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SPDES WITH SPACE INTERACTIONS AND APPLICATION TO

POPULATION MODELLING

K. Makhlouf1, N. Agram2, A. Hilbert3 and B. Øksendal4,*

Abstract. We consider optimal control of a new type of non-local stochastic partial differential
equations (SPDEs). The SPDEs have space interactions, in the sense that the dynamics of the system
at time t and position in space x also depend on the space-mean of values at neighbouring points.
This is a model with many applications, e.g. to population growth studies and epidemiology. We prove
the existence and uniqueness of strong, smooth solutions of a class of SPDEs with space interactions,
and we show that, under some conditions, the solutions are positive for all times if the initial values
are. Sufficient and necessary maximum principles for the optimal control of such systems are derived.
Finally, we apply the results to study an optimal vaccine strategy problem for an epidemic by modelling
the population density as a space-mean stochastic reaction-diffusion equation.
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1. Introduction

The purpose of this paper is to introduce a new type generalised stochastic heat equation with space inter-
actions as a model for population growth. By space interactions we mean that the dynamics of the population
density Y (t, x) at a time t and a point x depends not only on its value and derivatives at x, but also on its
values in a neighbourhood of x. For example, define G to be a space-averaging operator of the form

G(x, ϕ) =
1

V (Kr)

∫
Kr

ϕ(x+ y)dy; ϕ ∈ L2(Rn), (1.1)

where V (·) denotes Lebesgue volume and

Kr = {y ∈ Rn; |y| < r}
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is the ball of radius r > 0 in Rn centred at 0. Then

Y G(t, x) := G(x, Y (t, ·))

is the average value of Y (t, x+ ·) in the ball Kr.
More generally, if we are given a nonnegative measure (weight) ρ(dy) of total mass 1, then the ρ-weighted

average of Y at x is defined by

Y ρ(t, x) :=

∫
D

Y (t, x+ y)ρ(dy).

We believe that by allowing interactions between populations at different locations, we get a better model for
population growth, including the modelling of epidemics. For example, we know that COVID-19 is spreading
by close contact in space.

We illustrate the above by the following population growth model:

Example 1.1. With G as in (1.1), suppose the density Y (t, x) of a population at the time t and the point x
satisfies the following space-interaction version of a reaction-diffusion equation:


dY (t, x) =

(
1
2∆Y (t, x) + αY (t, x)− u(t, x)Y (t, x)

)
dt+ βY (t, x)dB(t),

Y (0, x) = ξ(x); x ∈ D,
Y (t, x) = η(t, x); (t, x) ∈ (0, T )× ∂D,

(1.2)

where α is a constant, ξ, η are given bounded functions, Y (t, x) = G(x, Y (t, ·)) and B(t) = B(t, ω); (t, ω) ∈
[0, T ]× Ω is a Brownian motion on a filtered probability space (Ω,F , {Ft}t≥0, P ).

Here u(t, x) is our control process, e.g. representing our harvesting or vaccine effort.

x

Y (t, x)

D

Then (1.2) is a natural model for population growth in an environment with space interactions.
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If u(t, x) represents a vaccination effort rate at (t, x), we define the total expected utility J0(u) of the
harvesting by an expression of the form

J0(u) = E
[ ∫

D

∫ T

0

U1(u(t, x))dtdx+

∫
D

U2(Y (T, x))dx
]
,

where U1 and U2 are given cost functions. The problem to find the optimal vaccination rate u∗ is the following:

Problem 1.2. Find u∗ ∈ U such that

J0(u∗) = inf
u∈U

J0(u),

where U is a given family of admissible controls.

We will return to the example above after first discussing more general stochastic optimal control models with
a system whose state Y (t, x) at time t and at the point x satisfies an SPDE with a non-local space-interaction
dynamics of the following type:

dY (t, x) = AxY (t, x)dt+ b(t, x, Y (t, x), Y (t, ·), u(t, x))dt
+σ(t, x, Y (t, x), Y (t, ·), u(t, x))dB(t),

Y (0, x) = ξ(x); x ∈ D,
Y (t, x) = η(t, x); (t, x) ∈ (0, T )× ∂D.

(1.3)

Here dY (t, x) denotes the differential with respect to t while Ax is the second order partial differential operator
acting on x of the form

Axφ(x) =

n∑
i,j=1

αij(x)
∂2φ

∂xi∂xj
+

n∑
i=1

βi(x)
∂φ

∂xi
; φ ∈ C20(Rn). (1.4)

Precise conditions on the coefficients will be given in the beginning of Section 4.2.
The domain D is an open set in Rn with a Lipschitz boundary ∂D and closure D. We extend Y (t, x) to be

a function on all of [0, T ]× Rn by setting

Y (t, x) = 0 for x ∈ Rn \D.

0 T
t

Y (0, x) = ξ(x)

︸
︷︷

︸

D

Y (t, x) = η(t, x)

[0, T ]× D̄

Y (t, x) = η(t, x)
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Example 1.3. In particular, the partial differential operator Ax could be the Laplacian ∆. or more generally
an operator of the div − grad-form

Ax(ϕ) = div(α(x)∇ϕ)(x); ϕ ∈ C2(D),

where div denotes the divergence operator, ∇ denotes the gradient and

α(x) = [αi,j(x)]1≤i,j≤n ∈ Rn×n

is a nonnegative definite matrix for each x. Equations of this type are of interest because they represent
important models in many situations, e.g. in physics (e.g. fluid flow in random media, see e.g. Holden et al
[17]), in epidemiology and in biology, e.g. in population growth where Y (t, x) represents the population density
at t, x.

For more details about the theory of SPDE, we refer for example to Gawarecki and Mandrekar [14], Da Prato
and Zabczyk [29], Pardoux [27, 28], Hairer [16], Prévôt and Roeckner [30], Roeckner and Zhang [31] and to the
recent book by Lü and Zhang [20].

Remark 1.4. With the control u given, sufficient conditions for the existence and uniqueness of a weak solution
of the corresponding SPDEs with space interactions are known from general results on SPDEs. See e.g. Theorem
3.3 in Gawarecki and Mandrekar [14] or Proposition 12.1 in Lü and Zhang [20]. However, very little seems to
be known so far about the properties of such solutions. In Sections 2 and 3 we prove that there is a unique
smooth, strong solution of a class of space-interaction reaction-diffusion equations. Moreover, we show that the
solution can be obtained as a limit of an iterative procedure, and it is positive if the initial values are. See e.g.
Theorem 2.1 and Theorem 3.3. This is an important confirmation that such equations are suitable models for
population growth in general.

There are two well-known approaches to solve stochastic control problems: The Bellman dynamic program-
ming method and the Pontryagin maximum principle. Because of the space-mean dependence in our model,
the system is not Markovian, and it is not clear how to apply a dynamic programming approach. In stead
we will use a stochastic version of the Pontryagin maximum principle, which involves a coupled system of a
forward/backward SPDEs.

Stochastic control of SPDEs has been studied widely in the literature. For example, we refer to Bensoussan
[3–6], Hu and Peng [19], Zhou [34], Øksendal [23], Fuhrman et al. [12], Øksendal et al. [20, 24–26] and the
references therein. In the fundamental papers [3, 19] it is assumed that the diffusion coefficient of the system
does not depend on the control, and in [3, 19], there is no space-mean dependence so they do not cover our
situation.

In [20], a general maximum principle of optimal control of SPDEs is proved, with an adjoint equation (BSPDE)
formulated in a weak setting. The general setting in [20] covers the situation we consider, except that in [20]
only the case with the underlying space D being all of Rn is considered. Our approach deals with general D
and is directly focused on the effect of the space interaction, with application to population modelling in mind.
Moreover, for our type of equation we prove the smoothness and positivity of the solution. Specifically, in our
case of a control problem for an SPDE with space-interaction in a subset D of Rn we derive an explicit adjoint
equation, which is a BSPDE, also with space-interaction dependence. We derive both sufficient and necessary
maximum principles for this type of stochastic control problem. For related singular stochastic control with
space-interaction, we refer to Agram et al. [1].

Here is a summary of the content of this paper:

� In Section 2 we prove the existence and uniqueness of a strong, smooth solution of a class of space-
interaction SPDEs, including the application studied in Section 5, and we give an iterative procedure for
finding the solution (Thm. 2.1). This result is new.
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� In Section 3 we use white noise theory to prove a positivity theorem for a class of SPDEs with space
interactions (Thm. 3.1), and we prove that the solution is positive if the initial values are (Thm. 3.2).These
results are also new and of independent interest.

� Subsequently, in Section 4 we study the general optimization problem for such a system. We derive both
sufficient and necessary maximum principles for the optimal control. See Theorem 4.6 and Theorem 4.7.

� Finally, as an illustration of our results, in Section 5 we study an example about optimal vaccination
strategy for an epidemics modelled as an SPDE with space-interactions.

2. Solutions of SPDEs with space interactions, and positivity

In this section we prove the existence and uniqueness of a strong, smooth solution of SPDEs with space
interactions. We are not aiming at proving this for the most general SPDE of this type, but we settle for a
class of SPDEs which includes the application in Section 5. Thus, for simplicity we consider only the case when
Ax = L given by

L =
1

2
∆ :=

1

2

k=n∑
k=1

∂2

∂x2k
, and D = Rn,

but it is clear that our method can also be applied to more general situations.
Fix t > 0, and let k ∈ N0 = {0, 1, 2, . . . , . . .} , α = (α1, α2, . . . , αm) ∈ Nm0 ;m = 1, 2, ....

For functions f ∈ C∞0 (Rn) (the family of functions in C(Rn) with compact support), we define the Sobolev norm

|f |k =
∑
|α|≤k

( ∫
Rn
|∂αf(x)|2dx

) 1
2 ;α = (α1, α2, . . . , αn) ∈ Nn0 ,

and we define the Sobolev space Hk to be the closure of C∞0 (Rn) in this norm.
Note that Hk is a Hilbert space for all k.
Also, note that if f ∈ Hk+2 then Lf ∈ Hk, because

|Lf |k =
∑
|α|≤k

( ∫
Rn
|∂αLf(x)|2dx

) 1
2 ≤ 1

2

∑
|α|≤k+2

( ∫
Rn
|∂αf(x)|2dx

) 1
2 =

1

2
|f |k+2. (2.1)

Let Y(t)
k denote the family of adapted random fields Y (s, x) = Y (s, x, ω) , such that ||Y ||t,k <∞ where

||Y ||t,k = E
[
sup
s≤t

{
|Y (s, .)|2k

}] 1
2

, (2.2)

and let Y(t) be the intersection of all the spaces Y(t)
k ; k ∈ N0, with the norm

||Y ||2t :=

∞∑
k=1

2−k||Y ||2t,k. (2.3)

In the following we let

ϕ 7→ ϕ(x)
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be any averaging operator such that there exists a constant C1 such that

|ϕ|k ≤ C1|ϕ|k for all ϕ, k. (2.4)

This holds, for example, if ϕ(x) =
∫
ϕ(x+ y)ρ(dy) for some measure ρ of total mass 1.

We can now prove the following:

Theorem 2.1. Let ξ ∈ Y(T ) be deterministic and let h : [0, T ] 7→ R be bounded and deterministic.

(i) Then there exists a unique solution Y (t, x) ∈ Y(T ) of the following SPDE with space interactions:

Y (t, x) = ξ(x) +

∫ t

0

LY (s, x)ds +

∫ t

0

Y (s, x)ds+

∫ t

0

h(s)Y (s, x)dB(s); t ∈ [0, T ]. (2.5)

(ii) Moreover, the solution Y (t, x) can be found by iteration, as follows:
Choose Y0 ∈ Y(T ) arbitrary deterministic and define inductively Ym to be the solution of

Ym(t, x) = ξ(x) +

∫ t

0

LYm(s, x)ds+

∫ t

0

Y m−1(s, x)ds

+

∫ t

0

h(s)Ym(s, x)dB(s); t ∈ [0, T ];m = 1, 2, .... (2.6)

Then

Ym → Y in Y(T ) when m→∞.

Proof. (i) In the first part of the proof, we are concerned on proving the existence and the uniqueness of the
solution of Y (t, x) ∈ Y(T ).
Define the operator F : Y(T ) 7→ Y(T ) by F (Z) = Y Z , where Y Z is the solution of the equation

Y Z (t, x) = ξ (x) +

∫ t

0

LY Z (s, x) ds+

∫ t

0

Z (s, x) ds+

∫ t

0

Y Z (s, ·)h (s) dB (s)

Note that here Z (and hence Z) is given. Therefore the existence and uniqueness of the solution Y Z follows by
the general existence and uniqueness theorems for solutions of SPDEs. e.g. as given in Theorem 3.3 in [14].

For i = 1, 2 choose Zi ∈ Y(T ) and define Yi = Y Zi =: F (Zi) to be the solution of the SPDE

Yi (t, x) = ξ (x) +

∫ t

0

LYi (s, x) ds+

∫ t

0

Zi (s, x) ds+

∫ t

0

Yi (s, ·)h (s) dB (s) .

Note that here Zi (and hence Zi), is given for each i. Therefore the existence and uniqueness of the solution Yi
follows by the general existence and uniqueness theorems for solutions of SPDEs. e.g. as given in Theorem 3.3
in [14]. Define

Ỹ = Y1 − Y2,

Z̃ (t, x) = Z1 (t, x)− Z2 (t, x)

Z̃ = Z1 − Z2.
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Then

Ỹ (t, x) =

∫ t

0

LỸ (s, x) ds+

∫ t

0

Z̃ (s, x) ds+

∫ t

0

Ỹ (s, x)h (s) dB (s) .

Hence ∣∣∣Ỹ (s, .)
∣∣∣
k
≤
∫ s

0

∣∣∣LỸ (r, .)
∣∣∣
k

dr +

∫ s

0

∣∣∣Z̃ (r, .)
∣∣∣
k

dr

+

∣∣∣∣∫ s

0

Ỹ (r, ·)h(r)dB(r)

∣∣∣∣
k

. (2.7)

By (2.1) we have ∣∣∣LỸ (r, .)
∣∣∣
k
≤
∣∣∣Ỹ (r, .)

∣∣∣
k+2

, (2.8)

and from (2.4) we get ∣∣Z∣∣
k
≤ C1 |Z|k for all k. (2.9)

Then by (2.7), (2.8) and (2.9), we get

E
[
sup
s≤t

∣∣∣Ỹ (s, .)
∣∣∣2
k

]
(2.10)

≤ 3E

[
sup
s≤t

(∫ s

0

∣∣∣Ỹ (r, .)
∣∣∣
k+2

dr

)2
]

+ 3C1E

[
sup
s≤t

(∫ s

0

∣∣∣Z̃ (r, .)
∣∣∣ dr)2

]

+3E

[
sup
s≤t

∣∣∣∣∫ s

0

Ỹ (r, ·)h (r) dB (r)

∣∣∣∣2
k

]
.

By the Burkholder-Davis-Gundy inequality for Hilbert spaces (see e.g. [22]), there exists a constant C2 such
that

E

[
sup
s≤t

∣∣∣∣∫ s

0

Ỹ (r, ·)h (r) dB (r)

∣∣∣∣2
k

]
≤ C2E

[∫ t

0

∣∣∣Ỹ (r, .)
∣∣∣2
k
h2 (r) dr

]
≤ C2h

2
0tE

[
sup
s≤t

∣∣∣Ỹ (s, .)
∣∣∣2
k

]
; where h20 = sup

s∈[0,T ]

|h (s)|2 .

Combining the above we get, if 0 ≤ t ≤ 1,

E
[
sup
s≤t

∣∣∣Ỹ (s, .)
∣∣∣2
k

]
(2.11)

≤ 3t2E
[
sup
r≤t

∣∣∣Ỹ (r, .)
∣∣∣2
k+2

]
+ 3C1t

2E
[
sup
r≤t

∣∣∣Z̃ (r, .)
∣∣∣2
k

]
(2.12)

+ 3C2h
2
0tE

[
sup
r≤t

∣∣∣Ỹ (r, .)
∣∣∣2
k

]
. (2.13)
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In other words,

||Ỹ ||2t,k ≤ 3t2||Ỹ ||2t,k+2 + 3C1t
2||Z̃||2t,k + 3C2h

2
0t||Ỹ ||2t,k. (2.14)

Note that

∞∑
k=1

2−k||Ỹ ||2t,k+2 =

∞∑
j=3

2−(j−2)||Ỹ ||t,j ≤ 4

∞∑
j=3

2−j ||Ỹ ||t,j ≤ 4

∞∑
k=1

2−k||Ỹ ||t,k = 4||Ỹ ||t.

Therefore, by multiplying the terms in (2.14) by 2−k and summing over k, we get

||Ỹ ||2t =

∞∑
k=1

2−k||Ỹ ||2t,k ≤ 12t2||Ỹ ||2t + 3C1t
2||Z̃||2t + 3C2h

2
0t||Ỹ ||2t ,

or

(1− 12t2 − 3C2h
2
0t)||Ỹ ||2t ≤ 3C1t

2||Z̃||2t .

Hence, if t0 > 0 is chosen so small that

3C1t
2
0

1− 12t20 − 3C2h20t0
< 1,

we obtain that the map

Z → Y Z = F (Z)

is a contraction on Y(t0). Therefore, by the Banach fixed point theorem there exists a fixed point Ŷ of this map.
Then Ŷ solves the SPDE{

dŶ (t, x) = LŶ (t, x) dt+ Ŷ (t, x) dt+ Ŷ (t, x)h (t) dB (t) ; t ∈ [0, t0] ,

Ŷ (0, x) = ξ(x); x ∈ Rn.

Uniqueness follows by a similar argument.
Since the constants do not depend on t0, we can repeat the argument starting from t0 and hence by induction

obtain a solution Y (t, x) ∈ Y(2t0). Repeating this argument we thus obtain a solution Y ∈ Y(T ).
This proves part (i).

(ii) The second part of the theorem follows by the Banach fixed point theorem on the Banach space Y(T )

and therefore it is omitted. �

3. The non-homogeneous stochastic heat equation and positivity

In this section we will prove positivity of the solutions Y (t, x) of SPDEs of the form{
dY (t, x) = LY dt+K (t, x) dt+ h (t)Y (t) dB (t) ,
Y (0, x) = ξ(x); x ∈ Rn,
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where the function ξ ∈ Y(T ) is deterministic and positive, h : [0, T ] 7→ R is bounded and deterministic and
K(t, x) = K(t, x, ω) : [0, T ]× Rn × Ω 7→ R is a given positive random field.
To motivate our method, we first recall the following basic results about the classical heat equation:
Let L = 1

24 and consider the equation{
dY (t, x) = LY dt+K (t, x) dt,
Y (0, x) = ξ(x); x ∈ Rn, (3.1)

where ξ ∈ Y(T ) and K ∈ L2([0, T ]× Rn) are given deterministic functions. Define the operator Pt : L2 (Rn)→
L2 (Rn) by

Ptf (x) =

∫
Rn

(2πt)
−n2 f (y) exp

(
−|x− y|

2

2t

)
dy, (3.2)

then

d

dt
Ptf = L (Ptf) ,

and if we define

Y (t, x) = Ptξ (x) +

∫ t

0

Pt−s (K (s, .)) (x) ds,

we get

d

dt
Y (t, x) = L (Ptξ) (x) + P0 (K (t, .)) (x) +

∫ t

0

L (Pt−s (K (s, .))) (x) ds

= LY (t, x) +K (t, x) .

Hence

Y (t, x) solves the heat equation (3.1).

Next, consider the case

dY (t, x) = LY dt+K (t, x) dt+ θ (t)Y (t, x) dt.

Multiply the equation by

Z (t) = exp

(
−
∫ t

0

θ (s) ds

)
.

Then the equation becomes

d (Z (t)Y (t, x)) = L (Z (t)Y (t, x)) dt+ Z (t)K (t, x) dt.

Hence, if we put

Ŷ = Z (t)Y (t, x) ,
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then Ŷ solves the equation {
dŶ (t, x) = LŶ dt+ Z (t)K (t, x) dt,

Ŷ (0, x) = ξ(x),

and we are back to the previous case.
Finally, consider the SPDE

dY (t, x) = LY dt+K (t, x) dt+ h (t)Y (t) dB (t) , (3.3)

where h is a given bounded deterministic function and K(t, x) is stochastic and adapted, and

E[
∫ T
0

∫
Rn K

2(t, x)dtdx] < ∞. We handle this case by using white noise calculus on the Hida space (S)∗ of
stochastic distributions: We introduce white noise Wt ∈ (S)∗ defined by

Wt =
d

dt
B(t),

and then we see that equation (3.3) can be written

d

dt
Y (t, x) = LY +K (t, x) + Y (t)h (t) �Wt,

where � denotes Wick multiplication. We refer to e.g. [10] for more information about white noise calculus. If
we Wick-multiply this equation by

Zt := exp�
(
−
∫ t

0

h (s) dB (s)

)
,

where in general exp�(φ) =
∑∞
n=0

1
n!φ
�n;φ ∈ (S)∗ is the Wick exponential, we get

Zt �
d

dt
Y (t, x) = L (Y � Zt) +K � Zt + Y (t)h (t) �Wt � Zt. (3.4)

Now

d

dt
(Zt � Y ) = Zt �

d

dt
Y (t)− Y (t) � Zt � h (t)Wt, (3.5)

and hence (3.4) can be written as

d

dt
(Zt � Yt)︸ ︷︷ ︸

Ŷt

= L (Zt � Yt)︸ ︷︷ ︸
Ŷt

+K (t, x) � Zt.

This has the same form as (3.1). Hence the solution Ŷ is

Ŷ (t, x) = Ptξ (x) +

∫ t

0

Pt−s (K (s, .)) (x) � Zsds.
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Now we go back from Ŷ to Y and get the solution

Y (t, x) = Ŷ (t, x) � exp�
(∫ t

0

h (s) dB (s)

)
= Ptξ (x) � exp�

(∫ t

0

h (s) dB (s)

)
+

∫ t

0

Pt−s (K (s, .)) (x) � exp�
(∫ t

s

h (r) dB (r)

)
ds. (3.6)

Note that

exp�
(∫ t

0

h (s) dB (s)

)
= exp

(∫ t

0

h (s) dB (s)− 1

2

∫ t

0

h2 (s) ds

)
> 0.

Recall the Gjessing-Benth lemma (see [8, 15] or Thm. 2.10.6 in [17] or Prop. 13 in [7]), which states that

φ � exp�
(∫ t

0

h (s) dB (s)

)
= (τ−hφ) exp�

(∫ t

0

h (s) dB (s)

)
,

where, for φ : Ω 7→ R, we define τ−hφ(ω) = φ(ω − h);ω ∈ Ω to be the shift operator on Ω.
Using this in (3.6) we conclude that if

ξ ≥ 0 and K ≥ 0 then Y ≥ 0.

We summarize what we have proved as follows:

Theorem 3.1. Assume that ξ ∈ Y(T ) is deterministic, E[
∫ T
0

∫
Rn K

2(t, x)dtdx] < ∞ and let h : [0, T ] 7→ [0, T ]
be bounded deterministic.

1. Then the unique solution Y (t, x) ∈ Y(T ) of the non-homogeneous SPDE

dY (t, x) = LY dt+K (t, x) dt+ h (t)Y (t) dB (t) ,

Y (0, x) = ξ(x); x ∈ Rn

is given by

Y (t, x) = (τ−hPtξ)(x) exp�
(∫ t

0

h (s) dB (s)

)
+

∫ t

0

(τ−hPt−s(K(s, .))(x) exp�(

∫ t

s

h(r)dB(r))ds,

where exp�(
∫ t
s
h(r)dB(r)) = exp(

∫ t
s
h(r)dB(r)− 1

2

∫ t
s
h2(r)dr); 0 ≤ s ≤ t ≤ T.

2. In particular, if ξ(x) ≥ 0 and K(t, x) ≥ 0 for all (t, x) ∈ [0, T ] × Rn, then Y (t, x) ≥ 0 for all (t, x) ∈
[0, T ]× Rn.

Combining this with Theorem 2.1 we get
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Theorem 3.2. (Positivity) Assume that ξ ∈ Y(T ) is deterministic and let h : [0, T ] 7→ R be bounded and
deterministic. Let Y (t, x) ∈ Y(T ) be the unique solution of the following SPDE with space interactions:

Y (t, x) = ξ(x) +

∫ t

0

LY (s, x)ds+

∫ t

0

Y (s, x)ds+

∫ t

0

h(s)Y (s, x)dB(s); t ∈ [0, T ], (3.7)

given by Theorem 3.1.
Then if ξ(x) ≥ 0 for all x ∈ Rn, we have Y (t, x) ≥ 0 for all (t, x) ∈ [0, T ]× Rn.

Proof. By Theorem 2.1 we know that the solution of (3.7) can be obtained as the limit when m → ∞ of
the sequence Ym(t, x) defined recursively by the equation (2.6). Then by Theorem 3.1, part 2, we know that
Ym(t, x) ≥ 0 for all t, x,m. We conclude that Y (t, x) ≥ 0 for all (t, x). �

Remark 3.3. The methods from this and the previous section can be extended to more general equations, with
both more general (uniformly elliptic) second order partial differential operator L and more general coefficients
satisfying suitable Lipschitz conditions. In particular, they extend to equations of the form

dY (t, x) =
[
LY (t, x) + γ(t, x)Y (t, x)

]
dt+ Y (t, x)dt+ h(t)Y (t, x)dB(t); t ∈ [0, T ], (3.8)

for a given adapted process γ ∈ Y(T ). To see this we apply the arguments above with the operator L replaced
by the operator L̂ defined by L̂ϕ = Lϕ+ γϕ;ϕ ∈ C∞(Rn). We omit the details.

4. The optimization problem

In general, if X ,Y are two Banach spaces and F : X → Y if Fréchet differentiable at x ∈ X , then we let ∇xF
denote the Fréchet derivative of F at x. It is a linear operator from X to Y and the action of ∇xF to h ∈ X
is denoted by ∇xF (h) = 〈∇xF, h〉 ∈ Y. Recall that if F is Fréchet differentiable at x with Fréchet derivative
∇xF , then F has a directional derivative

DxF (h) := lim
ε→0

1

ε
(F (x+ εh)− F (x)) (4.1)

in all directions h ∈ X and

DxF (h) = ∇xF (h) = 〈∇xF, h〉. (4.2)

In particular, note that if F is a linear operator, then ∇xF = F for all x.

4.1. The Hamiltonian and the adjoint BSPDE

We now give a general formulation of the problem we consider.
Let Ax be a linear second order partial differential operator given by

Axφ(x) =

n∑
i,j=1

αij(x)
∂2φ

∂xi∂xj
+

n∑
i=1

βi(x)
∂φ

∂xi
; φ ∈ C20(Rn).
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Let T > 0 and assume that the state Y (t, x) at time t ∈ [0, T ] and at the point x ∈ D := D ∪ ∂D satisfies
the following non-local quasilinear stochastic heat equation:

dY (t, x) = AxY (t, x)dt+ b(t, x, Y (t, x), Y (t, ·), u(t, x))dt
+σ(t, x, Y (t, x), Y (t, ·), u(t, x))dB(t),

Y (0, x) = ξ(x); x ∈ D,
Y (t, x) = η(t, x); (t, x) ∈ (0, T )× ∂D.

(4.3)

We make the following assumptions on (α, β, b, σ, ξ, η):

(a) (αij(x))1≤i,j≤n is a given symmetric nonnegative definite n × n matrix with eigenvalues bounded away
from 0 and with entries αij(x) ∈ C4(D) ∩ C(D) for all i, j = 1, 2, ..., n.

(b) βi(x) ∈ C3(D) ∩ C(D) for all i = 1, 2, ..., n.
(c) The functions b and σ are F-adapted, C2 with respect to y and u and admit uniformly bounded derivatives.
(d) ξ ∈ L2(D), and η ∈ L2([0, T ]×D × Ω) is F-adapted.

We call the equation (4.3) a stochastic partial differential equation with space-interactions.
In general, the formal adjoint A∗ of an operator A is defined by the identity

(Aφ,ψ) = (φ,A∗ψ), for all φ, ψ ∈ C20(D),

where (φ1, φ2) := 〈φ1, φ2〉L2(D) =

∫
D

φ1(x)φ2(x)dx is the inner product in L2(D) and C20(D) is the set of twice

differentiable functions with compact support in D. In our case we have

A∗xφ(x) =

n∑
i,j=1

∂2

∂xi∂xj
(αij(x)φ(x))−

n∑
i=1

∂

∂xi
(βi(x)φ(x)); φ ∈ C2(D).

We interpret Y as a weak (variational) solution to (4.3), in the sense that

〈Y (t), φ〉L2(D) = 〈ξ(x), φ〉L2(D) +

∫ t

0

〈Y (s), A∗xφ〉L2(D)ds

+

∫ t

0

〈b(s, Y (s)), φ〉L2(D)ds+

∫ t

0

〈σ(s, Y (s)), φ〉L2(D)dB(s);φ ∈ C20(D).

For simplicity, in the above equation we have not written all the arguments of b, σ.
In the following we will assume that there is a unique strong solution of (4.3). It is not known to us under

what conditions this is the case for general D. In the case when D = Rn it follows by Proposition 12.1 in [20]
that there exists a unique weak solution Y (t, x) of (4.3) for all given initial values ξ ∈ L2(D). In Section 3, we
have proved that there is a unique smooth, strong positive solution of equation (3.8) if ξ > 0 and D = Rn.

The process u(t, x) = u(t, x, ω) is our control process, assumed to have values in a given convex set U ⊂ Rk.

Definition 4.1. We call the control process u(t, x) admissible if u(t, x) is F-predictable for all (t, x) ∈ (0, T )×D
and u(t, x) ∈ U for all t, x. The set of admissible controls is denoted by U .

The performance functional (cost) associated to the control u is assumed to have the form

J(u) = E
[ ∫ T

0

∫
D

f(t, x, Y (t, x), Y (t, ·), u(t, x))dxdt+

∫
D

g(x, Y (T, x), Y (T, ·))dx
]
; u ∈ U . (4.4)

We make the following assumptions on (f, g):
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(e) The function f(t, x, y, ϕ, u) is F-adapted and the function g(x, y, ϕ) is FT -measurable. They are assumed
to be bounded, C2 with respect to y, ϕ, u, with uniformly bounded derivatives.

We consider the following problem of optimal control of a solution of an SPDE:

Problem 4.2. Find û ∈ U such that

J(û) = inf
u∈U

J(u). (4.5)

As mentioned in the Introduction (Sect. 1), this type of problem has been studied by many authors, and
it may in some sense be considered as a special case of the general problem discussed in [20], except that we
are considering strong solutions on [0, T ]×D, where D a given open subset of Rn, with given boundary values
on ∂D. Moreover, our approach is specifically focused on the stochastic reaction-diffusion equation with space
interaction presented in Section 2, and therefore gives more explicit results.

To study this problem we define the associated Hamiltonian H : [0, T ]×D×R×L(Rn)×U ×R×R×Ω→ R
by

H(t, x, y, ϕ, u, p, q) := H(t, x, y, ϕ, u, p, q, ω) = f(t, x, y, ϕ, u) + b(t, x, y, ϕ, u)p

+ σ(t, x, y, ϕ, u)q. (4.6)

In general, if h : L2(D) 7→ L2(D) is Fréchet differentiable map, then its Fréchet derivative (gradient) at
ϕ ∈ L2(D) denoted by ∇ϕh = ∇h is a bounded linear map on the Hilbert space L2(D), and by the Riesz
representation theorem we can represent it by a function ∇h(x, y) ∈ L2(D ×D). We denote the action of ∇h
on a function ψ ∈ L2(D) by 〈∇h, ψ〉.

Hence

〈∇h, ψ〉 (x) :=

∫
D

∇h(x, y)ψ(y)dy; for all ψ ∈ L2(D). (4.7)

Remark 4.3. � Note in particular that if h : L2(D) 7→ L2(D) is linear, then

∇h(x, y) = h(x, y).

� Also note that from (4.7) it follows by the Fubini theorem that∫
D

〈∇h, ψ〉 (x)dx =

∫
D

∫
D

∇h(x, y)ψ(y)dydx =

∫
D

∫
D

∇h(y, x)ψ(x)dxdy

=

∫
D

(∫
D

∇h(y, x)dy

)
ψ(x)dx =

∫
D

∇h(x)ψ(x)dx,

where

∇h(x) :=

∫
D

∇h(y, x)dy. (4.8)
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Example 4.4. a) Assume that h : L2(D) 7→ L2(D) is given by

h(ϕ) = 〈h, ϕ〉 (x) = G(x, ϕ(·)) =
1

V (Kr)

∫
Kr

ϕ(x+ y)dy. (4.9)

Then

〈∇ϕh, ψ〉 (x) = 〈h, ψ〉 (x) =
1

V (Kr)

∫
Kr

ψ(x+ y)dy.

Therefore ∇h(x, y) is given by the identity∫
D

∇h(x, y)ψ(y)dy =
1

V (Kr)

∫
Kr

ψ(x+ y)dy; ψ ∈ L2(D).

Substituting z = x+ y this can be written∫
D

∇∗ϕh(x, y)ψ(y)dy =
1

V (Kr)

∫
x+Kr

ψ(z)dz =

∫
D

1x+Kr (y)

V (Kr)
ψ(y)dy.

Since this is required to hold for all ψ, we conclude the following:

b) Suppose that h is given by (4.9). Then

∇h(x, y) =
1x+Kr (y)

V (Kr)
,

and

∇ϕh(x) =

∫
D

∇ϕh(y, x)dy =
1

V (Kr)

∫
D

1y+Kr (x)dy =
1

V (Kr)

∫
D

1x−Kr (y)dy

=
V ((x−Kr) ∩D)

V (Kr)
=
V ((x+Kr) ∩D)

V (Kr)
,

since Kr = −Kr.

We associate to the Hamiltonian the following BSPDE

dp(t, x) = −
[
A∗xp(t, x) + ∂H

∂y (t, x) +∇H(t, x)
]

dt+ q(t, x)dB(t), (4.10)

with boundary/terminal values {
p(T, x) = ∂g

∂y (x) +∇g(x); x ∈ D,
p(t, x) = 0; (t, x) ∈ (0, T )× ∂D,

(4.11)

where we have used the simplified notation

H(t, x) = H(t, x, y, ϕ, u, p, q)|y=Y (t,x),ϕ=Y (t,·),u=u(t,x),p=p(t,x),q=q(t,x),

and similarly we have used the notation g(x) for g(x, Y (T, x), Y (T, ·)). Here A∗x denotes the adjoint of the
operator Ax.
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Note that the differential of p in (4.10) can be written explicitly as follows:

dp (t, x) = −
[ n∑
i,j=1

αij(x)
∂2

∂xi∂xj
p(t, x)

+

n∑
i=1

(
− βi(x) + 2

n∑
j=1

∂

∂xj
αij(x)

) ∂

∂xi
p(t, x)

(
−

n∑
i=1

∂

∂xi
βi(x) +

n∑
i,j=1

∂2

∂xi∂xj
αij(x)

)
p(t, x) +

(
(
∂

∂y
+∇)b(t, x)

)
p(t, x)

+
(

(
∂

∂y
+∇)σ(t, x)

)
q(t, x) +

( ∂
∂y

+∇
)
f(t, x)

]
dt+ q(t, x)dB(t).

To the best of our knowledge, the existence and uniqueness of a solution of (4.10)–(4.11) is not known in
general. However, note that (for given u) the equation (4.10), regarded as a BSPDE in the unknown Y(T )×Y(T )-
valued processes (p, q), is linear. Therefore, in view of our general assumptions (a)-(d) above, the existence and
uniqueness of solution follows from e.g. Theorem 2.1 in [11], provided that the terms ∇b(t, x),∇σ(t, x) and
∇f(t, x) satisfy condition (Fm) in [11]. To this end, it suffices that b, σ and f depend linearly on ϕ and in a
space-averaging manner, as in the example with h in (4.9) above. In particular, this holds in the application
studied in Section 5.

Remark 4.5. Here, as in Sections 2 and 3, we are primarily interested in strong solutions (p, q) ∈ Y(T ) ×Y(T ),
but weak solutions are also of interest. A pair (p, q) of random fields is said to be a weak solution to the BSPDE
(4.10)–(4.11) if, for all φ ∈ C20(D),

〈p(t, .), φ(.)〉 − 〈p(T, .), φ(.)〉 =

∫ T

t

〈A∗xp(s, .), φ(.)〉ds+

∫ T

t

〈∂H∂y (t, .) +∇H(t, .), φ(.)〉ds

−
∫ T

t

〈q(s, .), φ(.)〉dB(s); a.s. for each t ∈ [0, T ].

Hence, we observe that p admits the following mild representation

p(t, x) = PT−t
(
p(T, x)

)
+

∫ T

t

Ps−t
(
∂H
∂y

(t, x) +∇H(t, x)
)

ds−
∫ T

t

Ps−t
(
q(s, x)

)
dB(s); 0 ≤ t ≤ T,

where Pt denotes the semigroup of the operator A∗.

4.2. A sufficient maximum principle approach (I)

We now formulate a sufficient version ( a verification theorem) of the maximum principle for the optimal
control of the problem (4.3)–(4.5). In the special case when D = Rn the result follows from Theorem 12.21 in
[20]. We give a direct proof for our situation, with general D.

Theorem 4.6. [Sufficient Maximum Principle (I)]Suppose û ∈ U , with corresponding

Ŷ (t, x), p̂(t, x), q̂(t, x). Suppose the functions (y, ϕ) 7→ g(x, y, ϕ) and
(y, ϕ, u) 7→ H(t, x, y, ϕ, u, p̂(t, x), q̂(t, x)) are convex for each (t, x) ∈ [0, T ]×D. Moreover, suppose that, for all
(t, x) ∈ [0, T ]×D,

min
v∈U

H(t, x, Ŷ (t, x), Ŷ (t, ·), v, p̂(t, x), q̂(t, x))

= H(t, x, Ŷ (t, x), Ŷ (t, ·), û(t, x), p̂(t, x), q̂(t, x)).
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Then û is an optimal control.

Proof. Consider

J(u)− J(û) = I1 + I2,

where

I1 = E

[∫ T

0

∫
D

{f(t, x, Y (t, x), Y (t, ·), u(t, x))− f(t, x, Ŷ (t, x), Ŷ (t, ·), û(t, x))}dxdt

]
,

and

I2 =

∫
D

E
[
g(x, Y (T, x), Y (T, ·))− g(x, Ŷ (T, x), Ŷ (T, ·))

]
dx.

By convexity on g together with the identities (4.7)–(4.8) (by putting ∇h(x, y) = ∇ϕĝ(T, x) and ψ = (Y (T, ·)−
Ŷ (T, ·))), we get

I2 ≥
∫
D

E
[
∂ĝ
∂y (T, x)(Y (T, x)− Ŷ (T, x)) +

〈
∇ϕĝ(T, x), (Y (T, ·)− Ŷ (T, ·))

〉]
dx

=

∫
D

E
[
∂ĝ
∂y (T, x)(Y (T, x)− Ŷ (T, x)) +∇ĝ(T, x)(Y (T, x)− Ŷ (T, x))

]
dx

=

∫
D

E
[
p̂(T, x)(Y (T, x)− Ŷ (T, x))

]
dx

=

∫
D

E
[
p̂(T, x)Ỹ (T, x)

]
dx,

where we put

Ỹ (t, x) = Y (t, x)− Ŷ (t, x); (t, x) ∈ [0, T ]×D. (4.12)

Applying the Itô formula to p̂(t, x)Ỹ (t, x), we have

I2 ≥
∫ T

0

∫
D

E
[
p̂(t, x){AxỸ (t, x) + b̃(t, x)} − Ỹ (t, x){A∗xp̂(t, x)

+
∂Ĥ

∂y
(t, x) +∇∗ϕĤ(t, x)}+ q̂(t, x)σ̃(t, x)

]
dxdt, (4.13)

where

b̃(t) = b(t)− b̂(t), σ̃(t) = σ(t)− σ̂(t). (4.14)

Since Ỹ (t, x) = p̂(t, x) ≡ 0, for all (t, x) ∈ (0, T )× ∂D, we get∫
D

p̂(t, x)AxỸ (t, x)dx =

∫
D

Ỹ (t, x)A∗xp̂(t, x)dx. (4.15)
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Substituting (4.15) in (4.13), yields

I2 ≥
∫ T

0

∫
D

E
[
p̂(t, x)̃b(t, x)− Ỹ (t, x)

{
∂Ĥ
∂y (t, x) +∇Ĥ(t, x)

}
+ q̂(t, x)σ̃(t, x)

]
dxdt. (4.16)

Using the definition of the Hamiltonian H in (4.6), and putting

H̃(t, x) = H(t, x, Y (t, x), Y (t, ·), u(t, x), p̂(t, x), q̂(t, x))

−H(t, x, Ŷ (t, x), Ŷ (t, ·), û(t, x), p̂(t, x), q̂(t, x)), (4.17)

we get

I1 = E

[∫ T

0

∫
D

{H̃(t, x)− p̂(t, x)̃b(t, x)− q̂(t, x)σ̃(t, x)}dxdt

]

≥ E

[∫ T

0

∫
D

{
∂Ĥ

∂y
(t, x)Ỹ (t, x) +

〈
∇Ĥ(t, x), Ỹ (t, ·)

〉
+
∂Ĥ

∂u
(t, x)ũ(t, x)− p̂(t, x)̃b(t, x)− q̂(t, x)σ̃(t, x)

}
dxdt

]
, (4.18)

where the last inequality holds because of the concavity assumption of H.
Summing (4.16) and (4.18), and using (4.7), (4.8), we end up with

I1 + I2 ≥ E

[∫ T

0

∫
D

∂Ĥ

∂u
(t, x)ũ(t, x)dxdt

]
.

By the maximum condition of H we have

J(u)− J(û) ≥ E

[∫ T

0

∫
D

∂Ĥ
∂u (t, x)ũ(t, x)dxdt

]
≥ 0.

�

4.3. A necessary maximum principle approach (I)

We now go to the other version of the necessary maximum principle which can be seen as an extension of
Pontryagin’s maximum principle to SPDE with space-mean dynamics. In the case when D = Rn a version of
the necessary maximum principle is proved in [20]. Here concavity assumptions are not required . We consider
the following:

Given arbitrary controls u, û ∈ U with u bounded, we define the following convex perturbation

uθ := û+ θu; θ ∈ [0, 1] . (4.19)

Note that, thanks to the convexity of U , we also have uθ ∈ U . We denote by Y θ := Y u
θ

and by Ŷ := Y û the
solution processes of (4.3) corresponding to uθ and û, respectively.
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Define the derivative process Z(t, x) by

Z(t, x) = lim
θ→0

1

θ
(Y θ(t, x)− Ŷ (t, x)) (limit in Y(T )). (4.20)

Then, by our assumptions on f, g, b and σ it is easy to see that Z(t, x) exists and satisfies the following
equation: 

dZ(t, x) =

{
AxZ(t, x) +

∂b

∂y
(t, x)Z(t, x) + 〈∇b(t, x), Z(t, ·)〉+

∂b

∂u
(t, x)u(t, x)

}
dt

+

{
∂σ

∂y
(t, x)Z(t, x) + 〈∇σ(t, x), Z(t, ·)〉+

∂σ

∂u
(t, x)u(t, x)

}
dB(t),

Z(t, x) = 0; (t, x) ∈ (0, T )× ∂D,
Z(0, x) = 0; x ∈ D.

(4.21)

Note that (4.21), regarded as an SPDE in the unknown Y(T )-valued process Z, is linear and hence the existence and
uniqueness of solution follows from e.g. Theorem 3.3 in [14].

Theorem 4.7. [Necessary Maximum Principle (I)]Let û(t, x) be an optimal control and Ŷ (t, x) the corresponding
trajectory and adjoint processes (p̂(t, x), q̂(t, x)). Then we have

∂Ĥ

∂u

∣∣∣∣∣
u=û

(t, x) = 0; a.s.

Proof. Since û is optimal we get, by the definition (4.4) of J , dominated convergence and the chain rule,

0 ≤ lim
θ→0

J(uθ)− J(û)

θ

= lim
θ→0

1

θ
E
[ ∫

D

{g(x, Y θ(T ), Y θ(T, ·))− g(x, Ŷ (T, x), Ŷ (T, ·))}dx

+

∫
D

∫ T

0

{f(t, x, Y θ(t, x), Y θ(t, ·), u(t, x))− f(t, x, Ŷ (t, x), Ŷ (t, ·), u(t, x))}dtdx
]

= E
[ ∫

D

lim
θ→0

1

θ
{g(x, Y θ(T ), Y θ(T, ·))− g(x, Ŷ (T, x), Ŷ (T, ·))}dx

+

∫
D

∫ T

0

lim
θ→0

1

θ
{f(t, x, Y θ(t, x), Y θ(t, ·), u(t, x))− f(t, x, Ŷ (t, x), Ŷ (t, ·), u(t, x))}dtdx

]
= E

[ ∫
D

∂g

∂y
(x, Ŷ θ(T, x), Ŷ θ(T, ·)) lim

θ→0

1

θ
(Y θ(t, x)− Ŷ (t, x))

+

〈
∇g(x, Ŷ θ(T, x), Ŷ θ(T, ·)), lim

θ→0

1

θ
(Y θ(t, ·)− Ŷ (t, ·))

〉
dx

+

∫
D

∫ T

0

lim
θ→0

1

θ
{f(t, x, Y θ(t, x), Y θ(t, ·), u(t, x))− f(t, x, Ŷ (t, x), Ŷ (t, ·), u(t, x))}dtdx

]
.

Therefore, writing ∂ĝ
∂y

(T, x) = ∂g
∂y

(x, Ŷ (T, x), Ŷ (T, ·)) and ∂f̂
∂y

(t, x) = ∂f
∂y

(t, x, Ŷ (t, x), Ŷ (t, ·), û(t, x)) and similarly with

∇ĝ(T, x),∇f̂(t, x) we obtain

0 ≤ lim
θ→0

J(uθ)−J(û)
θ

= E
[∫

D

{∂ĝ
∂y

(T, x)Z(T, x) + 〈∇ĝ(T, x), Z(T, ·)〉
}

dx

]
+E

[∫ T

0

∫
D

{
∂f̂

∂y
(t, x)Z(t, x) +

〈
∇f̂(t, x), Z(t, ·)

〉
+
∂f̂

∂u
(t, x)u(t, x)

}
dxdt

]
.

(4.22)
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By (4.7) and the BSPDE for p̂(t, x), we have

E
[∫

D

{∂ĝ
∂y

(T, x)Z(T, x) + 〈∇ĝ(T, x), Z(T, ·)〉
}

dx

]
= E

[∫
D

p̂(T, x)Z(T, x)dx

]
,

The Itô formula applied to the product p̂(t, x) ·Z(t, x), where p̂ and Z are the associated equations (4.21), (4.10)–(4.11),

respectively, to the optimal control û, combined with the definition of Ĥ in (4.6), leads to

E
[∫

D

p̂(T, x)Z(T, x)dx

]
= E

[∫ T

0

∫
D

(
p̂(t, x)dZ(t, x) + Z(t, x)dp̂(t, x)

+

∫ T

0

∫
D

{
q̂(t, x)

(
∂σ

∂y
(t, x)Z(t, x) + 〈∇σ(t, x), Z(t, ·)〉+

∂σ

∂u
(t, x)u(t, x)

)}
dtdx

]
= E

[ ∫ T

0

∫
D

{
p̂(t, x)

(
AxZ(t, x) +

∂b

∂y
(t, x)Z(t, x) + 〈∇b(t, x), Z(t, ·)〉

+
∂b

∂u
(t, x)u(t, x)

)
+ Z(t, x)

(
−A∗xp̂(t, x)− ∂Ĥ

∂y
(t, x)−∇Ĥ(t, x)

)
+
{
q̂(t, x)

(
∂σ

∂y
(t, x)Z(t, x) + 〈∇σ(t, x), Z(t, ·)〉+

∂σ

∂u
(t, x)u(t, x)

)}
dtdx

]
.

Substituting this in (4.22), we get

0 ≤ E

[∫ T

0

∫
D

∂Ĥ

∂u
(t, x)u(t, x)dxdt

]
.

In particular, if we apply this to
u(t, x) = 1[s,T ](t)α(x),

where α(x) is bounded and Fs-measurable we get

0 ≥ E

[∫ T

s

∫
D

∂Ĥ

∂u
(t, x)α(x)dxdt

]
.

Since this holds for all such α (positive or negative) and all s ∈ [0, T ], we conclude that

0 =
∂Ĥ

∂u
(t, x); for a.a. t, x.

�

4.4. Controls which are independent of x

In many situations, for example in connection with partial observation control, it is of interest to study the case when
the controls u(t) = u(t, ω) are not allowed to depend on the space variable x. Let us denote the set of such controls u ∈ U
by U . Then the corresponding control problem is to find û ∈ U such that

J(û) = inf
u∈U

J(u).

The equations for J , Y , H and p are as before, except that we replace u(t, x) by u(t). We handle this situation by
introducing integration with respect to dx in the Hamiltonian. We state the corresponding modified theorems without
proofs:

Theorem 4.8 (Sufficient Maximum Principle (II)). Suppose û ∈ U , with corresponding Ŷ (t, x), p̂(t, x), q̂(t, x). Suppose
the functions (y, ϕ) 7→ g(x, y, ϕ) and (y, ϕ, u) 7→ H(t, x, y, ϕ, u, p̂(t, x), q̂(t, x) are convex for each (t, x) ∈ [0, T ] × D.
Moreover, suppose the following average minimum condition,

min
v∈U

{∫
D

H(t, x, Ŷ (t, x), Ŷ (t, ·), v, p̂(t, x), q̂(t, x))dx

}
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=

∫
D

H(t, x, Ŷ (t, x), Ŷ (t, ·), û(t), p̂(t, x), q̂(t, x))dx.

Then û is an optimal control.

Theorem 4.9 (Necessary Maximum Principle (II)). Let û(t) be an optimal control and Ŷ (t, x) the corresponding
trajectory and adjoint processes (p̂(t, x), q̂(t, x)). Then we have∫

D

∂Ĥ

∂u

∣∣∣∣∣
u=û

(t, x)dx = 0; a.s. dt× dP.

5. Application to vaccine optimisation

Assume that the density Y (t, x) of infected individuals in a population in a random/noisy environment changes over
time t and space point x according to the following space-interaction reaction-diffusion equation

dY (t, x) =
1

2
∆Y (t, x)dt+

(
αY (t, x)− u(t, x)Y (t, x)

)
dt+ βY (t, x)dB(t),

Y (0, x) = ξ(x) ≥ 0; x ∈ D,
Y (t, x) = η(t, x) ≥ 0; (t, x) ∈ (0, T )× ∂D,

where α, β are given constants modelling the effect on the growth dY (t, x) of the term Y and of the noise, respectively,
and Y (t, x) = G(x, Y (t, ·)), where, as before, G is a space-averaging operator of the form

G(x, ϕ) =
1

V (Kr)

∫
Kr

ϕ(x+ y)dy; ϕ ∈ L2(D),

with V (·) denoting Lebesgue volume and
Kr = {y ∈ Rn; |y| < r}

is the ball of radius r > 0 in Rn centered at 0.
By a slight extension of Theorem 3.2 (see Rem. 3.3), we know that Y (t, x) ≥ 0 for all t, x.
If u(t, x) represents our vaccine effort rate at (t, x), we define the total expected cost J(u) of the effort by

J(u) = E
[ρ

2

∫
D

∫ T

0

u(t, x)2Y (t, x)dtdx+

∫
D

h0(x)Y (T, x)dx
]
,

where ρ > 0 is a constant, and h0(x) > 0 is a bounded function. Here we may regard the first quadratic term as the cost
of the vaccination effort, with unit price ρ, and the second term as the cost of having remaining infection at time T . In
this case the Hamiltonian is

H(t, x, y, y, p, q) = (αy − uy)p+ βyq +
ρ

2
u2y,

and the adjoint equation satisfies
dp(t, x) = −

[
1
2
∆p(t, x)− u(t, x)p(t, x) +∇yH(t, x) + βq(t, x) + ρ

2
u2(t, x)

]
dt+ q(t, x)dB(t),

p(T, x) = h0(x); x ∈ D
p(t, x) = 0; (t, x) ∈ (0, T )× ∂D,

(5.1)

where, by Example 4.4, ∇yH(t, x) = vD(x)αp(t, x), with vD(x) := V ((x+Kr)∩D)
V (Kr)

.

The first order condition for an optimal u = û for H together with the requirement that Y (t, x) > 0. lead to

û(t, x) =
p(t, x)

ρ
.

Hence the pair of random fields (p̂, q̂) becomes
dp̂(t, x) = −

[
1
2
∆p̂(t, x) + 1

2ρ
p̂2(t, x) + vD(x)αp̂(t, x) + βq̂(t, x)

]
dt+ q̂(t, x)dB(t),

p̂(T, x) = h0(x); x ∈ D,
p̂(t, x) = 0; (t, x) ∈ (0, T )× ∂D.

(5.2)
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Since h0 and all the coefficients of this equation are deterministic, we can conclude that q̂ = 0 and (5.2) reduces to the
deterministic partial differential equation

∂
∂t
p̂(t, x) = −

[
1
2
∆p̂(t, x) + 1

2ρ
p̂2(t, x) + vD(x)αp̂(t, x)

]
,

p̂(T, x) = h0(x); x ∈ D,
p̂(t, x) = 0; (t, x) ∈ (0, T )× ∂D.

This is a (deterministic) Fujita type backward quadratic reaction diffusion equation. We could also from the beginning
have allowed h0(x) to be random and satisfy E

[∫
D
h2
0(x)dx

]
<∞. Then the equation (5.2) would have become a nonlinear

backward stochastic reaction-diffusion equation. We will not discuss this further here, but refer to Bandle, and Levine
[2], Dalang et al. [9] and Fujita [13] and the references therein for more information.
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