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1 Introduction

This thesis is focused on the investigation of multiphase fluid flow in porous media.
Historically, studies on fluid behavior in different porous materials have drawn a lot of
attention due to their appeal and practical value in various fields of human activity. The
applicability of this sort of research ranges from the fields like medicine, civil engineer-
ing, hydrology, hydrogeology and environmental engineering to the petroleum industry.

More specifically, the motivation for this study comes from a need to better under-
stand how slow moving fluids behave in a reservoir under different externally imposed
boundary conditions. In not so distant past numerous reports on enhanced oil recovery
after seismic activity [1, 2] started to intrigue the oil community. The interest in know-
ing what really happens in the reservoir affected by a seismic episode soon became of
importance for the scientific community too. Here, we are investigating the physics be-
hind the slow non-stimulated and stimulated flow. The work presented in the thesis is of
experimental nature. All the experiments are performed on a synthetic porous medium
created in the laboratory.

Porous systems are disordered and studying the flow through such a complex system
is a complex task. Coupling different sorts of fluids and a porous system can lead to
many different scenarios in terms of flow regimes depending on the intrinsic properties
of the fluid and the medium. The work in this thesis addresses the pore scale effects
of externally imposed forcing on the multiphase flow. These effects consequently have
different repercussions on the invading cluster geometry. A thorough discussion of the
fluid and porous matrix properties along with the resulting flow is given in the following
paragraphs.

There are three objectives, therefore three segments that are interconnected to a large
degree. Here, the impact of viscous forces on the so-called dynamic capillary pressure
[3] and on the global saturation of the medium with the non-wetting fluid is investigated
first. As a result in this part we propose a scaling relation between the measured capil-
lary pressure and the saturation of the medium with the non-wetting fluid. These results
can potentially be implemented in reservoir modeling. The interest is then shifted to
the effects of pseudo-seismic stimulations on the fluid flow and the resulting invading
cluster geometry. The flow is stimulated by two different methods that mimic seismic
events and the results of that stimulation are then investigated. The first method consid-
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ers pressure oscillations applied to the non-wetting phase in a slow drainage flow. Dif-
ferent combinations of the oscillatory pressure amplitudes and frequencies differently
affect the flow regime and therefore the invading cluster morphology. By proposing a
dimensionless number we manage to successfully categorize the resulting geometries
and the respective flow regimes. We also stimulate the flow by means of oscillatory
displacement of the entire porous matrix in the horizontal plane while the wetting fluid
is drained out of the medium. The effects of the displacement in the direction of and in
the direction perpendicular to the flow are monitored and the results are reported.

The organization of the thesis is as following. The second chapter covers the de-
lineation of the experimental setup. In the first part an elaborate description of the
synthetic porous matrix and the apparatuses that are used for the pseudo-seismic stimu-
lation is given. Simply said, the porous medium used here is a monolayer of glass beads
sandwiched between a plexiglass plate on the top and a ’water-’ or ’air-cushion’ on the
bottom. The term porous matrix in the further text will be interchangeably used with the
term model or porous model. One of the goals in the construction of the porous matrix
was to create a structure that would represent a real world system. The fidelity of this
representation is achieved to a fairly high degree. Here, the reader is presented with how
well the synthetic model depicts a reservoir material in terms of compressibility (elas-
ticity), porosity and permeability. The characteristics of the synthetic porous medium
are then put in the perspective of a real reservoir and a comparison with an imaginable
scenario is presented. In this segment we also want to draw the reader’s attention to the
importance of the elasticity of the model and its effect on the flow regime.

A brief theoretical background of a drainage process on the pore scale is given in
the third chapter of the thesis. The basic principles and the governing forces of non-
stimulated drainage are presented. This chapter covers the definitions of the terms
widely used through the thesis as well. Here, the reader gets familiarized with some
of the effects that the flow speed, viscosity and density contrast as well as the gravi-
tational force have on the geometrical properties of the invading cluster and the flow
regime. The effects of pseudo-seismic stimulation on slow drainage are introduced in
the second part of this chapter. We look into how the flow and the invading cluster
morphology are altered when stimulated by means of either oscillating pressure in one
of the phases or a physical displacement of the entire porous matrix in the horizontal
plane.

The final chapter gives a brief introduction of the scientific papers that constitute
the thesis. There are three papers and all of them report the results achieved through
experimental work. The papers are not ordered in a chronological fashion but rather in a
way which introduces the reader to the general problem of quasi two-dimensional flow
first and then later on points to a possibility to alter and control the flow regime by using
various methods to stimulate the flow.



2 Experimental setup and procedures

In this chapter three experimental setups are described. The specific details of each
setup are given after the common element found in all of them is depicted. The core
piece of the setup is the porous matrix. The porous matrix is always prepared in the
same way. The only difference from one experiment to another is the size of the porous
model In the case when the non-stimulated and the oscillatory pressure driven flow are
studied the size of the matrix is larger than that used in the experiments where the matrix
is shaken in the horizontal plane.

2.1 Porous matrix
The quasi two-dimensional synthetic porous medium consists of a monolayer of 1 mm
diameter glass beads between two sheets of transparent contact paper. To create the
matrix, a sheet of contact paper is attached to a plexiglas plate. The adhesive side of
the contact paper is then covered with the beads leaving a randomly distributed mono-
layer across the entire area. Two openings aligned with the inlet and outlet channels
on the plexiglas plate are made. To prevent the uncontrolled outflow of the fluid and to
outline the active area of the porous matrix silicon glue is used. After the silicon glue
is applied the matrix is closed by adhering another sheet of contact paper to the beads.
The plexiglas plate is then turned and attached to either a ’water-’ or a pressurized ’air-
cushion’ depending on the sort of the experiments it is prepared for. The porous matrix
is secured between the plexiglas plate and the pressure-cushion. One of the purposes
of the cushion is to prevent horizontal motion of the beads. By circulating temperature
controlled water through the water cushion the effect of the change in room temperature
on the fluid viscosity can be minimized. A schematic view of the porous model is given
in Figure 2.1.

The dimensions of the porous model and the active matrix vary from experiment to
experiment. Generally, when the non-stimulated flow is studied as well as in the case of
the oscillatory pressure experiments, the model size is 50 cm × 50 cm, with the active
matrix of 35 cm × 20 cm × 0.1 cm. Needing to reduce the weight of the porous model
due to the limitations of the experimental setup when the flow undergoes vibrational
stimulation we use a 30 cm × 30 cm large model. The active matrix in the latter case is
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Figure 2.1: Schematic view of the porous model: 1-upper Plexiglas plate, 2-inlet/outlet tubing
connector, 3-inlet/outlet channel, 4-upper adhesive paper sheet, 5- slit, 6-lower adhesive sheet,
7-monolayer of glass beads, 8-silicone filling (defines the geometry of the active matrix), 9-mylar
film, 10-aluminum rim and 11-lower Plexiglas plate. Elements 9, 10 and 11 define the pressure
cushion.

17 cm × 10 cm × 0.1 cm. The porous matrix permeability is κ=1.9×10−5 cm2 and the
porosity is φ0=0.63. The volume of a single pore is approximately 1 mm3.

2.1.1 Non-stimulated drainage
Because of different needs in each experiment the mechanisms to drive the fluids through
the matrix or to stimulate the flow are experiment specific. In the non-stimulated flow
experiments the wetting fluid is extracted from the porous matrix in two ways. First
a set of experiments in which the pressure difference between the fluids is created by
means of the hydrostatic pressure change is performed. An open container with the wet-
ting fluid is placed on an electronic scale that rests on a translation stage. The container
is connected to the matrix through the tubing system. Moving the translation stage up-
wards or downwards relative to the porous matrix causes a positive or negative change in
the hydrostatic pressure. The hydrostatic pressure difference between the container and
the matrix drives the wetting fluid flow in or out from the porous system. The change of
the fluid mass in the open container is measured on the scale.

The flow through the porous matrix can also be initiated and maintained by the use
of a syringe pump. When a syringe pump is used, the outflow rate is set to be constant.

These two methods of driving the fluid through the medium are completely different
in terms of how the fluid flow is maintained. Using the translation stage, we lower the
open container slowly in small height increments. In each of these steps, the pressure
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difference between the fluids is increased. The whole process is very slow and basically
quasi-static. On the contrary, when the syringe pump is used, the flow rate is set to
a constant value. This means that the pressure in the fluids constantly readjusts itself
to maintain the constant flow rate. This method is preferable when there is a need of
having a good control of the flow velocity.

The porous model is transparent and the used fluids are in contrasting colors. By
placing the matrix above a light source we are able to take pictures of the evolving
invading cluster. The pressure in both fluids is monitored and read off the pressure
sensors. The pressure sensors reside on the inlet and outlet channel. The information
from the sensors is acquired and then transfered to a PC through a data acquisition card.
This experimental setup is shown in Figure 2.2.

�

�

�
�
�

�

�
�

Figure 2.2: Schematic view of the experimental setup 1: 1-digital camera, 2-syringe pump
3-tubing system, 4-pressure sensors, 5-porous model (connected to either the syringe or gravita-
tional pump through the tubing system, 6-light box with fluorescent lighting, 7-electronic scale,
8-translation stage operated by a step motor.

The experiments start by imposing the pressure difference across the fluid inter-
face either by the gravitational or the syringe pump. The amount of displaced fluid is
measured and combined with the duration time of the experiment to give the temporal
evolution of the matrix saturation. The pressure time evolution during the experiment
is also recorded. Combining the pressure and saturation data so-called pressure satu-
ration curves are plotted. These experiments are performed for different outflow rates,
therefore we are able to study the impact of the flow velocity on the pressure-saturation
curves.
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2.1.2 Mechanisms of seismic stimulation
To simulate a seismic event we devise two methods. Firstly, pressure oscillations by
using a custom made air pump are applied to the non-wetting phase. The pump is
constructed as a cylinder with a piston inside. The cylinder has two openings, a pinhole
sized air inlet and an outlet. The outlet is attached to the porous matrix. The forward and
backward motion of the DC motor operated piston expands and compresses the air in
the chamber creating oscillations in the air pressure at the inlet of the porous model. The
frequency of the oscillations corresponds to the frequency of the piston. The amplitude
of the oscillations is tunable and can be adjusted by changing the volume of the chamber.
On average the air pressure is equal to the atmospheric pressure in the laboratory. To
initiate and maintain the flow of the wetting fluid out of the matrix a syringe pump is
attached to the model outlet. A schematic view of the complete model setup is shown
in Figure 2.3.

�
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�
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�

Figure 2.3: Schematic view of the experimental setup 2: 1-camera, 2-syringe pump, 3-DC motor
operated air pump, 4-pressure sensors, 5-porous model (connected to the syringe and air pump
through a system of tubings, 6-light box with fluorescent lighting, 7- air container of variable
volume.

The other method to simulate effects of a seismic event on the flow in the porous
cell is to place the cell in a specially constructed frame that can be displaced in the
horizontal plane. A commercially available shaker moves the frame back and forth at
a given frequency and acceleration amplitude. As in the previous cases the frame with
the porous cell is placed on a light box. The wetting phase is slowly removed from the
matrix as the cell is set in motion. The development of the invading cluster is captured
by a digital camera placed over the porous model. To control the acceleration of the
shaking motion an accelerometer is attached to the porous matrix. The data from the
accelerometer are read off by a data acquisition card and sent to the PC. An overview of
the main elements of the apparatus is shown in Figure 2.4.

Initially the matrix is saturated with the incompressible wetting fluid in both cases.
The defending, wetting fluid, is withdrawn from the medium at a low, constant out-
flow rate (Q=0.022 and Q=0.06 ml/min for oscillatory and shaking stimulation, re-
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Figure 2.4: Schematic view of the experimental setup 3: 1-camera, 2-syringe pump. 3-porous
model, 4-aluminum frame, 5-commercial shaker on the mount, 6-light box with fluorescent light-
ing.

spectively). Essentially the background flow is kept in the capillary regime while either
the pressure oscillations or the vibrational stimulation is applied. The images of the
evolving invading pattern are taken in even time intervals and stored on the PC. The
experiment ends immediately before breakthrough, the moment invading clusters reach
the outlet channel.



3 Non-stimulated and stimulated pore
scale drainage process

Firstly, the physics behind the slow, non-stimulated quasi two-dimensional drainage is
elaborated. This segment gives an overview of the basic forces on the pore scale and
their effects on the flow. After the most essential aspects of two-phase flow are presented
the reader will be introduced to the physics and consequences of seismically stimulated
flow. Before getting into details, since the work summarized in this thesis is exclusively
focused on drainage, the term drainage is going to be explained first. In the case when
the fluids used in a two-phase flow are different with respect to their wetting properties,
depending on which phase is the defender and which one is the invader the flow can be
categorized as imbibition or drainage. The interface between the fluids is called front.
The direction of the flow is controlled by the pressure difference between the phases. If
the pressure in the non-wetting phase is larger than that in the wetting phase the front
will be moving towards the wetting phase and vice versa. The situation in which the
wetting phase is displaced by the non-wetting phase is known as drainage, otherwise
it is called imbibition. Fluids can be separated on wettable or non-wettable based on
the angle θ the interface between them builds when in contact with a flat surface. For
a θ greater than 90 degrees the non-wettability condition is met. On the contrary, if the
created angle is less than 90 degrees, the fluid is considered to be wettable. A schematic
view of the wetting angle is shown in Figure 3.1.

Figure 3.1: Schematic diagram of two fluids of different wetting properties in a capillary tube.
The colored gray area represents the wetting (w) and the white area is the non-wetting fluid
(nw).

Of course, fluids can be either wettable or non-wettable depending on the fluid they
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are coupled with and the surface itself. As an example, when displacement of oil by
water is studied in a glass Helle-Shaw cell. The water is going to be the wetting fluid.
If the glass is replaced by a plexiglas cell then the roles of the water and oil in wetting
the cell switch over. For the plexiglas cell the oil is the wetting fluid. This implies
that when preparing experiments similar to those presented in the thesis, the choice of
the materials from which the synthetic porous matrix is built and the choice of fluid
pairs is critical. The situations when the materials and fluids are not picked with their
wettability properties in mind can lead to the so-called mixed wettability. In the work
presented here the fluid pairs and the materials are selected so that the effects of mixed
wettability are avoided.

3.1 Physics of non-stimulated drainage
A flow process is characterized by an invading pattern. The invading pattern is formed
as the defending is being displaced by the invading fluid. Generally the efficiency of
the displacement and the morphological characteristics of the pattern are controlled by
three sorts of forces. Keeping in mind that the focus here is on a quasi two-dimensional
flow in the horizontal plane the gravity as a controlling force is excluded. The remaining
two forces, capillary and viscous, and their relative strength is what categorizes the flow
as capillary or viscous fingering [4].

When considering a drainage process in a porous medium the capillary forces act
against the flow. The invading process starts when the imposed pressure difference
between the present fluids is large enough to overcome the local capillary pressure
thresholds. The capillary pressure is the pressure difference between the wetting and
non-wetting fluid. It depends on the pore geometry expressed by the principal radii of
curvature R1 and R2 and the interfacial surface tension γ. The capillary pressure is
given by Young-Laplace law

pc = pnw − pw = γ(
1

R1
+

1

R2
) . (3.1)

The capillary pressure threshold is the capillary pressure at the narrowest part of the
pore throat. In the experiments the typical pore space is of size a, and the capillary
pressure threshold is approximated by pt ≈ 2γ/a.

The velocity at which the fluid moves through the medium is dependent on the
model’s permeability (κ), the viscosity of the wetting fluid itself (ηw) and the viscous
pressure gradient (∇p). The functional relationship of these quantities is summarized in
Darcy’s law

v = − κ

ηw

∇p . (3.2)

Darcy’s velocity (v) is also known as seepage or filtration velocity.
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Driving drainage processes at different velocities results in different flow regimes.
Those flow regimes results in the invading clusters that feature distinctive morphological
characteristics. To characterize the flow regimes usually a set of or a single dimension-
less number is used. In studying non-stimulated drainage capillary number (Ca) and
viscosity ratio (M) are commonly used dimensionless numbers [4].

Capillary number can be defined in many ways. Here, we define capillary number
as the ratio of the viscous and capillary pressure drop over the same pore

Ca =
Δp

pc
=

ηwva2

γκ
. (3.3)

Another number that is useful in characterizing the flow regimes is the viscosity ratio
between the fluid pairs (M = ηnw/ηw). By tuning these two numbers a wide array of
different flow patterns can be achieved. For example in a slow (Ca � 1) horizontal
displacement of a more viscous wetting by a less viscous non-wetting fluid, the flow
is going to be dominated by the capillary force effects and the invading structure is
going to be characterized by the capillary fingering morphology. The capillary fingering
geometry is well reproduced by the invasion percolation (IP) algorithm [5, 6, 7, 8, 9].

For the same fluid pair driven at higher speeds (Ca � 1), the flow is governed by
the viscous forces. In this case the invasion of the fluid that is more viscous than the de-
fending fluid (M � 1), results in a stable displacement [10, 8, 11]. A fast displacement
of the more viscous fluid by the less viscous one gives viscous fingering [12, 13, 8, 14].
The viscous fingering invading patterns are similar to those achieved in diffusion lim-
ited aggregation (DLA) (see [15, 13, 8]). The two presented scenarios represent the
most extreme cases.

However, when M � 1 for a range of intermediate outflow velocities the flow
is dominated by the capillary forces on a smaller scale and the viscous forces on the
larger scale. Consequently, the invading patterns created in an intermediate regime
demonstrate characteristics of both, capillary and viscous fingering depending on the
spatial scale at which they are studied [16]. The critical spatial length-scale between
the regimes is defined as lc = a/Ca [16, 14]. The invading structure patterns on the
scales lesser than lc exhibit the characteristics of the capillary fingering while on the
scales larger than lc the invading clusters closely resemble a viscous fingering pattern.
This finding is particularly important and is more thoroughly described in the first paper
presented in the thesis.

Even though the experiments presented in the thesis are performed in the horizontal
plane it is worth of mentioning that in a non-horizontal system, gravity and density
contrast between the fluids become important factors. In a non-horizontal displacement
tuning those two parameters in addition to M and Ca results in a variety of displacement
structures [17, 18, 19, 20].

In this segment a brief overview of the growth of the invading cluster is addressed.
In the carried out experiments the flow is characterized with low values of Ca (∝ 10−4
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and lower) and M < 1. Driving the invasion slowly the effects of the viscous forces
are minimized and the front invades the largest pores first since they exert the least
resistance. The interfacial pressure builds up until the easiest pore is invaded. The
invasion is not limited to only one pore and it lasts as long as the pressure difference in
the advancing part of the interface is large enough to overcome the capillary thresholds
in the neighboring pores. The growth process is apparently not continuous [21, 22, 23,
24] and is characterized by so called bursts or Haines jumps. After a burst the pressure
in the invading fluid builds up again until it is large enough to overcome the capillary
pressure barrier in another pore throat along the front. A typical example of an invading
pattern created in the capillary regime is shown in Figure 3.2

Figure 3.2: Typical morphology of an invading structure created in the capillary fingering
regime. The direction of the displacement is from the left hand side to the right hand side of
the image.

3.2 Physics of a seismically stimulated drainage process
While the unperturbed flow is very well understood there has been relatively a few stud-
ies that investigate impact of different sorts of stimulation applied to the flow in porous
materials. Stimulated flows are actually of significant practical importance. The interest
in seismically stimulated flow of immiscible fluids has been becoming increasingly pop-
ular since the latest reports on the enhanced oil recovery that followed seismic events
[1, 2]. The methods used to stimulate oil recovery vary. They range from the use of
surfactants to reduce the surface tension between the phases in the reservoir [25, 26] to
the use of elastic waves in the mobilization of trapped oil bubbles [1, 27, 28, 29, 30] .

This thesis mainly deals with seismically stimulated drainage. Two out of three
papers presented in the thesis address the flow that is seismically stimulated. The stim-
ulation of the flow is performed in two ways. Those two approaches are different and
their effect on the physics of the flow are discussed separately.
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When the flow is stimulated by means of the oscillating pressure in the non-wetting
phase, the elasticity of the porous matrix plays an important role. The model elasticity
and its effects on the physics of the flow are addressed first.

In the case of the vibrational stimulation the hydrostatic pressure build up due to
the arising body force in the wetting phase has a considerable impact on the growth
of the invading cluster. The oscillatory hydrostatic pressure locally changes the inva-
sion probability of the pores on the interface, which largely affects the growth of the
invading cluster and its morphology. This effect is present in both, the longitudinal and
transversal stimulation.

3.2.1 Pressure skin-depth in an elastic, two-dimensional
porous medium

A seismic wave consists of two components, the S- and P- wave. When a seismic
stimulation is applied to a porous system (e.g. rock) the S-wave corresponds to a shear
wave of a rock matrix and does not propagate through fluids since there is no shear stress
in fluids. The P-wave is also known as the compressional component of a seismic wave.
In a porous material the soft inclusions increase the elasticity of the system. Usually the
soft part of the matrix is the air pockets either in the rock matrix itself or in the present
fluids. The compressional component of the seismic wave (P-wave) affects the softer
part of the matrix. Applying a large scale homogeneous compression on a system with
soft inclusions creates a large stress variation around the soft inclusions. The trapped
air amplifies the amplitude of the imposed creating even a larger oscillation than that
caused by the P-wave. According to Biot’s theory [31, 32] this amplified oscillation
emits secondary waves that propagate through the surrounding medium as a diffusion
wave. This situation is closely reproduced by employing pressure oscillations on the
non-wetting phase. Some of the effects of the pressure oscillations on the non-wetting
phase in a slow drainage process are shown in Figure 3.3.

When the oscillatory method is applied a huge role in what can be observed in the
behavior of the fluid flow is due to the elastic properties of the model. Due to the
elasticity of the porous matrix within each oscillatory cycle its volume changes. As
opposed to a stiffer system where the pressure oscillations propagate through the entire
system, here those oscillations are attenuated over a certain length. This skin-depth can
be estimated. Assuming that the wetting fluid is incompressible (ρw = const.), the
permeability (κ) of the model is constant and considering the spatial variation of the
height negligibly small when compared to the model thickness h0 the time derivative of
the non-wetting fluid pressure can be expressed as

∂tp = D∇2p, (3.4)
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Figure 3.3: Examples of breakthrough images of the invading cluster created in a drainage pro-
cess stimulated with the oscillating pressure. The applied frequency is 0.2 Hz and the amplitudes
of the oscillating component vary. The structures shown on the images A, B and C are created
at 20, 560 and 3700 Pa, respectively. The outflow rate of the wetting fluid is Q=0.022 ml/min.
The dark area on the images represents the wetting fluid while the white area is the invading air
cluster.

where the diffusion constant is
D =

κpatm

ηwφ0ξ
. (3.5)

The ξ term is the measured elasticity coefficient of the model. Considering the
one-dimensional case (invariance in the transverse direction; i.e. p=p(x, t)), the pres-
sure skin depth in the direction of flow (x) can be calculated by solving Eq. (3.4). The
boundary condition on the inlet is p(0) = P cos(ωt) + patm, where P and ω = 2πf
are the amplitude and angular frequency of the applied oscillation. On the outlet, we
assume ∇p∞ = −v0ηw/κ. Now, the real part of

p = Pei(kx−ωt) + patm , (3.6)

gives the solution for p(x, t) where the wave number is

k =

√
2

2
(1 + i)

√
ωηwφ0ξ

patmκ
. (3.7)

The imaginary part of k gives the damping and the length ahead of the front over which
the pressure is reduced by 1/e (skin-depth) is

xs =
1

Im k
=

√
2patmκ

ωηwφ0ξ
. (3.8)
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This pressure skin-depth depends on the frequency of the oscillations. The effects of
the damping of the pressure oscillations caused by the elasticity of the synthetic porous
medium are shown in Figure 3.4. A full derivation of the skin-depth dependency on the
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1000
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t = 0 s
t = T/4

Figure 3.4: Pressure wave propagation in the defending fluid as a function of the distance
ahead of the invasion front. The dash-dot line represents the decay of the pressure amplitude
with distance at time t = 0, the dashed line represents the pressure decay with distance at
t = T/4 (T = 1/f )and the solid line represents the exponential decay of the pressure oscillation
amplitude(envelope). The initial amplitude of the oscillation is 4000 Pa and the frequency is 0.2
Hz.

frequency and the amplitude of the oscillations is described in greater detail in paper
no. 2, where the effects of the oscillatory pressure on the flow pattern geometry are
addressed.

Due to the elasticity of the porous model the front moves back and forth within an
oscillatory cycle. The back and forth traveling distance depends on the intensity and the
frequency of the applied pressure oscillation. For the high frequency cases these lengths
were considerably smaller than the ones observed in the low frequency experiments. In
the cases when the incursion distance is considerably larger than the typical pore size the
invasion cluster gets fragmented. In the extreme cases formation of foam is observed.
The likeliness of fragmentation is then defined as a ratio of the backwards traveling
distance (Δx−) and the pore size (a)

F =
Δx−

a
. (3.9)

This dimensionless number is called fragmentation number. The backward traveling
distance can be estimated as a product of the time scale of the oscillations and an ap-
proximation of the velocity of the menisci

Δx− ≈ 1

ω

κP

ηwxs
. (3.10)
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Finally in the case when the pressure oscillations are employed to simulate seismic
activity F reads

F =
1

ω

κP

ηwxsa
=

√
P 2κφ0ξ

4πfηwpatma2
= c

P√
f

. (3.11)

and is proportional to the pressure oscillation amplitude and inversely proportional to
the square root of the frequency. When the model and fluid characteristic parameters
(i.e. elasticity coefficient, permeability, pore size, porosity, viscosity) are held constant
as it was case in the experiments, then c = 5.7 · 10−5 (Pa−1s−1/2) in Eq. 3.11.

As a reality check we look at the elastic properties of a real reservoir rock satu-
rated with water. Applying Biot’s [31] theory of pressure wave propagation in a fluid-
saturated porous material, the pressure propagation in this scenario can be described by
a diffusion equation with the diffusion coefficient Dr [32]. Considering that the major
contribution to the elasticity of the system originates from the soft inclusions (fluid and
trapped air bubbles) the diffusion coefficient can be represented with

Dr =
κr

βη
, (3.12)

where κr is the permeability of the porous medium, β is the compressibility and η is
the viscosity of the soft medium. Analogously to our quasi-two dimensional case the
fragmentation number for a real, three-dimensional porous material can be calculated
as:

F =
κrP

aη
√

2Drω
. (3.13)

In an artificially induced moderate seismic event with the pressure amplitude P = 103

Pa and frequency of 1 Hz [33], water compressibility β = 10−10 Pa−1, and the per-
meability of the solid matrix κr = 10−11 m2 with pore sizes of 10−5 m, the calculated
value of F (see Eq. 3.13) is 0.07. This value is on par with the values calculated in
the experiments which confirms the high fidelity of our representation of a real world
porous medium (see Paper 2 in the thesis).

3.2.2 Effects of the oscillating body force
When the porous matrix is exposed to the vibrational stimulation of the acceleration
amplitude A and frequency f the menisci on the interface between the phases oscillate.
The oscillations of the menisci are due to the arising body force in the referent frame of
the porous matrix

Fb = Aρweiωt, (3.14)

where ω = 2πf is the angular frequency and ρw is the wetting fluid density. The
acceleration of the body force has the same magnitude as the imposed vibrations but the
opposite orientation.



16 Non-stimulated and stimulated pore scale drainage process

As a result of the arising body force there is a hydrostatic pressure build up in the
fluid. The hydrostatic pressure changes the invasion probability of the pores on the
front. The easiest way to describe the effects of the oscillatory hydrostatic pressure is to
look at the system stimulated in the direction of the flow and at two pores, α and β of
approximately the same size on a frontal instability.

In Figure 3.5, pores α and β are separated the distance Δx in the direction of the

Figure 3.5: Schematic diagram of the oscillatory hydrostatic pressure build up on a frontal
instability. The wetting phase is represented by the gray area and marked ′w′. The non-wetting
phase is marked ′nw′. The acceleration of the system is given by �A. The solid line arrows
point in the direction of the system acceleration. The dashed arrows represent the generated
hydrostatic gradient for the corresponding acceleration. The disks along the front represent the
solid parts of the porous matrix. For the reason of a better legibility only the matrix solids along
the front are shown.

background flow. The body force acting on the fluid creates the hydrostatic pressure
gradient Δpαβ = ρwAΔx. The direction of the hydrostatic pressure gradient is always
oriented opposite to the acceleration of the system. When the system is accelerated in
the direction of the flow due to Δpαβ = ρwAΔx the fluid pressure in the proximity of
pore α is lower than that around pore β therefore the invasion probability of pore α is
larger. Analogously, pore β is more likely to be invaded on the other side of the oscilla-
tory cycle, when the system acceleration is opposing the background flow. Depending
on the orientation of Δpαβ = ρwAΔx the front is going to be either destabilized or
stabilized. The growth around pore α has the destabilizing effect and the growth of the
displacing cluster around pore β tends to stabilize the front.

When studying the system exposed to the vibrational stimulation we see a notable
change in the invading cluster geometry as compared to those achieved in the same
system without the external stimulation. Both, the stimulation in the direction of the
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flow and in the direction perpendicular to it have large effects on the invading cluster
geometry.

When the vibrational stimulation is applied the invading cluster geometry changes
depending on the oscillatory frequency and the acceleration amplitude. A few exam-
ples of the effects of the oscillatory stimulation applied in the direction of the flow for
different values of the frequency and amplitude are shown in Figure 3.6.

A = 0, f = 0 A = 15, f = 5 A = 15, f = 15 A = 15, f = 30 A = 15, f = 60

Figure 3.6: Examples of invading cluster geometries achieved for the longitudinal vibrations of
different amplitudes A (m/s2) and frequencies f (Hz).

The transversal vibrational stimulation of the porous system creates the hydrostatic
gradient that acts along the system width. In this case, the sides of the porous matrix are
always more probable to be invaded than the middle section. This leads to the finger-
like geometries of the invading cluster in which the fingers grow along the sides of the
model (Figure 3.7).

A = 0, f = 0 A = 15, f = 5 A = 15, f = 15 A = 15, f = 30 A = 15, f = 60

Figure 3.7: Examples of invading cluster geometries achieved for the transversal vibrations of
different amplitudes A (m/s2) and frequencies f (Hz).

To confirm the observed results in both, the transversal and longitudinal case, we re-
sort to the numerical simulations of invasion-percolation (IP). The very well known IP
algorithm [7, 8, 9] is modified to include the effects of the oscillatory hydrostatic pres-
sure gradient [34, 35, 36]. In the case when the effects of the longitudinal acceleration
are included the capillary pressure threshold in a pore with coordinates (x, y) is

pt(x, y) = N(x, y) + (−1)sAIP x. (3.15)
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The term N(x, y) represents the invasion probability of the site without any stimulation
and is a random number uniformly distributed between 0 and 1. In the longitudinal
case, terms AIP and x are the oscillatory amplitude and the position of the pore from
the model inlet, respectively. The s term represents the invasion step and as shown
in Eq. 3.15 will change the orientation of the pressure gradient after each successive
invasion. In the transversally imposed oscillations, the x term represents the position
relative to the matrix side walls. The simulations are performed on a system of 400×600
lattice sites. As seen from Figure 3.8 and Figure 3.9, the numerical results in both, the
longitudinal and transversal, are in agreement with the experimental results.

Aip = 0 Aip = 0.0001 Aip = 0.0005 Aip = 0.001

Figure 3.8: Breakthrough images from the modified IP simulation for select values of Aip. The
gradient is applied in the direction of the flow. The black areas represent the non-wetting fluid
and the white area is the wetting phase.

Aip = 0 Aip = 0.00005 Aip = 0.0002 Aip = 0.0005

Figure 3.9: Breakthrough images from the modified IP simulation for select values of the os-
cillatory acceleration Aip. The gradient is applied in the direction perpendicular to the flow
direction. The black areas represent the non-wetting fluid and the white area is the wetting
phase.



4 Introduction to the scientific papers

The thesis consists of three scientific articles. The author of the thesis is also the first
author on two articles (Paper2 and Paper3). The author contributes to the first article
(Paper 1) in terms of laboratory work. The laboratory work embraces preparations of
and performing experiments and collection of the data from the measurements.

The articles included are integrated in the body of the dissertation in a logical order.
As a courtesy to the less experienced reader we try to introduce the problem of the non-
stimulated drainage first. We believe that getting acquainted with the general postulates
of drainage makes a great introduction to the rest of the thesis. The following two
articles deal with modifications of two phase drainage.

4.1 Paper 1
The first paper presents the effects of viscous forces on dynamic saturation–pressure
curves. A series of drainage experiments is performed on a synthetic porous model.
The porous cell is transparent so that the geometry of the evolving invading cluster
can be monitored and recorded. The flow is driven either by slowly increasing the
hydrostatic pressure difference between the fluid in the porous matrix and an externally
placed open container or by a slow removal of the wetting fluid using a syringe pump.
The amount of extracted and injected fluid during an experiment is measured and plotted
as a function of the measured pressure in the wetting phase. The results from the quasi-
static experiments exhibit notable differences when compared to the standard water-
retention curves. It is shown that the dynamic effects reported in the literature are a
combined effect of the capillary pressure oscillation along the front and the viscous
forces. By combining detailed information on the invading cluster geometry with the
measured pressure, capillary number and saturation we propose a scaling relation that
connects pressure, saturation and the capillary number. This scaling relation might be
of importance in reservoir modeling.



20 Introduction to the scientific papers

4.2 Paper 2
The second paper addresses the effects of oscillatory pressure on a slow flow of two im-
miscible fluids in an elastic synthetic porous medium. As the defending fluid (wetting
phase) is displaced a pressure oscillation is applied to the invader (non-wetting phase).
The displacement as well as the amplitude and the frequency of the oscillatory stimula-
tion are kept constant throughout an experiment. The withdrawal speed of the wetting
fluid is kept low forcing the background flow to stay in the capillary regime. The ge-
ometry of the invading cluster is investigated. It is found that the resulting morphology
of the invader is dependent on the elasticity of the porous system, the amplitude and the
frequency of the applied pressure oscillation. Different combinations of the amplitudes
and frequencies result in morphologically similar geometries. To classify the charac-
teristic structures of the invader a dimensionless number is proposed and successfully
used.

4.3 Paper 3
The third paper shows the consequences of the vibrational stimulation on the morphol-
ogy of the invading cluster generated in a slow drainage process. The wetting fluid is
slowly removed letting the non-wetting fluid advance and create an invasion pattern.
In each experiment the vibrational parameters are kept fixed. The direction of the vi-
brational stimulation is also fixed in individual experiments. The experiments are per-
formed with the stimulation acting in the direction and perpendicular to the direction of
the background flow. When the flow is stimulated in the direction of the flow, the re-
sulting invading cluster geometries change as the vibrational acceleration and frequency
change. The change in the invading cluster morphology reflects in the saturation of the
matrix with the non-wetting fluid Snw. It is found that Snw scales very well with the
amplitude to frequency A/f ratio. In the case of the transversal stimulation a notable
lack of frequency dependency is present. The saturation data scale with the oscillatory
amplitude A. It is also found that the gravity field that arises as a response to the im-
posed system acceleration and the corresponding hydrostatic pressure build up have a
great impact on the shape of the evolving invading cluster geometry.
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