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Abstract: We define a new Gromov–Witten theory relative to simple normal crossing
divisors as a limit of Gromov–Witten theory ofmulti-root stacks. Several structural prop-
erties are proved including relative quantum cohomology, Givental formalism, Virasoro
constraints (genus zero) and a partial cohomological field theory. Furthermore, we use
the degree zero part of the relative quantum cohomology to provide an alternative mirror
construction of Gross and Siebert (Intrinsic mirror symmetry, arXiv:1909.07649) and to
prove the Frobenius structure conjecture of Gross et al. (Publ Math Inst Hautes Études
Sci 122:65–168, 2015) in our setting.
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1. Introduction

1.1. The theory. Let X be a smooth projective variety over C and let

D1, . . . , Dn ⊂ X

be smooth irreducible divisors. Suppose

D := D1 + . . . + Dn

is simple normal crossing.
For r1, . . . , rn ∈ N pairwise coprime, the multi-root stack

XD,�r := X(D1,r1),...,(Dn ,rn),

defined in Definition17, is smooth. The first result of this paper shows that the Gromov–
Witten theory of XD,�r is a polynomial in r1, . . . , rn , see Corollary18 in Sect. 3. This is
achieved by certain polynomiality results for root stacks associated to a pair (X ,D) of
Deligne-Mumford stack X and a smooth divisor D ⊂ X .

Theorem 1. For r sufficiently large, genus 0 Gromov–Witten invariant of XD,r is in-
dependent of r . Genus g > 0 Gromov–Witten invariant of XD,r is a polynomial in r .
Furthermore, the constant term of the polynomial is the corresponding relative Gromov–
Witten invariant of (X ,D).

We refer the readers to Theorems9 and 10 in Sect. 2 for the precise statement. Taking the
constant terms yields a theory canonically attached to the pair (X, D). See Definition20
in Sect. 3 for the precise definition of this new theory.

We may view this new theory formally as the Gromov–Witten theory of the infinite
root stack

XD,∞

associated to (X, D), as constructed in [31], because in genus 0 we show that the
Gromov–Witten theory of XD,�r is independent of r1, . . . , rn and taking constant terms
is the same as taking large ri limit.

Question 2. Can one define Gromov–Witten theory of infinite root stacks directly?

Naturally, one can expect such a definition to coincide with the constant terms of
Gromov–Witten theory of finite root stacks. By [31], the infinite root stack structure de-
termines the logarithmic structure. It is natural to expect that infinite root stack Gromov–
Witten theory should determine logarithmic Gromov–Witten theory.
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1.2. Logarithmic theory. Our new theory has some advantages:

(1) Negative contact orders are naturally included. A relative marking with positive
contact order k > 0 along a divisor Di corresponds to an orbifold marking with
age(NDi /XD,�r ) equals to k/ri for ri � 1. On the other hand, a relative marking
with negative contact order k < 0 along a divisor Di comes from an orbifold
marking with age(NDi /XD,�r ) equals to 1 + k/ri for ri � 1. Roughly speaking, if
we have negative contact order with a divisor Di at a marking, then the irreducible
component of the curve containing this marking should map into Di . When D is
irreducible, we recover relative Gromov–Witten theory with negative contact orders
defined in [13,14] which is a generalization of the usual relative Gromov–Witten
theory of [20,25,26] and [27]

(2) It enjoys very nice properties. In particular, we highlight the following properties.
• In genus zero, we have

– Topological recursion relation (TRR) (Sect. 4.2)
– Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation (Sect. 4.2)
– Relative quantum cohomology ring (Sect. 4.3)
– Givental formalism (Sect. 5)
– Virasoro constraints (Sect. 6).

• In all genera, we have
– string, dilaton, and divisor equations (Sect. 4.2)
– a Partial CohFT (Sect. 8).

(3) It is quite computable. It has already been proved in [38] that one can construct an
I -function for the Gromov–Witten theory of XD,∞. Therefore, Givental formalism
thatwe developed in Sect. 5 provides a necessary foundation for [38] to state amirror
theorem for XD,∞ (see Theorem31). The mirror theorem allows us to compute
genus zero invariants of XD,∞ in various cases. Some examples and applications
were given in [38]. Therefore, one may expect that Gromov–Witten invariants of
infinite root stacks aremore accessible (than logGromov–Witten invariants) in terms
of computation, as lots of sophisticated techniques in traditional Gromov–Witten
theory are available.

We may view our new theory as a logarithmic Gromov–Witten theory of (X, D). As
such, it is natural to ask

Question 3. How is the new theory related to the (punctured) logarithmic Gromov–
Witten theory of Abramovich–Chen–Gross–Siebert defined in [2,5,10,17]?

In [38], we showed by explicit computations that these two theories are equal in
some cases. When D is irreducible, the main results of [1,36] imply that these two
theories are the same for invariants without punctured points1. As pointed out by Dhruv
Ranganathan, these two theories are not equal in general. For example, logarithmic
invariants are invariant uner birational transformation [4], but orbifold invariants are
not. However, it is perhaps reasonable to expect that our new theory and the punctured
logarithmic Gromov–Witten theory are equivalent somehow. It would be interesting to
find the precise relation between these two theories. Then, one can compute punctured
invariants through corresponding invariants of XD,∞. Recently, the birational invariance
of orbifold invariants has been investigated in [8,41].

Another interesting question is

1 The arguments easily extend to the case Di ’s are disjoint, showing that the two theories are the same in
this case, too.



806 H. Tseng, F. You

Question 4. (R. Pandharipande) Does the new theory have a degeneration formula?

When D is irreducible and there are no punctured points, it is proved in [36] that our
theory is the relative Gromov–Witten theory of [26], which admits a degeneration for-
mula [27]. A degeneration formula for logarithmic Gromov–Witten theory can be found
in [3], [24] and [30].

1.3. Mirror constructions. In [18] and [19], Gross-Siebert constructed mirrors to a log
Calabi-Yau pair (X, D) and a maximally unipotent degeneration X → S of log Calabi-
Yaumanifolds. Themirrors are constructed from the degree 0 part of the relative quantum
cohomology ring

QH0(X, D).

A key ingredient is the punctured Gromov–Witten theory which is used to describe the
structure constants for the product rule.

We construct a relative quantum cohomology ring for the pair (X, D) in Sect. 4
using Gromov–Witten invariants of XD,∞. The associativity of the relative quantum
cohomology follows from the WDVV equation. Restricting it to the degree 0 part of the
relative quantum cohomology ring,

QH0(XD,∞),

there is a product structure naturally coming from the restriction of the relative quantum
product. Similar to [19], the associativity is not expected to be preserved under this
restriction. We show in Sect. 7 that the associativity is true under some assumptions.
More precisely, we have the following theorem.

Theorem 5. (=Theorem37) When (KX + D) is nef or anti-nef, the structure constants

N orb,β
p1,p2,−r

define, via (7.5), a commutative, associative SI -algebra structure on RI with unit given
byϑ0, where SI and RI are defined in (7.3) and (7.4) respectively; the structure constants
are defined in (7.2).

Remark 6. Theorem5 is [19, Theorem1.9],which is amain theoremof [19], ifwe replace
the structure constants by the corresponding punctured Gromov–Witten invariants. It is
worth noting that in our setting the proof of the associativity is substantially shorter.
Gross–Siebert also proved the case when (X, D) is (non-minimal) log Calabi-Yau in
[19, Theorem 1.12], which would avoid issues from the existence of minimal models.
We plan to study this case in the future.

Furthermore, we show that the Frobenius structure conjecture ofGross-Hacking-Keel
[16] holds in our setting.

Theorem 7. (=Theorem38) When (KX + D) is nef or anti-nef, the Frobenius structure
conjecture (see Conjecture35) holds for QH0(XD,∞).

In Sect. 7.3, we use the algebra in Theorem5 to construct mirrors following the
Gross-Siebert program (see [18] and [19]). Naturally, one can ask

Question 8. How are the resulting mirrors related to mirrors from other constructions?
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One can expect that the resulting mirrors are closely related to, if not the same as,
Gross-Siebert mirrors. One such evidence is given in [38, Section 6] where we obtained a
mirror identity between quantum periods of Fano varieties and classical periods of their
mirror Landau-Ginzburg potentials by replacing log invariants with formal invariants of
infinite root stacks.

2. Polynomiality

In this section, we generalize the main results of [13,36] and [14] to the case when the
targetX is a Deligne-Mumford stack instead of a variety. In the next section, we will use
these results to prove the polynomiality of Gromov–Witten theory of multi-root stacks.

2.1. Set-up. Let X be a smooth proper Deligne-Mumford stack over C with projective
coarse moduli space. Let

D ⊂ X
be a smooth irreducible divisor. Assume that r ∈ N is coprime with the order of any
stabilizer of X . Then the stack of r -th roots along D,

XD,r ,

is smooth and we consider its Gromov–Witten theory.
Given an effective curve class β ∈ H2(X , Q), let

�k = (k1, . . . , km) ∈ (Q×)m

be a vector that satisfies

m∑

j=1
k j =

∫

β

[D].

The number of positive and negative elements in �k are denoted by m+ and m−
respectively. So

m = m+ + m−.

We assume that r is sufficiently large. We consider the moduli space

Mg,�k,n(XD,r , β)

of (m + n)-pointed, genus g, degree β ∈ H2(X , Q) orbifold stable maps to XD,r where
the j-th marking is an orbifold marking with age(ND/X ) equals to k j/r if k j > 0; the
j-th marking is an orbifold marking with age(ND/X ) equals to 1+ k j/r if k j < 0; there
are n extra markings that map to IX , the rigidified inertia stack of X . We consider the
forgetful map

τorb :Mg,�k,n(XD,r , β) →Mg,m+n(X , β)×(IX )m (ID)m .
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We first consider the case when m− = 0, namely, there are only positive contact
orders. In this case, we write

Mg,�k,n(X /D, β)

for the corresponding moduli space of relative orbifold stable maps to (X ,D) where the
contact orders are given by �k. We consider the forgetful map

τrel :Mg,�k,n(X /D, β) →Mg,m+n(X , β)×(IX )m (ID)m .

Theorem 9. For m− = 0 and r sufficiently large, genus 0 Gromov–Witten invariant of
XD,r is independent of r . Genus g > 0Gromov–Witten invariant ofXD,r is a polynomial
in r . Furthermore, the constant term of the polynomial is the corresponding relative
Gromov–Witten invariant of (X ,D). More precisely, we have the following results at
the cycle level.

[
(τorb)∗

[
Mg,�k,n(XD,r , β)

]vir]

r0
= (τrel)∗

[
Mg,�k,n(X /D, β)

]vir

and

(τorb)∗
[
M0,�k,n(XD,r , β)

]vir

is independent of r , where [· · · ]r0 means the constant term of a polynomial in r .

Theorem 10. For m− > 0 and r sufficiently large, after multiplying by rm− , genus 0
Gromov–Witten invariant of XD,r is independent of r . After multiplying by rm− , genus
g > 0 Gromov–Witten invariant of XD,r is a polynomial in r . More precisely,

rm−(τorb)∗
[
Mg,�k,n(XD,r , β)

]vir

is a polynomial in r and

rm−(τorb)∗
[
M0,�k,n(XD,r , β)

]vir

is independent of r .

Remark 11. The degree of this polynomial can be studied using the method of [37]. One
can show that the degree of this polynomial is bounded by 2g − 1 for g ≥ 1. Since we
do not use such a result, we leave the proof to the interested readers.

Remark 12. Theorem10 generalizes the main result of [13] and [14] to the orbifold
case, namely X is a Deligne-Mumford stack instead of a variety. Therefore, we can also
define relativeGromov–Witten theory of (X ,D)with negative contact orders as a limit of
orbifold Gromov–Witten theory ofXD,r . Similar to [13] and [14], with some extra work,
we can define relative Gromov–Witten theory of (X ,D) with negative contact orders
purely in terms of relative Gromov–Witten theory of (X ,D)with positive contact orders
and rubber theory of D.
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Remark 13. There are some immediate applications ofTheorems9 and10. First of all, the
genus zero case has been used in [39] to compute genus zero relative invariants of certain
compactifications of toric Calabi-Yau orbifolds which coincide with some genus zero
open invariants of toric Calabi-Yau orbifolds. These invariants are precisely instanton
corrections of the mirror of toric Calabi-Yau orbifolds. Moreover, a sketch of the Proof
of Theorem9 is given in [39, Appendix A]. Secondly, it has been used to deduce the
gerbe duality for relative Gromov–Witten theory from absolute Gromov–Witten theory,
see [33].

2.2. Proof of Theorem9. Following the strategy of [36], to analyze the r -dependence
of Gromov–Witten invariants of XD,r , we use the degeneration formula to reduce to a
local model. We also refer to [14, Section 4.2] for some details.

2.2.1. Degeneration Let

p : X→ A
1

be the deformation to the normal cone of D ⊂ X . The special fiber p−1(0) is X and

Y := P(ND/X ⊕OX )

glued together by identifying D ⊂ X with

D∞ := P(ND/X ) ⊂ P(ND/X ⊕OX ).

Other fibers p−1(t �= 0) are isomorphic to X . There is a divisor

D ⊂ X

whose restriction to p−1(t �= 0) is D and whose restriction to p−1(0) is

D0 := P(OX ) ⊂ P(ND/X ⊕OX ).

The r -th root stack of X along D,

XD,r ,

is a flat degeneration of XD,r to

X ∪D=D∞ P(ND/X ⊕OX )D0,r .

The degeneration formula for orbifoldGromov–Witten theory [6] applied toXD,r ex-
presses Gromov–Witten invariants ofXD,r in terms of (disconnected) relative Gromov–
Witten invariants of (X ,D) and (P(ND/X⊕OX )D0,r ,D∞). The sum in the degeneration
formula ranges over the intersection profile along D. Since (X ,D) is independent of
r , the r -dependence must come from orbifold-relative Gromov–Witten invariants of
(YD0,r = P(ND/X ⊕OX )D0,r ,D∞). Therefore, we just need to compute

(τ ′)∗
[
Mg,�k,n, �μ(YD0,r/D∞, β)

]vir
, (2.1)

where �μ ∈ (Z>0)
| �μ| records contact orders at D∞ and τ ′ is the forgetful map

τ ′ :Mg,�k,n, �μ(YD0,r/D∞, β) →Mg,m+n+| �μ|(D, β).
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2.2.2. Localization The orbifold-relative Gromov–Witten theory of (YD0,r ,D∞) may
be studied using virtual localization with respect to the C

∗-action that scales the fibers
of YD0,r → D.

When D is a scheme and r is sufficiently large, the virtual localization formula has
been written in detail in [22] and [36]. In the present case the formula is completely
analogous. We write r

√
L/D for the r -th root of the line bundle L over D. Recall that

r
√
L/D is a gerbe overD banded by μr . The virtual localization formula expresses (2.1)

as a sum over decorated graphs. For the purpose of analyzing the r -dependence, we only
need to note that r only appears in the contribution from stable vertices v overD0, given
by the following expression cappingwith the virtual class [Mg(v),n(v)(

r
√
L/D, β(v))]vir:

⎛

⎝
∏

e∈E(v)

|G(e,v)|
r(e,v)

r(e,v)de
t + ev∗e c1(L)− deψ̄(e,v)

⎞

⎠

·
( ∞∑

i=0
(t/r)g(v)−1+|E(v)|−i ci (−R•π∗L)

)

= t−1
⎛

⎝
∏

e∈E(v)

|G ′(e,v)|
1

de
1 + (ev∗e c1(L)− deψ̄(e,v))/t

⎞

⎠

·
( ∞∑

i=0
t g(v)−i (r)i−g(v)+1ci (−R•π∗L)

)

= t−1
⎛

⎝
∏

e∈E(v)

|G ′(e,v)|
1

de
1 + (ev∗e c1(L)− deψ̄(e,v))/t

⎞

⎠

·
( ∞∑

i=0
(tr)g(v)−i (r)2i−2g(v)+1ci (−R•π∗L)

)
, (2.2)

where

• g(v) is the genus of the vertex v over D0 in a localization graph,
• n(v) is the number of marked points of the vertex v,
• β(v) is the degree assigned to the vertex v,
• t is the equivariant parameter,
• L = ND/X ,
•

π : Cg(v),n(v)(
r
√
L/D, β(v)) →Mg(v),n(v)(

r
√
L/D, β(v))

is the universal curve,

L→ Cg(v),n(v)(
r
√
L/D, β(v))

is the universal r -th root,
• de is the degree of the edge e ∈ E(v),
• eve is the evaluation map at the node corresponding to e,
• ψ̄(e,v) is the descendant class at the marked point corresponding to the pair (e, v),
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• G(e,v) is the stabilizer group associated to the vertex v and the edge e. The group
G(e,v) is a μr extension of G ′(e,v), so

|G(e,v)| = r |G ′(e,v)|.

The group G ′(e,v) is independent of r .• r(e,v) is the order of the orbifold structure at the node indexed by (e, v).

Moreover, if the target expands over D∞, the vertex contribution over D∞ is

⎛

⎝
∏

e∈E(v)

|G(e,v)|
r(e,v)

⎞

⎠
∏

e∈E(�) der(e,v)

t + ψ∞
, (2.3)

which always contribute to negative powers of t . The edge contribution is trivial when
r is sufficiently large.

To obtain genus g Gromov–Witten invariants of (YD0,r ,D∞), we must take the
non-equivariant limit, i.e. taking the t0 coefficient in the localization formula.

If the genus g = 0, then g(v) = 0 and we note that (2.2) and (2.3) only contain
negative powers of t . It followsby the arguments of [14, Lemma4.8] that the t0 coefficient
is 0 unless M0,�k,n, �μ(YD0,r/D∞, β) is unstable (genus zero, two markings and curve
class zero). Then the degeneration formula simplifies to

(τorb)∗
[
M0,�k,n(XD,r , β)

]vir = (τrel)∗
[
M0,�k,n(X /D, β)

]vir
.

Now we assume g > 0.

Proposition 14. For r sufficiently large and i ≥ 0, the class

r2i−2g(v)+1τ ′∗(ci (−R∗π∗L) ∩ [Mg(v),n(v)(
r
√
L/D, β(v))]vir)

is a polynomial in r . Here τ ′ :Mg(v),n(v)(
r
√
L/D, β(v)) →Mg(v),n(v)(D, β(v)) is the

natural map to the moduli space of stable maps to D.

The Proof of Proposition14 will be given in Sect. 2.2.3. Here, we complete the Proof
of the theorem. The polynomiality follows immediately from Proposition14. By the
formula (2.2) and Proposition14, the t0r0-coefficient of the localization contribution

of (τ ′)∗
[
Mg,�k,n, �μ(YD0,r/D∞, β)

]vir
is 0 unless Mg,�k,n, �μ(YD0,r/D∞, β) is unstable.

Then r0-coefficient of the degeneration formula simplifies to

[
(τorb)∗

[
Mg,�k,n(XD,r , β)

]vir]

r0
= (τrel)∗

[
Mg,�k,n(X /D, β)

]vir
.
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2.2.3. Proof of Proposition14 The Chern character ch(R•π∗L) can be calculated ex-
plicitly using Toen’s Grothendieck-Riemann-Roch formula, see [34]. In general, let Z
be a smooth proper Deligne-Mumford stack overCwith projective coarse moduli space,
and let V be a line bundle on Z . Consider the universal family

π : C →Mg,n(Z, β), f : C → Z.

A formula for the Chern character ch(R•π∗ f ∗V ) ∩ [Mg,n(Z, β)]vir is calculated in
[34]. For simplicity, in what follows we omit the capping with virtual classes in the
discussion. With this understood, the formula reads

ch(R•π∗ f ∗V ) = π∗(ch( f ∗V )Td∨(Ln+1))

−
n∑

i=1

∑

m≥1

ev∗i Am

m! ψm−1
i

+
1

2
(π ◦ ι)∗

∑

m≥2

1

m!r
2
nodeev

∗
node Am

ψm−1
+ + (−1)mψm−1−

ψ+ + ψ−
, (2.4)

where

(1) Td is the Todd class.
(2) On the component Zi of the inertia stack IZ , Am is

Bm(ageZi (p
∗
i V ))ch(p∗i V ) = Bm(ageZi (p

∗
i V ))p∗i (ec1(V )).

Here pi : Zi → Z is the natural projection, and Bm(x) are Bernoulli polynomials
defined by

tetx

et − 1
=

∑

m≥0

Bm(x)

m! tm .

(3) ι is the inclusion of the nodal locus into the universal curve C.
(4) rnode is the order of orbifold structure at the node.
(5) evnode is the evaluation map at the node.
(6) ψ± are ψ classes associated to branches of the node.

We want to apply the formula to the case

Z = r
√
L/D

the stack of r -th roots of the line bundle L = ND/X over D, and V the universal r -th
root line bundle on Z .

For this purpose, we need to discuss how to choose orbifold structures induced from
Z at marked points and nodes.

If a point p ∈ D has stabilizer group G, then its inverse image q ∈ Z has stabilizer
group G(r), which is a cyclic extension of G:

1→ μr → G(r) → G → 1.

An orbifold structure at a point mapping to q is a conjugacy class of G(r). If the induced
orbifold structure at the point (which maps to p) is chosen, then this conjugacy class
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in G(r) can be identified with an element in μr . We refer to [35, Section 3.2] for more
details.

For the j-th marked point from Mg,�k,n(Y, β), the orbifold structure is chosen so
that the age of V at this marked point is k j/r if k j ≥ 0 and 1 + k j/r if k j < 0. For
other marked points, which are formed by splitting nodes in C

∗-fixed stable maps, the
orbifold structures are determined by the Galois covers attached at these points. For a
node, the orbifold structure is chosen by selecting a

w ∈ {0, . . . , r − 1}
such that the age of V at this node is

(agenodeL + w)/r.

We substitute these ages into (2.4) and write (2.4) as

ch(R•π∗ f ∗V ) = π∗(ch( f ∗V )Td∨(Ln+1))

−
n(v)∑

j=1
α j +

1

2
(π ◦ ι)∗r2nodeβnode, (2.5)

where

α j :=
∑

m≥1

ev∗j Am

m! ψm−1
j

βnode :=
∑

m≥2

1

m!ev
∗
node Am

ψm−1
+ + (−1)mψm−1−

ψ+ + ψ−
,

and n(v) is the number of marked points at the vertex v. So

chm(R•π∗ f ∗V ) = π∗(ch( f ∗V )Td∨(Ln+1))m

−
n(v)∑

j=1
(α j )m +

1

2
((π ◦ ι)∗r2nodeβnode)m . (2.6)

Using

c(−E•) = exp(
∑

m≥1
(−1)m(m − 1)!chm(E•)),

we obtain a formula for c(−R•π∗ f ∗V )∩ [Mg(v),n(v)(
r
√
L/D, β(v))]vir. Using that the

pushforward via τ ′ has virtual degree r2g−1 on genus g stable map moduli, as calculated
in [32], we can get a formula for τ ′∗(c(−R•π∗ f ∗V ) ∩ [Mg(v),n(v)(

r
√
L/D, β(v))]vir):

∑

�∈Gg,n,β (D)

χ∈�(D),w∈W�,χ,r

r2g(v)−1−h1(�)

|Aut (�)| ( j�,χ )∗
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⎧
⎨

⎩
∏

v∈V (�)

exp(
∑

m≥1
(−1)m(m − 1)!π∗(ch( f ∗V )Td∨(Ln+1))m)

n(v)∏

j=1
exp(

∑

m≥1
(−1)m−1(m − 1)!(α j )m)

∏

(h,h′)∈E(�)

1− exp(
∑

m≥1(−1)m(m − 1)!(βnode)m(ψh + ψh′))

ψh + ψh′

⎫
⎬

⎭

∩[Mg(v),n(v)(D, β(v))]vir. (2.7)

Here the sum is over the set ofD-valued stable graphs denoted by Gg,n,β(D) as in [22];
and χ ∈ �(D) is a map that assigns to each half-edge a component of the inertia stack
of D, corresponding to assigning orbifold structures. Note that

(1) For (h, h′) ∈ E(�), χ(h) and χ(h′) are opposite.
(2) For v ∈ V (�), we have

∫
βv c1(L)−∑

h∈H(v) ageχ(h)L ∈ Z. This is a consequence
of Riemann-Roch for orbifold curves.

We have used the equality |E(�)| + ∑
v∈V (�)(2gv − 1) = 2g(v) − 1 − h1(�) for the

prestable graph � to get the factor r2g(v)−1−h1(�) in the formula.
The map

j�,χ :M�,χ →Mg(v),n(v)(D, β(v))

is the natural map from the component indexed by � and χ into the moduli of stable
maps to D.

Finally W�,χ,r is the collection of r -twistings, which is the assignment

h �→ w(h) ∈ {0, . . . , r − 1},
such that

(1) For j ∈ L(�), we have w( j) ≡ k j − ageXi j
L mod r , so the age of V at marked

point j is k j/r for k j ≥ 0 or 1 + k j/r for k j < 0.
(2) For (h, h′) ∈ E(�), ifageχ(h)L = 0, thenw(h)+w(h′) ≡ 0 mod r . Ifageχ(h)L �= 0,

then w(h) + w(h′) ≡ −1 mod r . These conditions ensure that

(ageχ(h)L + w(h))/r = 1− (ageχ(h′)L + w(h′))/r.

(3) For v ∈ V (�), we have
∑

h∈H(v) w(h) ≡ ∫
βv c1(L) − ∑

h∈H(v) ageχ(h)L mod r .
This follows from the lifting analysis of [32].

Fix � and χ in (2.7). It follows from the description of Am that the summands in
(2.7) are polynomials inw ∈ W�,χ,r . Pixton’s polynomiality [21, AppendixA] applies to
show that τ ′∗(ci (−R•π∗ f ∗V )∩ [Mg(v),n(v)(

r
√
L/D, β(v))]vir) is a Laurent polynomial

in r . Following [21, Proposition 5], we can identify the lowest r terms.

(1) After the summation over r -twistings, the lowest possible power of r is rh
1(�)−2i .

(2) The formula has a factor r2g(v)−1−h1(�).
(3) Finally there is a prefactor r2i−2g(v)+1.

Taken together, this shows that the lowest power of r is r0. This completes the proof.
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2.3. Proof of Theorem10. The Proof of Theorem10 is similar to the Proof of Theorem9,
but requires a more refined polynomiality than Proposition14.

Let Mg,�a( r
√
L/D, β) be the moduli space of orbifold stable maps to r

√
L/D, where

�a is a vector of ages. Let

π : Cg,�a( r
√
L/D, β) →Mg,�a( r

√
L/D, β)

be the universal curve,

L→ Cg,�a( r
√
L/D, β)

is the universal r -th root. We consider the forgetful map

τ ′ :Mg,�a( r
√
L/D, β) →Mg,l(�a)(D, β)

that forgets the r -th root construction.

Proposition 15. For r sufficiently large and i ≥ 0, the class

r i−g(v)+1τ ′∗(ci (−R•π∗L) ∩ [Mg,�a(Dr , β)]vir)
is a polynomial in r and it is constant in r when g(v) = 0, where τ ′ is the map to the
moduli space of stable maps to D.

The Proof of Proposition15 is similar to the proof in [13, Appendix A] and [14,
Section 4]. We briefly explain the idea here. First of all, in the Proof of Theorem9, we

showed that, for sufficiently large r , the class (τ ′)∗
[
Mg,�k,n(YD0,r , β)

]vir
is a polyno-

mial in r and it is constant in r when g = 0. The equivariant version of it is also true
by considering equivariant theory as a limit of non-equivariant theory (see, for example
[14, Section 4.3]). Then the proposition follows from taking localization residue.

Proof of Proposition 15. Recall that the class (τ ′)∗
[
Mg,�k,n(YD0,r , β)

]vir
is a polyno-

mial in r and it is constant in r when g = 0. The first step is to prove it for families over
a base. Let π : E → B be a smooth morphism between two smooth algebraic varieties.
Suppose that E is also a C

∗-torsor over B. Let

YD0,r ×C∗ E = (YD0,r × E)/C
∗

with C
∗ acts on both factors. We consider moduli space Mg,�k,n(YD0,r ×C∗ E, β) of

orbifold stable maps to YD0,r ×C∗ E , where the curve class β is a fiber class (projects
to 0 on B). Let

[
Mg,�k,n(YD0,r ×C∗ E, β)

]virπ

be the virtual cycle relative to the base B. Let

τ ′E :Mg,�k,n(YD0,r ×C∗ E, β) →Mg,m+n(Y ×C∗ E, β)

be the forgetful map that forgets the r -th root construction. Then

(
τ ′E

)
∗

[
Mg,�k,n(YD0,r ×C∗ E, β)

]virπ
(2.8)
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is a polynomial in r and is constant in r if g = 0. The proof is parallel to the Proof of
Proposition14 as explained in [14, Section 4.2].

The next step is to prove that the equivariant cycle class

τ ′∗
[
Mg,�k,n(YD0,r , β)

]vir,eq
(2.9)

is a polynomial in r and is constant in r when g = 0.We follow the Proof of [14, Section
4.3]. The idea is that equivariant theory can be considered as a limit of non-equivariant
theory. By [11, Section 2.2], the i-th Chow group of a space X under an algebraic group
G can be defined as follows. Let V be an l-dimensional representation of G andU ⊂ V
be an equivariant open set where G acts freely and whose complement has codimension
more than dim X − i . Then the i-th Chow group is defined as

AG
i (X) = Ai+l−dimG((X ×U )/G). (2.10)

To apply it to our case, we letG = C
∗ and E = U = C

N −{0}, where N is a sufficiently
large integer. Then we have that (X× E)/C

∗ is an X -fibration over B = U/G = P
N−1.

Note that

Mg,�k,n(YD0,r ×C∗ E, β) ∼=
(
Mg,�k,n(YD0,r , β)× E

)
/C

∗

as moduli spaces. For suitable N , (2.9) identifies the equivariant Chow group with
a non-equivariant model. Therefore, the equivariant cycle (2.9) is identified with the
non-equivariant cycle (2.8) under (2.10). Therefore, the equivariant class (2.9) is also a
polynomial in r and is constant in r when g = 0.

The last step is to consider localization residues of Mg,�k,n(YD0,r , β). We consider
the decorated graph with one vertex overD0 such that markings and edges are associated
with the vector of ages �a. The localization residue is a polynomial in r and is a constant
when g = 0. Then the cycle

τ ′∗

( ∞∑

i=0

(
t

r

)g−i−1
ci (−R•π∗L) ∩ [Mg,�a(Dr , β)]vir

)
,

coming from the localization residue, is a polynomial in r and is constant when g = 0.
This is the conclusion of [14, Theorem 4.1] for Y a smooth Deligne-Mumford stack. As
a consequence (see also [14, Corollary 4.2]), the cycle

τ ′∗
(
(r)i−g+1ci (−R•π∗L) ∩ [Mg,�a(Dr , β)]vir

)

is a polynomial in r and is constant when g = 0. This concludes the proposition. ��
Proof of Theorem 10. The proof is similar to the Proof of Theorem9 with the help of
Proposition15. The degeneration formula again reduces the proof to local models. The
localization computation is similar to the computation in Sect. 2.2.2 except that the r -
dependence appears in the following form as the vertex contribution over D0:

⎛

⎝
∏

e∈E(v)

|G(e,v)|
r(e,v)

r(e,v)de
t + ev∗e c1(L)− deψ̄(e,v)

⎞

⎠
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·
( ∞∑

i=0
(t/r)g(v)−1+|E(v)|−i+m−(v)ci (−R•π∗L)

)

=
⎛

⎝
∏

e∈E(v)

|G ′(e,v)|
1

de
1 + (ev∗e c1(L)− deψ̄(e,v))/t

⎞

⎠

·
( ∞∑

i=0
t g(v)−i+m−(v)−1(r)i−g(v)+1−m−(v)ci (−R•π∗L)

)

= r−m−(v)

⎛

⎝
∏

e∈E(v)

|G ′(e,v)|
1

de
1 + (ev∗e c1(L)− deψ̄(e,v))/t

⎞

⎠

·
( ∞∑

i=0
(t)g(v)−i+m−(v)−1(r)i−g(v)+1ci (−R•π∗L)

)
,

where m−(v) is the number of large age markings attached to the vertex v over D0.
Multiplying by rm− , then the polynomiality follows fromProposition15. This completes
the Proof of Theorem10. ��

Theorem10 implies that we can define relative Gromov–Witten invariants of an orb-
ifold pair (X ,D) with negative contact orders as follows.

Definition 16. LetX be a smooth proper Deligne-Mumford stack overCwith projective
coarse moduli space. Let D ⊂ X be a smooth irreducible divisor. The virtual cycle for
the relative Gromov–Witten theory of the pair (X ,D) with negative contact orders is
defined as follows:

[
Mg,�k,n(X /D, β)

]vir

:=
[
rm−(τorb)∗

[
Mg,�k,n(XD,r , β)

]vir]

r0
∈ A∗

(Mg,m+n(X , β)×(IX )m (ID)m
)
.

3. Gromov–Witten Theory of Multi-root Stacks and Its Limit

Let X be a smooth projective variety2 over C and let

D1, . . . , Dn ⊂ X

be smooth irreducible divisors. Suppose

D := D1 + . . . + Dn

is simple normal crossing.

2 The main results of this paper also holds when X is a smooth projective Deligne-Mumford stack. For
simplicity, we only consider the case when X is a smooth projective variety.
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Definition 17. For �r = (r1, . . . , rn) ∈ N
n , the multi-root stack

XD,�r := X(D1,r1),...,(Dn ,rn),

is the stack whose objects over a scheme S consist of the data

f : S → X, {Mi : line bundle on S}, {si ∈ H0(Mi )}, {φi : M⊗ri
i → f ∗OX (Di )}

such that srii = φ∗i f ∗σi for i = 1, . . . , n.

If r1, . . . , rn are pairwise coprime, then XD,�r is smooth and has a well-defined
Gromov–Witten theory.

For each i = 1, . . . , n, we can view XD,�r as

(X
(D1,r1),...,(̂Di ,ri ),...,(Dn ,rn)

)(Di ,ri ).

Therefore Theorem9 applied to XD,�r implies polynomiality for each ri , hence proves
[38, Conjecture 1.2]:

Corollary 18. For r1, . . . , rn sufficiently large, genus 0 Gromov–Witten theory of XD,�r ,
after multiplying by suitable powers of ri , is independent of r1, . . . , rn. Higher genus
Gromov–Witten theory of XD,�r , aftermultiplying by suitable powers of ri , is a polynomial
in r1, . . . , rn.

We may view the r01 . . . r0n term of the Gromov–Witten theory of XD,�r as formally
giving a Gromov–Witten theory of infinite root stack XD,∞, which provides a virtual
count of curves with tangency conditions along a simple normal crossing divisor. This
can be viewed as analogous to logarithmic Gromov–Witten theory of the pair (X, D).

Now,wewill state Corollary18more precisely and define the formal Gromov–Witten
theory of XD,∞.

Notation 19. We will use “relative marking” and “orbifold marking” interchangeably.
Terms like “contact order” and “tangency condition” will also be used. In Sect.2, we
treat relative markings and interior markings separately. Here, it is more convenient to
treat them all together. Therefore, the notation for the rest of the paper will be slightly
different from the notation in Sect.2. We will use n to denote the number of irreducible
components of the divisor D and use m to denote the number of markings (including
both relative and interior markings).

For any index set I ⊆ {1, . . . , n}, we define
DI := ∩i∈I Di .

Note that DI can be disconnected. In particular, we set

D∅ := X.

Let

�s = (s1, . . . , sn) ∈ Z
n .

The vector �s is used to record contact orders. Note that both positive and negative contact
orders are allowed. We define

I�s := {i : si �= 0} ⊆ {1, . . . , n}.
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Consider the vectors

�s j = (s j1 , . . . , s jn ) ∈ (Z)n, for j = 1, 2, . . . ,m,

which satisfy the following condition:

m∑

j=1
s ji =

∫

β

[Di ], for i ∈ {1, . . . , n}.

For sufficiently large3 �r , we consider the moduli space

Mg,{�s j }mj=1(XD,�r , β)

of genus g, degree β ∈ H2(X), m-pointed, orbifold stable maps to XD,�r with orbifold
conditions specified by {�s j }mj=1. Note that the j-th marking maps to twisted sector DI�s j
with age

∑

i :s ji >0

s ji
ri

+
∑

i :s ji <0

(
1 +

s ji
ri

)
.

There are evaluation maps

ev j :Mg,{�s j }mj=1(XD,�r , β) → DI�s j , for j ∈ {1, . . . ,m}.

Let

• γ j ∈ H∗(DI�s j ), for j ∈ {1, 2, . . . ,m};• a j ∈ Z≥0, for j ∈ {1, 2, . . . ,m}.
Gromov–Witten invariants of XD,�r are defined as follows

〈
γ1ψ̄

a1, . . . , γmψ̄am
〉XD,�r
g,{�s j }mj=1,β :=

∫
[
Mg,{�s j }mj=1

(XD,�r ,β)

]vir ev∗1(γ1)ψ̄
a1
1 · · · ev∗m(γm)ψ̄am

m .

We define

si,− := #{ j : s ji < 0}, for i = 1, 2, . . . , n.

Let

τ :Mg,{�s j }mj=1(XD,�r , β) →Mg,m(X, β)×Xm

(
DI�s1 × · · · × DI�sm

)
.

be the forgetful map.
By Theorem10, the cycle class

(
n∏

i=1
r
si,−
i

)
τ∗

([
Mg,{�s j }mj=1(XD,�r , β)

]vir)

3 By sufficiently large �r , we mean ri are sufficiently large for all i ∈ {1, . . . , n}.



820 H. Tseng, F. You

is a polynomial in ri when �r is sufficiently large. We denote the constant term of the
above polynomial as

[
Mg,{�s j }mj=1(XD,∞, β)

]vir := lim
�r→∞

[(
n∏

i=1
r
si,−
i

)
τ∗

([
Mg,{�s j }mj=1(XD,�r , β)

]vir)
]

∏n
i=1 r0i

.

It is considered as the virtual cycle of the formal Gromov–Witten theory of the infinite
root stack XD,∞.

Recall that there are evaluation maps

ev j :Mg,{�s j }mj=1(XD,�r , β) → DI�s j ,

for j ∈ {1, . . . ,m}. We define the following evaluation maps

ev j :Mg,m(X, β)×Xm

(
DI�s1 × · · · × DI�sm

)
→ DI�s j ,

such that

ev j ◦ τ = ev j ,

for j ∈ {1, . . . ,m}.
The formal Gromov–Witten invariants of XD,∞ can be defined as follows.

Definition 20. Let

• γ j ∈ H∗(DI�s j ), for j ∈ {1, 2, . . . ,m};• a j ∈ Z≥0, for j ∈ {1, 2, . . . ,m}.
The formal Gromov–Witten invariants of XD,∞ are defined as

〈[γ1]�s1ψ̄a1, . . . , [γm]�sm ψ̄am
〉XD,∞
g,{�s j }mj=1,β

:=
∫

[
Mg,{�s j }mj=1

(XD,∞,β)

]vir ev∗1(γ1)ψ̄
a1
1 · · · ev∗m(γm)ψ̄am

m .

In other words,
〈[γ1]�s1ψ̄a1, . . . , [γm]�sm ψ̄am

〉XD,∞
g,{�s j }mj=1,β

:=
[(

n∏

i=1
r
si,−
i

)
〈
γ1ψ̄

a1 , . . . , γmψ̄am
〉XD,�r
g,{�s j }mj=1,β

]

∏n
i=1 r0i

for sufficiently large �r .
Note that the ψ̄-classes are pullback of ψ-classes on the moduli space Mg,m(X, β)

of stable maps to X .

Remark 21. When D is irreducible, the formal Gromov–Witten theory of XD,∞ co-
incides with relative Gromov–Witten theory (possibly with negative contact orders)
defined in [13] and [14]. Relative Gromov–Witten theory in [13] and [14] can also be
defined using the usual relative Gromov–Witten theory of J. Li [26], [27] and rubber
theory of D. When D is simple normal crossing, it is also possible to define the formal
Gromov–Witten theory of XD,∞ in terms of the usual relative Gromov–Witten theory
and rubber theory of Di , but it will be more complicated and the combinatorics will be
more involved than [13] and [14].
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4. Relative Quantum Cohomology

In this section, we introduce quantum cohomology for XD,∞. We will call it relative
quantum cohomology of (X, D) because we consider the formal Gromov–Witten theory
of XD,∞ as a Gromov–Witten theory of X relative to the simple normal crossing divisor
D.

4.1. The state space. Webriefly described the state space for the formalGromov–Witten
theory of infinite root stacks in [38, Section 4]. In this section, we will provide more
detailed discussion of it and its ring structure.

Following the description in [13, Section 7.1], we formally define the state space for
the Gromov–Witten theory of XD,∞ as the limit of the state space of XD,�r :

H :=
⊕

�s∈Zn

H�s,

where

H�s := H∗(DI�s ).

Note that

• H�0 := H∗(D∅) := H∗(X);
• if ∩i :si �=0Di = ∅, then H�s = 0.

Each H�s naturally embeds into H. For an element γ ∈ H�s , we write [γ ]�s for its image
in H. The pairing on H

(−,−) : H× H→ C

is defined as follows: for [α]�s and [β]�s′ , define

([α]�s, [β]�s′) =
{∫

DI�s
α ∪ β, if �s = −�s′;

0, otherwise.
(4.1)

The pairing on the rest of the classes is generated by linearity. Recall that D∅ = X ,
therefore

([α]�s, [β]�s′) =
∫

X
α ∪ β, if �s = −�s′ = �0.

We choose a basis {TI,k}k for H∗(DI ). When I = ∅, we can also simply write {Tk}k for
a basis for H∗(X). Then we can define a basis of H as follows:

T̃�s,k = [TI�s ,k]�s .
Let {T k

I } be the dual basis of {TI,k} under the Poincaré pairing of H∗(DI ). Define

T̃ k
�s = [T k

I�s ]�s .

Then {T̃ k
�s } form a dual basis of {T̃�s,k} under the pairing of H. Note that the dual of T̃�s,k

is T̃ k
−�s under the pairing of H.
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Definition 22. For [α], [β] ∈ H, the product [α] · [β] is defined as follows: for [γ ] ∈ H,

([α] · [β], [γ ]) := 〈[α], [β], [γ ]〉XD,∞
0,3,0 ,

where the right-hand side is the genus zero, degree zero invariant of XD,∞ with three
marked points.

Similar to [13], the product structure can be written down explicitly, by computing
the genus zero, degree zero 3-pointed invariants.

Note that the ringH is multi-graded. There are gradings with respect to contact orders
�s:

degi ([α]�s) = si . (4.2)

There is one grading for the cohomological degree of the class. Suppose α ∈ H�s is a
cohomology class of real degree d. Then we define,

deg0([α]�s) = d/2 + #{i : si < 0}. (4.3)

Note that there is a shift of the degree in (4.3). It already appears in [13, Section 7.1]
when D is irreducible. One can simply think about the degree (4.3) as a limit of the
orbifold degree (shifted by ages).

Let [γ j ]�s j ∈ H and a j ∈ Z≥0, for j ∈ {1, . . . ,m}, where

�s j = (s j1 , . . . , s jn ) ∈ (Z)n .

Recall that the formal Gromov–Witten invariant of XD,∞ is denoted by

〈[γ1]�s1ψ̄a1, . . . , [γm]�sm ψ̄am
〉XD,∞
g,{�s j }mj=1,β . (4.4)

The invariant (4.4) is zero unless it satisfies the virtual dimension constraint

(1− g)(dimC X − 3) + m +
∫

β

c1(TX )−
∫

β

[D] =
m∑

j=1
deg0([γ j ]�s j ) +

m∑

j=1
a j . (4.5)

We will also denote the invariant (4.4) by 〈· · · 〉XD,∞
g,m,β if the contact order information is

clear from the insertion. Sometimes, we will abbreviate it to 〈· · · 〉 for simplicity.

4.2. Universal equations. Absolute Gromov–Witten invariants are known to satisfy
the following universal equations: string equation, divisor equation, dilaton equation,
topological recursion relation (TRR), andWitten-Dijkgraaf-Verlinde-Verlinde (WDVV)
equation (see, for example, [?], [34] for universal equations for orbifold Gromov–Witten
invariants). Itwas proved in [13] that relativeGromov–Witten invariants also satisfy these
universal equations. Our definition of the formal Gromov–Witten invariants of infinite
root stacks is taken as the limit of orbifoldGromov–Witten invariants of finite root stacks.
It is straightforward to show that these universal equations are preserved under the limit.
Therefore, we have the following universal equations for the formal Gromov–Witten
invariants of infinite root stacks.

Let �s0 = �0, we have



A Gromov–Witten Theory for Simple Normal-Crossing Pairs 823

Proposition 23. (String equation)

〈[1]�0, [γ1]�s1ψ̄a1 , . . . , [γm]�sm ψ̄am
〉XD,∞
g,{�s j }mj=0,β

=
m∑

j=1

〈
[γ1]�s1ψ̄a1, . . . , [γ j ]�s j ψ̄a j−1, . . . , [γm]�sm ψ̄am

〉XD,∞

g,{�s j }mj=1,β
. (4.6)

Proposition 24. (Divisor equation) For γ ∈ H2(X),

〈[γ ]�0, [γ1]�s1ψ̄a1 , . . . , [γm]�sm ψ̄am
〉XD,∞
g,{�s j }mj=0,β

=
(∫

β

γ

) 〈[γ1]�s1ψ̄a1, . . . , [γm]�sm ψ̄am
〉XD,∞
g,{�s j }mj=1,β

+
m∑

j=1

〈
[γ1]�s1ψ̄a1, . . . , [γ j · γ ]�s j ψ̄a j−1, . . . , [γm]�sm ψ̄am

〉XD,∞

g,{�s j }mj=1,β
.

Proposition 25. (Dilaton equation)

〈
ψ̄[1]�0, [γ1]�s1ψ̄a1, . . . , [γm]�sm ψ̄am

〉XD,∞
g,{�s j }mj=0,β

= (2g − 2 + m)
〈[γ1]�s1ψ̄a1, . . . , [γm]�sm ψ̄am

〉XD,∞
g,{�s j }mj=1,β .

Proposition 26. (TRR) In genus zero,

〈
[γ1]�s1ψ̄a1+1, . . . , [γm]�sm ψ̄am

〉XD,∞

0,{�s j }mj=1,β

=
∑

〈
[γ1]�s1ψ̄a1,

∏

j∈S1
[γ j ]�s j ψ̄a j , T̃�s,k

〉XD,∞

0,{�s j } j∈S1∪{1},�s,β1

·
〈
T̃ k
−�s, [γ2]�s2ψ̄a2 , [γ3]�s3ψ̄a3 ,

∏

j∈S2
[γ j ]�s j ψ̄a j

〉XD,∞

0,−�s,{�s j } j∈S2∪{2,3},β2
, (4.7)

where the sum is over all splittings of β1 + β2 = β, all indices �s, k of basis, and all
splittings of disjoint sets S1, S2 with S1∪ S2 = {4, . . . ,m}. Note that the right-hand side
is a finite sum.

Proposition 27. (WDVV) In genus zero,

∑
〈
[γ1]�s1ψ̄a1, [γ2]�s2ψ̄a2 ,

∏

j∈S1
[γ j ]�s j ψ̄a j , T̃�s,k

〉XD,∞

0,{�s j } j∈S1∪{1,2},�s,β1

·
〈
T̃ k
−�s, [γ3]�s3ψ̄a3, [γ4]�s4ψ̄a4 ,

∏

j∈S2
[γ j ]�s j ψ̄a j

〉XD,∞

0,−�s,{�s j } j∈S2∪{3,4},β2
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=
∑

〈
[γ1]�s1ψ̄a1, [γ3]�s3ψ̄a3

∏

j∈S1
[γ j ]�s j ψ̄a j , T̃�s,k

〉XD,∞

0,{�s j } j∈S1∪{1,3},�s,β1

·
〈
T̃ k
−�s, [γ2]�s2ψ̄a2 , [γ4]�s4ψ̄a4 ,

∏

j∈S2
[γ j ]�s j ψ̄a j

〉XD,∞

0,−�s,{�s j } j∈S2∪{2,4},β2
, (4.8)

where each sum is over all splittings of β1 + β2 = β, all indices �s, k of basis, and all
splittings of disjoint sets S1, S2 with S1∪ S2 = {5, . . . ,m}. Note that both sides are finite
sums.

Remark 28. Just like the WDVV equation for absolute Gromov–Witten theory im-
plies the associativity of the quantum cohomology, the WDVV equation for the formal
Gromov–Witten theory of infinite root stacks also implies the associativity of the rel-
ative quantum cohomology. Note that in [19], it requires extensive arguments to prove
the associativity for (the degree zero part of) the relative quantum cohomology. While in
our case, we obtain the associativity for free. Since we do not know the relation between
the invariants that we considered here and the punctured invariants in [19] and [5], it is
not known that if our approach will provide an easier Proof of the associativity in [19].

The compatibility between this new theory and the Gross-Siebert program will be
discussed in Sect. 7.

4.3. Relative quantum cohomology ring. Let t = ∑
t�s,k T̃�s,k where t�s,k are formal vari-

ables. Let C[[NE(X)]] be the Novikov ring, where q is the Novikov variable and NE(X)

be the cone of effective curve classes in X . We denote the formal power series ring with
variables t�s,k by

C[[NE(X)]][[{t�s,k}]].
Note that there are infinitely many variables. We will work on a completion of this ring.
Consider the ideals

Ip = ({t�s,k}|si |≥p,∀i )

for p ≥ 0. These ideals form a chain

I0 ⊃ I1 ⊃ I2 ⊃ · · · .

Now we have the completion

C[[NE(X)]] ̂[[{t�s,k}]] = lim←−C[[NE(X)]][[{t�s,k}]]/Ip.

The genus-zero potential for the Gromov–Witten theory of infinite root stacks is
defined to be

�0(t) =
∑

m≥3

∑

β

1

m! 〈t, · · · , t〉XD,∞
0,m,βq

β ∈ C[[NE(X)]] ̂[[{t�s,k}]].
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Note that �0 is a formal function in variables {t�s,k}. To define a ring structure on

C[[NE(X)]] ̂[[{t�s,k}]], we define the quantum product � by the following

T̃�s1,k1 � T̃�s2,k2 =
∑

�s3,k3

∂3�0

∂t�s1,k1∂t�s2,k2∂t�s3,k3
T̃ k3
−�s3 .

Recall that T̃�s3,k3 and T̃ k3
−�s3 are dual to each other under the pairing.

One can also define small relative quantum cohomology ring by setting t�s,k = 0 if
�s �= �0 or T̃�0,k �∈ H0(X)⊕ H2(X) ⊂ H�0 in the formal function

∂3�0

∂t�s1,k1∂t�s2,k2∂t�s3,k3
.

The small relative quantum product is denoted by �sm. The small relative quantum
cohomology ring is denoted by QH(XD,∞).

Similar to the absolute Gromov–Witten theory, under the specialization q = 0 and
t = 0, we obtain the product structure of the state space in Sect. 4.1:

T̃�s1,k1 �q=0,t=0 T̃�s2,k2 =
∑

�s3,k3

〈
T̃�s1,k1 , T̃�s2,k2 , T̃�s3,k3

〉XD,∞

0,3,0
T̃ k3
−�s3 .

Relative quantum cohomology ring is a multi-graded ring. Similar to [13, Section
7.3], the gradings are defined as extensions of degi in (4.3) and (4.2). Furthermore, we
define

deg(i)(qβ) =
∫

β

Di , deg(i)(t�s,k) = −si , for i ∈ {1, . . . , n},

deg(0)(qβ) =
∫

β

c1(TX (− log D)), deg(0)(t�s,k) = 1− deg(0)(T̃�s,k).

5. Givental Formalism

In this section, we set up Givental formalism for genus zero formal Gromov–Witten
theory of the infinite root stack XD,∞ following [15]. A mirror theorem for infinite root
stacks has already been proved in [38]. This section provides the necessary foundation
for [38].

Consider the space

H = H⊗C C[[NE(X)]]((z−1)),
where ((z−1)) means formal Laurent series in z−1.

There is a C[[NE(X)]]-valued symplectic form

�( f, g) = Resz=0( f (−z), g(z))dz, for f, g ∈ H,

where the pairing ( f (−z), g(z)) takes values in C[[NE(X)]]((z−1)) and is induced by the
pairing on H.

Consider the following polarization

H = H+ ⊕H−,
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where

H+ = H⊗C C[[NE(X)]][z], and H− = z−1H⊗C C[[NE(X)]][[z−1]].
There is a natural symplectic identification betweenH+⊕H− and the cotangent bundle
T ∗H+.

For l ≥ 0, we write tl = ∑
�s,k

tl;�s,k T̃�s,k where tl;�s,k are formal variables. Also write

t(z) =
∞∑

l=0
tl z

l .

The genus g descendant Gromov–Witten potential of XD,∞ is defined as

F g
XD,∞(t(z)) =

∑

β

∞∑

m=0

qβ

m!
〈
t(ψ̄), . . . , t(ψ̄)

〉XD,∞
g,m,β

.

The total descendant Gromov–Witten potential is defined as

DXD,∞(t) := exp

⎛

⎝
∑

g≥0
�
g−1F g

XD,∞(t)

⎞

⎠ .

Following [15], we define the dilaton-shifted coordinates ofH+

q(z) = q0 + q1z + q2z
2 + . . . = −z + t0 + t1z + t2z

2 + . . . .

p(z) = p0z
−1 + p1z

−2 + . . . =
∑

l≤−1

∑

�s,k
pl;�s,k T̃ k

−�s z
l .

Coordinates p(z) inH− are chosen so that q, p form Darboux coordinates.
One can consider the graph of the differential dF0

XD,∞ :

LXD,∞ := {(p, q)|p = dqF0
XD,∞} ⊂ H = T ∗H+.

Equivalently, a (formal) point in LXD,∞ can be explicitly written as

−z + t(z) +
∑

β

∑

m

∑

�s,k

qβ

m!

〈
T̃�s,k

−z − ψ̄
, t(ψ̄), . . . , t(ψ̄)

〉XD,∞

0,m+1,β

T̃ k
−�s .

By [15, Theorem 1] (see also [34, Theorem 3.1.1] for orbifold Gromov–Witten the-
ory), string equation, dilaton equation and topological recursion relations imply the
following property.

Proposition 29. LXD,∞ is the formal germ of a Lagrangian cone with vertex at the origin
such that each tangent space T to the cone is tangent to the cone exactly along zT .

Following [7], the set of tangent spaces T to the cone L satisfying Proposition29
carries a canonical Frobenius structure. We refer to [15] for more details.
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Definition 30. We define the J -function JXD,∞(t, z) as follows,

JXD,∞(t, z) = z + t +
∑

m≥1,β∈NE(X)

∑

�s,k

qβ

m!

〈
T̃�s,k

−z − ψ̄
, t, . . . , t

〉XD,∞

0,m+1,β

T̃ k
−�s .

The J -function is a formal power series in coordinates t�s,k of t =
∑

t�s,k T̃�s,k ∈ H taking
values in H. The point of LXD,∞ above −z + t ∈ H+ is JXD,∞(t,−z). In other words,
JXD,∞(t,−z) is the intersection of LXD,∞ with (−z + t) +H−.

The I -function IXD,∞ for XD,∞ is constructed in [38, Section 4] as a hypergeometric
modification of the J -function of X . Using Givental formalism that we just developed,
a mirror theorem for the infinite root stack XD,∞ can be stated as follows.

Theorem 31. Let X be a smooth projective variety. Let D := D1 + D2 + . . . + Dn
be a simple normal-crossing divisor with Di ⊂ X smooth, irreducible and nef. The
I -function IXD,∞ , defined in [38, Section 4], of the infinite root stack XD,∞ lies in
Givental’s Lagrangian cone LXD,∞ of XD,∞.

Remark 32. The I -function ID,∞ considered in [38, Section 4] is taken as a limit of the I -
functions for finite root stacks. Theorem31 holds for both non-extended I -function and
extended I -function. When D is a smooth divisor, Theorem31 is simply [12, Theorem
1.4] for non-extended I -function and [12, Theorem 1.5] for extended I -function of the
smooth pair (X, D).

6. Virasoro Constraints

Givental formalism implies Virasoro constraints for genus zero Gromov–Witten invari-
ants of infinite root stacks. We briefly describe it in this section.

Given a class [α]�s ∈ H such that α ∈ H p,q(DI�s ). Note that when �s = �0, we use the
convention that DI�0 = D∅ = X . We define two operators ρ,μ as follows.

ρ([α]�s) =
[
α ∪ c1(TX (− log D))

]
�s ,

μ([α]�s) = [(dimC(X)/2− p − #{i : si < 0})α]�s .

Then we define the following transformations:

l−1 = z−1,
l0 = zd/dz + 1/2 + μ + ρ/z,

lm = l0(zl0)
m, m ≥ 1.

Recall that an operator A : H→ H is called infinitesimal symplectic if it satisfies

�(A( f ), g) + �( f, A(g)) = 0 for all f, g ∈ H.

One can check that lm are infinitesimal symplectic. Furthermore, the operator lm satisfies
the following commutation relations:

{lm, ln} = (n − m)lm+n,

where {−,−} is the Poisson bracket.
Following [15], an infinitesimal symplectic transformation A gives rise to a vector

field onH in the followingway. The tangent space ofH at a point f ∈ H can be naturally
identified withH itself. One obtains a tangent vector field onH by assigning the vector
A( f ) ∈ T fH to the point f . The following proposition follows from [15, Theorem 6].
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Proposition 33. The vector fields defined by the operators lm, m = 1, 2, . . . , are tangent
to the Lagrangian cone L.
Therefore, lm are associated with Hamitonian functions on L:

f �→ 1

2
�(lm f, f ).

We define the quantization of the quadratic monomials using the following standard
rules:

(ql;�s,kql ′;�s′,k′)∧ = ql;�s,kql ′;�s′,k′/�,

(ql;�s,k pl ′;�s′,k′)∧ = ql;�s,k∂/∂ql ′;�s′,k′ ,
(pl;�s,k pl ′;�s′,k′)∧ = �∂2/∂ql;�s,k∂ql ′;�s′,k′ .

Hence, we obtain a sequence of quantized operators

Lm = l̂m .

Then the following genus zero Virasoro constraints follow from the fact that lm is
infinitesimal symplectic and Proposition33.

Proposition 34. For m ≥ −1, we have the following identity
[
e−F0(t)/�Lme

F0(t)/�

]

�−1
= 0,

where [· · · ]�−1 means taking the �
−1-coefficient.

7. Intrinsic Mirror Symmetry

In this section, we apply invariants of XD,∞ and relative quantum cohomology QH
(XD,∞) to study the intrinsic mirror symmetry of the Gross-Siebert program in our
setting.

The Frobenius structure conjecture for log pairs (X, D) was stated in the first arXiv
version of [16]. The Frobenius structure conjecture predicts that there is a commutative
associative algebra associated to the pair (X, D) and the spectrum of the algebra is
mirror to (X, D). The conjecture was proved in [19] by explicitly defining all structure
constants in terms of punctured Gromov–Witten invariants. It was proved for cluster
log pairs in [29] and for affine log Calabi-Yau varieties containing a torus in [23]. Our
construction will also provide a commutative associative algebra associated to log pairs
(X, D)when D is a simple normal crossing divisor.We briefly review the conjecture and
explain how our construction can be used to study the conjecture as well as the mirror
construction in the Gross-Siebert program [18] and [19] in our setting.

Let D = D1 + · · ·+ Dn and S be the dual intersection complex of D. That is, S is the
simplicial complex with vertices v1, . . . , vn and simplices 〈vi1 , . . . , vi p 〉 corresponding
to non-empty intersections Di1 ∩ · · · ∩ Dip . Let B denote the cone over S and � be the
induced simplicial fan in B. Let B(Z) be the set of integer points of B. Let QH0

log(X, D)

be the degree 0 subalgebra of the relative quantum cohomology ring QH∗log(X, D).
There is a bijection between points p ∈ B(Z) and prime fundamental classes ϑp ∈
QH0

log(X, D).
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Suppose we are given points p1, . . . , pm ∈ B0(Z), where B0 = B \ {0}. Each pi can
be written as a linear combination of primitive generators vi j of rays in �:

pi =
∑

j

mi jvi j ,

where the ray generated by vi j corresponds to a divisor Di j .
We assume (KX + D) is nef or anti-nef. For m ≥ 2, using the result of [17] and [2],

one can define the associated log Gromov–Witten invariant

Nβ
p1,...,pm ,0 :=

∫

[M0,m+1(X/D,β)]vir
ev∗0[pt] · ψm−2

0 , (7.1)

whereM0,m+1(X/D, β) is the moduli stack of logarithmic stable maps which provides
a compactification for the space of stable maps

f : (C, x0, x1, . . . , xm) → X

such that f∗[C] = β, and C meets Di j at xi with contact order mi j for each i, j and
contact order zero with D at x0. Note that no punctured invariants are involved at this
point.

The Frobenius structure conjecture can be partially rephrased as

Conjecture 35. The coefficient of ϑ0 in the product ϑp1 � · · · � ϑpm is
∑

β∈H2(X)

Nβ
p1,...,pm ,0q

β.

Conjecture35 will be rephrased in our language in the following sections.

7.1. The mirror algebra. Let QH0(XD,∞) be the degree zero part of the relative quan-
tum cohomology ring QH(XD,∞) in Sect. 4.3. The degree zero part means the degree
in (4.3) is zero. For a cohomology class [α]�s ∈ H�s of real degree d to be of degree zero,
we need

deg0([α]�s) = d/2 + #{i : si < 0} = 0.

Therefore, we must have

d = 0, and #{i : si < 0} = 0.

Hence, we have a canonical basis of QH0(XD,∞) given by identity classes of H�s when
si ≥ 0 for all i ∈ {1, . . . , n}. So there is a bijection between such classes and integer
points of B(Z). Hence there is a bijection between this canonical basis of QH0(XD,∞),
denoted by [1]p, and prime fundamental classes ϑp ∈ QH0

log(X, D). We can also use

theta functions ϑ as the canonical basis of QH0(XD,∞). Then we can write

QH0(XD,∞) =
⊕

p∈B(Z)

C[[NE(X)]]ϑp

as a free C[[NE(X)]]-module.
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One can replace the log invariant Nβ
p1,...,pm ,0 defined in (7.1) by the corresponding

invariant of XD,∞ (with the same input data), denoted by N orb,β
p1,...,pm ,0. The product

ϑp1 � ϑp2 is simply replaced by the restriction of the small relative quantum product
[1]p1 �sm [1]p2 to QH0(XD,∞). We denote this product by ϑp1 �orb ϑp2 . The structure
constant N orb

p1,p2,−r is defined as the invariant of XD,∞ with two “inputs” with positive
contact orders given by p1, p2 ∈ B(Z), one “output” with negative contact order given
by −r such that r ∈ B(Z), and a point constraint for the punctured point. Namely,

N orb,β
p1,p2,−r = 〈[1]p1 , [1]p2 , [pt]−r 〉

XD,∞
0,3,β . (7.2)

The corresponding punctured invariants are structure constants considered in [19]4.
Similarly, we define

N orb,β
p1,...,pm ,0 :=

〈
[1]p1 , . . . , [1]pm , [pt]0ψ̄m−2〉XD,∞

0,m+1,β
.

In the next lemma (see also [18, Lemma 2.1] for the corresponding lemma for punc-
tured invariants), we will show that the virtual dimension constraint implies that the
number N orb,β

p1,p2,−r = 0 unless
∫
β
[KX + D] = 0. Similarly, for N orb,β

p1,...,pm ,0, which will
appear in Theorem38.

Lemma 36. For p, q, r ∈ B(Z),

N orb,β
p1,p2,−r = 0

if
∫
β
[KX + D] �= 0.

Proof. Since r ∈ B(Z), contact orders at the third marking, represented by −r , are
non-positive with each divisor Di . Then the definition of deg0 in (4.3) implies that

deg0([pt]−r ) = dimC X.

The virtual dimension constraint (4.5) is

dimC X − 3 + 3−
∫

β

[KX + D] = deg0([pt]−r ),

i.e.
∫

β

[KX + D] = 0.

��
Note that the restriction of the quantum product may involve infinite sums. For the

finiteness of the product rule, wewill follow [19]. Let P ⊂ H2(X) be a finitely generated
submonoid, containing all effective curve classes and the group of invertible elements
P× of P coincides with the torsion part of H2(X). Let I ⊂ P be a monoid ideal such
that P \ I is finite. That is,

SI := C[P]/I (7.3)

4 The notation in [19] is Nβ
p1,p2,r which is slightly different from what we use here.
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is Artinian. Then one can define

RI :=
⊕

p∈B(Z)

SIϑp, (7.4)

which is a free SI -module.
Replacing punctured invariants by orbifold invariants, we write the product as

ϑp1 �orb ϑp2 =
∑

β∈P\I,r∈B(Z)

N orb,β
p1,p2,−r q

βϑr . (7.5)

Theorem 37. When (KX +D) is nef or anti-nef, the structure constants N orb,β
p1,p2,−r define

a commutative, associative SI -algebra structure on RI with unit given by ϑ0.

We will refer to RI as mirror algebra.

Proof. The finiteness of the product rule follows directly from the definition of the
structure constants N orb,β

p1,p2,−r and the fact that P \ I is finite.
The commutativity is straightforward. It follows from the fact that the structure con-

stants are Gromov–Witten invariants of XD,∞ which satisfy

N orb,β
p1,p2,−r = N orb,β

p2,p1,−r .

The fact that the class ϑ0 is the unit can be rephrased in terms of the invariants
N orb,β

p1,p2,−r as follows. For p ∈ B(Z),

N orb,β
0,p,−r =

{
0 β �= 0 or p �= r,
1 β = 0, p = r.

But this is a direct consequence of the string Eq. (4.6).
The associativity for the relative quantum product follows from the WDVV Eq.

(4.8). However, as mentioned in [19], the product rule that we consider here is only a
truncation (restriction) of the actual product rule for relative quantum cohomology, so
the associativity is not preserved in general. Here comes the assumption that±(KX +D)

is nef. Under this assumption, we will show that the associativity is preserved.
For the associativity, we need to prove that

(ϑp1 �orb ϑp2) �orb ϑp3 = ϑp1 �orb (ϑp2 �orb ϑp3).

Since

(ϑp1 �orb ϑp2) �orb ϑp3 =
⎛

⎝
∑

β1∈P\I,s∈B(Z)

N orb,β1
p1,p2,−sq

β1ϑs

⎞

⎠ �orb ϑp3

=
∑

β1,β2∈P\I,s∈B(Z)

N orb,β1
p1,p2,−s N

orb,β2
s,p3,−r q

β1+β2ϑr

and

ϑp1 �orb (ϑp2 �orb ϑp3) = ϑp1 �orb

⎛

⎝
∑

β1∈P\I,s∈B(Z)

N orb,β1
p2,p3,−sq

β1ϑs

⎞

⎠
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=
∑

β1,β2∈P\I,s∈B(Z)

N orb,β1
p2,p3,−s N

orb,β2
s,p1,−r q

β1+β2ϑr .

Therefore, we just need to prove
∑

β1+β2=β∈P\I
s∈B(Z)

N orb,β1
p1,p2,−s N

orb,β2
s,p3,−r =

∑

β1+β2=β∈P\I
s∈B(Z)

N orb,β1
p2,p3,−s N

orb,β2
s,p1,−r , (7.6)

where each sum is over all possible splitting of β1 +β2 = β and all s ∈ B(Z). However,
this is not the WDVV Eq. (4.8)! The WDVV equation is of the following form with
extra terms in each sum. We need to use the bracket notation to write it down:

∑

β1+β2=β∈H2(X)
�s∈(Z)n ,k

〈
[1]p1, [1]p2 , T̃−�s,k

〉

0,3,β1

〈
T̃ k
�s , [1]p3 , [pt]−r

〉

0,3,β2

=
∑

β1+β2=β∈H2(X)
�s∈(Z)n ,k

〈
[1]p2 , [1]p3 , T̃−�s,k

〉

0,3,β1

〈
T̃ k
�s , [1]p1 , [pt]−r

〉

0,3,β2
, (7.7)

where p1, p2, r ∈ B(Z); each sum is over all splittings of β1 +β2 = β, all indices �s, k of
basis. We will see that extra terms in the WDVV equation vanish under the assumption
that ±(KX + D) is nef.

When −KX − D is nef, we consider the invariant
〈
[1]p1 , [1]p2 , T̃−�s,k

〉

0,3,β1
in (7.7).

The virtual dimension constraint (4.5) becomes

dimC X − 3 + 3 +
∫

β1

[−KX − D] = deg0(T̃−�s,k)

dimC X +
∫

β1

[−KX − D] = deg0(T̃−�s,k). (7.8)

Let deg([α]) be the real degree of α ∈ H∗(DI ) for I ⊆ {1, . . . , n}. Recall that
deg0(T̃−�s,k) = deg(T̃−�s,k)/2 + #{i : −si < 0}.

Since

deg(T̃−�s,k)/2 ≤ dimC DI�s ≤ dimC X − #{i : −si �= 0},
we have

deg0(T̃−�s,k) ≤ dimC X − #{i : −si �= 0} + #{i : −si < 0} = dimC X − #{i : −si > 0}.
Therefore, if #{i : −si > 0} > 0, we must have

deg0(T̃−�s,k) < dimC X.

On the other hand, −KX − D is nef implies that

dimC X +
∫

β1

([−KX − D]) ≥ dimC X.
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Hence, the virtual dimension constraint (7.8) does not hold unless #{i : −si > 0} = 0,
in other words, −si ≤ 0 for all i ∈ {1, . . . , n}. Furthermore, we must have

T̃−�s,k = [pt]−s, for some s ∈ B(Z).

It implies that LHS of (7.6)= LHS of (7.7) modulo I . The same argument implies that
RHS of (7.6)= RHS of (7.7) modulo I . This completes the case when −KX − D is nef.

When KX +D is nef, we consider the invariant
〈
T̃ k
�s , [1]p3 , [pt]−r

〉

0,3,β2
in (7.7). The

virtual dimension constraint (4.5) becomes

dimC X −
∫

β2

[Kx + D] = deg0(T̃ k
�s ) + deg0([pt]−r ).

Since r ∈ B(Z), contact orders represented by −r are non-positive. The definition of
deg0 in (4.3) implies that

deg0([pt]−r ) = dimC X.

Then − ∫
β2
[Kx + D] ≤ 0 implies that

deg0(T̃ k
�s ) ≤ 0.

Therefore, we must have

deg0(T̃ k
�s ) := deg(T̃ k

�s ) + #{i : si < 0} = 0.

Hence, #{i : si < 0} = 0 and

T̃ k
�s = [1]s, for some s ∈ B(Z).

So LHS of (7.6)= LHS of (7.7) modulo I . The same argument implies that RHS of
(7.6)=RHS of (7.7) modulo I . This completes the case when KX + D is nef, hence,
completes the Proof of the theorem. ��

7.2. The frobenius structure conjecture.

Theorem 38. When (KX + D) is nef or anti-nef, Conjecture35 holds for QH0(XD,∞).

Proof. The case ofm = 2 directly follows from the definition of our structure constants
N orb,β

p1,p2,0
. The case of m ≥ 3 can be proved using TRR (4.7).

We need to show that
∑

β∈H2(X)

N orb,β
p1,...,pm ,0q

β

coincides with the coefficient of ϑ0 in the product ϑp1 �orb · · · �orb ϑpm . Recall that

N orb,β
p1,...,pm ,0 :=

〈
[1]p1, . . . , [1]pm , [pt]0ψ̄m−2〉XD,∞

0,m+1,β
.
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Similar to absolute Gromov–Witten theory, TRR (4.7) can be used to remove the de-
scendant class ψ̄ . We have

N orb,β
p1,...,pm ,0 =

∑
〈
[pt]0ψ̄m−3,

∏

j∈S1
[1]p j , T̃�s,k

〉 〈
T̃ k
−�s, [1]p1 , [1]p2 ,

∏

j∈S2
[1]p j

〉
, (7.9)

where the sum is over all splittings of β1 + β2 = β, all indices �s, k of basis, and all
splittings of disjoint sets S1, S2 with S1 ∪ S2 = {3, . . . ,m}. We will show that some
terms in (7.9) vanish and the RHS of (7.9) coincide with the coefficient of ϑ0 of the
product.

When −KX − D is nef, we consider the invariant
〈
T̃ k
−�s, [1]p1 , [1]p2 ,

∏
j∈S2 [1]p j

〉
in

(7.9). The virtual dimension constraint (4.5) is

dimC X + |S2| +
∫

β2

[−KX − D] = deg0(T̃ k
−�s). (7.10)

Note that

deg0(T̃ k
−�s) := deg(T̃ k

−�s) + #{i : −si < 0}
≤ dimC X − #{i : −si �= 0} + #{i : −si < 0}
= dimC X − #{i : −si > 0}
≤ dimC X.

On the other hand, −KX − D is nef implies

dimC X + |S2| +
∫

β2

[−KX − D] ≥ dimC X.

Therefore, the equality (7.10) does not hold unless

|S2| = 0,
∫

β2

[−KX − D] = 0, #{i : −si > 0} = 0

and

T̃ k
−�s = [pt]−s, for some s ∈ B(Z).

Therefore (7.9) becomes

N orb,β
p1,...,pm ,0

=
∑

β1+β2=β∈H2(X),s∈B(Z)

〈
[pt]0ψ̄m−3, [1]p3 , . . . , [1]pm , [1]s

〉 〈[pt]−s, [1]p1 , [1]p2
〉

=
∑

β1+β2=β∈H2(X),s∈B(Z)

N orb,β1
s,p3,...,pm ,0N

orb,β2
p1,p2,−s .

Repeat this process (m − 3)-times, we get

N orb,β
p1,...,pm ,0 =

∑

∑m−1
i=1 βi=β∈H2(X),si∈B(Z)

N orb,β2
p1,p2,−s1N

orb,β2
s1,p3,−s2 · · · N orb,βm−1

sm−2,pm ,0.
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The right-hand side is precisely the coefficient of ϑ0 of ϑp1 �orb · · ·�orbϑpm by definition.
This completes the case when −KX − D is nef.

When KX + D is nef, we consider the invariant
〈
[pt]0ψ̄m−3,

∏
j∈S1[1]p j , T̃�s,k

〉
in

(7.9). The virtual dimension constraint (4.5) is

dimC X − 3 + 2 + |S1| +
∫

β1

[−KX − D] = dimC X + m − 3 + deg0(T̃�s,k). (7.11)

Since |S1| ≤ m − 2 and KX + D is nef, we have

dimC X − 3 + 2 + |S1| +
∫

β1

[−KX − D] ≤ dimC X − 1 + m − 2 = dimC X + m − 3.

On the other hand,

dimC X + m − 3 + deg0(T̃�s,k) ≥ dimC X + m − 3.

Therefore, the equality (7.11) does not hold unless

|S1| = m − 2, ,

∫

β1

[−KX − D] = 0, #{i : si < 0} = 0,

and

T̃�s,k = [1]s, for some s ∈ B(Z).

Hence (7.9) becomes

N orb,β
p1,...,pm ,0

=
∑

β1+β2=β∈H2(X),s∈B(Z)

〈
[pt]0ψ̄m−3, [1]p3 , . . . , [1]pm , [1]s

〉 〈[pt]−s, [1]p1 , [1]p2
〉

=
∑

β1+β2=β∈H2(X),s∈B(Z)

N orb,β1
s,p3,...,pm ,0N

orb,β2
p1,p2,−s .

We again repeat this process (m − 3)-times to have

N orb,β
p1,...,pm ,0 =

∑

∑m−1
i=1 βi=β∈H2(X),si∈B(Z)

N orb,β2
p1,p2,−s1N

orb,β2
s1,p3,−s2 · · · N orb,βm−1

sm−2,pm ,0,

where the right-hand side is precisely the coefficient of ϑ0 of ϑp1 �orb · · · �orb ϑpm . This
completes the Proof of the case when KX + D is nef, hence completes the Proof of the
theorem. ��

7.3. Mirror construction. With the mirror algebra RI , one can construct the mirror
following the Gross-Siebert program. We will follow the construction in [18] and [19].
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Let (X, D) be a log Calabi-Yau pair and B be pure-dimensional with dimR B =
dimC X . One can define families of schemes

Spec RI → Spec SI .

Taking the direct limit of this families of schemes, one obtains a formal flat family of
affine schemes

X̌→ Spf Ĉ[P], (7.12)

where Ĉ[P] is the completion of C[P] with respect to the maximal ideal P \ P×. The
family (7.12) can be viewed as the mirror family to X \ D.

Next, we consider mirrors to a degeneration of Calabi-Yau manifolds

g : X → S,

so that D = g−1(0) set-theoretically. One can define the ring

R̂ = ⊕p∈B(Z)Ĉ[P]ϑp.

The multiplication will always be a finite sum as mentioned in [19, Construction 1.19].
Furthermore, R̂ carries an associative Ĉ[P]-algebra structure with a natural grading.
When dimR B = dimC X , the mirror family is defined to be the flat family

X̌ = Proj R̂ → Spec Ĉ[P].

Remark 39. [19] actually described the mirrors in a more general setting. One can also
try to construct mirrors following [19] using the more general setting, but with invari-
ants of XD,∞. We do not repeat these constructions here and refer readers to [19] for
more details. An interesting question to ask is that if our construction agrees with the
construction in [19]. We plan to study this question in the future.

8. A Partial Cohomological Field Theory

In this section, we show that the formal Gromov–Witten theory of infinite root stacks
form a partial cohomological field theory (partial CohFT) in the sense of [28]. This
generalizes the result of [14, Section 3.5] to infinite root stacks with simple normal
crossing divisors. We first provide a brief review of the CohFT.

Let Mg,m be the moduli space of genus g, m-pointed stable curves. We assume that
2g − 2 + m > 0. There are several canonical morphisms between moduli space Mg,m
of stable curves.

• Forgetful morphisms

π : Mg,m+1 → Mg,m

obtained by forgetting the last marking of (m+1)-pointed, genus g curves in Mg,m+1.
• Morphisms of gluing the loops

ρl : Mg,m+2 → Mg+1,m

obtained by identifying the last two markings of the (m + 2)-pointed, genus g curves
in Mg,m+2.
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• Morphisms of gluing the trees

ρt : Mg1,m1+1 × Mg2,m2+1 → Mg1+g2,m1+m2

obtained by identifying the last markings of separate pointed curves in Mg1,m1+1 ×
Mg2,m2+1.

The state space H is a graded vector spacewith a non-degenerate pairing 〈−,−〉 and a
distinguished element 1 ∈ H . Given a basis {ei }, let η jk = 〈e j , ek〉 and (η jk) = (η jk)

−1.
A cohomological field theory (CohFT) is a collection of homomorphisms

�g,m : H⊗m → H∗(Mg,m, Q)

satisfying the following axioms:

• The element �g,m is invariant under the natural action of symmetric group Sm .
• For all αi ∈ H , �g,m satisfies

�g,m+1(α1, . . . , αm, 1) = π∗�g,m(α1, . . . , αm).

• The splitting axiom:

ρ∗t �g1+g2,m1+m2(α1, . . . , αm1+m2)

=
∑

j,k

η jk�g1,m1(α1, . . . , αm1 , e j )⊗�g2,m2(αm1+1, . . . , αm1+m2 , ek),

for all αi ∈ H .
• The loop axiom:

ρ∗l �g+1,m(α1, . . . , αm) =
∑

j,k

η jk�g,m+2(α1, . . . , αm, e j , ek),

for all αi ∈ H . In addition, the equality

�0,3(v1, v2, 1) = 〈v1, v2〉
holds for all v1, v2 ∈ H .

Definition 40. ([28], Definition 2.7) If the collection {�g,m} satisfies all the axioms
except for the loop axiom, we call it a partial CohFT.

We also refer to [9, Section 3] for more discussions of infinite rank partial CohFT.
Recall that, for Gromov–Witten theory of infinite root stacks, the ring of insertions

is H defined in Sect. 4.1. Let

π :Mg,m(X, β)×Xm

(
DI�s1 × · · · × DI�sm

)
→Mg,m

be the forgetful map.

Definition 41. Given elements [α1], . . . , [αm] ∈ H, theGromov–Witten class for infinite
root stacks is defined as
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�
XD,∞
g,m,β ([α1], . . . , [αm ]) = π∗

⎛

⎝
m∏

j=1
ev∗j ([α j ]) ∩

[Mg,m(XD,∞, β)
]vir

⎞

⎠ ∈ H∗(Mg,m , Q),

where contact orders are specified by insertions. We then define the class

�
XD,∞
g,m ([α1], . . . , [αm]) =

∑

β∈H2(X,Q)

�
XD,∞
g,m,β([α1], . . . , [αm])qβ.

It is straightforward to check that�
XD,∞
g,m satisfies the first two axioms of CohFT. The

Proof of the splitting axiom is parallel to the proof in [14, Theorem 3.16]. Therefore, we
conclude that

Theorem 42. �
XD,∞
g,m forms a partial CohFT.

It is already known in [14] that the loop axiom does not hold for relative Gromov–
Witten theory. Therefore, it does not hold for the formal Gromov–Witten theory of
infinite root stacks. It would be interesting to find a replacement of the loop axiom.
Some results along this direction has been proved in [40] by studying orbifold Gromov–
Witten invariants of finite root stacks with mid-ages.
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