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Propagators for molecular dynamics in a magnetic field

Laurens D. M. Peters , Erik I. Tellgren and Trygve Helgaker

Hylleraas Centre for QuantumMolecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway

ABSTRACT
Ab initiomolecular dynamics in a magnetic field requires solving equations of motion with velocity-
dependent forces – namely, the Lorentz force arising from the nuclear chargesmoving in amagnetic
field and the Berry force arising from the shielding of these charges from the magnetic field by
the surrounding electrons. In this work, we revisit two existing propagators for these equations of
motion, the auxiliary-coordinates-and-momenta (ACM) propagator and the Tajimapropagator (TAJ),
and compare themwith a new exponential (EXP) propagator based on theMagnus expansion. Addi-
tionally, we explore limits (for example, the zero-shielding limit), the implementation of higher-order
integration schemes, and series truncation to reduce computational cost by carrying out simulations
of a HeH+ model system for a wide range of field strengths. While being as efficient as the TAJ prop-
agator, the EXP propagator is the only propagator that converges to both the schemes of Spreiter
and Walter (derived for systems without shielding of the Lorentz force) and to the exact cyclotronic
motion of a charged particle. Since it also performs best in our model simulations, we conclude that
the EXP propagator is the recommended propagator for molecules in magnetic fields.
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1. Introduction

Since the first simulations more than 50 years ago [1,2],
molecular dynamics has become a ubiquitous tool in
computational chemistry, allowing for the calculation of
reaction rates and energies [3], the exploration of reac-
tion networks [4,5], and the prediction of vibrational
spectra [6–9], including infrared, Raman, and circular
dichroism spectroscopies. The principal idea is to solve
the equations of motion

mI ẍI = −dE(x)
dxI

, x =

⎛
⎜⎝
x1
...
xN

⎞
⎟⎠ , (1)

CONTACT Laurens D. M. Peters laurens.peters@kjemi.uio.no Hylleraas Centre for QuantumMolecular Sciences, Department of Chemistry, University
of Oslo, P.O. Box 1033 Blindern, Oslo N-0315, Norway

to determine the motion of a set of N nuclei with masses
m1, . . .mN and positions x1(t), . . . xN(t). The potential
E(x) and the corresponding gradient are usually deter-
mined using force-field or (for smaller systems) ab initio
methods, while the equations of motion are solved using
propagators such as the velocity Verlet algorithm [10,11]
or higher-order schemes [12,13].

In a magnetic field B, a classical particle of charge
qI experiences an additional Lorentz force:

mI ẍI = −dE(x)
dxI

− qIB × ẋI . (2)

More than 20 years ago, Spreiter and Walter recognised
that the appearance of this velocity-dependent force
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requires amodification of the velocityVerlet scheme [14].
Their algorithm, which relies on a Taylor expansion,
has been incorporated into well-known software pack-
ages [15,16] and has been employed in diverse applica-
tions [17–19].

Taking into account the electrons as quantum par-
ticles within the Born–Oppenheimer approximation,
the energy becomes dependent on the magnetic
field [20–26], while the velocity-dependent force assumes
a more general form [27–29]:

mI ẍI = −dE(x,B)
dxI

+
N∑
J=1

AIJ(x,B) ẋJ . (3)

Here, the last term contains not only the bare Lorentz
force acting on the nuclei [see Equation (2)], but also a
contribution from the Berry curvature [30,31], reflecting
the shielding of the nuclei by the electrons [32,33] and
introducing a coupling between the motion of different
nuclei [34,35].

While the form and the implications of Equation (3)
were discussed more than three decades ago [27,36,37],
there are only a few examples where it has been actu-
ally solved for a molecular system in a magnetic field.
Ceresoli and coworkers simulated an H2 model sys-
tem in 2007, integrating the equations of motion with a
Runge–Kutta scheme [28]. In 2021, Peters and coworkers
were the first to conduct accurate dynamics of H2 using
the auxiliary-coordinates-and-momenta (ACM) propa-
gator [29], which is derived from a general scheme for
propagating nonseparable Hamiltonians by Tao [38]. A
more extensive study was conducted by Monzel and
coworkers [39] in 2022, studying H2 and LiH with
the Tajima (TAJ) propagator, originating from particle
physics [40].

In this work, we introduce a new propagator that we
refer to as the exponential (EXP) propagator. It is inspired
by the fact that equations of type

ċ(t) = −iH(t) c(t), c(t0) = c0, (4)

can, for a sufficiently small time interval [t0, t], be solved
exactly using the Magnus expansion [41] and approx-
imated using matrix exponential(s) of −iH [42]. Such
equations appear, for example, in time propagations in
time-dependent Kohn–Sham theory [43] and in surface-
hopping algorithms [44], where c corresponds to a vec-
tor of state amplitudes, while H is the Hamiltonian
matrix containing energies of and couplings between
the states. Here, we compare the EXP propagator to the
previously published ACM and TAJ propagators, regard-
ing their theoretical foundation, their time-step require-
ments, their performance during actual simulations, and

properties, such as their behaviour in the zero-field
case [see Equation (1)], in the zero-shielding case [see
Equation (2)], and in the cyclotron limit [only the Lorentz
force in Equation (2)]. We use simulations of a HeH+
model system to corroborate our theoretical findings and
test schemes to further reduce the computational cost.

Having established the equations of motion, their
propagation, and the weak-field limit for the step size
in Sections 2.1–2.3, respectively, we derive the working
equations of propagators in the absence of a field aswell as
the ACM, TAJ, and EXP propagators in Sections 2.4–2.7
and compare them in Section 2.8. Computational details
for theHeH+ simulations are given in Section 3,while the
results of these simulations are presented and discussed
in Section 4. Conclusions and an outlook are given in
Section 5.

2. Theory

2.1. Equations ofmotion

Within the Born–Oppenheimer approximation, the
equations of motion of a molecule in a magnetic field are
given by [27–29]

MIR̈I = −∂E(R,B)
∂RI

+
Nnuc∑
J=1

[
�IJ(R,B)− δIJZIB̃

]
ṘJ .

(5)

Here, we use indices I, J, . . . for the Nnuc nuclei. RI , ZI ,
MI , and ṘI are the position, charge, mass, and velocity of
nucleus I, while the 3Nnuc-dimensional column vector R
denotes the collective nuclear coordinates:

R =

⎛
⎜⎝

R1
...

RNnuc

⎞
⎟⎠ , RI =

⎛
⎝RIx
RIy
RIz

⎞
⎠ (6)

We represent the uniform magnetic field B of strength B
by the 3 × 3 antisymmetric matrix B̃ in the manner

B̃ =
⎛
⎝ 0 −Bz By

Bz 0 −Bx
−By Bx 0

⎞
⎠ , B =

⎛
⎝Bx
By
Bz

⎞
⎠ , B = |B|

(7)

so that

B̃ṘI = B × ṘI . (8)

The first term in Equation (5) is the gradient of the
Born–Oppenheimer electronic energy, obtained at some
ab initio level of theory,

E(R,B) = 〈φ(R,B)|Hel(R,B)|φ(R,B)〉 , (9)

where Hel(r,R,B) and φ(r;R,B) are the electronic
Hamiltonian and wave function, respectively, both of
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which dependon the electronic coordinates r [overwhich
the integration is performed in Equation (9)]. The second
term in Equation (5) is the Lorentz force arising from the
nuclear charge screened by the surrounding electrons.
This shielding is represented by the Berry curvature,
whose IJ blocks,

�IJ(R,B) =
⎛
⎝�IxJx(R,B) �IxJy(R,B) �IxJz(R,B)
�IyJx(R,B) �IyJy(R,B) �IyJz(R,B)
�IzJx(R,B) �IzJy(R,B) �IzJz(R,B)

⎞
⎠,

(10)

are Cartesian matrices whose elements (here we only
show the xy-element),

�IxJy(R,B) = −2��
〈
∂φ(R,B)
∂RIx

|∂φ(R,B)
∂RJy

〉
, (11)

are determined from derivatives of the electronic wave
function with respect to the corresponding nuclear coor-
dinates. For more details on the calculation (at the
Hartree–Fock level of theory) and interpretation of the
Berry curvature, see Refs. [30–33].

WithM being the 3Nnuc × 3Nnuc-dimensional matrix
with the nuclearmassesMI on the diagonal, we can define
the kinetic momenta of the nuclei as

� = MṘ. (12)

We may now rewrite the nuclear equations of motion in
Equation (5) in the more convenient form

�̇ = F(R,B)+ W(R,B)�, (13)

where F(R,B) is the 3Nnuc-dimensional vector of the
Born–Oppenheimer gradient forces and W(R,B) is a
3Nnuc × 3Nnuc matrix, whose IJ blocks of dimension 3 ×
3 contain the corresponding block of the Berry curvature
as well as the contribution from the bare (unscreened)
Lorentz force:

WIJ(R,B) = M−1
J

[
�IJ(R,B)− δIJZIB̃

]
. (14)

The form of the equations of motion given in
Equation (13) highlights that the effect of the magnetic
field is twofold: It changes the potential energy surface
leading to different Born–Oppenheimer gradient forces
and it introduces an additional, velocity-dependent term.

2.2. Propagators: general considerations

The main objective of this theory section is to dis-
cuss how these modified equations of motion can

be integrated efficiently using different propagators.
We denote by

xa = R(t + a�t), (15)

πa = MṘ(t + a�t), (16)

the position and momentum, respectively, of the system
at time a relative to time t in units of the time step �t.
Introducing the notation

fa = F(xa,B), (17)

wa = W(xa,B), (18)

we may now express the equations of motion in terms of
differentials with respect to the factor a

π̇a = �t−1 ∂πa

∂a
= fa + waπa, (19)

ẋa = �t−1 ∂xa
∂a

= M−1πa. (20)

The choice of the step length �t, here appearing as a
prefactor, will be discussed in the next subsection.

In this notation, a propagator is defined as a scheme
that updates the coordinates (x0 → x1) and momenta
(π0 → π1) for a given�t. Since Equations (19) and (20)
depend on each other, they are usually solved alternately
for a series of substeps. To ease their reading, we will
only derive working equations for a single set of those
substeps,

π0 → πa : πa = �t
∫ a

0
(fα + wαπα) dα + π0,

(21)

x0 → xb : xb = �tM−1
∫ b

0
πβ dβ + x0, (22)

where x0 and π0 are initial values and a and b are arbi-
trary step lengths in units of �t. Equations for all other
substeps can then be derived by adjusting the initial
values and step lengths accordingly.

To evaluate the integrals in Equations (21) and (22),
we will draw inspiration from the mean-value theo-
rems. They state that, for real-valued functions ϕ(α) and
ψ(α) that are continuous in [0, a], there exists a point
0 ≤ b ≤ a such that∫ a

0
ϕ(α) dα = aϕ(b), (23)

and ∫ a

0
ϕ(α)ψ(α) dt = ψ(0)

∫ b

0
ϕ(α) dα

+ ψ(a)
∫ a

b
ϕ(α) dα. (24)
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The corresponding statements are not guaranteed to hold
for vector-valued functions; however, we will at one point
rely on them as approximations. Specifically, we use the
forms

∫ a

0
ϕ(α) dα ≈ ϕ(b)

∫ a

0
dα = aϕ(b), (25)

and
∫ a

0
ψ(α)ϕ(α) dα ≈

∫ b

0
ψ(α)ϕ(0) dα

+
∫ a

b
ψ(α)ϕ(a) dα, (26)

to approximate integrals over two vectors of continuous
functions ϕ(α) and ψ(α). Note that both the midpoint
rule and the trapezoidal rule can be derived from these
mean-value approximations by choosing b = a/2 and, in
case of latter, ψ(α) = 1:

∫ a

0
ϕ(α) dα ≈ ϕ(a/2)

∫ a

0
dα = aϕ(a/2) (27)

∫ a

0
ϕ(α) dα ≈

∫ a/2

0
ϕ(0) dα

+
∫ a

a/2
ϕ(1) dα = a

2
[ϕ(0)+ ϕ(1)]

(28)

2.3. Choice of step size

The error introduced by a given propagator depends on
the applied step size �t. Before considering the differ-
ent propagators, we discuss briefly in this subsection the
restriction on the time step imposed by an external mag-
netic field. As in field-free simulations, we demand that
the time step �t is significantly smaller than the fastest
molecular vibration. In addition, we demand that the
matrix�twa is convergent for all a, meaning that

lim
n→∞ [�twa]n = 0 (29)

Introducing the spectral radius ρ
√
ρ

(
wT
awa

) = ωa, (30)

which we loosely interpret as a cyclotron frequency, we
have

lim
n→∞

∥∥[�twa]n
∥∥

∝ lim
n→∞�tn ρ

(
wT
awa

)n/2 = lim
n→∞(�tωa)

n (31)

in some matrix norm ‖ · ‖. Consequently, Equation (29)
holds when

�t < ω−1
a . (32)

This weak-field limit, as defined by Spreiter and Wal-
ter [14], means that the time step is small enough to
resolve the cyclotronic motion. For a neutral molecule,
the charge–mass ratio is roughly on the order of 10−4 a.u.,
so that

ωa ∼ 10−4B. (33)

Time steps of up to 100 a.u. (2.4 fs) therefore allow for
simulations in field strengths up to about 10 B0, cover-
ing the entire range of field strengths from the (particu-
larly interesting) intermediate regime (< 1 B0) up to the
Landau regime.

2.4. Propagators in the absence of a field

For the field-free case, w is zero so that we can directly
apply the mean-value approximation Equation (25) to
Equations (21) and (22):

πa = �t
∫ a

0
fα dα + π0 ≈ a�t fb + π0 (34)

xb = �tM−1
∫ b

0
πβ dβ + x0 ≈ b�tM−1 πa + x0

(35)

As shown inAlgorithm 1, both equations are solved alter-
nately using the current forces and momenta as mean
values to propagate the momenta and positions, respec-
tively. The remaining task is now to come up with a series
of a’s and b’s (denoted by the vectors a and b) to approx-
imate the mean values. The lengths of a and b (K + 1 and
K) reflect the order K of the scheme.

In the standard velocity Verlet scheme (K = 1)
[10,11], we set a = [0.5, 0.5] and b = [1.0], so that we
obtain:

πVV
0.5 = 0.5�t f0 + π0 (36)

xVV1 = �t
[
M−1πVV

0.5
] + x0 (37)

πVV
1 = 0.5�t f1 + πVV

0.5 (38)

Note that this quadrature corresponds to solving the full
integral (a = 1) in Equation (34) with the trapezoidal
[see Equation (28)] and the full integral in Equation (35)
(b = 1) with the midpoint rule [see Equation (27)]. As
a consequence of this the velocity Verlet algorithm is
symplectic, time-reversible, and of second-order accu-
racy. However, it has been shown that higher-order
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Algorithm 1General algorithm for a propagator of order
K, in the absence of a field. See Equations (15)–(18) for
definitions of the variables. a and b are predefined vectors
of length K + 1 and K, respectively. In case of velocity
Verlet, a = [0.5, 0.5] and b = [1.0].
k = 0; a′ = 0; b′ = 0
while k ≤ K do

a = a[k]
πa′+a = a�tfb′ + πa′
a′ = a′ + a
if k < K then

b = b[k]
xb′+b = b�t

[
M−1πa′

] + xb′
b′ = b′ + b
Calculate fb′

end if
k = k + 1

end while

schemes [12,13], can significantly increase the stability of
the dynamics.

Unfortunately, there is no straightforward expansion
of the upper scheme towards systems with velocity-
dependent forces since, taking the velocity Verlet
algorithm as an example, the step of Equation (38)
becomes

π1 ≈ 0.5�t (f1 + w1π1)+ π0.5 (39)

The mismatch between the required (π1) and the avail-
able (π0.5) momenta for the propagation leads to a
systematic error in the integration of the equations of
motion [29]. Clearly, there is a need to develop alter-
native propagators, which will be done in the following
subsections.

2.5. Auxiliary-coordinates-and-momenta
propagator

The auxiliary-coordinates-and-momenta (ACM) prop-
agator method was proposed by Tao for general non-
separable Hamiltonians [38] and adapted by Peters
and coworkers for molecular simulations in a magnetic
field [29]. The idea is to circumvent the mismatch in
Equation (39), by introducing an additional pair of coor-
dinates and momenta (x′,π ′) that are kept close to the
original pair (x,π ) during the dynamics (x ≈ x′ andπ ≈
π ′). If this coupling is sufficiently strong, we can write the
propagation of π in terms of π ′ and x

πa ≈ a�t
[
fb + wbπ

′
b

]
+ π0, (40)

xb ≈ b�t
[
M−1πa

] + x0. (41)

and the propagation of π ′ in terms of π and x′

π ′
b ≈ b�t

[
f ′a + w′

aπa
] + π ′

0, (42)

x′
a ≈ a�t

[
M−1π ′

b

]
+ x′

0, (43)

The only remaining step is the coupling of coordinates
and momenta, which is done when all quantities x, π , x′,
and π ′ are at the same time step by carrying out, for a
given coupling constant s, the transformation [29]

⎛
⎜⎜⎝

xc
x′
c

M−1π c
M−1π ′

c

⎞
⎟⎟⎠ → ssb

⎛
⎜⎜⎝

xc
x′
c

M−1π c
M−1π ′

c

⎞
⎟⎟⎠ (44)

with the coupling matrix

ssb = 1
2

⎛
⎜⎜⎝
1 + cosχ 1 − cosχ s−1 sinχ −s−1 sinχ
1 − cosχ 1 + cosχ −s−1 sinχ s−1 sinχ
s sinχ −s sinχ 1 + cosχ 1 − cosχ

−s sinχ s sinχ 1 − cosχ 1 + cosχ

⎞
⎟⎟⎠

(45)

where

χ = sb�t (46)

Setting s = 0 reduces the coupling matrix to the unity
matrix, while setting it to s = π/(c�t) leads to a com-
plete exchange of x and π with x′ and π ′ and vice versa.
The pseudo code for a general ACM propagator of order
K is given in Algorithm 2.

2.6. Tajima propagator

An alternative to the ACM propagator is the Tajima
(TAJ) propagator. Initially used in particle physics [40],
it was rewritten for molecular applications by Monzel
et al. [39]. Here, we present a slightly different deriva-
tion of theworking equations that startswith applying the
mean-value approximations [Equations (25) and (26)] to
Equation (21):

πa ≈ a�t fb +�t
∫ c

0
wαπ0 dα

+�t
∫ a

c
wαπa dα + π0 (47)

Assuming that c = a/2 and that both integrals have the
samemean value wb , we obtain:[

1 − a
2
�twb

]
πa ≈ a�t fb +

[
1 + a

2
�twb

]
π0 (48)

Introducing the inverted matrix

vcb = [1 − c�twb]−1 , (49)
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Algorithm 2 General algorithm for the auxiliary coor-
dinates and momenta (ACM) method of order K. See
Equations (15)–(18) for definitions of the variables. a and
b are predefined vectors of length K + 1 and K, respec-
tively. In the velocity Verlet variant, a = [0.5, 0.5] and
b = [1.0].

k = 0; a′ = 0; b′ = 0
while k ≤ K do

a = a[k]
πa′+a = a�t

[
fb′ + wb′π ′

b′
] + πa′

x′
a′+a = a�t

[
M−1π ′

b′
] + x′

a′
a′ = a′ + a
if k < K then

b = b[k]
Calculate f ′a′ and w′

a′
π ′
a′ = (a′ − b′)�t

[
f ′a′ + w′

a′πa′
] + π ′

b′
xa′ = (a′ − b′)�t

[
M−1πa′

] + xb′
Apply ssb
Calculate f ′a′ and w′

a′
b′ = b′ + b
π ′
b′ = (b′ − a′)�t

[
f ′a′ + w′

a′πa′
] + π ′

a′
xb′ = (b′ − a′)�t

[
M−1πa′

] + xa′
Calculate fb′ and wb′

end if
k = k + 1

end while

we arrive at the working equation for the TAJ propagator,

πa ≈ va/2b

(
a�tfb +

[
1 + a

2
�twb

]
π0

)
, (50)

yielding the algorithm in Algorithm 3. In the weak-field
limit [see Equation (29)], we can expand thematrix inver-
sion in a Neumann series:

vcb =
∞∑
n=0

[c�twb]n =
N−1∑
n=0

[c�twb]n + O (
[�tωb]N

)

(51)

In standard applications, we expect this series to converge
fast. Using the estimate in Equation (33) with B = 0.1
and�t = 10 in atomic units, the error is on the order of
10−8 when using N = 2. Consequently, we can avoid the
(comparably) high computational cost of matrix inver-
sions during the simulations.

2.7. Exponential propagator

A general approach to solving first-order linear dif-
ferential equations is the Magnus integrator method.
Specifically, we may write

πa = �t
∫ a

γ

exp
(
yα,a

)
fα dα + exp

(
yγ ,a

)
πγ (52)

Algorithm 3 General algorithm for the Tajima (TAJ)
method of order K. See Equations (15)–(18) for defini-
tions of the variables. a and b are predefined vectors of
length K + 1 and K, respectively. In the velocity Verlet
variant, a = [0.5, 0.5] and b = [1.0].
k = 0; a′ = 0; b′ = 0
while k ≤ K do

a = a[k]
πa′+a = va/2b′

(
a�tfb′ +

[
1 + a

2
�twb′

]
πa′

)
a′ = a′ + a
if k < K then

b = b[k]
xb′+b = b�t

[
M−1πa′

] + xb′
b′ = b′ + b
Calculate fb′ and wb′

end if
k = k + 1

end while

where γ is chosen so that the Magnus series [41],

yγ ,a = �t
∫ a

γ

dα wα

+ 1
2
(�t)2

∫ a

γ

dα
∫ α

γ

dβ
[
wα ,wβ

] + · · · , (53)

converges. From ya,a = 0 and

∂ exp
(
yγ ,a

)
∂a

= �twa exp
(
yγ ,a

)
, (54)

it is straightforward to verify that Equation (52) solves
Equation (19) and is thus an alternative to Equation (21).
We can set γ to zero from now on, since our choice of
step size in Equation (32) ensures the convergence of
the Magnus series in this case. Truncating the Magnus
series after the first term and applying the mean-value
approximation [Equation (25)], the matrix exponential
becomes

exp
(
yα,a

) ≈ exp
(
[a − α]�twb

) = ua−α
b , (55)

where we have introduced the matrix exponential

ub = exp(�twb) (56)

Equation (52) now becomes:

πa ≈ �t
∫ a

0
ua−α
b dα fb + uabπ0 (57)

Approximating the remaining integral via the midpoint
rule [Equation (27)], we obtain

πa ≈ a�tua/2b fb + uabπ0 = ua/2b

[
a�tfb + ua/2b π0

]
(58)
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Algorithm 4 General algorithm for the Exponential
(EXP) method of order K. See Equations (15)–(18) for
definitions of the variables. a and b are predefined vec-
tors of length K + 1 and K, respectively. In the velocity
Verlet variant, a = [0.5, 0.5] and b = [1.0].

k = 0; a′ = 0; b′ = 0
while k ≤ K do

a = a[k]
πa′+a = a�tua/2b′ fb′ + uab′πa′
a′ = a′ + a
if k < K then

b = b[k]
xb′+b = b�t

[
M−1πa′

] + xb′
b′ = b′ + b
Calculate fb′ and wb′

end if
k = k + 1

end while

as the exponential propagator (EXP) for the nuclear
momenta inmagnetic fields; see Algorithm 4. Thematrix
exponential can be expanded as

ucb =
∞∑
n=0

1
n!

[
c�twb

]n

=
N−1∑
n=0

1
n!

[
c�twb

]n + O (
[�tω]N /N!

)
. (59)

In contrast to the Neumann series, this series converges
unconditionally, for all step sizes.

2.8. Comparison of the propagators

We close this section by discussing a few properties of the
introduced propagators. The results are summarised in
Table 1. FromAlgorithms 2–4,we see that theACMprop-
agator is about three timesmore expensive than the other
schemes, requiring 3K instead of K forces and Berry cur-
vature calculations per step. In addition, it depends on the
definition of a parameter (s), which has an influence on
the stability of the dynamics. Moreover, unlike the ACM
propagator, TAJ and EXP propagators converge to the
correct zero-field solution when setting B and therefore
wb to zero.

As the correct zero-shielding limit, we define the prop-
agators derived by Spreiter and Walter, which were con-
structed for the special case where the Berry curvature
is zero. While their working equations clearly differ from
the ACM propagator, we can compare them to the TAJ
and EXP propagators by assuming a single particle with
charge Z1 and mass M1, experiencing a time-dependent

Table 1. Comparison of the auxiliary coordinates and momenta
(ACM), Tajima (TAJ), and exponential (EXP) propagator.

Criterion ACM TAJ EXP

Forces calculations per step 3K K K
Parameter-free? No Yes Yes
Correct zero-field limit? No Yes Yes
Correct zero-shielding, No Yes Yes
velocity Verlet limit?
Exact cyclotron limit? No No Yes

external force f and a magnetic field of strength Bz in the
z-direction. In this particular case, w and thus ua and va
are constants

w =
⎛
⎝ 0 ω 0

−ω 0 0
0 0 0

⎞
⎠ ω = BzZ1

M1
, (60)

and the velocity Verlet variants of the EXP and TAJ
propagator reduce to

πEXP
1 = �t

2
(
u0.25f1 + u0.75f0

) + u1π0, (61)

π
TAJ
1 = �t

2

(
v0.25f1 + v0.25

[
1 + �t

4
w

]
v0.25f0

)

+ v0.25
[
1 + �t

4
w

]
v0.25

[
1 + �t

4
w

]
π0, (62)

respectively. Expanding ua and va up to second order

ua = 1 + a�tw + 1
2
a2(�t)2w2 + O (

[�t]3
)

(63)

va = 1 + a�tw + a2(�t)2w2 + O (
[�t]3

)
(64)

and using the Taylor expansion of the forces in
y-direction

fy1 = fy0 +�t
dfy0
dt

+ O (
[�t]2

)
, (65)

we obtain, for both EXP and TAJ, an expression that is
identical to those obtained by Spreiter and Walter via
inversion [see Equation (16) in Ref. [14]] and via Taylor
expansion [see Equation (39) in Ref. [14]]:

πx
1 = πx

0 + �t
2

[
fx0 + fx1 + 2ωπy

0
]

+ 1
4
(�t)2

[
2ωfy0 − 2ω2πx

0
] + O (

[�t]3
)

(66)

Their difference, however, becomes obvious when addi-
tionally setting the forces in Equations (61) and (62) to
zero:

πEXP
1 = u1π0 (67)

π
TAJ
1 = v0.25

[
1 + �t

4
w

]
v0.25

[
1 + �t

4
w

]
π0 (68)

In this cyclotron limit, the EXPpropagator collapses to the
exact result for the cyclotron motion of a single, charged
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particle

πEXP
1 =

⎛
⎝ cos (�tω) sin (�tω) 0

− sin (�tω) cos (�tω) 0
0 0 0

⎞
⎠π0, (69)

while TAJ introduces an error at the order ofO([�tω]3).
For the previously mentioned estimate [see
Equation (33)] with B = 0.1 and �t = 10, this results
in an error at the order of 10−12 (all given in atomic
units). Thus, in practice EXP and TAJ trajectories and
their computational cost will be very similar.

3. Computational details

3.1. Diatomicmodel system

To conduct a study of the performance of the previ-
ously discussed propagators, we carry out simulations of
a diatomic model system perpendicular to the magnetic
field. It has been shown that, in this particular case, the
Berry curvature can be represented exactly by a set of
Berry charges QIJ(R,B) and Berry charge fluctuations
PIJ(R,B) [30,33]

�IJ(R,B) = −QIJ(R,B)B̃

− PIJ(R,B)
[
B̃R̄IJR̄T

IJ − R̄IJR̄T
IJB̃

]
, (70)

where R̄IJ is the normalised interatomic distance vector:

R̄IJ = d−1
IJ

[
RJ − RI

]
dIJ = |RJ − RI| (71)

For a more detailed derivation and discussion of
QIJ(R,B) and PIJ(R,B), we refer the reader to
Refs. [32,33,45].

Our model system has been designed to reproduce
the properties of HeH+ at field strength 0.1 B0, with

energies E(dHeH), Berry charges QIJ(dHeH), and Berry
charge fluctuations PIJ(dHeH) obtained by spline fitting
of Hartree–Fock (HF)/lu-aug-cc-pVTZ [46–48] results
for different bond lengths (dHeH) at this field strength.
The prefix ‘lu-’ indicates the use of an uncontracted
London orbital basis set, as suggested in Ref. [49].
The Berry charges and Berry charge fluctuations were
extracted from the numerical Berry curvature [30] in
a least-squares fashion (see Ref. [33]). All calculations
were performed with the London [50] programme
package. The resulting bond-length dependence of the
energy and charges is shown in Figure 1. We note that
HeH+ dissociates into He with effective charge ZHe +
QHeHe = 0 and a proton H+ with effective charge ZH +
QHH = 1. In the bonding region, both nuclear charges
are partially screened by the electrons. Note that, in
our calculations, we neglect the magnetic-field depen-
dence of the electronic energy itself E(dHeH), of the
Berry charges, QIJ(dHeH), and of the Berry fluctuations
PIJ(dHeH). The magnetic field therefore enters the cal-
culations only through the explicit field-dependence of
the model Berry curvature – that is, by the depen-
dence on B̃ in Equation (70). This approach allows for a
more systematic study of the propagators, since only the
velocity-dependent forces increase linearly with B, while
the potential-energy surface and the electronic struc-
ture remain unaffected. Because of its overall charge,
small mass, and significant geometry dependence of the
screening [see Figure 1(b)], the HeH+ model system can
be regarded as an extreme case, featuring (comparably)
large cyclotron frequencies (ω).

3.2. Molecular simulations

All NVE simulations (constant number of particles, vol-
ume, and energy) were conducted in the xy-plane with

Figure 1. Bond-length (dHeH) dependent energies (a) and charges (b) derived from the Berry curvature of HeH+ at the HF/lu-aug-cc-
pVTZ level of theory perpendicular to a field of B = 0.1 B0. We consistently use atomic units.
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Table 2. Coefficients a and b for the different integrators of order
K used in this work.

VV (K = 1)
a0 = 0.5000000000000000 b0 = 1.0000000000000000
a1 = 0.5000000000000000

OM (K = 4)
a0 = 0.1786178958448091 b0 = 0.7123418310626054
a1 = −0.0662645826698185 b1 = −0.2123418310626054
a2 = 0.7752933736500187 b2 = −0.2123418310626054
a3 = −0.0662645826698185 b3 = 0.7123418310626054
a4 = 0.1786178958448091

RK4 (K = 6)
a0 = 0.0792036964311957 b0 = 0.2095151066133620
a1 = 0.3531729060497740 b1 = −0.1438517731798180
a2 = −0.0420650803577195 b2 = 0.4343366665664560
a3 = 0.2193769557534996 b3 = 0.4343366665664560
a4 = −0.0420650803577195 b4 = −0.1438517731798180
a5 = 0.3531729060497740 b5 = 0.2095151066133620
a6 = 0.0792036964311957

the magnetic field aligned along the z-axis. Each sim-
ulation began at the equilibrium geometry, with ran-
dom initial momenta. We investigated the ACM prop-
agator Algorithm 2, the TAJ propagator Algorithm 3,
and the exponential operator Algorithm 4 at three dif-
ferent orders K: the velocity-Verlet (VV) scheme [10,11]
with K = 1, the OM scheme of Omelyan et al. [12] with
K = 4, and the RK4 scheme (S6/O4 in Ref. [13]) with
K = 6. The corresponding factors a and b are given in
Table 2.

Each trajectory was simulated for 24 ps using (if not
stated otherwise) an effective time step (�t/K) of 0.1 fs,
storing energies, geometries, and momenta every 2.4 fs.
For the ACM propagator, we used an optimised coupling
constant s = 0.013. Where N is not given, we used the
standard matrix-inversion and exponential algorithms
of python3.6 to calculate v and u in the TAJ and
EXP propagators, respectively, and the truncated series
of Equations (51) and (59) otherwise. Estimating that
�t ω = 4.5 × 10−4B, we apply a magnetic-field range of
10−2–103 in units of B0 to ensure that the weak-field
condition in Equation (32) holds for all simulations.

We use the standard deviation of the total energy (εtot)
as a criterion for the stability of the dynamics. In order to
estimate the cost-accuracy ratio of the methods, we also
study the behaviour of this error measure with respect to
the step length:

εtot ∼ p�to (72)

The prefactor p and the order o are determined as the
intercept and slope of a log(εtot)-log(�t)-plot, respec-
tively, generated from a series of simulations with con-
stant B but varying�t between 0.01 fs and 0.6 fs. In addi-
tion, vibrational spectra [8,29] and the centre-of-mass
motion are used to compare trajectories of the different
propagators.

Figure 2. Standarddeviationof the total energy (εtot) during sim-
ulations of the HeH+ model system using differentmagnetic field
strengths and propagators with K = 1 (velocity Verlet): Auxiliary
coordinates and momenta (ACM), Tajima (TAJ), and exponential
(EXP) propagator.

4. Results and discussion

In Figure 2, we have plotted εtot forHeH+ as a function of
field strength B for the ACM, TAJ, and EXP propagators
with K = 1. The results for K = 4 and K = 6 are very
similar and therefore not included in the figure.

In general, all three propagators become less stable
with increasing field strength – in particular the ACM
propagator, for which the simulation at 103 B0 becomes
unstable. At this high field strength (characteristic of neu-
tron stars rather than white dwarfs), a reoptimisation of
the coupling-strength parameter s may be required. In
agreement with a previous comparison of the ACM and
TAJ propagators [39], we note that the ACM propaga-
tor performs less well than the TAJ and EXP propaga-
tors. Since, in addition, the TAJ and EXP propagators
are parameter-free and since they require only one rather
than three force and Berry-curvature calculations per
step, we conclude that the TAJ and EXP propagators are
to be preferred over the ACM propagator.

While the EXP and TAJ propagators are indistinguish-
able at low field strengths, the EXP propagator becomes
marginally more stable for B > 10 B0, as the cyclotronic
centre-of-mass motion of the charged HeH+ system
begins to dominate the trajectories. However, even at
10 B0, the centre-of-mass motions and the vibrational
spectra of the two propagators are still indistinguish-
able and in fact identical to those obtained with the
ACM propagator; see Figure 3. In line with previous
studies on diatomics [29,39], the peaks in the vibra-
tional spectrum of HeH+ Figure 3(b) correspond to the
cyclotronic centre-of-massmotion [∼ 30 cm−1, also visi-
ble in Figure 3(a)], rotation (∼ 370 cm−1), and vibration
(∼ 3350 cm−1), and feature splitting patterns that arise
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Figure 3. Centre-of-mass motion (a) and vibrational spectra of He (b) obtained from the simulations of the HeH+ model system at B =
10 B0 using different propagators with K = 1 (Velocity Verlet): Auxiliary coordinates andmomenta (ACM), Tajima (TAJ), and exponential
(EXP) propagator.

Table 3. Orders (o) and prefactors (p) of the auxiliary coordi-
nates and momenta (ACM), Tajima (TAJ), and exponential (EXP)
propagator at two different field strenghts (B).

εtot ∼ �top

Propagator K B [B0] o p

ACM 1 0.1 2.01 10−4.82

ACM 1 100 2.00 10−3.76

TAJ 1 0.1 2.01 10−5.10

TAJ 1 100 2.02 10−4.89

EXP 1 0.1 2.01 10−5.10

EXP 1 100 2.04 10−5.02

EXP 4 0.1 3.96 10−7.49

EXP 4 100 2.05 10−5.51

EXP 6 0.1 3.94 10−8.53

EXP 6 100 2.00 10−6.25

Note: For EXP, we also list o and p of the higher-order schemes (K = 4, 6).

from the couplings between the different modes. Select-
ing one set of simulations at low (B = 0.1 B0) and one at
high field strengths (B = 100 B0), we list the order o and
prefactor p of εtot with respect to�t in Table 3. It clearly
shows that all propagators with K = 1 are, just like VV
in the field-free case, of second order in both regimes.
Therefore, the trends of εtot in Figure 2 solely arise from
p. Note that, while o is approximately constant, p might
change for a different system.

Since the EXP propagator is the most stable propa-
gator, we restrict our attention to this propagator when
investigating dependence on the propagator order K and
on the truncation level N in the exponential series; see

Figure 4. Influence of the order of the EXP propagator (K, a) and the truncation of the exponential series (N, b) on the standard deviation
of the total energy (εtot) during simulations of the HeH+ model system using different magnetic field strengths. The reference (exact
exponential with K = 1) is shown as a dashed black line in both plots.
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Figure 4(a,b), respectively. We expect the TAJ propaga-
tor to show a similar behaviour, while an investigation
of the influence of K on the ACM propagator can be
found in Ref. [29]. At low field strengths, the higher-
order schemes (i.e. OMwithK = 4 andRK4withK = 6)
improve the stability of the EXP propagator by up to two
orders of magnitude; see Figure 4(a). These higher-order
schemes therefore allow for a significantly larger effective
time step�t/K (constant in Figure 4), reducing the com-
putational cost of the dynamics. Perhaps surprisingly,
the OM and RK4 schemes become less stable than the
lower-order VV scheme as the velocity-dependent forces
become dominant in the Landau regime (beyond 10 B0).
Both observations are in line with the behaviour of o and
p listed in Table 3. At 0.1 B0, both OM and RK4 are of
fourth order and show a significantly smaller p, while
at 100 B0 only p is smaller when comparing to the VV
schemewithK = 1. Since the latter is not enough to com-
pensate the increasing number of calculations per time
step, the higher-order schemes become more expensive.
Both Figure 4(a) and Table 3 prove that the coefficients a
and b (see Algorithm 4) need to be adjusted at high field
strengths to obtain o>2 in the Landau regime.

Simulations with a truncated exponential series at
N = 2 in Equation (59) reproduce the results obtained
with the exact matrix exponential for field strengths up
10 B0; see Figure 4. Since calculating amatrix exponential
is (comparably) expensive, replacing it with a series will
reduce the computation time. For N = 2 at higher field
strengths, the truncation error exceeds O([ω�t]2) =
10−5, giving unstable dynamics. This indicates that N
must be chosen with care.

5. Conclusion and outlook

In this work, we have studied three propagators for
molecular dynamics in a magnetic field – namely, the
auxiliary-coordinates-and-momenta (ACM) propagator,
the Tajima (TAJ) propagator, and the new exponen-
tial (EXP) propagator, testing their performance using
simulations of a HeH+ model system at different field
strengths (10−2– 103 B0).

The EXP propagator, which was derived from a trun-
cated Magnus expansion, correctly reduces to the stan-
dard velocity Verlet propagator in the zero-field limit, the
propagators of Spreiter and Walter [14], neglecting elec-
tron shielding, and the cyclotronic motion of a charged
particle. Since it also performed best in our model
simulations and showed the best stability, especially at
higher field strengths, we recommend the EXP propa-
gator for simulations of molecules in a magnetic field.
However, the TAJ propagator delivers identical results
at field strengths ≤ 1 B0 and the more expensive ACM

propagator might be useful for cases where the energy
and/or the electron shielding depend on the nuclear
momenta.

In the study of molecules in strongmagnetic fields, we
are usually interested in field strengths below 1 B0 and
apply time steps of �t = 0.1 fs to resolve the molecular
vibrations. In practice, these time steps are small enough
to resolve the cyclotronicmotion (weak field limit), while,
additionally, allowing for the use of higher-order schemes
and truncation of the exponential series to reduce the
computational cost of the EXP propagator.
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