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Abstract
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Introduction

Alfred N. Whitehead [29] was one of the first thinkers who—following ideas to be found
in the seminal paper of Theodore de Laguna [5]—proposed a geometrically appealing
definition of point in terms of regions of space and the contact relation. His construc-
tion was inventive and elegant yet lacked mathematical rigor. In the 1960s, the Polish
logician Andrzej Grzegorczyk put forward one of the first mathematically satisfactory
systems of region-based topology, in which he formulated a different, yet also geo-
metrically motivated, construction of points. The comparison of the two approaches



was carried out by Loredana Biacino and Giangiacomo Gerla [2], who—under some
reasonable assumptions—demonstrated that the two notions of point coincide.

The seminal paper by Biacino and Gerla is the foundation for our work. The two
main results of the paper were Theorems 5.1 and 5.3. The former establishes that
every Grzegorczyk representative of a point is a Whitehead representative; the latter
shows that the reverse inclusion holds for those Whitehead representatives that can
be represented by countable families of regions.

To prove the first inclusion Biacino and Gerla work with the second-order theory
of Grzegorczyk’s [21]. We show that the specific axioms can be eliminated in favour
of the standard first-order mereotopological postulates. Moreover, we prove that the
second-order monadic statement ‘every Grzegorczyk representative is a Whitehead
representative’ is equivalent (in the subclass of Boolean weak contact algebras in the
sense of Diintsch and Winter [10] in which every region has a non-tangential part) to
the first-order statement ‘there are no atoms’. For the completeness of presentation
we show that no part of this equivalence holds in the (general) class of Boolean weak
contact algebras.

As for the second inclusion, we identify a gap in the proof of Theorem 5.3, and
we show that it cannot be carried out without assuming an additional axiom postu-
lating coherence, a mereotopological counterpart of the connectedness property. We
also improve the original result by addressing an open problem from [2]. That is, we
show that the countability assumption about Whitehead representatives can be elim-
inated, if we assume a stronger second-order version of the standard mereotopological
interpolation axiom.

Moreover, we prove that in complete structures, purely mereological notions are too
weak to guarantee the existence of Whitehead representatives of points. The English
logician himself envisaged this, but no general proof of this fact exists in the literature
so far.!

We also provide various examples of Whitehead points within algebraic struc-
tures. This provides evidence for the claim that Whitehead points are mathematically
tractable.

More or less from the beginning of the 21st century, Boolean contact algebras (see
e.g., [1, 26]) have provided the standard mathematical framework for doing region-
based topology. This is a comfortable situation that allows for the unification and
comparison of different approaches to point-free theories of space. For this reason,
in this paper, we also use the aforementioned algebras. This approach is different
from the original approaches of Whitehead and Grzegorczyk, as the former used a
contact relation as the only primitive, and the latter worked in mereology (the theory
of the part of relation) extended with contact. From a technical point of view, these
differences are irrelevant. At the same time, the unified well-established environment of
Boolean contact algebras allows for a precise and clear presentation of both approaches
to region-based theories.

The paper is organized as follows: In Section 1, we review some preliminaries
and introduce the main objects of study, viz., Boolean (weak) contact algebras. In
Section 2, we present two formal accounts of Grzegorczyk points, i.e., Grzegorczyk

1We elaborate on this further on p. 14.



points defined in terms of equivalences classes and Grzegorczyk points understood as
filters. Moreover, we show that these two definitions are equivalent in the context of
Boolean weak contact algebras. Sections 3 addresses a formal account of Whitehead
points. We study some of their properties and provide examples of such points within
regular open algebras. This section witnesses as well a proof of the insufficiency of
purely mereological notions for the existence of Whitehead points. Section 4 studies the
minimal constraints that a Boolean Weak Contact Algebras has to satisfy to guarantee
that every Grzegorczyk representative of a point is a Whitehead representative. In
particular, in this section we strengthen Theorem 5.1 of Biacino and Gerla [2]. In
Section 5 we fill the mentioned gap in the original proof of Theorem 5.3 and study
the logical status of the second-order condition ‘every Whitehead representative is a
Grzegorczyk representative’. In Section 6, we generalize Theorem 5.3 to Whitehead
points of any size.

1 Weak-contact and contact algebras

As usual, =, A, V, —, +—, V and 3 denote the standard logical constants of negation,
conjunction, disjunction, material implication, material equivalence, universal and the
existential quantifier. We use ‘B’ as an abbreviation for ‘=3’. Moreover, :<— means
equivalent by definition, and := means equal by definition. We use w to denote the set
of natural numbers understood as von Neumann ordinals. For a fixed space X and
r C X, 0z := X \ z is the set-theoretical complement of z in X. |X| is the cardinal
number of a set X, and P(X) is its power set.

Moreover, let:

% =(B,-,+,—,0,1)

be a Boolean algebra (BA for short) with the operations of, respectively, meet, join,
and boolean complement; and with the two distinguished elements: the minimum 0
and the maximum 1. Elements of the domain will be called regions. The class of all
Boolean algebras will be denoted by ‘BA’. We will often refer to the domain of BA
via its name “B’. Notice that this convention will not lead to any ambiguities.

In B we define two standard order relations:

r<ly «— - y==z, (df <)
r<y «— x<yAz#y. (df <)

In the former case we say that x is part of y or that x is below y, in the latter that x
is proper part of y or that x is strictly below y.

Any Boolean algebra B is turned into a Boolean contact algebra (BCA for short)
by extending it to a structure (B,-,+,—,0,1,C) where C C B? is a contact relation
which satisfies the following five axioms:

-(0 C ), (C0)
r<yNzx#0— xCy, (C1)
zCy—yCu, (C2)



x<y—V,ep(zCzx—2Cy), (C3)
xC(y+z2)—zCyvaeCz. (C4)

The complement of C will be denoted by ‘€’, and in the case x € y we say that z is
separated from y. The class of all Boolean contact algebras will be denoted by ‘BCA’.
If C satisfies (C0)—(C3), it is called—after Diintsch and Winter [10]—a weak contact
relation and the corresponding structure bears the name of a Boolean weak contact
algebra (BWCA for short). The class of all weak contact algebras will be denoted by
‘BWCA'.

We introduce the convention according to which given a class K of structures
and some conditions ¢1, ..., @, put upon elements of K, K+ ¢ + ...+ ¢, (or K+
{¢1,...,¢n}) is the subclass of K in which every structure satisfies all 1, ..., pn, e.g.,

BCA = BWCA + (C4).

In B € BWCA we define an auxiliary relation of non-tangential inclusion (or way
below, well-inside) relation

Ly +— € —y. (df <)

We also define £ O y to mean that = -y # 0, and take 1. C B x B to be the set-
theoretical complement of O. In the former case we say that = overlaps y, in the latter,
that x is disjoint from y or x is incompatible with y. A structure (B, -, +,—,0,1,0) is
a standard example of a BCA.? The most well-known interpretation of contact is the
topological one. For a fixed space (X, 0) we take the underlying algebra to be either
the complete algebra RO(X) of all regular open subsets of X, or its subalgebra B.

3 are

The Boolean operations
Ty =Ny
r+y:=IntCl(zUy)
—z = IntCz

and the contact relation is given by
zCry «— ClznNCly #0.

Moreover, we have
r<Lry+— Cle Cy.
The relation Cr satisfies axioms (C0)—(C4), so any topological contact algebra is in
the class BCA.
We may use a similar interpretation on the whole power set algebra of X, i.e.,
(P(X),Cr) is a Boolean contact algebra (provided X is equipped with a topology,
of course). Observe that despite the algebra being atomic, the contact relation does

2The overlap relation is actually the smallest contact relation on a BCA, see [9].
3Int and Cl are the standard topological interior and closure operators.



not collapse to the overlap relation. For example, in the case of R with the standard
topology, the open intervals (0,1) and (1,2) are disjoint, yet they are in contact since
their closures share an atom. However, we may look upon Cr as a form of an overlap
relation since in this special case of the power set algebra, we have

zCpy<+— Clz 0 Cly,

which usually is not true when we take into account regular open algebras. From this,
it follows that closed sets are in contact only if they overlap, and thus the contact
between atoms reduces to identity, if the underlying topology is 7.

The following facts are standardly proven to hold in BWCA:

r<y—z<y, (
rLYyYNy<KLr — =y, (
rL<ynhNy<z— <Lz, (
r<yny<Kz — <Lz, (
rLYNyYy<K z — <K z, (
TLY+— —y L —x. (

= = = e e e
(=2 I S S R
S N N N N N

Definition 1. An atom of a Boolean (contact) algebra is a non-zero region z that
is minimal with respect to < among non-zero regions. A BWCA is atomic iff its
underlying BA is atomic iff every non-zero region contains an atom. A BWCA is
atomless iff it does not have any atoms, i.e., satisfies the following condition:

(Ve e B\{0})(3y € B\{0})y <. (PA1)

2 Grzegorczyk points

A Grzegorczyk representative of a point (for short: G-representative)* in B € BWCA
is a non-empty set @) of regions such that:

0¢Q,
Vu,v e Q)u=vVu<KvVo<Lu),

Mue@)(Tve)v<u,
(Vz,y € B)(Vu e Q)uozAuoy) — z Cy).

Let Qg be the set of all G-representatives of 8. The purpose of the definition is to
formally grasp the intuition of a point as a system of diminishing regions determining
a unique location in space. We call it a representative, since if we understand a point
as a perfect representation of a location in space, then two different sets of regions may
represent the same location (see Figure 1 for a geometrical intuition on the Cartesian
plane). Further, we will identify such G-representatives to be one point. Although the

“Both the term and its abbreviation are adopted from [2].



Fig. 1 @1 and Q2 representing the same location in two-dimensional Euclidean space

definition has a strong geometrical flavor, G-representatives may be somewhat strange
entities in BCAs that have little to do with spatial intuitions. We will look at some
indicative examples. But first, let us go through an example of a G-representative in
a well-known setting: the reals.

Example 1. Take the real line R with the Euclidean topology. It is a standard result
that the pair (RO(R),Cr), where RO(R) is the complete algebra of regular open
subsets of R and Cr is the standard topological interpretation of contact (as defined
above) is a Boolean contact algebra.

Take 0 € R. Obviously, the set

{(=Y/n,Y/n) [0 € w\ {0}}

is a G-representative. But also
{(=1/n,/n)|n € O}
where O C w is the set of odd numbers, and
{(=1/r,1/7) | is a positive irrational}

are G-representatives standing for the same location in the one-dimensional space,
i.e., number 0. Moreover, one can easily see that there are uncountably many such
G-representatives.?

Definition 2. If XY are subsets of a BWCA, then Y covers X (or X is covered by
Y) iff for every y € Y there is 2 € X such that 2 < y. We write ‘X > Y’ meaning
X covers Y, and ‘X <Y’ meaning X is covered by Y. Let £ be the set-theoretical
complement of <.

For a region  of a BWCA, let \z = {y € B | y < z}, i.e., L x is the set of all
parts of x.

The general fact that different G-representatives can represent the same location
in space follows also from:

5The reader interested in philosophical issues related to Grzegorczyk points is asked to consult [15].
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Lemma 2.1. [18, Lemma 5.6] If Q is a G-representative in B € BWCA, then every
subset of Q covered by Q is also a G-representative. In particular, for any region x,
Q Nlx is a G-representative, provided Q N | x # (.

In light of the above, to speak about points we need to be able to identify different
G-representatives which stand for the same locus.

2.1 Grzegorczyk points as quotients

Let us begin with the definition:
lr={yeB|ly<a} (df 4)

and two lemmas.

Lemma 2.2. If Q1 and Q2 are G-representatives in B € BWCA, then:

(Vz e Q1)(Vy e Q2)z Cy iff Q2L Qr.

Proof. (1) Assume that Qs is not covered by Qq, i.e., there is ;1 € @ such that
for every y € Qa, y — x1 # 0.5 By (12), there is o € Q1 N tz; (i.e., by definition
of < we have g € —x1). Observe that for every z,y € Q2, 2 O y — x1. Indeed, if
2,y € Q2, we have that either (a) z < y or (b) y < z. If (a) holds, z — 2; < z and
z—x1 <y—uxp. If (b) holds, y — z1 < z. If (Vz € Q2) z O zg, then by (r3) we obtain
that xg C y — 21, a contradiction. So there is zg € Q2 such that zg L z¢. By (r2) again
there is 21 € Q2 N 420, s0 21 € 0.

(ii) Suppose there are z € @1 and y € Q2 such that « € y, but Q2 < Q;. Take
z€Q@aNlz. If 2 <y, then y Oz, and if y < z, then y < z, a contradiction, as x 1 y
by the fact that © C C, which is easily verified. O

In consequence, we have:

Corollary 2.3. Let B € BWCA. If Q1 and Q2 are G-representatives and Q1 < Qo,
then Q2 < Q1.

Theorem 2.4. If B € BWCA, then < is an equivalence relation on the set of G-
representatives.

Proof. The symmetry of < holds by Corollary 2.3. The reflexivity and transitivity of
< follow from the reflexivity and transitivity of <. O

We are now in a position to say precisely that G-representatives @1 and Qs rep-
resent the same location if and only if @1 is covered by Q2 and Q)9 is covered by Q1.
Therefore, it is reasonable to define points as equivalence classes of < on the set of

8¢z — 4’ abbreviates ‘x - —y’.



all G-representatives Q¢ (to emphasize the fact that @1 and Q)2 represent the same
location, i.e., are mutually covered by each another, we will write ‘Q1 ~ Q2’):

Eq = Qg/N.

For any two sets of regions X and Y such that X covers Y and Y covers X, we
will say that X and Y are coinitial.

2.2 Grzegorczyk points as filters

The second (chronologically the first) idea—used by Grzegorczyk [21]—is to define
points as filters that are generated by G-representatives:

Fisapoint iff (IQ € Qg) F ={recB| (g Q)q<z}.

By ‘#¢q’, we will denote a point generated by the G-representative (). These filters
will be called G-points, and the set of all G-points will be denoted by ‘Grz’, while its
elements by small fraktur letters ‘p’, ‘q’ and ‘t’, indexed if necessary. For every G-point
F¢q we have that

e+ (yeQykr+— (ye)y<z. (2.1)
Observe that for Q1,Q> € Qg
Q1 ~Qa+— (IpeGrz)Q:1UQ2 Cp. (2.2)

Proof. (—) This follows from Corollary 2.3, the definition of G-points and (2.1).

(¢) Let X = Fg. Since both Q1 and Q5 are subsets of .#q, they must be coinitial
with @, and so Q1 ~ Q3. O

Thus, as we see, by considering points as filters we can recover the equivalence
relation between G-representatives. The reverse transition—from equivalence classes
to filters—is obvious, since for a given class [Q]~ it is enough to take .Zq.

Let us conclude this section with an observation that there is a 1-1 correspondence
between G-points as equivalence classes and G-points as filters:

Lemma 2.5. Let B € BWCA. The function f: Eq — Grz such that f([Q]~) = P
18 a bijection.

Proof. 1f [Q1] # [Q2], then Q1 & Q2. Therefore, by the left-to-right part of Lemma 2.2
there are z € ()1 and y € Q)2 such that x L y. So %o, # Zq,, since otherwise both
z and y are in the same filter. Surjectivity is obvious, since every G-point is a filter
Fq, for some G-representative Q. O



3 Whitehead points

In this section, we present a mathematical analysis of (a representative of) a point
as formulated by Whitehead Whitehead [29], and then used by Biacino and Gerla
[2]. Roughly, the idea is that Whitehead points are minimal elements of a poset of
abstractive sets of a Boolean weak contact algebra.”

We begin with the crucial definition:

Definition 3. A set of regions A of a BWCA is an abstractive set iff it satisfies (r0),
(rl) and:

(Fzr e B)(Vye Az <y. (A)
The class of all abstractive sets of a given BWCA is denoted by ‘A’. Since by (rl)
and (1.1) every abstractive set is a chain w.r.t. <, it must be the case that for every
x € A there is y € A such that y < x. So, by the Axiom of Dependent Choices, every
abstractive set is infinite.

The idea behind the definition is that we can abstract geometrical objects—Ilike
lines, segments, and points—from other entities. However, unlike representatives of
Grzegorczyk’s, these entities do not have to represent points but might be planes,
straight lines, line segments, triangles, and so on. To use a simple example, we take
the algebra RO(R?) and the family of regular open sets of the form

{9 ly € (=Y/n,/n)}  for n € w\{0},

which is an abstractive set that represents the straight line y = 0 (i.e., some object from
beyond the domain RO(IR?)). Of course, we easily see that it is not a G-representative,
since regions

{zy)lz=1rye (=11} and {(z,y) [z <-1Aye(-1,1)}

overlap all regions from the abstractive set, but are not in contact (in the sense of Cp
for the algebra RO(IR?)). So the set violates (13).

We use the same terminology and symbols for the covering relation between
abstractive sets that has been introduced for Grzegorczyk representatives. In partic-
ular, recall that A and B are coinitial in the case where A is covered by B and B is
covered by A.

Unlike in the case of covering relation on G-representatives, covering on abstractive
sets does not have to be an equivalence relation since it is not—in general—symmetric.
However, it is reflexive and transitive, so the coinitiality on abstractive sets is an
equivalence relation. Following Whitehead, we will call every element of A/. a geo-
metrical element. Given A € A its equivalence class w.r.t. ~ will be denoted by ‘[A]’.
If Ay, As € A, define a binary relation on A/.:

[Al] = [AQ] > A1 < A2 .

"More about the philosophy of and motivations for Whitehead points can be found in two excellent papers
by Gerla [12] and Varzi [27].



The relation =< is clearly a partial order. Moreover, A ~ Ay and By ~ By together
entail that: A, < By iff Ay < By, thus < is well-defined.

Definition 4. For A € A, [A] is a Whitehead point (W-point) iff [A] is minimal in
(A/~,=). The set of all Whitehead points will be denoted by ‘W’. A € A is a W-
representative of a point iff [A] € W. Let Qu be the set of all W-representatives of
a given BWCA.

Alternatively, for an abstractive set A we have
AeQw «— Vpea (B A — A< B). (3.1)

Recall that a BWCA is atomic iff its underlying BA is atomic iff every non-zero
region contains an atom (i.e., an element that is minimal w.r.t. the standard Boolean
order). As an immediate consequence of the definition of an abstractive set we get the
following:

Corollary 3.1. If B € BWCA is atomic, then B does not have any abstractive sets,
more so it does not have W-representatives.

3.1 W-representatives in regular open algebras

If RO(X) is a regular open algebra and A is its W-representative, then of course A\ A =
0. However, this does not exclude the possibility in which (VA # 0, as A A = Int ) A.
Thus we may ask about set-theoretical intersections of abstractive sets.

Lemma 3.2. If X is a topological space, and (RO(X),Cr) is its topological contact
algebra, then for every abstractive set A C RO(X), () A is closed. Therefore if (VA # 0
and (VA € RO(X), then the space X is disconnected.

Proof. Fix an abstractive set A whose elements are from a (RO(X), Cr). According
to the characterization of <, A and Cl[A] = {Cla | a € A} are coinitial. Indeed,
if a € A, then by (12) there is b € A such that b < a, i.e., C1b C a. So A covers
Cl[A]. The other direction is obvious since a C Cla. Thus, (A4 = (Cl[A], and in
consequence [ A is closed in X.

Since the infima in RO(X) are given by the interiors of the intersections, if X is
connected, [ A is never an element of the algebra if non-empty. O

This lemma gives rise to a philosophical interpretation of abstractive sets. If the
underlying regular algebra is composed of sets that are models of objects from the
physical space (spatial bodies), it usually is a sub-algebra of RO(R™), where R™ is given
the standard topology. Various choices are possible®, yet irrespective of these for no
abstractive set A C RO(R™), [ A # 0. In this sense abstractive sets represent objects
from beyond the universe of models of spatial bodies, i.e., serve as abstraction processes
to introduce objects that may be called geometrical, ideal or, precisely, abstract. These
objects are, of course, elements of the power set algebra of R™, but the idea is that

8See for example [6, 7, 23].
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there are «too many» objects in P(R™) from the perspective of the physical space, yet
some of the elements of P(R™) can be treated as approximations made via elements
of subalgebras of the regular open algebra of R™.

The definition of a W-representative from the point of view of Euclidean spaces
seems to be neat and grasp a certain way in which we may abstract points as higher-
order objects. However, in the sequel, we will point to «strange» examples. But first,
we prove that there are contact algebras that have W-points. Their existence stems
from the following;:

Theorem 3.3. Let (X,0) be a topological space. If A is an abstractive set in
(RO(X),Cr) that is at the same time a local basis at a point p € X, then A is a
W-representative.

Proof. Suppose A is an abstractive set in (RO(X),Ct) and a local basis at p. Let
B C RO(X) be an abstractive set such that B < A. We show that p € (| B. Suppose
otherwise, i.e., let by € B be such that p ¢ by. Since B is an abstractive set it follows
that there exists a b; € B such that by <1 by i.e., Clb; C by and thus p ¢ Clb;.
Therefore, we have p € X \ Clb;, where X \ Clb; is an open set in &. It follows
that there exists an a € A such that a < X \ Clb; and p € a. Hence, a - by = 0.
In consequence, there exists no b € B such that b < a, which contradicts our initial
assumption that A covers B.

Since p € (B and A is a local basis at p, we know that for every b € B there
exists an a € A such that a C b, so A must be covered by B. Thus, A is a W-
representative. O

In consequence we have:

Corollary 3.4. The real line with the standard topology has a W-representative at
every point of the space.

Definition 5 ([4]). A lob-space is a topological space that at every of its point has
a local basis linearly ordered by the subset relation.

Definition 6 ([13]). A topological space X is concentric iff it is T} and at every p € X
there is a local basis AP such that

VU,V e B?)(U=VVCIUCVVCIV CU). (R1)

Thus, concentric spaces are those T;-spaces whose all points have local bases that

satisfy the topological version of (rl) condition for G-representatives. The theorem
below demonstrates that these are a subclass of Davies’s lob-spaces.

Theorem 3.5 ([20]). A topological space X is concentric iff it is a regular lob-space.

Theorem 3.6. If X is a concentric space whose reqular open algebra is atomless, then
at every point there is a local basis that is a W-representative.

11



Proof. Since X is regular, it is also semi-regular, so RO(X) is its basis, which is
atomless by assumption. Therefore, the local basis at any point p that satisfies (R1)
must be an abstractive set. So by Theorem 3.3 the basis must be a W-representative.

O

Moreover, we have the following result regarding W-representatives, which shows
that in the case of topological interpretation, they represent «small» chunks of the
underlying space.

Lemma 3.7. If X is a regular topological space, and (RO(X),Cr) is its topological
contact algebra, then for every W-representative A C RO(X), () A is a nowhere dense
subset of X .9

Proof. Assume that = := [ A has a non-empty interior. Therefore, there is a non-
empty regular open set y such that Cly C Int z. This in particular means that y < a,
for all a € A. Since the space is regular and the algebra atomless, we can construct
a sequence such that yo = y and y,,+1 <1 Yn. In consequence for Y = {y, | n € w}
we have that A covers A UY but not vice versa, since no element of Y contains an
element of A. So A is not a W-representative. O

What is common for all W-representatives whose existence follows from the above
result is that although they do not have infima as subsets for regular open algebras,
they do have a non-empty intersection that is precisely the point of the space that they
represent as a basis. This raises the question whether there is a regular open algebra
that has a W-representative whose set-theoretical intersection is non-empty and that
may be interpreted as a «newy point, i.e., something similar to a free ultrafilter being
treated as a point of a topological space. The answer is positive, and the example is
due to Klaas Pieter Hart.

Example 2 (]22]). Consider the ordinal space X := [0,w;), where w; is the first
uncountable ordinal. Recall that if x and y are closed and unbounded subsets of X,
then x Ny # 0. Due to this, for any open subsets z and y of X, if Clz C y, then either
Clz is compact or y contains an interval [a + 1,wq), for some o < wy. For if Clz is
not compact, then it must be unbounded, and since Clz N 0y = 0, Cy is bounded,
i.e., there is a < w; such that by C [0,a]. Therefore [a + 1,w;) C y. The following
set A = {[a+ 1,w1) | @ < wy} consists of clopen—and the more so regular open—
subsets of X, and is an abstractive set. If B is also an abstractive set such that A
covers B, then every element b € B must be unbounded. The more so the closure of
every element of B is unbounded, and since for every b € B there is by in B such
that Clby C b, b must contain an interval [@ + 1,w). Thus B covers A, and so A is a
We-representative in RO(X). Of course, [ A = (), and the W-point [A] represents the
ordinal w; that is absent from X.

This example is quite important from the point of view of the hidden assumptions
behind Whitehead points. Bostock [3, p. 30] writes that

9The observation and the proof that [ A is nowhere dense is due to Hart [22].
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[-..] Whitehead’s construction |...] does actually have the idea of boundedness built into
it: only a bounded nest'® can satisfy Whitehead’s definition of a point-nest. (But I do not
suppose that Whitehead recognised this.)

On the contrary, what the example shows is that boundedness is not built into the idea
of Whitehead points. It only is as far as «naturaly spaces—like Euclidean spaces—are
considered, which follows from further results and properties of Grzegorczyk points
proven in [13, 18, 19]. In an abstract setting, relevant for this paper, the notion of
boundedness does not have to be considered, as Hart’s example shows. Also, this
example shows that the connectedness of regions that constitute W-representatives is
not built into the general idea of points in the sense of Whitehead, as every region in
the W-representative from the example is topologically disconnected.!!

Let us make another philosophical remark at this point. It may also be the case
that we do not know whether a particular subset of a regular open algebra is a W-
representative due to our current state of knowledge. Consider the following example.

Example 3. Let RO(R) be the complete algebra of regular open subsets of R and
(RO(R), Cr) its topological contact algebra. Then, consider the following set

A= {(=p,1/p) | p:= max{s,t} where s,¢ are twin primes}

The twin prime conjecture, i.e., the claim that there exist infinitely many twin primes,
is still an unsolved problem within number theory. So we do not know whether A is
finite or infinite. This implies that we also do not know whether A is an abstractive
set and thus a W-representative.

Observe that there are BCAs without any W-representatives and, therefore,
without any Whitehead points.

Definition 7. An ordinal number « is even iff there is an ordinal number 8 such that
a = 2- 8 (where - is the standard ordinal multiplication). Otherwise, it is odd. Let I,
and Oy be, respectively, the set of all even and odd ordinals smaller than «.

Lemma 3.8. No complete B € BCA in which C = O has W-representatives.'?

Proof. If ‘B is finite, then it cannot have any abstractive sets. The more so it cannot
have W-representatives.

So suppose B is infinite, and let (z, | & < k) be an abstractive set, for some limit
cardinal k. Since we consider the case in which contact is overlap, we have that:

To>TL> .. > Ty > Tyl > ... > T > Tpy1 > ..

is an abstractive set. For any a < k define: y,, = 4 —xo+1 and consider the antichain
(Yo | @ < k). Let O, and E,; be, respectively, all odd and all even ordinals smaller

10 A nest is the counterpart of an abstractive set, it is bounded if it contains only bounded regions (actually
it is enough that it contains one such region to be considered bounded).

M The issue of connectedness of regions in Whitehead’s theory is elaborately discussed in [3].

121f, additionally, 9B is atomless, then it does not have any G-representative either, which is entailed by
Theorem 4.4 proven further.
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than x. Divide the sequence into two sub-sequences:
(Uo | €0y) and (v, |ack,),

take the following suprema:

ag = \/{ta | @ €0, \ (0:N(2-B+1))},

and gather them into A := {ag | 8 < k}. A is an abstractive set covered by (z, | @ <
k), but does not cover this sequence. Therefore the sequence is not a W-representative.
In consequence, no abstractive set is a Whitehead representative. O

Let us round off this section with the following remarks. Lemma 3.8 is a mathemat-
ical embodiment of what Whitehead [28] discovered himself: the purely mereological
notion of parthood is too weak to represent his concept of point as a collection of
regions. Some arguments for this can be found in Whitehead’s book, [3] and [27]. How-
ever, their common weaknesses are that (a) they refer to particular kind of regions
that invoke the notions of dimension and of shape (either explicitly or implicitly) and
(b) they do not single out precise assumptions. These are arguments, not proofs in
a strict mathematical sense. We present a fully-fledged proof, which is general in the
sense that we consider regions as abstract elements of any Boolean algebra. What
remains to be eliminated is the assumption of completeness. Thus, we put forward the
following open problem:

Problem 1. Is there an incomplete BCA in which both C = O and there exists a
W-representative?

Observe that Lemma 3.8 does not exclude such algebras, as the property of being
a W-representative does not have to be preserved for completions of BAs. That is, if
B is an incomplete BA that has a W-representative A, and B is the completion of
B, then the structure of A is preserved by the canonical embedding e: B — B. In
consequence, we can repeat the reasoning from Lemma 3.8 and show that e[A] is not
a W-representative.

4 G-representatives are W-representatives (under
additional assumptions)

In this section, we are occupied with two problems: (a) what are the minimal conditions
for BWCAs that guarantee that every G-representative is a W-representative, and
(b) what is the content of the second order monadic statement about the dependency
between the two sets of representatives. Theorem 4.4 below is a stronger version of
[2, Theorem 5.1]. Biacino and Gerla’s proof to establish that every G-representative is
a W-representative uses the second-order constraints that postulate the existence of
Grzegorczyk points. These are their axioms G4 and Gs, closely related to the original
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Grzegorczyk axiom from his paper.'®> We prove that the original result of the Italian
mathematicians can be substantially improved, as we only assume the axioms for the
weak contact relation plus

(Vz#0)Fy #0)y <z, (C5)
and the atomlessness of the underlying Boolean algebra. (C5) is known as the non-
tangential part axiom, and it is equivalent—by (df <)—to

(Ve #1)(EFy #0)z Ly,

the so-called disconnection axiom. In the class BWCA both these axioms are equivalent
to the extensionality axiom

(VzeB)(2Cax+—2Cy) —z=y.

Moreover, we show that in the class BWCA + (C5) the second-order monadic
statement ‘every G-representative is a W-representative’ is equivalent to the first-order
condition ‘there are no atoms’. Additionally, in Theorem 4.5 we demonstrate that
both the implications fail if we omit the axiom (C5). Thus, via the two theorems, we
provide answers to both (a) and (b) above.

The first requirement that G-representatives must meet to be W-representatives
is that they are abstractive sets. In general, it does not have to be true: there are
contact algebras with G-representatives that are not abstractive sets since the former
do not have to satisfy (A). Biacino and Gerla do not have to take this into account
since their definition of G-representative contains the requirement that it is a set of
regions without the minimal element. This, however, is the assumption that is absent
from the definition introduced in the original paper by Grzegorczyk.

In connection with this, we have:

Proposition 4.1 ([16]). If*B € BWCA+(C5) and B has an atom a, then {a} € Qg.

Proof. Fix an atom a. By (C5) there exists a non-zero b € B such that b < a. So
b < a by (1.1), and thus b = a. From this, we can see that the conditions (r0)—(r2) are
satisfied. For (r3),if x Oa and y O a, then a <z and a < y, so z O y. O

So, if a BWCA has atoms and satisfies (C5) there are G-representatives, which are
not abstractive sets. Thus, in general, it is not the case that Qg C A, and the natural
thought is to eliminate the existence of atoms, especially due to the fact that G-points
generated by atoms are—in a way—not very interesting, similarly as are not principal
ultrafilters.

Before we do this, we prove a propoisition that will help us establish the main
results of this section.

Proposition 4.2. Let B € BWCA.

13See [17] for a comparison of the original axiomatization of Grzegorczyk’s system with the system of
Biacino and Gerla’s.
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(i) If A € A, then A satisfies the strong version of (r2):
Vxe A)(Fye A (y<ae Ay #x). (r2%)

(i) If X is a set of regions such that X < Q for some G-representative Q, then X
satisfies (r3).
(i) If A€ A, Q € Qg and A < Q, then A € Qg and [A]l. = [Q]~.

Proof. (i) For every © € A there is a y € A such that y < x. But, by (r1), either < y
or y < . Since the former cannot hold in light of (1.1), we have the latter.

(ii) Assume that for all z € X, z Cu and « Cv. If ¢ € Q, then by covering of X
by @ and by (C3) we have that ¢ C u and g C v. Therefore u C v, by (r3) for Q.

(iii) Follows from the previous items (i), (ii) and Corollary 2.3. O

Proposition 4.3. If 8 € BWCA + (C5) + (#IAt), then every non-zero region of B
has two proper parts that are separated from each other.

Proof. Let x be a non-zero element of 9B. Since the algebra has no atoms, there is a
non-zero y that is a proper part of x. So, by the Boolean axioms, there is another non-
zero z < x that is incompatible with y. But by (C5), z must have a non-tangential
part zp. So zg € y, and both regions are parts of x. O

Theorem 4.4. If B8 € BWCA + (C5), then B is atomless iff in B every G-
representative is a W-representative.

Proof. Suppose B € BWCA + (C5) + (AAt). Observe that if Q is a G-representative of
an algebra B from the class, then @ is an abstractive set by Proposition 4.3. Further,
[Q] is a geometrical element. Suppose A € A is such that [4]. < [Q], i.e., A < Q.
Therefore by Proposition 4.2 we have that A € [@Q], which means that [A] = [Q)], as
required.

On the other hand, if 8 € BWCA + (C5) and % has an atom a, then by
Proposition 4.1, {a} € Q¢. Thus Q¢ € Qw. O

The axiom (C5) cannot be dropped, even in the class of Boolean contact algebras,
that is:

Theorem 4.5. There is a B € BCA + —(C5) in which there are no atoms, and in
which Qc € Qw ; and there is also an algebra from the same class that has atoms and
i which Qo C Qw .

To prove the first part of the theorem we provide a general method for construct-
ing contact algebras. Given a B € BA, let d be its non-zero element that we call
distinguished. By means of it, we define the following relation

2Cqy +— z0yV(zxOodAyoOd).

It is routine to verify that Cq4 is a contact relation, i.e., satisfies axioms (C0)—(C4).
Observe that the largest contact relation on 9B, i.e., B+ x BT, is a special case of Cq
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in which d = 1, or more generally, where d is a dense region in B (i.e., such that

every non-zero x overlaps it).
We have that

rLgy+—r<yAN(xz<-dvd<y)
+—rx<y—dVzx+d<y.

from which it follows immediately that
d<gd. (4.1)

We also have that

Corollary 4.6. If x < d and x # 0, then x does not have any non-tangential part.
In consequence any Boolean contact algebra ($B,Cq) fails to satisfy (C5).

Lemma 4.7. {d} is a G-representative of (B,Cq), and 1 {d} is its only G-point.

Proof. (r0) holds by the definition of d, (r1) and (r2) by (4.1), and (r3) by the definition
of C4. In consequence, 1 {d} is a G-point.

Suppose there is a G-point p # 1 {d}. By [13, Fact 6.28] there are € p and
y > d such that © €4 y, i.e., y Kq —x. Therefore either y < —d or d < —z. The first
possibility is exlcuded by the fact that d # 0 and d is below y. Therefore the second
one holds, and thus z < —d. O

Proof of the first part of Theorem 4.5. Take any atomless Boolean algebra B, fix its
distinguished element d, and expand it to the Boolean contact algebra (B,Cg).
By Lemma 4.7, the singleton {d} is a G-representative that is finite and therefore
cannot be a W-representative. By Proposition 4.6, the algebra has regions without
non-tangential parts, so it fails to satisfy (C5). O

Proof of the second part of Theorem 4.5. Consider the following two contact algebras,
(RO(R),Cr) and the four element Boolean algebra B, := {0,a,b,1} with the full
contact relation Cy (i.e., d := 1). Consider their product P := RO(R) x B, as Boolean
algebras (i.e., all the operations are defined coordinate-wise) but with the contact
defined as:

(z,u) C{y,w) — zCryVuC w.
It is routine to verify that C satisfies (C0)—(C4).!* We have that

(T u) < (Y, w) +— <7y Au <3 w
—r<<ryAN(u=0vVw=1).

The algebra has two atoms: (0,a) and (0,b). P does not satisfy (C5), as none of the
two atoms is its own non-tangential part. In consequence, neither the singleton of the
former nor the singleton of the latter is a G-representative.

4This is not, then, the product of the two algebras as the contact algebras. The relation (z,u) R
(y,w) :+— xCryAuCy wis not contact, as the reader may easily convince themself.
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Observe that the set of G-representatives of 9P contains all sets of the form @Q x {0},
where @ is a G-representative of (RO(R), Cr). It is quite obvious that (r0)—(r2) are
satisfied by @ x {0}. As for (r3), if we have pairs (z,u) and (y,w) that overlap every
element of @) x {0}, then for all z € Q, 2 O z and y O z, so x Ct y, which is enough to
conclude that (z,u) C (y,w).

The only products that are G-representatives in the algebra are sets of the form
Q x {0}, where @ is a G-representative in RO(R). Firstly, neither @ x {a} nor @ x {b}
can be G-representatives, as no element of any of the two sets has a non-tangential part.
Secondly, any set of the form @ x {1}, where Q is a G-representative in RO(RR), fails to
satisfy (r3). To see this, take any regular open set z that overlaps every element of @
and consider pairs (z,0) and (0, 1). We see that for any (y,1) € @ x {1}, (x,0) O (y, 1)
and (0,1) O (y,1), yet (x,0) € (0,1). Thirdly, any product @ x M, where M is an at
least two element subset of By, fails to be a chain and so cannot be a G-representative.
Fourthly, if we have a set M x {0} where M is not a G-representative, i.e., it fails to
meet one of the conditions (r0)—(r3), then since 0 <1 0, M x {0} also fails to meet
one of the four conditions for <.

Of course, every @ x {0} is an abstractive set, and in the case where it covers an
abstractive set A x {0}, @ must cover A in RO(R). So by Proposition 4.2 (iii) A is a
W-representative in RO(R), and so A x {0} is a W-representative in 3. O

5 W-representatives with countable coinitiality are
G-representatives

In this section, we reconstruct Biacino and Gerla’s proof according to which every
W-representative that can be represented by an w-sequence (in the sense explained
below) is also a G-representative. We aim to show that with respect to the original
proof from [2] we need to assume the so-called coherence axiom to assure that the
machinery works properly.

To be more precise, Biacino and Gerla in their Theorem 5.3 prove that if we extend
the standard axiomatization for contact with the interpolation axiom®®

rLy— (TzeB)r kK zKy (IA)

we can prove that every Whitehead representative that can be represented as an w-
sequence is a Grzegorczyk representative. However, to show that a certain sequence of
regions is an abstractive set they make a transition that cannot be justified without
an application of the so-called coherence axiom which we introduce below. Thus, in
the premises of our Theorem 5.3 we explicitly assume coherence in the form of (C6)
below. Coherence is a mereotopological counterpart of topological connectedness.'%

Definition 8. For a given chain C' let the coinitiality of C' be the smallest cardinal
number x such that there exists an antitone function f: k — C with f[k] coinitial
with C.

15They call it the normality axiom.
165ee, e.g., [1] for details.
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Definition 9. For a given B8 € BWCA, let Qf, be the set of all Whitehead
representatives whose coinitiality is w.

Observe that the set A from Example 2 is an instance of a W-representative whose
coinitiality is wj. On the other hand, a local basis of any point » € R (with the
standard topology) that satisfies (R1) is a W-representative that is an element of QSj,
in RO(R).

t17

Definition 10. A Boolean weak contact algebra is coherent™ iff its unity is coherent,

iff it satisfies the following coherence axiom
z¢{0,1} —zC—=x. (C6)
Proposition 5.1. In the class BWCA, (C6) is equivalent to
r¢{0,1} ANz <y —x<y.

Proof. (—) If x is neither 0 nor 1, then z C —z. Assume that z < y, i.e., x € —y. If
y = 1, then z < y. So suppose y # 1. Since = < y, also y # 0 and y C —y. Therefore
x # y, which means that x < y, as required.

(+—) If x ¢ {0,1} and = € —=x, then z < z, and z < z by the assumption.
A contradiction. O

Recall that the following condition holds in every BCA:
rLUNYy<K< v — - y<Lu-v. (5.1)
Proposition 5.2. In every B € BCA, (C6) is equivalent to the following condition:
TAEUNTLUNY KLV — - Yy<LU-vANT-yFu-v.

Proof. (—) Assume (C6). If x # u Az < uAy < v, then by (5.1) we have that
-y < u-v,so by (C6) we obtain: x -y # u - v,

(+—) Suppose there is z ¢ {0, 1} such that < x. Since x < 1 and x # 1, by the
hypothesis we have that x - x # = - 1, a contradiction. O

Theorem 5.3 (after [2]). If B € BCA + (IA) 4 (C6), then Q% C Qq-

Proof. Let A be an abstractive set, and let (x;);c., be its coinitial subset. Assume it
is not a G-representative, i.e., that it fails to satisfy (r3). Let then u and v be such
that for every ¢ € w, u O z; O v, but u < —v. Observe that u # 0 # v. By (IA) (and
by the Axiom of Dependent Choices), there is a sequence (u;);c, such that:

UL . U << U < Uug=—v.

"The term is taken from [24].
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We have that for every i,j € w, (a) u; - 2; # 0 and (b) z; € u; - ; (since u; - z; < —v
and z; O v, Le. z; £ —v). Observe that (u; - #;);c. is an abstractive set. (r0) is
a consequence of (a), (rl) holds for the sequence because of (5.1): w1211 < u; - ;.
But u; - 2; # 1, so thanks to Proposition 5.1 we have that (u; - x;);e,, satisfies (A). The
sequence is covered by (z;)icw, but (z;)ie, is not covered by (u; - z;)icw by (b), so the
former cannot be a W-representative. So A is not a W-representative, either. O

As it can be seen in the proof above, there are two ways two justify the conclusion
that (u; - 2;)ie,, meets the condition (A): either by an application of Proposition 5.1
or by a reference to Proposition 5.2. Both these conditions are equivalent to (C6), so
there is no way to escape the coherence axiom in the construction. This, of course,
does not show that ‘Qfj, € Q¢’ is independent from BCA + (IA), as it only means
that the proof itself requires (C6). Nor does it undermine the construction from the
proof, as the remedy is relatively simple and only calls for the explicit assumption of
the axiom. However, it would be desirable to fully know the status of the coherence
axiom with respect to the sentence ‘Qfj; € Qg’. As we have not been able to settle
it, we put forward the following

Problem 2. Show that ‘Q};; € Qg’ cannot be deduced from the axioms for Boolean
contact algebras extended with the interpolation axiom. That is, find an algebra 9B €
BCA + (IA) + (PAt) that has a W-representative which is not a G-representative.
Similarly, show that ‘Q%, C Qg is not true in some B € BCA + (C6) + (#At). We
add the assumption about the non-existence of atoms, since Biaciono and Gerla have
it among their postulates.

It was proven in [8] that those Boolean contact algebras that satisfy (C5) and (C6)
must be atomless. In light of this and Theorems 4.4 and 5.3 we have:

Theorem 5.4. If B € BCA + (IA) + (C5) + (C6), then Q% € Qe € Qw. If
additionally B satisfies the countable chain condition, then Qw = Qg-

Recall that a topological space X is semi-reqular iff it has a basis that consists of
regularly open subsets of X. It is weakly reqular iff for every non-empty open set M
there exists a non-empty open set K such that C1K C M. X is k-normal'® (or weakly
normal) iff any pair of disjoint regular closed sets can be separated by disjoint open
sets.

By [11, Proposition 3.7] we have that for a space X and a dense subalgebra B of
(RO(X), Cr) the following correspondences hold:

(i) Cr satisfies (C5) iff X is weakly regular,

(ii) Cr satisfies (C6) iff X is connected,
(iii) Crp satisfies (TA) iff X is k-normal.
Let TBCA be the class of all topological contact algebras, that is those of the form
(B, Cr), where 9B is a subalgebra of a regular open algebra RO(X) of a topological
space X.

18 These spaces were introduced and studied by Shchepin [25].

20



Lemma 5.5 ([1, Lemma 3.56]). B € TBCA + (IA) + (C5) + (C6) iff B is a dense
subalgebra of (RO(X), Cr), where X is a k-normal, connected T;-space.

In consequence, by this and by Theorem 5.4 we obtain

Corollary 5.6. If X is a k-normal, connected T1-space, and B is a dense subalgebra
of (RO(X),Cr), then in B: Q% € Q¢ C Qw. If additionally X as a topological space
satisfies the countable chain condition, then Qw = Qg¢-

Theorem 4.4 shows that the second-order statement ‘Qg C Qy’ corresponds to
a first-order property of atomlessness of Boolean algebras. It is then natural to ask if
the statements ‘Qj;, € Qg and ‘Qw C Qg’ correspond to any familiar, not neces-
sarily first-order, properties of BCAs, or topological BCAs. Let us focus on this, and
let us prove some negative results.

Observe that the coherence axiom cannot be deduced by means of ‘Quw C Q¢g’
(more so, by means of ‘QY}, C Qg’), in the following sense

Proposition 5.7. (C6) is not true in BCA + (IA) + (C5) + ($At) + Qw C Qg
Proof. Take the contact algebra (RO(RR),0) and apply Lemma 3.8. O

If the reader finds the reference to Lemma 3.8 somewhat sneaky (as there are no
W-representatives in BCAs that satisfy the premises), we can construct an example
of a BCA that has W-representatives and meets the conditions of the proposition but
not (C6) by taking the topological space X = [0,1] U [2,3] as the subspace of the
reals with the standard topology and considering (RO(X),Cr). X is normal (more
so, k-normal), T7, satisfies the countable chain condition. Thus Qw C Q¢. RO(X) is
obviously atomless. Moreover, X is metrizable, so it’s a concentric space and thus has
Wh-representatives by Theorem 3.6. But X has two non-trivial components, and thus
Cr does not satisfy (C6). Does adding the assumption Qu # 0 does not improve the
situation.

Making a suitable modification to X, e.g., taking Y := [0, 1] U {2} we see that

Proposition 5.8. (#At) is not a consequence of BCA + (IA) + (C5) + Qw C Qg-

Of course, by Theorem 4.4, in RO(Y) we have Q¢ € Qw, specifically with {{2}}
being the culprit.

As for the relation of (C5) to ‘Qw C Qg’, observe that since the axiom is
not a consequence of {(C0)-(C4), (IA), (C6), (PAt)}, it cannot be a consequence of
{(C0)-(C4),‘Q%, € Q¢’} by Theorem 5.3. Thus there may be no deeper connection
between the two statements.

The above are selective remarks that show what cannot be proven by or about the
inclusion ‘Qw C Qg’. So, we put forward additional open problems.

Problem 3. Find B € BCA + (C6) + Qw C Q¢ in which the interpolation axiom
fails.
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Problem 4. Characterize the class BCA + Qw C Qg, with possibly additional
constraints.

We also ask

Problem 5. Is there any topological property of a space X that corresponds to the
statement Qu C Qg, as a second order statement formulated about a subalgebra of

(RO(X), Cr)?

6 W-representatives are G-representatives (the
general case)

Having proven Theorem 5.3 (of whose counterpart is—by a fortunate coincidence—our
Theorem 5.3) Biacino and Gerla write:
[...] the just proven theorem holds for W-representatives that are
expressible by [countable| sequences. We do not know if this result holds in
any case.
In this section, we prove that the we can extend Theorem 5.3 to W-representatives of an
arbitrary coinitiality provided we assume the generalized version of the interpolation
axiom.
Observe that by (5.1) the interpolation axiom is equivalent to the following:

TLBIN . ANELE, — (F2€B) (< 2A 2T 00 Ty).
Thus its natural extension to infinite cases is the following second-order constraint:
VMY eP®B)(WweY)e<xy — (FzeB)a<kzA(MyeY)zky)). (GIA)

Observe that (GIA) axiom puts a serious constraint upon the existence of W-
representatives in the class of complete contact algebras:

Theorem 6.1. IfB € BCA+ (C5)+ (GIA) is complete, then there are no Whitehead
representatives in B.

Proof. Tt is easy to show that in complete Boolean contact algebras, (GIA) is
equivalent to the following second-order constraint

(VyGJ)a:<<y—>x<</\J
which is equivalent to the following generalized version of (C4)
xC\/J—)(EIyEJ)ny.

As it has been shown in [14], in presence of (C5) the latter axiom entails that C = O.
Thus by Lemma 3.8, B does not have any W-representatives. O
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It follows that if we want to have BCAs that satisfy (GIA) and have Whitehead
representatives, we must drop either (C5) or completeness, or both. Fortunately, we
can demonstrate that such algebras exist.

Theorem 6.2. Any (B, Cq) satisfies (GIA).

Proof. Take as the distinguished element of a % € BA any d # 0 and consider Cgq.
Suppose that A C 9B, and let x be such that for all a € A, x <4 a, which means that
either xt < a—d or z+d < a. In the former case, x < —d, so <4 z, and we are done.
In the latter, x + d <4 a, as —a must be disjoint from = + d. Since it is always true
that x <4 x+d, we have that x+d is the region that is strongly between z and a. [

In light of the above theorem, any Boolean algebra can be turned into a Boolean
contact algebra that meets the generalized interpolation axiom. In particular, there
will be such algebras that are either complete or incomplete, with or without any
atoms, and of arbitrary cardinality. However, in light of Corollary 4.6, none of these
algebras will satisfy (C5).

Having shown the consistency of (GIA) with the standard axioms for contact, we
go on to prove the following:

Theorem 6.3. If B € BCA + (GIA) + (C6), then Qw C Qg-

Proof. Suppose |B| = k. Fix an abstractive set A. Since it is linearly ordered by <, it
must have a coinitial sequence (z, | & < A) for a limit ordinal A\ < k. Again, suppose
the sequence is not a G-representative, i.e. it fails to satisfy (r3). Let v and v be regions
such that each of them overlaps every x, from the sequence, yet they are separated,
i.e., u < —v. We construct another A-sequence repeating the technique from the proof
of Theorem 5.3, but applying (GIA).

If X = w, then it is enough to observe that (IA) is just a special case of (GIA)
where Y := {—v}. So assume that A > w. Suppose o < A is a limit ordinal and for
every 0 < 8 < a we defined ug and us such that

UL ug L usg L —v.

Consequently, we have that u is a non-tangential part of every element of the sequence
(ug | B < ). Thus, by (GIA) we may choose u, to be a region z such that (V8 <
a)z < ug and u < z. Following this procedure we can construct the A-sequence
(U | @ < A). We go on to show that (x_ -u, | @ < A) is an abstractive set. (r0) holds
given that we have u, - x4 # 0 for any a < A. (rl) holds due to (5.1): us-zs < ug- g
for any 3,6 € X such that 8 < §. Additionally,we have that w41 - Tatr1 <K Uq - To and
Uq " Tq # 1 for any oo < A. Therefore, by Proposition 5.1 the sequence (x_ -uq | @ < A)
satisfies (A).

Notice that the sequence (z, - uq | @ < A) is covered by (z, | @ < ). However,
we also have that xg £ us - x5 for any 8,6 € X since us - z5 < —v and 23 £ —v.
Therefore, (x, | & < A) is not covered by (z_ - uq | @ < A). Thus, {(x, | @ < A) is not
a W-representative and we can conclude that also A is not a W-representative. O
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Problem 6. In Theorem 6.2 we have shown that the generalized interpolation axiom
is consistent with the standard axioms for BCAs. However, what we do not know is
whether there are contact algebras in which both the axioms (GIA), (C6) hold, and
there is at least one W-representative. Thus we ask: are there such BCAs?
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