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Abstract: 

Soil moisture drought, as one of the most important drought categories, is determined by both 

water supply (e.g., precipitation) and demand (e.g., potential evapotranspiration). To shed light on 

the underlying mechanisms driving soil moisture drought, the statistical multiple linear regression, 

machine learning, and modeling experiments methods have been pervasively used in early studies.

However, these methods neglect the collinearity and interactions of climate variables, and thus 

cannot reflect the direct and indirect interaction of factors leading to soil moisture drought. To reveal 

the synergistic effects of water supply and demand on soil moisture drought, this study quantified 

the contributions of key drivers to the change of soil moisture drought by a path analysis method to 

exhibit the relationships between atmospheric movement state and soil moisture drought. Prior to 
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applying the systematic path analysis model, we identified the spatial patterns of soil moisture 

droughts at different depths by using a state-of-art three-dimensional drought recognition method 

in the mainland of China. Our results showed that precipitation deficits dominated the interannual 

variation of soil moisture drought while increasing potential evapotranspiration only had marginal 

intensification in drought. The response of soil moisture drought to potential evapotranspiration was 

magnified by drought deterioration, especially in basically severe drought conditions. The total 

column water vapor and the horizontal divergence of the vapor flux, as well as temperature, directly 

affected precipitation and potential evapotranspiration and led to soil moisture drought through 

various direct and indirect processes. This study highlighted that the interactions among 

precipitation, potential evapotranspiration, and atmospheric vapor movement state in space and time 

were important for understanding the drought development mechanisms. 
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1. Introduction 

Drought is one of the most serious natural disasters with complex origins, perennial occurrence, 

and severe destruction (Wilhite et al., 2000). The deterioration of drought severity disturbs the 

biodiversity conservation of the natural ecosystem and the sustainable development of the social 

economy (Gu et al., 2020a; Kreibich et al., 2022). Drought is typically defined as a long-term 

imbalance in the water budget or between supply and demand, and can occur in all compartments 

of the hydrological cycle (Van Loon, 2015). Generally, drought is categorized into meteorological 

(atmosphere), hydrological (streamflow and groundwater), agricultural (soil moisture), and 

socioeconomic (human) types (Gu et al., 2020b; Heim, 2002; Wu et al., 2022). Agricultural drought 

is one of the most critical hazards, which is commonly defined as a deficit in soil moisture that 

affects plant growth or crop yields (Hong et al., 2021; Zhang et al., 2021b). Therefore, soil moisture 

has been widely used to evaluate agricultural drought conditions (Cai et al., 2021; Deng et al., 2021; 

Narasimhan and Srinivasan, 2005).  

Even though soil moisture drought has multiple natural properties (Manning et al., 2018), it 

usually can be seen as the result of the imbalance of precipitation and potential evapotranspiration 

affected by the energy budget and water cycle of the land-atmosphere coupling system. The water 

supply (precipitation), which can alleviate soil moisture drought, has spatial heterogeneity in the 

land-atmosphere system, and its variation is mostly influenced by the water vapor movement (He 

et al., 2022; Liu et al., 2017). Many studies investigated the response mechanism of soil moisture 

drought to the changes in precipitation and potential evapotranspiration (Cheng and Huang, 2016; 

Luo et al., 2017; Song et al., 2020; Wang et al., 2018). It is also widely accepted that the changing 

temperature promotes soil moisture drought indirectly by increasing potential evapotranspiration 
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(Stefanon et al., 2014).  

Statistical multiple linear regression methods, machine learning, and modeling experiments 

with control variables are usually used to investigate the complex interrelationships between water 

supply and demand for soil moisture drought in previous studies. For example, Bai et al. (2019) 

used multiple linear regression to calculate the rate of contribution of precipitation and temperature 

to soil moisture changes in the Tibetan Plateau and found that precipitation is the dominant factor 

compared to the temperature. Zhang et al. (2022) used various explainable machine learning 

methods to simulate flash soil moisture drought over China by considering the multiple 

meteorological variables in the adjacent time to drought onset and found that the lack of 

precipitation and the increase of evaporation demand have different effects on drought in different 

regions. Luo et al. (2017) used a set of modeling experiments controlling for different climate 

variables to analyze the reason for the multiyear agricultural drought in California and revealed that 

precipitation deficits are largely responsible for the agricultural drought. 

However, due to the nonlinear and collinearity problems among climate factors, the number of 

independent variables used for drought analysis was limited and varied from partition to partition, 

especially for the multiple linear regression methods (Liu et al., 2022). Although machine learning 

and modeling experiments can interpret all the drivers’ contributions and achieve good performance 

in constructing nonlinear interactions among variables, machine learning cannot quantify the effect 

of a factor alone, and neither of them considers the role of interactions among climate factors in soil 

moisture drought. Moreover, the response mechanisms of soil moisture are complex with both direct 

and indirect factors. In previous studies, the impacts of various climatic factors on the development 

of soil moisture drought were evaluated from the perspective of direct impacts, while how certain 
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factors directly or indirectly affect the development of soil moisture drought simultaneously still 

remains poorly understood (Nemergut et al., 2011; Waldrop et al., 2017).  

Path analysis is a specific technique for analyzing conceptual models by quantifying the 

relationships and interactions between networks of factors, which allows simultaneous analysis of 

multiple direct and indirect relationships among variables and can solve covariance problems caused 

by correlations (Gui et al., 2017; Velayati et al., 2021). It is often referred to as causal analysis 

because it is used to test or confirm prior models based on empirical data (Keller et al., 2022). Path 

analysis has the advantage of simultaneously assessing all relevant trajectories, accounting for the 

role of independent and/or dependent mediators in outcome development (Devlieger and Rosseel, 

2017). Many studies used path analysis in psychology, business economics, and mathematics to 

reveal the complex relationships of the variables that affected them (Bennett et al., 2020; Zhang et 

al., 2015). Due to the simplicity of its underlying statistical theory and its potential to solve 

important substantive problems, it is also used by many ecologists in the attribution analysis of 

agricultural land use and soil ecological change (A et al., 2019; Keller et al., 2022). Therefore, as a 

primary method of attribution analysis, path analysis has a great potential to analyze the mechanisms 

of direct and indirect effects of individual variables on soil water drought in complex environments. 

However, to the best of our knowledge, this method has not been used to quantify the contributions 

of climate variables to soil moisture drought.  

Accordingly, this study proposes, for the first time, the use of the path analysis method to 

investigate the direct and indirect relationships between driving factors and soil moisture drought. 

Specifically, the path analysis model is constructed to quantify the impact of demand and supply on 

soil moisture drought from the perspective of the atmospheric water cycle to advance our 
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understanding of the water supply and demand for soil moisture drought. The main factors of 

atmospheric water vapor change (e.g., the total column water vapor, TCWV, and the horizontal 

divergence of the vapor flux, DIVQ) and temperature were used as the extrinsic climatic forcing 

factors that indirectly affect soil moisture. The precipitation and potential evapotranspiration are 

considered to be factors directly affecting soil moisture drought.  

2. Dataset and study area 

2.1 Study area 

This study quantified the contribution of precipitation and potential evapotranspiration 

anomalies to soil moisture drought in the mainland of China. China is located in East Asia and 

borders the Pacific Ocean, spanning from 3°N to 54°N and from 73°E to 135°E (Wu et al., 2020), 

covering an area of 9.6×106 km2. To analyze the soil moisture drought characteristics over different 

climate regimes, four subregions were defined based on the multi-year average aridity index (AI = 

precipitation / potential evapotranspiration) for the 1950-2021 period (Huang et al., 2014; Liu et al., 

2018; Xu et al., 2019). The four subregions consist of Arid (AI< 0.2), Sub-Arid (0.2 AI < 0.5), 

Sub-Humid (0.5 AI<0.65), and Humid (AI 0.65).  

2.2 ERA5 data 

This study used the fifth generation of European Reanalysis (ERA5) data to characterize the 

drought. ERA5 is the latest reanalysis product from the European Centre for Medium-Range 

Weather Forecasts (ECMWF). It covers the period from 1950 to the present and is updated daily 

with a latency of five days (Viggiano et al., 2021; Yang et al., 2021). The product is produced using 
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4D-Var data and the latest European Medium-range Weather Forecast model (CY41R2) that was 

operational in 2016, combining many historical observations including ozone, aircraft, and surface 

pressure, new decommissioning and a variety of the latest data sets and instruments. ERA5 is one 

of the most widely used reanalysis datasets for the study of soil moisture due to its good adaptability 

and high spatial and temporal resolutions (Ling et al., 2021; Zhang et al., 2021b). The used variables 

in this study included monthly precipitation, temperature, potential evapotranspiration, total column 

water vapor, the horizontal divergence of the vapor flux, and three layers of soil moisture (including 

0–7 cm, 7–28 cm, and 28–100 cm) for the 1950-2021 period, with a spatial resolution of 0.25°. 

2.3 In situ datasets 

The in-situ soil moisture data were used to evaluate the performance of ERA5 in simulating 

soil moisture, which were downloaded from the National Meteorological Information Center of 

China (CMA) (http://cdc.cma.gov.cn/home.do). The data have been collected from 778 agricultural-

meteorological stations, covering the period from 1991 to 2013, with a temporal resolution of every 

10 days (on days 8, 18, and 28 of each month) (An et al., 2016). This dataset contains soil relative 

humidity for 10 cm, 20 cm, 50 cm, 70 cm, and 100 cm. The distribution of stations is shown in Fig.1.  

Since the in-situ soil moisture data are relative value (θ; %), while ERA5 simulations are soil 

volumetric water contents (θv; m3 m−3), the observed data were transformed to the same form of 

ERA5 data by the following equation: 

                    = ⋅ ⋅                        (1) 

where θf is the field capacity, and  is the dry bulk density. The in-situ field capacity and dry bulk 

density data set were obtained from the National Meteorological Information Center of the China 
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Meteorological Administration (http://cdc.cma.gov.cn/home.do) for the 1981-1998 period. 

To compare ERA5 data with observed data at different depths, the soil volumetric water content 

obtained by ERA5 was calculated by taking the soil thickness as the weighting coefficient to obtain 

the corresponding soil volumetric water content for 0-10 cm, 10-20 cm, 20-50 cm, and 50-70 cm. 

Due to the poorer quality of the observed data for other seasons, only soil moisture in summer (June–

August) was used to evaluate the ERA5 data.

 

Fig.1 Distribution of soil moisture observation stations in China 

3. Methods 

3.1 Soil moisture drought identification 

Standardized soil moisture index (SSI) is one of the most straightforward indices developed 

and validated in many studies to monitor agricultural droughts (Afshar et al., 2022; Mpelasoka et 

al., 2008). In this study, SSI was estimated as a standardized anomaly for the 1950-2021 period. The 

negative value of SSI indicates that soil moisture is lower than the average level during the study 

period, which is used to characterize the degree of drought. Grids with SSI < -1 were used in this 
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study for drought recognition. 

The soil moisture droughts were identified using a spatial identification procedure, which was 

based on a clustering algorithm that incorporates spatial contiguity (Andreadis et al., 2005; Lloyd-

Hughes, 2012), from a three-dimensional perspective (longitude, latitude, and time). The three-

dimensional drought can be expressed by DI (nlon×nlat×nt), where nlon and nlat are the number of 

girds along longitude and latitude, respectively, and nt is the number of months along time 

dimension (Xu et al., 2015). The recognition processes of drought events include the following three 

steps: 

Step 1: Identifying drought patches. For each moment, we set a minimum drought index 

threshold SSI (-1.0 in this study) to identify the drought state of each grid, considering spatial 

continuity. Then we cluster the grids with the value of index less than -1 into several drought patches 

to obtain patch numbering matrix L. 

Step 2: Determining the connection of drought patches on two adjacent months. We first 

determine a minimum drought patch area Ao, and the drought patches which are smaller than this 

threshold will be omitted. 

The threshold Ao is an important parameter in this three-dimensional method. Ao is a function 

of the total number of droughts and the duration of droughts, which determines the spatiotemporal 

behaviors of drought patches. It depends also on the size of study area. Based on a sensitivity test, 

Wang et al. (2011) suggested a minimum drought patch area of 150000 km2 (approximately 1.5% 

of the study area) for China. Liu et al. (2019), and Zhu et al. (2019) also used a similar criterion 

(equivalent to 1.5% of the study area) to analyze droughts in their study areas. In our study, the same 

threshold standard, 150000 km2 was employed as the minimum drought patch area. 
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As shown in Fig.S1, considering the two adjacent months, t, and t-1, if any couples of patches 

(denoted by Et−1 and Et) between the two months have an overlap area larger than Ao, Et−1 and Et 

belong to the same drought event, otherwise, they are different drought events. 

Step 3:  Identifying drought events. Repeated Step 2 until the last period (from the second 

month of the 72 years to the last month). Finally, all the drought patches with spatio-temporal 

continuity are assigned a unique number, that is, three-dimensional drought events.  

Four parameters are calculated to describe the determined drought events. They are defined as 

follows: 

(1) Duration (D) is the duration of a drought event, calculated as the time interval between the start 

and end of a drought event.  

(2) Severity (S) is an expression of water shortage, indicating the total amount of water on a spatio-

temporal scale that is needed to recover back to normal conditions. The severity of the drought event 

(taking the Eth as an example) is defined as: 

= ( , ⋅ , )          (2) 

where SE is the severity of the Eth drought event (km2 month), S is the severity the of voxels 

(km2 month),  and  are the duration and the number of covering grids of the three-

dimensional precipitation event. ,  is the area of grids. 

In the attribution section, we defaulted the area of each grid point to one unit according to the 

method of Yan et al. (2018).  

(3) Affected Area (A) is the area swept by a drought event. It is a region projected onto the surface 

of latitude and longitude in a three-dimensional space-time domain. 

(4) Centroid (C) is the center of the drought event, which represents the position of the drought 
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event in three-dimensional space-time (longitude, latitude, and time). 

3.2 Influence factors analysis for drought events 

3.2.1 Path Analytic Method 

The sensitivity of soil moisture drought to precipitation, potential evapotranspiration, and other 

possible drivers was estimated using path analysis from the perspective of correlation. Before using 

the path analysis, we first standardized potential evapotranspiration, precipitation, TCWV, divQ, 

temperature with z-scores. The structural model was based on areas where three-dimensional soil 

moisture drought occurred (Fig.2). To perform path analysis, the variables were divided into three 

main categories: input, intermediate, and output (Ebrahimi et al., 2021), with TCWV, temperature, 

and divQ used as input variables. Although many studies have found that atmospheric water vapor 

movement and temperature strongly influence soil moisture drought, they do not cause such changes 

by themselves. Potential evapotranspiration and precipitation were assumed to directly affect SSI, 

and the TCWV, divQ, and temperature indirectly affect SSI through them. 

Fig.2 Path diagram for SSI and possible drivers. Arrows connect exogenous and endogenous 
variables, called paths. The direction of the path indicated by the single-headed arrow is determined 
by the causal relationship between exogenous and endogenous variables. The double-headed arrow 
indicates a correlation between TCWV, temperature (TEMP), and divQ but not causality. TCWV, 
temperature, and divQ are the input variables that affect the SSI indirectly. In particular, TCWV and 
divQ affect SSI by affecting precipitation (PRE) and potential evapotranspiration (PET), and 
temperature affect SSI by affecting potential evapotranspiration, where precipitation and potential 
evapotranspiration directly affect the SSI.
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We calculated the standardized total effects of input and intermediate properties on the SSI to 

show the relative effects of water supply and demand factors, atmospheric water vapor movement, 

and temperature on SSI change. We also calculated the standardized effects of atmospheric water 

vapor movement and temperature on precipitation and potential evapotranspiration in different 

pathways to show the relative importance of different pathways in mediating climate variables 

change on SSI. All path analyses were conducted using package lavaan in R 4.0.5 (Hou et al., 2018; 

Rosseel, 2012). 

3.2.2 Quantile regression 

Under different severity of drought, the influence mechanisms are various. In order to further 

analyze the influence of precipitation and potential evapotranspiration on different degrees of 

drought, especially extreme drought, we used a quantile regression model proposed by Koenker and 

Bassett (1978) to measure the impact of different quantiles of drought on precipitation and potential 

evapotranspiration. Compared with conventional linear regression, quantile regression is less 

affected by outliers, which can better analyze the influence of explanatory variables on the 

conditional distribution of explanatory variables in different quantiles (Chen et al., 2019). 

Quantile regression is regarded as an extension of least squares regression, which not only 

yields a regression to the mean but also provides a statistical way to express the change in the 

percentile of the data. Let  be a continuous random variable with cumulative distribution function 
( ), the  quantile function of  is defined as  ( ), such that P [  ≤ ( )] = . For the quantile , 

the quantile regression can be written as:   
 =  ’ +                      (3) 
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where =(y1, y2, …, yk)T represents the explained variable (in our study the monthly total SSI) in 

the model, =(1,x1, x2, …, xk)T is the explanatory variable (in our study the monthly total 

precipitation and monthly total potential evapotranspiration),  =( 0 , 1 ,…, k ) is the parameter 

vector, = ( 1 , 2 , …, k )T is the error vector, (0 <  < 1) represents a specific quantile, and the 

estimated parameter is mainly calculated by weighted residuals and minimum values.  

    In this study, the explanatory variables (monthly total precipitation and monthly total potential 

evapotranspiration) are standardized by z-scores to have zero-mean and unit standard deviation. 

This type of standardization allows us to quantify the impact of one-unit standard deviation on the 

regression in the explained variable, which makes it feasible to compare the relative importance of 

each variable.    

4. Results 

4.1 ERA5 soil moisture evaluation 

The gauged soil moisture at different depths is adopted to verify that obtained from ERA5. The 

spatial patterns of the 22-year (1992-2011) averaged soil moisture for the observations and ERA5 

product at four different soil layer depths were analyzed during June-August (JJA) (Fig.3). The 

observed soil moisture, which is considered real soil moisture data, is larger in Northeast and 

Southwest China, and smaller in Northwest China at four depths. The observed soil moisture values 

decrease from southeast to northwest. Generally, ERA5 can capture the overall spatial distribution 

of the observed soil moisture at the four different depths. ERA5 shows positive biases for drier 

regions and negative biases for wetter regions. Since the observed data are too limited, especially 

for southern and northwestern China, this comparison is only used to get a rough insight into the 
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similar spatial pattern of ERA5 and gauged soil moisture data. The ERA5 data have been widely 

used in China to investigate soil moisture drought (Zhang et al., 2021a).  

 

Fig.3 Spatial distributions of annual averages of observations (a-b) and ERA5 (e-f) soil moisture at 
different depths (m3m-3 volumetric moisture content) during JJA for the period of 1992-2011 in 
China 

 

We then investigate the temporal correlation of soil moisture between observations and ERA5 

(Fig. 4). Generally, the temporal correlation is reasonably good between observed and ERA5 data 

in Northeast, North, and Northwest China, with correlation coefficients being higher than 0.5. And 

the stations with high correlation and passing the significance test (p<0.1) are distributed all over 
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the country, which is consistent with Li et al (2021). The significant correlations are found on 27%, 

23.66%, 20.51%, and 16.67% of the stations with correlation coefficients larger than 0.45, 0.44, 

0.43, 0.46 at 0-10cm, 10-20cm, 20-50cm, and 50-70cm depths, respectively. With the deepening of 

soil layer depths, the correlation coefficient shows a downward trend. Overall, it can be concluded 

that the ERA5 can capture the spatial and temporal distribution characteristics of observed soil 

moisture at different depths in China. 

 

Fig.4 Correlation coefficient between ERA5 and measured soil moisture at different depths during 
JJA for the period of 1992-2011 in China (P<0.1, P means the significant level) 

4.2 Spatial variation of soil moisture droughts at different depths 

Fig.5 plots the spatial distribution of all drought centroids at different depths. Here, circles of 

different colors represent different durations while circles of various sizes represent varying 

severities during 1950-2021. Soil moisture droughts with greater severity and longer duration at 0-

10 cm soil layer depth mainly cluster over Northwest, North, and Central China than other regions 

(Fig.5a). Generally, the distribution patterns of drought event severities at 0-20cm, 0-50 cm, and 0-
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70cm depths are similar to that at the depth of 0-10 cm. However, with the increase of soil layer 

depth, the total drought count decreases while drought duration increases. In total, 661, 614, 529, 

and 462 droughts events were identified at 0-10cm, 0-20cm, 0-50cm, and 0-70cm, respectively. Of 

those, the durations of 116 (17.5%), 119 (19.4%), 130 (24.6%), and 121 (26.2%) droughts are longer 

than 3 months at four depths, which indicates the proportion of long-duration droughts is greater 

when the soil layer is deeper.      

 

Fig. 5 Spatial distribution of soil moisture drought events during 1950-2021. 

4.3 Impacts of precipitation and potential evapotranspiration on droughts 

4.3.1 Overall climate impacts on SSI at different depths 

Soil moisture drought is affected by a changing and interacting set of extrinsic climatic forcing 

factors and hydrological properties. We select four different soil layer depths to show the driving 
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factors response to soil moisture droughts at different soil layer depths over China (Fig.6). The path 

analysis models are considered acceptable according to Table.S1. The water supply and demand can 

well explain the change in SSI. The direct effect of precipitation on SSI is consistently positive and 

larger than the negative direct effect of potential evapotranspiration on SSI at different depths, which 

means precipitation deficits dominate the interannual variation of soil moisture drought with 

standardized path coefficients larger than 0.7. However, with the increase of the depth, the variance 

explanation rate (R2) of precipitation and potential evapotranspiration for soil moisture drought 

decreases, which indicates that there are other hydrological factors, such as runoff, that affected soil 

moisture drought. For 0-10cm soil moisture drought, precipitation, and potential evapotranspiration 

explain 77.7% of the change in SSI, while for 0-20cm, 0-50cm, and 0-70cm, the values are 73.2%, 

63.2%, and 56.7%. 

TCWV negatively affects soil moisture drought by having a positive effect on precipitation and 

a negative effect on potential evapotranspiration. Moreover, divQ positively affects soil moisture 

drought through the enhancement of potential evapotranspiration and attenuation of precipitation. 

Temperature exacerbates drought by intensifying potential evapotranspiration. Some of the paths 

are not statistically significant owing to the calculation at the national scale, especially for deep soil 

layers. From 0-10cm to 0-70cm soil depth, the absolute value of the standardized potential 

evapotranspiration path coefficient decreases, mainly from 0.37 to 0.23. In addition, the effect of 

potential evapotranspiration on soil moisture drought is not significant at 0-50cm and 0-70cm, and 

so does the TCWV, divQ, and temperature. It indicates that at the depth of 0-50cm and 0-70cm, only 

precipitation has a statistically significant effect on soil moisture drought. 
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Fig.6 Path analysis of SSI at different depths (a1, 0-10cm; a2, 0-20cm; a3, 0-50cm; a4, 0-70cm). 
The arrow represents the effect path and direction, the blue and red arrows represent significant 
(P<0.05; P means the significant level) positive and negative effect paths, respectively, and the gray 
arrow represents the insignificant pathways. The number on the one-headed arrow is the 
standardized path coefficient. The black dashed doubled-headed arrow represents the simple 
correlation relationship between the two factors, and the number on it is the correlation coefficient. 
The values on PRE, PET, and SSI are the amount of explained variation (R2) of the variable 
explained by all paths in the model.

4.3.2 Climate impacts on SSI in different regions

The path analysis results of soil moisture drought in different regions (Humid, Sub-Humid, 

Sub-Arid, and Arid) are presented in Fig.7. The model results show that precipitation and 

atmospheric vapor movement are the main influencing factors for soil moisture drought in different 

regions. However, the effects of atmospheric vapor movement and temperature on soil moisture 

drought are in contrast between humid and arid regions. In other words, the effects are more 

significant in humid regions than in arid regions. The number of insignificant pathways is increasing, 

mainly from 1 to 4, and the proportion of explained variation in precipitation decreases in these 
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models, mainly from 90% to 45%, from the humid to the arid regions. In Humid, Sub-Humid, and 

Sub-Arid areas, precipitation positively affects soil moisture drought and potential 

evapotranspiration negatively affects soil moisture drought significantly, while in the Arid area, the 

effect of potential evapotranspiration on soil moisture drought is not significant. The negative effect 

of precipitation on soil moisture drought is gradually increasing from the humid area to the arid area, 

especially in the Arid region, where the effect of potential evapotranspiration on soil moisture 

drought is very small (Fig.S2).  

By analyzing the range of the standardized direct effect of precipitation and potential 

evapotranspiration on soil moisture drought in different regions, we find that the effect changes 

smoothly for 0-50 and 0-70cm from humid to arid areas. While for 0-10 and 0-20cm, the effect 

shows a larger turnaround between Sub-Humid and Sub-Arid areas, mainly from 0.75 to 0.9. 

Shallow soil moisture drought has a rapid response to different climate anomaly patterns, while deep 

soil moisture drought has a strong persistence in the soil layer, and its response to climate anomaly 

needs a longer time to accumulate.  
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Fig.7 Path analysis of SSI in different regions (a1,0-10cm Humid; a2,0-20cm Humid; a3,0-50cm 
Humid; a4,0-70cm Humid; b1,0-10cm Sub-Humid; b2,0-20cm Sub-Humid; b3,0-50cm Sub-Humid; 
b4,0-70cm Sub-Humid; c1,0-10cm Sub-Arid; c2,0-20cm Sub-Arid; c3,0-50cm Sub-Arid; c4,0-
70cm Sub-Arid; d1,0-10cm Arid; d2,0-20cm Arid; d3,0-50cm Arid; d4,0-70cm Arid)  

4.3.3 Climate impacts on SSI at different seasons 

After investigating the spatial patterns of driving mechanisms of soil moisture drought, we also 

probe into the temporal disciplines of the main mechanism of soil moisture drought (Fig. 8). We use 

0-10cm drought for demonstration. For other depths, the seasonal effect pattern is similar to 0-10cm 

(Fig.S3). We do not analyze soil moisture drought in winter, due to freezing in northern and frigid 

zones, soil moisture shows little change. In addition, the seasonal path analysis in the Arid area is 

either not analyzed, because precipitation dominates the drought in the Arid area with standardized 

path coefficients larger than 0.89 at different depths (Section 4.3.1).  
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The results show that summer soil moisture drought is mainly dominated by potential 

evapotranspiration with a standardized effect of about -0.9, while spring and autumn droughts are 

mainly affected by the deficiency of precipitation. Further analysis shows that drought severity 

dominated by potential evapotranspiration is higher, while that dominated by precipitation is 

relatively lower. When drought occurs, lower soil moisture and higher temperature in summer 

contribute to the increase of potential evapotranspiration, which has an increasing impact on soil 

moisture drought.  

 
Fig.8 Path analysis of SSI in different seasons (a1, Spring 0-10cm Humid; a2, Spring 0-10cm Sub-
Humid; a3, Spring 0-10cm Sub-Arid; a4, Summer 0-10cm Humid; a5, Summer 0-10cm Sub-Humid; 
a6, Summer 0-10cm Sub-Arid; a7, Autumn 0-10cm Humid; a8, Autumn 0-10cm Sub-Humid; a9, 
Autumn 0-10cm Sub-Arid)  
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4.3.4 Impacts change with drought severity of main factors  

In Section 4.2, we find that potential evapotranspiration effects on soil moisture drought are 

larger in summer when soil moisture drought is more severe. To further compare the relative 

influence of precipitation and potential evapotranspiration on different drought groups based on 

severity, the quantile regression method is used to measure the impact of different quantiles of soil 

moisture drought on precipitation and potential evapotranspiration from 1950 to 2021 at different 

depths over different regions (Fig.9). It can be seen that the parameter estimates of the same variable 

under various quantiles are different. On the whole, the precipitation coefficient is greater than 

potential evapotranspiration in absolute value for most cases. For droughts at 0-10cm and 0-20cm, 

the regression coefficient of precipitation ranges from 0.75 to 1.05 from 1950 to 2021, and that of 

potential evapotranspiration ranges from -1.0 to -0.4. For droughts at 0-50cm and 0-60 cm, the 

regression coefficient of precipitation ranges from 0.75 to 0.9. The regression coefficient of potential 

evapotranspiration ranges from -0.9 to 0.5. At different depths, the influence of precipitation on SSI 

increases first and then decreases at the national scale, but the influence of potential 

evapotranspiration on SSI decreases with the increase of quantile. The absolute value of the 

regression coefficient reaches the maximum at 0.1 quantiles, indicating that with the increase of soil 

moisture drought severity, the potential evapotranspiration effect is enhanced, which means that the 

potential evapotranspiration contributes relatively more to severe droughts (Fig9.a).  

Fig9.b shows the changes in the regression coefficients of precipitation and potential 

evapotranspiration in different quantiles of drought corresponding to different zones [taking the 

quantile regression method for 0-10 cm soil moisture drought as an example]. The regression 

coefficients of potential evapotranspiration in different zones show similar changes to that in the 
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whole country, and the absolute values increase with the severity of soil drought. The change in the 

regression coefficient of precipitation in different regions does not show a definite trend. The effects 

on other soil depths’ drought are similar to that on 0-10cm (Fig.S4). This suggests that potential 

evapotranspiration is a better indicator of soil moisture drought severity than precipitation.   
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 Fig.9 Changes of potential evapotranspiration and precipitation quantile regression coefficients at 
different depths (a) and different regions (b, 0-10cm) 
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5. Discussions 

5.1 Soil moisture drought at different depths 

Soil moisture drought determines the available water resources for crop growth and influences 

agricultural production. The root depth of plants increases during the growing seasons, thus 

enlarging the main soil moisture depth and extent where plants can extract water (Cao et al., 2019). 

The reductions in soil moisture are typically associated with water stress for vegetation. In this study, 

soil moisture droughts at four different depths (0-10cm, 0-20cm, 0-50cm, and 0-70cm) were 

analyzed by a three-dimensional drought identification method. We found that the duration of 

drought in deep layer was higher than that of soil moisture drought in surface layer, this was related 

to the length of time that soil water existed in different water layer depths (Xu et al., 2021). With the 

increase of soil layer depth, the total number of drought counts decreases. These findings 

demonstrate that significant variation exists among different soil moisture drought at different 

depths. They help us to understand the characteristics and mechanisms of droughts at different 

development stages and provide a reference for the future analysis of soil depth selection of different 

agricultural droughts. 

5.2 Response patterns of soil moisture drought 

The path analysis model was used to quantify the response of SSI to the changes in atmospheric 

water vapor movement (TCWV, divQ), temperature, precipitation, and potential evapotranspiration. 

TCWV, divQ, and temperature were considered to be extrinsic climatic forcing factors, while 

precipitation and potential evapotranspiration were considered to be the most direct factors affecting 
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soil moisture drought. Other factors such as relative humidity and wind speed were also used in 

existing studies to explain the change in soil moisture drought (Karimi et al., 2020; Trnka et al., 

2015). The use of relative humidity, wind speed, precipitation minus evapotranspiration, and 

atmosphere net inflow moisture flux in the path analysis models were also tested in this study. We 

found these variables bring limited improvement in the ability of the path model in terms of the 

variance explanation rate of the soil moisture drought. This is expected, since these variables 

indirectly affect soil moisture by influencing precipitation and potential evapotranspiration, and they 

have high similarity with the selected factors in our study. Moreover, the use of a more complex 

path model would bring larger uncertainty in the results. In this study, precipitation and potential 

evapotranspiration explained more than 50% of SSI at different soil depths, in different seasons and 

regions. Thus, it is quite feasible to select them as the main factors affecting SSI (Table.S1).  

Generally, the path analysis model proposed in this study in investigating climate effects on 

soil moisture drought performed reasonably well for both the surface and deep soil layers, in 

different regions, although the climate effects were mostly larger for the surface than for the deep 

layers, and in the humid areas than in the arid areas. This is expected, since the climate effect on 

soil is a top-down process (Jobbagy and Jackson, 2000). The surface soil moisture is more related 

to the change in climate factors, while the deep soil moisture tends to have a thermal lag effect on 

climate factors change. In addition, the climate effects on soil moisture drought in humid areas being 

more significant than that in arid areas are also expected, since the land-atmosphere interaction is 

more obvious in humid areas than in arid areas in the process of soil moisture drought (REF). In the 

arid areas, in the process periods of soil moisture drought, the soil moisture will be too dry to 

evaporate, and the evapotranspiration would be too weak to affect the atmospheric water vapor, 
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which will confine the land-atmosphere water circulation (Gao et al., 2019; Zeng and Yuan, 2018). 

The land-atmosphere coupling over humid areas can be also strong during relatively dry periods. 

5.3 Increasing effect of potential evapotranspiration on soil moisture drought 

Both the negative anomaly of precipitation and the positive anomaly of potential 

evapotranspiration have extensive effects on soil moisture drought. Precipitation has been found to 

play a major role in drought (Fig.9). However, under the context of global warming and changing 

water demand in the atmosphere, the importance of potential evapotranspiration in drought cannot 

be ignored (Dai, 2013). In this study, we found that there were different trends in the effect of the 

deficiency of precipitation on soil moisture drought with the drought severity in different regions 

and at different depths (Fig.9). It indicated that the impact of precipitation on drought does not show 

an obvious increase or decrease pattern. We also found that the effect of potential evapotranspiration 

on drought increases with increasing drought severity (Fig.8 and Fig.9), and these results cannot be 

found in previous studies using the conventional linear regression analysis. Further, potential 

evapotranspiration is mainly dominated by temperature in most cases when drought occurred, and 

temperature could explain 70% or more of the change of potential evapotranspiration in many cases. 

The temperature is also higher in the period of severe drought (Fig.S5) and the effect of temperature 

on drought decreased with the increase of soil moisture drought severity. The increase in 

temperature further aggravates the increase of potential evapotranspiration, promotes soil 

evapotranspiration, and aggravates soil moisture drought (Miralles et al., 2014; Yin et al., 2014). In 

other words, the high-temperature situation increases the potential evapotranspiration and the 

atmosphere needs more water from the soil to reach saturation, further aggravating the soil moisture 
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drought. Meanwhile, the continuous reduction of soil moisture and limited water vapor available 

for evaporation have weakened land-atmosphere interaction and water cycle processes. The 

reduction of water vapor in the atmosphere inhibits precipitation further leading to a smaller 

contribution of precipitation. This shows that in extreme drought situations, soil drought is mainly 

caused by the continuous increase of potential evapotranspiration due to the increase in temperature 

(Wang and Yuan, 2022). 

5.4 Uncertain effect of precipitation on soil moisture drought 

The TCWV and divQ’s proportion of explained variation in precipitation varies with regions 

and seasons (Fig.7 and Fig.8). Since atmospheric evaporation in humid regions is greater than that 

in arid regions and the air/atmosphere is more likely to saturate to form precipitation, it is therefore 

expected that the proportion of explained variation in precipitation decreases from the humid to arid 

areas. Moreover, in different seasons, summer has the lowest variance explanation rate for 

precipitation compared with spring and autumn. This is because the temperature is the highest in 

summer, and the continued warm temperature makes it difficult for air to saturate and thus hard for 

precipitation to form Lu et al. (2011).  

The anomaly of precipitation is closely related to the dynamic evolution of water vapor 

structure (Guan et al., 2019; Kingston et al., 2015). In this study, the change in the impact of 

precipitation on SSI was regulated by TCWV and divQ. In Section 5.3, we found that the effect of 

TCWV on soil moisture drought decreases with the aggravation of soil moisture drought, but the 

effect of divQ fluctuates, which further leads to uncertainty in the effect of precipitation on soil 

moisture drought. By quantifying the effects of divQ and TCWV on precipitation (Fig.S6), we found 
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that the influence of divQ gradually increases with the decrease of precipitation in different depths 

and regions during the dry period of soil moisture, and the change of TCWV is uncertain, which 

shows that the divQ can explain the precipitation better than TCWV to some extent. The definite 

effect of divQ and the ambiguous effect of TCWV on precipitation further enlarge the uncertainty 

of the effect of precipitation on soil moisture drought.  

6. Conclusions 

This study first identified soil moisture drought at different depths in the mainland of China 

from 1950 to 2021 by using a three-dimensional drought identification method, and then established 

a path analysis model based on atmospheric water vapor change and water vapor circulation to 

investigate the synergistic effects of water supply and demand on soil moisture droughts at different 

depths and regions. The primary conclusions are as follows:     

(1) Generally, the distribution patterns of drought event severities at different depths were similar. 

However, with the increase of soil layer depth, the number of drought events decreased and 

averaged drought duration increased. 

(2) Precipitation deficits due to the change of atmospheric movement dominated the interannual 

variation of soil moisture drought while increasing potential evapotranspiration due to the 

increased temperature less exacerbated drought, independent of the climatic zone and soil depth.  

(3) The impact of potential evapotranspiration to drought increased with the severity of drought. 

The magnitude of the response of soil moisture drought to potential evapotranspiration was 

exacerbated by the deterioration of drought at high temperatures and was most pronounced 

during extreme drought. 
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(4) The precipitation and potential evapotranspiration can explain more than 50% of the change of 

soil moisture drought, among which the explanation proportion of precipitation is larger than 

that of the potential evapotranspiration. The total explanation proportion decreased 

continuously with increasing soil depth, and the response of shallow soil drought to changes in 

climate factors was greater than that of the deep drought.  

(5) From the spatial perspective, the climate effects on soil moisture drought in humid areas are 

more significant than that in arid areas. At the temporal scale, precipitation plays the dominant 

role in soil moisture drought at the spring and autumn while potential evapotranspiration 

dominates soil moisture drought in summer.  
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Figure 1. Distribution of soil moisture observation stations in China 1 

Figure 2. Path diagram for SSI and possible drivers. Arrows connect exogenous and endogenous 2 

variables, called paths. The direction of the path indicated by the single-headed arrow is determined 3 

by the causal relationship between exogenous and endogenous variables. The double-headed arrow 4 

indicates a correlation between TCWV, temperature (TEMP), and divQ but not causality. TCWV, 5 

temperature, and divQ are the input variables that affect the SSI indirectly. In particular, TCWV and 6 

divQ affect SSI by affecting precipitation (PRE) and potential evapotranspiration (PET), and 7 

temperature affect SSI by affecting potential evapotranspiration, where precipitation and potential 8 

evapotranspiration directly affect the SSI. 9 

Fig.3 Spatial distributions of annual averages of observations (a-b) and ERA5 (e-f) soil moisture at 10 

different depths (m3m-3 volumetric moisture content) during JJA for the period of 1992-2011 in 11 

China 12 

Fig.4 Correlation coefficient between ERA5 and measured soil moisture at different depths during 13 

JJA for the period of 1992-2011 in China (P<0.1, P means the significant level) 14 

Fig. 5 Spatial distribution of soil moisture drought events during 1950-2021. 15 

Fig.6 Path analysis of SSI at different depths (a1, 0-10cm; a2, 0-20cm; a3, 0-50cm; a4, 0-70cm). 16 

The arrow represents the effect path and direction, the blue and red arrows represent significant 17 

(P<0.05; P means the significant level) positive and negative effect paths, respectively, and the gray 18 

arrow represents the insignificant pathways. The number on the one-headed arrow is the 19 

standardized path coefficient. The black dashed doubled-headed arrow represents the simple 20 

correlation relationship between the two factors, and the number on it is the correlation coefficient. 21 



The values on PRE, PET, and SSI are the amount of explained variation (R2) of the variable 22 

explained by all paths in the model. 23 

Fig.7 Path analysis of SSI in different regions (a1,0-10cm Humid; a2,0-20cm Humid; a3,0-50cm 24 

Humid; a4,0-70cm Humid; b1,0-10cm Sub-Humid; b2,0-20cm Sub-Humid; b3,0-50cm Sub-Humid; 25 

b4,0-70cm Sub-Humid; c1,0-10cm Sub-Arid; c2,0-20cm Sub-Arid; c3,0-50cm Sub-Arid; c4,0-26 

70cm Sub-Arid; d1,0-10cm Arid; d2,0-20cm Arid; d3,0-50cm Arid; d4,0-70cm Arid)  27 

Fig.8 Path analysis of SSI in different seasons (a1, Spring 0-10cm Humid; a2, Spring 0-10cm Sub-28 

Humid; a3, Spring 0-10cm Sub-Arid; a4, Summer 0-10cm Humid; a5, Summer 0-10cm Sub-Humid; 29 

a6, Summer 0-10cm Sub-Arid; a7, Autumn 0-10cm Humid; a8, Autumn 0-10cm Sub-Humid; a9, 30 

Autumn 0-10cm Sub-Arid)  31 

Fig.9 Changes of potential evapotranspiration and precipitation quantile regression coefficients at 32 

different depths (a) and different regions (b, 0-10cm) 33 



  


