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Abstract 25 

Most researches on regional flood frequency analysis (RFFA) have proved that the 26 

incorporation of hydrologic information (e.g., catchment attributes and flood records) 27 

from different sites in a region can provide more accurate flood estimation than using 28 

only the observed flood series at the site of concern. One kind of RFFA is based on the 29 

Bayesian method with prior information inferred from regional regression by using the 30 

generalized least squares (GLS) model, which is more flexible than other RFFA 31 

methods. However, the GLS model for regional regression is a stationary method and 32 

not suitable for coping with nonstationary prior information. In this study, in 33 

nonstationary condition, the Bayesian RFFA with the prior information inferred from 34 

regional regression by using the linear mixed effect (LME) model (i.e. a model that 35 

adds random effects to the GLS model) is investigated. Both the GLS-based and LME-36 

based Bayesian RFFA methods have been applied to four hydrological stations within 37 

the Dongting Lake basin for comparison, and the results show that the performance of 38 

nonstationary LME-based Bayesian RFFA method is better than that of stationary GLS-39 

based Bayesian RFFA method according to the deviance information criterion (DIC). 40 

Compared with the stationary GLS-based Bayesian RFFA method, changes in 41 

uncertainty of regression coefficients estimation of at-site flood distribution parameters 42 

are different from site to site by using the nonstationary LME-based Bayesian RFFA 43 

method. The use of nonstationary LME-based Bayesian RFFA method reduces design 44 

flood uncertainty, especially for the very small exceedance probability at the tail. This 45 
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study extends the application of the Bayesian RFFA method to the nonstationary 46 

condition, which is helpful for nonstationary flood frequency analysis of ungauged sites. 47 

Keywords: Catchment attributes; regional regression; GLS model; LME model; prior 48 

probability distribution; posterior probability distribution 49 

1 Introduction 50 

    Flood frequency analysis is very important for hydrological design (e.g., the 51 

capacities of reservoir, levees and spillways) and risk management (Reinders and 52 

Munoz, 2021; Razmi et al., 2022). 53 

Improving the accuracy of flood frequency estimation is essential to ensure the 54 

safety and economy of hydraulic engineering design (Merz and Blöschl, 2008a, 2008b; 55 

Pandey et al., 2020; Razmkhah et al., 2022; Viglione et al., 2013). Numerous studies 56 

have proven that the combination of hydrological information from different sites in a 57 

region can provide more accurate hydrology estimation at a specific site and even 58 

making inferences at ungauged hydrological sites, which is the regional flood frequency 59 

analysis (RFFA) (Allahbakhshian-Farsani et al., 2020; Kuczera, 1982; Merz and 60 

Blöschl, 2008a; Han et al., 2022). 61 

Existing studies on RFFA aim to combine regional information with at-site flood 62 

records in two main ways: one is directly use regional information as covariant of the 63 

statistics of at-site flood samples (e.g. regional regression method and index flood 64 

method) (Gregersen et al., 2017; Gao et al., 2021; Reis et al., 2020), and the other is to 65 

use Bayesian method to associate regional information as prior information with at-site 66 

flood samples information (Kuczera, 1982; Madsen and Rosbjerg, 1997; Vicens et al., 67 

1975). In terms of directly using the regional information, there are many studies that 68 
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use regional regression models to link regional covariates to flood sample statistics. In 69 

terms of using regional information as prior information, existing studies are generally 70 

based on the Bayesian approach, where the prior information of distribution parameter 71 

of site-specific flood series is expressed as a probability distribution (i.e., the prior 72 

distribution), the prior information is combined with site-specific information to obtain 73 

an updated distribution (i.e., the posterior distribution). The parameter prior distribution 74 

can be obtained by using the regional regression model that relates prior distribution 75 

parameter to catchment attributes (Reis et al., 2020; Thomas and Benson, 1970; Griffis 76 

and Stedinger, 2007; Jaffres et al., 2022; Merz and Bloschl, 2005). For example, 77 

Cunnane and Nash (1971) proposed an empirical Bayesian T-year event estimator based 78 

on the Gumbel distribution, where the mean and coefficient of variation were expressed 79 

in terms of catchment area, average annual rainfall, and catchment slop. In contrast to 80 

the regional regression and index flood methods, the Bayesian method relaxes the 81 

constraints on homogeneous regions in the index flood method by allowing the 82 

covariates of frequency distribution parameters to be arbitrary under nonstationary 83 

conditions, not just time. 84 

Due to the climate conditions changes and intensive human activities alter natural 85 

hydrological cycle regimes, the stationary assumption of hydrological series in the 86 

traditional flood frequency analysis has been widely questioned, and therefore most 87 

scholars have extensively developed research on nonstationary flood frequency analysis 88 

(Han et al., 2022; Jiang et al., 2019; Milly et al., 2008; Razmi et al. 2022; Villarini et 89 

al., 2009; Wang et al., 2022; Guo et al., 2021). In stationary RFFA, the flood distribution 90 

parameters are assumed constant, the prior information of the flood distribution 91 
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parameters can be inferred from the regional regression by using the GLS model (Reis 92 

et al., 2005). In nonstationary RFFA, the flood distribution parameters are assumed to 93 

be time-varying, and the GLS model is not applicable to regional regression of time-94 

varying distribution parameters. Therefore, how to utilize the Bayesian method for 95 

nonstationary RFFA needs to be carefully investigated. 96 

    The goal of this study is to study the nonstationary RFFA based on the Bayesian 97 

method. This paper is structured as follows. Section 2 presents the nonstationary RFFA 98 

based on the Bayesian method. Section 3 introduces the study area and data. Section 4 99 

presents the results and discussion of the application of the method. Section 5 presents 100 

the conclusion. 101 

2 Methods 102 

In nonstationary condition, RFFA based on the Bayesian method using the prior 103 

information inferred from regional regression by using the linear mixed effect (LME) 104 

model is investigated. First, the stationary GEV distribution model (SG) and the 105 

nonstationary GEV distribution model (NG) for floods are introduced. Second, under 106 

the stationary condition, the regional regression prior inferred from the generalized least 107 

squares (GLS) model of the at-site regression coefficients of flood distribution 108 

parameters are obtained. Third, under the nonstationary condition, the regional 109 

regression prior inferred from the LME model of the at-site regression coefficients of 110 

flood distribution parameters are obtained. Fourth, Bayesian theory is used to combine 111 

the two different prior information with the flood sample information, and the posterior 112 

probability distribution of the at-site regression coefficients are obtained. Finally, both 113 

the stationary GLS-based and nonstationary LME-based Bayesian RFFA methods (i.e., 114 
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SG-GLS and NG-LME) are applied to four hydrological stations within the Dongting 115 

Lake basin to compare the results of the two methods. The flowchart of nonstationary 116 

RFFA based on the Bayesian method is shown in Fig. 1. 117 

  118 



Accepted version 

Water Resources Management, https://doi.org/10.1007/s11269-022-03394-9 

 

7 

 

 119 

Fig. 1 Flowchart of regional flood frequency analysis based on the Bayesian method 120 

  121 
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2.1 GEV distribution model of flood series 122 

In this study, the annual maximum daily streamflow series is taken as the flood 123 

series. Let flood series Qi,t (t=1,…,T) at the i-th site follow the generalized extreme 124 

value (GEV) (El Adlouni et al., 2007; Martins and Stedinger, 2000) distribution with a 125 

density function ( )1 2 3

, , , ,, ,i t i t i t i tf Q Y Y Y  as follows 126 

( )
3 3
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1 1
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1 1
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 

 (1) 127 

where 
1

,i tY  is the first distribution parameter, i.e. the location parameter; 
2

,i tY  is the 128 

second distribution parameter, i.e. the scale parameter; 
3

,i tY  is the third distribution 129 

parameter, i.e. the shape parameter. 130 

The generalized additive model for location, scale and shape (GAMLSS) (Dixit 131 

and JayakumarnAff, 2022; Rigby and Stasinopoulos, 2005; Stasinopoulos and Rigby, 132 

2007) is introduced into the construction of the nonstationary RFFA model in this paper. 133 

For the GEV distribution, it is commonly assumed that estimators of the at-site flood 134 

distribution parameters 
1

,i tY   and/or 
2

,i tY   are dependent on nonstationary covariates 135 

whereas 
3

,i tY   is always constant, because 
3

,i tY   is quite sensitive and tough to be 136 

estimated (Du et al., 2015; Xiong et al., 2020). Therefore, the at-site flood distribution 137 

parameters can be expressed as follows 138 
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 1 1 2 2 3

G ,0 , ,0 , ,0,..., , ,..., ,i i H i i H ia a a a a=θ

( )

( )

1 1 1 1

1 , ,0 ,1 1, , ,

2 2 2 2

2 , ,0 ,1 1, , ,

3 3

, ,0

...

...

i i

i t i i t i H H t

i i

i t i i t i H H t

i t i

g Y a a Z a Z

g Y a a Z a Z

Y a

 = + + +



= + + +


=

                139 

(2) 140 

where  1 1 2 2 3

G ,0 , ,0 , ,0,..., , ,..., ,i i H i i H ia a a a a=θ  represents the at-site regression coefficients 141 

set of distribution parameters;  1 1 2 2 3

,1 , ,1 ,,..., , ,..., ,i i T i i T iY Y Y Y Y  represents the distribution 142 

parameters estimators based on the at-site flood samples only; ( )1, ,,...,i i i

t t H tZ Z


=Z  is 143 

the vector composed of H nonstationary covariates of the i-th site distribution 144 

parameters, when H=0, nonstationary distribution model reduces to stationary 145 

distribution model; ( )1g   and ( )2g   represent the link function; ( )1g   is assumed 146 

to be the identity or the logarithmic function according to the existing studies (Read and 147 

Vogel, 2016; Sarhadi et al., 2016), while ( )2g    is assumed to be the logarithmic 148 

function to give the positive scale. 149 

2.2 Catchment attributes selection for regional regression model 150 

We select the catchment attributes that affect flood generating process based on 151 

the research of Stein et al. (2021). Three catchment attributes that have great influence 152 

on the corresponding dominant flood processes are selected for the following multiple 153 

regression model, due to the fact that Merz et al. (2000) concluded that the additional 154 

explained variance of regressions using more than three variables is small. 155 
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2.3 Stationary RFFA based on the Bayesian method 156 

In stationary condition, the flood distribution parameters are constant, which 157 

means that H=0 in Eq. (2). The estimation of at-site regression coefficients set of 158 

distribution parameters is  1 2 3

SG ,0 ,0 ,0, ,i i ia a a=θ
  

and the at-site flood distribution 159 

parameters are expressed as 160 

( )

( )

1 1 1

1 ,0

2 1 1

2 ,0

3 3

,0

i i

i i

i i

Y g a

Y g a

Y a

−

−

 =



=


=

                         (3) 161 

where ( )1

1g −   and ( )1

2g −   represent the inverse functions of ( )1g   and ( )2g  . 162 

2.3.1 GLS model 163 

     The generalized least squares (GLS) model is used to establish the relationship 164 

between distribution parameters of multiple flood series and catchment attributes 165 

(Stedinger and Tasker, 1985, 1986a, 1986b), which assumes that the actual values of 166 

the distribution parameters of flood series can be described by a linear function of 167 

catchment attributes with additive errors 168 

,

0

P
k k k

i p i p i

p

Y X 
=

= +                        (4) 169 

2

( ) 0

,
( , )

0,

k

k

i

k k

i j

E

i j
Cov

i j






 

=

 =
= 



                    (5) 170 

where Xi,p (i=1,…,N; p=1,…,P) represents the element of the matrix consisting of P 171 
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regional covariates for N sites; 
k

p  represents the regional regression coefficient of the 172 

k-th distribution parameter; k

i represents the normal distribution model error with the 173 

statistical properties as described in Eq. (5), where 
2

k
  represents the error variance 174 

of the GLS model. 175 

Actually, the at-site actual value k

iY   is generally unavailable, only the at-site 176 

estimate k

iY  of k

iY  is available, thus requiring the sample error k

i  to be introduced 177 

into Eq. (4) as  178 

,

0

k k k

i i i

P
k k k

p i p i i

p

Y Y

X



  
=

= +

= + +
                     (6) 179 

2

( ) 0

,
( , )

,

k
i

k k
i j

k

i

k k

i j

ij

E

i j
Cov

i j



 




 

  

=

 =


= 


                  (7) 180 

where 2
k
i

  represents the sample error variance of k

iY  at site i; ρij = [Rk]ij represents 181 

the correlation coefficient between the sample error at site i and j. 182 

The GLS model in matrix form can be expressed as 183 

k k k k

k k

= + +

= +

Y Xβ δ η

Xβ ε
                       (8) 184 

where X represents an N× (P+1) matrix composed of P regional covariates (i.e. 185 

catchment attributes) of N sites; ( )0 ,...,k k k

P  
=β  represents the regional regression 186 

coefficients set of the k-th distribution parameters; ( )1 ,...,k k k

N  
=δ   represents the 187 
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vector composed of the GLS model error of the k-th distribution parameters of N sites; 188 

( )1 ,...,k k k

N 


=η   represents the vector composed of sample error of N sites; 189 

( )1 ,...,k k k

N  
=ε   represents the total error of the combination of δk and ηk, where 190 

k k k

i i i  = + . 191 

    The total error εk has zero mean and covariance matrix Hk. Hk can expressed as 192 

follows 193 

( )
1

1

2 2

1

2 2
1

+k k k k
i N

k k k k
N N

N

k k k

N

E

   

   

    

    

 
  

= =   
   

+  

H ε ε            (9) 194 

The parameter set of SG-GLS model is denoted by  SG-GLS SG GLS,=θ θ θ , where 195 

 
1

GLS , , ,..., ,k k k
N

k k

  
  =θ β R   represents the parameters set of the GLS model; 196 

 1 2 3

SG ,0 ,0 ,0, ,i i ia a a=θ   represents the at-site regression coefficients set of the GEV 197 

distribution parameters in stationary condition. 198 

2.3.2 GLS-derived prior information of at-site regression coefficients of flood 199 

distribution parameters 200 

    The estimation  
1

GLS
ˆ ˆ ˆ ˆ ˆ ˆ, , ,..., ,k k k

N

k

ij   
   =θ β  of the GLS model is obtained by 201 

the method described in section 2.5.1. The at-site flood distribution parameters follow 202 

normal distribution with mean ˆ k
iY

  and variance 2ˆ k
iY

  203 
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where [X]i represents the element of the i-th row in X; ( )     
1

ˆ ˆk k

i i

−

 =β X H X  205 

represents the covariance matrix of the GLS model. 206 

     The prior probability density function ( )k

if Y  of at-site flood distribution 207 

parameter k

iY  can be expressed as 208 

( )
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2
1
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ˆ1
exp

ˆ2ˆ2

k
i

kk
ii

k

k i Yk
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YY
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 

             (11) 209 

     According to the functional relationship between distribution parameters and 210 

SGθ   described in Eq. (3), the prior probability density function ( )SGf θ  of at-site 211 

regression coefficients 
SGθ  can be expressed as 212 

( )
( )

( )
( )

( )

SG

1 ,0

1

,0

1
1 ,0,0

d

d

d

dd

k
K

i

k
k i
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k ik i

f Y
f

a

f Y g a

ag a

=

−

−
=

=

= 





θ

                     (12) 213 

2.3.3 Posterior distribution of at-site regression coefficients derived from Bayesian 214 

theory 215 

According to the Bayesian theory (Ouarda and El-Adlouni, 2011), the posterior 216 

probability density function ( )SG ,i tf Qθ  of the at-site regression coefficients 
SGθ  217 
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can be expressed as 218 

( )
( ) ( )

( ) ( )
SG

, SG SG

SG ,

, SG SG SGd

i t

i t

i t

l Q f
f Q

l Q f
=

Φ

θ θ
θ

θ θ θ
             (13) 219 

( ) ( ), SG , SG

1

iT

i t i t

t

l Q f Q
=

=θ θ                   (14) 220 

where ( ), SGi tl Q θ  represents the likelihood function of at-site flood series in 221 

stationary condition; ( )SGf θ  represents the prior probability density function. 222 

2.4 Nonstationary RFFA based on the Bayesian method 223 

     In nonstationary condition, the distribution parameters of flood series vary with 224 

nonstationary covariates, which means that H≠0 in Eq. (2) and the at-site regression 225 

coefficients set of distribution parameters is  1 1 2 2 3

NG ,0 , ,0 , ,0,..., , ,..., ,i i H i i H ia a a a a=θ  . The 226 

at-site flood distribution parameters are expressed as 227 

( )
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Y a

−

−
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


= + + +


=

             (15) 228 

2.4.1 LME model 229 

The linear mixed effects (LME) model is used to establish the relationship between 230 

time-varying distribution parameters of multiple flood series and catchment attributes 231 

(Laird and Ware, 1982; Pinheiro and Bates, 2000). The actual value 232 
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( )1, ,,...,k k k

t t N tY Y


=Y  of k-th (k=1,2,3) distribution parameter of N flood series at time t 233 

can be expressed as 234 

, , , , ,

0 0

P P
k k k k

i t p i p p t i p i t

p p

Y X b X 
= =
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i j
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i j
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                    (18) 237 

where ,

k

p tb  represents the change of 
k

p  at time t, also known as the random effect, 238 

which follows the normal distribution with the statistical properties as described in Eq. 239 

(17); ,

k

i t  represents the normal distribution model errors with the statistical properties 240 

as described in Eq. (18). 241 

The at-site estimate ,

k

i tY   of ,

k

i tY
  

is available, and the sample error k

i  is 242 

introduced into the Eq. (16) as 243 
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               (20) 245 
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where 
,

2
k
i t

  represents the sample error variance of k

iY  of site i at time t; ρij = [Rk]ij 246 

represents the correlation coefficient between the sample error at site i and j. 247 

The LME model in matrix form can be expressed as 248 

k k k k k

t t t t

k k k

t t

= + + +

= + +

Y Xβ Xb δ η

Xβ Xb ε
                    (21) 249 

where X represents an N×(P+1) matrix composed of P regional covariates of N sites; 250 

( )0 ,...,k k k

P  
=β  represents the regional regression coefficients set of the k-th 251 

distribution parameter; ( )0, ,,...,k k k

t t P tb b


=b  represents the vector composed of random 252 

effects of P regional regression coefficients at time t, which has zero mean and 253 

covariance matrix 
1

2 2( ,..., )k k
P

k

b b
diag  =G ; ( )1, ,,...,k k k

t t N t  
=δ   represents the vector 254 

composed of LME model error of the k-th distribution parameter of N sites at time t; 255 

( )1, ,,...,k k k

t t N t  
=η  represents the vector composed of sample error of N sites at time t; 256 

( )1, ,,...,k k k

t t N t  
=ε  represents the total error of the combination of k

tδ  and k

tη , where 257 

, , ,

k k k

i t i t i t  = + . 258 

The total error k

tε  at time t has zero mean and covariance matrix k

tH
. 

k

tH
 
can 259 

expressed as follows 260 

( )
1, 1, ,

, 1, ,

2 2

1

2 2
1

+k k k k
t t N t

k k k k
N t t N t

N

k k k

t t t

N

E

   

   

    

    

 
  
 = = 

   
+  

H ε ε          (22) 261 
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The parameters set of NG-LME model is denoted by  NG-LME NG LME,=θ θ θ  , 262 

where  
1

LME , , ,..., ,k k k
N

k k

  
  =θ β R   represents the parameters set of the LME 263 

model;  1 1 2 2 3

NG ,0 , ,0 , ,0,..., , ,..., ,i i H i i H ia a a a a=θ  is the at-site regression coefficients set of 264 

the GEV distribution parameters in nonstationary condition. 265 

2.4.2 LME-derived prior information of at-site regression coefficients of flood 266 

distribution parameters 267 

    The estimation  
1 1, ,

LME
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,..., , ,..., ,k k k k k

P t N T

k

ij b b   
     =θ β  of the LME model 268 

is obtained by the method described in section 2.5.2. The at-site flood distribution 269 

parameters follow normal distribution with mean 
,

ˆ k
i tY

  and variance 
,

2ˆ k
i tY

  270 

 

 

  ( )     

,

,

2 2

ˆˆ

ˆˆ ˆ

k
i t

k k
i t

k

iY

k k

i i i iY 



 

 =



  =  + +


X β

X β X X G X
          (23) 271 

where [X]i represents the element of the i-th row in X; ( )     
1

ˆ ˆk k

ti i

−

 =β X H X  272 

represents the covariance matrix of the LME model. 273 

     The probability density function ( ),

k

i tf Y  of at-site flood distribution parameter 274 

,

k

i tY  can be expressed as 275 

( )
( )

,

,,

2
1

,0 ,

, 2

ˆ,...,1
exp

ˆ2ˆ2

k
i t

kk
i ti t

k k

k i i H Yk

i t

YY

g a a
f Y





−  −  = − 
 
 

        (24) 276 

     According to the functional relationship between distribution parameters and 277 



Accepted version 

Water Resources Management, https://doi.org/10.1007/s11269-022-03394-9 

 

18 

 

NGθ  described in Eq. (15), the prior probability density function ( )NGf θ  of at-site 278 

regression coefficients 
NGθ  can be expressed as 279 

( )
( )

( )
( )

( )

,

NG

1 0 ,

1

, ,0 ,

1
1 0 ,,0 ,

d

d

d d ,...,

dd ,...,

k
K H

i t

k
k h i h

k k k
K H

i t k i i H

kk k
k h i hk i i H

f Y
f

a

f Y g a a

ag a a

= =

−

−
= =

=

= 





θ

      (25) 280 

2.4.3 Posterior distribution of at-site regression coefficients derived from Bayesian 281 

theory 282 

According to the Bayesian theory, the posterior probability density function 283 

( )NG ,i tf Qθ  of the at-site regression coefficients NGθ  can be expressed as 284 

 ( )
( ) ( )

( ) ( )
NG

, NG NG

NG ,

, NG NG NGd

i t

i t

i t

l Q f
f Q

l Q f
=

Φ

θ θ
θ

θ θ θ
             (26) 285 

( ) ( ), NG , NG

1

T

i t i t

t

l Q f Q
=

=θ θ                   (27) 286 

where ( ), NGi tl Q θ  represents the likelihood function of at-site flood series in 287 

nonstationary condition; ( )NGf θ  represents the prior probability density function. 288 

2.5 Parameter Estimation 289 

2.5.1 Estimation of the GLS model parameters 290 

The parameters to be estimated in the GLS model described in Eq. (8) are 291 
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 
1

GLS , , ,..., ,k k k
N

k k

  
  =θ β R . 292 

The estimations k

iY   of at-site distribution parameters used in GLS model are 293 

obtained by the maximum likelihood method using only the at-site flood samples. The 294 

correlation coefficient ρij = [Rk]ij between the sample error at site i and site j can be 295 

calculated using the function of the distance between two sites (Reis et al., 2020). 296 

     The sample error variance 2
k
i

  uses the estimate suggested by Gregersen et al. 297 

(2017). The maximum likelihood method is also used to estimate  , k

k


β . We assume 298 

that the total error εk follows the normal distribution with mean zero and covariance 299 

matrix Hk, the log-likelihood functions of εk can be expressed as 300 

   

( ) ( ) ( )

( ) ( ) ( )

1

1

1

1ˆ ˆ ˆln , , ,..., , ln
2

1
ln

2

k k k
N

k k k k k k k

k k k k k k

f
  

  
−

−

 
= − + 

 

 
= − + − − 

 

ε R β H ε H ε

H Y Xβ H Y Xβ

301 

(28) 302 

      The estimation  ˆ ˆ, k

k


β   is obtained by maximizing the log-likelihood 303 

function ( )
1

ˆ ˆ ˆln , , ,..., ,k k k
N

k k kf
  

  ε R β
.
 304 

2.5.2 Estimation of the LME model parameters 305 

The parameters need to be estimated in the LME model described in Eq. (21) are 306 

 
1, ,

LME , , , ,..., ,k k k
t N T

k k k

  
  =θ β R G . 307 

The at-site time-varying distribution parameter ,

k

i tY   used in the LME model is 308 
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estimated by the maximum likelihood method using only the at-site flood samples. The 309 

correlation coefficient matrix Rk is estimated in the same way as in the GLS model. The 310 

sample error variance 
,

2
k
i t

  is estimated as 311 

( )
,

2

, ,
2 1ˆ

1
k
i t

N
k k

i t i t

i

Y Y

N
 =

−

=
−


                         (29) 312 

, ,

1

1 N
k k

i t i t

i

Y Y
N =

=                              (30) 313 

where ,

k

i tY  represents the average of ,

k

i tY . 314 

The maximum likelihood estimation method has also been used to estimate 315 

 , , k

k k


β G . The total error k

tε  follows the normal distribution with mean zero and 316 

covariance matrix k

tH , the log-likelihood functions of k

tε  is 317 

( )

( ) ( )

( ) ( ) ( )

1, ,
1

1

1

1

1

ˆ ˆ ˆln ,..., , ,..., , , ,

1
ln

2

1
ln

2

k k k
t N T

k k k k k

T

T
k k k k

t t t t

t

T
k k k k k k k k

t t t t t t

t

f
  

  

−

=

−

=

 
= − + 

 

 
= − + − − − − 

 





ε ε R G β

H ε H ε

H Y Xβ Xb H Y Xβ Xb

   (31) 318 

The estimation  ˆ ˆ ˆ, , k

k k


β G   is obtained by maximizing the log-likelihood 319 

function ( )
1, ,

1
ˆ ˆ ˆln ,..., , ,..., , , ,k k k

t N T

k k k k k

Tf
  

  ε ε R G β
.
 320 

2.5.3 Bayesian estimation of at-site regression coefficients of flood distribution 321 

parameters 322 

    The Bayesian estimation of the at-site regression coefficients of flood distribution 323 
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parameters are the expectation of its posterior probability density distribution, which 324 

can be expressed as 325 

      ( )
SG

SG SG SG , SG
ˆ di tf Q= Φθ θ θ θ                  (32) 326 

( )
NG

NG NG NG , NG
ˆ di tf Q= Φθ θ θ θ                 (33) 327 

where SGθ̂   and NGθ̂   represent the Bayesian estimators set of at-site regression 328 

coefficients of flood distribution parameters in stationary and nonstationary conditions, 329 

respectively. The posterior distribution of at-site regression coefficients of flood 330 

distribution parameters can be calculated by the Markov chain Monte Carlo (MCMC) 331 

algorithm (El Adlouni et al., 2007; Laloy and Vrugt, 2012; Martins and Stedinger, 2000; 332 

Vrugt et al., 2009). 333 

2.6 Model selection and diagnosis 334 

In the Bayesian method, the selection of nonstationary covariate ,

i

h tZ  for i site is 335 

based on the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002, 2014) 336 

    In testing the goodness-of-fit of the model, the quantile-quantile plot based on the 337 

diagnosis method is used (Coles, 2001), which assumes that a good model should have 338 

plotted points close to the 1:1 line. The fitted models are further evaluated by testing 339 

the goodness of fit and the uncertainty in quantile estimation.  340 
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3 Study area and data 341 

3.1 Study area 342 

Dongting Lake, the second-largest freshwater lake in China, is located in the 343 

northeastern of Hunan Province, on the southern bank of the Yangtze River mainstream. 344 

The Yangtze River discharges water and sediment to the East Dongting Lake and West 345 

Dongting Lake through the Songzi River, the Hudu River and the Dahei River, i.e. the 346 

Three Inlets. The Southern Dongting Lake and Western Dongting Lake are fed by four 347 

main tributaries: the Xiangjiang River, the Zishui River, the Yuanjiang River, and the 348 

Lishui River, which is referred to as the Four Waters. Dongting Lake discharges water 349 

and sediment into the Yangtze River through the Chenglingji station, which is the only 350 

outlet of the Dongting Lake to the Yangtze river. 351 

3.2 Data 352 

This study covers four hydrological gauges in the Dongting Lake basin (i.e. 353 

Shimen, Taoyuan, Taojiang and Xiangtan). The observed daily streamflow records for 354 

the four gauges were provided by the Hydrology Bureau of the Changjiang Water 355 

Resources Commission, China (http://www.cjh.com.cn/en/index. html). There are a 356 

total of 48 meteorological stations located in and around drainage areas of the four 357 

hydrological gauges, with meteorological data obtained from the National Climate 358 

Center of the China Meteorological Administration (http://www.cma.gov.cn/).  359 

The spatial distribution of the hydrological and meteorological gauges is presented 360 

in Fig. 2, and information on streamflow series is presented in Table 1. 361 
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 362 

Fig. 2 Map of the Dongting Lake basin 363 

Table 1. List of streamflow gauging stations in the Dongting Lake basin used in this 364 

study. 365 

Station Location Station code Station number 

Catchment area 

(km2) 

Shimen Lishui River SM 1 15139 

Taoyuan Yuanjiang River TY 2 87571 

Taojiang Zishui River TJ 3 27033 
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Xiangtan Xiangjiang River XT 4 81638 

  366 
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4 Results and discussion 367 

4.1 Preliminary analysis 368 

We extracted the annual maximum daily streamflow and the corresponding date 369 

from the 52-year daily streamflow series as the flood information for this study. The 370 

Mann-Kendall test (Mann, 1945; Kendall, 1975) is used to test the nonstationary of 371 

flood series SM, TY, TJ and XT, and the results show a significant downward trend in 372 

SM. We take the annual precipitation P and potential evapotranspiration Ep as candidate 373 

covariates of the NG model. The nonstationary models are optimal for SM, TY and XT, 374 

while the stationary model is optimal for TJ as shown in Table 6. The DIC values of 375 

nonstationary model are lower than those of stationary model, so it is concluded that 376 

the performance of nonstationary model based on covariates is better than that of 377 

stationary model. 378 

4.2 Selection of catchment attributes 379 

Table 2 shows the classification results of the annual flood generating process for 380 

SM, TY, TJ and XT. According to the research of Stein et al. (2021), we select the three 381 

indicators of mean slope (MS), mean precipitation (MP) and forest fraction (FF) (Table 382 

2) as catchment attributes for the following multiple regression. 383 

Table 2. Catchment attributes selection list for the regional regression model. 384 

Station 

Climate type 

(EP/P) 

Dominant 

flood type 

Catchment attributes 

MS (°) MP (mm) FF (km2) 
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SM 0.642 LR 19.65 1384 10151 

TY 0.676 LR 17.56 1328 59533 

TJ 0.658 LR 14.91 1430 17492 

XT 0.663 LR 12.38 1506 51902 

4.3 Simulation results 385 

4.3.1 Regional regression results 386 

The GLS model is used for the regional regression of flood distribution parameters 387 

of SM, TY, TJ and XT in stationary condition. Table 3 shows that the R2 is above 0.85 388 

for all four sites, which indicates that the GLS model has good fitting performance and 389 

can be used for subsequent analysis. The variances 2
k
i

  of sample errors of the three 390 

distribution parameters are 5124.41, 2487.59 and 1.24, respectively. The variances 391 

2
k

  of regression errors of the three distribution parameters are 4013.42, 1134.01 and 392 

2.79, respectively. It can be seen that the variance of the sample residuals and the 393 

variance of the regression residuals are reduced for the location, scale and shape 394 

parameters. 395 
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Table 3. The regional regression results of flood distribution parameters by using the GLS model and the LME model for SM, TY, TJ and XT in 396 

stationary condition. 397 

Distribution 

parameter 

GLS model (
0 1 2 3

k k k k k k

i iY MS MP FF    = +  +  +  + ) parameter estimation 

R2 

0

k  
1

k  
2

k  
3

k  Rk 
2

k
i

  2
k

  

1

iY  -25147.47 534.78 12.46 0.16 
1 0.42 0.32 0.25

0.42 1 0.43 0.28

0.32 0.43 1 0.36

0.25 0.28 0.36 1

 
 
 
 
  

 

5124.41 4013.42 0.85 

2

iY  -1078.18 117.46 -0.15 0.47 2487.59 1134.01 0.94 

3

iY  0.04 0.03 -0.02 0.02 1.24 2.79 0.97 

Distribution 

parameter
 

LME model ( , 0 0, 1 1, 2 2, 3 3, ,( ) ( ) ( ) ( )k k k k k k k k k k

i t t t t t i tY b b MS b MP b FF    = + + +  + +  + +  + ) 

parameter estimation 

R2 

0

k  
1

k  
2

k  
3

k  Rk Gk 
2

k
   



Accepted version 

Water Resources Management, https://doi.org/10.1007/s11269-022-03394-9 

 

28 

 

1

,i tY
 -24910.05

 
623.57

 
11.29

 
0.22

 

1 0.42 0.32 0.25

0.42 1 0.43 0.28

0.32 0.43 1 0.36

0.25 0.28 0.36 1

 
 
 
 
  

 

2

2

2

2

2.82

0.01

0.02

0.02

 
 
 
 
 

 2471.43
 

0.87 

2

,i tY
 -1013.85

 
129.01

 
-0.03

 
0.06

 

2

2

2

2

0.03

0.01

0.01

0.01

 
 
 
 
 

 814.04
 

0.93 

3

iY
 0.06

 
0.02

 
0.01

 
0.01

 
- 1.27

 
0.91 

  398 
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 399 

The LME model is used to regional regression the time-varying flood distribution 400 

parameters of SM, TY, TJ and XT in nonstationary condition. Table 4 shows that the R2 401 

is above 0.87 for all four sites, indicating that the LME model has good fitting 402 

performance and can be used for the subsequent nonstationary conditional analysis. 403 

Consistent with the findings in stationary condition, The variance of the sample 404 

residuals and the variance of the regression residuals are reduced for the location, scale 405 

and shape parameters. 406 

The performance of the regional regression model in the nonstationary condition 407 

is superior compared to the stationary condition. Tables 3 shows that the variances of 408 

regression errors in the nonstationary condition are much smaller than that in the 409 

stationary condition. This is due to the use of random effect term in the nonstationary 410 

condition. Compared with the stationary condition, the random effect term is used to 411 

consider the errors of regression coefficients in the nonstationary condition, thus 412 

significantly reducing the variance of regression errors. 413 

4.3.2 Inference results of prior probability distribution function of at-site regression 414 

coefficients 415 

The multivariate normal distributions of distribution parameters are obtained from 416 

the regional regression of three distribution parameters of SM, TY, TJ and XT, and the 417 

prior probability distribution functions of parameters of flood distribution parameters 418 

are then further derived. 419 

The formulas of at-site flood distribution parameters in stationary condition are 420 
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shown in Table 4. The prior probability distribution functions of at-site regression 421 

coefficients inferred from the probability distribution of distribution parameters at the 422 

four stations in stationary condition are shown below 423 

SM: 424 

   425 

( )
( )

( )
( ) ( ) ( )

( )
( )

2
1

1,01

1,0

2
2 2 2

1,0 1,0 1,02

1,0 3

2
3

1,03

1,0

4229.751
exp

2 676.432 26.01

exp 5793.27 exp exp 5793.27
exp

2 16.63 276.48

1.301
exp

2 5.732 2.39

a
f a

a a a
f a

a
f a







 −
 = −
 
 

    −  −    = − − 
  

 

 −
 = −
 
 

  426 

(34) 427 

    TY: 428 

   429 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )

2
1 1 1

2,0 2,0 2,01

2,0 3

2
2 2 2

2,0 2,0 2,02

2,0 3

3

2,0

exp 10315.42 exp exp 10315.42
exp

2 57.84 3346.15

exp 28765.72 exp exp 28765.72
exp

2 61.43 3773.14

1
exp

2 1.78

a a a
f a

a a a
f a

a
f a







    −  −    = − − 
  

 

    −  −    = − − 
  

 

= −


( )
2

3

2,0 0.45

2 3.18

 −
 
 
 

      430 

(35) 431 

TJ: 432 
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( )
( )

( )
( ) ( ) ( )

( )
( )

2
1

3,01

3,0

2
2 2 2

3,0 3,0 3,02

3,0 3

2
3

3,03

3,0

3442.621
exp

2 548.242 23.41

exp 8679.88 exp exp 8679.88
exp

2 31.70 1004.76

1.761
exp

2 1.592 1.26

a
f a

a a a
f a

a
f a







 −
 = −
 
 

    −  −    = − − 
  

 

 −
 = −
 
 
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(36) 434 

XT: 435 
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1 1 1
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4,0 3

2
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4,03
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exp 8542.18 exp exp 8542.18
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exp 24544.01 exp exp 24544.01
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2 49.81 2481.16

1
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a a a
f a

a a a
f a

a
f a







    −  −    = − − 
  

 

    −  −    = − − 
  

 

= −


( )
2

3 0.76

2 2.73

 −
 
 
 

 (37) 436 

Eqs. (41) to (44) are the prior probability distribution functions for at-site 437 

regression coefficients of SM, TY, TJ and XT in stationary condition. 438 

The formulas of at-site flood distribution parameters in nonstationary condition 439 

are shown in Table 4. Compared with the stationary condition, the mean and variance 440 

of distribution parameters are slightly reduced in the nonstationary condition. The 441 

probability distributions of at-site regression coefficients for the four sites in 442 

nonstationary condition are shown below 443 

SM: 444 
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453 

(41) 454 

4.3.3 Calculation results of at-site regression coefficients 455 

Table 4 shows the results of the at-site regression coefficients estimation for SM, 456 

TY, TJ, and XT when using the SG-GLS and NG-LME models. Fig. 3 shows the 457 

posterior probability distributions of at-site regression coefficients when using SG-GLS 458 

and NG-LME models.The results show that the uncertainty in the at-site regression 459 
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coefficients estimation is reduced when using the NG-LME model compared to the SG-460 

GLS model, such as for SM, the uncertainty of at-site regression coefficients 
1

1,0a  of 461 

location parameter by using the SG-GLS model is 1572, which is divided into the 462 

uncertainty of 
1

1,0a   and 
1

1,1a   are 722 and 0.162 by using the NG-LME model. The 463 

uncertainty of at-site regression coefficients 
2

1,0a  and 
3

1,0a  when using the SG-GLS 464 

model are 0.152 and 0.092, which is reduced to 0.012 and 0.042 when using the NG-465 

LME model. 466 

  467 
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 468 

Fig. 3 Posterior probability density curve of at-site regression coefficients of SM, TY, TJ and XT by using the SG-GLS and NG-LME 469 

models470 
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Table 4. The Bayesian estimation results of SG-GLS and NG-LME models of SM, TY, TJ, and XT. 

Station Model 

Formulas for calculating 

distribution parameters 

Estimation of at-site regression coefficients 

DIC 
1

,0ia  1

,1ia  1

,2ia  2

,0ia  2

,1ia  3

,0ia  

SM 

SG-GLS 

1 1

1 1,0

2 2

1 1,0

3 3

1 1,0

exp( )

Y a

Y a

Y a

=

=

=

 4910.274 - - 7.435 - 0.181 1011.829 

NG-LME 

1 1 1

1, 1,0 1,1

2 2

1, 1,0

3 3

1 1,0

exp( )

t

t

Y a a P

Y a

Y a

= +

=

=

 -176.345 4.175 - 7.622 - 0.250 1010.758 

TY 

SG-GLS 

1 1

2 2,0

2 2

2 2,0

3 3

2 2,0

exp( )

exp( )

Y a

Y a

Y a

=

=

=

 9.617 - - 8.347 - -0.174 1078.189 

NG-LME 

1 1 1 1

2, 2,0 2,1 2,2

2 2

2, 2,0

3 3

2 2,0

exp( )

t

t

Y a a P a Ep

Y a

Y a

= + +

=

=

 11719.045 12.226 -16.154 8.417 - -0.156 1035.728 
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TJ 

SG-GLS 

1 1

3 3,0

2 2

3 3,0

3 3

3 3,0

exp( )

Y a

Y a

Y a

=

=

=

 4387.487 - - 7.671 - 0.002 1047.746 

NG-LME 

1 1 1

3, 3,0 3,1

2 2

3, 3,0

3 3

3 3,0

exp( )

exp( )

t

t

Y a a Ep

Y a

Y a

= +

=

=

 11.575 -0.003  7.586  0.157 987.586 

XT 

SG-GLS 

1 1

4 4,0

2 2

4 4,0

3 3

4 4,0

exp( )

exp( )

Y a

Y a

Y a

=

=

=

 9.476 - - 8.284 - -0.145 1074.864 

NG-LME 

1 1

4, 4,0

2 2 2

4, 4,0 4,1

3 3

4 4,0

exp( )

t

t

Y a

Y a a Ep

Y a

=

= +

=

 11278.578 - - 8.276 -0.002 -0.149 976.761 
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4.4 Comparison of the SG-GLS and NG-LME Models 1 

The uncertainty of flood quantiles given by the SG-GLS and NG-LME models can 2 

be calculated based on the empirical posterior distribution of model parameters given 3 

the specific values of covariates. Fig. 4 shows the 95% uncertainty interval of the tails 4 

of cumulative probability distributions given by the SG-GLS and NG-LME models 5 

with the P of the 50th, 90th, and 99th percentiles and the Ep of the 50th, 90th, and 99th 6 

percentiles. The width of the uncertainty intervals in Fis. 4 indicates that the results of 7 

the SG-GLS model have a larger uncertainty than the NG-LME model, especially SM 8 

and TJ. Therefore, the NG-LME model can reduce the uncertainty interval of flood 9 

quantile compared with the SG-GLS model, especially for the case where the 10 

exceedance probability in the tail is very small. 11 
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 12 

Fig. 4 Uncertainty intervals of the tails of cumulative probability distribution of SM, 13 

TY, TJ and XT given by the SG-GLS model and NG-LME model 14 

5 Conclusions 15 

The main purpose of this paper is to study nonstationary RFFA based on the 16 

Bayesian method. The proposed method has been applied to four hydrological stations 17 

within the Dongting Lake basin, and the major conclusions are as follows: 18 

(1) The performances of nonstationary models outperforms the stationary models 19 

by the deviance information criterion (DIC). The DIC values of nonstationary models 20 

(i.e. NG-LME) are lower than those of the stationary models (i.e. SG-GLS). 21 
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(2) The LME model outperforms the GLS model in the regional regression of the 22 

flood distribution parameters. This may be due to the random effect term of the LME 23 

model being used in the nonstationary condition to consider the errors of regression 24 

coefficients in the nonstationary condition, thus greatly reducing the variance of 25 

regression model residuals. 26 

(3) Compare with the stationary model, the increase or decrease in the uncertainty 27 

of regression coefficients estimation of at-site flood distribution parameters is different 28 

from site to site by using the nonstationary model, while the use of nonstationary model 29 

reduces the uncertainty in the estimation of the flood quantile. 30 

This study extends the application of the RFFA based on the Bayesian method to 31 

the nonstationary condition by using the LME model to infer regional prior information, 32 

which can be developed to obtain regional estimates of the statistics of flood at 33 

ungauged sites and is helpful for ungauged sites nonstationary flood frequency 34 

estimation.  35 
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