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Preface

The current cosmological standard model is based on inflation. This theory predicts
that the initial perturbation in the universe had a Gaussian distribution on any given
scale, and we would expect that the universe is statistically isotropic and homogeneous,
in accordance with the cosmological principle.

The cosmic microwave background (CMB) radiation is basically a snapshot of the
universe when it was around 400 000 years old. This radiation has small fluctuations
in its temperature as imprinted by the density perturbations at the time it was sent
out. After that time, the change in the radiation has been linear, so the characteristics
of the radiation still remain the same today. By measuring this radiation today, we are
basically probing the earliest times of the universe. From this radiation we can extract
information about the universe, such as its age, contents and geometry. Several exper-
iments have set out to detect this ancient radiation. COBE was the first experiment
to find the small perturbations in the CMB radiation. Using a beam with FWHM at
7◦, the resolution of the observations was low. Later, experiments like BOOMERanG
observed the CMB anisotropies at a considerably higher resolution, but only measur-
ing a small patch of the sky. This gave the rise to the standard cosmological model.
WMAP performed a high resolution measurement of the entire sky and confirmed the
cosmological model and the cosmological parameters could now be determined with
greater accuracy. The predicted theory agrees well with the observations of the CMB,
and we should therefore expect the universe to be isotropic and homogeneous. But
the full-sky maps from WMAP also showed some unexpected features. Several studies
of the maps have revealed strong hints of non-Gaussianity and violation of statistical
isotropy.

One of these properties was an observed asymmetry in the map. On large scales
there were large fluctuations in temperature in one hemisphere, while the other did not
have as large fluctuations on the same scales. This asymmetric distribution of power on
opposing hemispheres seems to be a violation of isotropy. Several independent works
have pointed out this feature. The fluctuation power for large scales seems to have a
dipolar distribution.

To try and characterize this distribution, I adopt a simple model where the isotropic
CMB field is modulated by a dipole field. The analysis is done using a Bayesian
framework. The purpose is to find the strength (amplitude) and direction of this field,
and for how small scales this asymmetry is present. The method used here to find
these parameters is a time consuming process, as it demands an inversion of a large



covariance matrix. This process scales as O(N3
pix), where Npix is the number of data

points used. The current computational resources therefore sets the limit for how small
scales we could compute using this method.

The analysis was done using the five-year WMAP data. The results shows evidence
for this model at the 3.5σ level, and an article on the results is to be published in
Astrophysical Journal.
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Chapter 1

Introduction

1.1 Introduction

For centuries mankind has been searching for how the universe was created. Almost
every culture has a story of how the world was created. Most of these myths are
tremendous tales of battles of Gods and other supernatural happenings. The first to
explain how the the universe originated using physical laws and scientific description
were the Greeks. The word cosmology also came from Greek, kósmos meaning world;
emphlógos meaning knowledge or science. But it is only in the present century that
we have developed good theories that describe the universe as a whole, and have ob-
servations that support these theories. The modern picture of the universe is that it
started with a hot Big Bang, and one observation that strengthen this view of the
universe is the presence of a low energy radiation which fills the whole universe. This
radiation stems from the Big Bang and is called the cosmic microwave background. In
this chapter I will look at how it was discovered and how it changed our view of the
universe.

1.2 The discovery of the CMB

In 1915 Albert Einstein submitted his paper on the general theory of relativity, where
the field equations describe gravity as a curved spacetime caused by matter and energy
[1]. In 1922 Alexander Friedmann found a solution to the equations in which the
universe may expand or contract. At the time, Einstein believed that the universe
was static, and he introduced a new term with a cosmological constant to the field
equations for them to allow a static universe. But a static universe was unstable in this
theory, and the universe would start to expand or contract if it was slightly brought
out of equilibrium. Later, in 1927, George Lemâıtre also published a report where he
presented the idea of an expanding universe [2]. Here he also derived the connection
between distance and redshift, later to be known as the Hubble law.

By studying the redshift of distant galaxies, Edwin Hubble found a linear relation
between the distance and velocity of galaxies. He released this in a paper in 1929,
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which strongly supports an expanding universe [3]. It is then easy to imagine that the
universe was smaller before, and that it also was much denser and more hot.

Lemâıtre later proposed that the universe expanded from an initial point, called
the “Primeval Atom”. This idea was published in Nature in 1931 [4]. He described his
theory as “the Cosmic Egg exploding at the moment of the creation”.

But not everyone agreed with this interpretation of the expanding universe. This
creation seemed philosophically troubling, as this imply a cause or a creator. There-
fore, many scientist, e.g., Fred Hoyle, Thomas Gold and Hermann Bondi, argued for
a steady-state universe. To explain that the universe is expanding while still obeying
the cosmological principle, matter must be continuously created as it expands in order
for the average density to remain at the same level at any given time. That way the
universe looks the same at all times. This universe model has no beginning and no end,
and therefore, the universe is infinitely old.

Fred Hoyle, who was against this expanding universe model, would later give this
model the now famous name Big Bang. In a BBC radio broadcast in 1949 he said,
“This big bang idea seemed to me to be unsatisfactory even before examination show
that it leads to serious difficulties. For when we look at our own galaxy there is not the
smallest sign that such an explosion ever occurred.” However, there were some who
predicted that there would be a remnant signal filling the universe after the Big Bang.

In 1946 George Gamow was pondering the cosmic abundances of the elements. He
realized that a newborn, dense universe must be hot enough for the nuclear reactions
that create the elements to occur. Two years later Gamow and Ralph Alpher published
a paper called “The Origin of Chemical Elements”. Later, detailed calculations by
Alpher and Ralph Herman showed that Gamow’s idea did not produce elements heavier
than helium. However, in 1957 Fred Hoyle released a paper about stellar nucleosynthesis
which explained the formation of heavier elements. Gamow’s theory of the Big Bang
nucleosynthesis explained that the early universe must have been very dense and hot,
and where radiation and matter was in thermal equilibrium. Under these conditions
the photons should have a blackbody spectrum. In 1948 Alpher and Herman published
a paper on how this blackbody radiation would cool off as the universe expanded,
and they predicted that the universe today would be filled with a blackbody radiation
with a temperature of 5 K. But astronomers and scientist did not make any effort to
detect this leftover blackbody radiation from the early universe, much due to the lack
of interest and the immaturity of microwave observations.

In the sixties Bell Labs built a giant antenna in Holmdel, New Jersey, for long
distance radio communication. Two employees of Bell Labs, Arno Penzias and Robert
Wilson, saw the potential to use this as a radio telescope. When a satellite took over
the job of the antenna, it could now be used for research. When Penzias and Wilson
started to use it, they registered a faint signal, or background noise, in the microwave
range that remained no matter where they turned their antenna on the sky. Numerous
attempts were done to find the source of the signal. They ruled out urban interference
and radiation from our own galaxy. The signal did not change with the seasons either.
They even removed the pigeons living in the antenna and scrubbed it clean, but the
signal remained. Penzias and Wilson were aware that a 3 K blackbody would produce
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their interference, but unaware of what might be the source of this.
At the same time and just miles away, Robert Dicke at Princeton University and his

postdoctoral student, P.J.E. Peebles, had been calculating the blackbody radiation left
over from the Big Bang. Peebles calculated that the radiation would have a temperature
of 10 K. They were interested in searching for this remnant of the early universe. When
a friend told Penzias about the calculation of the radiation left over from the Big Bang
by Peebles, he started to realize the significance of their discovery. Penzias called Dicke
and in 1965 the pieces of the puzzle fell together. Penzias and Wilson had detected
the 2.73 K blackbody radiation that fills the Universe. This relic of the Big Bang is
called the Cosmic Microwave Background(CMB), and is uniform over the full sky, i.e.,
the temperature is the same in any direction. Dicke, Peebles, and their co-workers at
Princeton wrote an article for the Astrophysical Journal Letters where they explain
that the CMB strongly supports the Big Bang theory [5], while Penzias and Wilson
wrote an accompanying letter where they confirmed the existence of the background
noise [6]. Penzias and Wilson received the Nobel Prize for Physics for their discovery
in 1978.

1.3 The search for CMB anisotropies

The measurements from Penzias and Wilson showed an approximate isotropy in the
CMB temperature, just as one would expect if the radiation is produced by the Big
Bang. But there are many physical effects that can cause inhomogeneities in the CMB.
Inhomogeneities in the density or velocity of matter in the Universe would cause fluc-
tuations or anisotropies in the CMB. At last-scattering, gravitational instability theory
predicts that fractional density perturbations must have been δ & 10−3 in order for
galaxies and clusters to develop to what we observe today. A challenge in cosmology
has been to detect a corresponding fluctuation in the temperature of the CMB radi-
ation. During the sixties and seventies, experimental and theoretical work put harder
constraints on the observable fluctuations in the CMB. Sunyaev predicted in 1977 that
fluctuations in the CMB must exist a level ∆T/T0 ∼ 10−5. New experiments with
higher accuracy had to be conducted. The earth’s atmosphere consists of water vapor
and it absorbs much of the microwave radiation. To reduce the effects of atmospheric
disturbance in order to get a better signal from the CMB, new experiments were per-
formed from balloons or in space.

1.3.1 COBE - the first fluctuations

The Cosmic Background Explorer (COBE) satellite was launched in 1989. The FIRAS
instrument on board showed a perfect fit of the CMB and the theoretical curve for
a black body at a temperature of 2.7K. See Figure 1.1. Despite the measurement of
the CMB by Penzias and Wilson, not everybody embraced the Big Bang theory as
the explanation of this. They claimed other sources could explain the radiation. But
this new measurement that shows a remarkable agreement between the prediction of
Big Bang theory and observations should be enough to convince most skeptics. On



16 Introduction

Figure 1.1: Intensity of the cosmic microwave background as a function of wavelengthas
measured by the Far InfraRed Absolute Spectrophotometer (FIRAS). The full line
shows the theoretical blackbody curve. Inside of this curve are dozens of measured
points, and the error bars are so small that they are obscured by the thickness of the
curve. Courtesy of the COBE science team.

board the satellite was also the Differential Microwave Radiometer (DMR) whose job
was to measure the anisotropy in the CMB. This is very difficult to measure since it
is only deviates from the average temperature as one part in 100 000. The instrument
measured the temperature with a beam covering 7◦ of the sky. The anisotropies are
showed in Figure 1.2. The two principal investigators on the DMR and FIRAS, George
Smoot and John Mather, respectively, won the Nobel Price in Physics in 2006 for their
work. The Nobel Price committee stated that “These measurements also marked the
inception of cosmology as a precise science.”

The next step was now to measure the anisotropies on smaller angels. The Toco
experiment was the first to localize the first acoustic peak in the power spectrum [7].

1.3.2 BOOMERanG - a flat universe

The BOOMERanG experiment (Balloon Observations of Millimetric Extragalactic
Radiation and Geophysics) was a balloon based experiment to measure the the CMB.
By sending a probe 42,000 meters above mean sea level, it was possible to reduce
the atmospheric absorption of microwaves and also save a lot of money compared to
a satellite mission. The probe was only able to scan a small part of the sky, but it
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Figure 1.2: These pictures shows the anisotropy in the CMB as measured by DMR.
Top: A map including the dipole and galaxy. Due to the earths movement through
space relative to the CMB, the frequency of the radiation will be shifted. Moving away
relative to the radiation causes a drop in temperature (redshift), while moving towards
it causes a rise (blueshift). Middle: The dipole is removed. The band that stretches
across the picture is radiation caused by our own Galaxy. Bottom: Galactic foreground
emission is reduced and shows us the anisotropies in the CMB. Courtesy of the COBE
science team.
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captured large, high fidelity images of the CMB temperature anisotropies. Together
with other experiments it could determine the angular diameter distance of the surface
of last scattering with high precision, and it determined the geometry of the Universe
to be flat. For the 2003 flight it gathered extremely high signal-to-noise ratio maps of
the CMB temperature anisotropy, and a measurement of the polarization of the CMB.

1.3.3 WMAP - concordance model with slight flaws

In 2001 NASA launched the Wilkinson Microwave Anisotropy Probe (WMAP). Its
mission was to measure the temperature difference in the CMB radiation. These an-
isotropies can then be used to measure the universes geometry, contents and evolution.
To do so, the instrument creates a full-sky map with a 13 arcminutes resolution of the
temperature anisotropy. Compared to COBE with a resolution of 7◦ full-sky map, this
had 33 times better resolution. WMAP was the first to localize the third peak.

The data from WMAP gave rise to a standard cosmological model: A flat universe
composed of matter, baryons and dark energy with a nearly scale-invariant spectrum of
primordial fluctuations. Together with other cosmological data, values of the different
cosmological parameters could now be calculated. The age of the Universe is 13.72 ±
0.12 Gyr. It consists of 4.56 ± 0.15 % baryonic matter, 22.8 ± 1.3 % dark matter and
72.6 ± 1.5 % dark energy [8].

But even if the data described the universe very well, there were some strange
features in the map from WMAP. (1): alignments and symmetry features among low
low-l multipoles (Tegmark et al. 2003 [9]; de Oliveira-Costa et al. 2004 [10]; Eriksen
et al. 2004 [11]) (2): an apparent asymmetry in the distribution of fluctuation power
in two opposing hemispheres (Eriksen et al. 2004 [12]; Hansen et al. 2004 [13]) (3): a
peculiar cold spot in the southern hemisphere (Vielva et al. 2004 [14]; Cruz et al. 2005
[15])

The reason for this asymmetry is not known, but three possible candidates that can
cause this are systematics, foregrounds or some new, exotic physics.

1.3.4 Future missions

New experiments are planned to get better data about the cosmic microwave back-
ground radiation. The Planck satellite was launched on 14th of May 2009. This will
be the third space CMB mission after COBE and WMAP. The goals of Planck are to
make maps for the temperature and polarization anisotropies of the CMB with high
resolution (down to 5’) over the entire sky. It will take measurements in a wide range of
frequencies (nine frequencies between 30 - 857 GHz) to discriminate between Galactic
emission and cosmic signal and to study galaxy clusters and extragalactic point sources.
By measuring the CMB on smaller scales than WMAP, it will be able to extract more
information about the cosmological parameters.

It will give us a higher resolution of the CMB over the whole sky. It will detect
both the intensity and polarization of photons at nine different frequencies.



Chapter 2

The physics of the CMB

In this section I will be looking at the physics in the early universe and explain how the
CMB radiation originated and later evolved with the universe. I will mostly just give a
short introduction to the various physics and not introduce a lot of mathematics. The
main target in my thesis is not to explain how the universe started, but how to compute
cosmological parameters. But it is nice to have a feeling of what we are studying. For
more complete texts on this matter I refer the interested reader to Dodelson [16] and
Tegmark [17]. Some of the material in this section is taken from the lecture notes for
the course AST4220 by Øystein Elgarøy [18].

2.1 Inflation

The Big Bang explains many features of our universe such as the origin of light elements
(Big Bang nucleosynthesis), the formation of the cosmic microwave background, and
the relation between distance and redshift of cosmological objects (Hubble’s law).

However there are some features that may seem very unlikely. The first is the
isotropy of the CMB, which we today observe around 2.7 K on the whole sky. The
natural thing to assume is that there is some physical process that smooth out any
temperature variation that existed in the early universe. For this to happen, these
regions must be connected by causal physics. The distance that causal physics can
act is given by the particle horizon. Assume that we live in a spatially flat universe
with dust and a cosmological constant. Then, when calculating the angular size of
the particle horizon at last scattering as seen on the sky today, this only covers a few
degrees. How is it then possible that regions on the sky today that are separated by
as much as 180 degrees have almost the same temperature? We may assume that that
the uniform temperature was a part of the initial conditions of the Big Bang model,
but many may not be satisfied with this assumption. To explain this, cosmologists
have postulated the existence of a process called inflation. Inflation is a short period
of exponential growth in the early universe, i.e., the universe expands rapidly. Before
inflation the regions visible to us were inside the particle horizon, thus there is no
problem understanding the isotropy of the CMB.
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Inflation also solves other problems in the universe. Observations tell us that the
curvature of the universe is close to flat, or equivalently that the energy density in the
universe is close to the critical density. This is a problem because, as time goes by,
the deviation of the density from the critical one increases. Since the density is close
to the critical today, it would be much closer to the critical in the past. Again, we
could assume that the universe did start in this fine tuned state, but we do not get
an explanation why it is so. Inflation solves this problem because during the rapid
expansion of the universe, any deviation from the critical will be wiped out.

Another puzzle with the observed universe is the magnetic monopole problem. In
a very hot, early universe it is predicted that a number of heavy, stable particles,
such as the magnetic monopole, would be produced. The problem is that we have not
observed these particles. Inflation may solve this if the rapid expansion occurred after
the production of monopoles. During expansion of space the density of these particles
would decrease, hence becoming very rare in the present observable universe.

The idea of inflation was proposed by Guth (1981) [19], Linde (1982) [20] and
Albrecht et al. (1982) [21] to solve the horizon, flatness and monopole problems. It
was soon discovered that the same mechanism that explains the uniformity of the
temperature in the CMB can also explain the origin of perturbations in the universe.
In its simplest form, the inflation is driven by a single scalar field. Quantum mechanics
limits how homogeneous this inflationary field can be. The Heisenberg uncertainty
principle for energy and time, ∆E∆t ≈ ~, sets a limit for how precise we can know
the energy of the field in a given time interval. As a consequence of this, inflation
will begin and end at different times in different regions of space and this leads to
perturbations in the energy density. These perturbations will manifest themselves in
the radiation as well as in the matter distribution we observe today. The simplest
form of inflation theory is a single scalar field with with adiabatic fluctuations. This
CMB anisotropies should then have an approximately scale-invariant spectral index
of primordial fluctuations, n ' 1, and have produce density perturbations that are
random-phase and have amplitudes with a Gaussian distribution.

2.2 Recombination/decoupling

In the early, hot universe matter and radiation were tightly coupled. The high energy
radiation did not give protons and electrons the possibility to form a stable atom. Due
to the high density of free electrons the photons are often scattered off baryons. This
cause the mean free path of the photons to be short and they can not move far in the
universe. This interaction between light and baryons coupled them in thermodynamic
equilibrium, i.e., they shared the same temperature and they should have a blackbody
spectrum.

The temperature drops as the universe expands. The binding energy of hydrogen is
BH = 13.6eV , and as the temperature drops such that kBT = BH one should expect the
production of neutral hydrogen. But since there are many more photons than matter
at this point, there is still enough high energy photons to ionize any hydrogen as the
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temperature in the universe goes below 13.6 eV. As the temperature drops further
free electrons can finally combine with hydrogen and helium nuclei. The formation
of neutral atoms is referred to as recombination, despite the fact that electrons and
nuclei never have been combined into atoms before. The loss of free electrons due the
recombination and dilution from expansion decoupled the photons from the matter,
and they could now move freely through the universe. This happened about 400 000
years after the Big Bang. We can see this radiation in all directions, and it forms a
spherical shell around us with a radius of 13.7 billion light years. But this shell also
has a thickness since the photons where released from the matter at different times.
The thickness is about 50 million light years. This radiation is the our best source to
the early universe and we call it the cosmic microwave background. At the time of
decoupling the temperature of the photons was about 3000 K. Since then the photons
have lost their energy due to the expansion of the universe, and today we observe it
with a temperature of 2.73 K.

But the CMB is not completely isotropic. There are temperature fluctuations of the
order of 10−5. These have their origin from the quantum fluctuations in the scalar field
responsible for inflation. These manifest themselves in the matter and photon densities,
and then evolve with time. Because of the density differences at decoupling, the photons
have different temperatures at different locations. The next section describe how the
density varies with time after inflation has set up the original density perturbation and
up to decoupling.

2.3 Acoustic oscillations in the baryon-photon fluid

Before recombination, the photons were coupled to protons and electrons, and they
could be described as a single fluid. This fluid basically have two competing forces.
The gravity of the baryons makes the fluid clump together, resulting in over- and
under-densities. The pressure from the photons, on the other hand, washes out these
differences. As the over-density in the fluid grows, the pressure also grows. When the
pressure from the photons gets large enough, it can withstand the contraction and cause
it to stream out of the over-density. This makes the fluid being more homogeneous. If
the pressure is large enough it may cause an under-density during this dissipation. But
as the pressure is reduced, gravity will again cause the fluid to clump together.

These two forces will cause the fluid to oscillate. It oscillates at different scales at
different times. The small scales starts first as they are first affected by causal physics.
The oscillations in the fluid are sound waves, and the sound speed in fluid, cs, depends
on the baryon density in the fluid. The sound speed determines how fast different parts
in space can have causal contact with each other. The baryons makes the fluid heavier
and reduces the sound speed. The maximum comoving distance traveled by a sound
wave distance one can travel in the fluid by time η is given by the sound horizon,

rs(η) =
∫ η

0
dη′cs(η′).

where η is the conformal time. The sound horizon is the distance a sound wave could
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propagate from the Big Bang to recombination, and is the largest scale on which causal
physics can act in this fluid. On scales larger than this, we do not expect to see any
fluctuations caused by acoustic oscillations. Instead, we only expect to see the effects
that were caused by inflation. When decoupling occurs, the different scales are at
different states in this oscillation. After decoupling the photons and baryons are no
longer a single fluid, and the oscillation stops. This leaves us with various densities in
space on different scales.

These various densities are the origin of the anisotropies in the CMB radiation.
In the remainder of this chapter I will look at the physical effects that caused the
fluctuations in the Cosmic Microwave Backgound radiation. The first part looks at the
changes to the CMB radiation that was sent out at decoupling. We may divide them
into two groups, the primary and secondary fluctuations. The primary fluctuations
were generated before the universe became transparent. The secondary fluctuations
are the changes in frequency, apart from the change caused by universal expansion,
while the radiation moved from the surface of last scattering and to us. The CMB
radiation is basically a snapshot of the universe when it is around 400 000 years old.
This gives us a unique chance to observe the early universe. The anisotropies in the
CMB remain small because the photons do not clump, so the distribution looks quite
the same today as when the photons were sent out. There has only been linear changes
to the photons.

There are also other sources causing microwave radiation other than the CMB.
These will contaminate the “pure” signal sent out. All of these effects are summarized
in Table 2.1

2.4 Primary fluctuations

In this section I will look at the effects that cause anisotropies in the CMB during
recombination.

2.4.1 Sachs-Wolfe effect

First is the Sachs-Wolfe effect. If the radiation has to climb out of the gravitational
potential it is thereby redshifted. This has two effects: i) Photons loose energy as they
move out of the gravitational field.

(
∆T
T

)

I

= −∆φ
c2
,

where ∆φ is the difference in gravitational potential at the emitter position and at the
observer position; ii) Because of the gravitational time dilatation time proceeds at a
slower rate down in the gravitational field. We then seem to be looking at a younger,
and hence hotter, universe where there is an overdensity.

(
∆T
T

)

II

=
2

3(1 + ω)
∆φ
c2
,
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Primary Sachs-Wolfe (Gravity)
Doppler
Density fluctuations
Damping

Secondary

Gravity

Early ISW
Late ISW
Rees-Sciama
Lensing

Local reionization
Thermal SZ
Kinematic SZ

Global reionization
Suppression
New Doppler
Vishniac

Other
Extragalaxtic

Radio point sources
sources IR point sources

Galactic
Dust
Free-Free
Synchrotron

Local
Solar system
Atmosphere
Noise, etc.

Table 2.1: Sources of temperature fluctuations in the CMB. The two topmost categories
shows what effects that change the CMB directly. The last category shows physical
processes that produce microwave radiation that contaminate the CMB signal.

Here ω is the equation of state factor that determine the relation between pressure p
and matter/energy density ρ. For non-relativistic matter, also just called dust, this
constant is equal to 0. In this case the effect becomes

(
∆T
T

)

II

=
2
3

∆φ
c2
,

The total of this then gives (
∆T
T

)

SW

= −1
3

∆φ
c2
.

2.4.2 Doppler effect

At last scattering, the fluid moves in a random direction with a velocity, v, relative to
us. If the fluid in a direction n̂ moves towards us then the photons sent out will be
blueshifted, while if the fluid moves away from us, the photons will be redshifted.

(
∆T
T

)

D

=
v · n
c

.
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2.4.3 Adiabatic fluctuations

In a region with higher matter density the photon density will also be higher. For an
adiabatic density fluctuation the photon density fluctuation is related to the matter
density fluctuation as (

∆ρ
ρ

)

γ

=
4
3

(
∆ρ
ρ

)

m

The density is proportional to temperature, nγ ∝ T 3, hence a region with increased
photon density will have a higher temperature. Last scattering happens at roughly
the same temperature. The temperature decrease as the universe expands, so we might
expect that the fluctuations in photon temperature can not be observed as they all were
sent out with the same temperature. But there will be an observable difference due to
the fact that regions that originally had different temperature will send out the photons
at different times. Overdense regions with higher temperature will scatter off photons
at later times than the regions with a lower temperature. This will cause radiation from
overdense regions to have a lower redshift from universal expansion. The temperature
difference caused by this effect is

(
∆T
T

)

A

= − ∆z
1 + z

=
∆ρ
ρ
,

where z is the redshift and the last equality assumes linear growth, ∆ρ ∼ (1 + z)−1.
Hence the total effect of these three become

(
∆T
T

)

tot

= −1
3

∆φ
c2

+
v · n
c

− ∆ρ
ρ

2.4.4 Damping by photon diffusion

We treat the baryons and photons as a single fluid, but this is just an approximation
as the photons will travel a finite length between scatters. This way photons can travel
between the hot and cold regions, and any perturbation on scales smaller than this
length can be expected to be washed out. This effect is named Silk damping after
Joseph Silk who first discussed the effect in 1968 [22]. It is also known as diffusion
damping.

2.5 Secondary fluctuations

Next we got the effects that altered the CMB radiation after decoupling when traveling
to us today.

2.5.1 Change in gravitational potential

The first effect is caused by gravity. Even if the photons now are decoupled from the
baryons, they are still affected by the gravitational potential of matter.
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This effect can be split into three parts, all due to time-variations in the gravitational
potential. I.e., φ̇ 6= 0 where φ̇ denotes the conformal time derivative of the gravitational
potential. When a photon flies through a potential well it is blueshifted when falling
in to it, and it is then redshifted when climbing out again. As long as the potential is
the same on entrance and exit the net shift in frequency of the photon is zero. But if
the potential changes while the photon travels through it, the frequency of the photon
will change. During the matter-dominated era the potentials remains the same. But
when other components dominate the universe these potentials may change.

At the time of last scattering the photon-contribution to the density of the universe
is significant. This makes the potentials decay, causing the early ISW effect.

At recent times the universe seems to be dominated by vacuum energy which causes
the universe’s expansion to accelerate. This vacuum energy also causes the potentials
to vary with time, and the radiation’s energy will change. This is called the late ISW
effect.

When non-linear structures (such as galaxy clusters) form, linear perturbation the-
ory breaks down and the perturbation theory result φ̇ = 0 is no longer valid. This is
called the Rees-Sciama effect.

The other effect caused by gravity change the direction of the photons and not the
energy. If a pair of photons would have arrived separated by an angle θ in the absence
of fluctuations in φ, they will in reality arrive separated by some angle θ + ∆θ. This
change in the photons trajectory is called weak gravitational lensing. The total power
of the in the fluctuations are conserved, but the power is redistributed from the peaks
to the troughs.

2.5.2 The Sunyaev-Zel’dovich effect

The photons can be directly influenced by baryonic matter as they free-stream towards
us. Baryons may be reionized after recombination locally e.g., in hot clusters of galaxies
or globally throughout all of space.

Local reionization is called the Sunyaev-Zel’dovich (SZ) effect and is caused by two
effects: i) If a cluster of galaxies is moving towards us, Thomson scattering of the CMB
photons off free electrons in the hot gas in the galaxies will cause a Doppler blueshift
in the direction of the cluster. This is known as the kinematic SZ effect. ii) The high
energy of the free electrons will change the Planck spectrum by reducing the Rayleigh-
Jeans (low ν) tail and increase the Wien (high ν) tail. This happens independently of
the clusters velocity and is known as the thermal SZ-effect.

2.5.3 Global reionization

If global reionization happens throughout space it will suppress fluctuations on small
scales in the CMB power spectrum. This reionization causes the photons to Thomson
scatter off free electrons, thus changing the original direction of the photon. Then we
don not know exactly which direction the original photon came from. It could originally
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have come from anywhere within a certain region on the sky, and the signal is therefore
smeared out at these scales.

2.6 Other sources to microwave radiation

There are of course other sources for radiation at microwave wavelength other than the
radiation from the last scattering. This will contaminate the signal from the cosmic
microwave background. All sources of microwave radiation that might come between us
and the radiation left over from the Big Bang are called foregrounds. But the problems
with foregrounds are manageable. The various effects causing the radiation is frequency
dependent, and this is something we may take advantage of if we observe the sky in
many different frequencies (see section 7.1).

2.6.1 Extragalactic radiation

Extragalactic point sources comes from outside our own galaxy. We distinguish between
radio and infra-red sources. To get rid of this radiation we may subtract it from known
point source catalogues or we may throw away the pixels containing a bright point
source.

2.6.2 Galactic radiation

There are at least three sources for radiation from our own Galaxy: dust, free-free
emission and synchrotron radiation. The amplitude of each component varies across
the sky, but the relative amplitudes are quite typical. The effects from dust is caused
by two processes, namely thermal radiation.and radiation from charged spinning dust
grains.

Free-free emission (Bremsstrahlung) is produced when a charged particle, e.g., an
electron, is passes near another charged particle, such as an atomic nucleus. The
electron loses energy as it passes near the ion and the energy difference due to this
acceleration is sent out as electromagnetic radiation. Synchrotron radiation is generated
when ultrarelativistic, charged particles are accelerated through magnetic fields.

The amplitudes of the of these foregrounds have proven to be smaller than the
cosmic signal in a wide part of the frequency range. At high frequencies, dust dom-
inates the signal, and at low frequencies synchrotron and free-free radiation become
dominant.But in the range from 30 to 200 GHz, the CMB signal often has the largest
intensity.

2.6.3 Local radiation

Contamination may also come from our own solar system. Radiation can come from
the sun, moon, earth and other planets. The instrument we are using to register the
radiation may have some electronic receiver noise. Ground- and balloon-experiments
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will be affected by radiation in the atmosphere. There are of course many potential
sources of systematic errors.

COBE is a real life example where local interference can false data. For about two
months each year the satellite went behind the shadow of the Earth. This caused the
signal to be non-Gaussian. It took quite some time to discover, but after removing the
data from the two months when the Earth obscured the satellite, the non-Gaussian
behaviour was gone [23].
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Chapter 3

Mathematical description of the
CMB

The physics described in Chapter 2 comes from a thorough mathematical description
of the evolution of the perturbations in the universe from the time of inflation to
today. These can be described using the Boltzmann equations and the theory of general
relativity. The deduction of the equations describing be perturbations as the universe
evolve is a demanding task, and is outside the scope of this thesis. For great texts
on this subject I recommend Dodelson [16] and Tegmark [17]. Instead, I will in this
chapter go through how the we describe the CMB signal we are receiving and how we
handle it in order to do calculations with them.

3.1 Data model

First we need a model of the observed signal. The signal d(n̂) we receive from a
direction n̂ on the sky can be written as

d(n̂) = s(n̂) + n(n̂) + f(n̂) (3.1)

Here s is the clean signal from the CMB with power spectrum Cl, n is the instrumental
noise and f is the sum of foreground contributions. The direction may also be written in
polar coordinates θ and φ. Many instruments, like COBE and WMAP, do not measure
the absolute temperature of the CMB radiation, but the temperature difference in two
different directions. Hence the signal is given as s(n̂) = ∆T (n̂) = T (n̂)− T0, where T0

is the mean temperature of the CMB radiation, 2.73 K.
However the instruments that register the CMB signal do not just observe a single

point on the sky, but a finite solid angle. This smears out the signal and the small
scales get filtered away;

d(n̂) = A (s(n̂) + f(n̂)) + n(n̂), (3.2)

where A denotes convolution by an instrumental beam. This process can be described
mathematically as a convolution in pixel space or a multiplication in harmonic space.
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There are several advantages working in harmonic space, so we will introduce spherical
harmonics.

In normal flat space we can expand a function into wave-functions through a Fourier
transform. This makes it possible to decompose the function into different scales, or
modes. The function we are interested in is the CMB temperature field we observe
on the sky. The desired wave-functions are given by Laplace’s equation ∆2ψ = 0. As
we observe the temperature field on a sphere, we must solve this equation in spherical
coordinates. The solution to this equation is

ψ ≡ Y`m(θ, φ) =

√
2`+ 1

4π
(`−m)!
(`+m)!

Pm
` (cos θ)eimθ

for ` ≥ 0 and −` ≤ m ≤ `. The Y`m(θ, φ)’s are called spherical harmonics and are
eigenfunctions of the angular part of the Laplacian. and the Pm

` ’s are the Legendre
polynomials.

The temperature field can be expanded in terms of the spherical harmonics

∆T (n̂) =
∞∑

`=0

∑̀

m=−`

a`mY`m(n̂) (3.3)

The ` andm are conjugate to the real direction we are observing, n̂. This decomposition
is completely analogous to a Fourier decomposition in flat space. The a`ms contain all
the information about the temperature field. These functions are orthogonal, with
normalization ∫

dΩY`m (p̂)Y ∗`′m′ (p̂) = δ``′δmm′

Multiplying both sides of Equation 3.3 by Y ∗`′m′ (p̂) and integrating gives

a`m =
∫
dΩY ∗`m (p̂)∆T

The different modes are referred to as multipoles. For a value `, the typical scale
for a spot for is θ ∼ 180◦/`. For ` = 0, 1, 2, 3 and 4 the modes are referred to as the
monopole, dipole, quadrupole, octopole and hexadecapole. ` = 0 picks up the constant
part, ` = 1 picks up the linear part, ` = 2 picks up the quadratic part ` = 3 picks
up the cubic part, etc. This way we decompose a temperature map into the different
`-modes that corresponds to different scales. This decomposition is shown in Figure
3.1, where all the different “`-maps” sums up to produce the temperature map.

With the convolution by the instrumental beam, the CMB signal now becomes

A∆T (n̂) =
`max∑

`=0

∑̀

m=−`

b`a`mY`m(n̂), beam convolved map (3.4)

Here, b` is the Legendre transformation of the experimental beam. Since small scales
are being smudged out, we can only observe the scales up to some `max. Smaller scales
are simply not resolved by the instrument. How to choose this value will be determined
later.
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Figure 3.1: Decomposing the temperature map using spherical harmonics. Each set of
` corresponds to a certain scale on the sky.

3.2 The power spectrum

We need a way to quantify and describe the observed data. If we got a set of data,
what could it tell us? We need to be able to characterize the distribution so that theory
can be compared to experiments. It is one thing is to look at a map of the distribution
of matter or CMB, and another thing to see what these maps quantitatively can tell us
about cosmological models. We are only interested in the amplitude of the fluctuations
for the different scales. Under the assumption of statistical isotropy and homogeneity,
the specific positions of the maximum or minimum are irrelevant.

Maybe the most important statistics for the CMB and the large-scale distribution
of matter is the two-point correlation function, called the power spectrum in Fourier
space. In the case with distribution of mass, the mean density of the galaxies is n̄, and
the inhomogeneities in the distribution at a position ~x is given by δ(~x) = (n(~x)− n̄)/n̄.
If we work in Fourier space it is easier to separate large scales from small scales. The
Fourier transform of the inhomogeneity is δ̃(~k), where k denotes the scales. The power
spectrum P (k) is defined via the two-point correlation function

〈δ̃(~k)δ̃(~k′)〉 = (2π)3P (k)δ3(~k − ~k′) (3.5)

The angular brackets denote an average over the whole distribution and δ3() is the Dirac
delta function which constrains ~k = ~k′. The power spectrum tells us about the spread,
or variance, in the distribution. If there is a lot of over- and under-dense regions, then
the power spectrum will be large. If the amplitude is small, then the distribution of
matter is smooth.

The two-point correlation function is also the best measure of the anisotropies in
the CMB. Instead of Fourier transforming the CMB temperature, it is better to expand
it in spherical harmonics, since the temperature is a two-dimensional field defined on
the sky. The temperature field expanded in spherical harmonics is given in Equation
3.3.

The a`ms are drawn from a distribution which traces its origin to the quantum
fluctuations first laid down during inflation. This distribution is said to be Gaussian.
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The mean value for the a`ms are zero, 〈a`m〉 = 0, but their variance is not zero.
The a`ms are Gaussian random variables, and if there is statistical isotropy, then they
are statistically independent for different ` and m. We can then write 〈a`ma

∗
`′m′〉 =

δ``′δmm′C` where C` is the variance of the a`ms. It is important to note that for each
` the a`ms have the same variance, hence we only write the variance as C`.

For each ` we get (2`+ 1) different a`ms. For low values of ` we are only sampling
a few modes. For ` = 2 we only measure five components, and we do not get much
information about the variance for C2. Therefore is a fundamental uncertainty in the
knowledge we may get about the C`s. This uncertainty is called the cosmic variance.

(
∆C`

C`

)

cosmic variance

=

√
2

2`+ 1
(3.6)

This is most pronounced at low `, while for higher values of ` we can sample more
modes and the variance decreases. This effect is indicated by the blue band present in
Figure 3.2.

We are not interested in the details in the observed CMB, but in its statistical
properties. The quantum fluctuations from inflation were random, so our universe
is just one realization of a stochastic ensemble of universes. Just as we know the
statistical properties of throwing two dice, we will get different outcomes in different
series of throwing them. So although the outcomes looks different, they have the same
statistical properties.

The angular power spectrum (or anisotropy spectrum) is defined by,

C` =
1

2`+ 1

∑̀

m=−`

a`ma
∗
`m =

〈|a`m|2
〉

(3.7)

Here l is the multipole number and is related to the angular extension on the sky. It
is given by θ ' π/` radians = 180◦/`. This tells us how strong variations there are on
various scales. This is a very important function for cosmologists because the cosmolo-
gical parameters alters the shape of the power spectrum. The parameters change the
location, height and width of the peaks in different ways. So by measuring the power
spectrum accurately, we can estimate the values of the different parameters. Figure 3.2
shows the power spectrum from the WMAP five year data.

3.3 Likelihood

Inflation theory predicts that the signal we observe on the sky is drawn from a Gaussian
distribution. The probability distribution for a multivariate normal distribution is

p(x) =
(

1
2π

)n
2 1√

|C|e
− 1

2
(x−µ)T C−1(x−µ) (3.8)

Here, x is the data from the observed sky consisting of n elements and C is the covari-
ance matrix. We call this distribution the likelihood and from now write it as L(x). We
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Figure 3.2: The temperature power spectrum with points from WMAP five year data.
The full line is the best fit for the ΛCDM model and the shaded region around the
curve shows the uncertainty due to cosmic variance. The horizontal axes show how the
angles on the sky (upper axis) corresponds to the multipoles ` (lower). Courtesy of the
WMAP science team.

will study the centered distribution, i.e., µ = 0. Also, it is standard practice to work
with the logarithm of the likelihood, as this gives more manageable numbers. Using
thousand pixels gives us a log likelihood of the order of 1000, while the likelihood is
e1000. The large number in natural units may cause some numerical errors, hence it is
better to work with the logarithm of the likelihood. Taking the logarithm of the above
expression gives

−2 lnL(x) = n ln 2π + ln |C|+ xTC−1x (3.9)

In this analysis I will be dropping the first term, as it is just a normalizing constant,
and it does not change where the parameters gives the highest likelihood.
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3.4 Signal covariance matrix

To calculate the likelihood we must first find the covariance matrix for the data. For a
vector

X =



X1
...
Xn




the covariance matrix is defined as

Cij = cov(Xi, Xj) (3.10)
= E[(Xi − µi)(Xj − µj)] (3.11)
= 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉 (3.12)

The last equality is just a different type of nomenclature. Both E[] and 〈〉 denotes the
expectation value of the given element.

Adapting the data model in Equation 3.1 the covariance matrix of the observed sig-
nal d is given by C = 〈(di−〈di〉)(dj−〈dj〉)〉= 〈(d− 〈d〉) (

dt − 〈d〉t)〉= 〈(s + n + f− 〈s + n + f〉)(
(s + n + f)t − 〈s + n + f〉t)〉. The expectation value of the three components are zero,
〈s〉 = 〈n〉 = 〈f〉 = 0. We assume that none of the three components are internally
correlated, so the cross terms all are zero, 〈snt〉 = 〈sf t〉 = 〈nf t〉 = 0. The covariance
matrix becomes

C = 〈sst〉+ 〈nnt〉+ 〈fft〉 ≡ S + N + F (3.13)

Here S is the covariance matrix of the clean CMB radiation, N is the covariance matrix
of the noise from the instrument, and F is the covariance matrix of the foregrounds.

We utilize the fact that we are observing the signal on a sphere and expand the
signal in terms of spherical harmonics, as described in Equation 3.3. Inserting the
expression for the spherical harmonics into the CMB covariance matrix gives us

Sij = 〈s(n̂1)s∗(n̂2)〉 =

〈 ∞∑

`=0

∑̀

m=−`

a`mY`m(n̂1)
∞∑

`′=0

`′∑

m′=−`′
a∗`′m′Y ∗`′m′(n̂2)

〉

The spherical harmonics are just constants and we may pull them out of the averaging
brackets,

Sij =
∞∑

`=0

∑̀

m=−`

∞∑

`′=0

`′∑

m′=−`′
Y`m(n̂1)Y ∗`′m′(n̂2) 〈a`ma

∗
`′m′〉

We assume that the CMB field is Gaussian and isotropic, hence we do not depend on
the actual directions. This means that ` = `′ and m = m′, or 〈a`ma

∗
`′m′〉 = δ``′δmm′C`.

The Legendre polynomial P` may be written in terms of a sum of products of the
spherical harmonics P`(x̂ · x̂′) = 4π

2`+1

∑`
m=−l Y`m(x̂)Y`m(x̂′), and the signal covariance

matrix therefore reads,

Sij =
∞∑

`=0

∑̀

m=−l

Y`mY
∗
`mC` =

1
4π

∞∑

l=0

(2`+ 1)C`P`(cos θij), (3.14)
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where n̂1 · n̂1 = cos θij . Here we choose to parameterize the power spectrum with a free
amplitude q and tilt n like

C` = q

(
`

`0

)n

Cfid
` , (3.15)

where Cfid
` is a fiducial model and `0 is a pivot multipole. For a beam convolved map,

the signal covariance matrix becomes

Sij =
1
4π

`max∑

l=0

(2`+ 1) (b`p`)
2C`P`(cos θij), (3.16)

where p` is the effect of finite pixelization and principally acts the same way as the
beam function b`. Due to the beams finite resolution, the instrument can only resolve
scales up to a multipole `max. The value of this will be discussed in Section 3.5.1.

We assume that the noise is Gaussian and uncorrelated from pixel to pixel, with a
standard-deviation of σp. The covariance matrix then becomes

Nij = 〈ninj〉 = δijσ
2
i , (3.17)

where i and j are two pixel indices. Thus the noise covariance matrix is diagonal, with
variances on the diagonal.

We also need a term that could remove unwanted effects. In practice this is done
by adding an extra term in the covariance matrix. If we want to be insensitive to a
signal f(n̂) then we want it to have zero statistical weight. To do this we say that the
uncertainty of this component is “infinitely” large. In practice it is done by adding the
following term to the covariance matrix,

F = λfft (3.18)

Here, λ is a large constant and f is a signal on the sky, also called template, we wish to
be insensitive to. ff t is the outer product of the template. More detailed information
on the various signals will given in the WMAP-data section 7.1.

3.5 Technical considerations

3.5.1 Determining resolution parameters

There are two things we must think about when choosing `max and the pixelization to
represent the observed data. First of all we know that the resolution of the instrument
beam determines what scales are measurable. `max must therefore be chosen large
enough so that there is only negligible power beyond this multipole.

A Gaussian beam is a good approximation to the instruments that carry out the
CMB experiments. The total width of the beam profile extends forever, so as a measure
of the beam size, the Full Width Half Maximum (FWHM), θFWHM, of the beam is used.
As the name suggests, FWHM is the width of the beam pattern where the beam drops
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Figure 3.3: Show three different Gaussian beams. The full line shows a beam with
θFWHM = 2.20 which corresponds to a resolution supported by Nside = 64. Using this
beam, the typical scales observed is `FWHM ∼ 80, but it registers signal for scales much
smaller than this. We can see that we can choose `max considerably larger, around
130 for `max = 2Nside or 190 for `max = 3Nside. The dashed line is a beam with
θFWHM = 4.50 and is supported by resolution at Nside = 32. The dotted line shows a
beam with θFWHM = 9.00 which corresponds to a resolution supported by Nside = 16.

to half of its maximum. This gives us a number on the scales that are resolved by the
instrument.

The angular extension on the sky is related to the multipole number as θ ' π/`.
So for the FWHM, the typical scales the beam can resolve is `FWHM ' π/θFWHM. But
the FWHM is just a measure of the typical scales for the beam, and the beam does
resolve scales that are smaller than this. The Fourier transform of the beam profile is
also a Gaussian, given as,

B(`) = e−`(`+1)σ2/2 (3.19)

where σ = θFWHM/(
√

8 ln(2)). Using this formula, I have plotted five different beam
functions in Figure 3.3. Here we can see how the beam falls off with `. For high enough
` the beam suppresses the signal, and can not register the fluctuations on these small
scales. Or put another way, the beam can not resolve these small fluctuations, and they
are just smeared out. This gives us the largest multipole `max. We must choose `max

such that there is negligible power beyond this multipole. For the case of the smallest
beam, indicated in red, the typical scales are `FWHM ∼ 80. We can see that the beam
does have much power above this multipole, and has almost gone down to zero around
` ∼ 200. This may seem like a good value for choosing `max.

But there is a second aspect we must think about. We can not choose `max to be too



3.5 Technical considerations 37

large as aliasing can become a problem when we represent the data on the computer.
It may seem reasonable to make the pixel size the same size as the smallest scales that
the instrument can resolve. as this should seem sufficient to represent the smallest
scales. However this may cause some trouble. This has to do with the sampling rate
of the signal, just as with digitalized music, where we must sample the music signal
often enough to get good quality. From signal processing, the Nyquist theorem tell
us that we must sample the signal well enough to represent it without losing much
information. More specifically, the Nyquist rate , νN, at which we must sample a signal
must be at least twice the largest frequency, νmax, in the signal in order to avoid aliasing
effects. The largest frequency is also called the bandwidth. Thus the sample rate is
νN = 2νmax. This analysis is true for flat space, while we on the other hand are working
with functions on a sphere. So a good rule-of-thumb for our case is that the beams
FWHM must be at least 2.5 times the pixel size,

θFWHM = 2.5θpix (3.20)

HEALPix has Npix = 12N2
side pixels of equal area. The solid angle over the sphere

is 4π sr. The area for each pixel then becomes Ωpix = 4π
Npix

= π
3N2

side
. The angular

resolution of each pixel is θpix ≡
√

Ωpix =
√
π/3/Nside. By inserting this into Equation

3.20, we can now calculate what resolution value Nside that supports our beam. With
the above equations we can also express out choice of `max by Nside by choosing a
relation between `FWHM and `max. The recommended upper limit is `max = 2Nside,
but through various numerical techniques we can be pushed to `max = 3Nside. If we
set it lager than this we are likely to get nonsensical results, as aliasing will become a
problem.

HEALPix has a lot of advantages in its choice of pixelization to make it fast and
efficient. Further information on HEALPix is found in Appendix A.

3.5.2 Downgrading

Sometimes we can not work all the data that an experiment gives us. The data may
demand too much computer resources and the calculations may take too long time.
E.g., computing the likelihood, Equation 3.9, requires us to invert and calculate the
determinant of the covariance matrix. This operation scales as O(N3

pix).
HEALPix consists of twelve base-pixels. These pixels can be divided into smaller

pixels. Nside is the resolution parameter and denotes the number of pixels along the
edge of a base-pixel. The total number of pixels in the map is Npix = 12N2

side. This
way we can go between different resolutions for a given data set. When we downscale
our map to a lower resolution, the pixel sizes will also become larger, and we will not
be able to represent as small scales as we did before. We therefore need to make sure
that the experimental beam suppresses the signal for the small scales that will not be
supported by this resolution.

First we choose a pixelization that makes it possible for us to calculate the desired
value, here the likelihood, within a reasonable amount of time. To go from the original
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resolution to another we must first deconvolve the data as described in Equation 3.4.
This is simply done by division of the beam function in harmonic space, so it is best to
work with spherical harmonics. The original beam describing the instrument is usually
given by the experiment team. Then we must convolve with a new beam function
that corresponds to the new resolution. At a lower resolution we can not resolve scales
smaller than `max, thus we need an experimental beam suppresses all signal beyond this
value. Most experimental beams act like a Gaussian beam, so therefore we approximate
our new beam to a Gaussian beam.

The steps to downscale a temperature map are as follows:

1. First we transform the temperature field to spherical harmonics.

2. Then we deconvolve the beam and pixel window for the original resolution. In
harmonic space this is just a division.

3. Then we must convolve with the beam and pixel window corresponding to the
desired lower resolution.

4. Then we transform back to the temperature.

This gives us a temperature map that is connected to the physical scales we could
observe using an instrument with a larger beam.

3.5.3 Covariance matrix regularization by noise

The pixel noise rms can be evaluated from the expression σi = σ0/
√
Nobs,i, where

Nobs,i is the number of times the pixel i is observed and σ0 is the overall noise level per
observation. For current CMB experiments the signal is strongly sub-dominant to the
signal term on large angular scales. The signal-to-noise ratio of the WMAP is high at
large angular scales, about 150 for the V-band at ` = 100, and we can therefore neglect
it when working on large scales. However, the noise can be of use for us as it may be
used to regularize the total covariance matrix.

We can approximate the noise covariance matrix. Lets assume that the noise is
Gaussian and uncorrelated from pixel to pixel, with a standard deviation σn The cov-
ariance matrix then become Nij = σ2

nδij . In Eriksen et al. 2007 [24],they also computed
the noise covariance from the smoothed instrumental noise variance for the V -band
data, but they found out that it had no effect on the results, since its amplitude is
much lower than the CMB signal. I will therefore only use the approximated noise.
The noise for the two cases can be seen in Figure 3.4. The shape of Figure 3.4(a) comes
from the scanning pattern the instrument had when registering the CMB signal.

In Figure 3.5 we can see how the CMB signal compares to the instrumental noise.
The signal is the power spectrum Cfid

` , and the noise is given as N` = σ2
N

4π
Npix

l(l+1)
2π .

The top line shows the original signal, the middle shows the signal after it has been
beam convolved, and the lower line shows the noise. The signal is convolved with a
θFWHM = 4.5◦ beam, which corresponds to a Nside = 32 resolution. The signal to noise
is unity at ` ∼ 80.
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(a) Noise estimates from experimental data (b) Gaussian noise estimates

Figure 3.4: Figure 3.4(a) shows the noise rms per pixel. The noise in each pixel goes
down as a function of how many times the area is scanned over. Thus, it is the scanning
pattern of the experiment that gives it the peculiar shape. Figure 3.4(b) shows the noise
for each pixel when we approximate it to be Gaussian an uncorrelated from pixel to
pixel. Both images is given in Nside = 32.

1 10 100
Multipole, l

0.0001

0.01

1

100

10000

C
l l(

l+
1)

 / 
(2

π)
 (

µK
2 )

Figure 3.5: The dashed line shows the theoretical best fit power spectrum to the ob-
served data. The full line in the middle shows the power spectrum after it has been
convolved with a beam and pixel window. Due to the beam, the amplitude decreases
with growing `. The beam is θFWHM = 4.5◦, which is supported by a pixelization at
Nside = 32. The dotted line at the bottom shows the instrumental noise for a resolution
at Nside = 32. Compared to the signal, the noise is very small at low `. This results
in a signal-to-noise ratio of unity at ` = 79. The noise signal is actually constant, but
appears to grow as it is plotted as `(`+ 1)/(2π).
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For a pure CMB signal , Equation (3.16) with an upper bandwidth limit `max there
are

∑`max
`=0 = (`max + 1)2 real modes. Using the limit of `max = 3Nside we can only get

∼ 9N2
side independent modes. This is less than the number of pixels Npix = 12N2

side. By
simply counting the number of modes, it is clear that this signal-only covariance matrix
must be singular, and thus cannot be inverted. Since the matrix cannot be inverted we
cannot calculate the likelihood in Equation 3.9 either. This is a quantity we want to
be able to calculate.

To regularize the matrix it could be tempting to increase the value of `max to
4Nside. This will make the matrix invertible since the number of (projected) modes are
greater than the number of pixels. But this also makes it mathematically arbitrary,
highly pixelization dependent and not connected to the observed data since we cannot
observe scales for so large `s.

A better way to make the matrix non-singular is by adding noise to it. We therefore
add Gaussian, uncorrelated noise to each pixel. This has Npix independent nodes and
makes the total covariance matrix (Equation 3.13) invertible.



Chapter 4

Statistical methods

4.1 Bayesian parameter estimation

We now have a model of the CMB radiation. The power spectrum, C`, depends on
cosmological parameters and by varying these we get different correlation properties in
the CMB field.

There are various statistical methods to estimate the cosmological parameters from
the CMB data. It is common to use maximum likelihood analysis. The best estimate
of the parameters is the place in parameter space where the likelihood is the largest,
and we may also calculate the errors which is the width of the likelihood function.

We could calculate the likelihood at uniform locations in parameter space, e.g.,
in a uniform grid or with a Monte Carlo method using random,uniformly distributed
points. But likelihood evaluation is a time consuming process, and when using many
parameters, this would take too long. Besides we could also risk to calculate many
points where the likelihood is small and does not contribute much in estimating the
parameters. Instead we want a method that focuses on the peak of the likelihood func-
tion. Sophisticated frequentist techniques are developed to maximize the likelihood,
such as the Levenberg-Marquardt method and downhill simplex method. The problem
with these maximum likelihood methods is that they are not always good for parameter
estimation, because for a given parameter, the maximization depends on whether other
parameters have been integrated out. Getting the marginal best-fit value for a para-
meter by integrating over the others is a procedure that gets more difficult as the
number of parameters increase.

A Monte Carlo method uses random numbers to sample the distribution π(θ). Two
ways of drawing samples from a probability distribution are importance sampling and
Markov Chain Monte Carlo (MCMC) sampling. For importance sampling we can use
our knowledge about the shape of the likelihood-function in order to sample wisely.
Random samples are generated from a trial distribution different from (but close to)
the target one and then weighted according to the importance ratio. When using
MCMC sampling, a Markov chain is created where a Monte Carlo method is used to
propose new points. The chain will eventually converge to the target distribution we
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are looking for. I will be using the MCMC method in order to sample the likelihood
function. This way of sampling also solves the problem of finding the marginal best-fit
values of the parameters, as we can make one-dimensional histograms directly from the
samples.

4.1.1 MCMC - Metropolis-Hastings sampling

One of the most famous MCMC methods is the Metropolis-Hastings algorithm. This
algorithm was proposed by Metropolis et al. in 1953 [25] and later generalized by W.K.
Hastings in 1970 [26]. It has been adopted by researchers in many different scientific
fields such as biology, chemistry, computer sciences, economics, engineering, material
sciences, physics and statistics. The Metropolis-Hastings algorithm can be used for
generating random samples for any target distribution π(θ), regardless of analytical
complexity and dimensionality. The MCMC method uses the current point to calculate
the new one, and due to this correlation the estimates we get from these samples
often have much greater variances than those resulting from independent samples. In
MCMC a Markov chain is constructed, going through the various states in parameter
space. After a number of samples, the chain will reach its equilibrium or stationary
distribution, which is just the target distribution π(θ). The period before the chain
reaches its equilibrium is called the “burn-in” period.

From Bayes theorem we get that the probability for a set of parameters, θ, given
some observed data d is

P (θ|d) =
P (d|θ)P (θ)

P (d)

This is the target distribution we are want. P (θ|d) is called the posterior and P (θ) is
the prior. P (d|θ) is the likelihood, and quantifies the probability for a data set given
the theory with parameters θ. We change the notation of the likelihood to the one
in Equation 3.9, P (d|θ) ≡ L(θ). If we want to normalize this we know that when
we integrate the probability P (θ|d) over all values of the parameters θ, we must get
1. Hence the denominator of the expression (called the marginal likelihood) may be
viewed as a normalizing constant and is equal to the integral of the numerator over θ,
i.e.,

P (d) =
∫
L(d|θ)P (θ)dθ

This is independent of the parameters and does not affect the position in parameter
space where the likelihood function peaks or the width of it. We may therefore ignore
it when we are only interested in the maximum likelihood,

P (θ|d) ∝ L(θ)P (θ)

If we got some prior information about the parameters, θ, we can use them here.
But if we do not want to assume anything, we put in a uniform prior for the parameters.

P (θ|d) ∝ L(θ)

The steps in the Metropolis-Hastings algorithm are as follows:
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1. Start with an initial point θ0 with likelihood lnL(θ0).

2. Take a random step to a new point θ and calculate the new likelihood lnL(θ)prop.
Then calculate the difference between the new and old likelihood ∆ lnL(θ) =
lnL(θ)prop − lnL(θ0)

3. If ∆L(θ) ≥ 0, then accept the new point.

4. If ∆L(θ) < 0, compute ω = e∆L(θ).

5. Compare ω with a random number r. If r ≤ ω we accept the new point, else we
keep the old one.

6. Repeat steps 2-5 above until some criterion is satisfied. This could be a prede-
termined number of samples or some convergence criterion.

The MCMC method makes it possible to reach all states in the system, given enough
time. This way we can find the most likely state of the system. We can use the samples
from the chain when it has reached equilibrium to estimate the values of the parameters.

A smart choice for choosing new points is crucial for the chains to converge. If the
random steps are too large we may not get many points that are accepted. On the
other side, if we make the random steps too small then we may risk to never reach the
most likely state. A rule of thumb is that the step lengths should be be chosen so that
“roughly 50%” of all new points are accepted. To find the optimal step length we often
use the try and fail method.

I will be using a Gaussian proposal density for Q, n and A, and a Euler-based,
uniform proposal density for p̂.

4.2 Model Selection

In Section 4.1 I gave an outline of how to determine the parameters in a certain model
given a set of data. But how can we decide what model is the best? It is smart to
keep in mind Occam’s razor: the explanation of any phenomenon should make as few
assumptions as possible, eliminating those that make no difference in the observable
predictions of the explanatory hypothesis or theory. Model selection statistics is the
task of selecting a statistical model from a set of potential models, given data. Using this
we can choose between models and determine the need for new parameters. There is of
course several methods for model selection. Two methods are Bayesian evidence (model
comparison) and Bayesian information criterion. The Bayesian evidence is unbiased as
opposed to approximations such as the information criteria. I will be looking at the
Bayesian evidence in this analysis.

In parameter fitting we could ignore the marginal likelihood as it did not change
the position in parameter space where the likelihood function peaks or the width of it.
But in Bayesian evidence this is the quantity we are interested in. Hence, the marginal
likelihood is often called the evidence.
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For a specific model M the posterior probability of the parameters, θ, of that model
given the data is

P (θ|d,M) =
L(θ,M)P (θ|M)

P (d|M)
. (4.1)

Here, L(θ,M) is the likelihood of the data given the model and its parameters and
P (θ|M) is the prior on the parameters. The denominator P (d|M) is the evidence for
the model M. Again, this is not dependent on the parameters and is a normalizing
constant setting the posterior probability to unity. This is done by marginalizing the
posterior P (θ|d,M) over θ. The evidence is thus

E = P (d|M) =
∫
dθL(θ,M)P (θ|M), (4.2)

with the prior also normalized to unity.
The evidence is the average likelihood of a model over its prior parameter space.

More complex models will result in better fits to the data, i.e., higher likelihood, but it
will also occupy a larger volume. The evidence is proportional to the volume occupied
by the prior relative to the volume occupied by the prior. This automatically imple-
ments Occam’s razor. It favors simpler models with greater predictive power provided
they give a good fit to the data, quantifying the tension between model simplicity and
the ability to fit the data in the Bayesian sense. A good model must balance goodness
of fit with simplicity. Jeffreys (1961) [27] gives us a guideline to what is a significant
difference between two models. The evidences of the two models is E1 and E2. The
difference between the logarithm of the evidences is ∆ lnE = lnE1 − lnE2, and a pos-
itive value favours model M1. 1 < ∆lnE < 2.5 is substantial, 2.5 < ∆lnE < 5 is strong
and ∆lnE > 5 is decisive. ∆lnE = 2.5 corresponds to odds of about 1 in 13.

4.2.1 Nested Sampling - calculating the evidence

So how do we implement an algorithm for calculating the evidence? Using a Markov
Chain Monte Carlo (MCMC) method to map out the posterior is a good approach to
find estimates for the parameters that gives the maximum likelihood. But when using
this to calculate the evidence, it would generally not be correct since the technique
sample the peaks of the probability distribution well, but under-sample the tails that
might occupy a large volume of the prior.

In order to sample from the whole prior volume, John Skilling introduced a method
called nested sampling [28]. This scheme traces the variations of the likelihood with
prior mass, with the effects of topology, dimensionality and everything else implicitly
built into it. We are interested in the shape of the “nested” contours of likelihood. We
can not sort all the points by their likelihood values since there are so may of them, so
nested sampling simulates the operation statistically.

The following procedure for implementing this method is described by Mukherjee
et al. [29]. We start of by breaking up the prior volume into a large number of “equal
mass” points and order them by likelihood. To rewrite Equation 4.2 in the notation of
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Figure 4.1: Using the nested sampling, we find the evidence by integrating over the
prior volume X by moving up the nested contours of equal likelihood. Reprinted from
[29].

Skilling with dX = P (θ,M)dθ being the element of prior mass, we get

E =
∫ 1

0
L(X)dX (4.3)

The calculation of the evidence is now only a one-dimensional integral. Suppose we
can evaluate the likelihood as Lj = L(Xj), where Xj is a decreasing sequence of points

0 < Xm < ... < X2 < X1 < 1 (4.4)

This ordering of likelihoods are shown in Figure 4.1. We then sum up these values,
e.g., with the trapezoid rule, in order to get the evidence.

E =
m∑

j=1

Ej , Ej =
Lj

2
(Xj−1 −Xj+1) (4.5)

The evidence can be calculated by the nested sampling scheme in the following way:

1. Sample N points randomly from the full prior volume and evaluate their like-
lihoods. It is important that the whole prior volume is sampled over, i.e., (0,
X0=1), in order to get the tails of the distribution.
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2. Select the point with the lowest likelihood, Lj . The prior volume corresponding
to this point, Xj , can be estimated statistically. The average volume decrease is
given as Xj/Xj−1 = t, where t is the expectation value of the largest of N random
numbers drawn from a uniform distribution (0,1), which is N/(N+1)

3. Increment the evidence with Ej = Lj

2 (Xj−1 −Xj+1)

4. Replace the point with the lowest likelihood with a new point, which is within
the remaining prior volume (0,Xj). The new point must have a likelihood greater
than the point Xj have.

5. Repeat steps 2-4 until the evidence has been estimated to some desired accuracy.

This method works its way up the surface of the likelihood function, through the
nested contours of equal likelihood. Each time we replace a point the volume (or
mass) decreases, and this decrease is estimated statistically. The decrease factor t
is the expectation value of the largest of N random numbers drawn from a uniform
distribution (0,1), which is N/(N + 1). After j steps the volume has shrunk to Xj ∼
tj = [N/(N + 1)]j .

We need a way to decide when to terminate the process. This can be done by
a pre-set number of points. Or it could be when even the largest current likelihood
multiplied with the remaining full mass only increase the current evidence with a small
fraction f: (Lmax)iXi < fEi ⇒ terminate process After termination the N points with
the highest likelihood may be added to the evidence.

We can solve a multidimensional integral by Monte Carlo sampling. Unlike the
MCMC method we set a hard constraint on the likelihood to work our way up to higher
values. The most difficult task in implementing the algorithm is to sample uniformly
from the remaining prior volume, and not only sample from the peak of the likelihood
distribution. The new point can not be correlated to the existing points, but we may use
them as a guide. We find the covariance of the existing points, rotate our coordinates
to the principal axes, and create an ellipsoid that just touches the maximum coordinate
of the already existing points. If this ellipsoid is made too small, the new points may
be chosen too near the center of the likelihood distribution and thereby overestimating
the evidence. So to be sure that the new points are not biased towards the center, we
multiply our limit with a constant enlargement factor, thus making it possible to sample
from the full remaining prior volume with likelihood larger than the current limit. This
factor also allows the contour of equal likelihood not to be exactly elliptical. New points
can now be proposed uniformly within the ellipsoid until one with greater likelihood
replaces the old minimum. It is important to choose an adequate enlargement factor.
In [29], they made tests on the computed evidence as a function of number of initial
points for different enlargement factors. Based on their tests, they chose to work with
N = 300 and an enlargement factor of 1.5 for a five-dimensional model.
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4.3 Assessment of MC convergence

To check whether an MCMC algorithm has converged, i.e., if the output can be regarded
as samples from the target distribution and when a sufficient number of samples has
been produced, we must run some statistics. There has been developed several tests
concerning convergence, and many of them are referred in Cowles and Carlin [30]. One
of them is the Gelman-Rubin-statistics, and I will here use this to determine conver-
gence. The set up for this test is the following. When running m independent MCMC
chains in parallel, each producing n samples, we compute the following quantities

W =
1

m(n− 1)

m∑

j=1

n∑

i=1

(
θj
i − θ̂j

)2
(4.6)

B =
n

m− 1

m∑

j=1

(
θj − θ̂

)2
(4.7)

V =
(

1− 1
n

)
W +

1
n
B (4.8)

R =
V

W
(4.9)

θ̂ is the average over all m · n samples and θ̂j is the average of the samples in
chain number j. W estimates the variance within each chain, B estimates the variance
between all chains. When the chains have converged properly, V and W should be
identical and R should be close to unity. Gelman and Rubin [31] recommends that
the chains should run until R < 1.2. Figure 4.2 show how different MCMC chains
evolve. Four of the chains end up in the right equilibrium state after just some hundred
samples. The last chain is stuck in a local maximum, until it finally reach the same
state as the other chains after about 2 500 samples. The chains then fluctuate around
this equilibrium, and map out the posterior distribution.



48 Statistical methods

0 1000 2000 3000 4000
Sample number

0

0.05

0.1

0.15

0.2

M
od

ul
at

io
n 

am
pl

itu
de

Figure 4.2: The evolution of the modulation amplitude for five MCMC chains. Four of
the chains converge quite fast, while the last (pink) chain is stuck in a local maximum.
Eventually it does end up with the other chains, and it is when a chain has reached
this equilibrium that the desired posterior distribution can be mapped out.



Part II

Analysis of models with
hemispherical asymmetry





Chapter 5

Anisotropic universe models

5.1 Introduction

After the release of the first-year WMAP data in 2003, the question on statistical
isotropy has received much attention. The reason is two-fold.

The current cosmological concordance model is based on inflation theory, which
predicts a statistically and homogeneous universe. This theory is very successful in
describing cosmological observations, such as the CMB and large-scale power spectra,
which makes us favour the isotropic and homogenic model.

On the other hand, several studies of the WMAP sky maps have showed strong
hints of violation of statistical and non-Gaussianity.

For example, on large scales there is a deficit in temperature fluctuations compared
to the isotropic model. This was first seen by COBE, and WMAP now confirmed and
sharpened the observation. In an isotropic model this feature is unlikely and would
only happen in 0.7% to 10% of the realizations, depending on assumptions, choice of
statistic and analysis ([32] and references therein).

Also, statistical isotropy requires that all multipole moments of the CMB temper-
ature field in spherical harmonics to be uncorrelated at the two point level, i.e., the
signal is S ∝ N(0, I), where I is the identity matrix. But the data from WMAP show
correlations or alignments in the temperature field. The quadrupole and especially the
octopole of the WMAP temperature field are planar and they are aligned with each
other. The chance for such a close alignment to happen in an isotropic universe is 1/62
[9]. This can be seen in Figure 5.1. This alignment of the CMB multipoles on very
large scales has been dubbed the “axis of evil”.
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Figure 5.1: The quadrupole (top) and the octopole (bottom) components for the cleaned
all-sky CMB map made by Tegmark et al. (2003) [9]. Both of them have all of their
power perpendicular to a common axis in space.

Figure 5.2: WMAPs ILC sky map. Here you can see the asymmetry in fluctuation power
in two opposing hemispheres. The south-eastern hemisphere exhibit large differences
in temperature on scales larger than 3 − 5◦, while the north-western hemisphere does
not have as large fluctuation on the same scales. Courtesy of the WMAP science team.
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A peculiar large cold spot in the southern Galactic hemisphere was reported by
Vielva et al. 2004 [14]. The probability for this non-Gaussian detection is ∼ 0.4%.
Eriksen et al. 2004 [12] found a dipolar distribution of large-scale power. The literature
on the violation of statistical isotropy and non-Gaussianity have today grown very large
(e.g., Bernui et al. 2006 [33]; Bielewicz et al. 2005 [34]; Copi et al. 2006 [35]; Cruz
et al. 2005 [15]; Eriksen et al. 2004b,c [11][36], 2005 [37]; Jaffe et al. 2005 [38], 2006
[39]; Mart́ınez-González et al. 2006 [40]; McEwen et al. 2008 [41]; Räth et al. 2007
[42]; Yadav & Wandelt 2008) [43]), and it would be unwise not to take these aspects
seriously.

In this thesis I will be looking at the dipolar distribution of large-scale power first
reported by Eriksen et al. 2004 [12]. There is an asymmetry in the distribution of
fluctuation power in two opposing hemispheres. This can be seen in Figure 5.2. The
southern hemisphere contains large hot and cold spots, while the northern hemisphere
does not have similar large spots. The effect can be seen on angular scales down to
3 − 5◦ or l . 40. The asymmetry first reported by Eriksen et al. 2004 [12] has later
been confirmed by Hansen et al. 2004 [13], Eriksen et al. 2007 [24], and Hansen et al.
2008 [44].

In the paper by Eriksen et al. 2004 [12] they measure the amplitude of the large-scale
fluctuations on opposing hemispheres and study the ratio of the two amplitudes. This
is done with the WMAP data and with simulated maps with WMAP like properties.
The amplitude is computed using both the angular power spectrum and the N-point
correlation function. The results using the power spectrum show that the amplitudes
on the northern Galactic hemisphere are generally lower in the WMAP data than in the
simulated maps. On the southern hemisphere on the other hand, the amplitudes from
WMAP are generally higher than the simulated. When comparing the ratio between
the northern and southern hemisphere, only 0.5% of the simulated maps have a ratio as
low as the WMAP data. The axes are rotated to find what coordinate system that gives
the lowest ratio between the amplitudes of the opposing hemispheres. The analysis is
done for different multipole ranges between 2-63. Depending on the multipole range
included, the ratio for WMAP is high at the 95%-99% level, with the axes rotated to
maximize the asymmetry between northern and southern hemisphere. The coordinates
of the north pole in this rotated system is (θ, φ) = (80, 57) in Galactic coordinates.
For the N-point correlation function analysis the ratio of the large-scale fluctuation
amplitudes is high at the 98%-98% level.

Hansen et al. 2004 [13] consider the variations in the angular power spectrum by
sampling different patches on the sky. For an isotropic universe there should be no
preferred direction and we would expect the same values for each patch on the whole
sky. They also calculate the power spectrum on large scales by calculating it for the
northern and southern hemisphere, and it clearly indicate an asymmetry between the
two. The amplitude in the power spectrum in the range l = 5 − 40 is generally low
for the northern hemisphere, and high in the southern hemisphere. The coordinate
axes are rotated to give the maximal difference between the amplitudes of the northern
and southern hemisphere. The north pole of the coordinate system that maximizes
the asymmetric distribution is (80◦, 57◦) in Galactic co-latitude and longitude over the



54 Anisotropic universe models

whole multipole range ` = 5 − 40. This asymmetric distribution of power on the sky
provides a serious test for the cosmological principle of isotropy.

What is the reason for these features is unknown, but three potential candidates
are systematics, astrophysical and cosmological. The WMAP data seems to be remark-
ably free for systematic errors. The instrument has passed stringent tests that would
make a error at this level difficult [45]. An astrophysical explanation to this could be
contamination from residual foregrounds. But the foregrounds are accounted for very
successfully [46] [47]. The asymmetry of fluctuation power is also very stable with
respect to frequency and sky coverage.

Even if these two candidates are not the reason for the anomalies we observe in the
CMB, they can weaken the significance of the statistical anomalies.

The asymmetry in the CMB may of course be a realization of an isotropic universe,
even if it is unlikely. But it would be more satisfactory if there is some physical
phenomenon that causes these effects. After the first year release of the WMAP data
showed hints of violation of statistical isotropy and/or non-Gaussianity, there has been
much interest in anisotropic universe models. Physicists and theorists have come up
with new theories to explain these different features. I will here present some theories.

5.2 Anisotropic inflation models

The inflation theory proposed by Guth solved the horizon, flatness and monopole prob-
lems and in addition provides an mechanism for generating primordial density perturb-
ations. These perturbations give rise to galaxy formation and temperature anisotropies
in the CMB we see today. However inflation predicts statistical homogeneity and iso-
tropy. The observed asymmetry in the CMB has caused theorists to come up with new
models with anisotropic inflation, and inflation models can be constructed to violate
statistical isotropy (e.g, Gümrükçüoglu et al. 2007 [48]; Pullen & Kamionkowski 2007
[49]; Kanno et al. 2008 [69]; Yokoyama & Soda 2008 [74], Ackerman et al. 2007 [50],
Erickcek 2008 [65]).

5.2.1 CMB statistics for a direction-dependent primordial power spec-
trum

The assumption of statistical isotropy of primordial perturbations is an assumption
that should be tested. Pullen & Kamionkowski [49] develop cosmic microwave back-
ground statistics for a primordial power spectrum that depends on the direction and
the magnitude of the Fourier wavevector. The density perturbation to a point in space
x is given by δ(x). If we Fourier expand δ we get the Fourier transform δ(k), where k
is the conjugate to the real space vector x. As in Equation 3.5 the power spectrum is
defined by

〈δ(k)δ∗(k′)〉 = δD(k− k′)P (k) (5.1)

The angular brackets denote an average over all realizations of the random field, and
δD is Dirac’s delta function. In a statistically isotropic universe the power spectrum,
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P (k), only depend on the magnitude, k, of the wavevector k, as in Equation 3.5. But
if it is not isotropic, the power spectrum also depend on the direction k̂. The most
general power spectrum can be written as

P (k) = A(k)

[
1 +

∑

LM

gLM (k)YLM (k̂)

]
(5.2)

Here YLM (k̂) are the spherical harmonics, and gLM (k) quantifies the departure from
statistical isotropy as a function of k. For gLM (k) = 0, we get the usual statistical
isotropic power spectrum A(k), which only depend on the magnitude k.

This will change our predictions of the CMB. The spherical harmonic expansion of
the temperature field was given in Equation 3.3. For statistical isotropy, the a`ms are
statistically independent for different ` and m, and we get 〈a`ma

∗
`′m′〉 = C`δ``′δmm′ . C`

is the angular power spectrum and is the spherical version of the power spectrum P (k).
When statistical isotropy is broken there are correlations between a`ms for different `
and m. The two-point correlation for statistical isotropy is given by Equation 3.14,
i.e., it only depends on the angular separation between two points. When breaking
statistical isotropy this is no longer necessarily true.

If we consider a primordial power spectrum as given in Equation 5.2, we can write
the covariance matrix as

〈a`ma
∗
`′m′〉 = C`δ``′δmm′ +

∑
LMξLM

`m`′m′DLM
``′ (5.3)

The first term on the right side denotes the usual power spectrum for statistical isotropy,
while the second term describes departures from statistical isotropy. The upper-case
indices LM are used for power anisotropies, and the lower-case indices `m are used for
temperature/polarization anisotropies.

So if the primordial perturbations are statistically isotropic and Gaussian, then the
statistics of the CMB can be fully described by the set of C`s. But if the perturbations
deviates from statistical isotropy and this can be described in terms of spherical har-
monics YLM (k̂), then the two-point statistics can be described by an additional term
consisting of the set of multipole moments DLM

``′ .
They propose two tests for departures from statistical isotropy. The first is called

”The power multipole moments” and can be used to search in a model independent
way for departures from statistical isotropy. But if a specific model is introduced with
a particular parameterization of the functions gLM (k) then the ”minimum variance
estimator” test can improve the precision with which these parameters can be con-
strained.

5.2.2 Imprints of a primordial preferred direction on the CMB

Ackerman et al. [50] proposed that a violation of rotational invariance during inflation
could cause certain effects that might be observable today, such as an imprint on the
CMB. This violation may have been caused by an effect that has disappeared in the
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later universe. The effects of this violation are expected to be scale-invariant, just as
the amplitudes of the perturbations set up during inflation are scale-invariant.

The breaking of rotational invariance gives rise to correlations between multipole
moments that would normally vanish and also alters the predictions for the usual
multipole moment correlations.

Here they change the power spectrum for the primordial density perturbations as

P ′(k) = P (k)
(
1 + g(k)(k̂ · n)2

)
= P (k)

(
1 + g∗(k̂ · n)2

)
(5.4)

The last equality comes from the assumption that the same arguments that lead to
the scale-invariant Harrison-Zel’dovich spectrum, imply that g(k) is independent of
k, which makes it a constant g∗. Note that this is a special case of Equation 5.2.
The change of power spectrum also change the predictions for the expectation values,
〈a`ma`′m′∗〉, of the microwave background anisotropies.

〈a`ma`′m′∗〉 = 〈a`ma`′m′∗〉0 + ∆(`m; `′m′) (5.5)

The subscript 0 denotes the usual invariant piece, while the last term is the perturbation
of the isotropic part. The expectation values only depend on three parameters, the
amplitude g∗ and a direction on the sky defined by a unit vector n. This theory can be
directly compared with observations to probe the existence of small Lorentz-violating
effects in the very early universe.

This was done by Groeneboom & Eriksen 2008 [51] using the WMAP data. For
` ≤ 400 using the W -band data, they found that the amplitude g∗ = 0.15 ± 0.039
and the preferred direction is (l, b) = (110◦, 10◦). Using the V -band data they found
a similar result with the amplitude g∗ = 0.10 ± 0.04 and the preferred direction is
(l, b) = (130◦, 20◦). Figure 5.3 shows the anisotropic contribution for a simulated map
with parameters corresponding to the W map posterior.

5.3 Dark energy

Dark-energy models may also explain the the departure from statistical isotropy. (Battye
and Moss [52], Koivisto and Mota [53])

5.3.1 Late, anisotropic acceleration of the universe

Koivisto and Mota [53] proposed that anisotropies in the dark energy may be the
reason for the observed anomalies in the CMB. One motivation for this idea is that the
large scales that we are observing the anomalies in the CMB are the same that enter
the horizon at the time when the dark energy started to dominate. Dark energy has
negative pressure, and causes the expansion rate of the universe to accelerate. If the
pressure varies with direction, then the universal expansion becomes anisotropic and
this could affect the low multipoles of the CMB. A similar CMB pattern may occur
in an universe which is ellipsoidal at the time of last scattering. To distinguish these
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Figure 5.3: A simulated realization drawn from a Gaussian distribution with zero mean
and a covariance matrix given by the anisotropic term in the ACW model, computed
for an asymmetry amplitude of g∗ = 0.14 and a preferred direction (l, b) = (110◦, 10◦),
marked by red dots. Notice the rotational structure about the preferred direction. The
amplitude of the anisotropic component is±15µK, or ∼ 3 % of the isotropic component.
Reprinted from [51].

two scenarios one can use data from supernovas. The Robertson-Walker (RW) metric
cannot describe an anisotropic expansion, so the authors introduce the Bianchi type 1,
B(1), metric. This way the universe can expand at different rates in different directions.
Their results are very interesting. Even if the CMB formed isotropically at early times,
it could be distorted by the anisotropic acceleration caused by dark matter at a later
time so that it would appear anomalous at large scales. The anisotropic distribution
of dark energy may explain the observed expansion of the universe and the large scale
anomalies in the CMB.

Gordon et al. 2005 [32] examine the possibility that statistical isotropy is spontan-
eously broken in the CMB. They introduce two models for isotropy breaking: additive
contributions and multiplicative modulation of the intrinsic anisotropy. The additive
contribution is less likely to produce the observed alignments in the CMB than the
isotropic fluctuations. Multiplicative models overcome these difficulties. They generate
stronger alignments than WMAP in 30-45% of the realizations.
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5.4 Phenomenological description by a dipolar modula-
tion

Instead of the standard isotropic CMB temperature we may apply a modulated field to
the isotropic signal as introduced by Gordon et al. [32]. Here we suggest a model with a
multiplicative modulation field to the isotropic CMB signal. The physical process that
created this dipole field is unknown. I am mostly interested in how well the parameters
of the model fit the data. The signal that we are receiving can be written as

d(n̂) = s(n̂)(1 + a(n̂)) + n(n̂) (5.6)

where a(n̂) = A(p̂ · n̂) is the modulation field, with p̂ as the direction of the modulation
axis and A is the amplitude of the modulation field. The amplitude A of the modu-
lation field is not to be confused with the beam convolution A of the signal. s(n̂) is
a statistically isotropic and Gaussian random field with power spectrum C`, just as in
Section 3.1. It is the modulated signal that is anisotropic, but it is still a Gaussian,
random field.

Doing a similar calculation as for the isotropic model, we end up with the covariance
matrix

C(n̂, m̂) = S̃ + N + F, (5.7)

where
S̃(n̂, m̂) = [1 + a(n̂)]S(n̂, m̂)[1 + a(m̂)], (5.8)

S(n̂, m̂) is the same as in Equation 3.14, the noise, N, as in Equation 3.17 and the
foreground template,F, as in Equation 3.18.

To get a better feeling of what this field do, I have created a simulated, isotropic
CMB map. This map is then multiplied with a modulation field, where the amplitude
A = 0.1 and the direction of the axis is (θ, φ) = (2, 5) in radians. This gives us
a modulated map, where the temperature in one hemisphere become more uniform,
while the other get larger temperature differences. This is illustrated in Figure 5.4.

The first reports on hemispherical asymmetry showed the effect on scales up to
` = 63 by Eriksen et al. [12] and up to ` = 40 by Hansen et al. 2004 [13]. This
asymmetry between the northern and southern hemisphere was also maximized when
rotating to a special coordinate system. An analysis based on the modulated model
in Equation 5.6 was done by Eriksen et al. 2007a [24] by using an optimal Bayesian
framework on the three-year WMAP data for scales up to ` . 40. This way we
can quantify the asymmetry using the amplitude A along with the direction of the
field, p̂. The model with the isotropic CMb sky modulated by a dipole field gave
a substantially better fit to the WMAP data than the purely isotropic model. The
Bayesian log-evidence difference is ∼ 1.8 in favour of the modulated model, which ranks
as substantial. The amplitude is found to be 0.114 and the direction of the dipole axis
points towards (l, b) = (225◦, −27◦). The frequentist probability of obtaining such a
high amplitude in an isotropic universe is ∼ 1%.

A paper by Hansen et al. 2008 [44] shows that the hemispherical power asymmetry
also is evident at higher `s, up to 600. This is the motivation for doing an analysis based
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(a) Isotropic map (b) Modulation field

(c) Modulated map

Figure 5.4: 5.4(a) shows a simulated, isotropic map. The fluctuations are statistically
the same on all scales over the entire sky. 5.4(b) is the modulation field 1+A(p̂·n̂), with
amplitude A = 0.4 and the direction of the modulation field p̂ at coordinates (θ, φ)=(2,
5) in radians. In 5.4(c) the isotropic temperature field has been multiplied with the
modulation field. We can here see how the modualtion field change the temperature
in two opposing hemispheres. The temperature in the northern hemisphere now looks
more uniform, while the temperature fluctuations in the southern hemisphere are larger
than in the isotropic map. The amplitude has been set large to make the difference in
the two maps more distinct.
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on this model again for higher values of `. They also found that the dipole amplitude
tends to decrease with `.

The problem now is to try and estimate the three parameters introduced here, the
amplitude A and direction p̂ of the modulation field, for larger values of `. We have also
chosen to parameterize the angular power spectrum with a free amplitude q and tilt
n as defined in Equation 3.15. There is a total of five parameters we must determine.
This can be done by using the method of parameter estimation given in Chapter 4. In
the next chapter I will go through how this method is implemented in a program. The
code for calculating the Bayesian evidence is also presented here.

Even if it is easy come up with new theories, it might be hard to test them. Power
spectrum estimators scales as O

(
Npix

3
2

)
, while the calculation of the likelihood scales

as O (
Npix

3
)
. We must therefore do some tests to see for what resolution it is possible

to do an analysis using this brute force way of inverting and calculating the determinant
of the covariance matrix in the likelihood.



Chapter 6

Implementational Details

In this chapter I will go through the codes that carry out the calculations of the methods
introduced in Chapter 4. The codes are only pseudo-coded, as a complete code would
take up too much space, and it a pseudo-code can be easier to read.

6.1 The Program

I have used two programs that basically do the same thing. They both calculate the
values of the desired parameters and the evidence. The difference is the way they
handle matrices. The first program use LAPACK for the matrix operations and MPI
to run multiple chains of the same program on different processors. Every chain has to
go through a burn-in period before it converges.

The second program uses ScaLAPACK. This program library basically does the
same as LAPACK. The difference is that it can split up a matrix into smaller parts and
then given to different processors. All processors can then work on their parts of the
matrix at the same time, and this way the total matrix operation will be completed
faster.

When starting the program the first thing to do is to initialize all the necessary
parts. One must allocate arrays to contain the data and read it in, exclude the pixels
that are masked out, initialize the random number generators, start MPI, distribute
the data to all the processors, etc. Only the pixels that are not excluded by the mask
are included in the data vector, so the computational time goes down when the mask
exclude more pixels.

6.1.1 MCMC code

I here present the pseudo-code for estimating the parameters using Metropolis-Hastings
algorithm. A Gaussian proposal density is used for Q, n and A and an Euler-matrix-
based, uniform proposal density is used for p̂. When using a Gaussian proposal density,
one simply make a small perturbation to the existing point, qi. This perturbation is
determined by a small amplitude qrms and a random Gaussian number. The random
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Figure 6.1: Here is a sketch of how the direction of the modulation axis, p̂ is proposed.
Left:Rotate vector so it is parallel to the z-axis. Middle: The new point is randomly
chosen within the disc indicated around the z-axis, and the vector is rotated to the new
point. Right: The vector is now rotated back relative to the old point.

number is picked from a Gaussian distribution with µ = 0 and σ = 1. So the new point
is qi+1 = qi + G(0,1)qrms.

The proposal for new points of the axis on the sky, ~p, is done in a different way.
The new point, ~pi+1, must lie within a disc with the original point ~pi as the center.
The angle of this disc is θp. The original point ~pi has coordinates (θi, φi). We know
the rotation matrices

Mx =




1 0 0
0 cosα sinα
0 − sinα cosα


 ,My =




cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ


 ,Mz =




cos γ sin γ 0
− sin γ cos γ 0

0 0 1




First we rotate our original point so its parallel to the z-axis, i.e. p̂i ‖ ẑ. To do this
we must first rotate around the z-axis with angle −φi, then rotate around the y-axis
with −θi. From this position we can now propose a new point. The new point must
be chosen uniformly within θ ∼ U [0, θp] and φ ∼ U [0, 2π]. We then rotate to this new
point: around the y-axis with θ and then around the z-axis with angle φ. This new
point is then rotated back relative to the old point. We rotate around the y-axis with θi,
then rotate around the z-axis with angle φi. So the complete set of transformations for
proposing a new point is given as pi+1 = Mz(φ0)My(θ0)Mz(φ)My(θ)My(-θ0)Mz(-φ0)pi.
This process is shown in Figure 6.1.

The following is the code for parameter estimation using MCMC chains.

! Propose initial point for all parameters within prior volume
q, n, a, theta, phi

! Compute likelihood for this point
lnL_0

! Run N samples
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do i = 1, N

! Propose new point
q_prop = q + Gaussian random number * q_rms
n_prop = n + Gaussian random number * n_rms
a_prop = a + Gaussian random number * a_rms
! theta_prop and phi_prop are proposed using an Euler-matrix-based,
! uniform proposal density

! check if parameters are within borders

! Compute new likelihood
lnL_prop

! Apply Metropolis-Hastings rule
if (lnL_i > lnL_0) then

accept point
else

if (uniform random number < exp(lnL_prop - lnL_0)) then
accept

else
reject

end if
end if

if (accept) then
numaccept = numaccept + 1

! replace the parameters with the new
q = q_prop
n = n_prop
a = a_prop
theta = theta_prop
phi = phi_prop
lnL = lnL_prop

end if

!write to file

end do

The calculation of the likelihood is done as in Equation 3.9. First, the covariance
matrix is constructed by calculating all the parts in 5.7 with the proposed paramet-
ers. This matrix is symmetric and positive definite. Then a library (LAPACK or
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ScaLAPACK) is used to Cholesky factorize this matrix, and the factorization is used
to find the inverse and determinant of the covariance matrix.

6.1.2 Code for nested sampling

In this section I will present the code for calculating the evidence using the nested
scheme. Here, a Gaussian proposal density is used for all the parameters.

! Setting up the prior volume
priors(1,1) = -1.d0 ! low prior for cos(theta)
priors(1,2) = 1.d0 ! high prior for cos(theta)
priors(2,1) = 0.d0 ! low prior for phi
priors(2,2) = 2.d0*pi ! high prior for phi
priors(3,1) = 0.d0 ! low prior for A
priors(3,2) = prior_f ! high prior for A
priors(4,1) = 1.d0 - prior_q ! low prior for q
priors(4,2) = 1.d0 + prior_q ! high prior for q
priors(5,1) = -prior_n ! low prior for n
priors(5,2) = prior_n ! high prior for n

! Initialise N points randomly from the prior
do i = 1, N

! Propose a random point uniformly within the prior volume
do j = 1, numpar

samples(i,j) = priors(j,1) + rand_uni(rng_handle) * (priors(j,2)-priors(j,1))
end do

! Compute likelihood
lnL_x(i)

end do

! Find the point with the lowest likelihood, L_j
do i = 1, N

if (L_x(i) < L_j) then
L_j = L_x(i)
j = i

end if
end do

!Initialize mass fraction
X = 1
t = N / N + 1
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! Compute new points within the remaining volume
do i = 2, num_samp

! Compute the mean (center) of the N points
do k = 1, numpar

centroid(k) = sum(samples(:,k)) / real(n,dp)
end do

! Compute ellipsoid that just touch the outer points
! Expand the ellipsoid with an enlargement factor
L_param

! propose new points until one has a higher likelihood
reject_sample = .true.
do while (reject_sample)

! Propose a point near the edge of the ellipsoid,
! making a small perturbation eta
params_prop = centroid + matmul(L_param, eta)

! Check if the new point is within the prior volume
if (outside_prior) cycle
! i.e. go to the start of the while-loop and propose a new point

! Compute likelihood for this new point

! Compare likelihood with the lowest one
if (lnL_prop > L_x(j)) then

! accept new point
reject_sample = .false.

else
! reject sample

end if
end do

! write likelihood and fraction of the prior mass to file
write(unit,*) lnL_j, X

! Replace lowest point with the proposed one
lnL_j = lnL_prop
X = X * t
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! Find a new lowest point within the N samples
L_j = 1.d30
do k = 1, n

if (L_x(k) < L_j) then
L_j = L_x(k)
j = k

end if
end do

end do

After the program has computed the points and written them to file, I can calculate
the evidence by using the midpoint rule as in 4.5. The file writes out the logarithm of
the likelihood, so we need to take the exponent of this to use it. Since these exponents
become so small the computer has problems computing the evidence. So we subtract
the largest value of the Lj to make the exponents manageable.

Ej =
Lj

2
(Xj−1−Xj+1) =

elnLj−Lmax+Lmax

2
(Xj−1−Xj+1) =

eLmaxelnLj−Lmax

2
(Xj−1−Xj+1)

So the evidence becomes

E =
eLmax

2

m∑

j=1

elnLj−Lmax(Xj−1 −Xj+1)

6.2 Computational expense

We now want to find out how much time it takes to produce one sample. There are two
things that take a lot of time when doing the computation. First, we must construct the
covariance matrix, and then we must evaluate the likelihood. When using LAPACK,
only one processor

Using a Monte Carlo method to map out the posterior or calculating the evidence,
we must calculate the likelihood several thousand times. To reduce the time of each
evaluation of the likelihood, we could parallelize the matrix operations. When using
LAPACK, only one processor alone can perform the needed operations on the covariance
matrix. But by using ScaLAPACK, several processors can get a part of the covariance
matrix, so all processors can work simultaneously, hence reducing the time of calculating
the likelihood. An introduction to ScaLAPACK can be found in Appendix B.

For ScaLAPACK we have to find out what block size and number of processors that
does the most time efficient calculation. An initial test using 25 processors showed that
the computational time was minimized when using a block-sizes of MB=NB=32. This
number was then used for calculating the time per sample as a function of the number
of pixels used, Npix. It was tested for two maps at Nside = 16 and Nside = 32.

The used block-sizes may not be the most ideal when using a number of processors
different from 25. As the initial test was done using 25, this may be the best (cubic)
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Npix 1 proc 4 procs 9 procs 16 procs 25 procs
1408 2.71 0.33 0.21 0.17 0.17
1664 3.87 0.36 0.22 0.18 0.17
1920 5.20 0.66 0.45 0.30 0.28
2176 7.14 0.99 0.69 0.43 0.40
2432 9.20 0.79 0.53 0.33 0.30
2944 13.84 2.11 1.33 0.84 0.73
5888 92.08 39.31 18.63 24.05 9.39
6912 131.44 74.51 34.78 104.24 18.21
7936 157.53 78.80 37.64 75.05 19.59
8960 209.30 122.49 58.03 71.60 29.98
9984 266.11 122.59 58.17 131.25 30.47
11520 423.86 212.60 101.05 263.49 53.27

Table 6.1: Time per sample when using different number of processors. The first column
show how many pixels that are used. The second column show the time per sample
when only using one processor. The following columns show the time per sample when
using 4, 9, 16 and 25 processors. ScaLAPACK is used to calculate the likelihood by
distributing the covariance matrix to the processors. The block sizes are MB=NB=32
and were choosen based on a test using 25 processors. Therefore the may not be optimal
for the other processors. This is evident for the case when using 16 processors, as the
processing time is much larger than when using less processors.

block-size for other choices of processors. Using a cubic block-size (MB = NB), may
also not be the fastest choice. Further tests should be run in order to find the best
partition factors MB and NB when using a certain number of pixels and number of
processors. The time per sample using 1, 4, 9, 16 and 25 processors are presented in
Table 6.1 and illustrated in Figure 6.2. The times are calculated when using different
Here we can clearly see that something is not working out right for the computation
when using 16 processors. The choice of block-size used here is not very optimal when
using a 4× 4 processor grid.

6.3 Testing the program

As a simple test I created a synthetic, isotropic map at Nside = 16, multiplied it with
a modulation field as in Equation 5.6 and then added random, Gaussian noise to each
pixel. The amplitude was set to A = 0.1 and the direction was set to (2,5). This map
was then run through the program. For ` = 47 the results gave an amplitude at A
= 0.118 ± 0.036 ∼ 3.3σ. So the initial sat amplitude is within the uncertainty of the
results.

The program was also ran with the same isotropic map, without the modulation
field, and added noise. This gave an amplitude of A = 0.035 ± 0.026 ∼ 1.3σ. So even
if I sat A = 0, it still finds a non-zero amplitude, even if it is very small. So a non-zero
amplitude can originate from an isotropic universe as well. But the uncertainty of this
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Figure 6.2: The average time used for each sample as a function of the number of pixels
used. The benchmarks have been done for 1, 4, 9, 16 and 25 processors. The time per
sample goes down as more processors are used. But the scale up is not optimal. When
using 25 processors, the speed-up is only about 8 times faster than with one processor.
The case when using 16 processors does not compute well with the chosen block size.
For reference, N3

pix, is also plotted. For a high number of pixels, the time per sample
scales a bit better than N3

pix.

calculation is very large. The distribution of the amplitudes and axes is given in Figure
6.3. The direction is clearly preferred in the case of the modulated temperature map,
while the isotropic map does not seem to favor any direction.

So for this simple test, the program finds the amplitude and direction of the mod-
ulation field.

When running maps with different seeds for noise based on the same data set, I got
different values for the amplitude. The reason for this was that the noise dominates
at small scales, just as showed in Figure 3.5. To fix this problem I split the signal
covariance matrix of Equation 5.8 into two parts, one modulated low-` part and one
isotropic high-` part, S = Smod + Siso. The first part is given as

Sij,mod =
1
4π

`mod∑

`=2

(2`+ 1)C`(p`b`)2P`(cos θij) (6.1)

where we let all of the parameters to vary. The second part is

Sij,iso =
1
4π

`max∑

`mod+1

(2`+ 1)C`,iso(p`b`)2P`(cos θij) (6.2)
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Figure 6.3: The upper row show the posterior distribution of the amplitude in the
modulation field, while the two lower pictures shows the posterior distribution of the
dipole axis of the field. Posterior distribution for the amplitude and axis of the dipole
modulation field for two simulated maps. The left column shows the distribution for an
isotropic map where the temperature field has been modulated. Here, an axis is clearly
preferred. The two pictures on the right shows the distribution for a purely isotropic,
simulated map. This does not show any preferred axis. The isotropic map is used to
make the modulated map. Both maps have Gaussian noise added to them.
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For the isotropic part we set A = 0, q = 1 and n = 0.
The isotropic part acts as a buffer for the calculations. There are two things that

cause the signal not to be dominant at high values of `. First of all we have signal-
to-noise ratio at some `unity, so for ` values above this, the noise will dominate over
the signal. Secondly, cutting off the multipoles at `max may give some aliasing effects,
causing the signal to be distorted around this multipole. We can now choose `mod

lower than `max and investigate the properties for the modulation field up to this value.
This splitting may not seem like physically well-motivated, but the purpose here is to
characterize its properties.

After changing the signal covariance matrix, the amplitude of the modulation field
was much more stable when using different noise seeds, as the noise did not dominate
at `mod.



Part III

Application to the WMAP data





Chapter 7

The WMAP experiment

7.1 Data

The data I will be using in this analysis are the five year WMAP data. These are
available from LAMBDA1. The satellite observes the Cosmic Microwave Background
radiation in five frequencies. Specifications for each frequency is given in Table 7.1. The
purpose of producing multi-frequency maps is to separate the CMB anisotropy from the
foreground emission. The four main physical mechanisms that contribute to the galactic
foreground emission are synchrotron radiation, free-free radiation (Bremsstrahlung),
thermal radiation from dust and radiation from charged spinning dust and grains.
Figure 7.1 shows the intensity for the different foregrounds and the CMB. At high
frequencies, dust dominates, and at very low frequencies synchrotron and free-free
emission are important. For the frequency range in between, from 30 to 200 GHz, the
CMB signal often have the largest intensities. The spectral shape of the foregrounds
are all different from one another and different from the blackbody spectrum of the
CMB. Detections at different frequencies can be used to to extract the CMB signal
from the foregrounds.

We wish to remove as much foreground emission as possible, in order to get a better
view of the clean CMB signal. Bennett et al.(2003) [54] proposes three conceptual
approaches that can be used, both individually and in combination, to remove the
dominating emission from the galactic foregrounds.

The first is to use existing measurements of the emission from galactic foregrounds

1Legacy Archive for Microwave Background Data Analysis (LAMBDA),
http://lambda.gsfc.nasa.gov/

Properties K-band Ka-band Q-band V-band W-band
Frequency(GHz) 23 33 41 61 94
Number of Differencing Assemblies 1 1 2 2 4
Beam Size (deg) 0.88 0.66 0.51 0.35 0.22

Table 7.1: Specifications for the five differencing assemblies onboard WMAP
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Figure 7.1: The frequency bands were chosen to be in the frequency region where the
CMB anisotropy is dominant over the foreground emissions. a) Spectral shapes of the
CMB blackbody temperature anisotropy and the galactic foregrounds. b) Foreground
power spectra for each of the WMAP band using a Kp2 mask. Reprinted from Bennett
et al. 2003 [55].
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σ0 for each differencing Assembly
K1 Ka1 Q1 Q2 V1 V2 W1 W2 W3 W4

Stokes I 1.4391 1.4638 2.2449 2.1347 3.3040 2.9458 5.8833 6.5324 6.8849 6.7441

Table 7.2: Pixel noise in units of mK can be evaluated from Nobs with the expression
σ = σ0/

√
Nobs

at lower (radio) and higher (far-infrared) frequencies. The maps of the foreground
emission are called foreground emission templates. These can be scaled to the WMAP
frequencies and subtracted. The weakness of this method is the uncertainties of the
external data and the scaling errors due to position-dependent spectral index variations.

The second approach is to use the different WMAP maps so that the galactic signals
with specified spectra are canceled, giving us a map consisting only of CMB. This is
less problematic than the first approach since the frequency-difference between the
maps is smaller. Here we do not make any assumptions about the foreground signal
strength, but we require knowledge of the spectra of the foregrounds. Assuming a
constant spectral index for the different frequencies at which WMAP observes is less
problematic than the first technique, since the frequency range is smaller. Since the
technique only depends on WMAP data, it does not get systematic errors from other
external experiments. But this technique does add a significant amount of extra noise
the the resulting CMB map.

The third approach is to determine the spatial and/or spectral properties of each of
the galactic emission mechanisms by performing a fit to either the WMAP data alone
or in combination with external data sets.

For the analysis I will be using the ILC map and the Q-, V - and W -band maps that
are foreground corrected. In the foreground corrected maps much of the foreground
emission has been removed to get a better view of the clean CMB-signal. The K and
Ka are not foreground reduced since they were used to produce the foreground models.
Therefore I only use the maps from the Q-, V- and W-bands. A thorough explanation of
the technique on how these maps were produced can be found in Hinshaw et al. (2007)
[56]. The maps are given for each of the differencing assembly, and I use the average
of these for each band. Figure 7.2(a) show the anisotropy map from the V -band.

The Internal Linear Combination (ILC) map is made from 5 smoothed temperature
maps to maintain the CMB signal while minimizing the Galactic foreground contribu-
tion. For angular scales larger than ∼ 10◦ the ILC map provides a reliable estimate of
the CMB signal with negligible instrument noise over the full sky. But for small scales
there is a significant structure in the bias correction map that is still uncertain. All
maps are converted into units of micro Kelvin (µK).

The satellite observes a part of the sky, i, Nobs,i times. From this we can calculate
the noise per pixel, i, by the formula σi = σ0/

√
Nobs,i. Here σ0 is the noise per

observation for each channel and is given in Table 7.2.
Even though the temperature maps are foreground reduced, they still contain

foreground-contamination. Most of this contamination is from our own galaxy, but
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(a) Full resolution map

(b) Downgraded map at Nside = 32

Figure 7.2: The foreground reduced V -band sky map from WMAP. But even if it is
foreground reduced, there are still some strong foregrounds in the galactic plane left
in this map. The resolution of the map at Nside = 512 is given in 7.2(a) and shows
great details in the CMB. 7.2(b) shows the same sky map downgraded to a resolution
at Nside = 32. All the small structures in the map are now smudged out because of the
beam, but the large scales from the high resolution map are still present. Also notice
how the galactic plane gets wider when the beam smudge out the signal.
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Figure 7.3: The KQ85 mask in Nside = 512 resolution. This masks out the emission
from the galactic plane and 390 point sources.

some are point-sources beyond our galaxy as well. To get rid of this we apply a mask
to the temperature maps to exclude the signals that are not CMB-radiation. LAMBDA
provides several masks and I will be using a mask for temperature analysis called KQ85
[57]. The mask-file simply contains an array of size 12N2

side with values of 0 and 1. If
the value of a pixel is zero the point is rejected, while pixels with a value of one are
accepted. This mask is given in Figure 7.3 and remove 18% of the sky.

Now what happens when we cut out certain parts of the sky with a mask? When
we got an ideal full-sky coverage of the anisotropies we can at best measure 2` + 1
a`ms for each `. As mentioned in Section 3.2, this gave rise to the cosmic variance, a
fundamental uncertainty due to the fact that we can only sample 2` + 1 independent
modes and that we only got one sky we can observe. This is a fundamental limit on
the accuracy with which we can measure the C`s. When we cut away a part of the sky
because of the foreground emissions, we only sample a part of the sky. We are then
probing fewer independent modes and this increases the uncertainty. This is called the
sampling variance. The sample variance σ2

sam relates to the cosmic variance σ2
cos as

σ2
sam ' (4π/Ω)σ2

sam where Ω is the solid angle covered by the experiment. When using
a Bayesian technique or a Monte-Carlo simulation to analyze the data, the sample
variance is automatically accounted for.[58]

The beam functions for each differencing assembly is provided by LAMBDA. These
are the Legendre transform of the beam profile.

The fiducial power spectrum is chosen to be the best-fit ΛCDM power law spectrum
of Komatsu et al (2009) [59].

7.2 Downgrading data

To do this analysis in the given resolution is very computational demanding. When
computing the likelihood as described above, we must invert the covariance matrix
C. This operation scales as O(N3

pix). The WMAP maps given from LAMBDA are
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pixelized in the HEALPix scheme and I use the one with resolution Nside = 512. If we
should do the analysis with this resolution we would get a covariance matrix that is of
size Npix × Npix =

(
12 · 5122

)2 = 9 895 604 649 984. This alone would take 72 TB of
memory, and to calculate the determinant and the inverse of this is a tremendous task.
So we need to downsize the resolution to get matrices we may be able to calculate. The
basic outline for downgrading the resolution of a temperature map was given in 3.5.2.

First the map is expanded into spherical harmonics. Then it is deconvolved with
the original beam function and pixel window. I choose to downgrade the original maps
down to Nside = 32. The recommended beam size for this resolution is θFWHM = 4.5◦.
The map is then convolved with this beam and the corresponding pixel window. If the
band consists of many differencing assemblies, then the average of the maps are taken.
At last the map is added regularization noise. The downgraded version of the V -band
map to a resolution at Nside = 32 is given in Figure 7.2(b).

The pure signal covariance matrix may now be written as

Sij =
1
4π

lmax∑

l=2

(2l + 1)C`(plbl)2Pl(cos θij)

where p` is the effect of finite pixelization and it principally acts the same way as the
beam. Note that we set lower boundary ` = 2 since we remove the mono- and di-pole
moments. The monopole cannot be found from the WMAP data since the instrument
measuring the anisotropy is a differential instrument. This means that it measures the
differences in temperature in two different directions, and not the absolute value of the
temperature. Due to our own velocity through space we cannot observe the real dipole.
The Doppler-effect caused by our movement makes it unobservable to us.

When we downgrade the temperature map, we must also downgrade our mask file
to the same resolution. We know that HEALPix divides the each pixel up into four
new pixels for each Nside. When downgrading the masks we simply need to look at the
sub-pixels of a main pixel at a given resolution. Using the NESTED scheme makes it
easy to find the sub-pixels that belong to a main pixel, as the ascending indices belong
to the same main pixel. The link between pixels at different Nside is given in Figure
A.1. The number of sub-pixels inside of a main pixel is given by

Nsub-pixels =
12N2

side,original

12N2
side,downgrade

=
(

Nside,original

Nside,downgrade

)2

I then simply add the Nsub−pixel succeeding pixels that make up a lower resolution
pixel. The pixels that now consists of more than 50 % ones is set to one.

When downgrading a temperature map, we use a beam to smooth out the signal.
This causes the small scales to be washed out and smudge out the signal. Due to this
smudging, the original mask used to block out any foreground contamination may be
too small. We therefore need a new mask that can account for this. In a similar way as
with the temperature map, we can use a beam to expand the original mask. To make
the expanded mask I smooth out the map with a beam that corresponds to the wanted
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(a) KQ85 mask at Nside = 32 (b) Expanded mask KQ85e

Figure 7.4: The KQ85 sky cut downgraded to Nside = 32 resolution and its extended
improvement against foreground contamination, the KQ85e mask. Only the galactic
plane has been extended by the Gaussian beam at θFWHM = 10◦, so the point sources
remain the same.

resolution. If the value of the pixel is greater than 0.99 then I keep it, i.e., I set it to
one. Else I set it to zero. Only the galactic plane is expanded by a Gaussian beam,
while point sources are not expanded.

The KQ85 mask at Nside = 32 resolution cuts away 16.3 % of the sky, while KQ85e
cuts away 26.9 %. Figure 7.4 shows the two masks.

To get an additional assurance against foreground contamination we marginalize
over a fixed set of “foreground templates”, ti, as described in Equation 3.18. One
monopole and three dipole templates are used in addition to foreground templates
made from the downgraded temperature maps. The ILC map is basically the clean
CMB signal. This is not entirely true, but it is close. To get a map only consisting
of the foregrounds I take the maps that are not foreground reduced for each frequency
and subtract the signal from the ILC map. No regularization noise is added to any of
these maps. The V-ILC difference template is used for both the V-band and ILC maps,
the Q-ILC difference for the Q-band, and W-ILC difference for the W-band.

These templates do however not affect the results noticeably, since the mask cuts
out most of the pixels that are important in this map. The template made from the
V -band is given in Figure 7.5.
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Figure 7.5: The foreground template made from the ILC map and the original V -band
map that is not foreground reduced. The two maps are first downgraded to Nside = 32
with and smoothed out with a 4.5◦ beam. None of the maps are added the regularization
noise. Then the ILC map is subtracted from the V -band map, just leaving us with the
foregrounds.



Chapter 8

Results

8.1 Results

The results for theNside = 32 analysis is given in Table 8.1. The analysis is done for four
different maps (ILC, Q, V and W), using two different masks and different multipole
ranges, as described in Chapter 7. The Table shows the best-fit modulation axis and
amplitude, both with 68% confidence regions, and the statistical significance for the
amplitude (i.e. A/σA) for all maps. The Bayesian log-evidence for the modulated model
over the isotropic model is only calculated for the ILC map with the KQ85 mask. The
reason for this is because of the computational time. It took 25 processors 679 hours
each to compute the evidence for this one map.

However, there is room for improvement in this algorithm. The acceptance ratio is
very low as the volume increases, about 10% is accepted. In [29] the typical acceptance
ratio is found to be roughly constant at ∼ 20%− 25%, after an initial period of almost
100% acceptance. What is the reason for my low acceptance ratio is unknown, but it
might be the enlargement factor or the choice of the perturbation to the ellipsoid.

The evidence is closely related to the significance level A/σA, and we can therefore
estimate the evidence for the other cases given the evidence and significance for ILC
KQ85. The computational resources were instead focused on computing the amplitudes
for each case.

The best-fit axis is the coordinate of the pixel that has been sampled over most
times. The uncertainty of the best-fit axis is calculated by summing up the number
of times the pixels within an angular distance radius θsigma from the best-fit axis has
been sampled over. The radius is extended until the disc contain a certain percent of
the samples. The results are presented with a 68% confidence region.

For the ILC map with the KQ85 mask and `mod = 64, the best-fit amplitude is
0.072 ± 0.022, non-zero at the 3.3σ confidence level. The best-fit axis for the modu-
lation field points towards the Galactic coordinates (l, b) = (224◦,−22◦) with a 68%
uncertainty of 24◦. These results are consistent with the results presented by Eriksen et
al. 2007 [24], who found an amplitude at 0.11± 0.04 and a best-fit axis at (225◦,−27◦)
for ` . 40.



82 Results

The results are not highly dependent on frequency. Both the V - and W -band with
same mask and `-range have an amplitude close to the corresponding ILC map. For
the KQ85-mask and `mod = 64 the amplitudes of the V - and W -band are within 0.5σ
of the ILC map. These are plotted in Figure 8.1(a). The distribution of the amplitude
is almost equal for the three maps. The Q-band analysis using the KQ85-mask is not
included here as the foregrounds clearly are visible outside the mask, and will bias the
result. For the KQ85e-mask the amplitudes of the V - and W -band are within 0.1σ of
the ILC map. These are plotted in Figure 8.1(b) together with the Q-band. Just as
for the KQ85 case, ILC, V and W shows a remarkable consistency in the amplitude
distribution. The amplitude for Q-band however is larger than these. For the Q-band
case using the KQ85e-mask there are still some foregrounds visible outside the mask,
and this may be the cause of the high amplitude and high σ-detection. As we get this
high amplitude when using the Q-band, we may raise the question if foregrounds could
be the reason for the amplitudes in the other maps as well. This can not be the case as
the amplitude distribution is quite stable for the ILC, V and W maps. The intensity of
the foregrounds is different for the different frequencies, and we would therefore expect
the amplitude of the detected modulation field to be different as well for the different
maps.

The results are not strongly dependent on the sky cut. Even if the expanded KQ85e
mask cut away 10.6% more than the KQ85 mask, the amplitudes for both masks are
quite consistent. The shape and peak for the amplitude distribution of ILC, V and
W are very close. From Table 8.1 we can see how the uncertainty in the amplitude
increases as the number of pixels are reduced. When using the liberal mask, using
83.7% of the sky, we see that the significance for all the maps are above 2σ. But
when using the conservative mask, only using 73.1% of the sky, the significance of the
detections are below 2σ (exept for the Q-band). This is due to the sample variance
as discussed in Section 7.1. Both the amplitude and direction of the modulation field
shows a consistency between the two sky cuts.

The quantities are also computed for different values of `mod using the V -band data
and KQ85 mask. The best-fit modulation amplitude are A = 0.12 for `mod = 40,
A = 0.08 for `mod = 64 and A = 0.07 for `mod = 80. The results for Eriksen et
al. 2007 [24] also had larger mean amplitude, 0.11, for ` ∼ 40. So it seems as the
amplitude decrease with increasing values of `mod. This could indicate a non-scale
invariant behaviour of A, as also noted by Hansen et al. 2008 [44]. But all the cases
have a single common value for the amplitude that is within their uncertainties, A
∼ 0.07. So even if the amplitude shows a tendency to decay with growing `mod, the
statistical significance is so far quite low. To determine this further we need better
measurements at higher `mods. There may also be a tendency for increasing statistical
significance with `. It increases from 3.5σ at `mod = 40 to 3.8σ at `mod = 64 and 3.7σ
at `mod = 80. The signal-to-noise ratio is unity at ` = 79, and this may alter the result
for `mod = 80.

The best-fit axes for the maps using the KQ85 mask are plotted in Figure 8.1(c)
and show a close alignment of the axes. For reference, the axis that maximize the
asymmetry from Eriksen et al. 2004 [12] and the best-fit axis found in Eriksen et al.
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Data Mask `mod (lbf , bbf ) Abf significance ∆ lnL ∆lnE
(deg) (σ)

ILC KQ85 64 (224◦,−22◦)± 24◦ 0.072± 0.022 3.3 7.3 2.6
V -band KQ85 64 (232◦,−22◦)± 23◦ 0.080± 0.021 3.8 · · · · · ·
V -band KQ85 40 (224◦,−22◦)± 24◦ 0.119± 0.034 3.5 · · · · · ·
V -band KQ85 80 (235◦,−17◦)± 22◦ 0.070± 0.019 3.7 · · · · · ·
W -band KQ85 64 (232◦,−22◦)± 24◦ 0.074± 0.021 3.5 · · · · · ·
ILC KQ85e 64 (215◦,−19◦)± 28◦ 0.066± 0.025 2.6 · · · · · ·
Q-band KQ85e 64 (245◦,−21◦)± 23◦ 0.088± 0.022 3.9 · · · · · ·
V -band KQ85e 64 (228◦,−18◦)± 28◦ 0.067± 0.025 2.7 · · · · · ·
W -band KQ85e 64 (226◦,−19◦)± 31◦ 0.061± 0.025 2.5 · · · · · ·

Table 8.1: Results forNside = 32. The listed quantities are data set (first column), mask
(second column), maximum multipole used for modulation covariance matrix lmod (third
column), marginal best-fit dipole axis (fourth column) and amplitude (fifth column)
with corresponding 68% confidence regions indicated, statistical significance of non-zero
detection of A (sixth column), change in maximum likelihood between the modulated
and isotropic models, ∆ lnL = lnLmod − lnLiso (seventh column), logarithm of the
Bayes factor, i.e. logarithm of the Bayesian evidence difference, ∆ lnE = lnEmod −
lnEiso (eighth column). The two latter quantities are only calculated for one data set,
due to the computational cost. But these values can be estimated for the other cases
by comparing to the significance in the sixth column.

2007 [24] are also plotted. The coordinates θ and φ given in [12] are measured in the
HEALPix convention, corresponding to co-latitude and longitude. It also gives the
“north pole” of the dipole field. Converting it into the south pole we get that it is (l,
b) = (237◦,−10◦). In Figure 8.1(c), the axes for the cases using the KQ85e mask are
plotted. The best fit axes for all the cases are fairly close to each other. Both plots of
the best-fit axes use the same background of the posterior distribution of the V-band,
`mod = 80 and KQ85 sky cut. The best-fit axis of the modulation field all point in the
same direction for all the cases.

The Bayesian log-evidence difference for the ILC map is 2.6 in favour for the mod-
ulated model. This is an improvement from the analysis by Eriksen et al. 2004, where
the log-evidence was ∼ 1.8. The increase in evidence takes it up from “substantial” to
the “strong to very strong” category on Jeffrey’s scale. This corresponds to odds of
13:1.

The choice of prior volume is important when computing the evidence. Based on
the distribution of the amplitude in Figure 8.1(a) and 8.1(b), the prior volume for the
amplitude for the evidence computation was chosen to be 0.2. All the amplitudes of the
ILC, V and W drops to zero at 0.15. However the amplitude of the Q-band stretches
above 0.15, hence the prior amplitude is chosen to be 0.2. The prior volume for the
direction p̂ is the whole area of the sphere, i.e. θ = (0, π) and φ = (0, 2π). The range
for the two power spectrum parameters are 0.5 ≤ Q ≤ 1.5 and -0.5 ≤ n ≤ 0.5.

There are also other ways to test what model is preferred besides the Bayesian evid-
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(a) Amplitude distribution using the KQ85
sky cut
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(b) Amplitude distribution using the KQ85e
sky cut

(c) Best-fit axes using the KQ85 sky cut (d) Best-fit axes using the KQ85e sky cut

Figure 8.1: The two upper figures show the posterior distribution of the modulation
amplitude marginalized over all other parameters. The dots in the two lower figures
show the best-fit axes for the dipole modulation field. The two figures on the left show
the distribution when using the KQ85 mask, while the two on the right are for the
KQ85e mask. The background in the two lower figures show the posterior distribution
for the V-band map using the KQ85-mask and `mod = 64. It has been smoothed
out with a beam for plotting purposes to reduce the pattern caused by Monte Carlo
simulations. The grey area indicates pixels outside the 2σ confidence region. All of my
results in the figures are for `mod = 64.



8.1 Results 85

ence. We can calculate the frequentist probability of obtaining such a large amplitude
as observed in the WMAP data for simulated, isotropic universes. As I mentioned
before, the asymmetric distribution may be a realization of an isotropic universe. To
check this, we may run the same analysis for thousands of simulated, isotropic maps
and see how many of these that gives an modulation amplitude as large as the one
given by the WMAP data. In the article by Eriksen et al. 2007 [24] for Nside = 16, and
he found that the frequentist probability for getting such a high amplitude is 0.9-1.5%
depending on data-set and sky-cut. In this thesis I unfortunately didn’t have time to
do a similar test for the Nside = 32 analysis since it demands thousands of simulated
maps to get reliable results. As I pointed out before, it takes a lot of time to calculate
the likelihood at this resolution, and a similar test is therefore omitted here.
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Part IV

Conclusion and summary





Chapter 9

Conclusions

9.1 A short review of the thesis

After the first-year release of the WMAP data in 2003, there were reports on viola-
tion of statistical isotropy. This seems troublesome as it conflicts with current theories
about the universe. The simplest inflation theories predicts that the universe should be
statistically homogeneous and isotropic. This theory is highly successful in describing
the observations, such as the CMB and large-scale power spectra, and we would there-
fore expect isotropy and homogeneity in the universe as well. But many analysis of the
the CMB maps from WMAP show hints of violation of statistical isotropy and non-
Gaussianity. Several theories have been developed in order to describe these features,
but none of them are yet completely satisfactory.

One of the early reports on the violation of isotropy was an asymmetry in the
distribution of fluctuation power in the CMB on large scales. Eriksen et al. (2004) [12]
and Hansen et al. 2004 [13] both presented an early evidence for a dipolar distribution
of power in the CMB temperature anisotropy sky, on scales up to ` ∼ 63 and 40,
respectively.

In a paper by Eriksen et al. 2007 [24], they presented further evidence for a dipolar
distribution of fluctuation power in the CMB. By introducing a model with an isotropic
CMB sky modulated by a dipolar field using a Bayesian framework, they could quantify
the large-scale power asymmetry. This model gave a better fit to the data than the
isotropic model for ` . 40.

A possibly physically related work were presented in Groeneboom & Eriksen (2009)
[51], in which they present evidence for a quadrupolar distribution power, that extended
over the whole range ` = 2 − 400. Hansen et al. 2008 [44] showed that the dipolar
power distribution is present on scales up to ` = 600. There appears to be increasing
evidence for both a dipolar and quadrupolar structure in the CMB power distribution
on all scales. Based on this claim, I adopt the modulated CMB model presented in
Eriksen et al. 2007 [24] and apply it to the five-year WMAP data and go to higher
multipoles, even though far lower than those investigated by Hansen et al. 2008 [44].

Compared to the analysis done by Eriksen et al. 2007 [24] the statistical significance
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of a non-zero amplitude increases from 2.8σ to 3.3σ when increasing ` from 40 to 64.
The statistical significance increases from 3.5σ at `mod = 40 to 3.8σ at `mod = 64 and
3.7σ at `mod = 80.

So there is substantial evidence for both a dipolar and quadrupolar power distri-
bution in the WMAP data. The magnitude of the dipolar mode is stronger than the
quadrupolar mode, as a ∼3.5 significance level is already found at ` ∼ 64 for the dipole,
while the same significance level is found for the quadrupole at ` ∼ 400.

The Bayesian evidence also increase with `. In [24] the Bayesian evidence difference
between the modulated model and the isotropic is ∆ lnE = 1.8 ± 0.2 for ` ∼ 40 using
the ILC map. Here, using the ILC map for ` = 64, the evidence has increased to ∆ lnE
= 2.6.

The Bayesian evidence found here at 2.6 ranks as “strong to very strong” on Jeffrey’s
scale. But the Bayesian evidence is strongly dependent on the choice of priors. Choosing
a prior twice as large as the only actually used, will cause the log-evidence to drop,
ranking only as “substantial”. Because of this dependence it is in may respects easier
to get a firm statistical interpretation to the posterior distribution than the Bayesian
evidence.

As the amplitude of the Q-band is higher than the other maps, it can seem like the
foregrounds are the reason for the increase. The choice of prior volume can therefor be
chosen to be smaller, A = [0, 0.15]. This can cause an increase in the evidence.

The results also show hints that the amplitude A decrease with `. Whether this is
due to a statistical fluctuation or that a physical effect cause this non-scale invariant
behaviour is unknown. The data allow both possibilities. Looking at the V -band data
using the KQ85 mask, a common amplitude A ∼ 0.07 is within the error bars of the
amplitude for the all values of `. If the case is that the amplitude is decreasing with `
we should replace the amplitude A with the function A(`).

9.2 Problems for future work

The main problem for future work is to be able to do compute the amplitude and
direction for higher values of `. Then we can find out for how small scales this dipole
behavior is seen, and if the amplitude decrease with ` or if it is scale-invariant.

The approach in this thesis relies on a brute force inversion of a Npix × Npix cov-
ariance matrix which scales as O(N3

pix) or O(N6
side). The total use of CPU hours for

the Nside = 32 analysis was ∼ 50 000. The next supported resolution by HEALPix is
with Nside = 64. By increasing Nside with a factor of two would require a total of ∼ 3
million CPU hours. Clearly, new and more efficient algorithms are needed.

The computation of the parameters amplitude and direction of the dipole modula-
tion field would be possible to compute with ScaLAPACK in a reasonable amount of
time. But the evidence calculation would take a lot of time. However, to compute the
Bayesian evidence may not be necessary as it is in many respects easier to attach a firm
statistical confirmation to the posterior distribution. If to use the brute force method
described in this thesis, there are some things that could further reduce the computa-
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tional time. One can use more parallel processors that work together on one matrix
and optimize the block-size for the number of processors. The use of multiple-try Met-
ropolis algorithm could also reduce the computational time. Maybe the best method
for this problem is by using another MCMC method called Gibbs sampling. This tech-
nique of mapping out the posterior does not depend on the brute force calculation of
the likelihood. It scales as O(N3/2

pix ) or O(N2
pix) for data with white or correlated noise,

respectively.
These results may be useful for theorists trying to construct models for the ob-

served asymmetric distribution of power across the sky, either phenomenological or
fundamental. Many attempts of creating such theories have already been done (e.g.,
Ackerman et al. 2007 [50], Böhmer & Mota 2008 [60]; Carroll et al. 2008 [61], 2009
[62]; Chang et al 2009 [63]; Erickcek et al 2008 [64][65]; Gordon et al. 2005 [32];
Gümrükcüoglu et al. 2007 [48]; Himmetoglu et al. 2009 [66][67]; Kahniashvili et al.
2008 [68]; Kanno et al. 2008 [69]; Koivisto & Mota 2008 [53][70]; Pereira et al. 2007
[71]; Pitrou et al. 2008 [72]; Pullen & Kamionkowski 2007 [49]; Watanabe et al 2009
[73]; Yokoyama & Soda 2008 [74]), but none have so far been fully convincing. More
work is needed on both the theoretical and observational side.

The successful launch of Planck on 27th of May 2009 also means that we can get new
data within a few years. This will measure the temperature anisotropies down to arc-
minute scales. Using the additional frequency coverage, we can get better foreground
treatment and a larger sky coverage can be achieved. Full-sky and high-sensitivity
polarisation maps can also provide useful information on the origin of the effects. This
can make it possible to measure the properties of the dipole, quadrupole and, possibly
higher-order modes of the modulation field to a much better accuracy than with today’s
data.
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Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data:
Minkowski Functionals and the Length of the Skeleton. ApJ, 612:64–80, September
2004.



96 BIBLIOGRAPHY

[37] H. K. Eriksen, A. J. Banday, K. M. Górski, and P. B. Lilje. The N-Point Cor-
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Part V

Appendices





Appendix A

An introduction to the HEALPix
software

In this thesis I have been using the HEALPix pixelization. Here is a short introduction
to the software package. It is mostly based on ‘A HEALPix Primer” by Gorski et al.
[75].

A.1 Introduction

HEALPix is a data structure with an associated library of computational algorithms
and visualization for discretized spherical maps. It has an efficient discretization and
offers a fast analysis of functions defines on the sphere. To be able to analyse the
information on a computer, it must discretized in some way. We must partition the
sphere into finite area elements. There are several ways one can do this, but a smart
choice of partitioning can give us many advantages. First of all the scheme should give
small systematic errors.

HEALPix is an acronym for Hierarchical, Equal Area, iso-Latitude Pixelisation.
These properties makes it well fitted for fast and efficient calculations of functions on
the sphere.

1. Hierarchical structure of the database. Elements that are nearby on the sphere
are also nearby in the tree structure of the database. Hence, the elements are
optimally placed in the storage medium for fast access between neighboring pixels
Figure A.1 shows a hierarchical partition with quadrilateral structure.

2. All pixels have the same area at a given resolution. This is advantageous because
white noise generated by the instrument gets integrated exactly into white noise
in the pixel space. Sky signals are sampled without regional dependence.

3. The center of the pixel lie on rings of equal latitude. The advantage of this
property is the computational speed in all operations of spherical harmonics.
Associated Legendre polynomials are evaluated via slow recursions, and if the
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Figure A.1: This hierarchical partition has a quadrilateral tree pixel numbering. To
increase the resolution, each pixel is split into four sub-pixels. The structure allows
for a binary vector indexing of the database. The sub-pixels inherit the index of the
original (in the box).

sampling grid deviates from an iso-latitude distribution will cause a loss of com-
putational performance with the growing number of sampling points. This makes
it impractical for high resolution data.

Figure A.1 shows a hierarchical partition with quadrilateral structure.

A.2 The HEALPix pixelization

HEALPix consists of twelve base-pixels in three rings around the poles and equator.
Each of these pixels can be divided into smaller ones in order to achieve a higher
resolution. Pixels are divided into four new pixels as showed in Figure A.1. The
resolution is parameterized by Nside which gives the number of divisions along the edge
of the base-pixel. , Nside = i2 where i is an integer. The total number of pixels on the
sphere is given by Npix = 12N2

side. The pixels are placed on 4Nside−1 rings of constant
latitude.

To identify each pixel, HEALPix have two different numbering schemes.The first
is the RING scheme, where the pixels are numbered from the north to the south,
going along each iso-latitude ring. The second one is the NESTED scheme, where the
pixel indices are arranged in twelve tree structures corresponding to the base-resolution
pixels.

A.3 The software

The HEALPix software package features Fortran90 and IDL source codes. It uses the
standardised FITS I/O interface for easy reading and writing. These contains many
routines for various calculations, that can easily be linked to your own applications.
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Figure A.2: Shows four different resolutions in the HEALPix scheme. The upper left
panel shows the base-resolution pixels, i.e. Nside = 1. Moving in a clockwise fashion
then shows how the base-pixels are hierarchically subdivided into the resolution ofNside

= 2, 4 and 8. The grey areas shows two base-pixels.

The package also features applications for different purposes. These are:alteralm
(alters the alm’s), anafast (creates temperature and/or polarisation maps as realisations
of random Gaussian fields on a sphere characterized by a theoretical power spectra),
hotspot (finds the local maximum and minimum in a map), map2gif (is a very good
program for turning a HEALPix map into a gif image), median filter, plmgen, smooth-
ing (convolves a map with a Gaussian beam), synfast (makes a simulated HEALPix
map, based on a theoretical power spectrum) and ud grade (translate a map from one
Nside to another).
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Appendix B

An introduction to ScaLAPACK

B.1 Introduction

ScaLAPACK is a library for solving linear equations, least squares problems, eigenvalue
problems and singular value problems. The name ScaLAPACK stands for Scalable
Linear Algebra PACKage, or Scalable LAPACK, Some of the goals for the library is
efficiency (to run as fast as possible) and scalability (to be able to run well as the
problem’s size and the number of processors increase). The interface is very similar to
LAPACK to make it easy to use. The advantage with ScaLAPACK is that it could be
parallelized in a manner where many processors can collaborate in solving a matrix.
This will reduce the time for solving a linear algebra set. Each processor is given
parts of a matrix and only solves it’s part. To make this run efficiently, the matrix is
distributed in a block-cyclic manner.

There are four basic steps required to call a ScaLAPACK routine.

1. Initialize the process grid

2. Distribute the matrix on the process grid

3. Call the ScaLAPACK routine

4. Release the process grid

B.2 Initialization of the process grid

B.2.1 BLACS

First we need to initialize the process grid. We want to use NPROW × NPCOL
processors. ScaLAPACK uses BLACS (Basic Linear Algebra Communication Sub-
programs) for communication between the processors. Initiating this grid is done by
calling the routine BLACS GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL). Here
ICONTXT is a number that identifies the process grid. This way the grid can safely
communicate even if some other process grid consists of the same processors. ORDER
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Figure B.1: How the matrix is distributed in a block-cyclic manner. The process grid is
2×2 and 0-3 represents the process number. Left: The global matrix is partitioned into
blocks and these are distributed to the different processors. Right: The local matrix of
processor 0.

tell if the process grid should be arranged in a row- or column-major way. The user can
get the coordinates of the processes by the call BLACS GRIDINFO(ICTXT, NPROW,
NPCOL, MYROW, MYCOL).

B.3 Distributing the matrix

The global matrix must be distributed on the process grid. The ScaLAPACK routines
assume that the global matrix has been distributed on the processors. The ScaLAPACK
software library provides routines that operate on three types of matrices: in-core dense
matrices, in-core narrow band matrices and out-of-core dense matrices. I will only look
at in-core dense matrices here, since these are the ones I must solve.

B.3.1 Block cyclic distribution

Like LAPACK, the ScaLAPCK routines are based on block-partitioned algorithms in
order to minimize the frequency of data between different levels of the memory hier-
archy. A wide variety of distribution schemes have potential for achieving high per-
formance for dense matrix computations. ScaLAPACK has chosen the block-cyclic data
layout due to its scalability, load balance and communication properties. The global
matrix is first divided into blocks of size MB × NB. Each block is then distributed
on the process grid. Figure B.1 shows how the blocks are distributed to the different
processors.
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B.3.2 Local storage scheme

The distribution of the matrix on the process grid is the user’s responsibility. The
following scheme gives the coupling between the coordinates in the global matrix and
the local matrix of the different processes. A two-dimensional global matrix A with
dimensionMA×NA is to be distributed to different processes. This matrix is partitioned
in blocks of size MB × NB, and the first block is given to the process with coordinates
(RSRC, CSRC). The processor grid is of dimension Pr×Pc, and the coordinates in this
grid is (pr, pc). The matrix entry (I,J) of matrix A is distributed to the process with
coordinates (pr, pc) local matrix within the (l,m) block at the position (x,y) given by:

(l,m) =
(
I − 1
PrMB

,
J − 1
PcnB

)

(pr, pc) =
(
mod

(
RSRC +

I − 1
MB

,Pr

)
,mod

(
CSRC +

J − 1
NB

,Pc

))
(B.1)

(x, y) = (mod(I − 1,MB) + 1,mod(J − 1, NB) + 1)

After distributing the matrix it now need an array descriptor. This contains in-
formation on the dimension of the global matrix, the block size, what processor to
receive the first block of the global matrix and the leading dimension of the local mat-
rix. The array descriptor is called via DESCINIT( DESCA, M, N, MB, NB, RSRC,
CSRC, ICTXT, MXLLDA, INFO ).

• DESCA - the array containing information on the matrix and processors

• M - Number of rows in the global matrix

• N - Number of columns in the global matrix

• MB - Block size used to partition the rows

• NB - Block size used to partition the columns

• RSRC - Process row on which the first row in the global matrix is distributed

• CSRC - Process column on which the first row in the global matrix is distributed

• ICTXT - Context number identifying the grid on which the matrix is distributed

• MXLLDA - Leading dimension of the local matrix,MXLLDA ≥MAX(1, LOCr(M))

• INFO - Information about the distribution. Equals zero upon successful exit.

The dimensions of the local matrix can be calculated with the ScaLAPACK tool
function NUMROC. The row dimension is LOCr(M) = NUMROC(M,MBA,MY ROW,RSRCA, NPROW )
and the column dimension is LOCc(N) = NUMROC(N,NBA,MY COL,CSRCA, NPCOL)

If the matrix dimension does not divide the block factor evenly, then last block
will contain fewer elements. To make it more clear how it works, I’ll give an example.
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Figure B.2: This shows how a 5 × 5 matrix is partitioned into blocks of size 2 × 2
and distributed on to a 2 × 2 process grid. Left: The 5 × 5 matrix is partitioned into
blocks of 2× 2. Middle: The figure shows which block is assigned to which processor,
here indicated by the processor number in black. Right: Shows the local matrices for
each processor with the corresponding grid coordinates listed outside the frame. The
processor grid coordinates and number is (0,0) = 0, (0,1) = 1, (1,0) = 2 and (1,1) = 3.

The global matrix has dimensions MA × NA = 5 × 5, and it is partitioned into blocs
of size MB × NB = 2 × 2. These blocks are now distributed to the processors in a
block-cyclic manner. How they are distributed is given in figure B.2. The processor
with coordinates (0,0) in the grid is given the first block consisting of elements a11, a12,
a21 and a22. The next block given to this processor consists only of the two elements
a15 and a25 since the matrix dimension and block size does not divide evenly.

B.4 Computational Routines

We may now call the desired routine we wish to perform. The routines of ScaLAPACK
are very similar to the ones used in LAPACK. This was done to make it easy to use.
ScaLAPACK features many different routines and they are classified into three cat-
egories. These are driver routines, computational routines and auxiliary routines. The
driver routines simply calls a sequence of computational routines. So the computational
routines can perform a wider range of tasks than the driver routines. Auxiliary routines
perform a certain sub-task or common low-level computation.

To compute the inverse and determinant of the covariance matrix, I need to use
the computational routines, so I will mainly look at these here. The computational
routines gives many options for what type of matrix you start with. You may have a
general matrix, a symmetric and Hermitian positive definitie, general band, etc. The
available routines are given in the list below. The last three letters denotes the type of
the computational routine.

• PxyyTRF - Factorize

• PxyyTRS - use the factorization to solve equation B.2.

• PxyyCON - Estimate the reciprocal of the condition number κ(A) = |A||A|−1
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Matrix Type Operation Single Precision Double Precision
and Storage real complex real complex
General factorize PSGETRF PCGETRF PDGETRF PZGETRF
partial pivoting solve using fact. PSGETRS PCGETRS PDGETRS PZGETRS

est. cond. number PSGECON PCGECON PDGECON PZGECON
error bnds. for solu. PSGERFS PCGERFS PDGERFS PZGERFS
invert using fact. PSGETRI PCGETRI PDGETRI PZGETRI
equilibrate PSGEEQU PCGEEQU PDGEEQU PZGEEQU

General band factorize PSGBTRF PCGBTRF PDGBTRF PZGBTRF
partial pivoting solve using fact. PSGBTRS PCGBTRS PDGBTRS PZGBTRS
General band factorize PSDBTRF PCDBTRF PDDBTRF PZDBTRF
no pivoting solve using fact. PSDBTRS PCDBTRS PDDBTRS PZDBTRS
General tridiag. factorize PSDTTRF PCDTTRF PDDTTRF PZDTTRF
no pivoting solve using fact. PSDTTRS PCDTTRS PDDTTRS PZDTTRS
Symmetric/ factorize PSPOTRF PCPOTRF PDPOTRF PZPOTRF
Hermitian solve using fact. PSPOTRS PCPOTRS PDPOTRS PZPOTRS
positive definite est. cond. number PSPOCON PCPOCON PDPOCON PZPOCON

error bnds. for solu. PSPORFS PCPORFS PDPORFS PZPORFS
invert using fact. PSPOTRI PCPOTRI PDPOTRI PZPOTRI
equilibrate PSPOEQU PCPOEQU PDPOEQU PZPOEQU

Symmetric/ factorize PSPBTRF PCPBTRF PDPBTRF PZPBTRF
Hermitian solve using fact. PSPBTRS PCPBTRS PDPBTRS PZPBTRS
positive definite
band
Symmetric/ factorize PSPTTRF PCPTTRF PDPTTRF PZPTTRF
Hermitian solve using fact. PSPTTRS PCPTTRS PDPTTRS PZPTTRS
positive definite
tridiagonal
triangluar solve PSTRTRS PCTRTRS PDTRTRS PZTRTRS

est. cond. number PSTRCON PCTRCON PDTRCON PZTRCON
error bnds. for solu. PSTRRFS PCTRRFS PDTRRFS PZTRRFS
invert PSTRTRI PCTRTRI PDTRTRI PZTRTRI

Table B.1: Computational routines for linear equations

• PxyyRFS - Compute bounds on the error in the computed solution

• PxyyTRI - Use the factorization to compute A−1

• PxyyEQU - Compute scaling factors to equilibrate A.

The letters replacing xyy gives what kind of matrix is used. The computational
routines for different types of matrices are given in Table B.1.

AX = B (B.2)
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B.5 Releasing the Process Grid

When the routines have been executed, we must release the process grid. This is done
by calling of BLACS GRIDEXIT( ICTXT ). At last we exit by CALL BLACS EXIT(
0 ).
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ABSTRACT

Motivated by the recent results of Hansen et al. concerning a noticeable hemispherical power asymmetry in the
Wilkinson Microwave Anisotropy Probe (WMAP) data on small angular scales, we revisit the dipole-modulated
signal model introduced by Gordon et al.. This model assumes that the true cosmic microwave background signal
consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation
amplitude, A, and a preferred direction, p̂. Previous analyses of this model have been restricted to very low resolution
(i.e., 3.◦6 pixels, a smoothing scale of 9◦ FWHM, and � � 40) due to computational cost. In this paper, we double the
angular resolution (i.e., 1.◦8 pixels and 4.◦5 FWHM smoothing scale), and compute the full corresponding posterior
distribution for the five-year WMAP data. The results from our analysis are the following: the best-fit modulation
amplitude for � � 64 and the ILC data with the WMAP KQ85 sky cut is A = 0.072 ± 0.022, non-zero at 3.3σ , and
the preferred direction points toward Galactic coordinates (l, b) = (224◦,−22◦) ± 24◦. The corresponding results
for � � 40 from earlier analyses were A = 0.11 ± 0.04 and (l, b) = (225◦,−27◦). The statistical significance
of a non-zero amplitude thus increases from 2.8σ to 3.3σ when increasing �max from 40 to 64, and all results
are consistent to within 1σ . Similarly, the Bayesian log-evidence difference with respect to the isotropic model
increases from Δ ln E = 1.8 to Δ ln E = 2.6, ranking as “strong evidence” on the Jeffreys’ scale. The raw best-
fit log-likelihood difference increases from Δ lnL = 6.1 to Δ lnL = 7.3. Similar, and often slightly stronger,
results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in
the WMAP data increases with � in the five-year WMAP data set, in agreement with the reports of Hansen et al.

Key words: cosmic microwave background – cosmology: observations – methods: statistical

1. INTRODUCTION

The question of statistical isotropy in the cosmic microwave
background (CMB) has received much attention within the
cosmological community ever since the release of the first-
year Wilkinson Microwave Anisotropy Probe (WMAP; Bennett
et al. 2003a) in 2003. The reasons for this are twofold. On
the one hand, the current cosmological concordance model is
based on the concept of inflation (Starobinsky 1980; Guth 1981;
Linde et al. 1982; Mukhanov et al. 1981; Starobinsky 1982;
Linde et al. 1983, 1994; Smoot 1992; Ruhl 2003; Rynyan 2003;
Scott 2003), which predicts a statistically homogeneous and
isotropic universe. Since inflation has proved highly successful
in describing a host of cosmological probes, most importantly
the CMB and large-scale power spectra, this undeniably imposes
a strong theoretical prior toward isotropy and homogeneity.

On the other hand, many detailed studies of the WMAP
sky maps, employing higher-order statistics, have revealed
strong hints of both violation of statistical isotropy and non-
Gaussianity. Some early notable examples include unexpected
low-� correlations (de Oliveira-Costa et al. 2004), a peculiar
large cold spot in the southern Galactic hemisphere (Vielva
et al. 2004), and a dipolar distribution of large-scale power
(Eriksen et al. 2004b). Today, the literature on non-Gaussianity
and violation of statistical isotropy in the WMAP data has grown
very large, indeed (e.g., Bernui et al. 2006; Bielewicz et al. 2005;
Copi et al. 2006; Cruz et al. 2005, 2006; Eriksen et al. 2004a,
2004c, 2005; Jaffe et al. 2005, 2006; Martı́nez-González et al.

2006; McEwen et al. 2008; Räth et al. 2007; Yadav & Wandelt
2008), and it would be unwise not to consider these issues very
seriously.

Of particular interest to us is the question of hemispherical
distribution of power in the WMAP data, first reported by Eriksen
et al. (2004b) and later confirmed by, e.g., Hansen et al. (2004)
and Eriksen et al. (2005). The most recent works on this topic
include those presented by Hansen et al. (2008), who found
that the power asymmetry extends to much smaller scales than
previously thought, and by Eriksen et al. (2007a), who quantified
the large-scale power asymmetry in the three-year WMAP data
using an optimal Bayesian framework.

A separate, but possibly physically related, line of work was
recently presented by Groeneboom & Eriksen (2009), who con-
sidered the specific model for violation of Lorenz invariance in
the early universe, proposed by Ackerman et al. (2007). This
model involves CMB correlations with a quadrupolar distribu-
tion on the sky, and is thus orthogonal to the current dipolar
model. Surprisingly, when analyzing the five-year WMAP data,
Groeneboom & Eriksen (2009) found supportive evidence for
this model at the 3.8σ significance level, when considering an-
gular scales up to � � 400. Thus, assuming that the WMAP
observations are free of unknown systematics, there appears to
be increasing evidence for both dipolar and quadrupolar struc-
ture in the CMB power distribution, at all angular scales.

In this paper, we repeat the Bayesian analysis of Eriksen
et al. (2007a), but double the angular resolution of the data.
Nevertheless, we are still limited to relatively low angular
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resolutions, since the method inherently relies on brute-force
evaluation of a pixel-based likelihood, and therefore scales as
O(N3

pix). Yet, simply by spending more computer resources we
are able to increase the pixel resolution from Nside = 16 to
32 and decrease the degradation smoothing scale from 9◦ to
4.◦5 FWHM. This provides additional support for multipoles
between � ≈ 40 and 80. While not sufficient to provide a full
and direct comparison with the results of Hansen et al. (2008),
it is a significant improvement over the results presented by
Eriksen et al. (2007a).

2. OVERVIEW OF MODEL AND ALGORITHMS

The Bayesian analysis framework used in this paper is very
similar to that employed by Eriksen et al. (2007a). We therefore
only give a brief overview of its main features here, and refer
the reader interested in the full details to the original paper and
references therein.

2.1. Data Model and Likelihood

The starting point for our analysis is the phenomenological
CMB signal model first proposed by Gordon et al. (2005),

d(n̂) = [1 + f (n̂)]s(n̂) + n(n̂). (1)

Here d(n̂) denotes the observed data in direction n̂, s(n̂) is an
intrinsically isotropic and Gaussian random field with power
spectrum C�, f (n̂) is an auxiliary modulating field, and n(n̂)
denotes instrumental noise.

Obviously, if f = 0, one recovers the standard isotropic
model. However, we are interested in a possible hemispherical
asymmetry, and we therefore parameterize the modulation field
in terms of a dipole with a free amplitude A and a preferred
direction p̂,

f (n̂) = A (n̂ · p̂). (2)

The modulated signal component is thus an anisotropic, but still
Gaussian, random field, with covariance matrix

Smod(n̂, m̂) = [1 + A (n̂ · p̂)]Siso(n̂, m̂)[1 + A (m̂ · p̂)], (3)

where

Siso(n̂, m̂) = 1

4π

∑
�

(2� + 1)C�P�(n̂ · m̂). (4)

We now introduce one new feature compared to the analysis
of Eriksen et al. (2007a), for two reasons. First, we are interested
in studying the behavior of the modulation field as a function of
�-range, and therefore want a mechanism to restrict the impact
of the modulation parameters in harmonic space. Second, we
also want to minimize the impact of the arbitrary regularization
noise (see Section 3) on the modulation parameters at high �’s.
Therefore, we split the signal covariance matrix into two parts,
one modulated low-� part and other isotropic high-� part,

Stotal = Smod + Siso, (5)

where only multipoles between 2 � � < �mod are included in
Smod, and only multipoles at � � �mod are included in Siso.
(Note that we are not proposing a physical mechanism for
generating the modulation field in this paper, but only attempt
to characterize its properties. This split may or may not be
physically well motivated, but it does serve a useful purpose in

the present paper as it allows us to study the scale dependence
of the modulation field in a controlled manner.)

Including instrumental noise and possible foreground con-
tamination, the full data covariance matrix reads

C = Smod(A, p̂) + Siso + N + F. (6)

The noise and foreground covariance matrices depend on the
data processing, and will be described in greater detail in
Section 3.

We also have to parameterize the power spectrum for the
underlying isotropic component, C�. Following Eriksen et al.
(2007a), we choose a simple two-parameter model with a free
amplitude q and tilt n for this purpose,

C� = q

(
�

�0

)n

Cfid
� . (7)

Here �0 is a pivot multipole and Cfid
� is a fiducial model, in the

following chosen to be the best-fit ΛCDM power-law spectrum
of Komatsu et al. (2009).

Since both the signal and noise are assumed to be Gaussian,
the log-likelihood now reads

− 2 logL(A, p̂, q, n) = dT C−1d + log |C|, (8)

up to an irrelevant constant, with C = C(A, p̂, q, n).

2.2. The Posterior Distribution and Bayesian Evidence

The posterior distribution for our model is given by Bayes’
theorem,

P (q, n,A, p̂|d,H ) = L(q, n,A, p̂)P (q, n,A, p̂|H )

P (d|H )
. (9)

Here P (q, n,A, p̂|H ) is a prior, and P (d|H) is a normalization
factor often called the “Bayesian evidence.” Note that we now
have included an explicit reference to the hypothesis (or model),
H, in all factors, as we will in the following compare two
different hypotheses, namely “H1: The universe is isotropic
(A = 0)” versus “H2: The universe is anisotropic (A �= 0).”

We adopt uniform priors for all priors in the following.
Specifically, we adopt P (q) = Uniform[0.5, 1.5] and P (n) =
Uniform[−0.5, 0.5] for the power spectrum, and a uniform
prior over the sphere for the preferred axis, p̂. The modulation
amplitude prior is chosen uniformly over [0, Amax], where
Amax = 0.15 is sufficiently large to fully encompass the non-
zero parts of the likelihood. If more liberal priors are desired, the
interested reader can easily calculate the corresponding evidence
by subtracting the logarithm of the volume expansion factor
from the results quoted in this paper.

With these definitions and priors, the posterior distribution,
P (q, n,A, p̂|d,H ), is mapped out with a standard MCMC
sampler. The Bayesian evidence, E = P (d|H ), is computed
with the “nested sampling” algorithm (Skilling 2004; Mukherjee
et al. 2006). For further details on both procedures, we refer the
interested reader to Eriksen et al. (2007a).

For easy reference, we recall Jeffreys’ interpretational scale
for the Bayesian evidence (Jeffreys 1961): a value of Δ ln E < 1
indicates a result “not worth more than a bare mentioning;”
a value of 1 < Δ ln E < 2.5 is considered as “significant”
evidence; a value of 2.5 < Δ ln E < 5 is considered “strong to
very strong;” and Δ ln E > 5 ranks as “decisive.”
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Table 1
Summary Statistics for Modulated CMB Model Posteriors

Data Mask �mod (lbf , bbf ) Abf Significance (σ ) Δ logL Δ log E

ILC KQ85 64 (224◦,−22◦) ± 24◦ 0.072 ± 0.022 3.3 7.3 2.6
V band KQ85 64 (232◦,−22◦) ± 23◦ 0.080 ± 0.021 3.8 . . . . . .

V band KQ85 40 (224◦,−22◦) ± 24◦ 0.119 ± 0.034 3.5 . . . . . .

V band KQ85 80 (235◦,−17◦) ± 22◦ 0.070 ± 0.019 3.7 . . . . . .

W band KQ85 64 (232◦,−22◦) ± 24◦ 0.074 ± 0.021 3.5 . . . . . .

ILC KQ85e 64 (215◦,−19◦) ± 28◦ 0.066 ± 0.025 2.6 . . . . . .

Q band KQ85e 64 (245◦,−21◦) ± 23◦ 0.088 ± 0.022 3.9 . . . . . .

V band KQ85e 64 (228◦,−18◦) ± 28◦ 0.067 ± 0.025 2.7 . . . . . .

W band KQ85e 64 (226◦,−19◦) ± 31◦ 0.061 ± 0.025 2.5 . . . . . .

ILCa Kp2 ∼ 40 (225◦, −27◦) 0.11 ± 0.04 2.8 6.1 1.8

Notes. Listed quantities are data set (first column); mask (second column); maximum multipole used for modulation covariance
matrix, �mod (third column); marginal best-fit dipole axis (fourth column) and amplitude (fifth column) with 68% confidence
regions indicated; statistical significance of non-zero detection of A (sixth column); the change in maximum likelihood between
modulated and isotropic models, Δ logL = logLmod − logLiso (seventh column); and the Bayesian evidence difference,
Δ log E = log Emod − log Eiso (eighth column). The latter two were only computed for one data set, due to a high computational
cost. However, other values can be estimated by comparing the significances indicated in the sixth column.
a Results computed from Nside = 16 and 9◦ FWHM data, as presented by Eriksen et al. (2007a).

3. DATA

In this paper, we analyze several downgraded versions of the
five-year WMAP temperature sky maps, namely the template-
corrected Q-, V-, and W-band maps, as well as the “foreground
cleaned” Internal Linear Combination (ILC) map (Gold et al.
2009). Each map is downgraded to low resolution as follows
(Eriksen et al. 2007b): first, each map is downgraded to a
HEALPix8 resolution of Nside = 32, by smoothing to an
effective resolution of 4.◦5 FWHM and properly taking into
account the respective pixel windows. We then add uniform
Gaussian noise of σn = 1 μK rms to each pixel, in order to
regularize the pixel–pixel covariance matrix at small angular
scales. The resulting maps have a signal-to-noise ratio of unity
at � = 80, and are strongly noise dominated at �max = 95.

Two different sky cuts are used in the analyses, both of which
are based on the WMAP KQ85 mask (Gold et al. 2009). In the
first case, we directly downgrade the KQ85 cut to the appropriate
Nside, by excluding any HEALPix pixel for which more than
half of the corresponding sub-pixels are missing. This mask
is simply denoted by KQ85. In the second case, we smooth
the mask image (consisting of 0’s and 1’s) with a beam of 4.◦5
FWHM, and reject all pixels with a value less than 0.99. We call
this expanded mask KQ85e. The two masks remove 16.3% and
26.9% of the pixels, respectively.

The instrumental signal-to-noise ratio of the WMAP data
is very high at large angular scales, at about 150 for the V
band at � = 100. The only important noise contribution in the
downgraded sky maps is therefore the uniform regularization
noise, which is not subject to the additional beam smoothing.
We therefore approximate the noise covariance matrix by Nij =
σ 2

n δij . Note that this approximation was explicitly validated by
Eriksen et al. (2007a) for the three-year WMAP data, which have
higher instrumental noise than the five-year data.

We also marginalize over a fixed set of “foreground tem-
plates,” ti , by adding an additional term to the data covariance
matrix of the form Fi = αititTi , with αi � 103, for each tem-
plate. In addition to one monopole and three dipole templates,9

8 http://healpix.jpl.nasa.gov
9 For an explicit demonstration of the importance of monopole and dipole
marginalization on this specific problem, see Gordon (2007a).

we use the V–ILC difference map as a template for both the
V band and ILC maps, the Q–ILC difference for the Q band,
and the W–ILC difference for the W band. However, these fore-
ground templates do not affect the results noticeably in either
case, due to the sky cuts used.

4. RESULTS

The main results from the analysis outlined above are summa-
rized in Table 1. We consider nine different data combinations
(i.e., frequency bands, masks, and multipole range), and show
(1) the best-fit modulation axis and amplitude, both with 68%
confidence regions; (2) the statistical significance of the corre-
sponding amplitude (i.e., A/σA); and (3) the raw improvement
in χ2 and Bayesian log-evidence for the modulated model over
the isotropic model. The last items are shown for the ILC with
the KQ85 sky cut only. For reference, we also quote the ILC
result for the Kp2 mask (Bennett et al. 2003b) reported by Erik-
sen et al. (2007a) when analyzing the Nside = 16 and 9◦ FWHM
data.

The reason for providing the full evidence for only one data
set is solely computational. The total CPU cost for the full set
of computations presented here was ∼50,000 CPU hr, and the
evidence calculation constitutes a significant fraction of this. On
the other hand, the evidence is closely related to the significance
level A/σA, and one can therefore estimate the evidence level for
other cases in Table 1 given the two explicit evidence values and
significances. We have therefore chosen to spend our available
CPU time on more MCMC posterior analyses, rather than on
more evidence computations.

We first consider the results for the ILC map with the KQ85
mask and �mod = 64. In this case, the best-fit amplitude is
A = 0.073 ± 0.022, non-zero at the 3.3σ confidence level.
The best-fit axis points toward Galactic coordinates (l, b) =
(224◦,−22◦), with a 68% uncertainty of 24◦. These results are
consistent with the results presented by Eriksen et al. (2007a),
who found an amplitude of A = 0.11 ± 0.04 and a best-fit axis
of (l, b) = (225◦,−27◦) for � � 40.

Second, we see that these results are only weakly dependent
on frequency, as both the V band and W band for the same mask
and �-range have amplitudes within 0.5σ of the ILC map, with
A = 0.080 and A = 0.074, and non-zero at 3.8σ and 3.5σ ,

http://healpix.jpl.nasa.gov
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Figure 1. Posterior distributions for the dipole modulation amplitude, marginal-
ized over direction and CMB power spectrum, computed for the KQ85 sky cut
and �mod = 64.

respectively. (We have not included the Q-band analysis for the
KQ85 mask, as there were clearly visible foreground residuals
outside the mask for this case.) The corresponding marginal
posteriors are shown in Figure 1, clearly demonstrating the
consistency between data sets. Figure 2 compares the best-fit
axes of the three data sets, and also indicates the axes reported
by Eriksen et al. (2004b) and Eriksen et al. (2007a).

Next, we also see that the results are not strongly dependent
on the choice of mask, as the amplitudes for the extended
KQ85e mask are consistent with the KQ85 results, even though
it removes an additional 10% of the sky. However, we do see,
as expected, that the error bars increase somewhat by removing
the additional part of the sky, and this reduces the absolute
significances somewhat.

Finally, the best-fit modulation amplitudes for the V-band
data and KQ85 mask are A = 0.11 for �mod = 40, A =
0.075 for �mod = 64, and A = 0.066 for �mod = 80
at 3.5σ , 3.8σ, and 3.7σ , respectively. This is an interesting
observation for theoreticians who are interested in constructing
a fundamental model for the effect: taken at face value, these
amplitudes could indicate a non-scale invariant behavior of A,
as also noted by Hansen et al. (2008). On the other hand, the
statistical significance of this statement is so far quite low, as
a single common value A ∼ 0.07 is also consistent with all
measurements. Better measurements at higher �’s are required
to unambiguously settle this question.

5. CONCLUSIONS

Shortly, following the release of the first-year WMAP data
in 2003, Eriksen et al. (2004a) presented the early evidence
for a dipolar distribution of power in the CMB temperature
anisotropy sky, considering only the large angular scales of the
WMAP data. Next, Groeneboom & Eriksen (2009) presented
the evidence for a quadrupolar distribution of CMB power,
and found that this feature extended over all �’s under con-
sideration. Finally, Hansen et al. (2008) found that the dipolar
CMB power distribution is also present at high �’s. The evidence
for violation of statistical isotropy in the CMB field is currently
increasing rapidly, and the significance of these detections are
approaching 4σ .

In this paper, we revisit the high-� claims of Hansen et al.
(2008), by applying an optimal Bayesian framework based on a

Figure 2. Posterior distribution for the dipole modulation axis, shown for the V-
band map and KQ85 sky cut, marginalized over power spectrum and amplitude
parameters. Gray sky pixels indicate pixels outside the 2σ confidence region.
The dots indicate the axis (1) reported by Eriksen et al. (2004b) in white; (2)
for both the ILC and V-band maps (these have the same best-fit axis) with the
KQ85 sky cut in black; (3) for the W bands in blue, and the axis reported by
Eriksen et al. (2007a) in green. Note that the background distribution has been
smoothed for plotting purposes to reduce visual Monte Carlo noise.

parametric modulated CMB model to the WMAP data at higher
multipoles than previously considered with this method, albeit
lower than those considered by Hansen et al. (2008). In doing so,
we find results very consistent with those presented by Hansen
et al. (2008): the evidence for a dipolar distribution of power in
the WMAP data increases with �. For example, when considering
the V-band data and KQ85 sky cut, the statistical significance of
the modulated model increases from 3.2σ at �mod = 40 to 3.8σ
at �mod = 64, and 3.7σ at �mod = 80.

The Bayesian evidence now also ranking within the “strong
to very strong” category on Jeffreys’ scale. However, it should
be noted that the Bayesian evidence is by nature strongly prior
dependent, and if we had chosen a prior twice as large as the
one actually used, the corresponding log-evidence for the ILC
map would have fallen from Δ ln E = 2.6 to 1.7, ranking only
as “substantial” evidence. For this reason, it is in many respects
easier to attach a firm statistical interpretation to the posterior
distribution than the Bayesian evidence.

It is interesting to note that the absolute amplitude A may
show hints of decreasing with �. It is premature to say whether
this is due simply to a statistical fluctuation, or whether it might
point toward a non-scale invariant underlying physical effect, in
which case the amplitude A should be replaced with a function
A(�). Either case is currently allowed by the data.

To answer this question, and further constrain the overall
model, better algorithms are required. The current approach
relies on brute-force inversion of an Npix × Npix covariance
matrix, and therefore scales as O(N3

pix) or O(N6
side). However,

already the present analysis, performed at Nside = 32, required
∼50,000 CPU hr, and increasing Nside by an additional factor of
2 would require ∼3 million CPU hr. More efficient algorithms
are clearly needed.

To summarize, there is currently substantial evidence for both
dipolar (Hansen et al. 2008 and this work) and quadrupolar
power distribution (Groeneboom & Eriksen 2009) in the WMAP
data, and this is seen at all probed scales. The magnitude of
the dipolar mode is considerably stronger than the quadrupolar
mode, as a ∼ 3.5σ significance level is reached already at
� ∼ 64 for the dipole, while the same significance was obtained
at � ∼ 400 for the quadrupole.

These observations may prove useful for theorists attempt-
ing to construct alternative models for these features, either
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phenomenological or fundamental. Considerable efforts have
gone toward this goal already (e.g., Ackerman et al. 2007;
Böhmer & Mota 2008; Carroll et al. 2008a, 2008b; Chang et al.
2008; Erickcek et al. 2008a, 2008b; Gordon et al. 2005; Emir
Gümrükçüoglu et al. 2007; Himmetoglu et al. 2008a, 2008b;
Kahniashvili et al. 2008; Kanno et al. 2008; Koivisto & Mota
2008a, 2008b; Pereira et al. 2007; Pitrou et al. 2008; Pullen &
Kamionkowski 2007; Watanabe et al. 2009; Yokoyama & Soda
2008), but so far no fully convincing model has been estab-
lished. Clearly, more work is needed on both the theoretical and
observational side of this issue. Fortunately, it is now only a
few years until Planck will open up a whole new window on
these issues by producing high-sensitivity maps of the CMB po-
larization, as well as measuring the temperature fluctuations to
arcminute scales. We will then be able to measure the properties
of the dipole, quadrupole, and, possibly, higher-order modes of
the modulation field to unprecedented accuracy.
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