6B ->  8B       -0.34902 
      5B ->  9B        0.34066       6B ->  9B        0.17417       5B ->  9B       -0.34785       6B ->  9B        0.15625 
      6B ->  8B        0.34068 

 
      6B ->  8B       -0.34782 

       6B ->  9B       -0.23232 
 

      6B ->  9B        0.15271 
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Excited states of the rhamnose radical 

 

Table 23: Excitation energies (in eV)  for the first nine excited states through the OH4 bond elongation 
corresponding to the plots in Figure 25 and Figure 26 in section 5.2.2. Calculations were performed 
in G03 using the geometries from the optimizations in CP2K. The first point in the bond elongation is 
missing because of convergence failure of the excited state calculation. 

Bond length / Å 1.081 1.176 1.290 1.396 1.498 1.599 1.700 1.798 1.898 1.997 

Excited state 1 0.07 0.11 0.56 1.09 1.56 1.93 2.76 2.90 3.01 3.09 

Excited state 2 0.12 0.12 0.45 0.98 1.45 1.82 2.67 2.80 2.92 3.00 

Excited state 3 0.36 0.47 0.71 0.70 0.67 0.63 0.57 0.56 0.55 0.54 

Excited state 4 0.58 0.58 1.01 1.52 2.00 2.36 3.18 3.31 3.42 3.50 

Excited state 5 0.82 0.84 1.28 1.80 2.27 2.63 3.48 3.62 3.74 3.81 

Excited state 6 0.94 1.06 1.41 1.56 1.75 1.91 2.10 2.15 2.19 2.22 

Excited state 7 1.10 1.20 1.51 1.76 1.99 2.15 2.40 2.46 2.51 2.54 

Excited state 8 1.38 1.39 1.82 2.32 2.78 3.13 3.91 4.04 4.15 4.22 

Excited state 9 1.45 1.50 1.83 2.08 2.33 2.55 2.79 2.86 2.92 2.96 

 

 

The plots below show the energy of the first 10 excited states found through SP calculations 

for geometries from optimizations using CP2K for OH1 and OH2 and both CP2K and G03 for 

OH4. The excitation energies are added to the ground state energies from the geometry 

optimizations. 
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Figure 30: First ten excited states for the OH1 deprotonation reaction. The single chain model was 
used, and the excited states were calculated at the B3LYP/6-31++G** LOT. The calculations were 
performed as SP calculations for geometries optimized in CP2K and the ground state energy from the 
geometry optimizations are used as the basis energy. 

 

Figure 31: First ten excited states for the OH1 deprotonation reaction. The star shaped model was 
used, and the excited states were calculated at the B3LYP/6-31++G** LOT. The calculations were 
performed as SP calculations for geometries optimized in CP2K and the ground state energy from the 
geometry optimizations are used as the basis energy. 
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Figure 32: First ten excited states for the OH2 deprotonation reaction. The single chain model was 
used, and the excited states were calculated at the B3LYP/6-31++G** LOT. The calculations were 
performed as SP calculations for geometries optimized in CP2K and the ground state energy from the 
geometry optimizations are used as the basis energy. 

 

Figure 33: First ten excited states for the OH2 deprotonation reaction. The star shaped model was 
used, and the excited states were calculated at the B3LYP/6-31++G** LOT. The calculations were 
performed as SP calculations for geometries optimized in CP2K and the ground state energy from the 
geometry optimizations are used as the basis energy. 
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Figure 34: First ten excited states for the OH4 deprotonation reaction. The single chain model was 
used, and the excited states were calculated at the PBE/6-31++G** LOT. The calculations were 
performed as SP calculations for geometries optimized in CP2K and the ground state energy from the 
geometry optimizations are used as the basis energy.

 

Figure 35: First ten excited states for the OH4 deprotonation reaction. The single chain model was 
used, and the excited states were calculated at the BLYP/6-31++G** LOT. The calculations were 
performed as SP calculations for geometries optimized in CP2K and the ground state energy from the 
geometry optimizations are used as the basis energy. 
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Figure 36: First ten excited states for the OH4 deprotonation reaction. The single chain model was 
used, and the excited states were calculated at the B3LYP/6-31++G** LOT. The calculations were 
performed as SP calculations for geometries optimized in CP2K and the ground state energy from the 
geometry optimizations are used as the basis energy. 

 

Figure 37: First ten excited states for the OH4 deprotonation reaction. The star shaped model was 
used, and the excited states were calculated at the B3LYP/6-31++G** LOT. The calculations were 
performed as SP calculations for geometries optimized in CP2K and the ground state energy from the 
geometry optimizations are used as the basis energy. 
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Figure 38: First ten excited states for the OH4 deprotonation reaction. The single chain model was 
used, and the excited states were calculated at the B3LYP/6-31++G** LOT. The calculations were 
performed as SP calculations on geometries optimized in a cluster in Gaussian03 and the ground state 
energy from the geometry optimizations are used as the basis energy. 
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Appendix E: Animation 
 

For those who wish to flip quickly through this thesis, the advice is to start in the back, and 

keep an eye on the upper right corner. Here is shown an animation of the most thorougly 

studied deprotonation reaction of this thesis, the OH4 deprotonation. The geometries used in 

the animation are those of the linear interpolations used for the analysis of the excited states 

for the geometries calculated in the periodic code. 


