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Chapter 1

Introduction

Elemental abundance in the photosphere is believed to be homogeneous,
and to represent the same abundance as the proto-nebula that formed the
solar system (Feldman and Laming, 2000). The high density and the strong
convection, in fact, leads to a well mixed photosphere.

However the composition of the upper atmosphere presents some signifi-
cant variations from the photosphere. Furthermore different structures in the
corona and in solar wind show different abundances. Both in-situ measure-
ments of solar wind and spectroscopic measurements of the coronal spectrum
provide evidence for a different level of abundance between the photosphere
and the upper atmosphere.

In the upper atmosphere the elements with a low First Ionisation Po-
tential (FIP < 10eV) are enriched relative to high FIP elements and with
respect to the photospheric ratio.

This FIP effect can be quantified defining the relative and absolute frac-
tionation for a generic element x:

(fabs )structure — (Aabs)structure (1 ) 1 )
T (Aabs>photosphere

and (A )structure
rel

structure __
(frel)g; o (Arel>photosphere ) <12)
where the absolute and relative abundances are defined as:

N,
Agps L 1.3
=N (1.3)

and N
A = —=, 1.4
=N, (1.4)
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FIP(eV) log A, N./Ny
H 13.6 12.00 1
O 13.6  8.6640.05' (4.07—5.13) x 10~*
Ne 21.6 8.08+0.06 (1.05—1.38) x 10~*
Mg 7.6 7.58 £0.05 (3.39 —4.27) x 107°
Si 8.1 7.55+0.05 (3.16 —3.98) x 107°
Fe 7.9 7.50+£0.05 (2.82—3.55) x 107°

Table 1.1: Photospheric abundances and first ionisation potentials for selected
elements (Grevesse and Sauval, 1998).

where N is the total density of the considered element, Ny and Ng are the
total hydrogen density and the total oxygen density.
This work will focus on the solar wind abundance variations.

1.1 Observations

The elemental abundances of the photosphere have been studied since 1929,
when Russell (1929) analysed the spectrum of the solar photosphere and
determined the abundances of 56 elements. Since then many measurements
have been done and the different elemental abundances are now believed to
be well known. The only exception is represented by oxygen, for which the
measured abundance has decreased by a factor of 0.46 from measurements
in 1989 to 2004 (Asplund et al., 2004).

The elemental abundances for the photosphere are shown in table
These values are given both in the standard logarithmic scale log A, =
12 +log,((N./Ng) and as a simple density ratio, and are obtained by spec-
troscopic measurements (Grevesse and Sauval, 1998).

To quantify the intensity of a line we can measure the equivalent width,
which is related to the area between the line and the continuum intensity,
in a plot of the intensity versus the wavelength. How the equivalent width
increases with gas density is described by the curve of growth (Gray, 2005).
Thus, by measuring the equivalent width and calculating the curve of growth,
we can get an estimate for the density of the gas. The curve of growth is re-
lated to many model parameters like temperature and levels population, but
also to atomic-physics quantities like transition probability. Hence obtaining
a good estimate of elemental abundances from the line strength requires de-
tailed models to describe both the solar atmosphere and the physics of the

!The oxygen abundance is taken from Asplund et al. (2004)
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transitions.

Another method to obtain an estimate of the photospheric abundances
consists of measuring the composition of a special kind of meteorite (CI
carbonaceous chondrites). These meteorites are believed to come from as-
teroids that were not subject to the differentiation processes that affected
the planet formation and thus are characterised by the same composition of
the proto-nebula that formed the solar system. The chondrites abundance
values confirm the spectroscopic values listed in table/1.1. This comparison
is obviously legitimated only for non-volatile elements, i.e. in our case for
magnesium, silicon and iron.

While the photosphere is characterised by a homogeneous and constant
composition, different structures of the upper atmosphere and solar wind
present important variations in the compositions. We will now focus on solar
wind measurements.

The spacecraft Ulysses was the first satellite to complete a polar orbit (in-
clination 80.22°) around the sun. A review of the studies from Ulysses mea-
surements of the solar wind composition can be found in von Steiger and Schwadron
(2000). Measurements from the SWICS (Solar Wind Ion Composition Spec-
trometer) instrument on board Ulysses confirm that the solar wind is mainly
made up of two fundamentally different components: fast wind and slow
wind.

Fast solar wind is characterised by high velocities (=~ 750 km s~! measured
at 1 AU) and a ratio between the charge states of a specific element (called the
freezing-in temperature) that reflects the coronal electron temperature above
coronal hole regions (Feldman and Laming, 2000). There is in fact quite good
agreement on the source location of fast wind in the coronal holes. Coronal
holes are regions where the coronal plasma is colder and characterised by
a density lower than the typical values of temperature and density in the
corona. Normally coronal holes are located over the sun poles, but during
high activity periods coronal holes can extend to lower latitude regions and
causing fast solar wind to mix with slow wind in the ecliptic plane.

Slow solar wind is characterised by lower velocities (=~ 400 km s~! mea-
sured at 1 AU), and different from fast wind, no single electron tempera-
ture can describe the spectra of elements (von Steiger and Schwadron, 2000).
Slow solar wind seems to originate from quiet coronal regions but there is
no full agreement upon its origin. Abundances comparison can suggest the
coronal loops as sources for slow wind, but this requires that these loops have
to open to release the plasma.

A third component of solar wind, associated with transient phenomena,
appears during high activity periods and is called the Solar Energetic Particle
event.
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Because of the much larger hydrogen abundance relative to the rest
of the solar abundant elements, it is easier to use another element (oxy-
gen in most cases) for comparisons. In order to give an absolute meaning
to these comparisons the hydrogen abundance relative to oxygen (or vice
versa) is needed. With the SWICS instrument, the obtained hydrogen rel-
ative abundance value (Ng/Np) is: A, = 1890 + 600 in slow wind and
A = 1590 4+ 500 in fast wind (von Steiger et al., 1995). With the photo-
spheric value for the hydrogen relative abundance given by Asplund et al.
(2004), A,e; = 2190 + 250, both slow and fast wind value are inside the un-
certainty. Moreover the adopted value for the hydrogen relative abundance
in the photosphere has been subject to numerous corrections in the last years
(see also Grevesse and Sauval (1998)). Hence, there is no experimental evi-
dence of an absolute fractionation for oxygen.

The SWICS instrument could measure and characterise the incoming
ions determining the energy per charge and the mass per charge. In that
way the instrument could perform comparable measurements of elemental
abundances relative to wind velocity. A sample of these measurements, av-
eraged over a 5-days period, is presented in Fig. [1.1. The green periods
sample shows slow wind, measuring when Ulysses was passing at low lati-
tudes (< 15°), whereas the purple sample shows fast wind measuring over the
South Pole. The low FIP element silicon presents a relative abundance that
is higher in slow wind than in fast wind. For the medium FIP element carbon
the picture is quite different with no significant variations between slow and
fast wind. Another observation is that both of the relative abundances are
more variable in slow wind than in fast wind.

Fig. [1.2 shows relative fractionation values measured by SWICS, averaged
over two periods for a total of ~ 600 days, for both fast and slow wind. In
slow wind (upper panel) the fractionation for low FIP elements (magnesium,
silicon, and iron), is a bit less than 3 and the medium FIP (sulphur and
carbon) are also enriched by a factor of ~ 1.5. The high FIP element nitrogen
and neon and the very high FIP helium are depleted relative to oxygen.

In fast wind the low FIP elements are still enriched but just by a factor of
~ 2 and the medium FIP elements are enhanced by approximately the same
factor as in slow wind. Nitrogen presents almost no depletion whereas neon
and helium are still quite depleted.

Another difference between slow and fast wind, as already pointed, is the
variability of the values: the fractionation values in the fast wind are much
less variable than the respective values in slow wind.

These results changed the canonical picture of the FIP effect in solar
wind. Previous measurements, made by satellites with low inclined orbits (see
Table 1 from von Steiger and Geiss (1989) for a review), gave an enrichment
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Figure 1.1: 5-days averaged values for silicon relative abundance (lower panel)
and carbon relative abundance (middle panel) from SWICS instrument in
comparison to the solar wind speed of protons from SWOOPS (Solar Winds
Observations Quer the Poles of the Sun) instrument (upper panel). Figure
adapted from von Steiger and Schwadron (2000).



6 CHAPTER 1. INTRODUCTION

I T LI | l 1 1 1 1 I T ) ¥ ) I L] 1 1 i L]

B SWICS/ Lilyssas:

Slow

I |

||III||

bt
—y

|||r|r|

o
P A o e
- MgSiFe SC ON Ne He ]
: j: i
I«
E 3 L R
IIIITIIIIIIII_l_LJ_]]_]_lI_
5 10 15 20 25

FIP [V]

Figure 1.2: 600-days averaged values for relative fractionation (see eq. [1.2)
plotted versus the ionisation potential. The points represent the averaged
values and the error bars denotes the natural variability of the daily values.
Figure adapted from von Steiger and Schwadron (2000).
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of low FIP between 3.5 and 5 in slow wind, while almost no enrichment was
measured for the low FIP elements in the fast wind. Yet FIP elements were
observed to present no depletion relative to oxygen. These measurements
were characterised by a plateau structure with the low FIP elements forming
the first plateau, the middle FIP elements being the transition part, and the
high FIP elements forming a second plateau where they were not enriched
relative to each others.

1.2 Models

Different theoretical models have been developed in order to explain the FIP
effect both in the upper solar atmosphere and in solar wind. Most of the
models locate the fractionation process in the chromosphere, where the first
ionisation occurs.

The first kind of model neglects the role of the magnetic field in the
fractionation, or use it only to guide the ions. In this model fractionation
is driven by diffusion along field lines. Models of this kind are implemented
by Marsch et al. (1995), Wang (1996) and Peter (1998). Peter’s model is
explained in detail in chapter /4. A common feature for these diffusion models
is that an enrichment can be obtained if the minor constituent velocity at the
bottom of the studied layer exceeds the velocity of the hydrogen background

(see eq!4.10).

A second kind of model describes the magnetic field as the key element
in the fractionation process. At low enough densities, (such that neutral and
ionised atoms are not coupled) high FIP elements (that are still neutral)
can move perpendicularly to the field lines, whereas this is not possible for
low FIP elements that at these chromospheric heights are already ionised.
The fractionation thus derives from a difference in the drift velocities between
high and low FIP elements. This velocity difference becomes significant when
the collision frequency between ionised and neutral atoms can be neglected
relative to the gyro frequency. Under this condition the neutral species (high
FIP) can cross the field lines while the ionised species are forced to follow the
field. An example for this kind of models is given by Vauclair (1996) where
an ascending horizontal magnetic field lift the ionised elements, whereas the
neutral cross the field lines because of gravity, leading to an enrichment of
low FIP element in the upper part of the atmosphere. Other models of this
kind are presented by von Steiger and Geiss (1989) and Henoux and Somov
(1997).



8 CHAPTER 1. INTRODUCTION

1.3 The present work

There is still no wide agreement upon the processes behind the FIP effect
and both more observation and more theoretical models are needed to obtain
a clearer picture of the fractionation process.

In this work we will focus on the fractionation process in fast solar wind.

Building a one dimensional numerical model of the chromosphere we will
try to understand the ionisation-separation process that is believed to be
behind fractionation. First we will implement a model describing the hy-
drogen background in a chromospheric layer, with a flow corresponding to
the solar wind flux obtained by measurements. Three different supposed ge-
ometry will give three different characteristic velocities for the model. Then
we will build a similar model describing the interaction between some minor
constituents (oxygen, neon, magnesium, silicon and iron) and the hydrogen
background in order to study how and if fractionation can take place, with
different background fluxes. The result will be compared with the work by
Peter (1998) and Peter and Marsch (1998), discussing their ad-hoc chosen
boundary conditions and parameters and how these influence the possibility
to obtain a FIP effect comparable with measurements.



Chapter 2

The model

We consider a slab of the solar atmosphere of a certain thickness and with a
certain temperature profile. For simplicity we consider the atmosphere as a
one dimensional system with plane parallel symmetry.

The atmosphere model consists of a pure hydrogen background (see sec-
tion [5) and one of the trace elements (minor constituents) O, Ne, Mg, Si or
Fe at the time. Only neutrals and singly ionised particles are included, and
the hydrogen background is quasi neutral, i.e. the electron density is the
same as the proton density.

The physical quantities are governed by the mass conservation (mass
continuity equation) and the momentum equation (Newton’s second law).
No energy equation is solved, but a linear temperature profile is given. In
this way we avoid the problems related to the coupling between the radiative
transport equation and the hydrodynamic equations.

We consider a magnetic field with vertical magnetic flux lines and flow,
in vertical direction only. Hence, since the contribution from the magnetic
field is proportional to the vector product between the magnetic field and the
velocity, we do not need to include any magnetic field term in the momentum

equation.
We model the following equations

)

J#i
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where the indexes ¢ and j can take the values 1 or 2, representing neutral gas
and ionised gas, respectively. n; is the number density and u; is the velocity of
the species 7. Pj, is the ionisation rate and P,; the recombination rate, both
discussed in section (2.1l m; and ¢; are the mass and the electric charge of the
species i, respectively. E is the electric field (see section 2.4) and v;; is the
collision frequency between the species ¢ and j. The collision frequencies are
treated in section 2.5. ¢ is the gravitational acceleration, set to g = —270 m
572, T is the temperature (constant in time) and k is Boltzmann’s constant.
The derivatives in equation 2.1/ and 2.2 are taken with respect to time ¢ and
height z. All the variables are in Sl-units, if nothing else is specified.

We model the background with the same equations (2.1 and as for
the minor constituents, but for practical reasons we rewrite the momentum
equation for neutral hydrogen and protons as

d(ngu 0 1 0
( gt ) | gz uati) = = g (naKT) 4 gns + Ko s 1y (U = 1)
+ npUp P21 — TLHUHP12 (23)
d(nyu,) O 2 0
= o (myuyy) = - m—p%(nka) + gny + ke np np(up — uy)
+ ngug P12 — npupp21 . (24>

The collisions between protons and neutral hydrogen are dominated by the
charge transfer process, and due to Newton’s third law, their collision rate
coefficients k,,; are equal. This rate coefficient depends on the temperature,
and we have adopted the following relation between k,,; and T,

o [Tu+T,
ket = ke (T) = 1 x 1071 ﬁ , (2.5)

in units m® s, where the neutral hydrogen and proton temperatures, Ty
and T}, are both equal the electron temperature 7'. In order to check if this is
a reasonable estimation of the collision frequency we have compared it with
the values of the rate coefficient k,,; provided by Schultz et al. (2008). They
give two values of k,,; in our temperature range, ky,; = 1.59 x 107 m3 s!
at T =7 x 10°K and k,y = 1.82 x 107" m?® s7! at T = 1 x 10*K. These
values are higher than what equation(2.5 yields at the same temperatures, i.e.
kot (T = 7x103K) = 1.19x 107" m3 s7! and k. (T = 1x10°K) = 1.41x1074
m? s7!, but they agree within an uncertainty of 30%. The factor two in the

pressure term for protons is due to the electric field, described in section[2.4.
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2.1 Jonisation rates

The ionisation rate F;; can be written as the sum of the radiative ionisation
R;; and the collisional ionisation Cj;,

Pij = Rij +Cij . (2.6)

For the hydrogen background, the collisional ionisation rate is almost al-
ways negligible. For oxygen we also take charge transfer with hydrogen into
account (see section . The collisional and radiative ionisation rates for
oxygen are negligible.

2.1.1 Radiative lIonisation

Hydrogen For the radiative ionisation we follow the approach of Peter and Marsch
(1998). In that model the ionising radiation is assumed to come from above.

In other words the photons that have the right energy to ionise hydrogen are
assumed to come from the upper layers of the solar atmosphere. Supposing

a constant photon flux at the top of our layer, the ionising radiation flux and

the photoionisation rate Ris vary with depth in the atmosphere. Assuming a
photoionisation cross section oy that is constant for the relevant wavelength

band we can write:

%312 = —oy Rianp, (2.7)
where s = 2, — 2 is the depth, z the height, 2z, the height of the layer’s
upper boundary and ng is the neutral hydrogen density. The photoioni-
sation cross section for hydrogen can be estimated as oy = 5.5 x 10722 m?
(Peter and Marsch, 1998) (Vernazza et al., 1981). Solving equation[2.7, with

a change of variable from s to z we get:

Ris(2) = Rz (210)) exp (—UH / nH(z’)dz’) | (2.8)

If the neutral hydrogen density is known the rate can be estimated by nu-
merical integration.

By supposing an initial value for Ris(z) we can integrate the fluid equa-
tions until we obtain a steady state. With ny we can calculate a new value
for Ryo from equation 2.8. We continue the iteration until R changes by
less than 3% from one iteration to the next.

Minor constituents For the radiative ionisation of the minor constituents
we follow the approach of Peter (1998). As for hydrogen the ionising radi-
ation is assumed to come from above, that gives a decaying ionisation rate.



12 CHAPTER 2. THE MODEL

Rm[S_l]
O 1.62x1072
Ne 1.24 x 1072
Si 9.23x 107!
Mg 1.28
Fe 1.099

Table 2.1: Tonisation rates.

However the minor constituents are characterised by a low abundance. This
gives a negligible absorption of the ionising radiation. The ionisation rate
can thus be considered constant throughout the slab.

The photoionisation rates for zero optical depth are given in table and
are taken from von Steiger and Geiss (1989) and Peter (1998).

2.1.2 Collisional ionisation

There are several different ionisation mechanisms due to collisions. We only
consider direct tonisation in this work. Direct ionisation happens when an
atom collides with an electron producing two electrons and a singly ionised
atom. The direct ionisation rates for the elements H, O, Ne, Mg and Si are
taken from Arnaud and Rothenflug (1985), while the direct ionisation rate
for iron is taken from Arnaud and Raymond (1992). The rate coefficient for
direct ionisation can be written

epr(T) = 6.69 - 1072 (%)3/2 exp;;x)F(x) : (2.9)
in units of m® s=!, where
el
r=r (2.10)
Fz)=A 1—2z fi(z)) + B (14+z—2(2+z)fi(x))
+C fi(z)+ D x fo(x) (2.11)
fi(z) =e* /1 %e”‘“ (2.12)
fo(z) =€* /100 %em In(¢) . (2.13)

I is the first ionisation potential in units V, e is the elementary charge and
A, B, C and D are fitting coefficients given in table[2.2. The integral f(x)
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is evaluated using the Hastings polynomial approximation

f ( ) z /OO dt —tx ZLA + a1x3 + CLQ.TQ + asx + ay
T r) = € —€ =
! 1 t l‘4 + bll‘B + bQI‘Q + bgl‘ + b4

+e(z), (2.14)

Abramowitz and Stegun, 1964), where |e(z)] < 2 x 1073 and
( gun, :

ay = 8.573328740 by = 9.573322345 ( )
ay = 18.05901697 by = 25.63295615 (2.16)
as = 8.634760893 b3 = 21.09965308 ( )
ay = 0.267773734 by = 3.958496923 . ( )

fa(z) is evaluated following Hummer (1983), and the final ionisation rate C1o
defined in chapter 2 is given by

Ci2 = cpr ny (2.19)

in units s—'.

2.2 Recombination rates

The recombination rate P»; of the minor constituents can be written as the
sum of the radiative recombination Ry; and the dielectronic recombination
Dy;. The radiative recombination is a form of spontaneous emission. The
dielectronic recombination is a process where an unbound electron binds to
the recombining ion giving its energy to the atom by exciting one of its other
electrons. The excited atom deexcitates by emitting a photon. For hydrogen
we obviously only have radiative recombination.

2.2.1 Radiative recombination for hydrogen

The radiative recombination rate coefficient for hydrogen is given by
o, (T) = 5.197 x 10720 A2 (0.4288 + 0.5 In(\) + 0.469 A™/3 ) | (2.20)

(Arnaud and Rothenflug, 1985), in units m® s™', where A = 157890/7 and
T is given in K. In order to get the rate R;; measured in s™!, as defined in
chapter 2] a,.(T") has to be multiplied by the electron number density, which
in our model is the same as the proton number density,

P21 = R21 = Oy Nyp. (221)
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2.2.2 Recombination rates for the minor constituents

The equation for the radiative recombination rate coefficient in units m3 s—*

(Shull and van Steenberg, 1982) is the same for all the minor constituents,

T Xv"ad
ar(T) = Araa (—104K) : (2.22)

The fitting coefficients, A,.q and X,.q4, are given in table2.3. Also the dielec-
tronic recombination rate coefficient, in units m® s~! (Shull and van Steenberg,
1982), is the same for O, Ne, Mg and Si,

ag(T) = Ag; T™2 exp <—%) (1 + By exp (—%)) : (2.23)

The fitting coefficients Ay, Bg;, Tp and T} are given in table2.3. As for hydro-
gen, these rate coefficients have to be multiplied with the electron (proton)
density in order to get the recombination rate P»; in units of s~!,

P21 == Rgl + D21 == (Ozr + Ozd) TLp. (224)

2.2.3 Dielectronic recombination rate for iron

The equation for the dielectronic recombination rate for iron is given by

aa(T)=T7% Y ¢; exp (-E];'TQ) , (2.25)

J

in units m* s™' (Arnaud and Raymond, 1992). E; and ¢; are given by

Ey=512eV ¢ =22x 10710 m? s7! K32 (2.26)
Fy=129¢eV ¢, =1.0x10"1"m? s 1 K32 . (2.27)

2.3 Charge transfer

The charge transfer ionisation and charge transfer recombination are, in a
first approximation, the predominant transition processes for oxygen. In
the charge transfer ionisation an electron jumps from a neutral oxygen to a
proton resulting in a ionised oxygen and neutral hydrogen atom. Vice versa,
in charge transfer recombination, an ionised oxygen and a neutral hydrogen
meet to form neutral oxygen and a proton. Treating this process as a normal
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Element 1 A B C D
O 13.6 9.5 -17.5 125 -19.5
Ne 21.6 40.0 -42.0 18.0 -56.0
Mg 76 180 -1.0 06 -4.0
Si 81 745 -494 1.3 -54.6
Fe 79 319 -15.0 0.32 -28.1

Table 2.2: Fitting coefficients for the direct ionisation rates.

Argg (m® 7)) Xoog Ay (m®s ' K%?) By Ty (K) Ty (K)
O 3.10(-19)  6.78(-1) 1.11(-9) 9.25(-2) 1.75(5) 1.45(
Ne  220(-19)  7.59(-1) 9.77(-10) 7.30(-2) 3.11(5) 2.06(
Mg  1.40(-19)  8.55(-1) 4.49(-10) 2.10(-2) 5.01(4) 2.81(4
Si 5.90(-19)  6.01(-1) 1.10(-9) 0.0 7.7(4) 0.0
Fe 1.42(-19)  8.91(-1) - - - -

Table 2.3: Fitting coefficients for the recombination rates. 3.10(—19) means
3.10 x 10719

transition between neutral and ionised oxygen the transition rates are given

by

Py =n, Cion (2.28)
Py = ny Crec (2-29)

in units s~', where n, and ny is the proton and the neutral hydrogen number
density, respectively. The rate coefficients Cjon and Crpe are given by

—19.6 x 1073 T
CION 2091 X 10_15 exXp ( 9 6 x 0 ve) (]_ — 093 exp (_

kT 103K
(2.30)
T
Crpe =10715 <1 —0.66 exp <—9.3104K)) : (2.31)

in units m*® s™' (Arnaud and Rothenflug, 1985).
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2.4 Electric field

To obtain a simple expression for the electric field we write the momentum
equation for the electrons,

d(neue) 0 10 ne€
5 + &(neueue) = —m—eg(nekT) + gne — m—eE ) (2.32)

where m, is the electron mass, n. is the electron number density, u. is the
velocity of the electrons. Since the electron mass m, is much smaller than
every other variable, we can neglect all the terms that are not divided by m.,
and equation 2.32 becomes

—%(nekT) =nee k. (2.33)

We have assumed that the sun’s atmosphere is quasi neutral, and hence
ne = n,. Substituting this in equation 2.33 we obtain

—%(nka) =n,ekE, (2.34)

which yields the following expression for the electric field,

L 9 kT | (2.35)

E=-
e n, 0z

2.5 Collisions

The collision processes describe how the minor constituents interact with
the hydrogen background. In this section we will treat three different colli-
sion processes. Neutral-neutral collisions (collisions between neutral minor
constituents and neutral hydrogen), neutral-ion collisions (both collisions be-
tween neutral minor constituents and protons, and collisions between neutral
hydrogen and ionised minor constituents), and finally the very important
collisions between ionised particles (protons and ionised minor constituents).
Collisions between two minor constituents are neglected.

Proton-ion collisions are the absolutely strongest ones. Their rate co-
efficients are at least two (often three) orders of magnitude stronger than
the rate coefficients for neutral-ion and neutral-neutral collisions. Neutral-
neutral and neutral-ion collisions have rate coefficients of the same order of
magnitude.
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Element  7,7(107'%m)

Oxygen 2.26
Neon 1.75
Silicon 2.91
Magnesium 3.09
Iron 3.09

Table 2.4: Atomic radius for the rigid sphere approximation, taken from
Marsch et al. (1995).

2.5.1 Neutral-neutral collisions

When describing the collisions between neutral particles we use the so called
rigid sphere approximation. The collision frequency for neutral-neutral colli-
sions (Banks and Kockarts, 1973) (Schunk, 1977) is given by

4 mo

V12 N9 O0p V12 , (236)

- §m1+m2

in units s7!, where m; and ms are the masses of the colliding particles, v;5

is the relative velocity, ny is the number density of the neutral hydrogen
gas, and oy = mr2, is the collision cross section. The values of r,g for
the different minor constituents (Marsch et al., 1995) are given in table
Assuming thermal and dynamic equilibrium, the distribution of the velocities
is given by the Maxwell distribution and the average relative speed between

the particles is
8k T\:?
V12 = <— —) s (237)
™ H

where the reduced mass p is given by

my1 mso

T 2.38
h= (2.38)

Equation 2.36 and 2.37 yields the following expression for the collision fre-

quency,
1
4 Mo 8k T\?2

_z ) 2.39

Y12 3m1+m2n200(7r u) ( )

2.5.2 Neutral-ion collisions

In a neutral-ion collision the most important interaction is represented by
an induced dipole attraction. The average collision rate (Schunk, 1977), in
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Element «
Hydrogen 0.74
Oxygen 0.88
Iron 9.3
Neon 0.44
Silicon 6.0

Magnesium 11.8

Table 2.5: Neutral gas atomic polarizability. [a] = 1070 C? s2 kg™!

1

units s, is given by

Vig =

4 mo

- ————— NV . 2.40
3 iy tm, 22 ®@p ( )
ng is now or the neutral or the ionised hydrogen number density, and Q)p is
the average momentum transfer cross section for collisions between ions and
neutral particles, given by

a5 e
Op = 0.260 (k—T) : = (2.41)

where « is the neutral gas atomic polarizability and ¢ is the permittivity
of vacuum. The polarizabilities « for the different elements (Marsch et al.,
1995) are given in table2.5. The average relative speed is given by the same
formula as for collisions between neutral particles (see equation [2.37), and
with the expression for the cross section in equation|2.41, equation 2.40 can
be written as

N

mo (67 e
= 0.553 ——— -] —. 2.42
Y12 my + ms 12 (u) €0 ( )

2.5.3 Ion-ion collisions

Collisions between charged particles are described by the so called Coulomb
interaction. The collision frequency for such collisions (Schunk, 1977), in

units s~!, is given by
1 oUkT\ "2 €2 ¢l
by = = 22 ( il ) A5 A, (2.43)
3 €5 my+my \ fla2 Mo

where the electric charge e; and e of the two particles are, in our case, both
equal the elementary charge e. This is because we only treat singly ionised
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ions. The Coulomb logarithm, In A, is given by
A =24nn, L3, (2.44)

where Lp is the Debye length, that for a pure hydrogen plasma is given by

A €2
In=[—-— + . 2.4
b (kT 4reg (ne np)) (245)

NI

Since we study a quasi neutral atmosphere, i.e. n. = n,, equation [2.45/ may

be written as
kTGO
Lp = . 2.46
b \/ 2e2n,, (2.46)

Finally we obtain the following expression for the Coulomb logarithm,

g
InA =1In 24mn,, (K16 . (2.47)
e3 2n,
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Chapter 3

The numerical model

3.1 Double grid

The model describes a slab of the solar atmosphere of a given thickness. The
slab is divided into cells, where every cell is characterised by a lower border,
an upper border and a centre. Some physical quantities are defined in the
cell’s centre while others are defined on the cell’s borders. This is why the
system is called a “double grid”: the cells’ borders constitute a first grid, the
border grid, and the cells’ centres define a second grid, the centre grid. The
gas velocity and the mass flux are defined on the border grid, while the gas
densities and the gas temperature are defined on the centre grid.

Going into details, we define a velocity u; that describes the gas velocity
on the j-th border and a density n; that gives the gas density in the centre
of the j-th cell, where j is the spatial discretisation index. As one can see
from Fig. [3.1/the j-th cell is delimited between the borders labelled as j and
J + 1. Then the j-th border is the limit between the j-th and the 7 — 1-th
cell.

Like the velocity, the mass flux, given by n u, is also calculated on the
border and we therefore need an estimate of the density on the border, called
nj. In the code, two different ways to estimate the density values on the

Border grid j-2 -1 j j+1 j+2

Centre grid ‘ j‘—2 ‘ j‘—l ‘ ‘] ‘ j'l"l ‘

Figure 3.1: The double grid structure.
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borders have been used. The first one is an easy two points average,

1
fj = 5 (-1 + 1), (3.1)
and the second one is a more elaborated average using a second order upwind
differencing scheme to estimate an advective flux. The two points average
is used in all terms of equation 2.2, except the first term on the right hand
side (pressure gradient term), which has no need for any value of n;, and
the second term on the left hand side (advection term), where the upwind
scheme is used. The latter is also used in the second term of the left hand
side of equation 2.1.
In the same way, we can define the averaged velocity of the cell centre,

. 1
Uy = 5 (uj +uj), (32)

but this time only the two points average has been used.

3.2 Semi-implicit scheme

The aim of the code is to integrate the continuity and the momentum equa-
tions (equation[2.1/and[2.2) in time. The scheme used to solve these equations
is a semi-implicit scheme, which means that it is a mix of an explicit and an
implicit scheme.

In the explicit part every unknown variable is a function of known vari-
ables only. To exemplify we consider the quantity ¢(p,r), which is a func-
tion of the quantities p and r. In an explicit scheme at a certain time step
1+ 1, the quantity ¢ is only a function of p and r at previous time steps,
gt = ¢ (pt,rt pit, ...). The explicit scheme for the left hand side of the
continuity equation is given by

i+l i i

oG i i
j J (”j+1 Ujpr — 1y uj)

At Az

n

(3.3)

Thus, the explicit scheme provides an easy way to determine numerically
the evolution of the physical quantities when the values at the previous time
step are known. Unfortunately, explicit methods are characterised by unsta-
ble solutions. These can be studied introducing the Courant-Friedrichs-Lewy
stability criterion (Press et al., 1992), which sets a lower limit for the ratio
between spatial increment Az and time step At.

The code is used to find both time dependent and steady state solutions,
which requires big time steps. It is therefore preferable to avoid any upper
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limit for the time step At. In order to avoid this, we need to use an implicit
scheme.

In implicit schemes, the quantity ¢**! is coupled with all the other quan-
tities at the same time step, ¢"™ = q(p'™L, v pt ri ). Tt is therefore no
longer possible to calculate explicitly every quantity one by one. Hence, the
whole system of coupled equations needs to be solved for each time step t;.
The implicit scheme for the left hand side of the continuity equation becomes

i+1 ; Sitl il ail il
i n (A5 wihy — 5™ uy)
At Az

Since all the quantities are coupled in the implicit scheme, there is no
upper limit for time step At. In our code implicit and explicit parts are
mixed, i.e. the variables in the advective term of the continuity equation
(2.1) and the momentum equation (2.2) are defined as
;=B uit + (1 - 8) u} (3.5)

J

n

(3.4)

and
n; =B A+ (1= p) (3.6)
where 3 determines how implicit the code is. 3 = 0 gives a fully explicit
code, # = 1 gives a fully implicit code, and any number between 0 and 1
makes the code semi-implicit.
By defining the cell volume AV = AAz, where A is the unit surface,

equation 3.3/ can be written as
AV (néﬂ — n;) -+ ANt (,;L]Llrl ﬂj+1 - ;lj ’I_Lj) =0. (37)

The discretisation of the right hand side of the continuity equation (equa-
tion 2.1) proceeds similarly, with the only note that we choose to write the
ionisation term as a fully implicit - and not semi-implicit - term.
Also the discretisation of the momentum equation follows the same steps,

and the explicit expression for the left hand side of equation 2.2!1is,

Sitl il

T T

At
(A1 + AGu5) @5 — (Ajuj + 55, ) @,
Az

A combination of equation 3.8 and the corresponding implicit scheme gives
the semi-implicit expression

(3.8)

AV (ﬁ“lu”l — ﬁ;u;) —+ AAL (ﬁj+1ﬂj+1 -+ 'fljﬂj) ’ZTL]'

J J
— (ﬁjﬂj + ﬁjfl’l_ﬁjfl) ﬁj,1 s (39)
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where we have defined
a; = puitt +(1-p) ) . (3.10)

Without going into details, we will describe how the different terms on
the right hand side of the momentum equation (2.2) can be implemented
in a discretised scheme, by specifying if the implicit or semi-implicit form is
used. The pressure gradient term contains semi-implicit centre-grid values
of the density, defined similarly to equation 3.6. The electric field term is
equal to the pressure gradient term in the hydrogen background, which means
that it contains semi-implicit centre-grid values of the (proton) density. In
the code for the minor constituents the electric field depends on the fully
implicit minor constituent density value at the cell borders, and on the time-
independent proton pressure also evaluated at the cell borders. The gravity
term depends on the semi-implicit border-grid values of the density. The
tonisation, the charge transfer and the collision terms are calculated from
fully implicit border-grid values of the density and the velocity.

3.3 Newton-Raphson method

As we have seen in section a semi-implicit scheme leads to a system of
coupled nonlinear equations that we want to solve with respect to ni*! and
u'™! for every time step 7. In order to do this, the Newton-Raphson method
is applied (Press et al., 1992). As a first step, we define a vector E; that
contains all the discretised system equations, both for the continuity and for
the momentum equation. These equations have a component for every cell
J-
The solution for the i + 1 time step yields the value n*! and u‘*! for
which
E;(nitt uitt nith ) = Ey(aitt ) =0, (3.11)

where z! is a vector of components n}, u:, and k is a second space index.
We write 74! as the sum of the previous value % and a correction Az,

it =zl + Al (3.12)

where Azt is the unknown variable. If the time step is small enough, we
assume that also the corrections are small,
| Ay

: 1. 3.1
< (313)
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With this assumption it is possible to linearise the solution, neglecting the

. N
higher order terms in [Ba] $|, e.g.,
x

it it~ ol 2l 4 224 Azl + higher orders. (3.14)
Let us assume that we do not know the real solutions :E?Ll, but only their
estimate z%, called test solution. Then the vector E is no longer zero, but
quantifies the error from the estimate. The aim of the Newton-Raphson
method is to find the right correction that nullifies the error, or at least
makes it negligible. The steps of the Newton-Raphson method are given by

Ej(2}) #0, (3.15)

E;(z}, + Axg) = 0. (3.16)

Assuming again that the correction is small, % < 1, we can rewrite F; as
k

a Taylor series

OF;
Ej(@), + Awy) ~ Ej(a) + Zk: o |mst, Az =0, (3.17)
By defining a new operator Wj; as
OF;
Wiy = -2 3.18
jk axk ) ( )
we can rewrite equation as
Ej(a}, + Axy) = Ej(a}) — > Wikla}) Az =0, (3.19)
or in matrix form
W - Az = E(z"). (3.20)
If we invert the matrix W, we get
Az =W E(zh), (3.21)
that allows us to calculate a new value of x,
2’ ="+ Az (3.22)

The partial derivatives that constitute the matrix element Wj;, are dif-
ferent from zero only when j — 2 < k < j + 2, because of the second order
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upwind scheme used in the advective term. This results in a pentadiagonal
matrix, with big simplifications concerning the matrix inversion.

The Newton-Raphson method gives exact result when the system is made
up of linear equations. This is not the case here, because in the Taylor
expansion we have neglected all the higher order terms including the second
order. However, if the test solution is not too far from the real solution,
ie. % < 1, hopefully the new solution obtained with the Newton-Raphson
method can bring us closer to the right solution. If this is the case, we can
solve the system with an iterative procedure, otherwise, if the new solution
is not converging, it is necessary to repeat the whole process with a smaller
time step At.

3.4 Boundary conditions

In this section we will describe the role of the boundary conditions, and how
they are implemented. The physical values of the boundary conditions are
not the same for the background and the minor constituents, and also vary
between the different background models. They are therefore given for each
specific case in later sections.

The boundary conditions are very important because they describe the
physical system outside the grid and constitute the way to communicate all
the necessary external conditions to the modelled layer. For example it is
through the boundary conditions that we simulate the presence of the atmo-
sphere below the lower boundary, avoiding in this way the whole atmosphere
to fall in a gravitational collapse.

The boundary conditions supply the values for the border density 7 (see
section and the border velocity v on the left border of the first cell and
on the last cell’s right border.

It is important to differentiate the fized and the floating boundary con-
ditions. While a fixed boundary forces the boundary to have a determined
value, the floating condition allows the boundary to just follow the same be-
haviour as the nearby grid points. A typical example of a floating boundary
equation is the flux conservation, where the particle flux is conserved from
the first grid point to the second.

Specifying a fixed density value simulates a rigid wall at the beginning
or end of the grid, and can often cause reflection problems. In order to give
information about the physical system without building a reflective wall we
use the method of characteristics described by Korevaar and van Leer (1988).

The main idea is to build a boundary condition that has a non-reflective
behaviour but is still carrying information from the system outside the grid.
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This is achieved by a set of equations that permits the boundary to oscillate
around a fixed value, in order for the perturbations to pass through it.

Lower boundary This method considers a undisturbed hydrogen gas at
the lower boundary (where z = z;) which has fixed values for the density
and velocity, n, and u,, respectively. The true boundary value n; and u; are
calculated by a sort of interpolation between the undisturbed values n, and
u, and the densities and velocities at the first and the second grid pointn,
u1, ny and us. The boundary condition for the density is then given by

1 (fy(al + ug — uy) + ¢ log(nokTo) + ¢ log(n k1Y)
n = —exp
o+

) (3.23)

where ¢, = 4 /% is the sound speed of a pure hydrogen gas at temperature

Ty, and my is the hydrogen mass. < is the heat capacity ratio, and the
parameter a; is given by

@ =22 l@ log <”1T1) — (uy — ug)} . (3.24)

22 — 21 LY naTy

where ¢;, T;, and z; are the sound speed, the temperature and the height for
the first (i = 1) and the second (i = 2) grid point. The boundary condition
for the velocity is given by

w = ug — il log <ﬂ) : (3.25)

Upper boundary The conditions for the upper boundary follow the same
principles as for the lower boundary. The undisturbed values ng, uy and
nrop, urop are specified in the different cases presented later.
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Chapter 4

The 1onisation-diffusion model
of Peter

We are now describing the model by Peter (1998).

Since we have such a different behaviour between high and low FIP ele-
ments (see Fig. [1.2), the basic separation process is believed to happen in
the chromosphere, at altitudes where elements can be found in both ionised
and neutral state.

The fractionation is caused by two distinct processes: ionisation and dif-
fusion. Elements with low FIP are characterised by a small ionisation time
and they therefore couple early with the main flux of solar wind, because of
the very effective Coulomb collisions with protons. Yet high FIP elements
need longer time to ionise and are later coupled with hydrogen in solar wind.
Thus low FIP elements are easier transported out of the chromosphere.

The other important process is diffusion. At the bottom of the ionisation
layer different velocities for different elements are possible (no coupling) and
these different velocities cause different abundances.

There is also a third effect that influences the fractionation, that is the
velocity dependence. If the main stream of hydrogen has a high velocity, the
time needed to pass through the ionisation layer is smaller and the fractiona-
tion process is less effective. If instead the wind speed is lower, the ionisation-
diffusion process has more time and higher fractionation is reached.

Starting from the fluid equations, it is possible to obtain a simple for-
mula that describes fractionation. We write the continuity equation (eq.2.1)
and the momentum equation (eq2.2) for the neutral state of a generic minor
constituent x, while we assume a constant background of hydrogen. The fol-
lowing assumptions and approximations are used: steady state (all the time
derivatives are zero), subsonic velocity (the advective term of the momen-
tum equation can be neglected), thin slab (negligible gravity and constant

29
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temperature), negligible electric field, homogeneous vertical magnetic field,
negligible ionisation term with respect to collisions in the momentum equa-
tion, only collisions between the z minor constituent and hydrogen to be
considered, and plane parallel approximation (all the variables depends only
on the vertical coordinate z).

The indexes n and ¢ correspond to the neutral and the ionised state of z,
H and p refer to neutral and ionised hydrogen. By introducing the particle
flux for neutral x, ¢,, = u,n,, we can rewrite the neutral continuity equation
as:

9
0z

while the related momentum equation becomes:

1]{;T8

e = = Vpp (U — Up) + Vpp(up — uy). (4.2)

For a detailed description of all the terms and variables see chapter 2|

Summing the neutral and the ionised continuity equation we obtain that
the total flux, ®, = ¢, + ¢;, is constant throughout the ionisation-diffusion
layer.

We now make the assumption that all the gases (minor constituents and
hydrogen) are totally neutral at the bottom of the layer(n?, ¢, n), ¢9 = 0),
and furthermore, that the neutral velocity w, is constant at the bottom
which gives:

gbo = gno (4.3)

We can now suppose that the collision rates are proportional with the
respective (neutral or ionised) hydrogen densities, i.e. that v,y = Uypny
and vy, = Uppny, with 0,5 and 7, constant.

Substituting eq. 4.1, written for the lower boundary in the left hand side
of eq. and eq. (still written for the lower boundary) in the right
hand side, we get:

m
—PiN? = u’N? k—;j Vnrr (W) —up) (4.4)
where N? is the total density for the trace gas at the lower boundary. Rewrit-
ing this equation with respect to the trace gas total flux ®, we obtain the
quadratic equation

N P, kT (N?)?

P2 — P, D
* HNH ﬁnH my Ny

=0, (4.5)
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which gives the following solutions:

2
By R+ \/CD%, (#2) + 4w N0y

2

(4.6)
where capital letters stay for total densities and total fluxes and where w,,

called the diffusion velocity, is defined by:

P, kT
W= =

. 4.7

By defining the average velocity U = ® /N, eq. [4.6 can be rewritten as:

2
Yo 1y 1+4(ﬂ). (4.8)
Un

With an upstream only the plus sign leads to a physical solution. From eq.
it results that all the minor constituents have a velocity at the bottom
higher than the main stream velocity.

This ratio between average velocities is closely related to the fractiona-
tion. Supposing that the key processes for fractionation take place in this
ionisation-diffusion layer, the absolute fractionation (see eq. [1.1) can be
rewritten as:

(=)

(fabs)z = (N_x)m :

Ng

(4.9)

If we now assume that at top the velocities are all coupled, U, = Uy, and
consider that the total fluxes are constant, the ratio N,/Ny at the top is
equal to the ratio ®, /Py, that gives:

UO

(fabs)a: (410)

Also the relative fractionation can be written from eq. 4.8:

1+ 1+4(w—w>2
(fret)z = % = o = . (4.11)
° 14 1+4(;;—g>

Thus the relative fractionation is determined only by the diffusion velocity
w and by the main stream velocity Uy. Eq. [4.11/ describes how the different
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processes (ionisation and diffusion) influence the fractionation: with a larger
ionisation rate we get a higher fractionation, while with a higher collision rate,
i.e. higher coupling between the minor constituent and hydrogen, a lower
diffusion velocity and a lower fractionation are obtained. From this equation
we also get a description of the velocity dependence: a lower velocity of the
hydrogen background gives an higher FIP effect, with the limit situation of
negligible hydrogen velocity and a fractionation given by the ratio between
the diffusion velocities.



Chapter 5

The hydrogen background

In order to study the fractionation for minor constituents, a hydrogen back-
ground model is needed. Since the fractionation is believed to be related to
the ionisation processes, it is important to focus on the altitude where this
ionisation takes place. Hence, both the slab thickness and the slab location
are chosen with respect to this criterion.

In this work we study the fractionation related to fast solar wind. This
means that the background model describes a dynamic atmosphere with a
given net hydrogen particle flux. The observed fast solar wind flux at 1 AU is
D4y ~ 2x 102 m~2 s~ Assuming flux conservation from the sun’s surface
to 1 AU radius, we get

f T%AU (I)lAU = T% q)s, (51)
that results in
2
,
dg = f ®rap—2Y, (5.2)
s

where the parameter f represents a geometry factor that describes different
areal expansions. Using the values r4p = 1.496 x 10 m and rgpy =
6.96 x 108 m, we get Pgyny = f x 9.24 x 106 m~2 571,

We choose three values for the geometry factor f = 1, f = 20 and
f =100. f =1 represents the radial expansion geometry. f = 20 is the most
probable value following the work of Byhring et al. (2008) (model F1), based
on measured Doppler shift of minor ion spectra lines from the transition
region and the corona. f = 100 is the geometry factor used by Peter (1998).
These three models are be called “L”,“M” and “H” respectively.

The slab thickness is 1000 km and the chosen linear temperature profile
is shown in Fig. [5.1

33
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Figure 5.1: The chosen linear temperature profile.

5.1 Boundary conditions

In order to repeat the calculation by Peter (1998), we build a model similar
to the background described by Peter and Marsch (1998), using almost the
same boundary conditions.

At the lower boundary, the neutral hydrogen density is assumed to be
8 x 10 m~3. The gas streaming up through the lower boundary is set to
be ca 2% ionised. This condition does not constrain the ionisation degree to
have a fixed value on the first grid point.

The photoionisation rate at the top of the layer is set to be Ry, = 0.014
s7! (Peter and Marsch, 1998). The condition of a solar wind stream through
our atmosphere is imposed via the proton velocity at the upper boundary.
The flux takes three different values for the three different cases L, M and
H. The neutral hydrogen and ionised velocities at the top are forced to be
equal.

In table 5.1/ the values for all the physical parameters are shown.

5.2 Results

We run the code from an initial condition, where the gas is uniformly 1%
ionised and the neutral hydrogen profile follows the hydrostatic equilibrium,
until we have reached the steady state (10* s).
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Lower boundary: Total density Ny =8 x 106 m~3
Ionisation degree 0.018
Upper boundary:  Ionisation rate 0.014 s7!
Velocity U = Up

Total flux Sy =9 x10%2x 1089 x 108 m2s7!

Table 5.1: The boundary conditions used for the background model. Only the
fixed boundary conditions are reported.

Total density
‘ : ‘

107

E 10

10%° . . . . | . . , ,
0 5¢10° 1010°
height [m]

Figure 5.2: The total hydrogen density profile.
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Figure 5.3: The neutral hydrogen density profile.

The sum of the neutral and ionised hydrogen density profiles is shown for
the three wind fluxes H, M and L in Fig. 5.2l The density decreases slightly
with increasing flux, but the differences between the densities in the three
cases are very small.

The neutral and ionised density profiles are shown in Fig. [5.3 and Fig.
5.4, respectively. For neutral hydrogen the L and M profiles are almost
equal while the H profile has a bit higher density. The proton densities do
not follow a monotone profile, but reach a top near z = 2 x 10> m. The
differences between the H, M and L profiles are bigger than in the neutral
case, and the higher flux the lower density.

The ionisation rates for the H, L and M cases are shown in Fig. [5.5. All
the profiles have a monotone behaviour, with a rate increasing more rapidly
in the lower part of the slab. The figure shows the sum of the radiative and
collisional ionisation rates, but the latter constitutes less than 5% of the total
rate.

Fig. [5.6/shows the ionisation degree for the three flux cases. These profiles
follow the ionisation rates shown in Fig. [5.5 and justify our choice for the
slab thickness, since we are interested in studying the ionisation area. While
the L and M cases have the same ionisation degree, the H case differs from
the other two with an almost constant gap.

If one supposes a static situation with zero particle flux for both neutral
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Figure 5.4: The proton density profile.
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and ionised hydrogen, equation 2.1/ for protons becomes
0:77,1 P12—77,2 P21, (53)

which gives an ionisation degree at equilibrium, given by

N2 _ Py
ni + ng Py + Py’

(5.4)

where the indexes 1 and 2 are the same as in eq. [2.1. The actual ionisation
rates are compared with the ionisation equilibrium result (eql5.4) in Fig.
5.7. We see that both the L (left panel) and M case (centre panel) are in
ionisation equilibrium, while the ionisation degree for the H case is slightly
lower than the equilibrium ionisation degree.

The hydrogen gas velocities for the L, M and H cases are shown in Fig.
In the H case (right panel), the neutral and ionised velocities are almost equal,
and increase from ca 100 to over 2300 m s™'. In the M case (centre panel)
the ionised velocity starts from a bit lower value at the bottom, but reaches
the neutral velocity almost at once. Both neutral and ionised velocities vary
from ca 20 m s~! at the bottom to over 550 m s~! at the top. In the L
case (left panel) the velocities vary from around 0 to ca 25 m s™!. This case
shows the biggest relative difference between neutral and ionised hydrogen.
In fact the protons have a velocity profile that starts from negative values at
the bottom of the layer, while the neutral velocity is positive throughout the
layer.
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Figure 5.9: The neutral and ionised hydrogen flux profiles.

Fig. [5.9/presents the neutral and ionised hydrogen fluxes plotted for the L

case (left panel), M case (centre panel) and H case (right panel). Obviously,
since we run the code until steady state is reached, the total flux is constant
throughout the slab. The M and H differs only by a scale factor. The L case
shows instead a negative proton flux near the lower boundary.

Figs. [5.10 and [5.11] show the force equilibrium for neutral (upper panel)
and ionised hydrogen (lower panel) in the H and L case. Writing the forces
contributions divided by the mass the force equilibrium becomes (see eq.
2.2):

14 &
_ m—tnj %(n,k‘T) +g+ Z kmenj(u; —u;) =0, (5.5)
JF#i
where we have neglected the advective term and the ionisation term because
of their low contributions when the force balance is reached. The H and
L neutral plots show approximately the same behaviour, with an upward
pressure gradient force balanced by the sum of gravity and collisions. The
collisions constitute a friction term between neutral hydrogen and protons,
and therefore, by adjusting the velocity gap between neutral and ionised
hydrogen, provide for the balance. While the gravity is obviously constant
over the slab, the pressure gradient force reaches a maximum ca at 2 x 10°
m, to slowly decrease at higher altitudes. As long as the collisional friction

is significantly different from zero (lower part of the slab) the force balance
is far from the hydrostatic equilibrium.




5.3. DISCUSSION 41

H-Neutral force equilibrium

; 800 3
= 6001 LT T T~ e
§ a00C,-" T TTeee— o ____._ 7
9] i B
@ 200 E
1S C b
s % ]
© 200 N e T e
5 -400E
£ o0 5.10° 1410°
height [m]
— H-lonised force equilibrium
©  3000F
E |
= 2000 3
5 1000% E
1 OE _____________________
< B T T =
£ 1000 -7 gravity oo E
3 E e pressure gradient + electric field - - - - [
g -2000 B collisions E
5 -3000E ~ ‘ E|
. 0 510° 1010°
height [m]

Figure 5.10: The force equilibrium for neutral and ionised hydrogen, H case.

The picture is quite different for protons (lower panel). Here the pressure
gradient, which has to be added to the electric field, provides a downward
force which is balanced by a positive collisional friction. In the lower part
of the slab, gravity is, by comparison, almost negligible. In the upper part
the pressure gradient force gives a positive contribution, balancing gravity
in hydrostatic equilibrium. The pressure gradient in the L case increases
monotonously, while in the H case it decreases to a minimum at ca 5 x 10*
m and then it increases.

5.3 Discussion

Since the flux is subsonic, the density profile remains almost unchanged for
the different flux cases.

The ionisation degree for all the models follows the same profile as the
photoionisation rate, and the ionisation degree is close to ionisation equilib-
rium. However, the departure from the ionisation degree at equilibrium gets
bigger with higher fluxes, while the ionisation degree decreases.

This fact is easily understandable by using the ionisation length concept.
Let’s say that a neutral gas needs a given time 7;0n to get ionised up to
the ionisation equilibrium, where this ionisation time is given by the ionisa-
tion degree at equilibrium divided by the ionisation rates. If the neutral gas
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Figure 5.11: The force equilibrium for neutral and ionised hydrogen,L case.

streams through the layer with a velocity U, it will cover a distance Loy, be-
fore it reaches the ionisation equilibrium, which is given by: L;on = U Tron-
So the higher wind flux we have, the bigger the ionisation length becomes,
and a bigger gap between ionisation degree and equilibrium can be expected.
For example, by comparing the ionisation degree (dashed line in the right
panel of Fig. 5.7) with the ionisation degree at equilibrium (dotted line) in
the H case, we get that the former is delayed with respect to the latter by
a distance Az ~ 5 x 10* m. This value is comparable with the calculated
ionisation length at the first grid point, L;ony &~ 1 x 10° m. In the L case this
effect is not visible at all. The negative and low positive proton velocities
near the lower boundary force the recently ionised hydrogen to stop. So, even
if the ionisation process takes a long time, the protons can accumulate until
they reach the ionisation equilibrium; in other words the ionisation length
approximation makes no sense if the proton velocities are too different from
the neutral hydrogen velocities. This effect plays an even more important
role for the minor constituents. Furthermore, the fact that in the L case the
ionisation equilibrium is reached already at the first grid point while in the H
case the ionisation process is delayed, explains the large difference in proton
density near the lower boundary between the H and L case (see Fig. [5.4).

The relative difference between neutral and ionised hydrogen velocity
changes for L., M and H, but by studying the absolute difference one can see
that this difference does not vary too much between the three cases.

The neutral hydrogen velocity is bigger than the proton velocity because
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the ionisation process leads to a density profile with a positive pressure gra-
dient force, higher than what gravity manages to balance. This upward force
increases the neutral hydrogen velocity until the force is balanced by colli-
sional friction. For protons we have a similar dynamic: the ionisation process
leads, in the lower part of the layer, to an increasing density profile and a
subsequent negative pressure gradient force. In this case too, the collisional
friction balances this downward pressure gradient. In the upper part of the
layer, hydrogen is ionised to a high percent and the pressure gradient force
for protons becomes positive.

This relationship can also be studied analytically by supposing force bal-
ance between gravity, pressure (and electric field) and collisions. Subtracting
eql5.5! (written for protons) from the respective hydrogen equation and ne-
glecting temperature gradient with respect to density gradient we obtain:

kT ( d d
Tma <£log ni = 25-log "P) + bty = ugr) N =0, (5.6)

where the index H refers to neutral hydrogen and p to protons. Ng = ng+n,
is the total hydrogen density. We finally obtain that

k T d
Up — Uy = — — (logn—H) , (5.7)

"

which clearly shows how velocity differences depend only on density profiles
and on temperature profile. Eq. 5.7 states also that a non-homogeneous
ionisation degree leads to a difference between hydrogen and proton velocity.
By a comparison between the analytical and numerical model it results that
eq. 15.7/is a very good approximation and permits a correct understanding of
the force equilibrium in the hydrogen background.

The obtained difference between neutral and ionised hydrogen velocity
is therefore coupled with the density profiles and finally with the ionisation
degree. Since the L., M and H cases have a very similar ionisation degree, also
the absolute differences between ionised and neutral velocities are similar.
This result also tells us that a lower boundary condition that forces the
neutral and ionised velocity to be equal should not be adopted together with
a varying ionisation degree.
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Chapter 6

The minor constituents

We now solve the equation and for the minor constituents oxygen,
neon, silicon, magnesium and iron, until steady state is reached. This will
require different running times for the code since every model has its char-
acteristic evolution time.

Each element is studied with three different backgrounds L, M, and H,
which correspond to three different choices of the geometry factor f.

For some minor constituents the ionisation-recombination dynamic is
driven by radiative processes (see section 2.1.1land «, in section [2.2.2) while
for other elements also the collisional processes are important (see section
and oy in[2.2.2). For oxygen charge exchange is the dominant channel
for the ionisation process.

We run the code from an initial condition where the minority gas is 0.1%
ionised with an absolute abundance Ag,s = 5 x 10~ uniform over the slab.
This gives a start distribution that follows the same behaviour as the back-
ground hydrogen profile.

6.1 Boundary conditions

No condition constrains the velocities for the minor constituents, i.e. they
are determined by the force balance at lower and upper boundary.

At the lower boundary, in order to simplify comparisons, Ags = 5 x 1074
for all the minor constituents.

If the velocities near the lower boundary are positive the ionisation degree
of the gas streaming through the lower boundary is set to 0.01, otherwise the
density values on lower boundary are calculated via an upwind differencing
scheme.

45
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Figure 6.1: The oxygen absolute abundance.

6.2 Oxygen

Oxygen has a peculiar behaviour because it is coupled to hydrogen via the
very effective charge transfer channel.

Both the radiative and collisional ionisation and recombination can be
neglected with an error not bigger than 1%.

We run the code for 10* s for the H case, 10° s for the M, and 5 x 10° s
for the L case, in order to reach the steady state.

6.2.1 Results

Fig. shows the absolute abundances for the H, L and M cases. The H and
M cases show a very slowly decreasing absolute abundance with altitude. In
the H case the abundance decreases from the boundary /initial value 5 x 10~
to 4 x 10™* in the lower part of the slab and then it flattens out almost
completely. The same behaviour is shown in the M case where A, decreases
to ca 2 x 1074, The L case presents a radically different picture where the
absolute abundance is reduced by a factor of 10”. This abundance decreases
exponentially up to z = 3 x 10° m but flattens out throughout the rest of
the grid.

Since the initial condition has a homogeneous absolute abundance, the
time needed to obtain the steady state increases radically from the H to the
L case.
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Figure 6.2: The oxygen ionisation degree.

The oxygen ionisation degree is presented in Fig. 6.2, showing an ionisa-
tion degree very similar to hydrogen (see Fig. [5.6). The L and M cases have
the same ionisation degree profile, while the H case presents a slightly lower
ionisation degree.

The velocities for neutral and ionised oxygen, plotted together with the
proton velocities, are shown in Fig. In the H case (right panel), the pro-
ton and the ionised oxygen velocities are coincident, and the neutral velocities
are also very similar to them. In the M case (centre panel), the difference
between the ionised and neutral oxygen velocities becomes more appreciable,
while the ionised oxygen and protons velocities are still coupled. The L case
(left panel) shows a quite different picture where the neutral oxygen veloci-
ties decrease from zero at the lower boundary to quite high negative values.
The ionised velocities rise from a negative value at the lower boundary and
follow the proton velocities for the rest of the grid.

The fractionation process for a minor constituent X can be studied (see
eql4.10) by introducing the average velocity Ugx:

Np Uy + MU
Ux = Ny , (6.1)
where, the indexes n and i refer to the neutral and ionised specie. Fig. 6.4
shows the ratio between the oxygen and hydrogen average velocities. For all
the three flux cases the oxygen velocity at lower boundary is lower than the
hydrogen velocity, and then it increases. The oxygen and hydrogen velocities
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Figure 6.3: The neutral and ionised oxygen velocity profiles.

at the upper border are coupled for the H and M cases, while the L case shows
an oxygen velocity that remains relatively much lower than the hydrogen one.

By studying the velocity difference between ionised and neutral oxygen
(left panel of Fig. [6.5) we see that this difference remains almost unchanged
by varying the flux. The right panel of Fig. shows the difference between
the ionised oxygen and proton velocities, giving a measurement of how much
these are coupled. The departure of the ionised oxygen velocities from pro-
tons is, except at lower altitudes, very similar in the three cases.

Fig. shows the neutral and ionised oxygen flux for the three cases.
The net flux is ~ 3 x 10 m~2 s7! for the H case, ~ 4 x 104 m~2 s~! for
M but only ~ 5 x 10° m~2 s7! in the L case. In the L case both the neutral
and ionised flux fall to zero already at z = 10° m, and below this altitude
the neutral flux is positive and the ionised is negative. By dividing the net
oxygen flux with the net hydrogen flux we get the relative net flux for oxygen.
In the H case the relative net flux is ~ 4 x 1074, for M ~ 2 x 10~ and for the
L case the flux is ~ 6 x 107!*. The net relative flux gives approximately the
same value as the absolute abundance at the top of the slab (see Fig. [6.1)
and it is therefore a good way to study how much of the minor constituent
is dragged out by hydrogen.
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Turning to the force balance, eq. 2.2| for oxygen becomes:

1 0 nju; Py —nu; Py ¢ 0
= (kT ity L Uity 4
m;n; 0z (nikT)+g + n;

v (ug — w;) + vip(up, —u;) =0,

(6.2)

where we have again neglected the advective term, and the ionisation term
is dominated by charge exchange. Charge exchange acts as a friction term
between neutral and ionised oxygen, while collisions reduce the velocity dif-
ference between oxygen and hydrogen.

The force equilibrium for neutral and ionised oxygen for the H case is
shown in Fig. 6.7, The collision term constitutes a positive force for both
neutral and ionised oxygen. Because of the very effective coulomb collisions,
this term is much larger for ionised oxygen. For ionised oxygen all the other
forces, gravity, charge exchange and pressure gradient are negative (in the
upper part of the slab pressure becomes positive but almost zero) in order to
balance collisions. For neutral oxygen collisions are much less effective and
above 2 x 10° m they are substituted by charge exchange as principal upward

force. The pressure gradient is almost totally negligible.

The force equilibrium for the L case, shown in Fig. 6.8, presents a different
picture. Here the pressure gradient is the most important positive force in
the lower part of the layer. For the neutral gas the hydrostatic equilibrium
is reached at lower altitudes, while in the upper part the charge exchange
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Figure 6.7: The oxygen force equilibrium in the H case.

friction balances gravity. In the lower part of the slab, the L case shows,
relative to the H case, a much lower collisional friction. This friction becomes
comparable with the pressure gradient and the charge exchange.

6.2.2 Discussion

The oxygen ionisation degree is almost the same as hydrogen. This fact
can be easily understood by studying the charge exchange process. Since
Cion and C,. from eq.2.28 differ by less than 10%, the ionisation degree at
equilibrium can be written as:

n; Ny

~

p

(6.3)

ni+n, an:Z +n, oy +n,

In all the flux cases oxygen is depleted with respect to hydrogen. In the
H and M cases, however, the absolute abundance is almost constant and the
oxygen is dragged up by hydrogen. The absolute abundance of oxygen in the
L cases falls by a factor of 107.

The ionised oxygen velocity is almost totally coupled with the proton
velocity and the gap between them does not vary too much between the H,
M and L cases.

From the force equilibrium for ionised oxygen in both the L and the H
case we see that on the upper part of the slab the collisional friction is the
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Figure 6.8: The oxygen force equilibrium in the L case.

only force that balances gravity. The difference between the ionised oxygen
and proton velocities is thus given by:

ul — up = — (64)

where 1, is the collisional rate for Coulomb collisions. Eq. 6.4/ explains why
this velocity difference has the same profile for the three flux cases except
at lower altitudes, where the pressure and the charge exchange are no longer
negligible.

In order to obtain an absolute enrichment the element average velocity
(eq. 6.1) at the left boundary must be larger than the hydrogen average ve-
locity (see eq. [4.10). Neither the ionised nor the neutral oxygen velocities are
larger than the hydrogen velocities and no enrichment is therefore obtained.

One of the largest difference for neutral oxygen between the H and L
case is that collisions with hydrogen are significant for the H case at lower
altitudes, while they are negligible for the L case, where the pressure gradi-
ent balances gravity. In order to understand the reasons of this difference
we study the time development for the neutral oxygen force equilibrium at
lower altitudes. Initially all the cases, L, M and H, reach the same free fall
equilibrium where collisions with neutral hydrogen balance gravity, giving

g
— Uy X ————. 6.5
Ug —u v ( )
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This value is nearly constant for the three flux cases and gives a velocity
difference of about 20 m s~!. While in the H case the hydrogen velocity at
the lower boundary is ~ 100 m s, in the L case uy is just & 1 m s~! . In
order to obtain a collision force able to balance gravity, the neutral oxygen
velocity must be negative and with falling oxygen a pressure gradient can be
build.

The hydrostatic equilibrium in the lower part of the slab for the L case
leads to a strongly decreasing abundance.

6.3 Low FIP elements

6.3.1 Silicon

In the ionisation process the radiative ionisation rate is dominant by a factor
of 10? over the collisional rate at the bottom, while at the top of the layer
they become of the same order of magnitude. In the recombination process
the dielectronic recombination rate is a factor of 10 smaller than the radiative
recombination rate at the bottom, but dominates by a factor of 7 over the
radiative at the top.

We run the code for 5 x 10% s, 2 x 10* s and 1 x 10* s in the L, M and H
case respectively in order to reach a steady state.

The incoming gas has an ionisation degree of 1% while the gas at the
first grid point is 99% ionised. Some dynamic (see chapter [7) caused by
this huge difference lead to a lower boundary density value that does not
behave like a fixed boundary. Thus, in order to compare the abundances for
different elements and for different flux cases, it has been necessary to make
a normalisation of the density values.

Fig. 6.9 shows the absolute abundance for silicon for the L case (left
panel) and for the M and H cases (right panel). The absolute abundance
decreases with height for all the cases. The decreasing factor for the H and
M cases is not larger than one third of the lower boundary value, whereas
for the L case the abundance decreases by a factor of 10'°.

In Fig. [6.10/the silicon relative abundance is shown. In the H and M cases
the relative abundance shows an increasing behaviour that leads to a relative
enrichment with respect to oxygen. The increasing factor is larger for the M
case. The L case, on the other hand, shows a relative abundance decreasing
by a factor of 10°, reaching a minimum at z = 10° m, and increasing again
by a factor of 103,

The ionisation degree of silicon, presented in Fig. [6.11} is almost totally
constant for the three flux cases and describes a fully ionised gas. Even in
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Figure 6.11: The silicon ionisation degree.

the H case it is not possible to see any ionisation length effect (see section
5.3). That is because the ionisation rate is too large and consequently the
ionisation length too short (=~ 10* m) with respect to the slab dimension
(the grid spacing dz = 2.5 x 10® m). A detailed analysis of this problem is
presented in section [7.2.1

Fig [6.12] shows the neutral and ionised velocity profiles for the L (left
panel), M (centre panel), and H case (right panel). As in the case of oxygen
the H and M cases show both ionised and neutral velocities increasing with
altitude, while in the L case the neutral velocities fall to high negative values.
However, with such a high ionisation degree the neutral velocities do not
contribute to the overall flux.

The ratio between the silicon average velocity Ug; and the hydrogen aver-
age velocity is shown in Fig. [6.13. The velocity value at the lower boundary
is less than one for all the cases and no absolute enrichment is therefore
obtained.

Since silicon is fully ionised we are only interested in the Sill force equi-
librium, for which the H case is shown in Fig. Throughout the slab,
gravity is balanced by collisions with hydrogen.

6.3.2 Magnesium

The ratio between the collisional and radiative ionisation rates, £, varies
mnt

between 2 x 1073 at the bottom of the layer and 1 at the top. For the
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Figure 6.12: The neutral and ionised silicon velocity profiles.
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recombination process we have that oy/a, ~ 7 at the bottom and becomes
~ 9 x 10? at the top.

The code is Tun for 2 x 10% s, 1 x 10° s and 1 x 10* s for the L, M and H
case respectively, in order to reach the steady state.

Fig. [6.15 shows the magnesium absolute abundance, which follows the
same behaviour as silicon. The L case presents a drastic fall by a factor of
10° while the H and M have both a slightly decreasing profile.

Also the magnesium relative abundance (Fig6.16) has the same behaviour
as silicon. The L profile reaches a minimum at z ~ 1 x 10°> m and it then
increases. The M and H cases both rise in relative abundance, i.e. an en-
richment with respect of oxygen is obtained. The M case presents an higher
enriching factor.

As for silicon, the magnesium ionisation degree (Fig6.17) is almost con-
stant throughout the layer, and around 99%. No ionisation length effect is
registered.

The magnesium velocity profiles for the L case (left panel), M (centre
panel) and H case (right panel) are shown in Fig[6.18. As for silicon the
overall flux is only determined by the ionised velocities and the Mgl velocities
are thus uninteresting. Following the same profiles as oxygen, all the three
cases show the Mgll velocities increasing with height.

The ratio between the magnesium and hydrogen average velocity is pre-
sented in Fig. [6.19. For all the cases the ratio at the bottom is less than one
and we therefore do not achieve any absolute enrichment.
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Figure 6.15: The magnesium absolute abundance.
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Figure 6.16: The magnesium relative abundance.
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Figure 6.19: The magnesium average velocity.

6.3.3 Iron

The ratio g"? varies between 2 x 10™% at the bottom of the layer and 0.3 at

the top. adﬁyr varies from 1 at the bottom to 2 x 10! at the top.
The code is Tun for 3 x 10% s, 1 x 10° s and 1 x 10* s for the L, M and H
case respectively, in order to reach the steady state.

The iron absolute abundance is shown in Fig. [6.20. The L case, (left
panel), shows a fall by a factor of 10'® in the lower part of the slab. The H
and M cases present a small decrement, by a factor of 0.1 and 0.3 respectively.

The iron relative abundance is presented in Fig. [6.21. The relative abun-
dance in the L case (left panel) presents a radical fall by a factor of 10'® in
the lower part of the slab. On the other hand the H and M cases present a
rise in the relative abundance.

As for silicon and magnesium, iron is totally ionised already at the first
grid point. Also the velocity profiles for iron are almost the same as silicon
and magnesium, with an increasing ionised velocity for all the flux cases.

The ratio between the iron and hydrogen average velocity is shown in
Fig6.22. All the cases present an increasing behaviour starting from a value
smaller than one, which means that no absolute enrichment is achieved.
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Figure 6.20: The iron absolute abundance.
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Figure 6.22: The iron average velocity.

6.3.4 Discussion

For all the low FIP elements the gas is fully ionised already at the first grid
point. This could mean that the grid dimensions are too large with respect
to the ionisation space scale. The reason why we chose this grid was to
reproduce the results of Peter (1998). Abundances values obtained with a
grid with a higher resolution near the lower boundary are shown in chapter
7/ with similar results.

The adopted photoionisation rate (again taken form Peter (1998)) appears
quite unnatural with such a high rate that suddenly, at an arbitrary height,
starts to work and ionises the gas totally. The results obtained with a more
gradually growing ionisation rate are shown in section [7.2.3|

No absolute enrichment is obtained. In the H case the elements abun-
dances present a small depletion (around 10%). The M case shows a stronger
depletion(~ 40%), while in the L case the hydrogen wind does not manage
to transport the minor constituent out of the layer, and the density of the
latter decays drastically by a factor of at least 10'°. These results are in
strong contrast with the high enrichment obtained by Peter (1998).

When it comes to the relative abundance, the low FIP elements show
some enrichment with respect to oxygen. In the H case the enrichment is
about 10%, and in the M case it gets larger (between 30% and 50%), while the
L case shows a strong depletion of many order of magnitude. Nevertheless
the relative abundances are characterised by some rapid variations at the
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Figure 6.23: The neon absolute abundance.

lower boundary and the obtained relative enrichments are thus just artifacts,
as it is shown with a further analysis in section [7.2.2.

6.4 Neon

The ionisation process for neon is strongly dominated by the radiative ion-
isation. The ratio between the collisional and the radiative ionisation rate,
}C%Zi, varies between 107'! at the bottom to 107 at the top. The radiative
recombination dominates the recombination process by factor larger than
106.

In order to reach the steady state the code is run for 2 x 10% s, 1 x 10° s
and 1 x 10% s for the L, M and H case respectively.

6.4.1 Results

Fig. shows the neon absolute abundance for the L case (left panel)
and M and H cases (right panel). In the L case the absolute abundance
falls radically by a factor of 10'7. Unlike the L case for oxygen and for the
low FIP elements, the neon L case shows a monotonous, almost exponential
behaviour throughout the slab. While the M case presents a decreasing
absolute abundance the H case shows a rise of about 10% at lower altitude.

In Fig. [6.24 the neon relative abundances for the L case (left panel) and
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Figure 6.24: The neon relative abundance.

for the H and M cases (right panel) are shown. In the L case the relative
abundance falls by a factor of 10! while in the H and M case we have a
relative enrichment by a factor of 0.3 and 0.5 respectively. The rise of the
relative abundance happens in the lower part of the slab, up to z ~ 2.5 x 10°
m.

The neon ionisation degree is presented in Fig. [6.25. The L and M cases
show an almost totally ionised gas already at the bottom of the slab. In the H
case the tonisation length effect is visible and causes a delay in the ionisation
degree with respect to the L and M cases. Thus, with the adopted radiative
ionisation rate, neon gets fully ionised much before oxygen and hydrogen,
despite that it has an ionisation energy of ~ 22 eV relative to 13.6 eV for H
and O.

The neutral and ionised neon velocities are shown in Fig. As for the
low FIP elements, because of the high ionisation degree, the Nel velocities
are insignificant, except for the H case at the lower boundary. Here the Nel
velocity is greater than the one of Nell. All the cases present a positive and
monotonous ionised velocity.

Since neon is not fully ionised throughout the slab, and since the neutral
velocities assume negative values, it is also interesting to study the neutral
and ionised neon fluxes (Fig. [6.27). In the L case (left panel) the drastic
density fall leads to almost zero fluxes, except at lower altitudes. Here neutral
neon is streaming upward while ionised neon is falling. The M case (centre
panel) shows a high upward ionised flux, while the neutral neon is streaming
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Figure 6.27: The neutral and itonised neon fluxes.

downward and constitutes a small part of the total flux at lower altitudes.
In the H case (right panel) the neutral flux is slightly less significant and
positive throughout the slab.

Fig. 16.28 shows the ratio between the neon and hydrogen relative velocity.
For the H flux the ratio can appear slightly larger than one at the bottom,
leading to a possible enrichment. In the L case the ratio is almost zero giving
the net result that no neon is dragged up by hydrogen.

The force equilibrium for neutral and ionised neon in the H case is shown
in Fig. For Nel, the force equilibrium is characterised by a balance
between gravity and collisions with hydrogen throughout the slab except for
near the lower boundary. Here an upward pressure gradient force arises, bal-
anced by the sum of gravity and collisions. At the very beginning of the
layer, in order to balance the pressure gradient, the collision force becomes
negative and the Nel velocities become thus higher than the hydrogen ve-
locities. These high Nel velocities justify a Ne average velocity larger than
hydrogen at the lower boundary. For Nell the picture is the same except
at the lower boundary where a negative pressure gradient force is balanced
by a high upward collisional force. To obtain such an upward force the Nell
velocities must be lower than the hydrogen ones.
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6.4.2 Discussion

The H case for neon is quite interesting because the ionisation length effect
is visible and a growing ionisation degree is achieved. This steep ionisation
degree builds an upward pressure gradient force for Nel and a respective
downward force for Nell. Since Nell is coupled to protons by a stronger colli-
sional force the overall neon average velocity becomes larger than hydrogen.
This velocity gives a very small (less than 10%) but visible absolute enrich-
ment (if we do not account for the negative spike in the average velocity at
the lower boundary).

Neon is a high FIP element and no enrichment should thus be obtained.
This anomaly is probably due to the fact that in our model, using the ionisa-
tion rate by Peter (1998), neon gets ionised much before hydrogen. However
this result shows that with a steep ionisation degree a small enrichment can
be obtained. In section we check the possibility to obtain such or maybe
larger enrichment for the low FIP elements.



Chapter 7

Discussion

7.1 The background model

The results obtained in chapter[5 can be compared with the hydrogen back-
ground model of Peter and Marsch (1998). The largest difference between
these models can be found in the choice of the boundary conditions. In
Peter and Marsch (1998) the velocities for neutral and ionised hydrogen are
forced to be equal not only at the top (as we do in our model) but also at the
bottom. They give reasons for this choice by claiming that charge exchange
and ionisation-recombination keep a tight collisional coupling between the
charge states. As we have studied in eq. 5.7/ an increasing ionisation rate
leads to a velocity difference between the neutral and the ionised specie.
Therefore forcing equal velocity at the bottom, where the ionisation rate
increases, could be inappropriate. Another difference is that in our model
we force a solar wind flux through the layer by a choice of the boundary
conditions, while Peter and Marsch (1998) obtain such flux from the model
itself. This means that in their model they claim that solar wind is a “prod-
uct” of the chromosphere, whereas in our model the process that determines
the solar wind mass flux is placed somewhere else above this chromospheric
ionisation layer.

7.2 The minor constituents model

7.2.1 Searching for enrichment

Peter (1998) obtained a significant absolute fractionation for many minor
constituents, whereas in this work no enrichment relative to hydrogen was
found (except a small enrichment for one isolated case). The largest difference
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Figure 7.1: The silicon ionisation degree(left panel) and the Sil together with
Sill densities in H case, plotted for the ionisation area, using Peter’s bound-
ary conditions and a higher resolution grid.

between Peter’s approach and ours is represented by his coupling between
the ionised and neutral minor constituent velocity, not only at the top but
also at the bottom of the layer.

Another important aspect that needs more attention is the ionisation
rate. The photoionisation rate from Peter (1998) (see section 2.1.1)) for the
minor constituents leads to a sudden and drastic ionisation. The respective
ionisation length is therefore getting quite small. For example, silicon in the
H flux case has L;on ~ 10? m, that is 25 times smaller than the adopted grid
spacing. Therefore in order to study this thin area, where the fractionation
processes are believed to take place, a higher resolution grid (smaller grid
spacing) is needed. We thus define a new grid where the grid points, instead of
being distributed homogeneously, cover the ionisation area with a resolution
that is higher than in the rest of the grid. In that way we are sure not to
miss any important effect happening in the lower part of the grid.

We now want to study how and if (by using a higher resolution grid
together with Peter’s boundary conditions) any enrichment can really be
obtained. The boundary conditions are thus modified as described above,
both in the background and in the minority code. In the first part of the
grid, up to z = 2 x 10* m, the grid spacing is reduced by a factor of 100. We
now present the results obtained for silicon in the H flux case.

The left panel of Fig. [7.1 shows the ionisation degree and the ionisation
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Figure 7.2: The neutral and ionised silicon fluxes in the H case, plotted for
the ionisation area, using Peter’s boundary conditions and a higher resolution
grid.

equilibrium obtained for silicon near the lower boundary, while the right
panel shows the Sil and Sill densities. Even if we use a grid spacing that is
smaller than the theoretical ionisation length, and even if the in-streaming
gas is only 1% ionised, silicon is highly ionised (=~ 80%) already from the
first grid point. However, a small ionisation length effect is visible at the
very beginning of the layer.

The real effect of ionisation can be studied from the continuity equation,
where we observe that in a steady state we have non-zero spatial derivatives
of a particle flux only at those heights where the ionisation-recombination
process is taking place. In other words, if the flux for Sil (or in the same
way for Sill) does not show any spatial variation, the sum of the ionisation
and recombination net effect is negligible. Analysing these fluxes, shown in
Fig. [7.2, we see that the ionisation process is taking place from the lower
boundary up to z = 3 x 103> m. This means that the ionisation process is
delayed as described by the ionisation length concept, but when it comes
to the real ionisation degree, ng;r;/(nsir + nsirr), this delay in ionisation is
almost not visible.

A reason for this can be found in the Sil and Sill velocities at the bottom,
displayed in Fig[7.3. At the lower boundary the velocities are forced to be
equal, but already from the second grid point the two velocity profiles are
separated by a huge gap. When the in-streaming neutral silicon gets ionised,
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Figure 7.3: The neutral and ionised silicon velocities in the H, plotted for the
tonisation area, using Peter’s boundary conditions and a higher resolution
grid.

its velocity falls to a near zero value, and then it increases slowly. In that
way Sill can accumulate and the overall ionisation degree becomes as shown
in Fig. [7.1 The ionisation delay due to the ionisation length concept is
therefore strongly reduced. From this picture it also sounds quite unphysical
to force the HI and HII velocities to be equal right where the ionisation takes
place, because at those heights the pressure gradients for HI and HII give
two opposite effects.

The force equilibrium is shown in detail in Fig. The high Sil velocity
at the bottom is caused by an upward pressure gradient force, which arises
from a decreasing Sil density near the lower boundary. On the other hand Sill
is subject to a downward pressure gradient force, balanced by the collisional
friction. This pressure gradient is again caused by a Sill density increasing
with height.

Finally, from Fig 7.5/ we see that the average velocity for silicon at the
lower boundary is greater than the hydrogen average velocity. Due to eq.
4.10, this leads to an enrichment that can also be observed as an increase
in the absolute abundance from the lower boundary value of 5 x 107 to
6 x 1074

Summarising this section, we have seen that even if we use a high enough
precision in the grid we obtain a quite limited ionisation area where the minor
constituent is already 80% ionised at the first grid point. This shows that
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in the H case,using Peter’s boundary conditions and a higher resolution grid.
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the ionisation length simplification, used as a fundamental process by Peter
(1998), does not give a correct picture of the ionisation dynamic. However,
the remaining 20% of the ionisation process manages to build a pressure
gradient that increases the average velocity of the minor constituent up to a
value a bit higher than the hydrogen average velocity, leading to a very small
enrichment.

7.2.2 Additional results

We now want to verify if the very small enrichment obtained in the previous
section is a real process that can explain the FIP effect, or if it only is an event
that depends on the choice of some parameters like the boundary conditions.
We move the ionisation area up to a height of z,, = 1.5 x 10* m by turning
on the photoionisation rate for minor constituents at z = z;,, instead of at
the lower boundary z = 0 m. This allows us to study what happens below
the radical increase of the photoionisation rate, and the solution we obtain
is less dependent of an arbitrary choice for the boundary conditions.

The results for the H flux case for silicon, with the described modifications
and with our boundary conditions, are presented below.

Fig. [7.6/shows the ionisation degree for silicon, plotted together with the
ionisation equilibrium (see eq. [5.4). The latter, following the photoionisation
rate, has a constant value of 1% from the lower boundary up to z = 1.5 x 10*
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Figure 7.7: The neutral and ionised silicon velocities, plotted for the ionisa-
tion area (left panel) and for the whole grid (right panel).

m, where it makes a discrete jump increasing to 100% and it then keeps this
value for the rest of the grid. The actual ionisation degree shows a smoother
behaviour. Its value is higher than equilibrium value below the height of the
photoionisation “ignition” and lower than the equilibrium value above this
height.

We note that Fig. [7.1 is quite similar to Fig. [7.6/if we shift the latter to
the left by a distance Az = 1.5 x 10* m.

By studying the Sil flux we can measure the ionisation length, obtaining
Lion =~ 2 x 10> m. However, the real length (and time) needed by the gas
to become half ionised, is much larger (=~ 4 x 10* m). This is caused by
the dynamic following a high velocity difference between neutral and ionised
silicon, as shown in Fig. [7.7.

The neutral silicon velocity shows a sudden rise followed by a similar
fall, located at the height of the rate ignition, whereas the ionised silicon
velocity has a smaller magnitude dip at the same height. These features
do not influence the velocities for the rest of the grid, where both the Sil
and Sill velocities increase at the same rate. The ionisation process thus
appears just as a local event that does not modify the velocity at the top
(or at the bottom) of the grid. Furthermore, this result is in agreement with
what we found with the old grid (see right panel of Fig. [6.12), except for the
magnitude of the spike near the lower boundary, and therefore legitimates
the results of chapter |6l
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Figure 7.8: The ratio between the silicon and the hydrogen average velocity
(upper panels), plotted for the ionisation area (left panel) and for the whole
grid (right panel).

The ratio between the silicon and hydrogen average velocity is shown in
the upper panels of Fig. [7.8. The sum of the Sil and Sill velocities gives
a positive rise in the average velocity. However, as already mentioned, this
feature does not modify the overall velocity behaviour (right panel). Hence,
except for the ionisation area, the silicon average velocity is less than the
hydrogen velocity, also at the bottom of the grid. This means that a real
fractionation process does not take place, but rather a local depletion.

The overall absolute abundance shows a depletion from the lower bound-
ary value 5 x 107* to a value 4 x 10™* at the top of the grid. This is due to
flux conservation and the increasing of silicon velocities. In fact, before a full
coupling between silicon and hydrogen is reached, the silicon velocities are
lower than the hydrogen velocities. Also the dip in the absolute abundance
proceeds from the total flux conservation and from the average velocity pro-
file. The latter can be understood by studying the force equilibrium shown
in Fig.

The force equilibrium for Sil in the ionisation area (upper left panel of Fig.
presents a high pulse of the pressure gradient caused by the decreasing Sil
density in the ionisation process. This upward pressure gradient force leads
to an increase of the Sil velocities. A collisional friction with the hydrogen
background therefore arises and balances this pressure gradient. For Sill
the force balance (lower left panel of Fig. [7.9) shows an opposite symmetry,
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Figure 7.9: The neutral silicon (upper panels) and ionised silicon (lower pan-
els) force equilibrium, plotted for the ionisation area (left panel) and for the
whole grid (right panel).

with a downward pressure gradient force balanced by a positive collisional
friction. Even if the pressure gradients for Sil and Sill are of the same order
of magnitude we have seen that the sudden decrease in the Sill velocities is
smaller than the respective increase in the Sil velocity. This is caused by the
far more efficient Coulomb collisions between Sill and protons that manage
to balance the pressure gradient with a lower velocity difference between the
minor constituent and the background. Gravity is negligible in the ionisation
area.

Another important result, achieved with this new grid, concerns the rel-
ative abundance, i.e. the silicon abundance relative to oxygen, shown in Fig.
7.10] (upper panels). Except from the ionisation area, which again does not
influence the rest of the grid, the silicon abundance remains constant relative
to oxygen. This result is confirmed by the ratio between silicon and oxygen
average velocities, shown in the lower panel of Fig. [7.10. Even if the velocity
ratio shows a spike in the ionisation area, the silicon average velocity at the
lower boundary is not larger than the oxygen average velocity. This means
that no relative enrichment for silicon is obtained. This result is in contrast
with what we showed in Fig. (right panel), where an enrichment relative
to oxygen was achieved. The discrepancy is due to the different location of
the ionisation rate’s “ignition point”, and proves that we lose critical infor-
mation concerning what happens at lower altitudes if we place this “ignition
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Figure 7.10: The silicon relative abundance (upper panels) plotted for the
ionisation area (left panel) and for the whole grid (right panel). The silicon
and oxygen average velocities (lower panels) in the ionisation area. The ratio
between silicon and oxygen average velocities for the whole grid (right panel).

point” at the lower boundary.

In this section we have seen that a steep ionisation degree leads to a fall in
the abundance, located exactly at the ionisation height z;,,, followed imme-
diately by an analog rise of the abundance. This means that the abundance
variations measured with respect to this low value can appear like an enrich-
ment (see previous paragraph), but at the same time these ionisation area
abundance values are depleted with respect to photospheric values (repre-
sented by the lower boundary). No real enrichment is therefore achieved. In
other words, because the ionisation process causes a local density depletion,
comparing abundance values from higher altitudes with the abundance value
at z;,, will give an unreal enrichment.

The area where the minor constituent velocity exceeds the hydrogen veloc-
ity is characterised by a pressure gradient force due to the ionisation process.
Below this area no force can provide for such a high velocity. Since collisions
constitute the only force that balances gravity, the minor constituent average
velocity must be lower than the hydrogen velocity, both above and below the
ionisation area.
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Figure 7.11: A gradually growing ionisation degree for silicon, hydrogen and
neon, in the H flux case.

7.2.3 Gradual ionisation

As already mentioned (see section [6.3.4), the adopted photoionisation rate,
characterised by a sudden and drastic increase, is quite unphysical. This
ionisation is caused by radiation coming from the above corona, but the
ionising radiation stops to work at the lower boundary or at a so-called
“ignition point”, and no gas is ionised below this wall.

We now want to check if any fractionation process can be obtained with a
more likely ionisation degree. We build a gradual ionisation rate and run the
code for the H case for silicon, oxygen and neon. Fig. [7.11 shows the gradu-
ally growing ionisation degree for silicon and neon, compared with hydrogen.
With the new ionisation rate silicon becomes ionised before hydrogen while
neon becomes ionised after it.

Fig. [7.12 shows the average velocity of silicon and neon relative to hydro-
gen (left panel), and relative to oxygen (right panel), in the H flux case. The
value, =~ 0.8, of the average silicon velocity relative to hydrogen at the lower
boundary leads to a depletion in absolute abundance by 20%, while the ab-
solute neon abundance is depleted by a factor of 40%. These values confirm
what we found in section [7.2.2] and show that also with a gradual ionisa-
tion no enrichment is obtained. When it comes to the relative abundance,
silicon has the same velocity as oxygen at the lower boundary and thus no
enrichment is obtained, even if the earlier ionisation of silicon causes a rise,
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Figure 7.12: Si and Ne average velocities relative to hydrogen (left panel) and
to oxygen (right panel), for the H flux case with a gradual ionisation.

followed by a similar fall, in the average velocity (repeating the pattern seen
in section [7.2.2). The ratio between the neon and oxygen average velocities
shows that neon is depleted by 20% with respect to oxygen.

In conclusion, we have seen in this section that with a gradually growing
ionisation degree, no enrichment for the low FIP elements can be obtained.
Moreover, the high FIP element neon is depleted relative to both hydrogen
and oxygen.



Chapter 8

Summary

In-situ observations together with spectroscopic measurements show that the
elemental composition of the solar atmosphere varies from the photosphere to
solar wind. An enrichment by a factor of 2 or more for the low FIP elements
relative to oxygen (and with larger uncertainty also relative to hydrogen) has
been found.

Many models have been implemented in order to explain this fractiona-
tion. In this work we have followed the same approach as Peter (1998) and
tried to repeat his results concerning the FIP effect in fast solar wind.

A background model that describes a layer of the chromosphere where
hydrogen is the only constituent, has been implemented. The obtained
results for the hydrogen background are substantially in agreement with
Peter and Marsch (1998), who provide the background model for Peter (1998).

A second model that describes minor constituents in such a background
has also been made. This minor constituent model has been run for different
parameter values (like the wind flux) and with different boundary conditions.

No enrichment comparable to the ones achieved by Peter (1998) has been
found for the low FIP elements. A downward pressure gradient force arises
and brakes the ionised specie so that this can pile up at the lower boundary
and oppose the formation of a steep ionisation degree. However, if a steep
enough ionisation degree is somehow built at the lower boundary, an upward
pressure gradient force acting on the neutral specie can arise. In that way
a small enrichment, definitively smaller than the results of Peter (1998), is
obtained.

Furthermore, a new and perhaps more important result have been ob-
tained by moving the ionisation area away from the lower boundary: at the
ionisation height the minor constituent abundance reaches a local minimum.
It is therefore incorrect to adopt this minimum as the reference photospheric
value when evaluating the enrichment.
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This result is just the validation of a simple physical line of reasoning.
In order to transport these heavy ions out of the gravitational field an up-
ward force able to balance gravity is needed. If this force is represented by
collisions with hydrogen the minor constituent velocity must be lower than
the hydrogen velocity, and no enrichment can be obtained. If instead this
upward force is constituted by the pressure gradient force caused by the ion-
isation process, no high velocity will be obtained outside the ionisation area,
and hence no real enrichment can be obtained. Let’s say that the ionisation
process provides the minor constituent with this upward force (that drives
the trace gas with a velocity higher than hydrogen). In order to keep this
high velocity and thus obtain a real enrichment, a pressure gradient able at
least to balance gravity must arise all the way down from the ionisation area
to the photosphere. In such a way, because of the large height scale of the
minor constituent, the density will drop so much that almost no particles
will be left in the solar wind.

This work has thus confirmed that the ionisation-diffusion process sug-
gested by Peter (1998) as a pure steady-state mechanism, cannot account for
the observed FIP effect in the solar wind.

A further work could study a time-dependent process where a regularly
repeated mixing keeps the chromospheric abundance at photospheric values.
It is necessary to investigate how this mixing process can interact with the
ionisation-diffusion mechanism and whether or not an enrichment of the low
FIP elements can be achieved.

A lalta fantasia qui manco possa;
ma gia volgeva il mio disio e 'l velle,
st come rota ch’igualmente ¢ mossa,

[’amor che mowe il sole e l'altre stelle.

Here vigour failed the lofty fantasy:

But now was turning my desire and will,

Even as a wheel that equally is moved,

The Love which moves the sun and the other stars.
Dante Alighieri
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