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Abstract 16 

Modeling hydrological process in the critical zone not only contributes to a better 17 

understanding of interactions across different Earth surface spheres but also holds 18 

significant practical implications for water resource management and disaster 19 

prevention. Rainfall-runoff simulation in critical zones is particularly challenging due 20 

to the amalgamation of temporal and spatial complexity, rainfall variability, and data 21 

limitations. As a pivotal input variable of hydrological models, accurate estimation of 22 

areal rainfall is critical to successful runoff simulation. However, most estimation 23 

methods ignore temporal information, thereby increasing uncertainty in rainfall 24 

estimation and constraining the precision of rainfall-runoff simulation. In this study, the 25 

matrix decomposition-based estimation method (F-SVD), which considers the spatial 26 

and temporal correlation of the rainfall process is employed to estimate areal rainfall. 27 

The superiority of the method in producing two-dimensional rainfall information is 28 

accepted version https://doi.org/10.1002/hyp.15039



 

 

evaluated through its application in runoff simulation with the Xin'anjiang model. The 29 

simulation results of selected flood events in the Jianxi basin in southeast China, 30 

spanning from 2009 to 2019, are compared with those of two widely used rainfall 31 

estimation methods, namely Arithmetical Mean (AM) and Thiessen Polygons (TP). The 32 

results show that (1) F-SVD not only produces the highest Pearson correlation 33 

coefficient between rainfall and runoff series but also reduces the number of flood 34 

events with abnormal rainfall-runoff relationships; (2) the Xin'anjiang model based on 35 

F-SVD achieves the highest Nash-Sutcliffe efficiency and lowest Relative Error, and 36 

performs best in simulating peak flow and its occurrence time as compared to AM and 37 

TP. This study contributes to a finer characterization of watershed rainfall distribution, 38 

enhancing the accuracy and sharpness of runoff simulation. It provides reliable data 39 

support for critical zone research and offers a scientific foundation for rationally 40 

allocating and managing water resources. 41 
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1. INTRODUCTION 45 

The critical zone (CZ) is a pivotal region where interactions between the Earth's 46 

biosphere, atmosphere, and lithosphere converge (Flinchum et al., 2018). Through 47 

comprehensive observations and simulations of diverse ecological, geological, and 48 

climatic processes within the CZ, a deeper understanding of the evolution, alterations, 49 

and intricate interconnections of surface ecosystems can be unveiled (Brooks et al., 50 

2015). Delving into the hydrological processes within the CZ, coupled with unraveling 51 

the embedded rainfall-runoff relationships, precise calculations of rainfall distribution, 52 

and meticulous runoff simulations, can furnish a robust scientific foundation for the 53 

management of water resources, accurate flood predictions, and effective mitigation 54 

strategies against drought. 55 



 

 

The CZ often exhibits complex topographical and geomorphological features, 56 

leading to the spatiotemporal complexity of rainfall distribution patterns. This 57 

necessitates higher-precision models and data to accurately capture these variations. At 58 

present, rainfall information is mainly obtained through the following three ways: 59 

ground-based rain gauges, radars, and satellites (Wang et al., 2021). These three 60 

observation methods' results significantly differ in time and space. Among them, radar 61 

and satellite are indirect observation methods. Radar has a high spatial and temporal 62 

resolution, but its coverage area is limited, and its accuracy is influenced by the 63 

surrounding environment (Wehbe et al., 2020). Meteorological satellites can 64 

continuously and quickly provide large-area rainfall information, but it is inferior to 65 

radar in spatial and temporal resolution. In addition, there is only an indirect physical 66 

relationship between satellite infrared images and rainfall amounts, leading to increased 67 

observational errors. The network of rain gauges is the most direct, effective, and 68 

common way to observe and collect rainfall data, and its main features are convenient, 69 

real-time, and accurate (Michelon et al., 2021; Sreeparvathy & Srinivas, 2022). Thus, 70 

it has become the primary data source for rainfall observation. However, since the 71 

gauges are distributed irregularly and discretely, they only provide single-point 72 

observations, which cannot fully reflect the continuous distribution of spatial rainfall 73 

(Cazzaniga et al., 2022). Therefore, using interpolation methods is a fundamental aspect 74 

of CZ research, as the precision of rainfall distribution data directly impacts the 75 

reliability and effectiveness of these studies. 76 

As a pivotal and active physical process in the hydrological cycle, rainfall is a 77 

crucial driver of hydrological processes (Niu et al., 2021; Qiu et al., 2021). The 78 

influence of rainfall's temporal and spatial distribution on the hydrological response has 79 

long been a hot issue in hydrology (Tao et al., 2021; H. Xu et al., 2013; Y. Zhao et al., 80 

2022). Sapriza-Azuri et al. (2015) investigated the impacts of rainfall spatial variability 81 

on the simulated hydrogeological response. They found that the quickly responding soil 82 

moisture and actual evapotranspiration fields are largely insensitive to the degree of 83 



 

 

rainfall spatial variability. In contrast, the slowly responding processes, such as 84 

groundwater recharge and the spatial runoff generation processes, are sensitive to local 85 

rainfall. Kim and Kim (2020) studied the effect of rainfall spatial distribution on runoff 86 

prediction accuracy and found that rainfall spatial distributions affect the relationship 87 

between the lower limit of rainfall spatiotemporal resolution for runoff models and 88 

runoff prediction accuracy. By providing a reliable foundation, precise runoff 89 

simulations pave the way for a more comprehensive comprehension of the dynamic 90 

processes occurring within CZ. Consequently, it is imperative to incorporate high-91 

quality rainfall data into runoff simulations to achieve a more accurate representation 92 

of runoff processes. 93 

Rainfall estimation methods are chosen for different hydrological models 94 

according to the model features and computational efficiency. Lumped hydrological 95 

models prefer Arithmetic Mean (AM) (Abu Romman et al., 2021) and Thiessen 96 

Polygon (TP) (Verma et al., 2022) to obtain the areal rainfall. Some distributed 97 

hydrological models like VIC (Lilhare et al., 2020) use the inverse distance weighting 98 

(IDW) to interpolate station data into grids to calculate areal rainfall, others like SWAT 99 

(Pang et al., 2020) use the observed data of the nearest rainfall station to the center of 100 

the basin as the areal rainfall. A lot of research work has focused on the influence of 101 

input data uncertainty on runoff modeling (J. Chen et al., 2020; Goshime et al., 2019; 102 

Li & Xu, 2014). Hwang et al. (2020) investigated the impacts of the catchment area on 103 

different spatial interpolation schemes, including the TP, IDW, Multiquadric 104 

interpolation, and Kriging. They found that the latter two methods better estimate areal 105 

mean rainfall on small basins. Errors in rainfall estimation not only hinder our ability 106 

to identify other sources of error but also undermine the reliability of operational 107 

applications, posing a significant challenge for hydrological modeling (Hjelmstad et al., 108 

2021; Hsueh et al., 2022). Existing research highlights the crucial impact of areal 109 

rainfall accuracy on runoff simulation. However, it is essential to recognize that rainfall 110 

is not just about its spatial distribution; it also possesses a critical temporal dimension. 111 



 

 

The rainfall spatial estimation methods for hydrological models follow the "First Law 112 

of Geography" (Tobler, 2004), which separates time from space. Ignoring this temporal 113 

correlation can lead to incomplete representations of the hydrological processes within 114 

a watershed. To address this limitation and enhance the accuracy of runoff simulations, 115 

it becomes imperative to incorporate the temporal dimension into rainfall estimation 116 

when conducting runoff modeling. This holistic consideration of both spatial and 117 

temporal aspects of rainfall ensures that the simulations more faithfully mirror real-118 

world hydrological processes, ultimately advancing our ability to manage and predict 119 

water resources in CZ effectively. 120 

Some scholars have studied rainfall spatiotemporal interpolation methods 121 

(Hussain et al., 2010; Vargas et al., 2021). Militino et al. (2015) proposed two natural 122 

and simple extensions to kriging and thin-plate splines to incorporate time dependence 123 

into the statistical model. They validated the accuracy and efficiency of predictions 124 

from daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in 125 

Navarre, Spain. Saha et al. (2020) proposed a spatio-temporal hybrid modeling 126 

approach by integrating Space-Time Autoregressive Moving Average (STARMA), 127 

artificial neural network, and support vector machine and revealed that the proposed 128 

spatio-temporal hybrid approach had better modeling and forecasting precision over 129 

conventional STARMA. However, it's worth noting that some of these approaches tend 130 

to be relatively complex in terms of practical implementation. In our previous study (H. 131 

Chen et al., 2021), the concept of the recommender system, which predicts users' 132 

preference for products based on historical interactions, was introduced into rainfall 133 

estimation. A matrix decomposition-based rainfall spatiotemporal interpolation method 134 

was proposed to incorporate the rainfall temporal information and spatial distribution 135 

of rain gauges. Through a cross-validation experiment involving 176 rain gauges in the 136 

middle and upper reaches of the Hanjiang River basin, it was verified to have better 137 

accuracy and stability than IDW and ordinary kriging (OK). The mentioned 138 

interpolation method offers higher portability and ease of use. By applying this method 139 



 

 

to areal rainfall calculation and runoff simulation, we aim to investigate whether 140 

incorporating spatiotemporal information related to the rainfall process in hydrological 141 

simulations can accurately represent the physical relationship between rainfall and 142 

runoff. This, in turn, has the potential to enhance the precision of runoff simulations 143 

within the CZ. 144 

The objectives of this study are threefold: (1) to improve the accuracy of areal 145 

rainfall estimation through spatiotemporal interpolation, which can offer more reliable 146 

data support for studies conducted within the CZ; (2) to evaluate the impact of the mean 147 

areal rainfall on rainfall-runoff relationship and runoff simulation, which considers 148 

calculation methods based on spatial relationship and spatiotemporal relationship; and 149 

(3) to enhance the accuracy and sharpness of runoff simulation through incorporating 150 

spatiotemporal interpolated rainfall, which enables better prediction and management 151 

of water resources and flood risks in the CZ. In this study, the matrix decomposition-152 

based interpolation method inspired by Recommender Systems is applied to calculate 153 

the areal rainfall considering the spatiotemporal information. Based on the estimated 154 

areal rainfall, the rainfall-runoff modeling is conducted through the Xin'anjiang model, 155 

and its performance is compared with the model driven by rainfall calculated by 156 

Arithmetic Mean and Thiessen Polygon to explore the effect of spatial and temporal 157 

rainfall information on runoff simulation.  158 

2. METHODS 159 

The main research steps of this study are shown in Figure 1. 160 

[Insert Figure 1] 161 

2.1 Spatiotemporal rainfall estimation method based on F-SVD 162 

In our previous study (H. Chen et al., 2021), a rainfall spatiotemporal interpolation 163 

method based on matrix decomposition (hereafter referred to as F-SVD) was proposed. 164 

Cross-validation confirms that compared with traditional interpolation methods 165 

(inverse distance weight, ordinary kriging, etc.), F-SVD can reduce the estimation error 166 

and offer a better spatial estimation. The calculation process of F-SVD is shown in 167 



 

 

Figure 2 and consists of the following steps: 168 

[Insert Figure 2] 169 

a. For the rainfall estimation of the target point at a particular moment, m 170 

surrounding gauges and n adjacent influencing moments containing the previous 171 

rainfall information must be determined. 172 

b. The rainfall data of the surrounding gauges and the target point at adjacent 173 

moments can form a spatiotemporal rainfall data matrix R sized of (m+1)*n, where the 174 

rows and columns represent the relationship between time and space, respectively. 175 

c. For the historical rainfall of the target point in the matrix, if there are unknown 176 

null values, the traditional interpolation method should calculate the corresponding 177 

rainfall until only one element in the matrix representing the rainfall to be estimated is 178 

a null value. 179 

d. The F-SVD method decomposes the spatiotemporal rainfall data matrix into 180 

a temporal feature matrix X and a spatial feature matrix Y (as shown in Figure 3), and 181 

the stochastic gradient descent algorithm is used for optimization.  182 

e. The two optimal feature matrices are then multiplied to obtain the 183 

reconstruction matrix P, the element of m+1 row and n column in the reconstructed 184 

matrix is the estimated rainfall, which is calculated as follows: 185 

 i,j i,q q, j
1

q

q
P X Y

=

=∑  (1) 186 

where q is the number of latent features. 187 

[Insert Figure 3] 188 

In this study, the study area is divided into 0.1°×0.1° grids, and the proposed 189 

spatiotemporal interpolation method based on matrix decomposition is combined with 190 

IDW to calculate the rainfall of each grid point, and the areal rainfall is spatiotemporally 191 

estimated as the result of arithmetic mean values of all grid points. 192 

2.2 Xin'anjiang model 193 

The Xin'anjiang model is a conceptual rainfall-runoff model proposed by Zhao (1992), 194 



 

 

which has gained significant popularity and recognition in hydrology, particularly in 195 

China (Qi et al., 2022; W. Yang et al., 2020). It has been widely utilized in numerous 196 

studies conducted in humid and semi-humid areas (Qi et al., 2021; Wan et al., 2021; X. 197 

Yang et al., 2020), demonstrating the model's effectiveness and practical applicability 198 

in simulating rainfall-runoff processes. The Xin'anjiang model consists of 199 

evapotranspiration, runoff production, runoff separation, and flow routing modules. 200 

The evapotranspiration module uses a three-layer evapotranspiration model that divides 201 

the soil into three layers and calculates the actual evapotranspiration based on the soil 202 

water content and potential evapotranspiration. The runoff production module is based 203 

on the basin storage capacity curve, which considers the spatial heterogeneity of soil 204 

water storage. The runoff separation module divides the total runoff into three water 205 

sources: surface runoff, interflow, and groundwater, concerning the theory of hillside 206 

hydrology using a free water storage reservoir. In the flow routing module, considering 207 

the differences in the flow confluence processes of the three water sources, the surface 208 

runoff is confluent by the unit line method, and interflow and groundwater are confluent 209 

by linear reservoirs. 210 

The calculation of these four modules of the Xin'anjiang model involves 15 211 

parameters shown in Table 1, which can be calibrated by the Shuffled Complex 212 

Evolution method developed at The University of Arizona (SCE-UA) (Duan et al., 213 

1994). This study uses the spatiotemporally estimated rainfall in step 1 as the areal 214 

rainfall to drive the Xin'anjiang model for runoff simulation. Two commonly used areal 215 

rainfall calculation methods, namely the AM and TP, are used to obtain the areal rainfall 216 

for comparison. When calibrating parameters using optimization algorithms, there is 217 

inherent uncertainty. To mitigate the potential impact of this uncertainty on runoff 218 

simulation results, we employed the same set of parameters when comparing the 219 

simulation outcomes of the Xin'anjiang model using three different areal rainfall 220 

datasets. Specifically, we used the optimal parameters derived from the calculated mean 221 

areal rainfall series by AM. 222 



 

 

[Insert Table 1] 223 

2.3 Model evaluation indicators 224 

A cross-validation method is used to validate the proposed rainfall estimation method. 225 

Using the leave-one-out method, the F-SVD method is combined with IDW to 226 

interpolate the rainfall at each gauge. Four indicators are selected to evaluate the 227 

accuracy, namely root-mean-square error (RMSE), mean average error (MAE), 228 

percentage error (PERC), and two-sample Kolmogorov-Smirnov test statistic (KS). 229 

RSME and MAE represent the absolute deviation between estimation and observation, 230 

PERC represents the relative error, and KS checks whether the distributions of the two 231 

data are consistent. The low values of those indicators suggest a high accuracy of the 232 

estimation method. The computations of RMSE, MAE, PERC, and KS values are 233 

described below. 234 
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where obs
iz  and sim

iz  are the observed and estimated rainfall at the i-th gauge; 1n  is 239 

the number of moments when the rainfall is not zero; 2n  is the number of rainless 240 

moments estimated to be rainy; 1F  and 2F  indicate the distribution functions of 241 



 

 

estimation and observation series of the i-th gauge; pd  denotes the critical value at 242 

the significance level 5%p = . 243 

To evaluate the effect of considering the spatial and temporal relationship of 244 

rainfall on the runoff simulation, the areal rainfall estimation by the proposed method 245 

is input into the hydrological model for validation. The elements describing floods 246 

include flood hydrograph, flood volume, peak flow, and peak occurrence time. To 247 

comprehensively evaluate the simulation results, besides two commonly used 248 

indicators, including the Nash-Sutcliffe efficiency coefficient (NSE) and the relative 249 

error of water balance (RE), two other indicators, namely the peak occurrence time 250 

difference (tAE) and the relative error of flood peak flow (vRE), are also selected to 251 

evaluate the effect of spatiotemporal estimated rainfall on the simulation of flood peak. 252 

NSE indicates the degree of agreement between the simulated flood hydrograph and the 253 

observed one; the closer the value is to 1, the better the runoff simulation. RE reflects 254 

the accuracy of the total flood volume; the closer the value is to 0, the better the 255 

simulation result. tAE refers to the difference between when the maximum flood flow 256 

occurs in the simulated and actual floods. vRE reflects the simulation error of peak flow, 257 

i.e., the maximum flow in the flood process; the smaller the value, the better the peak 258 

flow simulation. The calculation equations are as follows: 259 
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where yc and yo represent the simulated and observed runoff process of floods; cTime  264 



 

 

and oTime  are the peak occurrence time of simulated and observed floods. 265 

3. STUDY REGION & DATA 266 

The Jainxi basin is located in southeast China. The topography of the watershed is 267 

diverse, characterized by multi-sided surrounding mountains, resulting in intricate 268 

terrain and the formation of a complex river network. The basin experiences a 269 

subtropical monsoon climate with warm and humid weather. Seasonal rainfall patterns 270 

are evident, with April to June being the plum rain season and July to September being 271 

the typhoon rain season. The vegetation within the basin is varied, with extensive 272 

coverage of mountain forests, accounting for 78.75% of the land area. Additionally, 273 

15.81% of the area is farmland, while grasslands cover 3.95%. Influenced by natural 274 

factors such as terrain, climate, and vegetation, as well as human factors, including land 275 

use types, most of the basin is prone to soil erosion and is highly sensitive to human 276 

activities due to its delicate ecosystem. Some areas are characterized by geological 277 

structures and materials susceptible to landslide events. Coupled with frequent heavy 278 

rainfall, this contributes to the occurrence of geological hazards. The hilly and 279 

mountainous terrain and swift water flow make the watershed susceptible to rapid 280 

runoff during heavy rain, increasing the risk of flooding. Overall, the Jianxi basin 281 

exhibits diverse landforms, varied geological conditions, rich soil and vegetation, and 282 

a complex ecological environment.  283 

Accurate flood simulation is of paramount importance for enhancing disaster 284 

risk management capabilities and preserving the ecological environment in this basin. 285 

Understanding the rainfall-runoff relationship is crucial for the region's water resource 286 

management and flood control efforts. Previous research conducted in the Jianxi basin 287 

has explored the evolution of rainfall and runoff processes (Cui et al., 2022; Jie et al., 288 

2018; Li et al., 2022; Sheng et al., 2020), yet these analyses primarily relied on rainfall 289 

spatial distribution information, neglecting the effect of temporal dynamics on rainfall 290 

estimation. This study aims to enhance our understanding of the role of two-291 



 

 

dimensional spatial and temporal rainfall information in improving the accuracy and 292 

sharpness of runoff simulation. 293 

The spatial distribution of hydrological stations and sub-basins is shown in 294 

Figure 4. The whole basin has 7 hydrological stations, 15 rainfall stations, and 3 295 

evaporation stations. Hourly hydrological data of 45 flood events from 2000 to 2019 296 

are selected as the research data in this study. 297 

[Insert Figure 4] 298 

4. RESULTS 299 

4.1 Evaluation of interpolation accuracy on rainfall events 300 

According to the flow process of the 45 flood events, the corresponding rainfall events 301 

are selected, and the rainfall of each gauge is estimated by the leave-one-out method. 302 

The estimation accuracy of each gauge is evaluated using four indicators, and the results 303 

are presented in Figure 5 as a box plot. From the figure, it can be seen that F-SVD 304 

outperforms the IDW method in terms of all indicators. Compared with IDW, F-SVD 305 

has a lower mean value and less uncertainty, indicating a higher precision and proving 306 

that considering spatial and temporal information for rainfall estimation is helpful for 307 

accuracy improvement. 308 

[Insert Figure 5] 309 

To further evaluate the performance of the interpolation method in the cross-310 

validation, two typical rain events, including a heavy rain event (June 17 to June 28, 311 

2005) and a light rain event (May 25 to May 30, 2016), are selected for comparative 312 

analysis, and the results are shown in Figure 6. The four subgraphs show, in order, the 313 

accumulated rainfall, the errors of the IDW and F-SVD evaluated by RSME, and the 314 

improvement rate of the estimation accuracy achieved by F-SVD. From the results of 315 

gauges' estimation errors in Figure 6(b) and Figure 6(c), it is clear that gauges with large 316 

rainfall values tend to produce large estimation errors as well. In Figure 6(d), there are 317 

few blue dots with an improvement rate of less than 0, which means the accuracies of 318 

most gauges are improved using the F-SVD method. Besides, the number of gauges 319 



 

 

with higher accuracy is larger for the heavy rain event than for the light rain event. As 320 

for the few points with small cumulative rainfall or uneven distribution of surrounding 321 

gauges, the information in the spatiotemporal rainfall matrix is not comprehensive and 322 

integrated enough to be effectively decomposed and reconstructed, resulting in no 323 

improvement in accuracy. The superiority of F-SVD in the Jianxi basin in this study is 324 

consistent with the findings of our previous study, which demonstrated the advantage 325 

of F-SVD over IDW and OK in the cross-validation of 176 rain gauges in the Hanjiang 326 

River basin (H. Chen et al., 2021). Therefore, the F-SVD method can effectively extract 327 

spatial and temporal features from the historical precipitation, improving the accuracy 328 

of interpolation, particularly in basins with abundant rainfall. 329 

[Insert Figure 6] 330 

4.2 Correlation analysis of rainfall and runoff 331 

The Jianxi watershed is divided into several sub-basins according to the spatial 332 

distribution of runoff stations, and the proposed spatiotemporal interpolation method 333 

F-SVD is used to calculate the mean areal rainfall of each sub-basin, which is compared 334 

with the other two widely used calculation methods, including AM (Arithmetical Mean) 335 

and TP (Thiessen Polygons). The Pearson correlation coefficients between the three 336 

mean areal rainfall series and runoff observation series are calculated for each sub-basin, 337 

and the correlation coefficient matrices are averaged and drawn into a heat map shown 338 

in Figure 7. As a statistical measure that quantifies the strength and direction of the 339 

relationship between two variables without considering the absolute differences in their 340 

values, the Pearson correlation coefficient ranges between -1 and +1, where +1 341 

represents a perfect positive correlation. It can be seen from the figure that there is a 342 

strong correlation between the mean areal rainfall calculated by AM and TP with the 343 

Pearson correlation coefficient above 0.9, meaning that as one variable increases, the 344 

other variable tends to increase as well. In contrast, F-SVD differs from those two 345 

methods in variation since the correlation is slightly lower. Besides, the runoff series 346 

demonstrates the highest correlation with the mean areal rainfall series computed using 347 



 

 

F-SVD, while the correlations between the other two mean areal rainfall series and 348 

runoff are very similar, with TP exhibiting a slightly higher correlation. 349 

[Insert Figure 7] 350 

For each sub-basin, the relationship between the cumulative rainfall and runoff 351 

depth is analyzed by estimating the determination coefficient using linear regression 352 

(Tirkey et al., 2014), and the result is shown in Figure 8, where red dots indicate the 353 

abnormal floods when runoff depth exceeds total rainfall. It can be seen from the figure 354 

that the determination coefficient is above 0.9 in different sub-basins, a typical 355 

phenomenon in humid regions, indicating that strong correlations exist between runoff 356 

depth and cumulative rainfall calculated by the three methods (Gupta & Dixit, 2022). 357 

Meanwhile, when F-SVD is used to calculate the cumulative rainfall, the rainfall-runoff 358 

determination coefficient (R2) of the floods is the highest, and the abnormal situations 359 

where the total rainfall is less than the runoff decrease. Although F-SVD may exhibit 360 

greater accuracy at the hourly scale, these effects tend to average over time, reducing 361 

the noticeable differences in cumulative rainfall. Calculating cumulative rainfall can 362 

involve statistical offsetting of the data, resulting in a relatively small improvement in 363 

R2 and linear regression slopes. In summary, F-SVD provides areal rainfall series with 364 

a higher correlation with runoff series, and the good relationship between rainfall and 365 

runoff is essential to successful rainfall-runoff modeling and accurate runoff forecasting 366 

(Saft et al., 2015). 367 

[Insert Figure 8] 368 

4.3 Evaluation of runoff simulation based on different areal rainfall 369 

According to the calculated mean areal rainfall series, the parameters of the Xin'anjiang 370 

model are calibrated using the SCE-UA algorithm. To avoid the influence of the 371 

uncertainty in the optimal parameters on the simulation results, three different rainfall 372 

data are input to the Xin'anjiang model for runoff simulation using the same set of 373 

parameters calibrated by AM (Table 2), and the comparison results are shown in Table 374 

3. At the same time, the simulation results of the calibrated parameters based on TP and 375 



 

 

F-SVD are also attached to the table. For each sub-basin, the Xin'anjiang model driven 376 

by the rainfall of F-SVD achieves the highest NSE, lowest RE, tAE, and vRE in almost 377 

all cases. Compared with AM and TP, F-SVD increases the value of NSE by 7.5% and 378 

5.7% and decreases the value of RE by 58.8% and 56.5%, respectively. The 379 

improvement rate of tAE reaches 16.9% and 8.8%, and that of vRE reaches 10.7% and 380 

9.27%, respectively. The evaluation results of different indicators are consistent; that 381 

is, the accuracy of runoff simulation based on F-SVD is the highest, followed by TP, 382 

and that of AM is the lowest. And this difference in accuracy is more obvious in smaller 383 

sub-basins. The difference between the simulation results of three rainfall data using 384 

the same set of parameters is similar to that using its own calibrated parameters, and 385 

the accuracy is slightly higher using their own calibrated parameters. 386 

[Insert Table 2] 387 

[Insert Table 3] 388 

The evaluation accuracy of all selected flood simulation results using different 389 

mean areal rainfall in each sub-basin is shown in Figure 9. It can be seen from the figure 390 

that, compared with large sub-basins (JY, QLJ), the medians of the boxplot of the three 391 

methods are lower, and the intervals are wider in small sub-basins (MS, WYS, SX), 392 

indicating that there are more uncertain and more challenging to simulate runoff in 393 

small sub-basins. Furthermore, the interval widths and median values of AM and TP 394 

simulation results are similar for most watersheds. At the same time, the evaluation 395 

results of the runoff simulation using F-SVD to calculate the mean areal rainfall are 396 

improved compared with the other two methods in terms of median value and interval 397 

width, indicating that using F-SVD to calculate rainfall for runoff simulation has higher 398 

accuracy and smaller uncertainty. 399 

[Insert Figure 9] 400 

4.4 Runoff simulation results of typical floods 401 

To better compare the differences in runoff simulation using different mean areal 402 

rainfall, three typical flood events, corresponding to P=80%, P=50%, and P=1% floods 403 



 

 

(P is the flood frequency of exceedance), are selected to compare the difference 404 

between the simulated and the observed flood hydrographs. Based on the river levels 405 

observed at the outlet stations of the basin (refer to Figure 4) and the corresponding 406 

basin areas (see Table 3), two small sub-basins, MS and SX, and two large sub-basins, 407 

JY and QLJ, are chosen to perform the evaluation. The simulation results of typical 408 

floods in these selected basins are depicted in Figure 10. It can be found from the figure 409 

that, on the whole, the runoff simulation result in large sub-basins is better than that in 410 

small sub-basins, which is consistent with other research results (Ghimire et al., 2022; 411 

Merz et al., 2009). Floods in small sub-basins have the characteristics of steep rise and 412 

fall, rapid peak formation, and complex runoff generation and concentration processes, 413 

increasing the difficulty of runoff simulation (Chen et al., 2022). However, whether in 414 

small sub-basins or large sub-basins, when using F-SVD to calculate the mean areal 415 

rainfall for runoff simulation, the simulated hydrograph fits better with the observed 416 

one, and the peak value and peak occurrence time of the simulated flood are also more 417 

accurate. Besides, the runoff simulation based on AM has the poorest performance, 418 

especially in the simulation of flood peaks. Due to the considerable temporal and spatial 419 

variation of rainfall during flood events, the station observation data cannot fully reflect 420 

the spatial distribution of rainfall in the basin; thus, it is hard to accurately simulate the 421 

runoff by calculating the mean areal rainfall using AM (Gentilucci et al., 2022). For 422 

example, in the Qilijie basin, the simulated flood peaks of small and medium floods are 423 

earlier than the observed ones. 424 

[Insert Figure 10] 425 

5. DISCUSSION  426 

Rainfall data is characterized as spatiotemporal structured data, exhibiting correlations 427 

and continuity in both time and space (Liu et al., 2022). The F-SVD method leverages 428 

the rainfall data matrix to uncover latent temporal and spatial features from historical 429 

rainfall information, then employs the derived feature matrices to estimate rainfall at 430 

the interpolation point. This approach's superior accuracy, demonstrated through cross-431 



 

 

validation in the Jianxi basin (Figure 5), outperforms the IDW method. This finding is 432 

consistent with our earlier research, where F-SVD's accuracy surpassed traditional 433 

methods, including IDW and OK, which rely on spatial relationships for interpolation. 434 

Other researchers have also noted the enhanced accuracy from considering temporal 435 

correlations in rainfall data during estimation (Cassiraga et al., 2021; Xu et al., 2019). 436 

Among rainfall events of different intensities, heavy rainfall displays robust 437 

spatiotemporal characteristics and correlations (Li et al., 2022), offering richer and 438 

more valuable information (Wu et al., 2020). Consequently, the advantages of F-SVD 439 

over traditional interpolation methods are particularly pronounced when dealing with 440 

high-intensity rainfall events (Figure 6). 441 

The interpolation of rainfall data using the F-SVD method is extended to cover 442 

each grid point within the Jianxi basin, and the resulting values are then aggregated 443 

through arithmetic averaging to derive areal rainfall. Compared to commonly employed 444 

methods such as AM and TP, the spatiotemporal-interpolated areal rainfall 445 

demonstrates a more reasonable and coherent relationship with runoff patterns. This 446 

enhanced coherence is particularly evident through the amplified correlation between 447 

rainfall and runoff sequences, as depicted in Figure 7. Moreover, adopting the F-SVD 448 

method helps alleviate instances where flood runoff depths surpass total rainfall 449 

amounts (Figure 8). When applying estimated areal rainfall in runoff simulation, the 450 

advantages of utilizing F-SVD-derived areal rainfall become pronounced. By 451 

employing different areal rainfall datasets as inputs for the hydrological model 452 

parameter optimization through the SCE-UA method, the accuracy during the 453 

validation period, as indicated in parentheses in Table 3, reveals that simulations based 454 

on F-SVD-derived rainfall consistently outperform those based on TP and AM. The 455 

utility of the F-SVD method extends beyond simply improving rainfall-runoff 456 

relationships. The implications of its application carry significant potential for 457 

enhancing hydrological modeling and predictions across various watersheds. 458 



 

 

The uncertainty inherent in the computation of areal rainfall can introduce 459 

biases in parameter estimation, subsequently impacting model simulation accuracy 460 

(McMillan et al., 2011). In the context of this study, we have temporarily set aside the 461 

potential influence of model structure and parameters on simulation outcomes. Instead, 462 

we have attributed changes in streamflow simulation results solely to rainfall input 463 

variations stemming from different interpolation methods. When conducting a 464 

comparative analysis of different areal rainfall simulation outcomes, we maintain 465 

consistency by utilizing the same set of parameters, i.e., the rate-optimal parameters for 466 

surface rainfall calculated using the AM method (Table 2). Notably, due to the higher 467 

precision of F-SVD-derived areal rainfall calculations, the runoff simulation results 468 

exhibit enhanced accuracy and greater stability (Table 3, Figure 9). This outcome 469 

highlights that the quality of rainfall inputs can significantly influence the outcomes of 470 

runoff simulations (Fraga et al., 2019). It is worth noting that the distribution of rainfall 471 

directly affects the shape of the flooding process, particularly the peak flow, which 472 

often exhibits a close correlation with short-duration high-intensity rainfall events 473 

(Kabir et al., 2022). F-SVD, with its superior accuracy and sensitivity to temporal 474 

correlations, particularly shines under conditions of high-intensity rainfall. As such, it 475 

delivers more precise peak flow values and accurate peak occurrence times in its runoff 476 

simulations (Figure 10). The finding reinforces that accounting for the spatiotemporal 477 

characteristics in calculating surface rainfall is essential for achieving reliable and 478 

accurate hydrological modeling outcomes. 479 

The spatiotemporal interpolation approach employed in this study presents the 480 

potential for seamless expansion to diverse CZ. This adaptability allows for using 481 

observed data from rainfall stations to interpolate areal rainfall, consequently producing 482 

more accurate estimates than traditional interpolation techniques solely reliant on 483 

spatial relationships. This methodology's versatility extends beyond rainfall data. It can 484 

be harnessed to interpolate other spatiotemporal structured datasets within hydrology, 485 

encompassing temperature, soil moisture, and more variables. Furthermore, the derived 486 



 

 

areal rainfall distribution can be harnessed to drive distributed hydrological models, 487 

including well-established frameworks like the SWAT and the VIC model. By 488 

incorporating high-quality areal rainfall data as input, these models can produce more 489 

accurate and finely-tuned runoff simulations, thus contributing to the advancement of 490 

hydrological simulation and prediction methodologies. In sum, the spatiotemporal 491 

interpolation method enhances the accuracy of rainfall estimation and runoff simulation. 492 

Its adaptability and potential for integration with established modeling approaches 493 

underscore its significance in advancing the accuracy of hydrological process 494 

simulation in CZ. 495 

6. CONCLUSIONS 496 

In this study, the spatiotemporal rainfall estimation method based on matrix 497 

decomposition is proposed and applied to areal rainfall calculation to improve the 498 

accuracy of the estimation. The Xin'anjiang model is built based on the spatiotemporal 499 

rainfall information to simulate runoff. Finally, the rainfall estimation and runoff 500 

simulation results are compared with two other methods, namely Arithmetical Mean 501 

and Thiessen Polygons. The conclusions are as follows: 502 

(1) The F-SVD method performs better in cross-validation than the traditional 503 

methods and proves that considering spatial and temporal information for rainfall 504 

estimation is helpful for accuracy improvement. 505 

(2) When using the F-SVD method to calculate the areal rainfall 506 

spatiotemporally, the Pearson correlation coefficient between the areal rainfall series 507 

and the runoff series is the highest, and the rainfall-runoff determination coefficient of 508 

flood events reaches 0.97. 509 

(3) The Xin'anjiang model built based on the spatiotemporally estimated rainfall 510 

not only achieves the highest NSE and lowest RE, tAE, and vRE but also shows smaller 511 

uncertainty and better stability in runoff simulation. The improvement of NSE and RE 512 

reaches 7.5% and 5.7%, and 58.8% and 56.5%, respectively, compared with the model 513 

based on rainfall estimated by AM and TP. 514 



 

 

(4) The F-SVD method comprehensively utilizes the spatial relationship of 515 

rainfall stations and the temporal variation of rainfall time series to calculate mean areal 516 

rainfall; thus, the simulated flood's peak flow and peak occurrence time are more 517 

accurate than traditional areal rainfall calculation methods. 518 

The spatiotemporal interpolation method in this study facilitates a more refined 519 

estimation of basin rainfall distribution, which offers more reliable data support for 520 

disaster early warning and resource management within the CZ. The improved rainfall 521 

interpolation results can further refine the precision of flood simulations, which stands 522 

as a cornerstone element of the study of hydrological and ecological processes in the 523 

CZ. The accuracy of runoff simulations not only directly influences the reliability and 524 

efficacy of other research facets but also underpins their overall credibility and 525 

effectiveness. 526 

Though the proposed approach is demonstrated in one study region in southeast 527 

China, it is anticipated to be easily used for areal rainfall estimation or rainfall-runoff 528 

modeling in other river basins, especially in areas with ample rainfall or dense 529 

distribution of rain gauges. The temporal and spatial unevenness of the rainfall process 530 

increases the complexity of the hydrological process mechanism and reduces the 531 

accuracy of the hydrological simulation; thus, in future research, the temporal and 532 

spatial uncertainty of rainfall will be taken into account to improve the relationship 533 

between the relative deviation of the mean areal rainfall and runoff simulation. 534 
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TABLES 

Table 1 Description of the parameters and its physical meaning of the Xinanjiang 

model. 

Classification Parameter Physical meaning Range 

Evapotranspiration 

KE Ratio of potential evapotranspiration to 
pan evaporation 0.6-2 

X the coefficient of the upper layer 
tension water storage capacity 0.1-1 

Y the coefficient of the lower layer 
tension water storage capacity 0.1-1 

C Evapotranspiration coefficient of deep 
layer 0.15-0.2 

Runoff production 

WM Areal mean tension water storage 
capacity 100-150 

B Exponent of the tension water-capacity 
distribution curve 0.1-0.8 

IMP Factor of impervious area 0.01-0.4 

Runoff separation 

SM Free water-storage capacity 10-80 

EX Exponential of distribution of free 
water-storage capacity 1.0-1.5 

KI Out flow coefficient of free water 
storage to interflow 0.01-0.45 

KG Out flow coefficient of free water 
storage to groundwater flow 0.01-0.6 

Flow routing 

CI Recession constant of lower-interflow 
storage 0.7-1 

CG Recession constant of groundwater 
storage 0.97-1 

N Parameter of Nash unit hydrograph 0.5-12 
NK Parameter of Nash unit hydrograph 0.8-25 

 

  



 

 

Table 2 Optimal parameters sets obtained by SCE-UA algorithm. 

parameter WYS MS JY SJ SX XC QLJ 
WM 123.90 143.56 104.27 115.79 142.82 132.46 137.39 

X 0.10 0.09 0.16 0.17 0.09 0.10 0.14 
Y 0.66 0.62 0.94 0.69 0.52 0.60 0.58 

KE 0.93 1.85 1.87 1.16 1.65 1.96 1.65 
B 0.42 0.39 0.45 0.40 0.40 0.40 0.44 

SM 32.92 28.94 28.77 38.27 25.59 45.34 47.38 
EX 1.11 1.41 1.07 1.47 1.37 1.37 1.10 
KG 0.54 0.45 0.42 0.38 0.37 0.36 0.40 
KI 0.26 0.34 0.33 0.40 0.37 0.36 0.33 

IMP 0.25 0.13 0.22 0.25 0.22 0.30 0.30 
C 0.17 0.16 0.15 0.18 0.17 0.18 0.19 
CI 0.92 0.92 0.94 0.92 0.93 0.93 0.98 
CG 0.99 0.99 0.99 0.99 0.97 0.98 0.99 
N 1.15 3.08 4.28 2.18 1.51 2.92 4.74 

NK 7.55 2.22 2.80 7.88 6.58 4.08 3.40 

 

  



 

 

 1 

Table 3 Runoff simulation evaluation results of different areal rainfall based on the same set of parameters. 2 

Sub-basin           WYS MS JY SJ SX XC QLJ 
Average Improvement 

rate (%) Area(km2) 781 1072 4837 1653 3305 3060 14787 

NSE 

AM 0.807 0.796 0.871 0.858 0.822 0.826 0.904 0.841 7.48 (10.24) 

TP 0.809(0.843) 0.809(0.831) 0.881(0.917) 0.865(0.891) 0.837(0.864) 0.864(0.860) 0.918(0.925) 0.855(0.876) 5.7 (5.78) 

F-SVD 0.860(0.886) 0.893(0.919) 0.926(0.955) 0.914(0.943) 0.872(0.899) 0.895(0.932) 0.964(0.953) 0.903(0.927) - 

RE 

AM 0.09 0.183 0.117 0.046 0.117 0.108 0.064 0.103 58.8 (61.85) 

TP 0.035(0.033) 0.22(0.209) 0.079(0.075) 0.022(0.027) 0.109(0.103) 0.164(0.156) 0.058(0.055) 0.098(0.094) 56.5 (58.01) 

F-SVD 0.034(0.031) 0.091(0.084) 0.024(0.022) 0.05(0.046) 0.024(0.022) 0.033(0.031) 0.043(0.040) 0.042(0.039) - 

tAE(h) 

AM 1.741 1.815 1.444 1.741 1.444 1.556 1.407 1.593 16.9 (24.19) 

TP 1.481(1.407) 1.556(1.478) 1.407(1.337) 1.63(1.549) 1.296(1.231) 1.481(1.407) 1.296(1.231) 1.45(1.377) 8.8 (12.32) 

F-SVD 1.481(1.352) 1.481(1.352) 1.185(1.082) 1.481(1.352) 1.259(1.149) 1.333(1.217) 1.037(0.947) 1.323(1.207) - 

vRE 

AM 0.176 0.196 0.122 0.194 0.142 0.165 0.101 0.156 10.7 (18.91) 

TP 0.176(0.164) 0.199(0.185) 0.12(0.112) 0.179(0.166) 0.133(0.124) 0.168(0.156) 0.104(0.097) 0.153(0.143) 9.27 (11.44) 

F-SVD 0.177(0.160) 0.155(0.140) 0.105(0.095) 0.166(0.150) 0.129(0.117) 0.161(0.146) 0.089(0.081) 0.14(0.127) - 

† The number in the bracket is the runoff simulation results based on the parameters calibrated with areal rainfall using TP and F-SVD, respectively. 3 
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FIGURES 5 

 6 

Figure 1. The flowchart of the research steps of this study. 7 
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 9 

Figure 2. The calculation process of F-SVD. 10 
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 12 

Figure 3. The proposed spatiotemporal estimation model based on F-SVD.  13 
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 15 

Figure 4. Geographical distribution of hydrological stations and sub-basins in 16 

Jianxi basin. 17 
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 19 

Figure 5. Boxplot of estimation accuracy of gauges in rainfall events. 20 



 

 

 21 

Figure 6. Comparison of the accuracy of F-SVD and IDW in cross-validation for 22 

heavy and light rain events. (a) Total observed rainfall of different gauges; (b) RSME 23 

of IDW in the cross-validation; (c) RSME of F-SVD in the cross-validation; (d) 24 

Accuracy improvement rate of F-SVD with respect to IDW. 25 

Figure 7. Pearson correlation coefficients between three mean areal rainfall series 26 

and runoff observation series. 27 



 

 

 28 

Figure 7. Pearson correlation coefficients between three mean areal rainfall series 29 

and runoff observation series. 30 



 

 

 31 

Figure 8. Correlation of rainfall and runoff of all floods. The blue dots indicate 32 

the floods with normal rainfall-runoff relationships, and the red dots indicate the 33 

abnormal floods when runoff depth exceeds total rainfall. 34 



 

 

 35 

Figure 9. Accuracy of all flood simulations using different areal rainfall. 36 



 

 

 37 

Figure 10. Simulated runoff processes for three typical flood events. vRE1, vRE2, 38 

and vRE3 refer to the vRE of simulated runoff based on the areal rainfall calculated by 39 

AM, TP, and F-SVD, respectively. 40 

 41 
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