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Preface

At my school, there was a poster hanging in the physics lab. It showed a series of artistic renderings
depicting the scales in the universe. It began with our place in the solar system, a rather large
place in itself. Then, zooming outwards to reveal its place in the huge Milky Way galaxy, reducing
the sun to an indistinguishable speck of dust in the process, it did not stop there: It continued
outwards to dwarf this little sea of stars to show it was a part of the local group of galaxies with
its vast, empty voids in between, before demonstrating what a rediculously small part that group
of galaxies really is compared to what I learned was called superclusters. I like to believe that
this poster was largely responsible for tipping the scales of my opinion that “astronomy is really
fun and interesting” towards the direction “I am going to the university to study this stuff”.

First of all I want to thank my supervisor prof. Øystein Elgarøy, for giving me a glimpse
into the world of cosmological research, and also for his patience, for providing emergency rescue
solutions when things got stuck, and for reminding me to take deep breaths every once in a while.

All the people whom I have come to know through my years at the university: DreamTeam
members Silje, Espen and Michael most of all. Mahwash for being the first person I met at
Blindern. Zoya, Anita and Nina for all the laughs. My colleagues at the study hall for making
things social whenever I dangerously approached Hermit Stage.

I should also thank associate professor Frode K. Hansen, for providing in the cosmology course,
among many other subjects, a qualitative and simple understanding of the power spectrum and
its advantages. I stole a couple of sentences from his lectures in chapter two.

Much respect to the leaders in modern skepticism and defenders of science and good humor;
James Randi, Richard Dawkins, Phil Plait, PZ Myers, Carl Sagan, Douglas Adams. For giving
me the yearning to continue to learn about what I have come to realize is the most awe-inspiring
and mysterious thing out there: Reality.

Sources of procrastination: Neil Gaiman. Lolcats. iTunes. Battlestar Galactica. The Blogo-
sphere. In this case, I am not sure whether I wish to give thanks as such (honorable mentions at
the most).

Personally I think I want to thank Michael Katz most of all, for simply being there all the
time; for inspiring me through his hard work on his own master thesis, and at the same time
congratulate him for winning first prize in his admirable single-handed, everyday tackling of what
could only be described as another person’s otherworldly moodswings and inconceivable fits of
frustration, while at the same time bothering to make dinner. Thank you.

Kristin C. Carlsson
Oslo, May 16, 2008
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Chapter 1

Introduction

It’s only been in the past few decades that the very biggest thing of all—the Universe—
has been tied to the smallest things of all—subatomic particles. The very small and
the very big are connected in a fundamental way, and it’s only been through science
that we’ve percieved that connection.

—Phil Plait, ”The Bad Astronomer”

1.1 The unseen universe
Physical cosmology encompasses a vast number of subjects. Even so, one may say that
at least one of three factors always comes into play: The cosmologist either has to handle
the very large, the very distant or the very long ago. Most of the time it will be a linear
combination of the three, and in this sense cosmology plays the part as the “biggest” of
natural sciences.

The universe is a place where most of the matter in it is invisible to our own curious
eyes and telescopes. This somewhat mysterious dark matter is only perceived through
its gravitational influence on large mass structures, such as the observed counterintuitive
rotation of galaxies: When plotting the orbital velocity of the gas or stars in a galaxy
against its distance from the galaxy center, one finds that these velocities are constant
over a large range of distances, when it is expected that they should follow the dynamics
of a Newtonian potential, much like the planets in our solar system. This discrepancy
is thereby proposed to be filled by the presence of a type of matter which does not emit
observable radiation, but acts through gravity to give a different rotation profile than
would, at first glance, be anticipated.

To this day, the answer to what type of particles constitute dark matter has not been
found, although the progress of natural science has steadily continued to rule out a number
of proposals. Moreover, even matter itself, be it visible or dark, does not even take up more
than a third of the energy available in the cosmos: By today’s best standards in research
a perhaps even more enigmatic factor, dubbed the cosmological constant1, may have come

1A rather successful resurrection of “Einstein’s greatest blunder”
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to dominate the energy density of our universe, making it expand at the accelerating rate
one can observe today.

It is interesting to note, then, that while the universe truly is the largest object to study,
the most fundamental connection of all is still towards the very smallest constituents of
particle physics.

Dark matter is not only needed to explain the rotation curves of galaxies, but to explain
the structure of the universe altogether. This inevitably brings us to the topic of structure
formation. The formation of mass structure through gravitational instability, i.e. that ini-
tially small fluctuations in density are amplified by gravity, can safely be regarded as the
standard paradigm by which modern cosmologists prefer to model our universe. One pos-
sible explanation for the origin of these fluctuations is that they are quantum fluctuations
puffed up to macroscopic scales during a period of inflation.

Furthermore, observations of how the matter is distributed on different length scales in
the universe are an important test of cosmological models. For example, such observations
can give an upper limit of the masses of neutrinos: As the portion of the dark matter
consisting of neutrinos increases, less structure on the smaller scales may be observed.
One of the most frequently used methods for measuring the matter distribution in the
universe is to measure the statistical distribution of galaxies in the local universe. These
redshift surveys have currently measured the position and redshift of hundreds of thousands
of galaxies, with many more to come in the future.

One potential problem with this method is that it is based on the matter we can see,
while what we really are interested in is the distribution of both dark and luminous matter
combined. If dark and luminous matter have the same statistical distribution, then there
are no problems with using measurements on observed galaxies only. Still, it seems that
the two components in question are unevenly distributed on different length scales. The
relationship between the distributions of the dark and luminous matter is called the bias
factor, and it is difficult to calculate theoretically. There is, however, a simple model—the
so-called halo model—where this type of bias can be taken into account.

1.2 Outline of the thesis

1.2.1 Problem

This thesis will give an introduction to the halo model and the concepts behind it. There
are many ways and many degrees of detail with which to construct it, and the approach
used here will be largely based on analytical approximations and empirical results.

With this model, an attempt will then be made to investigate the effects of massive
neutrinos: In this picture, one may add neutrinos as a part of dark matter and study the
effect on the statistical distribution of galaxies. The main points of interest are

• What are the effects on the clustering of galaxies on small scales by including massive
neutrinos?
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• Are these effects interesting, i.e. can the model be used to predict reasonable upper
limits for the neutrino mass?

1.2.2 Layout

This chapter serves as a qualitative introduction to the field of cosmology and dark matter,
as well as the questions within—a couple of which this thesis will try to answer. Chapter
2 attempts to give a theoretical motivation for the physical tools used in the study of
large-scale structure and the part the neutrino plays in the picture. Chapter 3 introduces
some key ingredients of the halo model itself. The numerical methods and implementations
used for calculating the relevant parameters in the halo model is described in Chapter 4.
Results are laid out in Chapter 5, while Chapter 6 summarizes and makes some concluding
remarks.





Chapter 2

Theoretical background

In order to obtain a fundamental understanding of the halo model, it will be necessary
to undergo a crash course in simple gravitational structure formation. Bound objects in
the universe, such as galaxies and clusters of galaxies, are highly nonlinear structures,
and are therefore generally much more difficult to study theoretically than linear density
perturbations. There is, however, a simple model which might catch some important
features of the formation of bound structures: The so-called spherical collapse model. This
model will be considered in the first section.

In cosmology, one is also interested in the statistical distribution of so-called virialized
structures, which will be explained below, and to answer questions such as “How many
structures with mass less than a given value are we expected to find within a given, arbitrary
volume?” The mass function is an important quantity that tells us something about how
gravitationally bound structures of different mass is distributed in the universe. Later in
this chapter will be considered a simple analytical model for the formation of structure,
and an attempt is made to find the mass function in this model.

Further on in the chapter, the concept of the two-point correlation function and the
closely related power spectrum is introduced; these are crucial elements in the study of
and research in the large-scale structure of the universe.

The final theoretical ingredient is that of the neutrino, which will be given a short
fact-sheet presentation in the last section of this chapter.

Much of the theoretical descriptions in this chapter are taken from various introduc-
tionary texts in cosmology, such as [1, 2, 3, 4, 5] and [6]. Refer to these for further reading
on the concept of basic cosmology.

2.1 Virializing a sub-universe: Spherical collapse

We start out with a flat, matter dominated universe, called an Einstein-de Sitter (EdS)
universe, placing within it a spherical region with density higher than the critical value
ρcr ≡ 3H0/8πG. Here H0 is the value of the Hubble parameter today (denoted by the
subscript 0), and G is the gravitational constant. In cosmology, H0 is often expressed
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through H0 = 100h km s−1 Mpc−1, so that h is dimensionless.
It is possible to show that this overdense spherical region can be treated as a separate

sub-universe. In short, this is explained by the fact that the Poisson equation, which
tells us about the relation between the density of matter and the gravitational potential,
is linear, and therefore the effects of the homogeneous matter distribution and that of
density fluctuations can be considered separately. The gravitational field of the total
matter distribution is then the sum of the average matter distribution and that of the
fluctuations. Since the density of this sub-universe is above ρcr, it will behave like a closed
model. In terms of the density parameter Ωm0 ≡ ρm0/ρcr for matter, where the matter
density is ρm = ρm0a

−3, such a universe is described by the Friedmann equation

H2(t)

H2
0

=
Ωm0

a3
+

1 − Ωm0

a2
. (2.1)

Here H(t) = ȧ/a, where the dot implies differentiation with respect to cosmic time t, and
a = a(t) is the scale factor of the universe model in question. The curvature term scales
as a−2. From (2.1), and the criterium that ȧ = 0 for some finite value of a after a time of
expansion, we find an expression for the maximal value the scale factor can achieve:1

Ωm0

a3
max

=
Ωm0 − 1

a2
max

⇔ amax =
Ωm0

Ωm0 − 1
. (2.2)

At this value, the sub-universe has reached a turnaround and will start to contract. Equa-
tion (2.1) can be written as

(
da

dt

)2
1

H2
0a

2
=

Ωm0

a3
+

1 − Ωm0

a2

⇒ H0dt =
da√

Ωm0

a
+ 1 − Ωm0

=
1√

Ωm0 − 1

√
ada√

amax − a
. (2.3)

where we also have incorporated (2.2). Integrating this by demanding t = 0 when a = 0,
we get

H0t =
1

Ωm0 − 1

∫ a

0

√
a′da′

√
amax − a′ . (2.4)

The following substitution can then be used:

a = amax sin2

(
θ

2

)
=

amax

2
(1 − cos θ), (2.5)

1We also see that this criterium demands that Ωm0 > 1.



2.1 Spherical collapse 7

One can easily transform Eq. (2.4) to yield

H0t =
1

2

Ωm0

(Ωm0 − 1)3/2

∫ θ

0

(1 − cos θ′)dθ′

=
Ωm0

2(Ωm0 − 1)3/2
(θ − sin θ). (2.6)

The solution of (2.1) can therefore be written parameterized as

a(t) = A(1 − cos θ) (2.7)
t = B(θ − sin θ) (2.8)

where A = amax/2 and B = Ωm0/[2H0(Ωm0 − 1)3/2]. At its maximal size amax, we see that
Eq. (2.7) gives an expression for the maximal value of θ:

amax =
amax

2
(1 − cos θmax), (2.9)

in turn giving cos θmax = −1 and thus θmax = π. Using this on (2.8) is found

tmax = πB

=
π

2H0

Ωm0

(Ωm0 − 1)3/2
, (2.10)

which will be used in the following.
The mass density of the background universe behaves normally, which means it is given

by ρEdS ∝ a−3
EdS, where aEdS(t) = (t/t0)

2/3 describes the scale factor of the EdS model,
with t0 = 2/3H0. This can be used to calculate the ratio between the overdensity of the
spherical inhomogeneity and that of the EdS universe. At amax, we have

ρmax

ρEdS,max

=
ρm0a

−3
max

ρcra
−3
EdS(tmax)

= Ωm0

(
aEdS(tmax)

amax

)3

=
t2max(Ωm0 − 1)3

t20Ω
2
m0

=

π2

4H2
0

Ω2
m0

(Ωm0−1)3
(Ωm0 − 1)3

4
9H2

0
Ω2

m0

=
9π2

16
≈ 5.55, (2.11)

having used expressions (2.2) and (2.10). This means that as the sphere had reached its
maximum size, it was still more than five times denser than the background.

Since the spherical overdensity has no inner pressure in this simplified model, it will,
after having reached its maximum size, collapse to zero radius and infinite density. Looking
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at the symmetry in (2.7)–(2.8), this happens at θ = 2π, i.e. when t = 2πB. As we can see
from equation (2.10), this also equals 2tmax. In practice, various physical processes will in-
terfere and stop the perturbation from collapsing to infinite density. For example, pressure
gradients will grow sufficiently that the collapse stops. After all, the statement that p = 0
for non-relativistic matter is only an approximation; sooner or later during the collapse
this approximation will no longer apply, and we must take pressure into consideration. If
the perturbation does not end up a black hole, the result will be a system which satisfies
the virial theorem (the system is virialized). The virial theorem provides a simple relation
between between the expectation values of the kinetic energy K and the potential energy
V of a system,

〈K〉 =
1

2
〈V 〉. (2.12)

For a sphere of total mass M and radius a, one can show that the potential energy is

V = −3

5

GM2

a
. (2.13)

When the spherical perturbation reaches its maximum radius amax, the kinetic energy is
zero, so that the total energy equals the potential energy,

Etot = Vmax = −3

5

GM2

amax

. (2.14)

After this, the radius of the sphere decreases, until the system is virialized, where we have
the situation

Etot = Kvir − 3

5

GM2

avir
. (2.15)

What we demand here is of course that the total energy is conserved in the two cases, so
that the right-hand sides of equations (2.14) and (2.15) can be compared:

−3

5

GM2

amax
= Kvir − 3

5

GM2

avir
. (2.16)

Using (2.12), we see that the virial theorem is fulfilled when

Kvir =
3

10

GM2

avir
. (2.17)

Substituting this and solving for avir finally gives

avir =
amax

2
. (2.18)

The total mass density of the sphere at maximal radius is

ρmax = ρ(amax) =
3M

4πa3
max

, (2.19)
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while after virialization it is

ρvir = ρ(amax/2) =
24M

4πa3
max

, (2.20)

that is, eight times more dense than at the maximum radius.
Let us return to equation (2.7) and find out at which value θ = θvir the virial theorem

is fulfilled. Dividing by a factor of amax on both sides, we end up with

1 = cos θvir − 1 ⇒ cos θvir = 0. (2.21)

This is fulfilled when θvir = {π/2, 3π/2}, but since we are interested in the period during
collapse, i.e. when θ > π, we get the answer θvir = 3π/2. We can then insert this into (2.8)
and get an expression for at which time this happens:

tvir

tmax
=

3π
2
− sin 3π

2

π − sin π

=
3π
2

+ 1

π

=
3

2
+

1

π
≈ 1.82. (2.22)

Remembering that the density of the background universe goes like (t/t0)
−2, we can cal-

culate the factor by which this density has decreased during the time period from tmax to
tvir:

ρEdS,vir

ρEdS,max
=

ρEdS(tvir)

ρEdS(tmax)
=

(t0/tvir)
2

(t0/tmax)2

=

(
tmax

tvir

)2

≈
(

1

1.82

)2

≈ 1

3.31
. (2.23)

Lastly, let us calculate the density contrast of the spherical perturbation in terms of the
background universe, at the period of virialization. It is defined as

δvir =
ρvir − ρEdS,vir

ρEdS,vir
=

ρvir

ρEdS,vir
− 1. (2.24)

Relating the fraction in (2.24) to the expressions we have found so far, we find, via equations
(2.11), (2.20) and (2.23), the overdensity to be

δvir =
ρvir

ρEdS,vir

− 1

=
ρvir

ρmax

ρmax

ρEdS,max

ρEdS,max

ρEdS,vir
− 1

≈ 8 × 5.55 × 3.31 ≈ 150.
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In reality, one could expect the process of virialization to take a little longer than pre-
dicted by our symmetrically simplified model, and it is indeed common to assume that
that avir is in fact only reached after the time roughly corresponding to collapse. The
process causing this is the lack of perfectly radial orbits of the particles in our sphere:
Because of small-scale density and gravitational fluctuations occuring within the spherical
region, increasing with density, there will be deviations of the particle orbits and scatter-
ing on the fluctuations—a process called violent relaxation. One would then get a value
1 + δvir = 18π2 ≈ 178 for the density contrast, as shown in e.g. [7].

The overdensity at virialization is an important parameter in the model considered for
this thesis, and in the following chapters, for conventional reasons, it will be denoted by the
symbol Δvir. The sub-universe therefore has a density Δvir times the background density
ρ̄.

To introduce an important parameter in the theory of spherically virialized objects, we
return to the parametric solution of the Friedmann equation, Eqs. (2.7) and (2.8). Looking
at the linear regime by expanding the expressions to the second order in θ (see Eqs. (A.4)
and (A.5) in Appendix A for the sine and cosine expressions), one finds

a(t)

amax

≈ θ2

4
− θ4

48
, (2.25)

t

tmax

≈ 1

π

(
θ3

6
− θ5

120

)
(2.26)

remembering that tmax = πB. These expressions can be combined via iteration to yield
the so-called linearized scale factor:

alin(t)

amax
≈ 1

4

(
6π

t

tmax

)2/3
[
1 − 1

20

(
6π

t

tmax

)2/3
]

. (2.27)

This expression gives the linear theory prediction for the growth of a spherical perturbation.
The lowest order truncation of (2.27), i.e. removing the square-bracketed part, is the
expansion of the flat background universe. Because matter domination is assumed, and
density therefore scales as a−3, the linear prediction density contrast therefore is expressed
as

1 + δlin =

(
alin

EdS

alin(t)

)3

, (2.28)

which through substitution and further linearization will give

δlin =
3

20

(
t

tmax

)2/3

. (2.29)

Inserting tmax = πB and t = tvir = 2tmax gives the linearly predicted value of the density
contrast, corresponding to the epoch of gravitational spherical collapse:

δc =
3

20
(12π)2/3 = 1.686. (2.30)
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Before understanding the important role this linear value plays in nonlinear analytical
theory, the next section will look at a vital tool in precision cosmology when determining
the distribution of structure on large scales.

2.2 Intermezzo: The power spectrum

To classify structure with regards to the matter perturbations in the universe, a simple
yet powerful statistic is the two-point correlation function. Generally, we write the n-point
correlation function of density fluctuations δ(xi) as

ξn(x1, . . . ,xn) ≡ 〈δ(x1) · · · δ(xn)〉c, (2.31)

where the angular brackets denote an average over the probability distribution of the
perturbations. If all x are the same, we can write

ξn = 〈δn〉c. (2.32)

The one-point correlation function in this case is simply the expectation value, 〈δ〉c = 〈δ〉,
and the two-point (auto-)correlation function (often referred to as simply the two point
function) is defined as the variance,

ξ2 = 〈δ2〉c = 〈δ2〉 − 〈δ〉2 ≡ σ2. (2.33)

In the case of galaxies, for example, one can define the two-point function

〈δ(x1)δ(x2)〉 = ξ2(|x1 − x2|) = ξ2(r) = ξ2(r) (2.34)

as a measure of the probability of finding another galaxy at a radius r from one galaxy
which is randomly placed in a given location—a definition from Peebles (1980) [8]. It can
furthermore be thought of as a measure of clumpiness: The higher the value for some
distance scale, the more matter is grouped together at that distance scale. However,
the latter way of interpreting becomes a lot more clear if we transform the function into
Fourier space. The Fourier transform of the two-point correlation function is called the
power spectrum, and it is defined through

〈δ(k)δ(k′)〉 = (2π)3δD(k − k′)P (k). (2.35)

Here δD is the Dirac delta function (not to be confused with the perturbation δ), which
constrains k′ = k, and the isotropy of the behaviour of fluctuations, as in x-space, gives
P (k) = P (k). The scale k is the inverse of what we may call the wavelength of the Fourier
space perturbation, defined in the usual way as a wavenumber, k = 2π/λ.
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2.2.1 The shape of the power spectrum

One possible explanation for the origin of density fluctuations in the universe is that they
are quantum fluctuations, amplified from subnuclear to astronomical scales during an ex-
tremely short period of inflation (lasting about 10−34 seconds) in the earliest stages of
the universe. The amplitude of fluctuations on different length scales immediately after
inflation is described by the primordial power spectrum, usually assumed to behave like a
power law; P (k) ∝ kn. A popular choice is the scale-invariant power spectrum, in which the
spectral index n = 1. This is a form independently proposed by Harrison and Zel’dovich in
1970, and current observations do indeed indicate a spectral index which is close to unity.

The power spectrum evolves, however, from this simple power law. A number of pro-
cesses lead to the fact that perturbation growth depends on the matter content. For exam-
ple, when the universe was radiation dominated, pressure effectively worked against gravity
on wavelengths smaller than the size of the particle horizon at that epoch. Free-streaming
is another important factor. Certain dark matter particles will, at early times, stream
freely out of overdense regions into neighboring underdense ones, due to the particles be-
ing relativistic at that time. This leads to the smudging-out of structure on certain scales,
and the random velocities of the dark matter particles determines the scales up to which
density fluctuations are erased. Hot dark matter (HDM) particles (a suitable candidate of
which will be discussed closer throughout this thesis, beginning in the next section) remain
ultrarelativistic through the era of matter-radiation equality, aeq, and their free-streaming
erases fluctuations up to the scale of super-clusters. Cold dark matter (CDM) particles
become non-relativistic at much earlier times (hence the label "cold"), and preserves fluc-
tuations on practically all scales. The effect on the power spectrum of such processes are
summed up in the transfer function, the ratio of the amplitude of a density fluctuation
on a certain scale today, and its amplitude when it entered the horizon.2 Without further
details, the power spectrum today can be written as the primordial form times the square
of the transfer function:

P (k) ∝ knT 2(k). (2.36)

The overall effect of the transfer function is that the power spectrum turns over from
the primordial shape at a scale which corresponds to the horizon scale at matter-radiation
equality, as shown in Figure 2.1. The transfer function depends on cosmology, and different
numerical fits have been inferred in order to model it.

The power spectrum has dimensions of k−3, and it is useful to introduce the dimen-
sionless power spectrum by

Δ2(k) ≡ k3P (k)

2π2
. (2.37)

2Rather than describing the perturbation as entering the horizon, a more intuitive way of saying it
would be the horizon becoming large enough to enclose the perturbation.
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Figure 2.1: The matter power spectrum today. (a) is a rough sketch which demonstrates
the effect of the transfer function. (b) is an observed power spectrum with contributions
from several collaborations (Figure from [9]).

2.2.2 Why Fourier space?

Finding out how structure is formed and distributed in the universe is among the great goals
of the cosmologist. Yet a precise map of the complete distribution of density fluctuations
in the universe (whether it is in position δ(x) or Fourier space δ(k)), is not only impossible
to achieve, but gives us much more information than we need. If we consider a set of
identically “created” universes, that is, universes which are governed by the same laws of
physics, the density perturbations will not be situated in the exact same positions, nor
will they have the same amplitudes. Generating perturbations is a random process, and it
tells us nothing about the physics that generated them. What interests us are the overall
statistical properties of the density clumps themselves, and this is where the correlation
function comes in: From Eq. (2.33) we saw that this function equals the fluctuation
variance. Furthermore, rather than considering this mess of variances as a whole, it would
be much more practical to look at the statistics scale by scale, that is, constructing a
spectrum of variances, where each mode in the spectrum is independent of the other.3
This is what we call the power spectrum.

3This is valid only in the case of isotropy, i.e. when the variables do not depend on their orientation.
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2.3 The Press-Schechter formalism of large-scale struc-
ture formation

The model of spherical collapse can allow us to approximately compute the number density
of virialized objects as a function of the mass. The Press-Schechter (PS) model is a model
for so-called hierarchical formation of structure. In short, this means that smaller structures
will form initially, and that larger structures form by the merging of the smaller ones.
Indeed, the hierachical way of structure formation is strongly supported by observations:
For example, we observe quasars and galaxies at redshift z ∼ 6, indicating that small-scale
structure was already present when the universe was about 10% of its current age.

The model assumes that the density perturbations have grown sufficiently large that
virialized objects are formed. Furthermore, it is assumed that the perturbations initially
follow a Gaussian distribution (the following chapter gives further details on this). In
practice, this means that the statistical distribution of perturbations with overdensity δ
corresponding to a given mass M is given by

p(δ) =
1

σ(M)
√

2π
exp

[
− δ2

2σ2(M)

]
. (2.38)

The expectation value of δ is obtained by multiplying it with the distribution and inte-
grating over all values, giving an expression on the form

〈δ〉 = α

∫ ∞

−∞
δe−βδ2

dδ, (2.39)

where α, β are constants that can easily be inferred from (2.38). The integrand is an anti-
symmetric function, so that the integral, and therefore 〈δ〉, is zero. We get the expectation
value of δ2 in the same manner, this time by multiplying (2.38) with δ2 and integrating,
which gives

〈δ2〉 = α

∫ ∞

−∞
δ2e−βδ2

dδ. (2.40)

This type of integral has the solution given as equation (A.9) in Appendix A, and we get

〈δ2〉 =
α

2β

√
π

β
=

σ2(M)√
2πσ(M)

√
2πσ2(M) = σ2(M). (2.41)

In the PS model, it is assumed that when the perturbations have obtained an overdensity
above a critical value δc (an example calculation of which was given in Eq. (2.30)), they
will quickly collapse into virialized objects with mass M . Further assumptions are made
by claiming that the perturbations have a power spectrum P (k) following a power law,

P (k) = Akns, (2.42)

where A is a normalization constant, and that the background universe is as before de-
scribed by the EdS model. For fluctuations with a given mass M , the fraction of objects
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that are bound at a given epoch is then given by the fraction of perturbations of size larger
than δ = δc, from (2.38)

F (M) = α

∫ ∞

δc

e−βδ2

dδ. (2.43)

To solve this integral, we apply equations (A.1) and (A.3)–(A.9) in Appendix A. From
this, we get

F (M) = β

[
1

2

√
π

β
erf(
√

βδ)

]∞
δc

=
α√
β

[∫ √
βδ

0

e−t2dt

]∞
δc

=
α√
β

(∫ ∞

0

e−t2dt −
∫ √

βδc

0

e−t2dt

)

=
α√
β

(
1

2

√
π −

∫ √
βδc

0

e−t2dt

)
.

If we substitute the values for α and β, we can write the solution as

F (M) =
1√
π

(
1

2

√
π −

∫ δc/
√

2σ2

0

e−t2dt

)

=
1

2
[1 − erf(tc)], (2.44)

where we have introduced the new variable

tc =
δc√
2σ

, (2.45)

and the error function can be found in the appendix as already mentioned.
The r.m.s. variance in mass on a given scale r, corresponding to the mass M through

r = (3M/4πρ̄)1/3, can be found from the power spectrum by smoothing the density field
of scales smaller than r with a window function W (kr):

σ2(r) =

∫ ∞

0

dk

k
Δ2(k)|W (kr)|2, (2.46)

where Δ2(k) was defined in equation (2.37). If the smoothing is a top-hat in real space, it
has the Fourier space form

W (kr) =
3

(kr)3
[sin(kr) − kr cos(kr)]. (2.47)

An important cosmological parameter is σ8, the variance in a top-hat region of radius
8 h−1Mpc. The value 8 is pure convention—originally chosen as the approximate scale for
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massive galaxy clusters—and is a standard parameter in cosmology for normalizing the
matter power spectrum. The newly released 5-year WMAP data, for instance (see ref
[10]), constrain σ8 = 0.796 ± 0.036 for our universe.

In order to simplify things as much as possible, we will illustrate by roughly approxi-
mating the use of such a window function through writing (2.46) as

σ2 ≈ 1

2π2

∫ 1/r

0

P (k)k2dk. (2.48)

Since r is the smoothing scale provided by the window function, the upper limit in the
integral (2.46) is changed to the approxmate corresponding value of k. It is important
to remember that this approximation is merely an illustration for this section, while the
more accurate expressions will be used in the modelling to come. From this, and equation
(2.42), we solve to get

σ2 ≈ A

2π2

∫ 1/r

0

kns+2dk

=
A

2π2

1

ns + 3

1

rns+3
∝ r−(ns+3). (2.49)

Since the mass contained in a perturbation is proportional to the volume, and therefore
r ∝ M1/3, we can substitute and write

σ2 = KM−ns+3
3 , (2.50)

where all constants are contained in the new proportionality constant K. We can use this
on (2.45) and get an expression that depends on mass:

tc =
δc√
2K

M
ns+3

6

=

(
M

M∗

)ns+3
6

, (2.51)

where we have defined M∗ ≡
(

2K
δ2
c

)3/(ns+3)

.
The fraction of perturbations with mass in [M, M + dM ] is given by

|dF | = − ∂F

∂M
dM, (2.52)

where the negative sign signifies that F is a decreasing function of M . In the linear regime,
M = ρ̄V , where ρ̄ is the mean density of the EdS universe.4 As the perturbations became

4Remember that the background density equals the critical value, so ρ̄ = ρcr = 3H2
0/8πG.
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nonlinear, they continued to collapse until they formed virialized objects with mass M .
The number density of such objects then becomes

n(M)dM = − ρ̄

M

∂F

∂M
dM. (2.53)

The quantity n(M) is called the mass function, and it can be calculated for the PS model.
To do this, one needs to differentiate and do a couple of tricks, and the derivative of the
error function must be known; it is given by equation (A.2). One may then calculate the
derivative of F and insert into (2.53) to finally get the expression for the mass function:

∂F

∂M
=

1

2

∂

∂M

{
1 − erf

[(
M

M∗

)(ns+3)/6
]}

= −1

2

2√
π

exp

[
−
(

M

M∗

)(ns+3)/3
]

ns + 3

6

(
M

M∗

)(ns−3)/6
1

M∗

= − 1

2
√

π

(
1 +

ns

3

) 1

M∗

(
M

M∗

)(ns−3)/6

exp

[
−
(

M

M∗

)(ns+3)/3
]

= − 1

2
√

π

(
1 +

ns

3

) 1

M

(
M

M∗

)(ns+3)/6

exp

[
−
(

M

M∗

)(ns+3)/3
]

⇒ n(M) =
1

2
√

π

(
1 +

ns

3

) ρ̄

M2

(
M

M∗

)(ns+3)/6

exp

[
−
(

M

M∗

)(ns+3)/3
]

. (2.54)

To see how this mass function behaves, we finally rearrange (2.54) so that it depends purely
on (M/M∗), multiplying both sides by M2

∗ :

M2
∗ × n(M) =

1

2
√

π

(
1 +

ns

3

)
ρ̄

(
M

M∗

)(ns−9)/6

exp

[
−
(

M

M∗

)(ns+3)/3
]

. (2.55)

Figure 2.2 shows the mass function (2.55) for three values of the spectral index ns.
In litterature, one often encounters the mass function through a slightly different nota-

tion. If we introduce the parameter

ν ≡ δ2
c

σ2(M)
, (2.56)

where σ2(M) is as before the r.m.s. variance in the linearly extrapolated distribution of
density fluctuations (i.e. the linear power spectrum), smoothed with a tophat filter as
described in (2.47), then Eq. (2.44) can be written as F (M) = 1

2
(1− erf

√
ν/2). The mass

function can then be expressed as

n(M)dM =
1

2

ρ̄

M

√
ν

2π
e−ν/2dν

ν
. (2.57)
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Figure 2.2: Mass function in the Press-Schechter model for three values of the spectral
index ns, showing the tendency of a higher density of perturbations the smaller the
mass range. This intuitively comes together with the notion of hierarchical structure
formation, where larger mass structures are consecutively formed “on top of” smaller
ones. More precisely, this follows from the fact that a larger mass demands a larger
smoothing length, and for large mass values the mass function decreases exponentially,
as larger mass density peaks become succeedingly rare.
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It should be noted that a small detail has so far been left out. A predicament arises in
the PS model in that we get the factor 1/2 in front of the right hand side of (2.57). This
is a consequence of using a Gaussian field as a starting point for finding the fraction of
collapsed overdensities (2.44). Mathematically, Eq. (2.38) gives that half of the universe
will then be underdense, and will therefore never exceed the threshold value. This leads to
the physically flawed conclusion that only half the universe is able to create bound objects.
The solution to this issue was rather ad hoc; Press and Schechter simply multiplied the
expression by a factor of two in order to obtain the desired result. Although this would
seem a relatively sketchy resort, it nevertheless proceeded to give very good fits to N -body
simulation results, and it is in fact through these results that the introduction of the factor
2 is justified.

With this “correcte” PS formalisn in hand, the mass function can now be defined through

M2

ρ̄
n(M)

dM

M
= νf(ν)

dν

ν
, (2.58)

where we have introduced the notation

νf(ν) =

√
ν

2π
e−ν/2. (2.59)

Note how the mass variable ν and hence n(M) is entirely described by quantities related
to linear theory.

A modified version of the form of f(ν) will later be utilized for the modelling in this
thesis.

2.4 Introduction to the neutrino
The neutrino, an elementary particle, was theorized in 1930 by Wolfgang Pauli, as a means
to preserve energy and momentum in experiments of β-decay, the decay of a neutron into
a proton, an electron and an anti-electron neutrino, written n → p + e− + ν̄e. Pauli
postulated that an unknown particle accounted for the observed difference between the
energy, momentum and angular momentum of both sides of the reaction.5

Having half-integer spin, the neutrino is therefore a fermion. It is electrically neutral,
and hence does not interact through the electromagnetic (or strong) force, only through
the weak force as well as gravity. The weakness of the weak force in the interaction of
neutrinos with matter makes them exceptionally hard to detect; most neutrinos prefer to
pass easily through the entire earth, and to stop only half of them with a wall of lead, it
would be quite necessary for the wall to be about a light-year thick. Neutrino detectors are
built very massive and with a vast amount of detecting medium, and placed deep under

5It was Enrico Fermi who coined the name neutrino, as a pun on the italian word for neutron. Neutrone
seems to use the suffix “-one” (allthough this is a coincidence), which indicates something large, whereas
“-ino” indicates something small.
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ground or even ice, to shield them from interference such as cosmic rays. Still, the large
flux of neutrinos emanating from the Sun (every second some 1011 particles per cm2 of the
one half of the Earth facing the Sun) allows hundreds of them to be detected every year.

2.4.1 Why neutrinos must be massive

There are three known generations (or flavours) of neutrinos: The electron neutrino νe,
the muon neutrino νμ and the tau neutrino ντ , named after their connection with the
corresponding leptons in decay reactions producing electrons, muons and tau particles,
respectively. Each flavour also has a corresponding antiparticle, denoted by a bar ν̄.

It was initially believed that neutrinos were massless particles (actually, in many models
this can still be assumed and valid), and a zero mass requires travelling at the speed
of light. As mentioned, most neutrinos passing through the Earth come from the Sun,
allowing us to detect them. The discovered discrepancy between the number of electron
neutrinos detected from the core of the sun and the expected number, known as the Solar
Neutrino Problem, was later explained by the neutrinos being able to oscillate between
the three flavours. This is a quantum mechanical effect; it occurs because the neutrino
flavour eigenstates are different from the neutrino mass eigenstates. Hence there is a
certain probability for a neutrino produced in the sun’s core as an electron neutrino, to be
detected as either a tau or a muon neutrino after having travelled a distance through space.
It is evident that the existence of flavour oscillations must imply a non-zero mass: The
oscillations between two flavours depend on the difference in the square of their masses.

The first detection of neutrino oscillations, and thus the existence of a non-zero rest
mass, were made by the Super-Kamiokande detector as late as 1998, and this was confirmed
in several later experiments.

2.4.2 Neutrinos as cosmic inventory

The oscillation experiments on solar and athmospheric neutrinos are only sensitive to the
difference in the square of the masses (or mass eigenstates), and we learn nothing of the
absolute masses themselves. This is where cosmology comes into play. Cosmology is at
present one of the most powerful probes of neutrino properties, since we here get an upper
bound for the sum of the absolute neutrino masses.

The early universe was sufficiently hot and dense to serve as a fusion reactor, producing
light elements as in the stars of today. Calculations of the reactions in this Big Bang
nucleosynthesis (BBN) which formed the light elements show that neutrinos are indeed
among the products. So BBN does not only predict the abundance of the light elements in
the universe, but also the presence of a sea of cosmic neutrinos. Unlike those originating
from the sun, relic cosmological neutrinos have, until recently, not been possible to detect:
With the results of the 5-year observation data from the Wilkinson Microwave Anisotropy
Probe (WMAP) released March 2008 (see Ref. [10]), one has for the first time found
evidence of such a non-zero cosmic neutrino background.

Neutrinos were once kept in equilibrium with the rest of the cosmic plasma, through
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interactions such as electron/positron pair production and annihilation, neutrino/antineu-
trino scattering, and neutrino/electron scattering. For a particle to maintain this equilib-
rium, the reactions have to occur at a sufficient rate, sufficient meaning it has to remain
above the rate of the Hubble expansion H(t). At a certain point, the rates of the weak
reactions involving the neutrinos could not keep up with the expansion rate, and about
a second after the Big Bang, at a temperature of about 1 MeV or 1010 K, the neutrinos
decoupled, or “froze out” of equilibrium. The universe continues to cool as it expands, and
when it is approximately 3 seconds old, the temperature becomes smaller than about 511
keV. This corresponds to the electron mass, and therefore the threshold for pair production,
which means that the electron-positron pairs can no longer be produced efficiently. While
production decreases, annihilations continue to take place, and the net result is that the
density of e+e− pairs decreases fast. The annihilations, written as e++e− → γ + γ. fuels
the photon gas with additional energy. While the neutrinos by this time stream freely and
out of equilibrium, they do not obtain any of this energy. This in turn means that photons
will have a higher temperature after the annihilation period. The temperature ratio can
be calculated by requiring conservation of entropy density before and after annihilation.
For the case of massless neutrinos, which are always ultrarelativistic, one gets

Tν

Tγ

=

(
4

11

)1/3

. (2.60)

A current temperature of 2.73 K of the cosmic microwave background (CMB) would there-
fore gives a neutrino background temperature of Tν ≈ 1.95 K. With a non-zero mass this
temperature would have a much lower value.

Table 2.1 sums up the basic features of the neutrino.

Family Fermion
Group Lepton

Electric charge 0
Color Charge 0

Spin 1/2
Generations (flavours) {νe, νμ, ντ}

Antiparticle {ν̄e, ν̄μ, ν̄τ}
Interaction Weak force and gravity

Table 2.1: Neutrino fact-sheet.

Cosmological neutrinos are a candidate for so-called hot dark matter (HDM) introduced
in Section 2.2, the term ‘hot’ implying ultra-relativistic thermal velocities at around the
time of matter-radiation equality (the particles of cold dark matter (CDM) were non-
relativistic at that time).6 Cosmologists earlier proposed that neutrinos could be the

6The relic neutrinos become non-relativistic when the temperature is of order the neutrino mass.
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answer to the mysterious identity of dark matter, but constructing models with neutrinos
making up all dark matter in the cosmos led to a universe looking radically different
from the one we currently live in: The aforementioned free-streaming effect requires that
structure formation happened from the “top-down”—large scale structures having formed
initially with smaller structures gradually condensing out of the large ones—as opposed to
the hierarchical picture mentioned in the last section.

Later on, it has been established that most of the dark matter in the universe is cold
(although we have yet to find out what kind of particles CDM consists of). Still, neutrinos
can make up a small fraction of the total dark matter density, and there are various
methods in cosmology by which we can hope to detect this fraction all the more accurately.
One of these methods is to observe the effect a non-zero neutrino density parameter Ων

might have on large-scale structure: Because of the free-streaming of massive neutrinos,
we may observe less structure on smaller scales of the power spectrum. That is, small-
scale density perturbations cannot form for HDM, since (ultra-)relativistic particles are
not gravitationally bound to the potential well of an overdensity, and are therefore able
to move freely and to escape from the potential well, leading the perturbation to dissolve.
In the following chapter, a relatively simple statistical model of large-scale structure is
introduced, the Halo Model, leaving room to investigate how it may interact with the
inclusion of massive neutrinos as a component of dark matter.



Chapter 3

The Halo Model

for the more limited, if adequate, is always preferable.

—Aristotle (Physics; Book I, Chapter VI)

Chapter 2 presented the Press-Schechter model, an example of an analytical approach
for finding the mass function n(M). As mentioned, the mass function is an important
quantity describing how gravitationally bound structures are distributed on different mass
scales. The PS formalism has successfully and quite accurately described the mass function
compared with simulations in the many years since its introduction in 1974, and it was
not until the mid-1990s that the precision of simulations had developed enough to show
noticable discrepancies, and improving tweaks to the mass function were introduced. The
mass function is a naturally important part of the halo model, as we will see in the following
sections.

Scientific modelling is about creating a balance between simplicity and concord. In
astronomy one may find a complete range of models varying in complexity and accuracy
towards observations; the model chosen for this thesis can be said to take a somewhat
phenomenological approach, as well as keeping it in a rather simple form. This chapter
will attempt to gradually build up a basic understanding of the foundations and ingredients
of the halo-based description of non-linear large scale structure.

A large portion of the theory in the chapter is based on the review article by Cooray
and Sheth, see Ref. [7], as well as some additional material from [4].

3.1 Origin and concept

3.1.1 Random Fields

A random field is essentially an ensemble of random numbers whose values are mapped on
to (an n-dimensional) space. The values in a random field are usually spatially correlated,
in the sense that numbers that are further apart generally differ more than the ones that
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are adjacent. The field of density contrasts δ(xi) is regarded as a stochastic variable, and
thus forms a random field.

Specifically, a Gaussian random field is a random field with Gaussian statistics, i.e.
involving variables with Gaussian probability density functions like the one in Eq. (2.38).
The conventional assumption in cosmology is that the initial distribution set up by inflation—
the primordial density field—is Gaussian. The important part is that if the statistical
properties of the density field are Gaussian, then they are uniquely characterized by its
two-point correlation function ξ(r), or equivalently, the power spectrum P (k) (Eqs. (2.35)
and (2.37)).

3.1.2 The model

The foundation for the halo model originates over half a century ago, through the studies
of the spatial distribution of galaxies led by Jerzy Neyman and Elizabeth Scott, see Ref.
[11]. Neyman and Scott thought of the galaxies as a distribution of discrete clusters of
various sizes, and hence it followed that it was natural to study this distribution by its
statistical properties, since the clusters now were viewed as discrete points.

Up until the recent years, and through many new discoveries about the constituents
and behaviour of the universe, advanced and detailed numerical simulations have been
developed, studying the large-scale non-linear evolution of the distribution of dark matter.
Starting with an initially smooth distribution containing small perturbations, a complex
structure evolves, consisting of features such as filaments, voids and dense knots. The
knots are often called dark matter halos.

The concept of the halo model is that all matter in the universe is entirely confined
to halos of different size and mass, illustrated in Figure 3.1. If individual halos can be

Figure 3.1: This figure illustrates how the complex features found in numerical simu-
lations of the dark matter distribution (left panel) can be replaced by dark matter halos
(right panel). Illustration taken from [7].

identified, then one assumes that the halos are small compared to the distance between
them. From this comes the important key to the model, that the mass distribution can be
studied in two steps:
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1. On small scales (smaller than the size of a typical halo), the statistics of the den-
sity field are determined by the spatial distribution within the halos; how the halos
themselves are distributed in space is not important.

2. On large scales (larger than the size of a typical halo), it is the spatial distribu-
tion of the halos that becomes important, and the internal details of a halo become
insignificant.

What the model assumes is that the actual physics can be thought of in two steps as well as
the statistics. The halos are furthermore approximated to be in virial equilibrium, so that
the definition of a halo is essentially a region which has become sufficiently overdense with
respect to the background that it has collapsed. The spherical collapse model introduced
in the previous chapter will serve as the mechanism for such collapse in the thesis.

3.2 Formalism and ingredients

3.2.1 The power spectrum of dark matter

In the previous chapter, through the Press-Schechter formalism of spherical collapse, it
was demonstrated that predictions from linear theory is used to describe the mass function
(2.58): The mass variable ν is defined as the squared ratio of the predicted linear theory
value of the density contrast of a spherically collapsing region, denoted δc, and the rms
variance σ(M) of the linear power spectrum, smoothed with a top-hat window function on
scale r, corresponding to a mass M . Some of the statistical description of random fields
were introduced in section 2.2, where Fourier space was introduced as a useful environment
in which to look at cosmic structure.

We will work exclusively in Fourier space when describing the halo model. This is
convenient because the correlation function involves convolutions, which simply transcribe
as ordinary multiplications when Fourier transformed. The power spectrum of dark matter
in the halo model is written as mentioned in two parts:

Pdm(k) = P 1h
dm(k) + P 2h

dm(k) (3.1)

where

P 1h
dm(k) =

∫
dMn(M)

(
M

ρ̄

)2

|u(k|M)|2, (3.2)

P 2h
dm(k) =

∫
dM1n(M1)

(
M1

ρ̄

)
u(k|M1)

×
∫

dM2n(M2)

(
M2

ρ̄

)
u(k|M2)Phh(k|M1, M2), (3.3)

where the first term describes the correlations within one halo—the non-linear, intra-halo
regime—and the second term describes the correlation between two different halos—the
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(quasi-)linear, inter-halo regime. Here ρ̄ is the mean background density of the universe,
and n(M) is the previously discussed mass function of the virialized dark matter halos.
The remaining factors which build up equations (3.2) and (3.3) will be explained in the
following subsections.

3.2.2 Halo bias and the linear dark matter power spectrum

Halos are biased tracers of the overall dark matter content. The above expression comes
from the defined form of the overdensity of a halo residing in a cell of comoving volume V :

1 + δh(m, z|M, V, z0) =
N̄(m, z|M, V, z0)

n(m, z)V
. (3.4)

Here, N̄(m, z|M, V, z0) stands for the average number of halos of mass m which collapsed at
time z, situated in cells of size V containing mass M at time z0. The previously discussed
mass function is in the denominator. Rewriting the number of halos as

N̄(m, z|M, V, z0) = n(m, z, |M, V, z0) = n(m, z|M, V, z0)V (1 + δ), (3.5)

where V (1 + δ) = M/ρ̄ is the initial comoving size of the now overdense region V , an
expression for n(m, z|N, V, z0) can be found. It is explained in [7] that there is a direct
relation between the actual matter overdensity δ and the linearly extrapolated prediction
δ0, such that δ0 = δ0(δ, z0). At the same time remembering that the mass function depends
on the linear prediction of the overdensity at spherical collapse δc(z), the right hand side
of (3.5) can be approximated by letting it depend on δc(z) − δ0(δ, z0).1 One may then
estimate the density of halos of mass m, having virialized at z and being inside cells of size
V with mass M at z0, as

m2n(m, z|M, V, z0)

ρ̄

dm

m
= ν10f(ν10)

dν10

ν10

, (3.6)

where

ν10 ≡ [δc(z) − δ0(δ, z0)]
2

σ2(m) − σ2(M)
. (3.7)

If V → ∞, then M → ∞, and σ2(M) and |δ| tend towards zero, reducing the expression
to the mass function (2.58). Looking at the large cell limit, such that σ2(M)  1, then
|δ|  1 and we can use a power expansion in small δ for δ0(δ, z0), on the form δ0/(1 + z) =∑∞

k=0 akδ
k. Since the mass M in large cells is itself large, then σ(M)  σ(m) for most

values of m, such that σ(M) → 0. The expression for n(m, z|M, V, z0) can thus be expanded
on the form

n(m, z|M, V, z0) ≈ n(m, z) − δ0(δ, z0)

(
∂n(m, z)

∂δc

)
δc(z)

; (3.8)

1The value δ in itself can not be used in this case, as δc(z) has been derived through extrapolating it
using linear theory, and the actual value δ has been derived non-linearly.
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which in turn gives

δh(m, z|M, V, z0) ≈ δ − (1 + δ)δ0(δ, z0)

(
∂ ln n(m, z)

∂δc

)
δc(z)

. (3.9)

With this, and a suitable form of the mass function n(m, z), it can be shown that keeping
terms to lowest order in δ, yields a bias relation

δh(m, z|M, V, z0) ≈ b(m, z)δ. (3.10)

That is, the overdensity of dark matter halos in very large cells is linearly proportional to
the overdensity of the mass, and the constant of proportionality depends only on halo mass
and the redshift at which the halo collapsed into a virialized object (it does not depend on
cell size).

Note that it was necessary in this discussion of the development of the halo overdensity
relative to that of matter to include redshift, where as this thesis will concentrate on the
case z = 0. The bias relation will then only depend on halo mass.

For the most massive halos, b(m) � 1, meaning that they therefore occupy the densest
cells. In a Gaussian random field, the densest regions are more strongly clustered than
those of average density (see e.g. [12]). Another way of saying this is that the correlation
function of a dense fluctuation field (e.g. that of a rich cluster of galaxies) has a higher value.
Remembering the definition of the power spectrum (2.35), a reasonable approximation to
the halo-halo power spectrum in (3.3) on large scales is therefore to relate it to the overall
dark matter spectrum via the linear bias b(m):

Phh = b1(M1)b2(M2)Pdm(k). (3.11)

Since correlations on between halos are only important on the large, quasi-linear scales, Eq.
(3.11) may further be approximated by setting Pdm(k) ≈ P lin

dm(k), the linear dark matter
power spectrum.

3.2.3 Radial density profiles of halos

A good description of the radial density profile of the dark matter contained in virialized
halos is given by a function of the form

ρ(r|M) =
ρs

(r/rs)α(1 + r/rs)β
. (3.12)

If we set α = 1 and β = 2, we get the NFW (Navarro-Frenk-White [13]) profile, which
has acted as a very good description of the density profile in numberical simulations, and
which is the profile considered for this thesis,2

ρ(r|M) =
ρs

r/rs(1 + r/rs)2
. (3.13)

2(α, β)=(1,3) gives the Hernquist profile whereas ρ = ρs/[(r/rs)α(1 + (r/rs)β)] with (α, β)=(3/2,3/2)
gives the M99 profile [14, 15].
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Here, rs is a characteristic scale radius, which in turn defines a scale density ρs. The scale
radius is determined by what gives the best fit to the density profile, when given an object
of mass M and the corresponding virial radius (i.e. what defines the edge of a virialized
object), which is a function of the mass:

rvir =

(
3M

4πΔvirρ̄

)1/3

. (3.14)

From this, we can say that the virial radius is the radius enclosing a virialized spherical
object with density contrast Δvir, and ρ̄ being the background density of the universe.

The combination of rs and the mass M , which can be calculated as

M = 4π

∫ rvir

0

dr r2ρ(r|M), (3.15)

then gives the amplitude ρs. For the NFW profile, Eq. (3.15) gives

M = 4πρsr
3
s

[
ln(1 + c) − c

1 + c

]
≡ 4πρsr

3g(c), (3.16)

where the concentration parameter c ≡ rvir/rs.
The normalized Fourier transform of the density profile is obtained through

u(k|M) = 4π

∫ rvir

0

dr r2 sin(kr)

kr

ρ(r|M)

M
. (3.17)

For the NFW profile, one gets

u(k|M) =
4πρsr

3
s

M

{
sin(krs) [Si([1 + c]krs) − Si(krs)] − sin(ckrs)

(1 + c)krs

+ cos(krs) [Ci([1 + c]krs) − Ci(krs)]

}
, (3.18)

where the sine and cosine integrals Si(x), Ci(x) are defined in Appendix A through Eqs.
(A.6) and (A.7).

3.3 The galaxy distribution within dark matter halos
It is known that galaxies of different type cluster in different ways, meaning that they do
not trace the underlying mass in an exact manner. This relation between the distribution
of galaxies and dark matter is called the galaxy bias, and it is thus said that galaxies are
biased tracers of the overall matter distribution. We will now have a look at the manner
in which the clustering of galaxies can be inferred, based on the description of that of dark
matter, which has already been presented.
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An important part of the transition from the power spectrum of dark matter and that
of galaxies is the assumption that in the model, galaxies can only form within halos.
The equations for the power spectrum are then weighted by the number of galaxies per
halo (depending on halo mass), rather than by the mass of the underlying dark matter
particles. This is utilized through what is called the halo occupation distribution (HOD).
The first moment of the HOD, the mean halo occupation number 〈N |M〉, governs the
galaxy clustering on inter-halo scales, while the intra-halo term aquires the second HOD
moment 〈N(N − 1)|M〉. We then write

Pgal(k) = P 1h
gal(k) + P 2h

gal(k), (3.19)

where

P 1h
gal(k) =

∫
dMn(M)

〈N(N − 1)|M〉
n̄2

gal

|ugal(k|M)|p, (3.20)

P 2h
gal(k) = P lin

dm(k)

[∫
dMn(M)b(M)

〈N |M〉
n̄gal

ugal(k|M)

]2

. (3.21)

Here the mean number density of galaxies is

n̄gal =

∫
dMn(M)〈N |M〉, (3.22)

and ugal(k|M) is the normalized fourier transform of the galaxy density profile, again
noting that galaxies are considered rather than dark matter. A reasonable assumption is
that galaxies trace the dark matter in such a way that one can utilize the dark matter
density profile in the model, e.g. the NFW profile, and this profile will indeed be assumed
in this thesis. Therefore, we set ugal(k|M) = u(k|M), given by Eq. (3.18). Furthermore,
the simplest model is to take p = 2 in (3.20). Note also that correlations between two halos
of different masses are no longer assumed, as in the general form (3.3), further simplifying
the expression.

On large scales, the two-halo term dominates, and ugal → 1. The integral in Eq. (3.21)
is therefore independent of scale, and the galaxy power spectrum simplifies to

Pgal(k)
k→0≈ P 2h

gal(k) = b2
galP

lin(k) (3.23)

where the mean galaxy bias factor is introduced as

b2
gal ≡

∫
dMn(M)b(M)

〈N |M〉
n̄gal

. (3.24)

Armed with some of the technical information on the constituents of the halo model,
the next step will be to implement it in a suitable fashion, i.e. modelling the galaxy power
spectrum.





Chapter 4

Method

Profanity is the one language understood by all programmers.

—Anon.

This chapter presents the chosen way of modelling used for this thesis. The first section
describes which forms will be used for the ingredients introduced in the previous chapter.
Next, a short explanation will be given for the role of massive neutrinos in the halo model
and how this can be implemented in an as simple way as possible.

The integrals (3.20) and (3.21) are not trivial, and therefore they need to be solved
numerically. Section 4.3 will briefly go through the structure of the written program which
is used to produce numerical results, the code of which is also presented in Appendix B.

In modelling the galaxy power spectrum of the halo model, it is desirable to make the
simplest theoretical approaches, and at the same time rely on several empirical data. These
data are chosen from the article by Collister & Lahav, see Ref. [16]. Numerical fits for the
transfer function and necessary modifications, as well as the mass variance σ(M), are also
taken from litterature; see text for references.

4.1 Modelling the galaxy power spectrum

4.1.1 The mass function

Remembering Equation (2.58) and the definition (2.56), the mass function will be computed
in the form

n(M) =
ρ̄

M
νf(ν)

1

ν

dν

dM
, (4.1)

where a modified version of the PS formalism will be used, developed by Sheth & Tormen
in 1999 from N -body simulations (see Ref [17]), written

νf(ν) = A∗ [1 + (qν)p]
(qν

2π

)1/2

e−qν/2. (4.2)
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Here A∗ is a normalization constant to make the integral of f(ν) over all ν equal unity.
Setting {A∗, p, q} = {1/2, 0, 1} will retrieve the Press-Schechter formula (2.59). The fitted
parameters in the Sheth-Tormen formalism are

A∗ =

(
1 +

2−pΓ
(

1
2
− p
)

√
π

)−1

≈ 0.3222,

p = 0.3,

q = 0.707.

In order to be able to model the mass function in a rather simple manner, a little prelimi-
nary analytical work needs to be done. For the variance in mass of the linear dark matter
power spectrum will be used a parametrization from [18], based on numerical fitting on
results based on the transfer function which will be introduced shortly:

σ(M) = σ8

(
M∗
M

)(0.3Γ+0.2)/3

. (4.3)

The threshold value M∗ is set to be the mass of a spherical area with density ρ̄ and radius
8 h−1Mpc. For example, setting the background density to be that of a spatially flat
universe, gives M∗ � 6 × 1014 h−1M�. The standard mass variance σ8 was introduced in
Section 2.3, whereas the shape parameter is Γ = Ωmh (not to be confused with the gamma
function already mentioned), showing the dependence on cosmology of σ(M) and therefore
also the mass function.

First calculating dν/dM by using Eqs. (2.56) and (4.3), one obtains

dν

dM
= δ2

c

d

dM
σ−2(M) = −2δ2

cσ
−3(M)

dσ(M)

dM
;

dσ(M)

dM
= σ8

[
−0.3Γ + 0.2

3

]
M (0.3Γ+0.2)/3

∗ M−(0.3Γ+0.2)/3M−1

=

[
−0.3Γ + 0.2

3

]
M−1σ(M);

⇒ dν

dM
=

2δ2
c [0.3Γ + 0.2]

3σ2(M)M
=

2ν[0.3Γ + 0.2]

3M
. (4.4)

Finally dividing by ν to get (1/ν)(dν/dM) = [2(0.3Γ + 0.2)]/3M , the following expression
for (4.1) can be implemented:

n(M) =
2[0.3Γ + 0.2]

3

ρ̄

M2
νf(ν). (4.5)
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4.1.2 Halo bias function

The halo bias function in Eq. (3.21) depends on the form of the mass function. For the
halo bias, which also depends on mass, the form derived by Sheth & Tormen is

b(M) = 1 +
qν − 1

δc

+
2p/δc

1 + (qν)p
, (4.6)

where q, p, δc and ν are defined as before.

4.1.3 Halo occupation distribution

A simple approach to describing the mean halo occupation number 〈N |M〉 is by letting it
behave as a power law on the form

〈N |M〉 =

(
M

M0

)β

(4.7)

where the free parameters are fitted by Collister & Lahav using the 2dFGRS galaxy cat-
alogue as β = 0.99 and log(M0/h

−1M�) = 13.5. The second moment 〈N(N − 1)|M〉 is
usually expressed via the parameter α(M), such that

〈N(N − 1)|M〉 = α2(M)〈N |M〉2. (4.8)

In the modelling we will assume that the halos are poisson distributed, which gives α(M) = 1.
Therefore,

〈N(N − 1)|M〉 �
(

M

M0

)2β

. (4.9)

For the mean number density of galaxies, defined in Eq. (3.22), the value derived by
Collister & Lahav is

n̄gal = 5.06 × 10−3h3 Mpc−3.

4.1.4 Fourier-transformed density profile

The NFW density profile will as mentioned be used for the modelling, and the normalized
Fourier transformed expression for this profile was given by Eq. (3.18). The concentration
parameter c of dark matter halos in simulations is found to be a slightly decreasing function
of mass, modelled as a power law on the form c = c0(M/M∗)−λ, with λ ∼ 0.1 and c0 ∼ 10,
and M∗ being the value of the mass at which ν = 1. (e.g. [19]). Collister & Lahav
measured and found a slight decrease with mass, but there is only a barely significant
trend. Therefore we will here implement the mean value independent of mass, fitted by
Collister & Lahav to be c = 2.4.

The scale radius was defined through the virial radius in Eq. (3.14) and the concentra-
tion parameter c = rvir/rs, giving

rs =

(
3M

4πΔvirρ̄c3

)1/3

. (4.10)
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Inserting this into (3.18), gives

ugal(k|M) =
1

g(c)

{
sin(krs) [Si([1 + c]krs) − Si(krs)] − sin(ckrs)

(1 + c)krs

+ cos(krs) [Ci([1 + c]krs) − Ci(krs)]

}
, (4.11)

where
g(c) ≡ ln(1 + c) − c

1 + c
. (4.12)

The collapse overdensity is set to Δvir = 200, a common convention. Lastly, existing
numerical routines to compute the sine and cosine integrals (A.6) and (A.7), taken from
[20], will be utilized.

4.1.5 Linear dark matter power spectrum

In order to compute the 2-halo term of the galaxy power spectrum, the linear power
spectrum for the dark matter needs to be used in some form. We will use the scale
invariant (ns = 1) form of Eq. (2.36),

P lin
dm(k) = AkT 2(k), (4.13)

where a fitted form of the transfer function taken from [21] will be implemented:

T (k) =
ln(1 + d1k/Γ)/(d1k/Γ)

[1 + d2k/Γ + (d3k/Γ)2 + (d4k/Γ)3 + (d5k/Γ)4]0.25 . (4.14)

Here the shape parameter is Γ = Ωmh, and values of the coefficients d1 through d5 can be
found in table 4.1.

The power spectrum will also have to be normalized, in order to fit with the chosen
value of σ8, which will be a free input parameter. Remember that this mass variance was
given by

σ2
8 =

1

2π2

∫ ∞

0

dkk2W (kr)2AkT 2(k), (4.15)

where r = 8h−1 Mpc and the window function was a top-hat filter. In order to get the right
value with the chosen σ(M) and σ8, we compute the integral above with P lin

dm(k) = kT 2(k),
square it and divide by the input value of σ2

8 . The correct normalization constant A of the
linear power spectrum is thus obtained.

4.2 Extension of the model to include massive neutrinos
As mentioned in Chapter 2, massive neutrinos comprising a part of the dark matter is ex-
pected to suppress the power spectrum on small scales, a consequence of the free-streaming
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effect. In the simple form of the halo model investigated here, the effect of massive neu-
trinos will come into play through a modification of the linear power spectrum. This
modification due to non-zero neutrino mass will be computed as

P lin
dm+ν(k) = P lin

dm(k)fΩν(k), (4.16)

where a form of the massive neutrino addition from [22] will be used:

fΩν (k) =

(
1 + e1(k/Γν)

e4/2 + e2(k/Γν)
e4

1 + e3(k/Γν)e4

)Ω1.05
ν

. (4.17)

The best-fit coefficients can be found in table 4.1. The shape parameter is given by Γν =
Ωνh, the density parameter for massive neutrinos is Ων , and the total mass of the three
neutrino generations are connected by the expression

Ωνh
2 =

∑
mν

93.14 eV
. (4.18)

This expression is valid for neutrinos each having mass less than about 1 MeV.

d1 2.34 d4 5.46
d2 3.89 d5 6.71
d3 16.1
e1 0.004321 e3 11.63
e2 2.217 × 10−6 e4 3.317

Table 4.1: Fitted coefficients for the modelling of the transfer function, with inclu-
sion of massive neutrinos. Parameters d1–d5 and e1–e4, are for Eqs. (4.14) and (4.17),
respectively.

The conclusion one can draw based on what is used in the model, is that massive
neutrinos will affect only the 2-halo term (3.21) through the linear power spectrum of dark
matter. Because of the free-streaming effect, any damping of the galaxy power spectrum
through these functions is expected to occur at small scales.

4.3 Structure of the program
The galaxy power spectrum in the halo model is constructed by means of writing a program
package using the FORTRAN90 language. The first part of this package is a main program,
in which we carry out the main calculations, including integration and writing to files which
can later be studied through plots. The second part is a utility module for stacking all the
different routines and parameters concerning the calculation of the different parts of the
power spectra in the main program, such as the mass function and the linear dark matter
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Description Symbol Value

Mean galaxy number density n̄gal/(h3Mpc−3) (5.06 ± 0.49) × 10−3

Best fit parameters for the β 0.99+0.15
−0.17

HOD expectation values log(M0/h
−1M�) 13.5+0.13

−0.19

Concentration parameter c 2.4 ± 0.2

Mean background density ρ̄/(h2M�Mpc−3) 2.775 × 1011

Matter density parameter Ωm 0.3
Hubble constant h 0.7

Table 4.2: Values held constant when modelling the galaxy power spectrum in the
halo model. The fitted values in the first three rows are empirical and taken from [16].
Uncertainties for n̄gal and c are 1-σ. The NFW density profile is assumed, and the
background density is taken to be that of a spatially flat universe.

spectrum. It also contains two routines from [20]: one that calculates the sine and cosine
integrals used in Eq. (3.18), and one for making abcissas and weights for Gauss-Legendre
Quadrature, the chosed integration method (see Appendix B.1 for a short description). A
routine for reading some variable input parameters from a text file is also included in the
utility module. Lastly there is a module with definitions of kind types and mathematical
constants for use in double precision. This last module can be found in [23].

Source code for the program package with notes and comments can be found in its
entirety in Appendix B.2.
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Results and discussion

The most exiting phrase to hear in science, the one that heralds the most discoveries,
is not “Eureka!” but “That’s funny...”

—Isaac Asimov

This chapter, which presents and discusses the results from some of the modelling de-
scribed in the Chapter 4, is divided into two main parts. The first part shows some basic
results on the halo model when applying the functions and parameter values from Section
4.1. Thereafter, the effects on the galaxy power spectrum from the inclusion of massive
neutrinos will be discussed, as well as considering an additional modification.

5.1 Without massive neutrinos

To begin with, in Figure 5.1, the functions which make up the 1-halo and 2-halo terms of
the galaxy power spectrum are plotted, using the values in Table 4.2 and setting σ8 = 0.8.
The r.m.s. variance of the linear power spectrum, Eq. (4.3), is plotted in Figure 5.1(a),
showing the simplified power law form. The mass function (4.5) is shown in Figure (b).
In Figure (c) the mean halo occupation number, on the form (4.7), is plotted along with
the halo bias function (4.6). Figure 5.2 shows the output of the Fourier transformed halo
density profile, assuming the NFW form, for a range of masses.

Moving on to the power spectra, one can see in Figure 5.3 the linear power spectrum
of dark matter, from Eq. (4.13) and with the transfer function (4.14). The total galaxy
power spectrum Δ2

gal(k) = Δ2
1h(k) + Δ2

2h(k) can be found in Figure 5.4, together with the
two terms plotted separately. The linear power spectrum is also shown, to demonstrate
that the galaxy power spectrum is linear at large scales.

A mention of a notable feature of the halo model is in order. If only overdense per-
turbations are considered (as is the case in the form of the model already discussed), the
1-halo term does not behave as it should. Looking at Eq. (3.2), the weakness of the model
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Figure 5.1: Constituents of the halo model depending on mass
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as a function of scale k for several values of halo mass. When the mass of the halo is
smaller, it contributes to the total power on smaller and smaller scales, while the largest
halos only contribute on large scales.
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Figure 5.3: The linear power spectrum of dark matter.
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Figure 5.4: The power spectrum of the galaxy distribution in the halo model, shown
both as the total and the two separate terms. The linear power spectrum is included for
reference.
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lies in that as k → 0, the intra-halo power tends to a constant, namely

P 1h(k → 0) →
∫

dMn(M)

(
M2

ρ̄2

)
. (5.1)

The actual behaviour of a non-linear power spectrum on the largest scales would be that it
turns to zero, at a faster rate than the linear term which scales as k, which would in reality
dominate. This weakness, that the 1-halo term seems to dominate over the linear term at
small k, is discussed in [7]. Methods of compensated density profiles (i.e. compensating
for both over- and underdense regions) and other ways to remove the large scale intra-halo
power, are mentioned. However, it is not a simple task, as the density profiles play a part
in both terms, and moreover, such compensations will actually lead to vanishing power
at small scales, a feature which does not improve the model overall. The weakness of the
large-scale limit of the 1-halo term has been treated as an open question. However, the
ultimate goal of this thesis is to look at scales below the troublesome threshold, so the
problem will not play a significant part in this chapter.

Looking back at Figure 5.4, note that the power spectrum is completely dominated by
the 1-halo term throughout the graph, not seeming to let the 2-halo term dominate on the
linear scales. This is an indication of the problem mentioned in the previous paragraph.
Also, since the small scales are the ones that are interesting for this thesis, and massive
neutrinos will play a role only in the 2-halo term, the large dominance of P 1h(k) could be a
possible issue when examining the effect on the power spectrum of adding neutrino mass.

5.2 Including massive neutrinos
The HDM density parameter Ων is varied to look at the effects on small scales of different
values of the total neutrino mass. The scales of interest which still hold physical relevance
towards large scale structure cosmology, would lie in the area k ∈ [0.1, 1]; refer back to
Figure 2.1(b). Due to the fact that the 1-halo term, which in this model is unaffected by
neutrinos, dominates the power spectrum on the smaller scales, it may be that the total
power spectrum will in turn lack a visible effect from neutrinos. Figure 5.5 indicates that
there seems indeed to be very little damping at small scales.

As a side note, in Figure 5.6 is shown the galaxy power spectrum, but this time for
σ8 = 0.6. This value makes the relationship between the two terms in the halo model more
distinct and intuitive, and the 1h-term is also shifted toward a seemingly more reasonable
form on the larger scales. Nevertheless, adding massive neutrinos in this case will still not
affect the total power on the smaller scales any more than for σ8 = 0.8, because the 1-halo
term still dominates several orders of magnitude at most.

The effect is notable however, on the linear power spectrum and therefore also the
2-halo term. Figure 5.7 clearly shows the free-streaming dampening for Ων = 0.03, 0.05
and 0.1, with σ8 = 0.8 as before. Note that the graphs do not completely coincide on
the largest scales, this is due to inaccuracies during the normalization of P lin

dm(k) with and
without correction for neutrinos.
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Figure 5.5: The galaxy power spectrum does at first glance not show any particular
damping by massive neutrinos in this version of the model, due to the dominance of
the 1-halo term on scales of interest. Even for a large neutrino mass (here is shown for
Ων = 0.1 for example) the 1-halo term is still dominates the 2-halo term many orders of
magnitude, making it dominate the total power. The effect needs to be examined in a bit
more detail to draw any conclusions. (Note: on the largest scales the model is inaccurate;
in reality the curves should overlap towards k → 0.)
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Figure 5.6: The galaxy power spectrum, plotted for σ8 = 0.6, a visually better portrayal
of the clear distinction between the 1-halo and 2-halo term making up the total power.
The linear power spectrum is shown for reference.
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Figure 5.7: The inclusion of the modification (4.17) in the transfer function (4.14) due
to massive neutrinos creates a suppression on the linear power spectrum and hence the
2-halo term towards smaller scales. Here Δ2

lin(k) and Δ2
2h(k) is shown for three different

values of the total neutrino mass, as well as the case Ων = 0.
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In order to draw any interesting conclusions about the effect of massive neutrinos, a
reasonable approach is to measure the relative differences between the two cases. In Figure
5.8 is plotted the relative difference (Pgal,ν(k)−Pgal(k))/Pgal(k), between the galaxy power
spectrums with and without neutrino mass. The mentioned inaccuracies on large scales
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Figure 5.8: The relative difference on the total power spectrum due to massive neutrinos.
The scales of interest are in the vicinity of k ∼ 1 in this figure.

will propagate towards the smaller ones. When deciding on the largest relative difference
to consider, and even though neutrino dampening in reality is expected to be noticable
when scales become nonlinear (around k = 0.1), then because of the error on large csales
it is necessary to put a limit for the minimum value of k which is meaningful for the plots.
If we set this value to k = 1, then from the data making up the figure we can conclude on
maximum relative differences of 0.0127, 0.0233, and 0.0462 for Ων = 0.03, Ων = 0.05 and
Ων = 0.1, respectively.

Having established that the previous plots of the galaxy power spectrum show a small,
albeit measurable difference due to massive neutrinos, an alternative approach is next
applied by also choosing the r.m.s. variance σ(M) to depend on Ων . This is theoretically
a more plausible way of modelling, since the variance is that of the linear power spectrum,
through which the neutrino mass damping will contribute. A rough power-law fit on σ(M)
is obtained directly from the linear power spectrum with the neutrino tweak (4.17) added:

σ(R) = σ8

(
R

8h−1 Mpc

)−0.58

, (5.2)
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with R = (3M/4πρ̄)1/3. This expression is valid for Ων = 0.05 and σ8 = 0.8. A contribution
from massive neutrinos on the mass variance would theoretically mean that both the 1-halo
and 2-halo term will be affected. The new effect would come through the mass function as
well as the halo bias function, since both depend on σ. Figure 5.9 shows the new form of
σ(M) together with the one without massive neutrinos, the mass function, and the halo
bias function with this new form of σ(M) incorporated, compared to the ones with Ων = 0.
When plotting the asscociated power spectra with this new modification, a problem occurs
that unfortunately leads to the conclusion that the modified model cannot be pursued any
further. The result of integrating the combined mass and halo bias function now somehow
causes a reverse effect. This seems highly counter-intuitive considering the mass function
has lower values over the mass range in total, and the increase in halo bias for high mass
is not significant compared to the drop in mass function. For reference, the peculiar effect
is shown in Figure 5.10.

There are numerous ways in which the halo model could be modified to further study
and get more accurate predictions for the effect of massive neutrinos in the power spectrum.
Some of these are mentioned in the next chapter. Nevertheless, having found the fractional
difference values depicted in Figure 5.8, a conclusion from this can be obtained.
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Figure 5.10: Letting the r.m.s. linear variance depend on Ων through the fudge (5.2),
creates effects on the power spectrum that is exactly the opposite of the effect massive
neutrinos should cause. Since it proves difficult to see exactly what causes this flaw,
the modified version of the halo model cannot be pursued. Note that the linear power
spectrum, which is the same as before, does not agree with the 2-halo term as it should
on large scales.



Chapter 6

Conclusion

The world always seems brighter when you’ve just made something that wasn’t there
before.

—Neil Gaiman

6.1 Summary
The goal of this thesis was to study how the power spectrum of the galaxy distribution could
be modeled through the halo model, a simple model of non-linear structure formation. The
simplicity of the halo model lies in the assumption that all mass is confined to virialized
halos of different sizes and mass. The power spectrum can be looked at as the sum of two
terms: One on the quasi-linear scale between two halos, characterized by a halo occupation
distribution, and one for the non-linear regime within single halos, determined by a halo
density profile. Taking a phenomenological approach, a lot of the functions and parameters
comprising the power spectrum was taken from empirical studies, as well as using simple
analytical expressions for other parts.

Using the halo model, the effect of adding massive neutrinos into the picture was
studied. The neutrinos were allowed to affect the linear power spectrum only, such that
the inter-halo term of the galaxy power spectrum in turn was modified. Massive neutrinos
are expected to cause a smoothing out of the power on small scales due to free-streaming,
which in turn means a suppression of the power spectrum. Relative differences between the
galaxy power spectra including and not including massive neutrinos on a scale k = 1h/Mpc
was found to be 1.27%, 2.33% and 4.62% for Ων = 0.03, 0.05 and 0.1, respectively.

6.2 Conclusion
The question that remains from the results above is whether or not this can be thought
of as an interesting effect; an effect above 4–5% would be a desired result. However,
the observed galaxy power spectrum contains less noise when looking at small scales. A
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suppression of about 1–2% should therefore be taken into consideration as a marginally
interesting effect, especially towards future observations. Another feature to look at is
how using the nonlinear halo model for looking at neutrino suppression compares to the
linear case. A comparison to the analysis of the linear power spectrum shown in Figure
5.7 depicts a much larger suppression for this model than in the galaxy spectrum in Figure
5.5; examining the data for k = 1h/Mpc reveals a dampening effect of order 10 times the
values for the nonlinear case. In relation to the linear power spectrum, the halo model does
therefore not enhance the effect of massive neutrinos when constructed the way chosen for
this project.

There are many ways in which this model can be constructed differently, as mentioned
in Section 1.2.1. A few examples of things that were not considered in this thesis include:

• A more detailed and accurate modelling of the r.m.s. variance of the
linear power spectrum. As an example, the article by Ma [22] considers a general
form of σ(M) which can be used for both the case with massive neutrinos and for
Ων = 0, directly based on the linear spectrum with transfer function (4.14) with the
modification (4.17).

• Implementing a different density profile. There is no particular reason why
the NFW form is better than others; for example, in numerical simulations both the
NFW and M99 [15] profile provides very good descriptions of the density run around
the center of virialized halos. The profiles differ on scales smaller than the scale
radius rs, and whichever of the two is better is still debated.

• Mass-dependent concentration parameter. As mentioned in Chapter 4, there is
a slight decrease in the concentration parameter with increasing mass, and the power
law form could easily be implemented. The mean value found by Collister & Lahav
were used for the modelling for the reason that many other empirical results were
taken from this article, where the mass dependence on the concentration parameter
was considered a subtlety and therefore ignored.

• Studying higher order correlations. A feature that has not been mentioned at
all during the course of this project is that higher order correlation functions can be
taken into account. The Fourier transforms of the three- and four-point correlation
functions are called the bispectrum and trispectrum, respectively. Using such higher
order statistics, the model will feature 3-halo and 4-halo terms, and it will give
more detailed information in the form of a more complete statistical description of
the clustering (The information gathered from the power spectrum is equivalent to
the variance of a random variable only). A description of higher-order correlations
requires the use of higher-order perturbation theory; a discussion of this can be found
in [7].

• Aspherical collapse. The shape of what are to become halos is in reality seldom
spherical, and neither is the form of the collapse. If halos are intitially aspherical,
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tidal interactions between neighboring density fluctuations create nonradial motions
which oppose collapse. This means that virialized clumps form later than in the
spherical collapse model. A discussion of an ellipsoidal collapse model is discussed
in [24]. The goal of this thesis mainly considered studying relative shapes of the
power spectra however, while correcting for aspherical collapse would play a part in
improving the halo model as a tool for comparison with observations.

As for the ongoing quest to constrain the mass of the neutrino, the five-year data gathered
from WMAP recently released is still on the preliminary stage, with an upper limit of 1.3
eV at 2σ-level for the total mass. This needs to be coordinated with results from other
experiments, and the incorporating of current results from studies of large-scale structure
is expected to favour a mass scale towards the sub-eV range.





Appendix A

Mathematical expressions

In this appendix we gather for convenience some important functions and expressions used
in the introductional chapters of this thesis.

A.1 Special functions

The Error Function

Definition:

erf(x) ≡ 2√
π

∫ x

0

e−t2dt (A.1)

Derivative:
d

dx
erf(x) =

2√
π

e−x2

(A.2)

The Gamma Function

Definitions:

Γ(x) ≡
∫ ∞

0

tx−1e−tdt

Γ(x + 1) = xΓ(x)

Properties:

Γ(1) = 1, Γ

(
1

2

)
=

√
π

Γ(n + 1) = nΓ(n) = . . . = n!Γ(1) = n! ∀n ∈ N (A.3)
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Series representation of sin x and cos x

sin x = x − x3

3!
+

x5

5!
− . . . =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
(A.4)

cos x = 1 − x2

2!
+

x4

4!
− . . . =

∞∑
n=0

(−1)n x2n

(2n)!
(A.5)

Sine and cosine integrals

Definitions:

Si(x) =

∫ x

0

sin t

t
dt (A.6)

Ci(x) = −
∫ ∞

x

cos t

t
dt

= γ + ln x +

∫ x

0

cos t − 1

t
dt, (A.7)

where γ = 0.5772156649. . . is Euler’s constant.

A.2 Some integrals
If a, k are positive integers and C is an integration constant, then∫

e−ax2

dx =
1

2

√
π

a
erf(

√
ax) + C (A.8)∫ ∞

−∞
xke−ax2

dx = 2

∫ ∞

0

xke−ax2

dx = a− k+1
2 Γ

(
k + 1

2

)
(A.9)

where the error and gamma functions are defined above.



Appendix B

Program Code

B.1 Notes
The following appendix displays the program code for this thesis written in the FORTRAN
90 language. Comments are provided throughout to make the code as comprehensible as
possible. There are however, a couple of points which need to be considered beforehand.

In order to perform the integration of functions, the method of Gauss-Legendre quadra-
ture has been chosen. Gaussian quadrature in general is an method which seeks to obtain
the best numerical estimate of an integral by systematically picking the optimal abscissas,
or evaluation points, at which to evaluate a function f(x). The n-point approximation is
generally written on the form

I =

∫ 1

−1

f(x)dx ≈
n∑

i=1

wif(xi), (B.1)

where wi are the weights corresponding to each abcissa xi. In Legendre quadrature, these
evaluation points are the ith roots of the Legendre polynomials Pn(x), a class of orthogonal
polynomials which are the solutions to the Legendre differential equation. They can be
expressed through Rodrigues’ formula:

Pn(x) =
1

2nn!

dn

dxn

[
(x2 + 1)n

]
. (B.2)

The weights are given by

wi =
2

(1 − x2
i )(P

′
n(xi))2

. (B.3)

A general integral over an interval [a, b] must be changed into an interval over [−1, 1] in
order for Gaussian quadrature to apply. We then have∫ b

a

f(x)dx =
b − a

2

∫ 1

−1

f

(
b − a

2
x +

a + b

2

)
dx, which gives

I ≈ b − a

2

n∑
i=1

wif

(
b − a

2
xi +

a + b

2

)
. (B.4)
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There exist several numerical libraries with packages devoted to integration techniques.
The method in this thesis is chosen from Numerical Recipes in Fortran (see [20]), and is
manifested below through the call to the routine gauleg.1

Another routine taken from [20] is the one evaluating the sine and cosine integrals.
The routine, called cisi, takes the argument and returns the values for the cosine and
sine integral evaluated in that argument, according to the series representation described
in Appendix A.

The text file params.txt, together with a routine for reading values from this file into
the program provides the freedom from having to compile the code every time we change
parameters such as Ων or the integration and function evaluation intervals.

1There are of course many freely available codes to choose from as well, such as the GNU Scientific
Library [25].
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B.2 F90 code

Listing B.1: halopower.f90
1 PROGRAM halomodel
2
3 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
4 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
5 ! ! A s imple model f o r modeling the ga laxy power spectrum . ! !
6 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
7 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
8 ! !
9 ! ! INPUT: va lu e o f omega_nu , a l t e r n a t i v e l y sigma8 , the

10 ! ! number o f po in t s in which to perform gauss ian quadrature
11 ! ! and the minimum and maximum va lues o f mass and s c a l e .
12 ! ! This input i s through a t e x t f i l e c a l l e d params . t x t , an
13 ! ! example o f which i s shown at the end o f t h i s chapter .
14 ! !
15 ! ! OUTPUT: s e v e r a l . dat f i l e s con ta in ing p l o t t a b l e f u n c t i on s
16 ! ! i n c l u d in g
17 ! ! ∗ The t o t a l ga laxy power spectrum
18 ! ! ∗ The 1−ha lo and 2−ha lo terms
19 ! ! ∗ The l i n e a r power spectrum
20 ! ! ∗ The components o f the in t egrands o f the 1−ha lo and
21 ! ! 2−ha lo terms : mass variance , mass funct ion , ha lo b ias ,
22 ! ! mean ha lo occupat ion number , NFW den s i t y p r o f i l e
23 ! ! ( depends on both m and k , so beware t ha t the f i l e becomes
24 ! ! HUGE i f the f un c t i on s are eva lua t ed f o r many po in t s in
25 ! ! mass and s c a l e ! ) .
26 ! ! ∗ Re l a t i v e d i f f e r e n c e between ga laxy power spec t ra wi th and
27 ! ! wi thou t massive neu t r inos .
28 USE nrtype
29 USE funcparams
30 IMPLICIT NONE
31
32 INTEGER : : i , j ,nm, nk
33 REAL(dp ) : : min_m, max_m, min_k , max_k
34 REAL(dp ) : : ki , mj , dmj
35 REAL(dp ) : : lower , upper
36 REAL(dp ) : : int1h , int2h
37 REAL(dp ) : : sum1h , sum2h
38 REAL(dp ) ,DIMENSION( : ) ,ALLOCATABLE : : m, wm, k , wk
39
40 ! ’ Delta ’ s i g n i f i e s d imens ion l e s s power spectrum
41 REAL(dp ) : : p1h , p2h , p2h_nu , pgal , pgal_nu
42 REAL(dp ) : : deltap1h , deltap2h , de l tapga l , d e l t a p l i n
43 REAL(dp ) : : deltap2h_nu , deltapgal_nu , deltapl in_nu
44 REAL(dp ) : : r e l_pga l
45
46 CHARACTER(LEN=128) : : params
47
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48 ! Read the parameter f i l e and ge t input data :
49 params = ’ params . txt ’
50 CALL read_params ( params , nk ,nm,min_m,max_m, min_k ,max_k)
51
52 ! Arrays f o r e va l u a t i n g the Gauss−Legendre ab c i s s a s
53 ! and we igh t s in mass and s c a l e ( note t ha t wk i s needed
54 ! as input by the rou t ine , bu t not in the program) .
55 ALLOCATE(m( 1 :nm) )
56 ALLOCATE(wm(1 :nm) )
57 ALLOCATE( k ( 1 : nk ) )
58 ALLOCATE(wk ( 1 : nk ) )
59
60 ! open data f i l e s f o r wr i t i n g
61 OPEN(UNIT=100 , FILE=’hodmoment . dat ’ , FORM=’FORMATTED’ , ACTION=’READWRITE’ )
62 OPEN(UNIT=101 , FILE=’massfunc . dat ’ , FORM=’FORMATTED’ , ACTION=’READWRITE’ )
63 OPEN(UNIT=102 , FILE=’ b ia s func . dat ’ , FORM=’FORMATTED’ , ACTION=’READWRITE’ )
64 OPEN(UNIT=103 , FILE=’ugal . dat ’ , FORM=’FORMATTED’ , ACTION=’READWRITE’ )
65 OPEN(UNIT=104 , FILE=’p1h . dat ’ , FORM=’FORMATTED’ , ACTION=’READWRITE’ )
66 OPEN(UNIT=105 , FILE=’ p l i n . dat ’ , FORM=’FORMATTED’ , ACTION=’READWRITE’ )
67 OPEN(UNIT=106 , FILE=’p2h . dat ’ , FORM=’FORMATTED’ , ACTION=’READWRITE’ )
68 OPEN(UNIT=107 , FILE=’pgal . dat ’ , FORM=’FORMATTED’ , ACTION=’READWRITE’ )
69 OPEN(UNIT=555 , FILE=’sigma . dat ’ ,FORM=’FORMATTED’ , ACTION=’READWRITE’ )
70 OPEN(unit=666 , FILE=’ r e l a t i v e s . dat ’ , FORM=’FORMATTED’ ,ACTION=’READWRITE’ )
71
72 ! Ca l cu la t e the ab c i s s a s and we igh t s f o r e va l u a t i n g
73 ! t he i n t e g r a l s over mass . Note t ha t we e va l u a t e through
74 ! l o g a r i t hm i c va lu e s because the s c a l e s in mass are over
75 ! s e v e r a l orders o f magnitude , t h i s way we ensure t ha t enough
76 ! po in t s are c a l c u l a t e d f o r the sma l l e s masses .
77 lower = LOG10(min_M)
78 upper = LOG10(max_M)
79 wm = 0 .0_dp
80 CALL gauleg ( lower , upper ,m,wm,nm)
81
82 !We do the same fo r s c a l e k even i f we do not i n t e g r a t e ;
83 ! t he method ensures reasonab l e po in t s are chosen f o r the
84 ! s c a l e s on which we eva l u a t e the power spect ra ,
85 lower = log10 (min_k)
86 upper = log10 (max_k)
87 wk = 0 .0_dp
88 CALL gauleg ( lower , upper , k ,wk , nk )
89
90
91 PRINT ’ ( / , "This ␣may␣ take␣a␣minute ␣ or ␣two , ␣depending ␣on␣ cho i c e ␣ o f ␣nk␣and␣nm

. ␣Enjoy␣your␣ c o f f e e ! " , / ) ’
92
93 ! Compute norma l i za t ion cons t an t s f o r the ( hot+) co ld dark matter
94 ! power spectrum . Write to screen .
95 CALL normalize_pdmlin(omega_m, omega_nu , h , sigma8 , nk , min_k ,max_k)
96 PRINT ’ ( / , "Normal i za t ion␣ constant␣ f o r ␣ sigma8␣=␣" , f4 . 2 , "␣ i s ␣" , f10 . 2 , " . " ) ’ ,

sigma8 , norm
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97 PRINT ’ ( / , "Normal i za t ion␣ constant␣ f o r ␣ sigma8␣=␣" , f4 . 2 , "␣with␣mass ive␣
neut r ino s ␣ i s ␣" , f10 . 2 , " . " ) ’ , sigma8 , normnu

98
99 ! For each va lu e o f k t here i s an i n t e g r a l over mass :

100 DO i = 1 , nk
101 k i = 10 .0_dp∗∗k ( i ) ! remove logar i t hm
102
103 sum1h = 0 .0_dp
104 sum2h = 0 .0_dp
105
106 ! a t e s t to wr i t e out how fa r we are in the proces s
107 IF (INT(100∗ i /nk ) .EQ. INT(1+(100∗( i −1)/nk ) ) ) THEN
108 PRINT ’ ( 2 x , " Proce s s ing␣k␣ va lue s . . . ␣" , i3 , "%␣complete . " ) ’ , INT(100∗ ( i

−1)/nk )
109 END IF
110 IF ( i .EQ. nk ) THEN
111 PRINT ’ ( 2 x , "Almost ␣done . . . " ) ’
112 END IF
113
114 ! S t a r t the i n t e g r a t i o n over mass
115 DO j = 1 ,nm
116 mj = 10 .0_dp∗∗m( j ) ! g e t r i d o f l ogar i t hm
117 dmj = wm( j )
118
119 CALL compute_1h_integrand( ki , mj ,Omega_m, sigma8 , h , int1h )
120 CALL compute_2h_integrand( ki , mj ,Omega_m, sigma8 , h , int2h )
121
122 ! The f a c t o r s m∗ l n (10) are to compensate f o r the f a c t
123 ! t h a t the ab c i s s a s were computed as l o ga r i t hm i c va lu e s
124 ! when mu l t i p l y i n g the we igh t s .
125 sum1h = sum1h + int1h ∗ dmj ∗ LOG(10 . 0_dp) ∗ mj
126 sum2h = sum2h + int2h ∗ dmj ∗ LOG(10 . 0_dp) ∗ mj
127
128 ! Write to f i l e s . . .
129 IF ( k i .EQ.10∗∗k (1 ) ) THEN
130 ! f u n c t i on s depending on m only need on ly be wr i t t en f o r one
131 ! k loop ; the mass va lu e s are the same fo r each one .
132 WRITE(UNIT=555 ,FMT=" (2 ( es15 . 8 , 2 x ) ) " ) ,mj , sigma
133 WRITE(UNIT=100 ,FMT=" (2 ( es15 . 8 , 2 x ) ) " ) ,mj , hodmoment
134 WRITE(UNIT=101 ,FMT=" (2 ( es15 . 8 , 2 x ) ) " ) ,mj , massfun
135 WRITE(UNIT=102 ,FMT=" (2 ( es15 . 8 , 2 x ) ) " ) ,mj , b i a s fun
136 endif
137
138 WRITE(UNIT=103 ,FMT=" (3 ( es15 . 8 , 2 x ) ) " ) , ki , mj , ugal
139
140 END DO ! End loop over mass
141
142 ! Ca l cu la t e 1−ha lo term and wr i t e to f i l e
143 p1h = sum1h
144 deltap1h = ( k i ∗ k i ∗ k i ∗p1h ) / ( 2 ._dp∗PI_D∗PI_D)
145 WRITE(UNIT=104 ,FMT=" (2 ( es15 . 8 , 2 x ) ) " ) , ki , de ltap1h
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146
147 ! Ca l cu la t e l i n e a r dark matter power spectrum and wr i t e to f i l e
148 CALL compute_pdmlin( ki , omega_m, omega_nu , h , sigma8 , nk , min_k ,max_k)
149 d e l t a p l i n = ( k i ∗ k i ∗ k i ∗pdmlin ) / ( 2 ._dp∗PI_D∗PI_D)
150 deltapl in_nu = ( k i ∗ k i ∗ k i ∗pdmlin_nu) / ( 2 ._dp∗PI_D∗PI_D)
151 WRITE(UNIT=105 ,FMT=" (3 ( es15 . 8 , 2 x ) ) " ) , ki , d e l t a p l i n , de ltapl in_nu
152
153 ! Ca l cu la t e 2−ha lo term and wr i t e to f i l e
154 p2h = pdmlin ∗sum2h∗sum2h
155 p2h_nu = pdmlin_nu∗sum2h∗sum2h
156 deltap2h = ( k i ∗ k i ∗ k i ∗p2h ) / ( 2 ._dp∗PI_D∗PI_D)
157 deltap2h_nu = ( k i ∗ k i ∗ k i ∗p2h_nu) / ( 2 ._dp∗PI_D∗PI_D)
158 WRITE(UNIT=106 ,FMT=" (3 ( es15 . 8 , 2 x ) ) " ) , ki , deltap2h , deltap2h_nu
159
160 ! Ca l cu la t e the t o t a l ga laxy power spectrum and wr i t e to f i l e
161 pgal = p1h+p2h
162 pgal_nu = p1h+p2h_nu
163 de l t a pg a l = ( k i ∗ k i ∗ k i ∗pgal ) / ( 2 ._dp∗PI_D∗PI_D)
164 deltapgal_nu = ( k i ∗ k i ∗ k i ∗pgal_nu ) / ( 2 ._dp∗PI_D∗PI_D)
165 WRITE(UNIT=107 ,FMT=" (3 ( es15 . 8 , 2 x ) ) " ) , ki , de l tapga l , deltapgal_nu
166
167 ! Ca l cu la t e r e l a t i v e d i f f e r e n c e in the two cases o f power spec t ra
168 ! and wr i t e to f i l e
169 re l_pga l= (pgal_nu−pgal ) / pgal
170 WRITE(UNIT=666 ,FMT=" (2 ( es15 . 8 , 2 x ) ) " ) , ki , r e l_pga l
171
172 END DO ! end loop over s c a l e k
173
174 DEALLOCATE(wm)
175 DEALLOCATE(m)
176 DEALLOCATE(wk)
177 DEALLOCATE( k )
178
179 CLOSE(UNIT=100)
180 CLOSE(UNIT=101)
181 CLOSE(UNIT=102)
182 CLOSE(UNIT=103)
183 CLOSE(UNIT=104)
184 CLOSE(UNIT=105)
185 CLOSE(UNIT=106)
186 CLOSE(UNIT=107)
187 CLOSE(UNIT=555)
188 close (unit=666)
189
190 ENDPROGRAM halomodel
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Listing B.2: utils.f90

1 MODULE funcparams
2
3 ! A module con ta in ing subrou t ines , f un c t i on s and parameters f o r use
4 ! in halopower . f90 . Note : a l l v a r i a b l e s ending in ’nu ’ means i t has
5 ! t o do with an added con t r i bu t i on from massive neu t r inos ( a l l t h o u g h
6 ! t he v a r i a b l e ’nu ’ a lone i s the mass v a r i a b l e depending on the var iance ) .
7
8 USE nrtype
9 IMPLICIT NONE

10
11 ! cons t an t s r e l a t e d to cosmology which are read from params . t x t
12
13 REAL(dp ) : : omega_nu , sigma8
14
15 ! t he s e are v a r i a b l e s in which the func t ion va lu e s c a l c u l a t e d are s t ored :
16 !
17 ! massfun = the mass func t ion
18 ! sigma = the mass var iance o f l i n e a r power spectrum
19 ! b ia s fun = halo b i a s func t ion
20 ! u ga l = NFW form of the normalized , Fourier transformed
21 ! d en s i t y p r o f i l e
22 ! o f the ha lo d i s t r i b u t i o n
23 ! hodmoment = the mean halo occupat ion number , 1 s t moment o f the HOD
24 ! pdmlin = l i n e a r power spectrum , with ( ’_nu’ ) or wi thout massive
25 ! n eu t r inos
26 ! norm = norma l i za t ion cons tant f o r the corresponding l i n e a r
27 ! spectrum above
28
29 REAL(dp ) : : massfun , sigma , b ia s fun
30 REAL(dp ) : : ugal , hodmoment
31 REAL(dp ) : : pdmlin , pdmlin_nu , norm , normnu
32
33 ! Model s p e c i f i c parameter va lu e s t ha t are not changed :
34 ! omega_m = Density parameter o f matter (cdm + hdm)
35 ! h = Dimensionless Hubble cons tant
36 ! rhobar = Mean den s i t y o f a s p a c i a l l y f l a t un iver s e
37 ! Delta_vir = Overdens i ty o f ha lo at v i r i a l i z a t i o n
38 ! conc_param = Mean concen t ra t ion parameter ( C o l l i s t e r /Lahav )
39 ! p , q , Astar = Numerical ly f i t t e d cons t an t s f o r the mass func t ion
40 ! ( C o l l i s t e r /Lahav )
41 ! nga l = mean number den s i t y o f ga laxy d i s t r i b u t i o n
42 ! ( C o l l i s t e r /Lahav )
43 REAL(dp ) ,PARAMETER : : omega_m = 0 .3_dp
44 REAL(dp ) ,PARAMETER : : h = 0 .7_dp
45 REAL(dp ) ,PARAMETER : : rhobar = 2 .775e11_dp ! u n i t s h^2 Msol Mpc^−3
46 REAL(dp ) ,PARAMETER : : Delta_vir = 200 .0_dp
47 REAL(dp ) ,PARAMETER : : conc_param = 2 .4_dp
48 REAL(dp ) ,PARAMETER : : delta_c = 1.686_dp
49 REAL(dp ) ,PARAMETER : : p = 0 .3_dp
50 REAL(dp ) ,PARAMETER : : q = 0 .707_dp
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51 REAL(dp ) ,PARAMETER : : Astar = 0 .3222_dp
52 REAL(dp ) ,PARAMETER : : nga l = 0 .00506_dp ! u n i t s h^3 Mpc^−3
53
54
55 CONTAINS
56
57 SUBROUTINE compute_1h_integrand(k ,m,om, s8 , h , int1h )
58
59 ! Computes the in t eg rand in the 1−ha lo term of the ga laxy power spectrum
60 IMPLICIT NONE
61
62 REAL( dp ) ,INTENT( in ) : : k ,m,om, s8 , h
63 REAL( dp ) : : int1h
64
65 ! These g i v e the va lu e s o f v a r i a b l e s massfunc , hodmoment and ugal ,
66 ! r e s p e c t i v e l y
67 CALL compute_mass_function (m,om, s8 , h )
68 CALL compute_hod_expectval (m)
69 CALL compute_ugal(k ,m, conc_param)
70
71 int1h = massfun∗hodmoment∗hodmoment∗ugal ∗ugal /( ngal ∗ngal )
72
73 END SUBROUTINE compute_1h_integrand
74
75 SUBROUTINE compute_2h_integrand(k ,m,om, s8 , h , int2h )
76
77 ! Computes the in t eg rand in the 2−ha lo term of the ga laxy power spectrum
78 IMPLICIT NONE
79
80 REAL( dp ) ,INTENT( in ) : : k ,m,om, s8 , h
81 REAL( dp ) : : int2h
82
83 ! These g i v e the va lu e s o f v a r i a b l e s massfunc , b ias func , hodmoment
84 ! and ugal , r e s p e c t i v e l y .
85 CALL compute_mass_function (m,om, s8 , h )
86 CALL compute_bias_function(m,om, s8 , h )
87 CALL compute_hod_expectval (m)
88 CALL compute_ugal(k ,m, conc_param)
89
90 int2h = massfun∗ b ia s fun ∗hodmoment∗ugal / ngal
91
92 END SUBROUTINE compute_2h_integrand
93
94 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
95 ! ! ROUTINES TO COMPUTE THE VARIABLES USED IN THE ABOVE NOW FOLLOWS ! !
96 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
97
98 SUBROUTINE compute_mass_function (m,om, s8 , h )
99 IMPLICIT NONE

100
101 REAL( dp ) , INTENT( in ) : : m,om, s8 , h
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102 REAL(dp ) : : f a c t , gamma, nu
103
104 CALL compute_sigma(m,om, s8 , h)
105 nu = ( delta_c ∗delta_c ) / ( sigma∗ sigma )
106 gamma = om∗h
107 f a c t = 0 .3_dp∗gamma+0.2_dp
108 nu = ( delta_c ∗delta_c ) / ( sigma∗ sigma )
109
110 massfun = ( 2 ._dp∗ f a c t /3 ._dp) ∗( rhobar /(m∗m) ) ∗nufnu (nu )
111
112 CONTAINS
113
114 FUNCTION nufnu (x )
115 IMPLICIT NONE
116 REAL(dp ) , INTENT( in ) : : x
117 REAL(dp ) : : Astar , nufnu , qnu
118
119 qnu = q∗x
120 Astar = 0 .3222_dp
121 nufnu = Astar ∗ ( 1 ._dp+qnu∗∗(−p) ) ∗ &
122 s q r t ( qnu / (2 ._dp∗PI_D) ) ∗ exp(−qnu /2 ._dp)
123 END FUNCTION nufnu
124
125 END SUBROUTINE compute_mass_function
126
127 ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
128
129 SUBROUTINE compute_bias_function(m,om, s8 , h )
130 IMPLICIT NONE
131
132 REAL( dp ) , INTENT( in ) : : m,om, s8 , h
133 REAL( dp ) : : nu , qnu
134
135 CALL compute_sigma(m,om, s8 , h)
136
137 nu = ( delta_c ∗delta_c ) / ( sigma∗ sigma )
138 qnu = q∗nu
139
140 b ia s fun = 1 ._dp + ( (qnu−1._dp) / delta_c ) + &
141 ( ( 2 ._dp∗p/delta_c ) / ( 1 ._dp+qnu∗∗p) )
142
143 END SUBROUTINE compute_bias_function
144
145 ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
146
147 SUBROUTINE compute_sigma(m,om, s8 , h )
148 IMPLICIT NONE
149
150 REAL( dp ) ,INTENT( in ) : : m,om, s8 , h
151 REAL(dp ) : : mstar , gamma, pot
152



64 Program Code

153 gamma = om∗h
154 pot = (0 . 3_dp∗gamma+0.2_dp) /3 ._dp
155 mstar = ( 4 ._dp∗PI_D∗ rhobar ∗8 ._dp∗8 ._dp∗8 ._dp) /3 ._dp
156
157 sigma = s8 ∗( mstar/m) ∗∗pot
158
159 END SUBROUTINE compute_sigma
160
161 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
162
163 SUBROUTINE compute_hod_expectval (m)
164 IMPLICIT NONE
165
166 REAL( dp ) , INTENT( in ) : : m
167 REAL( dp ) : : beta , m0
168
169 beta = 0 .99_dp
170 m0 = 10 .0_dp∗∗ (13 . 5 )
171
172 hodmoment = (m/m0) ∗∗beta
173
174 END SUBROUTINE compute_hod_expectval
175
176 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
177
178 SUBROUTINE compute_ugal(k ,m, c )
179 IMPLICIT NONE
180
181 REAL( dp ) , INTENT( in ) : : k ,m, c
182 REAL(dp ) : : s c a l e r ad , kappa
183 REAL(dp ) : : c i , s i , c ik , s ik , c i ck , s i c k
184
185 s c a l e r ad = r s (m, c )
186 kappa = k∗ s c a l e r ad
187
188 ! c a l c u l a t e s ine and cos ine i n t e g r a l s :
189 CALL c i s i ( kappa , c i , s i )
190 c ik = c i
191 s i k = s i
192 CALL c i s i ( ( kappa∗(1+c ) ) , c i , s i )
193 c i c k = c i
194 s i c k = s i
195
196 ugal = ( 1 ._dp/g ( c ) ) ∗ &
197 ( &
198 SIN( kappa ) ∗( s i ck−s i k ) − &
199 SIN( c∗kappa ) /((1+c ) ∗kappa ) + &
200 COS( kappa ) ∗( c i ck−c ik ) &
201 )
202
203 CONTAINS
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204 FUNCTION r s (x , c )
205 IMPLICIT NONE
206
207 REAL(dp ) , INTENT( in ) : : x , c
208 REAL(dp ) : : r s
209
210 r s = ( ( 3 ._dp∗x ) / &
211 ( 4 ._dp∗PI_D∗Delta_vir∗ rhobar ∗ c ∗∗3) )&
212 ∗ ∗ ( 1 ._dp/3 ._dp)
213 END FUNCTION r s
214
215 FUNCTION g ( c )
216 REAL(dp ) , INTENT( in ) : : c
217 REAL(dp ) : : g
218
219 g = LOG(1+c ) − ( c / ( 1 ._dp+c ) )
220 END FUNCTION g
221
222 END SUBROUTINE compute_ugal
223
224 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
225 ! ! ROUTINES CONCERNING THE LINEAR DARK MATTER POWER SPECTRUM ! !
226 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
227
228 SUBROUTINE compute_pdmlin(k ,om, onu , h , s8 , n , min ,max)
229
230 ! The dark matter power spectrum , computed f o r both the case o f
231 ! massive neu t r inos and without .
232 IMPLICIT NONE
233
234 INTEGER, INTENT( in ) : : n
235 REAL( dp ) , INTENT( in ) : : k ,om, onu , h , s8 , min ,max
236 REAL( dp ) : : power
237
238 ! Compute the co ld dark matter power spectrum , add
239 ! massive neutr ino fudge where necessary and mu l t i p l y
240 ! wi th corresponding c a l c u l a t e d norma l i za t ion cons tant
241 ! ( see below ) .
242 cal l compute_pcdmlin (k , om, h , power )
243 pdmlin = power∗norm
244 pdmlin_nu = power ∗ powernu (k , onu , h ) ∗normnu
245
246 CONTAINS
247
248 FUNCTION powernu (k , onu , h )
249 IMPLICIT NONE
250
251 REAL(dp ) , INTENT( in ) : : k , onu , h
252 REAL(dp ) : : powernu ,Gamma, x , pot
253 REAL(dp ) , PARAMETER : : e1 = 0.004321_dp
254 REAL(dp ) , PARAMETER : : e2 = 2 .217 e−6_dp
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255 REAL(dp ) , PARAMETER : : e3 = 11 .63_dp
256 REAL(dp ) , PARAMETER : : e4 = 3 .317_dp
257
258 Gamma = onu∗h
259 x = k/Gamma
260 pot = onu ∗∗ (1 . 05_dp)
261
262 powernu = ( ( 1 ._dp+e1∗x ∗∗ (0 . 5_dp∗ e4 )+e2∗x∗∗ e4 ) / &
263 ( 1 ._dp+e3∗x∗∗ e4 ) ) ∗∗pot
264
265 END FUNCTION powernu
266
267 END SUBROUTINE compute_pdmlin
268
269 ! ! ! ! ! ! ! ! ! ! ! ! ! !
270
271 SUBROUTINE normalize_pdmlin(om, onu , h , s8 , n , min ,max)
272
273 ! This rou t ine i n t e g r a t e s the dark matter power spectrum
274 ! over a chosen i n t e r v a l smoothed by a top−hat window on
275 ! t he 8 h^{−1}Mpc s c a l e and computes the norma l i za t ion
276 ! cons tant f o r the spectrum by d i v i d i n g the g iven squared
277 ! va lu e o f sigma8 by the answer .
278 IMPLICIT NONE
279
280 REAL( dp ) , INTENT( in ) : : om, onu , h , s8 , min ,max
281 INTEGER, INTENT( in ) : : n
282 INTEGER : : i
283 REAL( dp ) ,DIMENSION( 1 : n ) : : kk , dkk
284 REAL(dp ) : : integ , integnu , ocdm , power , p l in , plin_nu
285 REAL(dp ) : : kki , dkki , sum , sumnu , lower , upper
286
287 ocdm=om−onu
288 IF (ocdm .LT. 0 . 0_dp) THEN
289 PRINT∗ , " Error␣ in ␣compute_sigma : ␣Omega_nu␣>␣Omega_m"
290 STOP
291 END IF
292
293 lower=log10 (min)
294 upper=log10 (max)
295 dkk = 0 .0_dp
296 CALL gauleg ( lower , upper , kk , dkk , n )
297
298 sum = 0 .0_dp
299 sumnu = 0 .0_dp
300
301 DO i = 1 ,n
302 kk i = 10 .0_dp∗∗kk ( i )
303 dkki = dkk ( i )
304 CALL compute_pcdmlin ( kki , om, h , power )
305 p l i n = power
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306 i n t e g = kki ∗ kk i∗win8 ( kk i ) ∗win8 ( kk i ) ∗ p l i n / ( 2 ._dp∗PI_D∗PI_D)
307 sum = sum + in t e g ∗ dkki ∗ kk i ∗ l o g ( 1 0 ._dp)
308 plin_nu = power∗powernu ( kki , onu , h )
309 integnu = kki ∗ kk i∗win8 ( kk i ) ∗win8 ( kk i ) ∗plin_nu / (2 ._dp∗PI_D∗PI_D)
310 sumnu = sumnu + integnu ∗ dkki ∗ kk i ∗ l o g ( 1 0 ._dp)
311 END DO
312
313 norm = s8 ∗ s8 /sum
314 normnu = s8 ∗ s8 /sumnu
315
316 CONTAINS
317
318 FUNCTION win8 (k )
319 ! A top−hat window func t ion with R=8 Mpc/h .
320 IMPLICIT NONE
321
322 REAL(dp ) , INTENT( in ) : : k
323 REAL(dp ) : : win8 , kr
324
325 kr = 8 ._dp ∗ k
326
327 win8 = 3 ._dp∗( SIN( kr ) /( kr ∗∗3) − COS( kr ) /( kr ∗∗2) )
328
329 END FUNCTION win8
330
331 FUNCTION powernu (k , onu , h )
332 IMPLICIT NONE
333
334 REAL(dp ) , INTENT( in ) : : k , onu , h
335 REAL(dp ) : : powernu ,Gamma, x , pot
336 REAL(dp ) , PARAMETER : : e1 = 0.004321_dp
337 REAL(dp ) , PARAMETER : : e2 = 2 .217 e−6_dp
338 REAL(dp ) , PARAMETER : : e3 = 11 .63_dp
339 REAL(dp ) , PARAMETER : : e4 = 3 .317_dp
340
341 Gamma = onu∗h
342 x = k/Gamma
343 pot = onu ∗∗ (1 . 05_dp)
344
345 powernu = ( ( 1 ._dp+e1∗x ∗∗ (0 . 5_dp∗ e4 )+e2∗x∗∗ e4 ) / ( 1 ._dp+e3∗x∗∗ e4 ) ) ∗∗pot
346
347 END FUNCTION powernu
348
349 END SUBROUTINE normalize_pdmlin
350
351 ! ! ! ! ! ! ! ! ! ! ! ! ! !
352
353 SUBROUTINE compute_pcdmlin (k , om, h , power )
354
355 ! Computes the co ld dark matter power spectrum , without
356 ! norma l i za t ion cons tan t .
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357 IMPLICIT NONE
358
359 REAL( dp ) , INTENT( in ) : : k ,om, h
360 REAL( dp ) , INTENT(out ) : : power
361 REAL(dp ) : : Gamma, x ,T, fac1 , f a c2
362 REAL( dp ) , PARAMETER : : d1 = 2 .34_dp
363 REAL( dp ) , PARAMETER : : d2 = 3 .89_dp
364 REAL( dp ) , PARAMETER : : d3 = 16 .1_dp
365 REAL( dp ) , PARAMETER : : d4 = 5 .46_dp
366 REAL( dp ) , PARAMETER : : d5 = 6 .71_dp
367
368 Gamma = om∗h
369 x = k/Gamma
370 fa c1 = log ( 1 ._dp+d1∗x ) /(d1∗x)
371 fa c2 = 1 ._dp + d2∗x + (d3∗x) ∗∗2 +(d4∗x) ∗∗3 + (d5∗x ) ∗∗4
372 T = fac1 /( fa c2 ∗∗ (0 . 25_dp) )
373
374 power = k ∗ T ∗ T
375 RETURN
376 END SUBROUTINE compute_pcdmlin
377
378
379 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
380 ! ! READ PARAMETERS FROM TEXT FILE ! !
381 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
382
383 SUBROUTINE read_params ( f i l ename , nk ,nm,min_m,max_m, min_k ,max_k)
384
385 IMPLICIT NONE
386 CHARACTER(LEN=128) , INTENT( in ) : : f i l ename
387 INTEGER( I4B ) , INTENT( inout ) : : nk ,nm
388 REAL(DP) , INTENT( inout ) : : min_m,max_m, min_k ,max_k
389 CHARACTER(LEN=128) : : l i n e , name, va lue
390 INTEGER( I4B ) : : r s ta t , i
391 LOGICAL(LGT) : : exist
392 ! Checks i f the f i l e e x i s t s on d i s k . tr im cu t s the b lank charac t e r s
393 ! away from fi lename
394 INQUIRE( f i l e=fi l ename , exist=exist )
395 IF ( .NOT. exist ) THEN
396 print ∗ , " Error : ␣ F i l e ␣" , tr im ( f i l ename ) , "␣not ␣ found . "
397 stop
398 END IF
399 PRINT ’ ( / , "−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ,/ ) ’
400 PRINT∗ , "Your␣ chosen ␣ parameters␣ are "
401 PRINT∗ , "␣"
402 ! Reads the f i l e l i n e f o r l i n e . Scan f i n d s the index o f the s p e c i f i e d
403 ! charac t e r in the s t r i n g . I f t here i s no ’= ’ on the l i n e be ing read ,
404 ! or t here i s a comment ’#’ on the l in e , the do loop s k i p s to the nex t
405 ! l i n e wi th c y c l e . Name con ta in s the v a r i a b l e name , and va lu e the va lu e
406 ! o f the v a r i a b l e . I f the name corresponds to one o f the cases , the

va lu e
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407 ! o f t h a t name i s i n s e r t e d in t o the co r r e c t v a r i a b l e .
408 ! NOTE: I f doub le p r e c i s i on va lues , wr i t e in ’ d0 ’ format .
409 open(unit=111 , f i l e=fi l ename , form=’formatted ’ , iostat=r s t a t )
410 DO WHILE( r s t a t .EQ. 0)
411 read (unit=111 , fmt=’(A) ’ , iostat=r s t a t ) l i n e
412 i = scan ( l i n e , ’= ’)
413 IF ( ( i .EQ. 0) .OR. ( l i n e ( 1 : 1 ) .EQ. ’# ’) ) CYCLE
414 name = TRIM( ad j u s t l ( l i n e ( : i −1)) )
415 va lue = TRIM( a d j u s t l ( l i n e ( i +1:) ) )
416
417 SELECT CASE(TRIM(name) )
418 CASE( ’ omega_nu ’ )
419 read ( value , ∗ ) omega_nu
420 print ’ ( / , 3 x , "omega_nu␣=␣" , f10 . 2 ) ’ , omega_nu
421 CASE( ’ sigma8 ’ )
422 read ( value , ∗ ) sigma8
423 print ’ ( 4x , " sigma8␣=␣" , f10 . 2 ) ’ , sigma8
424 CASE( ’ nk ’ )
425 read ( value , ∗ ) nk
426 print ’ ( / , 8 x , "nk␣=␣" , i 1 0 ) ’ , nk
427 CASE( ’nm’ )
428 read ( value , ∗ ) nm
429 print ’ ( 8x , "nm␣=␣" , i 1 0 ) ’ ,nm
430 CASE( ’min_m’ )
431 read ( value , ∗ ) min_m
432 print ’ ( 5x , "min_m␣=␣" , es10 . 1 ) ’ ,min_m
433 CASE( ’max_m’ )
434 read ( value , ∗ ) max_m
435 print ’ ( 5x , "max_m␣=␣" , es10 . 1 ) ’ ,max_m
436 CASE( ’min_k ’ )
437 read ( value , ∗ ) min_k
438 print ’ ( 5x , "min_k␣=␣" , es10 . 1 ) ’ ,min_k
439 CASE( ’max_k’ )
440 read ( value , ∗ ) max_k
441 print ’ ( 5x , "max_k␣=␣" , es10 . 1 ) ’ ,max_k
442 END SELECT
443 END DO
444 PRINT ’ ( / , "−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ,/ ) ’
445 CLOSE(UNIT=111)
446
447 END SUBROUTINE read_params
448
449 ENDMODULE funcparams
450
451 ! ! ! ! ! ! ! ! ! ! ! ! ! !
452
453
454
455
456
457
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458 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
459 ! ! Here f o l l ow s an example params . t x t f i l e : ! !
460 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
461 ! ! ! !
462 ! ! # cosmo log i ca l parameters ! !
463 ! ! omega_nu = 0.05 d0 ! !
464 ! ! sigma8 = 0.8 d0 ! !
465 ! ! # loop v a r i a b l e s in summing over mass and s c a l e ! !
466 ! ! nk = 10000 ! !
467 ! ! nm = 1000 ! !
468 ! ! min_m = 1.0 d6 ! !
469 ! ! max_m = 1.0 d20 ! !
470 ! ! min_k = 0.01 d0 ! !
471 ! ! max_k = 1000. d0 ! !
472 ! ! ! !
473 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
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Listing B.3: nrtype.f90
1 MODULE nrtype
2
3 ! symbol ic names f o r kind t ypes o f 4−, 2− and 1−by t e i n t e g e r s :
4 INTEGER, PARAMETER : : I4B = SELECTED_INT_KIND(9 )
5 INTEGER, PARAMETER : : I2B = SELECTED_INT_KIND(4 )
6 INTEGER, PARAMETER : : I1B = SELECTED_INT_KIND(2 )
7
8 ! symbol ic names f o r kind t ypes o f s i n g l e− and doub le p r e c i s i on r e a l s :
9 INTEGER, PARAMETER : : SP = KIND( 1 . 0 )

10 INTEGER, PARAMETER : : DP = KIND( 1 . 0 d0 )
11
12 ! symbo l ic names f o r kind t ypes o f s i n g l e , and doub le p r e c i s i on complex :
13 INTEGER, PARAMETER : : SPC = KIND( ( 1 . 0 , 1 . 0 ) )
14 INTEGER, PARAMETER : : DPC = KIND( ( 1 . 0 d0 , 1 . 0 d0 ) )
15
16 ! symbol ic name fo r kind type o f d e f a u l t l o g i c a l :
17 INTEGER, PARAMETER : : LGT = KIND( . t rue . )
18
19 ! Frequent ly used mathemat ical cons t an t s ( wi th p r e c i s i on to spare ) :
20 REAL(SP) ,PARAMETER : : p i = 3.141592653589793238462643383279502884197

_sp
21 REAL(SP) ,PARAMETER : : p io2 = 1.57079632679489661923132169163975144209858

_sp
22 REAL(SP) ,PARAMETER : : twopi = 6.283185307179586476925286766559005768394

_sp
23 REAL(SP) ,PARAMETER : : s q r t2 = 1.41421356237309504880168872420969870856967

_sp
24 REAL(SP) ,PARAMETER : : e u l e r = 0.5772156649015328606065120900824024310422

_sp
25 REAL(DP) ,PARAMETER : : pi_d = 3.141592653589793238462643383279502884197

_dp
26 REAL(DP) ,PARAMETER : : pio2_d = 1.57079632679489661923132169163975144209858

_dp
27 REAL(SP) ,PARAMETER : : twopi_d= 6.283185307179586476925286766559005768394

_dp
28 ! s e l f added :
29 REAL(DP) ,PARAMETER : : euler_d= 0.5772156649015328606065120900824024310422

_dp
30
31 ! The r e s t o f t h i s module i s omit ted , as i t i s not r e l e v an t .
32
33 ENDMODULE nrtype
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