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difficulty choosing (Cai et al., 2021). Utilising individual-
level parameters from computational models may aid inter-
pretation of individual differences in cognition and cognitive 
development.

Accuracy and speed on many experimental tasks of cog-
nition improve over the course of development, but such 
observable task performance measures are unable to iden-
tify the cause of such improvement. That is, slower reac-
tion times (RTs) can reflect both cautious responding or 
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Abstract
Cognitive functions and psychopathology develop in parallel in childhood and adolescence, but the temporal dynamics of 
their associations are poorly understood. The present study sought to elucidate the intertwined development of decision-
making processes and attention problems using longitudinal data from late childhood (9–10 years) to mid-adolescence 
(11–13 years) from the Adolescent Brain Cognitive Development (ABCD) Study (n = 8918). We utilised hierarchical 
drift-diffusion modelling of behavioural data from the stop-signal task, parent-reported attention problems from the Child 
Behavior Checklist (CBCL), and multigroup univariate and bivariate latent change score models. The results showed 
faster drift rate was associated with lower levels of inattention at baseline, as well as a greater reduction of inattention 
over time. Moreover, baseline drift rate negatively predicted change in attention problems in females, and baseline atten-
tion problems negatively predicted change in drift rate. Neither response caution (decision threshold) nor encoding- and 
responding processes (non-decision time) were significantly associated with attention problems. There were no significant 
sex differences in the associations between decision-making processes and attention problems. The study supports previ-
ous findings of reduced evidence accumulation in attention problems and additionally shows that development of this 
aspect of decision-making plays a role in developmental changes in attention problems in youth.
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For example, drift-diffusion modelling conceptualises 
two-alternative, forced choice decision-making as a noisy 
accumulation-to-bound process (Ratcliff, 1978), and pro-
vides four computational parameters based on the observed 
accuracy and RT: drift rate (v), decision threshold (a), non-
decision time (t), and starting point bias. Drift rate reflects 
the rate of evidence accumulation, in which higher drift rate 
indicates faster, more accurate decisions. Decision threshold 
describes response caution or the speed-accuracy trade-off 
where a wider threshold reflects a more cautious response 
style. Non-decision time describes perceptual processes 
like stimulus encoding and motor response, where shorter 
non-decision time reflects less time spent on encoding and 
responding. Lastly, the bias parameter indicates whether 
one choice is preferable of another (Ratcliff & McKoon, 
2008). These parameters have been reported to be quite 
stable across tasks and over shorter time periods (Ratcliff et 
al., 2010; Schubert et al., 2016).

While improvements in task accuracy and RTs are 
observed during development, the underlying cognitive deci-
sion mechanisms are not well understood. One of the first 
studies examining age-related differences in DDM param-
eters in a cross-sectional sample of 135 8-to-20 year-olds 
reported that children had lower drift rate, wider decision 
threshold, and longer non-decision time relative to young 
adults (Ratcliff et al., 2012). This indicates slower informa-
tion extraction, a more cautious response style, and longer 
non-decision processes in children. While there is a general 
lack of studies in children, a large online study of 1.2 mil-
lion participants aged 10 to 80 replicated these age-related 
patterns (von Krause et al., 2022). Recent studies have also 
investigated sex differences and found that females have 
higher scores on all the DDM parameters (Epstein et al., 
2022; von Krause et al., 2022). However, studies are scarce 
and longitudinal designs examining individual differences 
in developmental changes are lacking.

Furthermore, drift rate is slower in several mental disor-
ders, including schizophrenia, bipolar disorder, and ADHD 
(Heathcote et al., 2015; Sripada & Weigard, 2021) and has 
also been linked to poor self-regulation and impulsivity 
(Cai et al., 2021; Karalunas & Huang-Pollock, 2013; Smith 
& Ratcliff, 2009; Sripada & Weigard, 2021; Ziegler et al., 
2016). Both poor self-regulation and impulsivity are central 
in mental disorders, and especially in ADHD (Chamorro et 
al., 2012; Moeller et al., 2001; Moffitt et al., 2011), which is 
one of the most studied disorders in relation to drift rate (Cai 
et al., 2021; Huang-Pollock et al., 2012, 2017, 2020; Karalu-
nas et al., 2012; Karalunas & Huang-Pollock, 2013; Wei-
gard et al., 2016; Weigard & Huang-Pollock, 2014; Ziegler 
et al., 2016). Additionally, drift rate has shown stronger 
association with psychopathology symptom scales and task 
contingencies than conventional metrics like accuracy and 

RT (Huang-Pollock et al., 2017; Sripada & Weigard, 2021; 
Ziegler et al., 2016).

Regarding decision threshold in attention problems and 
ADHD, findings are less consistent than for drift rate (Mow-
inckel et al., 2015; Ziegler et al., 2016). While some studies 
report a narrower decision threshold in children with ADHD 
relative to healthy controls (Weigard & Huang-Pollock, 
2014), most studies find no group differences (Cai et al., 
2021; Weigard et al., 2016). Similarly, the findings for non-
decision time are inconclusive. While some studies report 
longer non-decision time in ADHD (Cai et al., 2021; Wei-
gard & Huang-Pollock, 2014), possibly reflecting impaired 
motor speed and coordination (Pitcher et al., 2003; Rom-
melse et al., 2009), others report no group differences (Wei-
gard et al., 2016). However, relatively few studies report on 
decision threshold and non-decision time, thereby empha-
sising the need for more research on these parameters in 
general and in relation to attention problems, specifically.

While studies report reduced drift rate in ADHD, and 
that drift rate is a potential trait-like measure, large-scale, 
longitudinal, population-based studies investigating the 
development of DDM parameters over time and in relation 
to attention problems dimensionally are needed. This can 
provide more insight into the developmental interplay of 
specific cognitive computational processes and psychopa-
thology (Pedersen et al., 2022). Because attention problems 
are commonly observed across several mental health disor-
ders, as well as in the general population, it is important to 
study it dimensionally and transdiagnostically (Lewinsohn 
et al., 2004; White, 2015; World Health Organization, 
1993). Another limitation of previous research is the lack 
of focus on sex differences. While most studies investigat-
ing DDM parameters in individuals with attention problems 
have controlled for sex (Cai et al., 2021; Karalunas et al., 
2012; Karalunas & Huang-Pollock, 2013; Sripada & Wei-
gard, 2021), studies have not explored sex differences in the 
associations between decision-making processes and atten-
tion problems, despite clear indications of such differences 
in DDM parameters and attention problems separately 
(Dalsgaard et al., 2020; Lewinsohn et al., 2004; von Krause 
et al., 2022).

The present study sought to elucidate how DDM param-
eters develop during early adolescence and how they co-
develop with attention problems. To this end, we utilised 
the Adolescent Brain Cognitive Development (ABCD) 
Study baseline and two-year follow-up data, consisting of 
children and adolescents aged 8–14, and latent change score 
modelling, a powerful and flexible tool within the structural 
equation modelling (SEM) framework (Kievit et al., 2018; 
McArdle & Hamagami, 2001). We used multigroup univari-
ate latent change score (ULCS) models to separately esti-
mate average change, variance in change, and if change is 

1 3



Research on Child and Adolescent Psychopathology

dependent on the initial measurement in males and females 
in the DDM parameters drift rate, decision threshold, and 
non-decision time estimated from a stop-signal task (SST), 
and additionally for parent-reported attention problems. 
Next, we used multigroup bivariate latent change score 
(BLCS) models to test to which degree the DDM param-
eters and attention problems correlate at baseline, attention 
problems at baseline predict change in the DDM parameters, 
the DDM parameters at baseline predict change in attention 
problems, and whether changes in the DDM parameters and 
attention problems co-occur.

For the ULCS models, we hypothesised that drift rate 
would increase with age, and that decision threshold, non-
decision time, and attention problems would decrease with 
age. Based on the substantial variability shown by von 
Krause et al. (2022), we also expected individual differences 
in both change and baseline levels of all DDM measures. 
However, based on the lack of reporting of sex differences 
in previous studies, no hypotheses were formulated regard-
ing sex differences in any of the DDM parameters. Con-
versely, based on Dalsgaard et al. (2020) we anticipated sex 
differences and individual differences in both baseline level 
and change in attention problems. Specifically, we expected 
larger individual differences and a steeper decrease in atten-
tion problems for males.

Based on existing literature (Cai et al., 2021; Huang-
Pollock et al., 2012, 2017, 2020; Karalunas et al., 2012; 
Karalunas & Huang-Pollock, 2013; Weigard et al., 2016; 
Weigard & Huang-Pollock, 2014; Ziegler et al., 2016), 
for the BLCS models we predicted that drift rate would be 
negatively associated with attention problems, that drift rate 
and attention problems at baseline would predict change in 
attention problems and drift rate, respectively, and finally 
that the change in both variables would correlate.

Methods

Sample

We used the baseline and 2-year follow-up data from the 
ABCD Study (https://abcdstudy.org/) (Jernigan & Brown, 
2018; Volkow et al., 2018). The total sample consists of 
11,878 8-11-year-old children at baseline recruited through 
schools near 21 study sites in the United States (Garavan et 
al., 2018). Additional information about the sample is pro-
vided in the Supplementary materials.

For inclusion in the analyses, all participants were 
required to have data on both DDM parameters and attention 
problems on at least one timepoint. Following data cleaning 
and quality control (see details below), the final sample in 
our analyses consisted of 8918 participants (4252 females) 

of which all had baseline measurements and 8005 had fol-
low-up data. At baseline the mean age was 9.9 (SD = 0.6, 
range = 8.9–11.0) and at follow-up it was 12.0 (SD = 0.7, 
range = 10.6–14.0).

Covariates of Interest

To account for the high number of participants being related, 
we randomly selected one dataset per family resulting in 
8699 datasets with trial-level SST data from baseline and 
6165 datasets from the 2-year follow-up. Additionally, we 
wanted to control for population stratification (e.g., ethnic-
ity and socioeconomic status) as it can impact both cogni-
tion and psychopathology (Alnæs et al., 2020; Huang et al., 
2022) and included genetic ancestry factor (GAF) scores 
(Raj et al., 2014) and household income collected at baseline 
as covariates. For details on GAF and household income see 
Supplementary materials. Lastly, we added age at baseline 
as a covariate to account for overlapping ages in baseline 
and follow-up and to get results independent of potential 
age effects. All covariates were centred prior to analyses. 
As parental education has been shown to be related to child 
cognition, we tested the robustness of our analyses to the 
inclusion of this additional covariate (see Supplementary 
materials).

Experimental Task

To measure aspects of decision-making, we used trial-level 
data from a visual SST performed while the participants 
were in the magnetic resonance imaging (MRI) scanner. In 
short, the task involves a go stimulus and a stop stimulus. 
The go stimulus requires a fast response while the occasional 
stop stimulus on a subset of trials following the go stimulus 
requires the participant to withhold their response. In the 
present study, only data from the go trials were included. 
The task is illustrated in Fig. 1 and described in more detail 
in the Supplementary materials.

Of the 8699 and 6165 datasets from baseline and follow-
up with unrelated subjects and available SST data, 172 and 
87 were excluded due to incomplete data, respectively. To 
ensure task compliance and enough trials, participants with 
accuracy below 60% on the go trials were excluded (N = 701 
for baseline and N = 392 for follow-up). Thus, 7826 datasets 
from baseline and 5686 datasets from the 2-year follow-up 
were utilised for estimation of drift-diffusion parameters. 
Upon merging, the dataset used for DDM parameter estima-
tion consisted of 8941 participants (Fig. 2).

Prior to running the drift-diffusion model, we removed 
trials with responses faster than 200 ms from each data-
set. This resulted in an average of 3.5 go trials removed 
per participant (SD = 8.1, range = 0-141) and an average 
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space. To ensure reliable estimates, we used the Gelman-
Rubin statistic (Gelman & Rubin, 1992) to test convergence 
and removed all parameters with rhat values above 1.1 (see 
Supplementary Table S1 for n removed per DDM param-
eter). DDM parameters derived from a sufficient amount 
of trials have been reported with good reliability (r > .7) 
(Lerche et al., 2017) and the model parameters have been 
found to be quite stable across different tasks and over a 
period of eight months (Ratcliff et al., 2010; Schubert et 
al., 2016). To assess qualitative model fit we ran posterior 
predictive checks showing that the model could recreate 
observed choices and RT distributions (see Supplementary 
Figure S2).

Importantly, there are concerns around entering individ-
ual-level parameter estimates from a hierarchical Bayesian 
model into subsequent null-hypothesis testing analyses as 
this can potentially bias the test statistics (Boehm et al., 
2018; Evans & Wagenmakers, 2019). Separating the sample 
into 80 groups for the HDDM parameter estimation and 
using a large sample size may have ameliorated the con-
cerns. However, to make sure our results were unbiased 
by this issue we performed sensitivity analyses using EZ-
diffusion model parameters. The results and interpretations 
remained largely unchanged (see Supplementary materials).

Parent-Reported Attention Problems

Attention problems were measured using the attention prob-
lems subscale from the Child Behavior Checklist (CBCL, 
age 6–18 form (Achenbach & Ruffle, 2000). The subscale 
consists of 10 items describing behaviours that the parents 
rate on a three-point Likert scale ranging from 0 (not true) 

of 296.5 go trials retained (SD = 8.1, range = 159–300) for 
baseline data. For follow-up data, an average of 3.9 trials 
were removed (SD = 9.0, range = 0-115) and an average of 
296.1 trials were retained (SD = 9.0, range = 185–300). For 
a more detailed overview of number of trials included, see 
Supplementary Table 1. All data cleaning procedures were 
performed in R (R Core Team, 2022).

Drift-Diffusion Modelling

We used the Hierarchical Drift-Diffusion Modelling 
(HDDM) package in Python (Wiecki et al., 2013) to esti-
mate DDM parameters from choice and RT data from the 
go trials in the SST (see Supplementary Figure S1). Data 
was stimulus coded so that rightward responses were coded 
as 1 and leftward responses as 0. Further, we estimated non-
decision time, decision threshold, starting point bias and 
drift rate for each participant, but allowed the sign of the 
drift rate to vary depending on condition (left vs. right). To 
allow the model to account for faster responses for incor-
rect decisions we also estimated a group parameter for trial-
by-trial variation in starting point bias. We considered the 
direction of the stimulus to not be of interest, and therefore 
do not report parameter estimates of the starting point bias 
or its trial-by-trial variability.

As analysing all datasets together in a Bayesian hierar-
chical model would be too time-consuming, we randomly 
assigned datasets to one of 80 groups that were estimated 
separately. For each group, three chains with 3000 samples 
each were estimated with the first 2000 being discarded as 
burn-in. This was done to allow the sampling process to 
identify the region of best-fitting values in the parameter 

Fig. 1  Illustration of the stop-
signal task. Note ITI = inter-
trial interval, RT = reaction 
time, SSD = stop signal delay, 
SS = stop-signal, ms = millisec-
onds. From Casey et al. (2018)
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non-normality were handled using full information robust 
maximum likelihood estimation (Enders & Bandalos, 
2001). Due to high attrition from baseline to follow-up, we 
set a requirement that all included participants had data on 
at least one timepoint for every main variable (i.e., atten-
tion problems and the DDM parameters). This resulted in 
the removal of 23 datasets from the 8941 used for DDM 
parameter estimation yielding a final sample of 8918 (4252 
females, baseline: n = 8918, Mage=9.9, follow-up: n = 8005, 
Mage=12.0). See Fig. 2 for complete overview of exclusions.

Four multigroup ULCS models (Kievit et al., 2018; 
McArdle & Hamigami, 2001) (Fig. 3A) with sex as group-
ing variable were performed to separately estimate change 
in the decision-making parameters derived from DDM (i.e., 
drift rate, decision threshold, and non-decision time), and 
in attention problems. In each model, a latent change score 
factor reflecting change from baseline to follow-up was 
defined. This allowed the estimation of average change, 
variance in change, and the examination of whether change 
depends upon the baseline measurement. To estimate sex 

to 2 (very true or often true). We used the raw scores from 
the baseline and 2-year follow-up measurements. The sub-
scale was estimated to have a Cronbach’s alpha of 0.88 
for our baseline data and 0.86 for the follow-up data. The 
subscale correlated r = .93 with the ADHD subscale both at 
baseline and follow-up in the current sample. However, as 
the attention problems subscale contains some items that 
are not specifically related to ADHD (Weigard et al., 2023), 
we also performed the analyses with the ADHD subscale 
which resulted in comparable results (see Supplementary 
materials).

Statistical Analyses

All data cleaning and statistical analyses were performed in 
R version 4.2.0 (R Core Team, 2022) and the latent change 
score models were conducted using the lavaan package ver-
sion 0.6–11 (Rosseel, 2012) with analysis code available 
on https://osf.io/tq5ha/. All analyses followed recommen-
dations provided by Kievit et al. (2018). Missing data and 

Fig. 2  Flow chart of data pre-
processing steps
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in Supplementary Figures S2-S8. T-tests of sex effects 
are reported in the Supplementary Table S2. Correlations 
between all included variables are shown in Supplementary 
Figures S9-S11 separately for the full sample, females only, 
and males only.

Univariate Latent Change Score Models

Drift Rate (v)

The multigroup ULCS model for drift rate fit the data 
well: χ2 (12) = 14.495, CFI = 0.999, RMSEA = 0.007, and 
SRMR = 0.010. The model results are presented in Table 1. 
The model showed significant positive mean change in drift 
rate for both females and males, indicating that improve-
ment in evidence accumulation rate occurs from about age 
10 to age 12. There were also significant variances in base-
line scores and change for both sexes. The significant nega-
tive correlation between baseline and change indicated that 
individuals with high initial levels of drift rate improved 
less.

When testing for sex differences by means of parameter 
constraints, the initial level of drift rate (Δχ2 (1) = 34.25, 
p < .001) and the latent change score (Δχ2 (1) = 7.04, 
p = .008) differed significantly across sexes, with higher 
average drift rates and a greater change score for females 
(estimated mean = 2.74, estimated mean change = 0.434) 
than males (estimated mean = 2.63, estimated mean 
change = 0.373). Sex differences were also found for vari-
ances of baseline scores (Δχ2 (1) = 5.12, p = .024) with 
higher variations across participants for males (estimate 
variance in baseline = 0.674) than females (estimated 

effects, the models were first run with all parameters uncon-
strained across sexes. Next, the models were rerun while 
constraining the model parameters one by one to be equal 
across sexes. Specifically, we constrained the level of base-
line score, variance of the baseline score, level of latent 
change factor, and variance of the latent change factor. Each 
model with a constraint was then compared to the initial 
model without constraints by means of chi-square difference 
tests. A drop in model fit by constraining provides indication 
of sex differences on the constrained parameter. All models 
were controlled for age, GAF, and parental income.

Next, three multigroup BLCS models (Kievit et al., 2018) 
(Fig. 3B) with sex as grouping variable, one for each of the 
DDM parameters, were performed to assess the co-devel-
opment of the DDM parameters and attention problems. 
The BLCS model builds on the ULCS model and estimates 
the covariance between baseline measures of e.g., drift rate 
and attention problems, cross-domain couplings examining 
whether change in e.g., drift rate is a function of the baseline 
score of attention problems and vice versa, and correlated 
change (Kievit et al., 2018). Like in the ULCS models, we 
constrained the model parameters to test for sex differences 
by means of chi-square difference tests. Age, GAF, and 
parental income were included as covariates.

Results

Descriptive Statistics

Descriptive statistics for DDM parameters, attention prob-
lems, and the covariates age, income and GAF are shown 

Fig. 3  Latent change score mod-
els. Note: (A) Univariate latent 
change score model illustrating 
the average change in drift-diffu-
sion parameter (Δ DDM0), vari-
ance in change (σ2Δ DDM0), and 
change depending on the initial 
measurement (red ρ). (B) Bivari-
ate latent change score model 
illustrating correlation between 
DDM and attention problems 
(ATT) at baseline (purple φ), 
regression between DDM and 
change in ATT (blue γ1), regres-
sion between ATT and change 
in DDM (blue γ2), and co-
occurrence of changes in DDM 
and ATT (yellow ρ). 0 = baseline, 
2 = 2-year follow-up. The centred 
covariates were introduced at 
the baseline level. Adapted from 
Kievit et al. (2018)
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the variance of the latent change factor (Δχ2 (1) = 0.70, 
p = .403). The ULCS model on attention problems is visual-
ised in figure S14.

Non-Decision Time (t)

The multigroup ULCS model for non-decision time fit the 
data well: χ2 (12) = 18.277, CFI = 0.995, RMSEA = 0.012, 
and SRMR = 0.009. The model results are presented in 
Table 3. The model demonstrated significant negative mean 
change in non-decision time for both sexes, indicating a 
reduction in time spent on non-decision processes from 
about age 10 to age 12. There were also significant variances 
in baseline scores and change for both sexes. The negative 
correlation between baseline and change shows that those 
with initial high scores decreased more.

When testing for sex differences by means of parameter 
constraints, the baseline non-decision time differed signifi-
cantly across sexes (Δχ2 (1) = 83.89, p < .001), with longer 
non-decision time for females (estimated mean = 0.264) 
than males (estimated mean = 0.255). Sex differences were 
also found when constraining the variance of the baseline 
scores (Δχ2 (1) = 5.60, p = .018) and the variance of the 
latent change factor (Δχ2 (1) = 6.46, p = .011) with higher 
variation across participants for males (estimated baseline 
variance = 0.002 (z-score = 40.91), estimated variance in 
change = 0.002 (z-score = 29.14)) than females (estimated 
baseline variance = 0.002 (z-score = 37.57), estimated vari-
ance in change = 0.002 (z-score = 27.23). Lastly, constrain-
ing the mean level of latent change did not suggest sex 

variance in baseline = 0.625). However, no sex differences 
were found in the variance of the latent change score (Δχ2 
(1) = 1.892, p = .169). The ULCS model on attention prob-
lems is visualised in figure S13.

Decision Threshold (a)

The multigroup ULCS model for decision threshold fit 
the data well: χ2 (12) = 7.21, CFI = 1.00, RMSEA = 0, and 
SRMR = 0.006. The model results are presented in Table 2. 
The model demonstrated significant negative mean change 
in decision threshold for both sexes indicating a decrease in 
decision threshold from about age 10 to age 12. There were 
also significant variances in baseline scores and change for 
both sexes. The significant negative correlations between 
baseline and change indicate that those with initially high 
decision threshold decreased more.

When testing for sex differences by means of parameter 
constraints, the initial level of decision threshold differed 
significantly across sexes (Δχ2 (1) = 195.41, p < .001), with 
higher average decision threshold for females (estimated 
mean = 1.80) than males (estimated mean = 1.62). Sex dif-
ferences were also found for the variance of the baseline 
scores (Δχ2 (1) = 8.45, p = .004) with higher variation across 
female (estimated variance = 0.303) than male participants 
(estimated variance = 0.252). We further found significant 
sex differences in mean change (Δχ2 (1) = 3.92, p = .048) 
with a more negative change for females (estimated 
change = − 0.12) than males (estimated change = − 0.09). 
However, no sex differences were found when constraining 

Table 1  Results from the multigroup ULCS model on drift rate
Parameter Females Males

Est. SE z p Est. SE z p
Baseline mean 2.742 0.014 202.732 < 0.001 2.630 0.013 197.057 < 0.001
Mean change 0.434 0.017 25.798 < 0.001 0.373 0.016 23.017 < 0.001
Variance of baseline score 0.625 0.331 27.683 < 0.001 0.674 0.016 43.285 < 0.001
Variance of change score 0.638 0.234 23.258 < 0.001 0.683 0.023 29.408 < 0.001
Correlation baseline-change − 0.414 0.014 -18.221 < 0.001 − 0.421 0.015 -19.121 < 0.001
Note. Est. = unstandardised estimates except for the covariance where standardised estimates are provided, SE = standard error, z = z-score, 
p = p-value. Significant results are highlighted in bold

Table 2  Results from the multigroup ULCS model on decision threshold
Parameter Females Males

Est. SE z p Est. SE z p
Baseline mean 1.799 0.009 189.463 < 0.001 1.620 0.008 196.026 < 0.001
Mean change − 0.117 0.012 -9.971 < 0.001 − 0.086 0.011 -8.032 < 0.001
Variance of baseline score 0.303 0.014 22.274 < 0.001 0.252 0.011 22.420 < 0.001
Variance of change score 0.332 0.017 19.637 < 0.001 0.312 0.016 18.973 < 0.001
Correlation 
baseline-change

− 0.576 0.013 -14.405 < 0.001 − 0.530 0.010 -14.393 < 0.001

Note. Est. = unstandardised estimates except for covariance where standardised estimates are provided, SE = standard error, z = z-score, 
p = p-value. Significant results are highlighted in bold
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change in attention problems for both males and females, 
indicating a reduction in attention problems from about age 
10 to age 12. There were also significant variances in base-
line scores and change scores for both sexes. The significant 
negative correlation between baseline and change indicates 
that individuals with high initial levels of attention prob-
lems tended to decrease more.

When testing for sex differences by means of parameter 
constraints, the baseline level of attention problems differed 

differences (Δχ2 (1) = 1.27, p = .261). The ULCS model on 
attention problems is visualised in figure S15.

Attention problems

The multigroup ULCS model for attention problems fit the 
data well: χ2 (12) = 18.096, CFI = 0.998, RMSEA = 0.011, 
and SRMR = 0.006. The model results are presented in 
Table 4. The model demonstrated significant negative mean 

Table 3  Results from the multigroup ULCS model on non-decision time
Parameter Females Males

Est. SE z p Est. SE z p
Baseline mean 0.264 0.001 350.692 < 0.001 0.255 0.001 342.234 < 0.001
Mean change .-0.019 0.001 -23.594 < 0.001 − 0.021 0.001 -25.917 < 0.001
Variance of baseline score 0.002 0.000 37.572 < 0.001 0.002 0.000 40.908 < 0.001
Variance of change score 0.002 0.000 27.228 < 0.001 0.002 0.000 29.142 < 0.001
Correlation 
baseline-change

− 0.592 0.000 -22.755 < 0.001 − 0.645 0.000 -26.700 < 0.001

Note. Est. = unstandardised estimates except for covariance where standardised estimates are provided, SE = standard error, z = z-score, 
p = p-value. Significant results are highlighted in bold

Table 4  Results from multigroup ULCS model on attention problems
Parameter Females Males

Est. SE z p Est. SE z p
Baseline mean 2.370 0.050 47.683 < 0.001 3.501 0.057 61.006 < 0.001
Mean change − 0.191 0.044 -4.301 < 0.001 − 0.243 0.048 -5.118 < 0.001
Variance of baseline score 9.150 0.331 27.683 < 0.001 13.743 0.379 36.254 < 0.001
Variance of change score 5.439 0.234 23.258 < 0.001 7.059 0.257 27.427 < 0.001
Correlation baseline-change − 0.444 0.214 -14.617 < 0.001 − 0.418 0.245 -16.819 < 0.001
Note. Est. = unstandardised estimates except for covariance where standardised estimates are provided, SE = standard error, z = z-score, 
p = p-value. Significant results are highlighted in bold

Table 5  Results from BLCS models for each DDM parameter where numbers 1–4 represent the effects of interest: (1) correlation at baseline, (2) 
regression (attention problems at baseline related to change in DDM parameter), (3) regression (DDM parameter at baseline related to change in 
attention problems), (4) correlation of change score

Parameter Females Males
Est. SE z p Est. SE z p

Drift rate (v)
1 att0↔v0 (ϕ) − 0.244 0.042 -5.769 < 0.001 − 0.350 0.052 -6.687 < 0.001
2 att0→Δv (γ1) − 0.062 0.005 -2.982 0.003 − 0.052 0.004 -2.756 0.006
3 v0→Δatt (γ2) − 0.084 0.055 -4.447 < 0.001 − 0.033 0.057 -1.858 0.063
4 Δatt↔Δv (ρ) − 0.127 0.035 -3.671 < 0.001 − 0.108 0.038 -2.829 0.005
Threshold (a)
1 att0↔a0 (ϕ) − 0.016 0.029 − 0.948 0.343 − 0.003 0.032 − 0.162 0.871
2 att0→Δa (γ1) 0.003 0.003 0.197 0.843 − 0.012 0.003 − 0.717 0.474
3 a0→Δatt (γ2) − 0.020 0.079 -1.051 0.293 − 0.010 0.100 − 0.532 0.594
4 Δatt↔Δa (ρ) − 0.038 0.020 -1.895 0.058 − 0.004 0.027 − 0.189 0.850
Non-decision time (t)
1 att0↔t0 (ϕ) − 0.015 0.002 − 0.850 0.395 − 0.014 0.003 − 0.812 0.417
2 att0→Δt (γ1) 0.015 0.000 0.791 0.429 − 0.008 0.000 − 0.518 0.604
3 t0→Δatt (γ2) − 0.044 1.007 -2.303 0.021 − 0.021 1.064 -1.147 0.251
4 Δatt↔Δt (ρ) − 0.034 0.002 -1.443 0.149 − 0.027 0.002 -1.314 0.189
Note. 0 = baseline measure, est. = estimates, SE = standard error, z = z-score, p = p-value, Δ = change. All reported effects are standardised. 
Statistically significant findings are highlighted in bold
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baseline for males or females. The results also showed no 
statistically significant associations of correlated change. 
Lastly, there were no significant coupling effects. More-
over, χ2-difference tests indicated no significant differences 
between males and females for any of the four attention 
problems-decision threshold relationships. The results are 
visualised in Fig. 5.

Non-Decision Time (t)

Third, a BLCS model for attention problems and non-deci-
sion time was modelled and the fit was good: χ2 (24) = 38.285, 
CFI = 0.997, RMSEA = 0.012, SRMR = 0.009. Inspection 
of the four parameters of interest, reflecting the four pos-
sible attention problems-non-decision time relationships 
(see Table  5), showed no statistically significant correla-
tion between attention problems and non-decision time at 
baseline for males or females. The results further showed 
no statistically significant associations of correlated change. 
Lastly, there were no significant coupling effects except 
for non-decision time at baseline predicting change in 
attention problems for females (β=-0.04, p = .021). Next, 
χ2-difference testing for sex differences were carried out. 
Here, no significant differences between males and females 
were found for any of the four attention problems-non-deci-
sion time relationships. The results are visualised in Fig. 6.

Discussion

In this study, we investigated the co-development of 
decision-making processes and attention problems using 
multigroup latent change score modelling in a large pop-
ulation-based longitudinal sample spanning the age range 
8–14. Our main findings add to the existing literature by 
showing reduced evidence accumulation (drift rate; i.e., 
slower and less accurate responses) in attention problems. 
We additionally provide novel indications of temporal 
couplings in the development of drift rate and attention 
problems across both sexes, and show that evidence accu-
mulation, and not response caution (decision threshold) or 
encoding- and responding processes (non-decision time), is 
associated with attention problems.

As hypothesised for the ULCS models, we found that 
drift rate increased with age, while decision threshold, non-
decision time, and attention problems decreased. This indi-
cates more efficient evidence accumulation, less cautious 
response style, less time spent on non-decision processes 
like encoding and responding, and a reduction in attention 
problems from about age 10 to age 12. As expected, we also 
found variance in both baseline scores and change scores for 
all variables. Lastly, our models show that change depended 

significantly across sexes (Δχ2 (1) = 213.77, p < .001), 
with higher average attention problems for males (esti-
mated mean = 3.50) than females (estimated mean = 2.37). 
Sex differences were also found for variances of baseline 
scores (Δχ2 (1) = 77.49, p < .001) and the variance of the 
latent change factor (Δχ2 (1) = 21.56, p < .001), with higher 
variations across participants for males (estimated variance 
in baseline scores = 13.74, estimated variance in change 
score = 7.06) than females (estimated variance in baseline 
score = 9.15, estimated variance in change score = 5.44). 
However, no sex differences in the mean level of latent 
change were found: Δχ2 (1) = 0.01, p = .907. The ULCS 
model on attention problems is visualised in figure S16.

Bivariate Latent Change Score

Drift Rate(v)

First, a multigroup BLCS model for attention problems and 
drift rate was modelled and the fit was good: χ2 (24) = 32.319, 
CFI = 0.999, RMSEA = 0.009, SRMR = 0.009. Inspec-
tion of the four parameters of interest, reflecting the four 
possible attention problems-drift rate relationships (see 
Table 5), showed a statistically significant negative correla-
tion between attention problems and drift rate at baseline 
for both males (r = − .12, p < .001) and females (r = − .24, 
p < .001). The results also showed statistically significant 
associations of correlated change for both males (r = − .11, 
p = .005) and females (r = − .13, p < .001). The negative cor-
relations indicate that those with greater increase in drift rate 
over time showed a greater decrease in attention problems. 
There were additional coupling effects in which attention 
problems at baseline predicted change in drift rate for males 
(β=-0.05, p = .006) and females (β = − 0.06, p = .003), and 
drift rate at baseline predicted change in attention problems 
for females (β=-0.08, p < .001) but not males (β=-0.03, 
p = .063). Next, χ2-difference testing for sex differences in 
the coefficients were carried out. Here, no significant differ-
ence between males and females were found for any of the 
four attention problems-drift rate relationships. The results 
are visualised in Fig. 4.

Decision Threshold (a)

Second, a BLCS model for attention problems and decision 
threshold was modelled and the fit was good: χ2 (23) = 25.572, 
CFI = 0.999, RMSEA = 0.005, SRMR = 0.007. Inspection 
of the four parameters of interest, reflecting the four pos-
sible attention problems-decision threshold relationships 
(see Table  5), showed no statistically significant correla-
tion between attention problems and decision threshold at 
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those with HDDM parameters, it is worth noting the signifi-
cant sex differences. While higher drift rate, threshold and 
non-decision time is observed for females in both models, 
the differences in significant sex effects may indicate uncer-
tainty of these results and further analyses are needed.

Finally, for attention problems, we anticipated larger indi-
vidual differences and a steeper decrease in attention prob-
lems for males relative to females. However, we only found 
support for higher variance, as there were no sex differences 
in the change score. Yet, we did find higher baseline scores 
for males. Overall, this indicates that males and females 
in this sample do not differ in the degree of reduction of 
attention problems, even though they differ in the baseline 
scores. As we used a dimensional approach to attention 
problems rather than a categorical, diagnostic approach, our 
results apply to the general population including subclini-
cal symptomatology and attention deficits across categorical 
mental disorders (American Psychiatric Association, 2022; 
Racer & Dishion, 2012).

As hypothesised, the multigroup BLCS model on drift 
rate and attention problems revealed a significant negative 
association at baseline in line with previous studies indi-
cating less efficient evidence accumulation in youth with 

on the initial level of the measure with a negative correlation 
between baseline and change in all models. This negative 
correlation is commonly observed in developmental studies 
and may be explained by the notion that individuals with 
low initial scores have a greater potential to obtain higher 
scores at subsequent assessments (Rogosa et al., 1982; Von 
Soest & Hagtvet, 2011).

Although no hypotheses were formulated with regards 
to sex differences in the DDM parameters, we found that 
females had higher baseline scores on all variables (Epstein 
et al., 2022; von Krause et al., 2022). Females also showed 
greater increase in drift rate, higher variance in the decision 
threshold baseline score and a larger reduction in decision 
threshold. Males, on the other hand, showed greater vari-
ance in baseline score of drift rate and higher variance in 
both baseline and change for non-decision time. No sex dif-
ferences were observed for the variance in the change score 
of drift rate or decision threshold, or in the change score 
for non-decision time. Overall, this indicates that females 
have a more efficient evidence accumulation, a more cau-
tious response style, and spend more time on non-decision 
processes like encoding and responding. While the analy-
ses on EZ-diffusion parameters were overall comparable to 

Fig. 4  Graph showing the multigroup BLCS models for drift rate (v) and attention problems (att_prob). Note. The estimates are unstandardised
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problems showed no significant sex differences, however 
non-decision time at baseline significantly negatively pre-
dicted change in attention problems in females but not 
males. The null findings might be attributable to the age of 
the current sample as von Krause et al. (2022) found that 
at around age 18, the decision threshold parameter begins 
increasing rather than slightly decreasing. Similarly, non-
decision times are fastest at around the age of the current 
sample. It would therefore be interesting to see how these 
parameters develop later in adolescence and potentially 
interact with attention problems.

Overall, the results suggests that evidence accumula-
tion, and not response caution or non-decision processes 
like encoding and responding, is associated with attention 
problems in both sexes, and this relationship is also evident 
longitudinally, though with small effect sizes. Considering 
the higher prevalence of attention problems in males and 
the higher scores of females on the DDM parameters as 
shown in previous research (Dalsgaard et al., 2020; Epstein 
et al., 2022) and in the present study, the specific associa-
tions between drift rate and attention problems in both sexes 
shown in the multigroup BLCS models are interesting.

attention problems (Heathcote et al., 2015; Sripada & Wei-
gard, 2021; White et al., 2010, 2016). Further, the model 
also showed that the change scores for drift rate and atten-
tion problems were negatively correlated, i.e., as drift rate 
increases, attention problems decrease, albeit with a small 
effect size. In terms of coupling effects, we as expected 
found that attention problems at baseline negatively pre-
dicted the level of change in drift rate, also with small effect 
size. This indicates that high levels of attention problems at 
baseline predict less improvement in the efficiency of evi-
dence accumulation. However, while we hypothesised that 
drift rate would predict the change in attention problems, 
this was only true for females. Yet, none of the associations 
revealed significant sex differences.

For the multigroup BLCS models on decision thresh-
old and non-decision time, no hypotheses were formulated 
due to lack of robust previous findings (Cai et al., 2021; 
Mowinckel et al., 2015; Weigard et al., 2016; Ziegler et al., 
2016). It was therefore unsurprising that the current model 
on decision threshold and attention problems revealed no 
significant relationships and no significant sex differences. 
Similarly, the model on non-decision time and attention 

Fig. 5  Graph showing the multigroup BLCS models for decision threshold (a) and attention problems (att_prob). Note. The estimates are 
unstandardised
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2016). We therefore recommended that future studies use 
more than one task to better capture the variance in the esti-
mates (Schubert et al., 2016). Third, and as indicated above, 
the age range is relatively narrow in the present study, with 
literature indicating that many developmental processes 
manifest a more pronounced acceleration a few years later 
(Ratcliff et al., 2012; von Krause et al., 2022).

Although it was beyond the scope of the present study, 
in future studies, it would be interesting to investigate to 
what degree drift rate and the other DDM parameters are 
associated with other dimensions of psychopathology (e.g., 
p-factor, internalising, externalising). Relatedly, it would 
be interesting to see if the present results can be repli-
cated when accounting for potential medications and when 
including multiple raters of psychopathology, for instance 
by combining parent- and teacher reports (Cordova et al., 
2022). Additionally, the neural mechanisms underlying 
the DDM parameters in youth are mainly unknown. While 
some research has been carried out (e.g., (Manning et al., 
2021), more specificity in terms of brain regions and mecha-
nisms are needed. Additionally, robustness through valida-
tion and replication utilising different cognitive tasks and 

It is also interesting to compare the results from the anal-
ysis with HDDM-derived parameters and with EZ-derived 
parameters. The main difference between the results was the 
somewhat differing significance of sex differences. This may 
be attributable to small effects and males and females dis-
playing effects in the same direction, only differing slightly 
in magnitude. This elucidates the importance of considering 
effect sizes in addition to significance.

The findings presented in the current paper are not with-
out limitations. First, there are design issues with the SST 
used in the ABCD study (Bissett et al., 2021). Most of the 
issues are related to stop trials and incorrect calculation 
of accuracies. As the current study only used the go trials 
from the task and re-calculated the accuracies based on 
trial-level data, the impact of the issues should be minimal. 
However, studies show that when stop-signals are possible, 
participants have slower RTs (Vink et al., 2015; Zandbelt 
& Vink, 2010). Considering that the stop-signal probabil-
ity here is lower than generally recommended (Verbruggen 
et al., 2019), this should interfere less with the RTs. Sec-
ond, the consistency and validity of the DDM parameters 
have been debated (Bompas et al., 2023; Schubert et al., 

Fig. 6  Graph showing the multigroup BLCS models for non-decision time (t) and attention problems (att_prob). Note. The estimates are 
unstandardised
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