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S U M M A R Y
The Earth’s rotation exhibits periodic variations as a result of gravitational torques exerted
by the Sun and the Moon and of angular momentum exchange of the solid Earth with the
Earth’s atmosphere and hydrosphere. Here, we aim at determining the complementary effect
of the deep interior on variations in the length-of-day (LOD) and focus on the influence of
topography at the core–mantle boundary (CMB). For this purpose, we have developed an
analytical approach for solving the Navier–Stokes equation for global rotational motions and
inertial waves, based on and extending the approach of Wu & Wahr (1997). An advantage of
the analytical approach is that it allows to identify the frequencies and topographic spherical
harmonics degrees and orders where resonance can happen, as well as to quantify the total
amplifications in the tidal effects on LOD variations. Although the resonances are found to be
sometimes quite near tidal frequencies, we show that they are not sufficiently close to induce
significant perturbations in LOD variations, except for two of the tides, the fortnightly and
monthly tides Mf and Mm. Our results go beyond the findings of Wu & Wahr (1997), extending
them to a much wider range of degrees and orders of topographic coefficients. We show that
there is an amplification in Mf and Mm induced by the degree 18-order 10 and by the degree
7-order 1 of the topography, respectively. Our approach is generic in the sense that it can be
applied to other orientation changes of the Earth as well as to other planets.
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1 I N T RO D U C T I O N – M O T I VAT I O N

Hide (1969) showed that topography at the core–mantle boundary (CMB) of the order of a couple of kilometres affects long-period length-of-
day (LOD) variations. In his pioneering work and in the subsequent improved studies (e.g., Hide 1989; Hide et al. 1993; Jault and Le Mouël
1989; 1990; Yoshida and Hamano 1993; 1995; Kuang and Bloxham 1993; Zatman and Bloxham 1997; 1999; Kuang and Chao 2001; Buffett
1996; Greiner-Mai et al. 2003; Mound and Buffett 2003; Gillet et al. 2010, 2017, 2019, 2022a, 2022b; Asari and Wardinski 2015; Teed et al.
2018; Gerick et al. 2020), the focus was on the pressure torque at the CMB from core flow at long timescale (secular variations and long-term
motions related to the magnetic field) in order to compute the core contribution to LOD variations at decadal timescale. At those long
timescales, the Coriolis and pressure forces are dominant inside the fluid core, with the magnetic (Lorentz) and buoyancy forces completing
the balance of forces (the so-called MAC balance; Aubert & Gillet 2021). On shorter annual and (sub)seasonal timescales considered here,
inertia is thought to dominate over the buoyancy and Lorentz forces. The most important core modes for LOD are then the inertial modes,
for which Coriolis plays the role of a restoring force (for a review of these oscillations, see Triana et al. 2022).

In the present paper, we study tidal effects on short timescale (seasonal, months, days). Observations of LOD variations as provided
by Global Navigation Satellite System (GNSS) and/or Very Long Baseline Interferometry (VLBI) and corrected for the atmospheric, oceanic
and possibly hydrological effects show unexplained residuals at the level of ten to a few tens of microseconds for periods corresponding
to the tidal periods around 2 weeks or 1 month (see e.g. Kouba and Vondrák 2005; Böhm et al. 2010; Senior et al. 2010; Ray et al. 2013;
Rebischung et al., 2016; Watkins et al. 2018; Landskron & Böhm 2019). This questions the accuracy of the tidal corrections in LOD and
provides a motivation for our work. Analyses of the present-day data of LOD variations at short timescale often concentrate on effects from
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the surface geophysical fluids (e.g. Chen 2005; Zhou et al. 2006; Jin et al. 2011; Marcus et al. 2012; Lambert et al. 2017; Dill & Dobslaw
2019; Chen et al. 2019), as these explain the most important part of the seasonal changes in LOD. Here, we study the possible effects of the
core. We assess the importance of inertial waves inside the core for LOD variations and quantify the effects of the associated core flows in
the presence of a CMB topography on the total pressure torque at the CMB in the frame of tidal effects on LOD. We will examine whether
topography at the CMB may explain the observed residuals.

Tidal effects are computed by evaluating the Earth’s deformations (including global rotational deformations) in response to a gravitational
tidal potential. In this procedure, the Earth is usually considered, at initial state, as an ellipsoid in hydrostatic equilibrium. In such a biaxial
ellipsoid, zonal flows associated with the Earth’s rotation variations are not affecting the Earth’s tidal response if the core is assumed to be
inviscid. The Poincaré flow, which is to lowest-order approximation a rotation around an axis in the equator, does not play any direct role in
LOD variations. CMB topography changes this situation by creating a non-zero pressure torque in the polar direction at the CMB and transfer
of angular momentum between core and mantle. The torque depends on the inertial modes in the core, which can cause resonance effects
in LOD. Given that the topography at the CMB can be developed in spherical harmonics (SH) truncated at a certain degree (corresponding
to the smallest wavelength), we will derive an expression of the torque at the CMB that involves the coefficients of the development of the
topography in SH. The effect on LOD will be shown to also depend on the amplitudes of the topographical SH and on the presence of
resonances with inertial modes in the liquid core.

The philosophy of our computation follows Wu & Wahr (1997), who computed the effects of the topography on LOD and nutations.
For CMB topography developed up to degree 6, they showed that this effect can be significant and can be of the level of 1 mas on the annual
retrograde nutation, which is more than 12 per cent of the total non-rigid contribution of 8 mas. This value corresponds to the difference
between the observed retrograde annual nutation amplitude, 33 mas (Herring et al. 2002), and the value computed for a rigid Earth, 25 mas.
When considering a flattened Earth in hydrostatic equilibrium, this nutation amplitude takes the value of 31.1 mas (adding 6.1 mas to the rigid
Earth value) (Wahr 1981). Mathews et al. (1991a, 1991b, 2002) could explain the residual 1.9 mas considering a non-hydrostatic flattening
for the core and electromagnetic coupling. A topography effect at the level of 1 mas would be more than half of these effects, while the
hydrostatic/non-hydrostatic effect is at the first order and the topography at the second order in the small quantities such as the normalized
topography amplitudes. This large 1 mas topography effect found by Wu & Wahr (1997) is difficult to reconcile with the observations, unless
the topography amplitudes are much smaller than the values at the level of 3.5 km that Wu & Wahr (1997) used. The topography contributions
to the other nutation amplitudes were not computed in the paper of Wu & Wahr (1997). These are additional reasons for revisiting the CMB
topography contribution to Earth rotation and orientation changes.

In view of the uncertainties in the CMB topography coefficients and to facilitate the physical interpretation of the complex mathematical
developments, we establish a theory that is completely analytical. The method consists in separating the Navier–Stokes equation into two
equations whose solutions for the fluid motions can be computed analytically. This separation is performed so that one part describes the most
important classical global rotational motions and the other part the smaller additional inertial motions. Both parts of the velocity field are
assumed to be incompressible flows. The no-penetration boundary conditions imposed at the CMB yield a relation involving the additional
velocity field and the CMB topography. This allows to solve for the coefficients appearing in the expression of the additional velocity field in
terms of the topography coefficients and to estimate resonance effects for the frequencies involved in the tidal forcing.

The paper is structured as follows. In Section 2, on the mathematical model, we first recall the Liouville equations for the global
rotation and their solutions (Section 2.1). We then describe the way to obtain the topographic coupling for tidal LOD variations (Section 2.2).
Section 2.3 deals with the analytical solutions of the equations for both the global rotation part and the incremental part of the velocity field
related to the inertial waves. We detail the solutions for the incremental velocity and provide the expressions for the topography used in the
equations. In Section 3, we further develop and solve the equations of the topographic coupling for a two-layered Earth model and we come
up with a new transfer function for tidal changes in LOD. Section 4 provides the concluding remarks.

2 M AT H E M AT I C A L M O D E L

2.1 Equations of motion in the frame of rotational dynamics

Since we want to assess the effect of topographical coupling at the CMB on LOD variations, we can safely neglect Earth’s solid inner core in
our study. The Liouville equations governing the rotation of the two-layer Earth model can be written as (Sasao et al. 1980):

∂L

∂t
+ � × L = �, (1)

∂L f

∂t
− ω f × L f = �cmb, (2)

where � is the rotation vector of the solid mantle and ω f the differential rotation vector of the liquid core with respect to the mantle. The
rotation vector of the core can thus be written as �+ω f . L and L f denote the angular momentum of the whole Earth and liquid core,
respectively. The quantity, �, represents the torque exerted on the planet by external sources (primarily the Sun and Moon). �cmb is crucial to
the present study. It represents the part of the torque caused by the mantle on the liquid core that comes in addition to the external gravitational
torque acting on the liquid core and the torque caused by the fluid pressure on an hydrostatic oblate mantle (see again Sasao et al. 1980, and
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Dehant & Mathews 2015, see also Rekier el al. 2020). This torque includes the electromagnetic torque and the drag on the viscous torque,
but we don’t consider those contributions here and keep only the pressure torque related to the topography of the CMB in order to be able to
evaluate its effect independently from the other physical mechanisms.

Following the standard procedure, we choose the mean axis of rotation as our polar z-axis, and write the deviations of the Earth and
liquid core from steady rotation as:

� = �0(ẑ + m), (3)

ω f = �0m f , (4)

where m and m f are small dimensionless quantities and �0 the mean mantle angular velocity of rotation. To first order in the small quantities,
the components of the Liouville equations along the rotation axis decouple from those in the equatorial directions. For a single component of
the external torque with frequency ωtidal = σ m�0, as measured in the inertial frame, the third, or polar, components of eqs (1) and (2) (Dehant
& Mathews 2015) write:

m3 + c33

C
+ C f

C
m f,3 = − i�3

Cσm�2
0

, (5)

m3 + m f,3 + c f,33

C f
= − i�cmb,3

C f σm�2
0

, (6)

where C and Cf denote the polar moments of inertia of the Earth and its liquid core, respectively, and c33 and cf,33 are the increments in these
quantities caused by tidal deformations at the frequency considered usually computed using the Love number formalism. Subscripts 3 refer
to the polar z component.

The incremental rotation parameter m3 is related to the change in the LOD, �LOD, by

�LOD

LOD
= −m3. (7)

In the absence of topographic coupling at the CMB (�cmb,3 = 0), eqs (5) and (6) can be readily solved, giving:

m0
3 = − cm,33

Cm
− i�3

Cmσm�2
0
, (8)

m0
f,3 = − c f,33

C f
− m0

3, (9)

where Cm = C − Cf and cm,33 = c33 − cf,33 are the mantle moment of inertial and its increment also computed using the Love number
formalism. Wu & Wahr (1997) showed that this solution is sufficient to evaluate the topographic torque at the CMB, �cmb,3 and that the
Earth’s rotational response can be calculated as:

m3 = m0
3 + i�cmb,3

Cmσm�2
0

. (10)

Wu & Wahr (1997) further showed that �cmb, 3 exhibits resonances at some particular frequencies, which, according to eqs (7) and (10), also
manifest themselves in �LOD. We review this procedure in the remainder of this section.

Note that the deformation effects related to the incremental flux due to the existence of a topography are smaller than those related to
the main core flow and partly accounted for by considering the induced readjustment of the flow and the associated changes in the moments
of inertia through the use of Love numbers specifying the elastic response of the Earth to a unit tidal forcing. The additional cm,33 and cf,33

can, therefore, be neglected in the lowest order of approximation.

2.2 CMB topography and topographic torque

In seismology, it is common practice to parametrize the CMB surface radius as follows:

rCMB = R

[
1 +

N∑
n=1

n∑
m=0

(εm
c n cos mλ + εm

s n sin mλ)Pm
n (cos θ )

]
, (11)

where R is the mean radius of the core, θ and λ are the colatitude and longitude, respectively and Pm
n (cos θ ) denotes the associated Legendre

polynomials of (integer) degree n and order m. In the above parametrization, εm
c n and εm

s n are real valued parameters. For our purpose, we find
it more convenient to use instead:

rC M B = R

[
1 + (

ε0
2

)
hydrostat.

P0
2 (cos θ ) +

{
N∑

n=1

m=n∑
m=−n

εm
n Y m

n (θ, λ)

}]
(12)

where εm
n now are the complex coefficients of the SH Y m

n (θ, λ) of order n and degree m. These SH are based on the associated Legendre
polynomials Pm

n by:

Y m
n (θ, λ) =

√
2n + 1

4π

(n − m)!

(n + m)!
· Pm

n (cosθ )eimλ, m ≥ 0 (13)
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and Y −m
n (θ, λ) = (−1)m(Y −m

n )∗(θ, λ) with (Y −m
n )∗ the complex conjugate of Y m

n . Note that the constant term multiplying Pm
n insures orthonor-

mality of Y m
n .

The expression of εm
n in terms of εm

c,n and εm
s,n are given in Appendix B. In writing eq. (11), we have explicitly isolated the part of ε0

2

attributed to the hydrostatic deformation of the CMB surface, so that the set of remaining coefficients {εm
n } relates to the non-hydrostatic

deformation only.
If we can find a way to compute the pressure inside the fluid core, we may then use the topography expression (12) to compute the

pressure torque on the non-hydrostatic part of the CMB topography, which must be equal and opposite in sign to the torque caused by the
mantle on the liquid core, by virtue of Newton’s third law:

�cmb = �pressure − �hydrostat.
pressure

= −
∮

cmb
P(r × n̂) d S +

∮
hydrostat.

P
(
r × n̂0

)
d S, (14)

where the first integral runs over the bumpy CMB topography with normal vector n̂ and the second integral runs over the hydrostatic oblate
ellipsoid with normal vector n̂0. In the next section, we explain how to evaluate the pressure by computing the dynamics of the flow inside
the liquid core.

2.3 Flow inside the core

In the frame rotating at angular velocity � relative to the inertial frame, the inviscid flow inside the liquid core is governed by the momentum
equation

∂V

∂t
+ (V · ∇)V + 2� × V + ∂�

∂t
× r + � × (� × r) = − 1

ρ
∇ P + ∇φe, (15)

where ρ denotes the core density here taken as homogeneous, P is the fluid pressure and φe denotes the exterior potential acting on the fluid.
The vector field V denotes the velocity of the flow relative to the mantle. It can be safely treated as small compared to the uniform rotation
at angular velocity �0. For this reason, we can neglect the second term of eq. (15). This makes the remaining equation linear in the velocity,
so that the flow response to tidal forcing can be analysed independently for each individual frequency. The flow velocity must satisfy the
no-penetration condition at the CMB:

n̂ · V|cmb = 0. (16)

Wu & Wahr (1997) had the idea to separate the velocity field, V, in two parts:

V = v + u, (17)

where the vector field u is treated as a small perturbation produced on the base flow, v, by the non-hydrostatic CMB topography. Both fields
must satisfy the incompressibility condition: ∇ · v = ∇ · u = 0. By using eq. (3), the momentum eq. (15), can then be split into two parts:

∂v

∂t
+ 2�0ẑ × v + �0

∂m

∂t
× r − ∇φm = ∇χ, (18)

∂u

∂t
+ 2�0ẑ × u + ∇ p = −∇χ, (19)

where we have introduced the reduced pressure p and the centrifugal potential φm, respectively defined as:

p = P
ρ

− φe, (20)

φm = − 1
2 |� × r|2 + 1

2 �2
0|ẑ × r|2, (21)

where the second term of eq. (21) is the centrifugal potential at equilibrium.
The scalar function, χ , appearing in both eqs (18) and (19), cannot be uniquely determined so that the decomposition of eq. (15) is not

unique. It is convenient to consider this decomposition so that the first part represents the flow motion without CMB topography. For LOD
variations, we follow Wu & Wahr who have simply chosen χ = 0, which indeed corresponds to the main tidal flow when ignoring the CMB
topography. Eq. (18) may then be solved immediately for the base flow, v, within the hydrostatic fluid core, once we know the axial component
of m, which is here given by eq. (8), giving:

v = �0m0
f,3ẑ × r, (22)

where m0
f,3 should be read from eq. (9). Neglecting the tidal deformation of the core, this solution simply reduces to v = −�0m0

f,3ẑ × r,
which is the solution of the spin-up problem when there is no coupling at the CMB (Greenspan 1969).

The whole point of using the decomposition eq. (17) lies in the form of the dynamical eq. (19) for the perturbation, u. Focusing on the
flow response to a given tidal frequency, ωtidal = σ m�0, we may write u = ũeiσm�0t , and p = p̃eiσm�0t . Eq. (19) may then be rewritten as:

ũ = −iσm

4 − σ 2
m

(
∇ p̃ − 2

iσm
ẑ × ∇ p̃ − 4

σ 2
m

(ẑ · ∇ p̃)ẑ

)
1

�0
. (23)
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Taking the divergence on both sides and using ∇.u = 0, we find:

∇2 p̃ − 4

σ 2
m

(ẑ · ∇)2 p̃ = 0. (24)

This is the Poincaré equation governing the dynamics of inertial waves. Analytical solutions to this equation can be written explicitly in terms
of specially tailored bi-spheroidal coordinates for both the spherical and oblate spheroidal fluid core (Greenspan 1969; see also Rieutord
2014; Zhang & Liao 2017; and eq. (A13) of Rekier et al. 2019). For our purpose, we only need the general solution on the sphere located at
the mean CMB radius, R, where it can be written as a spherical harmonics expansion (Wu & Wahr 1997):

p̃|r=R =
∞∑

�=1

�∑
m=−�

am
� Pm

�

(σm

2

)
Y m

� (θ, λ). (25)

The above [combined with eq. (20)] can be used into eq. (14) to compute the pressure torque at the CMB. In the axial direction, this reads:

�cmb,3 = −i�2
0 R5

�max∑
�=1

�∑
m=−�

(−1)mm Pm
�

(σm

2

)
ε−m

� am
� . (26)

The last step is to compute the values of the complex coefficients am
� . This is done by inserting eq. (25) back into eq. (23) and using the

boundary condition eq. (16) which, upon using eqs (17) and (22), reduces to:

n̂ · (
ũ + �0m0

f,3ẑ × r
) |r=R = 0. (27)

After some algebra (see also Appendix A), one finds:

am
� = −2

(
1 − σ 2

m
4

)
[. . . ]m

�

m εm
� m0

f,3, (28)

a−m
� = 2

(
1 − σ 2

m
4

)
[. . . ]−m

�

(−1)mm εm
�

∗ m0
f,3, (29)

where m > 0, and we have introduced the following shorthand in the denominator:

[...]m
� =

[
m Pm

�

(σm

2

)
−

(
1 − σ 2

m

4

)
Pm

�
′
(σm

2

)]
. (30)

where
′

denotes the derivative and where −l ≤ m ≤ l. The values of σ m for which this quantity appearing in the denominator of eqs (28) and
(29) is zero correspond to the frequencies of the inertial modes of the rotating fluid sphere (Greenspan 1969). The above derivation shows
that those modes can resonantly amplify the tidal variations in the LOD. We quantify this mechanism in the next section.

When actually computing �LOD based on eq. (7), it is useful to relate observations of �LOD at frequency σ m to a reference chosen at
a well-known frequency, e.g. the lunar fortnightly frequency of the tide Mf (period 13.66 d), far away from any resonance using:

m0
3(σm) = m0

3(σM f )
φext (σm)

φext (σM f )
, (31)

where φext is the external tidal potential at a given frequency. Combining all the above, one has:

�LOD(σm) =
(

1 −
�max∑
�=1

�∑
m=−�

m2 Pm
�

(σm

2

) 2

[...]m
� �2

0Cm
εm

� εm∗
�

)
φext (σm)

φext (σM f )
�LOD(σM f ) (32)

3 R E S O NA N T A M P L I F I C AT I O N I N T I DA L VA R I AT I O N O F L O D F RO M T O P O G R A P H Y

In order to estimate the amplitude of the resonance in the tidal �LOD, we need a model of the CMB topography. We use the topographic
coefficients as measured by seismologists Morelli & Dziewonski 1987; Boschi & Dziewonski 2000; Sze & van der Hilst 2003; Simmons et al.
2009). These models are restricted to long-wavelength topography. CMB topography is thought to be primarily due to isostatic compensation
of long-wavelength density anomalies in the lowermost mantle [see e.g. Dehant et al. (2022) for a review]. At this time, there is no convergence
towards a global model of the bottom mantle anomalies to derive a topographic map of the CMB unambiguously. Although the topography
models mostly show elevated topographies under the Pacific and Africa, implying a rather large degree 2-order 2 topography coefficient
details differ between models. So, we decided not to use those dynamical models and to use the seismological models. The data are for the
real εm

c n and εm
s n and are restricted to low degrees.

In order to test our analytical approach adequately, we want to use topographic coefficients of higher orders and degrees. We calculate
these coefficients by using Kaula’s rule (Kaula 1966), which predicts that gravity coefficients are inversely proportional to the square of
the degree n. When applied to the CMB topography, this predicts εm

n ∼ n−2. This choice is consistent with the current knowledge relating
topography and gravity coefficients (see e.g. Chao & Rubincam 1989 and Ermakov et al. 2018) since the CMB is an equipotential surface.
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Figure 1. Resonances in the total torque (a); Zoom into the total torque around 9.61 d (b), 13.66 d (Mf tide) (c), 14.77 d (d) and 27 d (Mm tide) (e), which
includes the largest resonantly affected tides.

We look for resonance frequencies that can be close to tidal frequencies corresponding to long-period tides. In practice, we search for the
solutions of the equation [...]m

n = 0 that lie in the frequency band [−0.5, 0.5] cycle/d. These solutions refer to all periods larger than 2 d. The
spectrum is divided in frequency bands with central periods near the tidal periods at 9.1, 9.18, 9.54, 9.61, 13.61, 13.66, 13.81, 14.19, 14.77,
26.88, 27.55 or 182.62 d. These resonances would amplify the total third component of the torque leading to enhanced LOD variations.

Fig. 1 shows the resonant behaviour of the total torque as a function of frequency. In Table 1, we identify those resonance periods near
tidal periods, and we provide the amplification in �LOD. We do so by means of eq. (32). The amplification is proportional to the square of the
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Table 1. Possible amplifications in tidal LOD variations

Central period (degree n, order m) Resonance period Tidal period Amplification
(d) (d) (d) (normalized on Mf)

9.61 (6,2) 9.8241 9.8736 2.4 ·(ε2
6)2

13.81 (9,3) 13.9857 13.7773 51.6·(ε3
9)2

14.77 (5,1) 14.6651 14.6981 2.6·(ε1
5)2

14.6664 10.5·(ε1
5)2

27.55 (Mm) (7,1) 27.6658 27.5545 816.5·(ε1
7)2

27.6668 5963.3·(ε1
7)2

13.66 (Mf) (18,10) 13.6136 13.6333 15568.8·(ε10
18)2

14.77 (15,7) 14.7384 14.7653 1923.3·(ε7
15)2

182.62 (SSa) (19,1) 189.6665 189.6211 75.7·(ε7
19)2

associated topography εm
n , and the amplification factor can be several orders of magnitude larger than 1. For example, the �LOD associated

with the tide at 27.6668 d, quite close to a resonance, is amplified by 5963.3(ε1
7)2.

As seen from the last column of Table 1, there is a large range of amplification factors in front of the normalized topography coefficients.
The maximum amplification factor is for the tide at 13.6333 d near the Mf tide with an amplification at the level of 15569(ε10

18)2. Since ε10
18,

according to the Kaula rule, is small, of the order of 5 10−3, the amplification is 0.06 ms. Considering that the LOD variation at the tidal
period of 13.6333 d (see chapter 8 of IERS Standard) is 0.15 ms (millisecond), as theoretically computed from Defraigne and Smith (1999),
the total amplitude could, therefore, increase to 0.21 ms and the observed residuals (between 0.02 and 0.11 ms) could be explained (Kouba
and Vondrák 2005; Vondrák and Ron, 2005; Shen and Peng 2016; Dill et al. 2019).

The lowest degree topography that can induce a resonance in the tidal effects on LOD is degree 5. The amplification for the tide at
14.6664 d is only a factor of 10.5(ε1

5)2. The LOD variation associated with that tide is very small.
There is a resonance frequency very near the Mm tide at 27.666 d, which influences the tides at 27.55 d as well as at 27.667 d. The

amplifications are respectively 817(ε1
7)2 and 5963(ε1

7)2. As ε1
7 can be of the order of 0.02, the tide at 27.55 d can be amplified 2.4 times and

the associated LOD variations would be of the order of 0.03 ms, depending on the effective value of ε1
7. Similarly, the tide at 27.67 d can be

amplified 0.3 times and the associated LOD variations would be of the order of 0.06 ms. This amplification is similar to the one of the Mf

tide. Both contributions around 27.7 d combined would provide a spectral amplitude that is a little bit too high compared to the observation
residuals ranging from 0.02 to 0.03 ms.

4 D I S C U S S I O N

The focus of the current research is on quantifying the response of the Earth’s rotation to tidal forcing when considering a topography at the
CMB. In order to achieve this goal, we have developed an analytical approach for solving the Navier–Stokes equation for global rotational
motions plus inertial waves, based on and extending the approach of Wu & Wahr (1997). From their numerical solution for a topography up
to degree 6, they concluded that the effect of a topographic torque on the LOD variation is very small. We have revisited the computations and
considered a completely analytical method. The advantage of our analytical method is that it allows us to directly identify the frequencies and
topographic degrees and orders where resonances can happen. At these frequencies, the LOD variations can be amplified as seen from Fig. 1.

We extended the computation of the topographic torque to higher degrees and orders than 6 [the maximum used in Wu & Wahr (1997)].
Since many of the topographic coefficients are not observed at the CMB, we have assumed that they follow the Kaula rule, similar to that
of the gravity field. We have estimated the coefficients of such a law using the observed values of the CMB coefficients at low degrees and
orders and used these coefficients to extrapolate to higher orders and degrees. This provided us with an order of magnitude of what we can
expect. We have computed the resonances for these degrees and orders, as well as the maximum amplifications near the tidal frequencies
given by the tide generating potential.

From our analysis, we have shown that the conclusion in Wu & Wahr (1997) on very small LOD contributions due to the effects of
topography still holds when considering higher degrees and orders. However, Wu & Wahr (1997) have small contributions at the microsecond
level in the tidal effects on LOD considered (see their table 6). We have demonstrated that the tide at 13.63 d near Mf and the tide at 27.56 d
near Mm can both be amplified by 0.06 ms based on a mean topography. Observations from VLBI and GNSS combined show some residuals
ranging from 0.02 to 0.11 ms near the 13.63 d tide and from 0.02 to 0.03 ms near the 27.7 d tide (Kouba and Vondrák 2005; Vondrák and
Ron 2005; Shen and Peng 2016; Dill et al. 2019). It is tempting to suggest that topographic coupling might explain these residuals, although
the IERS Earth rotation parameters around the semi-diurnal and diurnal periods are not perfectly corrected for the ocean tides. Errors in the
determination of the tiny semi-diurnal constituents OP2 and λ2 could be aliased into Mf and Mm, respectively (Woodworth & Hibbert 2018).

Our analysis concentrated on the topographic coupling at the CMB and did not consider other CMB coupling mechanisms and the
presence of an inner core. Zhang (1992) and Zhang & Liao (2017) showed that inertial waves (appearing in our computation) with a small
azimuthal wave number are only weakly modified by an inner core (see also Triana et al. 2022). Since the largest effects are associated with
small azimuthal wave number, we expect the inner core to have a negligible effect on our results. The introduction of neglected additional
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CMB couplings into Liouville eq. (2) would only slightly change the amplitude of the unperturbed wobble, m0
3, to leading order in the CMB

flattening. Nevertheless, even though the electromagnetic force is dominated by inertia at the timescales considered, its presence can slightly
alter the frequency of inertial modes in the core, possibly pushing them into or away from resonance (Luo and Jackson, 2022; Luo et al. 2022).
Moreover, introducing viscous and ohmic dissipation into the model causes inertial modes to become damped, which can slightly reduce the
amplification.
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Vondrák, J. & Ron, C., 2005. Combining GPS and VLBI measurements of
celestial motion of the Earth’s spin axis and universal time, Acta Geodyn.
Geomater., 2(3), 87–94 . Id. 139.

Wahr, J.M., 1981. The forced nutations of an elliptical, rotating, elastic and
oceanless earth, Geophys. J. R. astr. Soc., 64, 105–121.

Watkins, A., Fu, Y. & Gross, R., 2018. Earth’s subdecadal angular mo-
mentum balance from deformation and rotation data, Sci. Rep., 8, 13761.
doi:10.1038/s41598-018-32043-8.

Woodworth, P.L. & Hibbert, A., 2018. The nodal dependence of long-period
ocean tides in the Drake Passage, Ocean Sci., 14, 711–730.

Wu, X. & Wahr, J.M., 1997. Effects of non-hydrostatic core-mantle bound-
ary topography and core dynamics on Earth rotation, Geophys. J. Int.,
128(1), 18–42.

Yoshida, S. & Hamano, Y., 1993. The westward drift of the geomagnetic field
caused by length-of-day variation, and the topography of the core-mantle
boundary, Geophys. J., 114(3), 696–710.

Yoshida, S. & Hamano, Y., 1995. Geomagnetic decadal variations caused
by length-of-day variation, Phys. Earth planet. Inter., 91(1–3), 117–129.

Zatman, S. & Bloxham, J., 1997. Torsional oscillations and the magnetic
field within the Earth’s core, Nature, 388, 760–763.

Zatman, S. & Bloxham, J., 1999. On the dynamical implications of models
of Bs from torsional oscillations of the Earth’s core, Geophys. J. Int., 138,
679–686.

Zhang, K., 1992. On inertial waves in the Earth’s fluid core, Geophys. Res.
Lett., 19(8), 737–740.

Zhang, K. & Liao, X., 2017. Theory and Modeling of Rotating Flu-
ids: Convection, Inertial Waves and Precession, Cambridge Univer-
sity Press, Cambridge Monographs on Mechanics, 1st Edition, ISBN
9781139024853, 526 pages. doi: 10.1017/9781139024853.

Zhou, Y.H., Salstein, D.A. & Chen, J.L., 2006. Revised atmospheric exci-
tation function series related to Earth’s variable rotation under consid-
eration of surface topography, J. geophys. Res. Atmospheres, 111(D12),
CiteIDD12108. doi:10.1029/2005JD006608.

A P P E N D I X A : C O E F F I C I E N T S ak
l O F T H E T O RQ U E

Expressions for the ak
l coefficients of the torque can be obtained by applying the boundary condition eq. (16) to u and v. We take u from

eq. (19) with � provided by eq. (20). We also take v from eq. (22). The resulting expression corresponds to the expression (B4) − (B12) = 0
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in the appendix of Wu & Wahr (1997) and is of the form:

∑
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(A1)

eq. (A1) allows us to obtain analytical expressions for the coefficients ak
l as a function of εm

n at each frequency of interest. We first multiply
eq. (A1) by the complex conjugate of the spherical harmonics Y m

n , integrate over 2π and apply the orthonormality condition. We then obtain
a much easier form of eq. (A1) relating am

n linearly with εm
n for each n and m:[
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Using eq. (B9), we also have[
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For writing simplicity, we express the terms in brackets in eqs (A2) and (A3) as:
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as already mentioned in eq. (30) and (for positive k)
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While combining negative and positive orders of the spherical harmonics for the εm
n provides a real topography, it must be noted that the

combination of am
n and a−m

n is not real due to the ( − m) coefficients appearing in eq. (A3). Therefore, � is a complex-valued for m 
= 0.
The case when m = 0 in eq. (A2) can be treated separately. The right-hand side of eqs (A2) and (A3) is equal to zero, and the coefficient

am
n do not depend on the topographic amplitude. Indeed, this makes sense since with a zonal topography it is impossible to induce a zonal

velocity.
The system of eqs (A2) and (A3) is undetermined when [...]m

n is equal to zero. This expresses an eigenvalue equation for σ m and
determines the condition for resonances to happen. In this case, it is impossible to determine am

n but we can determine the resonance
frequencies, which do not depend on the topographic amplitudes.

Using eqs (A2) and (A3), we can straightforwardly express a±m
n in terms of the topographic coefficients ε±m

n :

am
n =

2
(

1 − σ 2
m
4

)
[...]m

n

m εm
n m3 (A6)

and for the negative case:

a−m
n =

2
(

1 − σ 2
m
4

)
[...]−m

n

(−m)(−1)mεm∗
n m3 (A7)

Eqs (A6) and (A7) show resonance effects when the denominators are equal to zero. The frequencies corresponding to [...]±k
l = 0 given by

eqs (A4) and (A5) are the inertial mode frequencies.
Besides depending linearly on εm

n , the coefficients am
n are also proportional to m3 (or to m0

3 to first order in the small quantities such as
m0

3, m3).

A P P E N D I X B : E X P R E S S I O N O F T H E T O P O G R A P H Y AT T H E C O R E - M A N T L E
B O U N DA RY

Since rotation flattens the Earth, the coefficient ε0
c 2 contains a hydrostatic part next to a non-hydrostatic contribution to the topography:

ε0
c 2 = ε0

c 2 hydr. part + ε0
c 2 non−hydr. part . (B1)

The additional topography at the CMB with respect to the flattened core can thus be separated from the hydrostatic part as

rC M B = R

[
1 + ε0

c 2 hydr. part P0
2 (θ ) +

N∑
n=1

m=n∑
m=−n

(εm
c n cos mλ + εm

s n sin mλ)Pm
n (θ )

]
(B2)

where εm
c n represent henceforth the non-hydrostatic contributions to the topography.

Note that for simplicity, we have kept the same notation for ε0
c 2.

The topographical coefficients and the spherical harmonics [as given by eq. (13)] can be related through a series of properties:
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Figure A1. Topographic coefficients averaged over the orders and showing a decreasing law as a function of their degrees in their SH expansions.

Figure A2. Topographic coefficient fitting according to Kaula’s law. The dots are the mean of all orders as well as of all observation data sets.

�(εm
n ) =

√
2π

2
εm

c n (B3)

�(ε−m
n ) = (−1)m

√
2π

2
εm

c n (B4)

(εm
n ) = −√

2π

2
εm

s n (B5)

(ε−m
n ) = (−1)m

√
2π

2
εm

s n (B6)

εm
n =

√
2π

2
(εm

c n − iεm
s n) (B7)

ε−m
n = (−1)m

√
2π

2
(εm

c n + iεm
s n). (B8)

where R and  are the real and imaginary part of a complex number, respectively.
In addition, since

ε−m
n = (−1)mεm∗

n , (B9)

we have

ε−m
n Y −m

n (θ, λ) = εm∗
n Y m∗

n (θ, λ) (B10)

and rCMB given by eq. (12) is real.
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A P P E N D I X C : K AU L A RU L E F O R T H E T O P O G R A P H Y C O E F F I C I E N T S

In order to construct the topography coefficients, we proceed in several steps.
First of all, we brought the four sources of CMB topography to a common ground by scaling by the CMB mean radius. Fig. A1 depicts

the coefficients obtained after this operation.
Furthermore, we have computed an average for the different cosine and sine coefficients for each given degree as provided by four

sources (Morelli & Dziewonski 1987; Boschi & Dziewonski 2000; Sze & van der Hilst 2003; Simmons et al. 2009). We interpolate the
obtained values to get as and ac in Kaula’s law. This states that that gravity coefficients are inversely proportional to the square of the degree n.
By the same token, we consider that the approximation of the amplitude coefficients of the topography follows a function of the type x → a

x2

(Kaula 1966).
Consequently, we can extrapolate and obtain topography coefficients for any degree or order. See Fig. A2 for the coefficients thus

obtained.
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