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Background: Schizophrenia (SCZ) is a heritable disorder with a polygenic 
architecture, and the gut microbiota seems to be involved in its development 
and outcome. In this study, we  investigate the interplay between genetic risk 
and gut microbial markers.

Methods: We included 159 first-episode, drug-naïve SCZ patients and 86 healthy 
controls. The microbial composition of feces was characterized using the 16S 
rRNA sequencing platform, and five microbial α-diversity indices were estimated 
[Shannon, Simpson, Chao1, the Abundance-based Eoverage Estimator (ACE), 
and a phylogenetic diversity-based estimate (PD)]. Polygenic risk scores (PRS) 
for SCZ were constructed using data from large-scale genome-wide association 
studies. Effects of microbial α-diversity, microbial abundance, and PRS on SCZ 
were evaluated via generalized linear models.

Results: We confirmed that PRS was associated with SCZ (OR  =  2.08, 
p  =  1.22×10−5) and that scores on the Shannon (OR  =  0.29, p  =  1.15×10−8) and 
Simpson (OR  =  0.29, p  =  1.25×10−8) indices were inversely associated with SCZ 
risk. We  found significant interactions (p  <  0.05) between PRS and α-diversity 
indices (Shannon, Simpson, and PD), with the effects of PRS being larger 
in those exhibiting higher diversity compared to those with lower diversity. 
Moreover, the PRS effects were larger in individuals with a high abundance of 
the genera Romboutsia, Streptococcus, and Anaerostipes than in those with 
low abundance (p  <  0.05). All three of these genera showed protective effects 
against SCZ.

Conclusion: The current findings suggest an interplay between the gut 
microbiota and polygenic risk of SCZ that warrants replication in independent 
samples. Experimental studies are needed to determine the underpinning 
mechanisms.
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1 Introduction

Schizophrenia (SCZ) is a severe mental disorder characterized by 
psychotic symptoms and is associated with impaired cognitive 
functions and social disability (1). The lifetime prevalence of SCZ is 
estimated to be around 1%, and approximately 24 million people are 
affected by SCZ worldwide (2, 3). Despite the heavy disease burden, 
the etiology of SCZ is largely unknown (1). Twin and family studies 
have estimated a heritability of 0.6–0.8 (4, 5), indicating that genetic 
variation may contribute substantially to the disease risk. Recent large 
genome-wide association studies (GWAS) have identified over 200 
risk loci associated with SCZ (6, 7). Surprisingly, only 2.4% of the 
variation in degree of liability to SCZ can be explained by genome-
wide significant variants; when genome-wide common variants are 
aggregated into polygenic risk scores (PRS), these scores could explain 
up to 20% of the risk for SCZ in independent samples. The gap 
between the PRS-explainable variation and the estimated heritability 
for SCZ could be explained by several factors, for example, ancestrally 
unmatched GWAS samples from the prediction sample (8) and rare 
variants missed by GWAS (9). Of note is that gene–environmental 
interactions may contaminate heritability estimates (9–11).

Research on the environmental influences on SCZ has a long 
history and has identified an array of risk factors, including living in 
urban regions, migration, childhood adverse events, birth 
complications, and cannabis and other substance use (12–14). Studies 
of genetics-by-environment effects on SCZ have been predominantly 
based on the candidate-gene design. For instance, these studies have 
suggested that cannabis use may interact with the DRD2 (15) and 
AKT1 (16) genes in conferring risk for SCZ, while the FOXP2 gene 
might moderate the effects of childhood emotional abuse on SCZ (17). 
However, the reliability of these and other candidate-gene-based 
findings has been challenged by recent GWAS results (18–20). Recent 
work has advocated the use of PRS derived from large-scale GWAS for 
investigating gene–environment interplay in psychiatric disorders 
(21). In addition, environmental factors are complex to measure and 
interdependent, and previous work has focused only on one or few 
factors per study (22). Identifying novel modifiable and “aggregated” 
environmental exposure factors would be  beneficial in gene–
environment interaction research on SCZ.

The gut microbiome has become a burgeoning field in medical 
research (23); features of this have been frequently linked to the risk 
and treatment outcomes of SCZ (24–31). The gut microbiota 
composition is typically characterized by the relative abundance of its 
constituent microbes on multiple taxonomic levels, e.g., phylum, 
family, or genus. It can also be described by global measures, the 
α-diversity and β-diversity (32). The α-diversity characterizes the 
within-sample distributions of constituent microbes, for example, by 
the richness and evenness of the distribution; the β-diversity describes 
between-group differences in microbial distributions, for example, 
between SCZ patients and healthy controls. While several significant 
associations of taxon and global measures with SCZ have been 
reported, these findings are not consistent, as reported by recent 
reviews and meta-analyses (33–36). These studies have also shown 
that α-diversity is not statistically associated with SCZ, but with some 
evidence an association for first-episode psychosis patients; β-diversity 
has been found to be significantly associated with psychosis and SCZ 
(37, 38). On the taxon level, there are only two genera, Anaerotruncus 
and Lactobacillus, from the phylum Firmicutes, whose relative 

abundance has been found to be associated with SCZ in two or more 
independent studies. On the one hand, these early findings call for 
more studies to corroborate existing evidence; on the other hand, 
strategies to overcome the large degrees of heterogeneity in previous 
studies are imperative. The identification of factors that interact with 
microbiota composition and SCZ may be one such strategy.

Here, we  present the first study investigating the interactions 
between gut microbial composition and host genome in relation to the 
risk of SCZ. To reduce confounding, we recruited 159 first-episode 
drug-naïve SCZ patients and 86 demographically matched healthy 
controls (matched on age, sex, years of education, smoking habits, and 
BMI) from China. We investigated the effects of PRS, which measures 
an individual’s liability to SCZ, on five widely studied measures of the 
α-diversity of the gut microbiota (32, 35, 39)[ACE (40) and Chao1 
(41) as measures of richness; Simpson (42) and Shannon (42) as 
measures of evenness; and phylogenetic diversity (PD) (43)] and their 
interactions. Furthermore, we tested for interaction effects between 
PRS and specific taxa in terms of the effect on SCZ. Finally, we tested 
whether our results varied when using PRS constructed from 
European vs. East-Asian sample-based GWAS.

2 Materials and methods

2.1 Participants and clinical assessment

Two hundred and eleven first-episode drug-naïve SCZ patients 
and 145 demographically matched healthy controls (HCs) were 
enrolled at the Department of Psychiatry of the First Affiliated 
Hospital of Zhengzhou University, China. This study was approved by 
the Human Ethics Committee of the hospital (No. 2016-LW-17). All 
participants provided signed informed consent.

Patients were diagnosed by two trained psychiatrists at the 
department using the Diagnostic and Statistical Manual of Mental 
Disorders, fourth edition (DSM-IV) criteria obtained via the 
Structured Clinical Interview for DSM-IV (SCID) (44). Severity of 
psychosis was evaluated with the Positive and Negative Syndrome 
Scale (PANSS) (45), and a general clinical assessment was performed, 
including height and weight for calculation of body mass index (BMI). 
At the hospital visits, age, sex, history of smoking, and years of 
education were also collected for all participants.

On enrollment, participants were required to be free of previous 
treatments for any mental disorders, free of diagnoses with organic 
diseases (46), not pregnant or lactating, and free of any use of 
antibiotic or anti-inflammatory agents during the prior month; not to 
have have a BMI >28 kg/m2; and not to have a total PANSS score ≤ 60. 
Other than the PANSS score, the same exclusion criteria were 
applied to HCs.

2.2 Fecal sample collection and processing

Fresh fecal samples were collected from all participants between 
8 a.m. and 9 a.m. and immediately stored in a freezer at −80°C for gut 
microbiota assay. Whole blood samples were also collected at the same 
time for genotyping. A fecal sample of 0.2 g was used to extract the 
microbiome DNA using the Cetyl Trimethyl Ammonium Bromide 
(CTAB)/SDS procedure (47). The extracted DNA sample was diluted 
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to 1 ng/ul with sterile water before sequencing. The 16S rRNA gene of 
distinct regions (V3–V4) was amplified using a specific primer (i.e., 
16S V4: 515F-806R) with barcodes. PCR was performed in reaction 
volume of 30 μL with 15 μL of Phusion® High-Fidelity PCR Master 
Mix (New England Biolabs), 0.2 μM of forward and reverse primers, 
and 10 ng of template DNA. The obtained PCR products were purified 
using a GeneJETTM Gel Extraction Kit (Thermo ScientificTM, USA) 
following the manufacturer’s protocol. Purified PCR products were 
sequenced using the Ion S5 TM XL platform, which generates DNA 
400–600 bp long single-end reads. These raw DNA sequences were 
quality-controlled using the Cutadapt program (V1.9.1) (48). The 
outputs from Cutadapt were aligned to the SILVA reference database 
with default settings, and chimera sequences (49) were removed using 
UCHIME (50).

The UPARSE program (V7.0.1001) (51) was used to assign 
quality-controlled sequences to operational taxonomic units (OTUs) 
with a sequence similarity threshold of 97%. Based on the assigned 
OTUs, the five most widely used α-diversity indices were estimated by 
QIIME (52): Shannon (42), Simpson (42), the Abundance-based 
Coverage Estimator (ACE) (40), Chao1 (41), and Faith’s phylogenetic 
diversity metric (PD) (43). Since these indices are highly skewed, all 
indices (except Shannon) were transformed and standardized to a 
mean of 0 and standard deviation of 1. For the ACE, Chao1, and PD 
indices, the natural log transformation was further applied. For the 
Simpson index, which falls within the range of 0–1, the logit 
transformation was performed. For the Shannon index, no 
transformation was applied.

2.3 Genotyping and processing

DNA was extracted from whole blood samples and was genotyped 
using the InfiniumOmniZhongHua_8v Array (Illumina, Inc.) on an 
iScan instrument at Bio Miao Biological Technology (Beijing). 
Genotype calling and quality control (QC) were performed using 
GenomeStudio V2011. Quality assessments resulted in the exclusion 
of 23 samples from subsequent analyses due to a low call rate, i.e., 
<95%. The resultant file was exported to PLINK (53) format from the 
GenomeStudio platform. The following PLINK parameters were used 
for further QC before imputation: −maf 0.01, −mind 0.1, −geno 0.05, 
and –hwe 0.0001. In addition, variant strands were checked with the 
command –flip, and the concordance between self-reported and 
genetically predicted sex was checked with the command –check-sex. 
These pre-imputation high-quality data were also used for checking 
relatedness between subjects after construction of a thinned dataset 
via PLINK with the command –indep-pairwise 1,500 150 0.2 –maf 
0.05, followed by –Z-genome –min 0.06. After QC, 287 subjects 
remained. Among these subjects, gut microbiota data were available 
for 159 patients and 86 HCs. The program genipe (54) was used to call 
IMPUTE2 (55) and Shapeit2 (55) for imputation of our sample to the 
1,000 Genomes samples (56). For post-imputation QC, single 
nucleotide polymorphisms (SNPs) with imputation r2 < 0.8, MAF 
<0.05, or Hardy–Weinberg test <1×10−6 were removed. In total, 
4,896,670 SNPs remained. These remaining SNP dosages were hard-
coded to the best-guess genotype, i.e., 0, 1, or 2 copies of the 
reference allele.

Subtle population structures within our sample were estimated 
using the principal component analysis (PCA) methods implemented 

in PLINK. Before PCA, pre-imputation quality-controlled genotypes 
were further processed using the PLINK commands –maf 0.1 and –
indep-pairwise 100 50 0.1. The remaining SNPs were included in the 
PCA estimation with the PLINK command –pca. Since the eigenvalue 
scree plot showed a very flat pattern, we included the top 10 principal 
components (PC1-10) in our analysis.

2.4 Polygenic risk scores

The imputed best-guess genotypes were used for construction of 
polygenic risk scores. SCZ GWAS summary statistics for both 
European and East Asian populations were downloaded from https://
www.med.unc.edu/pgc/download-results/scz/ with permission. After 
filtering out SNPs that did not exist in our data from the summary 
statistics, the program PRC-CS (57) was used to compute the 
European-based polygenic risk score and, separately, the East-Asian-
based polygenic risk score for SCZ. Following the recommendation 
from the program, only SNPs from the HapMap3 reference data were 
used for PRS computation. Since our sample size was small, the 
polygenic parameter phi was preset to 0.01, i.e., assuming a highly 
polygenic genetic architecture for SCZ. For the remaining parameters 
of PRC-CS, the default values were used. The estimated effect sizes 
from PRS-CS were used to compute PRS for our sample using the –
score function in PLINK.

2.5 Statistical analysis

The relationships of demographic and lifestyle variables with SCZ 
were assessed individually using t-tests (numeric variables: age, BMI, 
and years of education) or Fisher’s exact test for independence (sex 
and smoking). BMI was assessed both for the whole sample and in 
three subgroups: less than 18.49 kg/m2; greater than or equal to 18.5 
but less than 25.49 kg/m2; and greater than or equal to 25.5 but less 
than or equal to 28 kg/m2.

The associations of PRS and α-diversity with SCZ were tested via 
logistic regression models. The SCZ diagnostic status of subjects was 
set as the binary dependent variable. PRS was set as the predictor, 
along with age, sex, years of education, whether the subject had ever 
smoked, and PC1-10 as covariates. For the association between 
α-diversity and SCZ, the covariates PC1-10 were replaced by BMI. To 
estimate the joint effects of PRS and α-diversity indices, both 
α-diversity indices and PRS were entered into the model, and both 
PC1-10 and BMI were included as covariates, along with age, sex, 
years of education, and whether the subject had ever smoked, 
following the recommendation given by Keller (58). In addition, a 
term for the interaction between PRS and α-diversity indices was 
included to investigate whether α-diversity moderates the effects of 
PRS on SCZ or whether the effects of α-diversity depend on PRS 
values. Correction for multiple tests was applied using the false 
discovery rate (59), and corrected p-values <0.05 were considered 
statistically significant. The variance at the observed scale 
(Nagelkerke-R2) explained by PRS was estimated by first estimating 
Nagelkerke-R2 explained by the full model and the reduced model, 
i.e., excluding the focal variable. Next, the difference between the two 
estimates was used to determine the variance explained by the focal 
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variable. This procedure was performed separately for PRS-EAS and 
PRS-EUR and for each of the five α-diversity indices.

Linear regression models were used to evaluate the effect of 
α-diversity on the symptom severity of SCZ patients, as measured by 
PANSS subscale scores: positive (PANSS-P), negative (PANSS-N), 
general psychopathology (PANSS-G), and total (PANSS-T). These 
subscale scores were first scaled to achieve normal distributions and 
were then used as the dependent variables in the models. Each 
subscale was analyzed separately. Sex, BMI, years of education, 
smoking habits, and age were included as covariates in each model. 
Correction for multiple tests was applied using the false discovery rate 
(59), and corrected p-values <0.05 were considered statistically  
significant.

To assess the contributions of phylum- and genus-level microbial 
abundance to α-diversity, linear regression models were used. Here, 
the transformed diversity indices, except for the Shannon index, were 
used as dependent variables. The relative abundances of each taxon, 
separately, were used as predictors, along with the covariates of sex, 
BMI, years of education, smoking habits, and age. Correction for 
multiple tests was applied using the false discovery rate (59), and 
corrected p-values <0.05 were considered statistically significant.

As a coarse screen analysis, logistic regressions were used to 
identify taxa associated with SCZ risk. The SCZ diagnosis status was 
used as the dependent variable, and the relative abundance was used 
as a predictor, along with sex, BMI, education years, smoking habits, 
and age as the model covariates. Correction for multiple tests was 
applied using the false discovery rate (59), and corrected p-values 
<0.05 were considered statistically significant. Taxa that were 
associated with SCZ were evaluated for interaction effects with PRS 
by adding a PRS-by–taxon interaction term to these models. In these 
models, the covariates were additionally expanded to include the 
top 10 PCs. Correction for multiple tests was applied using the false 

discovery rate (59), and corrected p-values <0.05 were considered 
statistically significant.

The PRS-related analyses were performed separately for PRS 
constructed using GWAS based on East Asian and European samples. 
Correction for multiple tests was also performed separately for these 
two sets of analysis.

3 Results

3.1 Clinical characteristics and data quality

A total of 159 first-episode, drug-naïve SCZ patients and 86 
demographically matched HCs were included in the analyses. SCZ 
patients and HCs did not differ on age, sex, or BMI. For BMI, there 
was also no effect in each subgroup. Patients had significantly fewer 
years of education than HCs (p = 1.34×10−4, Table 1). The rarefaction 
plot (Supplementary Figure S1) showed that our preprocessing 
procedure for the microbiome data was reliable. As shown in 
Supplementary Figures S2, S3, that the transformed α-diversity indices 
became less skewed and would not be  problematic in our 
statistical analysis.

3.2 Polygenic risk scores and SCZ

We confirmed significant associations between PRS and the 
diagnosis in first-episode, drug-naïve patients, with the East-Asian 
sample-based PRS (PRS-EAS) showing a stronger association 
(OR = 2.08, 95% CI = 1.51–2.92, p = 1.22×10−5) than the European 
sample-based PRS (PRS-EUR) (OR = 1.73, 95% CI = 1.30–2.35, 
p = 2.77×10−4). On the observed scale, PRS-EAS and PRS-EUR 
explained 8.9 and 5.8% of phenotypic variance, respectively. Stratifying 
participants into quintiles by PRS showed that the proportion of 
patients increased monotonically from Q1 to Q5 (Figure 1). In the 
highest stratum (Q5), 82.5 and 78.9% of participants were patients 
based on PRS-EAS and PRS-EUR, respectively. The corresponding 
numbers for the lowest stratum (Q1) were 51.7 and 56.9%, respectively. 
These results suggest that SCZ may have both shared and unique 
genetic architecture in East Asian and Caucasian populations 
confirming that matching the ancestry of GWAS samples used to 
generate a PRS with that of target prediction samples could improve 
risk prediction.

3.3 α-diversity and SCZ

We discovered distinct patterns of association between the five 
α-diversity indices and SCZ (Figure 2). While all pairwise correlations 
among the five indices were significant (p < 0.05), these indices belong 
to three groups (Figure 2A). The ACE and Chao1 indices, both of 
which are richness-based measures, were almost identical (Pearson 
r = 0.99) but were less correlated to the Shannon and Simpson indices, 
both of which are evenness-based measures. The latter two showed a 
significant and strong correlation (Pearson r = 0.93). The phylogenic 
diversity-based index, PD, sits in between the two groups. The 
differences between these three groups of indices were also reflected 
in their associations with the risk of SCZ. An increased score on the 

TABLE 1 Demographic and clinical characteristics of participants.

SCZ HCs Statistics

beta p

Sample size (n) 159 86 – –

Sex (M/F) 78/81 35/51 −0.23 0.42

Age (years, 

mean ± SD)

22.45 ± 7.60 22.93 ± 2.26 −0.009 0.68

PANSS-T 83.49 ± 12.81

PANSS-P 20.51 ± 4.11

PANSS-N 21.39 ± 5.69

PANSS-G 41.58 ± 7.48

BMI (kg/m2, 

mean ± sd)

21.34 ± 3.80 21.45 ± 2.78 −0.026 0.49

BMI < 18.49 17.39 ± 0.94 17.51 ± 0.61 0.45 0.66

18.5 ≤ BMI < 25.49 21.0 ± 1.74 21.22 ± 1.78 0.81 0.42

25.5 ≤ BMI ≤ 28 26.94 ± 0.63 26.66 ± 0.93 −0.68 0.51

Education (years, 

mean ± SD)

11.15 ± 2.86 12.36 ± 1.33 −0.223 1.34×10−4

Smoking (Yes/No) 6/151 3/83 −0.249 0.75

SCZ, schizophrenia; HCs, healthy controls; BMI, body mass index; PANSS-T/P/N/G, total, 
positive, negative, and general psychopathology PANSS score; M, male; F, female.
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Shannon and Simpson indices showed a negative association with 
SCZ (Shannon: OR = 0.29, 95% CI = 0.18–0.43, p = 1.15×10−8; Simpson: 
OR = 0.29, 95% CI = 0.19–0.44, p = 1.25×10−8). The proportion of 
phenotypic variance explained by both the Shannon and the Simpson 
indices was 33%. The PD index showed a weaker association with SCZ 
(OR = 1.43, 95% CI = 1.05–2.00, p = 0.03, Nagelkerke-R2 = 19%). 
Neither the ACE nor the Chao1 index was associated with the risk of 
SCZ (Figure 2B).

Moreover, α-diversity was also associated with symptom severity. 
Both the Shannon and Simpson indices were inversely associated with 
total, positive, and general psychopathology PANSS scores (p < 0.05; 
PANSS-T: Shannon, beta = −0.31, se = 0.1; Simpson, beta = −0.33, 
se = 0.09; PANSS-P: Shannon, beta = −0.25, se = 0.1; Simpson, 
beta = −0.28, se = 0.11; PANSS-G: Shannon, beta = −0.35, se = 0.1; 
Simpson, beta = −0.33, se = 0.11). Higher diversity as measured by 
these two indices was associated with lighter symptoms on these three 
subscales. There were also suggestive associations between PD and 
PANSS-G (beta = −0.29, se = 0.14) and PANSS-T (beta = −0.28, 
se = 0.13), but neither of these survived correction for multiple tests. 
There were no associations between α-diversity and PANSS-
negative symptoms.

3.4 Interaction between α-diversity and 
polygenic risk score

To understand whether gut microbial diversity contributes 
additional information to PRS in predicting SCZ, we entered both 
diversity index and PRS as predictors in multiple logistic regression 
models (Materials and Methods section). In general, we observed 
slightly changed effects for both PRS and the Shannon index compared 
with the effects estimated via the univariate logistic models. However, 
all significant predictors from the corresponding univariate models 
were still significant in the multiple regression models. For example, 
in the model with the Shannon index and PRS-EAS, the effect of the 
Shannon index changed from on OR of 0.29 to 0.26, and that of 
PRS-EAS changed from an OR of 2.08 to 2.27. In the model including 
both PRS-EAS and the PD index, the effect of PRS-EAS was slightly 
reduced (OR = 1.97), and the weaker effect of the PD index was 
reduced to null (p = 0.14). In addition, there were no qualitative 
changes to the effects of PRS-EAS or the Chao1 index in these models 
compared to those described above. Replacing PRS-EAS with 
PRS-EUR produced the same pattern. Therefore, the Shannon and 

FIGURE 2

Associations of α-diversity with schizophrenia. (A) Pearson correlation coefficients among the five α-diversity indices. (B) Odds ratios (ORs) and 95% 
confidence intervals for the associations of each index with schizophrenia. The dashed line indicates OR  =  1. (C) Associations between alpha diversity 
index and PANSS components. Chao1, ACE (Abundance-based Coverage Estimator), PD (Faith’s phylogenetic diversity metric), Shannon, and Simpson 
are the five alpha diversity indices; PANSS-T, total PANSS score; PANSS-P, PANSS-positive score; PANSS-N, PANSS-negative score; PANSS-G, PANSS-
general psychopathology score.

FIGURE 1

Associations of polygenic risk score with schizophrenia. Participants 
were divided into quintiles by polygenic risk score (PRS; x-axis, Q1–
Q5) for schizophrenia (SCZ) (y-axis). The mean and one standard 
deviation within each quintile are shown. Colors indicate the 
proportion of cases in each quintile; the shapes of the symbols 
indicate whether polygenic scores were computed based on East 
Asian (EAS) or Caucasian (EUR) GWAS. PRS is shown on a standard 
deviation scale.
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Simpson diversity indices may contribute additional information 
beyond PRS in explaining the risk of SCZ.

Next, we examined whether the effects of α-diversity indices on 
SCZ were dependent on the genetic risk of participants as measured 
by PRS. We  added terms representing the interactions between 
α-diversity indices and PRS to the above-described multiple logistic 
regression models. As illustrated in Figure 3, we found significant 
interactions between PRS-EAS and the Shannon, Chao1, and PD 
indices (Shannon, p = 0.05; Chao1, p = 4.43×10−3; and PD, 
p = 6.31×10−3). These interaction terms explained 1.05, 3.15, and 
2.91% of the phenotypic variance, respectively. There was no 
interaction effect detected between PRS-EAS and the Simpson index 
(p = 0.11). Interestingly, no significant interaction effects between 
PRS-EUR and the five α-diversity indices were found.

To illustrate the nature of these significant interaction terms, 
we stratified our samples by the median values of PRS and, separately, 
of the α-diversity indices (Figure 3 and Supplementary Figures S4–S7). 
The effects of PRS-EAS on SCZ risk were larger for participants having 
higher α-diversity (Figures  3A–C), as measured by the Shannon, 
Chao1, and PD indices. In other words, when participants were 
stratified by PRS-EAS, we observed that increasing the α-diversity 
index measure reduced SCZ risk for participants with lower 
PRS-EAS. For those with higher PRS-EAS, increasing α-diversity 
according to the Chao1 and PD indices also increased the SCZ risk 
(Figures 3D–F). Similar results were also obtained for the Simpson 

index (Supplementary Figures S4, S5). The ACE index showed similar 
results to the Chao1 index (Supplementary Figures S6, S7).

To test whether the interaction effect we observed could be due to 
correlations between PRS-EAS and α-diversity (i.e., the possibility that 
higher diversity may correlate with lower PRS-EAS), we performed a 
linear regression analysis of each α-diversity index against PRS-EAS 
based on HC samples (N = 86). In these models, age, sex, BMI, 
whether the participant had ever smoked, years of education, and 
PC1-10 were included as covariates. None of the five diversity indices 
were correlated with PRS-EAS in our sample (Supplementary Table S1). 
Thus, the effects of PRS-EAS on SCZ seem to interact with gut 
microbial α-diversity.

3.5 Interactions between taxa of the gut 
microbiota and polygenic score

To gain a deeper understanding of the observed interaction 
effects, we  tested whether there were interactions between taxon 
abundance and PRS. Before performing these tests, we first assessed 
which taxa contributed to α-diversity and SCZ risk (Materials and 
Methods section). There were four genera contributing to the Shannon 
index (three genera: unidentified_Lachnospiraceae, beta = 0.20, 
se = 0.05, p = 4.43×10−2; Megamonas, beta = −0.21, se = 0.05, 
p = 1.52×10−2; Agathobacter, beta = −0.3, se = 0.05, p = 1.71×10−6), 

FIGURE 3

Interactions between α-diversity and polygenic risk scores in their effect on risk of SCZ. (A–C) The estimated probability of developing SCZ (y-axis) is 
plotted against polygenic risk scores (PRS) derived from East Asian GWAS. Data are stratified into two strata (i.e., above and below the median) by 
Shannon index (A), Chao1 index (B), and PD index (C). (D–F) The estimated probability of developing SCZ (y-axis) is plotted against scores on the 
Shannon (D), Chao1 (E), and PD (F) indices. Data are stratified into two strata (i.e., above and below the median) by polygenic risk score (PRS). Both 
diversity indices and PRS are shown on a standard deviation scale.

https://doi.org/10.3389/fpsyt.2024.1275719
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhang et al. 10.3389/fpsyt.2024.1275719

Frontiers in Psychiatry 07 frontiersin.org

Simpson index (one genus: Agathobacter, beta = −0.34, se = 0.04, 
p = 3.51×10−13), and PD (one genus: Enterobacter, beta = 0.26, se = 0.06, 
p = 6.35×10−3) (Figure 4A). No specific taxa contributed to the ACE or 
Chao1 indices. There were 10 taxa associated with SCZ risk, among 
which six showed a protective effect, i.e., higher abundance was 
associated with a lower risk, and four showed a negative effect 
(Figure  4A and Supplementary Table S2). While there was no 
interaction effect between the genus Agathobacter (which was 
associated with both α-diversity and SCZ) and PRS, three genera 
showed significant interactions with PRS in their effect on SCZ risk 
(Figures 4C,D): Romboutsia (interaction beta = 0.84, se = 0.3, p = 0.03), 
Streptococcus (interaction beta = 0.89, se = 0.34, p = 0.03), and 
Anaerostipes (interaction beta = 1.37, se = 0.51, p = 0.03). For these 
three genera, increased abundance was associated with greater 

protective effects against SCZ in individuals with a lower-than-median 
PRS than those having above-median PRS (Figures  4C,D). 
We obtained qualitatively the same interaction effects between these 
three genera and PRS-EUR (Supplementary Table S3).

4 Discussion

Gut commensal microbes can contribute to the host physiology 
by producing beneficial metabolites, such as short fatty acids, 
neurotransmitters, and proinflammatory factors (60). Thus, species-
rich gut ecosystems are more robust to insults originating from 
surrounding environments or from the host genome (61). Here, 
we show that the strengths of such protective effects depend on the 

FIGURE 4

Interactions between microbial abundance and polygenic risk score in their effect on risk of SCZ. (A) The associations of gut microbial abundance and 
alpha diversity index with schizophrenia (SCZ). Asterisks indicate significant associations (corrected p  <  0.05). The t-statistic is indicated by bar color. 
(B) The interactions between polygenic risk score (PRS) and the genus Romboutsia in their effect on SCZ risk. (C) The interactions between PRS and 
the genus Streptococcus in their effect on SCZ risk. (D) The interactions between PRS and the genus Anaerostipes in their effect on SCZ risk. The 
estimated probability of developing SCZ (y-axis) is plotted against the relative abundance of the corresponding genus, with participants stratified into 
two strata (i.e., above and below the median) on PRS. Microbial relative abundance is shown on a log scale for readability.
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host’s genetic risk for a disease, e.g., SCZ. For genetically predisposed 
individuals (with a high PRS), increasing the α-diversity of the gut 
microbiota (as measured, e.g., by the Shannon index) provided less 
protection than for those with low PRS. The pattern of interactions 
also varied with the way in which α-diversity was quantified. The 
species richness-dominant measures (Chao1, ACE, and PD) (32, 39) 
showed effects in opposite directions for genetically high- and low-risk 
individuals. This may indicate that rare bacteria—which dominate in 
the Chao1, ACE, and PD indices, but not in the Shannon and Simpson 
indices—in the guts of such individuals not achieved commensal 
status with the host. At the genus level, we found interaction effects 
between PRS and the relative abundance of Romboutia, Streptococcus, 
and Anaerostipes. Importantly, these genus-level interaction effects 
were also observed when the European sample-based GWAS was used 
to construct PRS (Supplementary Table S3), further supporting these 
microbiota interaction effects. Nevertheless, these novel findings call 
for replication in independent large-scale studies.

Our results confirmed a polygenic architecture for first-episode, 
drug-naïve SCZ patients. Most previous studies have tested the 
predictive value of PRS in chronic SCZ patients (6, 8), where disease 
duration, use of medications, and other environmental factors may 
reduce predictive performance. Despite the small sample size, our data 
showed that PRS have a significant discriminatory power in these 
drug-naïve patients. Our estimates for the proportion of phenotypic 
variance explained by PRS are within the range reported by previous 
studies with chronic patients (6, 8). PRS for our sample, built on both 
ancestrally matched East Asian GWAS and European GWAS results, 
were significantly associated with SCZ. In line with a previous report 
(62), ancestrally matched PRS showed stronger predictive 
performance for our sample than unmatched PRS. The hypothesis that 
differences in allele frequencies between the two populations may 
contribute to this cross-ancestral difference in predictions (8) is also 
supported by our data (Supplementary Figure S8).

The large effects of PRS on SCZ in our sample allowed us to study 
the interactions of this factor with gut microbiota features. Our 
findings may serve as a novel explanation for the conflict results on 
the relationship between α-diversity and SCZ. While α-diversity as 
measured by the Chao1 and Shannon indices has been shown to 
be lower in SCZ patients than in HCs in several studies (24, 27, 30, 63, 
64), others have reported null findings (65–68). Moreover, one study 
has reported observing a higher Shannon index in patients compared 
to healthy controls (69). In the present study, our findings suggested 
that the Shannon and Simpson indices were lower in SCZ patients, but 
we  did not find significant associations for the other richness-
dominant indices. We further showed that scores on the Simpson and 
Shannon indices were also associated with disease severity as 
measured by PANSS scores. It is well known that medical treatments 
and disease duration have a major impact on the composition of the 
gut microbiota. Not all previous studies have been performed with 
drug-naïve patients (24, 63). Our observed associations are in line 
with a recent review article, in that α-diversity has been found to 
be lower compared to healthy controls in drug-naïve patients but not 
in chronic patients (38). In addition, our results are based on a larger 
sample than previous microbiome studies, thus higher statistical 
power was expected. The interaction between PRS and α-diversity in 
terms of their effects on SCZ showed that the effects of scores on the 
Chao1, Shannon, and PD indices may depend on the individual’s 
genetic risk score for SCZ. Therefore, it is conceivable that previous 

studies may have included patients with low genetic risk but high 
environmental contributions. One possible explanation for the 
interaction effects may be that high genetic risk for SCZ may alter the 
gut ecosystem in such a way that fewer microbes are able to colonize 
the gut. For individuals with low genetic risk of SCZ, the beneficial 
effect of increased scores on the Chao1, ACE, and PD indices also 
showed a smaller protective effect than increased scores on the 
Shannon and Simpson indices. Thus, future studies with larger 
samples and controlling for the genetic composition of the host (such 
as via PRS) may resolve these complex relationships.

We attempted to further explain the interaction between PRS and 
diversity by studying the PRS–genus interactions. The results are 
intriguing. While we expected to observe some interaction effects for 
the genus that contributed to both α-diversity and SCZ, i.e., 
Agathobacter, this was not the case. A relatively high abundance of 
Agathobacter was associated with a positive effect on SCZ, but this 
genus was negatively correlated with scores on the Shannon and 
Simpson indices, and there were no interaction effects. We  then 
screened for interactions between genera that were associated with 
SCZ in our sample and PRS. Among the three identified interacting 
genera, Streptococcus, which is involved in the metabolism of lactic 
acid, glutamate, and GABA, has been reported to be associated with 
SCZ in previous studies (64, 65), but the directions of effects observed 
were opposing. The other genus, Anaerostipes, has been reported to 
have a lower abundance in SCZ (66), which is congruent with our 
findings here. The last genus, Romboutsia, was very recently 
characterized in 2014 (70) and thus has not been reported to 
be associated with any psychiatric conditions. However, a recent large 
population study has suggested that Romboutsia may have a health-
promoting effect via production of short-chained fatty acids (71). Of 
note, these interactions with PRS built on East Asian GWAS were also 
statistically significant for the PRS built on GWAS from a European 
sample, further supporting these interactions between genetics and 
the microbiota in schizophrenia.

The present study has both strengths and weaknesses. We removed 
the effects of antipsychotic treatments and disease duration on gut 
microbiota composition by focusing on first-episode, drug-naïve SCZ 
patients. Due to the challenge of recruiting drug-naïve patients, our 
sample size is small compared to that of a typical genetic study. Thus, 
we expect that future larger-scale studies will replicate and extend our 
findings here. A major limitation is that we did not collect data on 
lifestyle and other environmental variables, such as prenatal life factors, 
childhood adverse effects, diet, physical activity, and migrations, all of 
which have been shown to be potential confounders in associations 
between the microbiota and schizophrenia (33). This is a common 
problem in most previous studies (33, 72). We additionally applied a 
genetics-based correction method (73) by rerunning our analysis with 
the top  10 PCs included as additional covariates. The results were 
qualitatively unchanged compared to our main analysis. Moreover, 
we only analyzed data from gut commensal bacteria and the effects of 
aggregated DNA variations. Future work should investigate the effects of 
other commensal microorganisms (e.g., fungi) (74) and epigenetic 
variations (75, 76). Nevertheless, these limitations must be taken into 
account in the interpretation of our findings here. We expect that future 
studies with well-controlled confounders will confirm our results.

Here, as a proof of principle, we show that integrating PRS and gut 
microbiome research can provide novel insights into the complex 
interplay of these factors in SCZ and may form the foundation for the 
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development of probiotic treatments for SCZ (77–79). Our findings also 
indicate that stratifying samples on the basis of gut microbial composition 
may improve prediction of the risk of SCZ and provide new insights into 
the “missing heritability” (80) problem in SCZ. In conclusion, our 
findings show that both gut microbial markers and host genetics 
interactively contribute to the risk of SCZ.
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