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CHAPTER I

Introduction

”God save thee, ancyent Marinere!

”From the fiends that plague thee thus–

”Why look’st thou so?”–with my cross bow

I shot the Albatross.

The author of this thesis has created a set of software libraries to facilitate
analysis of problems in orbital dynamics. Possible tasks range from simple
simulations to estimation of spacecraft orbits using tracking data. A simple
simulation will perhaps not involve much more than an Ordinary Differential
Equation (ODE) solver and a few basic routines to convert between different
orbital elements. Tracking a spacecraft is, however, a much more complex
task. It requires transformations between body-fixed and space-fixed frames
of reference, different space fixed frames of reference and different time scales.
Also required are solutions to the light travel paths between the tracking
stations and the spacecraft, media corrections, interpolation of planetary and
spacecraft ephemerides, estimation algorithms and models of the observables
and their partials with respect to the solve-for parameters. Such complex
tasks are susceptible to programming errors, round-off errors and compiler
errors. The design goal of HELIOSAT has not been efficient algorithms, but
rather numerical accuracy and stability. This thesis will give an overview of
the libraries, published results, details of selected algorithms and will discuss
a few design decisions.

1.1 HELIOSAT - thesis overview

John D. Anderson at the Jet Propulsion Labratory (JPL) suggested the idea
to develop an independent orbit determination program. The development
of the software started during the author’s stay at JPL as a resident research
assistant in 2001/2002. It is now written entirely in Fortran 95. The Fortran
95 specification does not include object oriented features like for example

1



Introduction 2

inheritance or templates, which may lead to a large code base if we need the
same functions for different data types. On the positive side, the syntax in
Fortran programs is very similar to mathematical expressions, it has unique
array support and strict pointer semantics that make it easy to write, debug
and maintain reasonably performing code.

The author has in a few cases implemented tools readily available else-
where to achieve high numerical precision and stability. Most noticeable are
the ordinary differential solver and several batch and sequential estimation
techniques. Subroutines to interpolate JPL Planetary ephemerides and to
transform between the International Terrestrial Reference Frame (ITRF) and
International Celestial Reference Frame (ICRF) have also been implemented.
For example both the JPL1 and International Earth Rotation Service (IERS)
(McCarthy & Petit 2003) software suffered from significant round-off errors
when using specific combination of compilers and CPUs, see section 2.1.

An overview of the libraries in HELIOSAT is presented in figure 1.1.
It shows the names of the libraries, their contents and interdependencies.
Repesentation of numbers and numerical precision is discussed in chapter 2.
Chapter 3 introduces HELIOSAT’s ODE solver with error control and vari-
able step size and order. Chapter 4 summarizes the estimation algorithms.
The magnitude of different effects on the computed observables are studied
in chapter 5. Finally, chapter 6 studies the effect of different troposphere
models on the Doppler residuals.

1.2 Overview of publications

Three publications relevant to the development of HELIOSAT are included.

“Shape, Mean Radius, Gravity Field and Interior Structure of Ganymede”
was first presented at American Astronomical Society, DPS Meeting number
33, see also Bulletin of the American Astronomical Society, Vol. 33. The
authors are Anderson, J. D.2, Jacobson, R. A.2, Lau, E. L.2, Moore, W. B.3,
Olsen, Ø.4, Schubert, G.3, Thomas, P. C.5 and the Galileo Gravity Science
Team.

The paper “Orbital resonance widths in an uniformly rotating second
degree and order gravity field” was published in Astronomy & Astrophysics,
Volume 449, Issue 2, April II 2006.

1http://iau-comm4.jpl.nasa.gov/
2Jet Propulsion Labratory
3University of California, Los Angeles
4University of Oslo, Norway
5Cornell University
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Figure 1.1: The collection of libraries which constitutes HELIOSAT. This figure

show the names of the libraries, their contents and interdependencies.
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“The constancy of the Pioneer Anomalous Acceleration” was published
in Astronomy & Astrophysics, Volume 463, Issue 1, February III 2007.

1.2.1 Shape, Mean Radius, Gravity Field and Interior

Structure of Ganymede

This publication is a large collaborative work. Only the analysis performed
by the author of this thesis is presented. A gravity field complete through de-
gree and order four is required in order to fit the data to the noise level. John
D. Anderson suggested that the cause might be mass concentrations similar
to those detected on Mercury (Esposito et al. 1976). Unfortunately, JPL’s
Double-Precision Orbit Determination Program (DPODP) cannot easily be
modified to include mass concentrations on planetary moons. We therefore
attempted to fit a model consisting of point masses to the observed gravity
field to see if an equivalent gravity field could be described by fewer param-
eters.

The nonlinear Levenberg-Marquardt algorithm (Press et al. 1992) was
the first estimation method implemented from scratch in HELIOSAT. At
the time, it was implemented in Mathematica, but it was removed from
HELIOSAT when the libraries were converted into Fortran 95, and experience
showed that very little was gained from using non-linear batch estimation
methods. HELIOSAT now includes partitioned linear batch and sequential
estimation algorithms.

1.2.2 Orbital resonance widths in an uniformly rotat-

ing second degree and order gravity field

Orbital resonances exist in a uniformly rotating second degree and order
gravity field (Hu & Scheeres 2004). Spacecraft in orbit around a comet or
an asteroid will experience such resonances. The following relation between
semi-major axis of the orbit (a), the gravitational constant of the center-
body (μ) and the centerbody’s rotational speed (ωT ) defines the location of
a resonance:

n

√
μ

a3
= 2ωT . (1.1)

Resonances exist for every positive integer n.
This paper presents both a numerical and an analytical study of such

resonances. There exist large areas of orbital instability, but retrograde orbits
are in general quite stable. The overlap criteria (Lichtenberg & Lieberman
1992) explain this observation and the regions of orbital instability.
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The simulations consist of several hundred thousand numerically inte-
grated orbits. In addition to a fast ODE solver, basic routines to convert
between orbital elements were required. A first attempt at simulations was
implemented in Mathematica 6, but Mathematica’s ODE solvers were not
fast enough to complete the task in a reasonable time. Comparisons between
HELIOSAT and Mathematica showed that HELIOSAT was at the time ap-
proximately 500 times faster than Mathematica even without any particular
optimizations. It took almost two weeks on an Intel(R) Xeon(TM) CPU
3.20GHz processor to perform these simulations using HELIOSAT.

1.2.3 The constancy of the Pioneer Anomalous Accel-

eration

In the last paper, all the libraries come together. Data from the Pioneer 10
and 11 spacecraft are analyzed to study the Pioneer anomalous acceleration.
Studies made by (Turyshev et al. 1999), (Anderson et al. 2002) and (Mark-
wardt 2002) indicated an apparent anomalous acceleration acting on the
Pioneer 10 and 11 spacecraft. Its magnitude is approximately 8×10−8cm/s2

directed toward the centre of the Solar System. The Pioneer 10 and 11 data
set spans respectively eleven and a half years and almost four years. This
paper discusses the constancy of the Pioneer anomalous acceleration. Based
on the data alone, it is still not possible to exclude heat dissipation as an
explanation for the anomalous acceleration. The following model is applica-
ble if the radioisotope thermoelectric generators (RTG) are the cause of the
acceleration:

a = a0 × 2−t/τ . (1.2)

Estimation of τ results in a half-life of 117 years with a standard deviation
of 16 years compared to 87 years for the half life of the 238Pu in the RTGs.
However, given the design of the RTGs it is difficult to explain the required
anisotropic heat dissipation.

A similar analysis was performed after this paper was submitted but
now with two different half-lives. The major part of the acceleration was
now constant, i.e. a half-life of 1000 years. The half-life of the remaining
10% of the acceleration was just below 40 years. This is comparable to
how fast the RTGs’ electricity production decayed. This model fits the data
slightly better, but it still leaves a constant acceleration to be explained.
Fortunately, Toth & Turyshev (2006) have retrieved the entire Pioneer 10
and 11 data sets. These sets do not only contain tracking data, but also
include spacecraft telemetry. With these data sets, it may be possible to

6http://www.wolfram.com/



Introduction 6

discern between different acceleration models and determine whether the
direction of the acceleration is towards Sun, Earth or somewhere else.
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CHAPTER II

Numerical Precision and representation of
numbers

Calculating a Doppler observable will at least involve numerically integrating
the equations of motion, transforming the terrestrial coordinates of track-
ing stations to celestial coordinates, modelling tropospheric and plasma de-
lays, calculating relativistic corrections and transforming between different
timescales. Furthermore, determination of the parameters that influence
the orbit requires the partials of the computed observables with respect to
solve-for parameters and some kind of estimation scheme. A typical Doppler
observable will be at approximately 2.2 GHz or 8.5 GHz depending on the
frequency band (S or X-band). The Doppler noise is well below 1 mHz in
parts of the Pioneer 10 tracking data. This is a difference between the ob-
servable and its noise level of 12 to 13 orders of magnitudes. At this level of
accuracy, it becomes necessary to monitor the round-off error accumulated by
the orbital determination software. This chapter introduces a few necessary
considerations that any user of HELIOSAT should be aware of.

2.1 Compilers and operating systems

The software was developed with different compilers on different platforms to
ensure that the compilers were not the cause of any errors. The combinations
of platforms and compilers are:

• Compaq Alpha, OSF1 V5.1, 64 bit processor, Compaq Fortran Com-
piler

• Intel Pentium 4, 32-bit processor, Intel Fortran Compiler for Linux

• Intel Pentium 4, 32-bit processor, G95, Linux

• Intel Itanium, 64-bit processor, Intel Fortran Compiler for Linux

The JPL software for interpolating the planetary ephemerides suffered from
significant round-off errors when using an old version of the Intel Fortran

9



Numerical Precision and representation of numbers 10

compiler. The offending code consisted of the two following lines written as
a single line:

T(1 ) = REAL(NR−3, QP)∗SSd (3 ) + SSd (1 )
T(1 ) = (PJD(1 ) − T(1) + PJD(4 ) ) /SSd (3 )

Written as a single line it resulted in a 0.5Hz diurnal signal in the residuals.
The problem only appeared when using 64-bit (double) precision for floating
point numbers. A similar but small compiler error appeared in the IERS
software together with the G95 compiler.

Another advantage of developing the software on several systems is that it
becomes easier to catch non-obvious programming errors. One programming
error caused a function to evaluate the square root of a negative number.
It only happened in a few highly unusual cases. The statement appeared
together with other statements such that a real number was returned, and
the final value of the function appeared to be correct at first glance. The
correct set of compiler options would have caught the error, but there was
little reason to suspect a library that had already worked for months. Moving
the software from a PC to a Unix workstation allowed the error to be found
within minutes. The program threw a segmentation fault and the debugging
symbols allowed the offending line to be found.

HELIOSAT now works with the above compilers and operating systems.
Although HELIOSAT has not been extensively tested on Microsoft Windows,
it appears to work there too.

2.2 Binary representation of numbers

A floating-point number is constructed as (Landau & Páez 1997)

xfloat = (−1)s × mantissa × 2expfld−bias, (2.1)

where s is the sign bit. If 8 bits are used to store the exponents, then their
range will be [0, 255]. Numbers with negative exponent are represented with
a bias equal to 127 such that the range of the exponent is [−127, 128]. For
32-bit (single precision) numbers 23 bit of storage remains for the mantissa.
It is represented as

mantissa = m1 × 2−1 + m2 × 2−2 + ... + m3 × 2−23 (2.2)

Fortran’s inquiry functions HUGE and TINY return the range of floating
point numbers. 32-bit numbers are in the range:

1.2 × 10−38 � xfloat � 3.4 × 1038. (2.3)
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64-bit (double precision) and 128-bit (quadruple precision) numbers are in
the ranges

2.2 × 10−308 � xfloat � 1.8 × 10308 (2.4)

and
3.4 × 10−4932 � xfloat � 1.2 × 104932. (2.5)

An integer parameter called QP defines the kind of floating-point numbers
used by HELIOSAT. The following statement defines a floating-point number
with a KIND equal to QP:

REAL(KIND=QP) : : var

All numbers are defined in this way. To ensure that the compiler uses the
correct kind for all numbers in a specific statement, floating-point numbers
are written as:

var = 3 .14 QP + 0 .5E+03 QP

instead of

var = 3 .14 + 0 .5D+03

The precision of a floating point number is defined as the maximum number
that can be added to a number stored as 1 without changing the number:

1s = 1s + εm (2.6)

ε ≈ 1.2 × 10−7 for single precision, ε ≈ 2.2 × 10−16 for double precision and
ε ≈ 1.9 × 10−34. Hence, it is not trivial to use single precision for Doppler
tracking, since Doppler tracking requires at least a relative precision of 10−12

to 10−13. Some or most of the variables must be stored in 2-dimensional
arrays. Even double precision requires reasonable good control of the round
off errors.

HELIOSAT can be run with 32-bit, 64-bit and 128-bit precision, but
with decreasing speed. This is achieved by redefining the parameter QP and
recompiling HELIOSAT. Using different precisions and a debugger to step
through the program is an easy method to find where significant round off
errors occurs. The relative accumulated round-off error is now below 10−14

when calculating theoretical values of the Doppler observables using double
precision.

2.3 Numerical calculation of the derivative

The implemented estimation theories require the partials of the computed
observables with respect to the solve-for parameters. These partials are cal-
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culated using partials of round-trip light times (equation 5.4). Partial deriva-
tives of the precision round-trip light time ρ with respect to the parameter
vector q due to the variations in position vector needs the value of (Moyer
2000)

∂ri(t)

∂q
, (2.7)

which is given by the solution of the variational equations:

d2

dt2

(
∂r

∂q

)
=

∂a

∂r

∂r

∂q
+

∂a

∂ṙ

(
d

dt

∂r

∂q

)
+

∂a

∂q
(2.8)

a is the acceleration acting on the participating spacecraft/object. Although
the variational equations can be solved directly, it might be sufficient and
simpler to vary each parameter and compute the partials from the differ-
ence in trajectories. A user of HELIOSAT can set this method for selected
parameters in the configuration file.

The partials are estimated numerically with the forward difference for-
mula:

f ′(x0) =
f(x0 + h) − f(x0)

h
− f ′′(x0)h

2
+ O(h2) (2.9)

The approximation error is proportional to the step size, but errors due to
loss of precision will limit the achievable accuracy (Landau & Páez 1997). A
simple test case is the derivative of f(x) = tan−1(x) at x =

√
2. The exact

value is 1/3. The relative error between the exact value and the forward
difference algorithm is plotted as function of the stepsize in figure 2.1. The
error decreases linearly with decreasing step size until h ≈ 10−7 where loss
of precision causes the relative error to increase. The optimum step size can
be computed given the machine precision εm:

f(x0 + h) − f(x0)

h
≈ εm

h
(2.10)

The approximation error is of order h:

f ′(x0) =
f(x0 + h) − f(x0)

h
− f ′′(x0)h

2
+ O(h2)

=
f(x0 + h) − f(x0)

h
+

x0 h

(1 + x0)2
+ O(h2),

(2.11)

and at x =
√

2

εf(x0)
ap ≈ xh

(1 + x2)2

∣∣∣∣
x=

√
2

≈ 0.16h. (2.12)
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Figure 2.1: A log-log plot of the relative error as a function of step size for the

forward difference algorithm with 64-bit precision.

Equations 2.12 and 2.10 yield the optimum step size for the forward difference
algorithm:

h ≈
√

εm

0.16
(2.13)

The optimum step sizes are hs ≈ 0.0009, hd ≈ 4×10−8 and hq ≈ 3×10−17 for
32-bit, 64-bit and 128-bit floating point numbers. A good choice for double
precision is a relative step size of 10−7. Users of HELIOSAT must define the
step size if using the finite difference method to calculate the partials.

2.4 Other considerations

There are many more things to consider when writing software to solve nu-
merical problems. HELIOSAT includes software to invert matrices, interpo-
late series, calculate the gradient of a spherical harmonic expansion, finding
roots of equations, etc. Even a task as straightforward as inverting a matrix
requires special care if the matrix is almost singular, but well-known meth-
ods like singular value decomposition (Press et al. 1992) work very well. A
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detailed discussion of all the algorithms in HELIOSAT is not needed, since
entire books have been written about computational physics. There is not
room for a detailed discussion in a document such as this either. The mono-
graph by Moyer (2000), which is 550 pages long, is mostly contained within
two libraries. Just printing the software itself would require more than a
thousand pages. The next three chapters will therefore present only what is
needed to use HELIOSAT.
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CHAPTER III

Ordinary differential equation solvers

The equations of motion are usually formulated as a set of ordinary differ-
ential equations. This chapter describes the ordinary differential equation
solver in HELIOSAT. It is a Nordsieck method with automatic error con-
trol and with automatic changes in both order and step size. HELIOSAT’s
ODE-solver is tested against two of the ODE-solvers provided in Numerical
Recipes (Press et al. 1992).

3.1 Multistep methods

A general first order ordinary differential equation is

dy

dt
= f(t, y) (3.1)

Questions about the existence of solutions are covered in any text on differ-
ential equations, see for example Boyce & DiPrima (1992).

A multistep uses the solutions and derivatives at the preceding points to
estimate the solution at tn+1 (Kahaner et al. 1989):

yn =
k∑

i=1

αiyn−i + h
k∑

i=0

βif(tn−i, yn−i), (3.2)

where the α’s and β’s are coefficients and h is the step size. The method is
explicit if β0 = 0, otherwise it is implicit. An implicit method requires esti-
mates of yn+1 to compute yn+1. Functional iteration1 or Newton’s method are
popular algorithms for solving this problem. Methods were α2 = α3 · · · = 0
are Adams methods. Explicit methods are called Adams-Bashforth while
implicit methods are called Adams-Moulton. The coefficients of a three step
Adams-Moulton are determined by requiring that the multistep method in-

1The technique is known as predictor-corrector.
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tegrate the five equations y′ = k tk−1:

y(t) = 1 1 =α1

y(t) = t 1 =β0 + β1 + β2 + β3

y(t) = t2 1 = 2 [β0 + 0 − β2 − 2β3] (3.3)

y(t) = t3 1 = 3 [β0 + 0 + β2 + 4β3]

y(t) = t4 1 = 4 [β0 + 0 − β2 − 8β3]

These equations are derived from equation 3.2 using h = 1, t0 = 0 and
n = 0. Flaherty (2006) derives general formulas for the coefficients of Adams-
Bashforth and Adams-Moulton methods. The coefficients for k-step Adams-
Bashforth methods are:

βj =

k−1∑
i=j−1

γi

(
i

j − 1

)
(3.4)

where

γi = (−1)i

∫ 1

0

(
τ

i

)
dτ (3.5)

The local error term is

dn = γkh
k+1yk+1(η), η ∈ (tn−1, tn) (3.6)

The corresponding coefficients for Adams-Moulton methods are:

βj =

k−1∑
i=j−1

γ∗
i

(
i

j − 1

)
(3.7)

where

γ∗
i = (−1)i

∫ 1

0

(−τ + 1

i

)
dτ (3.8)

and
dn = γ∗

kh
k+1yk+1(η), η ∈ (tn−1, tn) (3.9)

There are several weaknesses with k-step methods, since they require knowl-
edge of the solution at the previous k − 1 steps. Hence, there is no elegant
way to start a multistep method and it is difficult to change step size and/or
order for the purpose of error control.
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3.2 Nordsieck methods

Norsieck methods use a Taylor series around a point tn and propagate the
coefficients to tn+1 in contrast to multistep methods which use the solution
at tn, tn−1,... The method is easiest to understand with an example (Press
et al. 1992). The Nordsieck vector for a four-value method is

yn ≡

⎛
⎜⎜⎝

yn

hy′
n

(h2/2)y′′
n

(h3/6)y′′′
n

⎞
⎟⎟⎠ (3.10)

Now, use the Taylor expansion of y(t) around tn and differentiate to get
estimates of yn+1, y′

n+1, y′′
n+1 and y′′′

n+1:

ỹn+1 = Byn (3.11)

where B is the Pascal upper triangular matrix P:

Bij =

{(
j
i

)
i ≤ j

0 otherwise
(3.12)

The final approximation of yn+1 is

yn+1 = ỹn+1 + αl, (3.13)

where l = (l0, l1, l2, l3)
T is a specific vector for each method. α is defined by

the equation

y′
n+1 = f(tn+1, yn+1). (3.14)

Therefore

l1 = 1, α = hf(tn+1, yn+1) − hỹ′
n+1 (3.15)

It can be proven that each Nordsieck method is equivalent to a multi-
step method (Ramanantoanina 2005). The generating polynomials for the
Nordsieck and multistep methods are:

ρ(t) = det(tI − B)eT
1 (tI − B)−1l

σ(t) = det(tI − B)eT
0 (tI − B)−1l

(3.16)

where e0 = (1, 0, 0, · · · , 0)T and e1 = (0, 1, 0, · · · , 0)T . These equations can
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be written as

ρ(t) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t − 1 l0 −1 · · · · · · −1
0 l1 −2 · · · · · · −k
... 0

. . .
... · · · ...

...
... 0 t − 1 · · · ...

...
...

...
. . .

...
0 lk 0 · · · · · · t − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.17)

and

σ(t) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

l0 −1 −1 · · · · · · −1
l1 t − 1 −2 · · · · · · −k
... 0

. . .
... · · · ...

...
... 0 t − 1 · · · ...

...
...

...
. . .

...
lk 0 0 · · · · · · t − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.18)

The two first components of equation (3.10) satisfy the linear multistep equa-
tion (3.2). If a vector l can be found such that σ(t) is the generating vector
for a multistep method, then equation (3.13) is the corresponding Nordsieck
method.

A simple example demonstrates how to find the Nordsieck vector corre-
sponding to an Adam-Moulton method. The generating polynomial for a
4-step Adams-Moulton algorithm is

p =β0t
3 + β1t

2 + β2t + β3

=
3

8
t3 +

19

24
t2 − 5

24
t +

1

24

(3.19)

Equation (3.18) provides the polynomial as a function of l with k = 3. Com-
parison of powers of t gives three equations with three unknowns, l0, l2 and
l3. l1 equals 1 by definition. The solution is

l =

(
3

8
, 1,

3

4
,

1

6

)T

(3.20)

The same method can be used to find the l-vector for Adams-Bashforth
methods. The l-vector that is equivalent to a k-step Adams-Moulton, is also
the l-vector for a (k − 1)-step Adams-Bashforth method with the exception
of l0, which equals zero.

Table 3.1 provides the l-vectors for several Adams-Moulton-Bashforth
methods. The l-vectors were computed with Mathematica.
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Table 3.1: The l-vectors for 2 to 11-value methods. These methods are equivalent

to Adams-Bashforth-Moulton multi step methods. γ∗
kk! with ∇an,k+1 determines

the local approximation error.

k 2 3 4 5 6 7 8 9 10 11
l0

1
2

5
12

3
8

251
720

95
288

19087
60480

5257
17280

1070017
3628800

25713
89600

26842253
95800320

l1 1 1 1 1 1 1 1 1 1 1

l2
1
2

3
4

11
12

25
24

137
120

49
40

363
280

761
560

7129
5040

l3
1
6

1
3

35
72

5
8

203
270

469
540

29531
30240

6515
6048

l4
1
24

5
48

17
96

49
192

967
2880

267
640

4523
9072

l5
1

120
1
40

7
144

7
90

1069
9600

19
128

l6
1

720
7

1440
23

2160
3

160
3013

103680

l7
1

5040
1

1260
13

6720
5

1344

l8
1

40320
. 1
8960

29
96768

l9
1

362880
1

72576

l10
1

3628800

−γ∗
kk! 1

6
1
4

19
30

9
4

863
84

1375
24

33953
90

57281
20

3250433
132

1891755
8

The local error for a k-step implicit method can be estimated from

dn ≈ γ∗
kh

k+1y(k+1)(tn) + O(hk+2)

≈ γ∗
kk!∇an,k+1

(3.21)

where

∇an,k+1 =
hk

k!
(y(k)

n − y
(k)
n−1) =

hk+1

k!

y
(k)
n − y

(k)
n−1

k
≈ hk+1

k!
yk+1(tn) (3.22)

It can be kept at a predetermined level ε by changing the step size from h to
αh where

α ≈
(

ε

|γ∗
kk!∇an,k+1|

)1/(k+1)

(3.23)

Changing the step size from h to αh requires only that the components of the
yn vector are rescaled with the appropriate powers of α. HELIOSAT keeps
the error relative to the magnitude of yn by scaling the equation (3.21) with
|yn−1| + |hy′

n−1|.
HELIOSAT stores an additional component in the Nordsieck-vector to
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enable order increases. That component is

hk+1yk+1
n

(k + 1)!
≈ ∇an,k+1

k + 1
(3.24)

It is computed from equation (3.22) after each successful step. The com-
ponent has a double purpose: It is used to estimate the step size with the
increased order and as a start value of component number k + 1 if the inte-
grator decides to increase the order. HELIOSAT also checks if decreasing the
order increases the step size. Component k − 1 is already in the Nordsieck
vector and requires no extra storage. HELIOSAT does not try to change or-
der before at least k−1 successful steps at order number k. Tests performed
on two-body orbits using HELIOSAT show that this is the optimum rate
of order changes. The maximum order of HELIOSAT’s multivalue ordinary
differential equation solver is 10.

Starting the integrator is simple. The differential equations provide h y′
0,

which is enough to start a two-value method. The order control mechanism
increases the order to the appropriate level. Finally, the error of a two-value
method provides an estimate of the initial step size:

h0 =

√
2ε

|y′(t0)| (3.25)

3.3 Testing the ODE-solvers

This section compares the author’s ODE-solver to Numerical Recipes’ Runge-
Kutta and Burlish-Stoer methods. These two methods have variable step
size and error control. The Runge-Kutta method is the classical fourth order
method. Burlisch-Stoer has no order associated with the algorithm.

Identical two-body orbits were integrated 10 times with each ODE-solver
using the same compiler and compiler settings. The required accuracy after
the final step was 10−11. Table 3.2 shows the time in took for each ODE-solver
to integrate the two-body orbit and how many times the force function was
called from the ODE-solver. The Runge-Kutta method is by far the slowest
method and requires an order of magnitude more function calls than the
Nordsieck ODE-solver. The number of function calls determines the time it
takes to solve the initial value problem if a complex force function is used. In
fact, HELIOSAT’s ODE-solver is more than three times faster for satellites
in low Earth orbit than Numerical Recipes’ implementation of the Burlisch-
Stoer method.
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Table 3.2: Comparing different ODE-solvers. The table shows the time it took

for each ODE-solver to integrate the two-body orbit and how many times the force

function was called from the ODE-solver.

Method Time (ms) Functions calls
Multivalue 5.20 ± 0.03 3529
Burlisch-Stoer 3.85 ± 0.07 11321
Runge-Kutta 16.41 ± 0.3 49280

The Burlisch-Stoer method has one major problem with interpolation
between steps. Figure 3.1 shows the 10-logarithm of distance between the
interpolated position and the exact position. The absolute accuracies at each
step are comparable for both methods, but the errors in the interpolated po-
sitions using the Burlisch-Stoer solution (red) is approximately 5 orders of
magnitude larger than the errors using the Nordsieck solutions. These large
interpolation errors happen because the Burlisch-Stoer method has no natu-
ral interpolating function and since each step is very large. The magnitude
of the interpolation errors in the Burlisch-Stoer solution is independent of
polynomial, rational function and cubic spline interpolation. The Nordsieck
method is based on Taylor expansion and polynomial interpolation is a nat-
ural choice unless the entire Nordsieck vector is stored.
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Figure 3.1: 10-logarithm of the distance between interpolated positions and the

exact positions using the Burlisch-Stoer solution (red) and using the Nordsieck

solution (blue).
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CHAPTER IV

Batch and Sequential Estimation Theory

The estimation algorithms used in HELIOSAT are all derived in the course
“Batch and Sequential Estimation Theory” at the Institute of Theoretical
Astrophysics, University of Oslo. This chapter starts with a short descrip-
tion of the purpose of an estimation theory and then describes the different
estimation algorithms implemented in HELIOSAT. HELIOSAT includes two
Bayesian Weighted Least Squares (BWLSQ) algorithms and two sequential
filtering algorithms. Rauch-Tung-Striebel smoothing is available for both of
the sequential filtering algorithms.

4.1 Introduction

Assuming a set of m independent observations z̃ and an observational model
depending on a set of n parameters x:

z̃ = z (x) + ε, (4.1)

where ε is the noise vector. The purpose of an estimation algorithm is to
maximize the a posteriori probability density function P (x|z̃). It follows
from Bayes theorem (Larsen & Marx 1986) that

P (x|z̃) =
P̃ (x)

P (z̃)
P (z̃|x)

∝ exp

(
−1

2
(z̃ − z)T P̃−1

z (z̃ − z)T

−1

2
(x̃− x)T P̃−1

x (x̃− x)T

) (4.2)

if both the a priori estimate of the parameters x̃ and the probability den-
sity function P (z̃|x) are multi-normal. Maximizing P (x|z̃) is equivalent to
minimizing

Φ (x) = −1

2
(z̃ − z)T P̃−1

z (z̃ − z)T − 1

2
(x̃− x)T P̃−1

x (x̃− x)T . (4.3)

27
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4.2 Bayesian Weighted Least Squares

Any minima of the function given by equation (4.3) requires that

∂Φ

∂x
= 0. (4.4)

A simple application of the Newton-Rapson method gives the following iter-
ative algorithm:

x̂k+1 = x̂k + Δx̂k+1 (4.5)

where

Δx̂k+1 =
(
Nk + W̃x

)−1 (
Uk + W̃x (x̃− x̂k)

)
Nk = AT

k W̃zAk

Uk = AT
k W̃z (z̃ − zk)

Ak =
∂z

∂x̂k

x̂0 = x̃

(4.6)

The weight matrices W̃z and W̃x are the inverse of the a priori covariance
matrices P̃z and P̃x. The covariance matrix for Δx̂ is:

P̂x =
(
Nk + W̃x

)−1

(4.7)

A condition for stopping the iteration is necessary. Iterating to conver-
gence is a waste of time since the minimum is only a statistical estimate of
the parameters x (Press et al. 1992). Although guidelines based on, for ex-
ample, changes in the chi-square from one iteration to the next are possible,
but it will ultimately be the experience of the analyst which determines when
to stop iterating.

The reduced chi-square is an important indicator of the validity of the
model and the assigned observational errors. Its definition is

χ2
r =

χ2

m − n
(4.8)

where

χ2 =

m∑
i=1

(z̃i − zi(x̂k))
2

σ̃2
z

(4.9)

m is total number of observations and n is the number of solve-for parameters.
If χ2

r 
 1 then the assigned observational errors are too small or the model
is not appropriate. If χ2

r � 1 then the assigned observational errors are to
large or too many parameters allow an artificially good fit.



Batch and Sequential Estimation Theory 29

4.3 2-level BWLSQ

Some of the solve-for parameters are probably not constant over the entire
trajectory of the spacecraft. Drag coefficients, media corrections, clock pa-
rameters, etc, can change rapidly. A simple solution is to divide the entire
set of data into intervals where each solve-for parameter is approximately
constant. It is trivial to find an estimate using the BWLSQ algorithm, but it
may require inversion of very large matrices. A better approach is to divide
the state vector into common parameters and arc parameters:

ΔxT = (ΔxT
c , ΔxT

a ) (4.10)

where

ΔxT
a = (ΔxT

s1, ... , ΔxT
sk, ... , ΔxT

sK) (4.11)

and where ΔxT
sk are the solve-for parameters in subarc k. The A-matrix now

becomes:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ac1 Aa1 0 0 0 0 0
Ac2 0 Aa2 0 0 0 0
...

...
...

. . .
...

...
...

Ack 0 0 0 Aak 0 0
...

...
...

...
...

. . .
...

AcK 0 0 0 0 0 AaK

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.12)

where

Ack =
∂zk

∂xc

(4.13)

and

Aak =
∂zk

∂xak

(4.14)

The 2-level version of the BWLSQ algorithm is found by inserting the above
matrices into equation 4.6:

Δx̂a =

[
K∑

k=1

(
Nak

− Nask
(Nsk

+ W̃−1
sk

)NT
ask

)
+ W̃a

]−1

∗
[ K∑

k=1

(
Uak − Nask

(Nsk
+ W̃−1

sk
)(Usk + W̃sk

(x̃sk
− x̂sk

))
)

+ W̃a(x̃a − x̂a)

]
(4.15)
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and

P̂a =

[
K∑

k=1

(
Nak

− Nask
(Nsk

+ W̃−1
sk

)NT
ask

)
+ W̃a

]−1

(4.16)

Each arc is sequentially processed after Δx̂a and P̂a have been estimated:

Δx̂sk
= (Nsk

+ W̃sk
)−1

[
Usk

+ W̃sk
(x̃sk

− x̂sk
) − NT

ask
Δx̂a

]
(4.17)

and

P̂sk
= (Nsk

+ W̃sk
)−1 + (Nsk

+ W̃sk
)−1NT

ask
P̂aNask

(Nsk
+ W̃sk

) (4.18)

This technique is attractive if there are hundreds of solve-for parameters.
Instead of inverting the large N-matrix, K small (Nsk

+W̃sk
) matrices and one

(N ′
a + W̃a) must be inverted. This saves both time and limits the numerical

round-off errors.

4.4 Kalman Filter

A typical Kalman filter (Kalman 1960) consists of two stages. The first
stage is the time update equations. These equations predict the state at
observation number m + 1 based on the estimate Δx̂m, Pxm

from processing
m observations.

Δx̃m+1 =Φ(tm+1, tm)Δx̂m + em

P̃xm+1
=Φ(tm+1, tm)P̂xm

ΦT (tm+1, tm) + Qm

(4.19)

where

e =

∫ tm+1

tm

Φ(τ, tm)wm(τ)dτ

Qm =

∫ tm+1

tm

∫ tm+1

tm

Φ(τ, tm)E
[
δwmδwT

m

]
ΦT (τ ′, tm)dτdτ ′

(4.20)

The variational equations together with the evolution of any stochastic pa-
rameters determine the state transition matrix Φ(t, t0). w is the noise driving
vector in the differential equation that determines the state vector x:

ẋ = F (t)x(t) + w(t). (4.21)

F (t) describes the dynamical model.
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The measurement update equationsxs correct the predicted state at tm+1

using measurement number m + 1:

Δx̂m+1 =Δx̃m+1 + K [(z̃m+1 − zm+1) − Am+1Δx̃m+1]

P̂xm+1
=(I − KAm+1) P̃xm+1

(4.22)

where the Kalman gain is

K = P̃xm+1
AT

m+1

[
W̃−1

zm+1
+ Am+1P̃xm+1

AT
m+1

]T

(4.23)

The Kalman gain matrix says how much the current observations should
count compared to the previous m observations. Equations (4.22) and (4.23)
can be derived from the least squares solution based on m observations by
adding one extra observation to the equations.

4.5 Pseudo-epoch state variables

The time update equation for the Kalman filter can be written as⎛
⎝Δẽ

Δp̃

Δỹ

⎞
⎠

m+1

=

⎛
⎝Φe Φp Φy

0 M 0
0 0 I

⎞
⎠

⎛
⎝Δê

Δp̂

Δŷ

⎞
⎠

m

+

⎛
⎝ 0

np

0

⎞
⎠

m

(4.24)

where np is the noise. The three groups of parameters e, p and y are modeled
as dynamical, stochastic and bias parameters. Φe, Φp and Φy are solutions
to the variational equations while M is a diagonal matrix.

Defining the pseudo-epoch state variable in terms of the current state as

Δê′
m = Φ−1

e (tm, t0) [Δêm − Φy (tm, t0) Δŷm] (4.25)

simplifies the time update equation to⎛
⎝Δẽ′

Δp̃

Δỹ

⎞
⎠

m+1

=

⎛
⎝I Φ′

p 0
0 M 0
0 0 I

⎞
⎠

⎛
⎝Δê′

Δp̂

Δŷ

⎞
⎠

m

+

⎛
⎝ 0

np

0

⎞
⎠

m

(4.26)

where

Φ′
p(tm+1, tm) = Φ−1

e (tm+1, t0)Φp(tm+1, tm)

= Φ−1
e (tm+1, 0)Φp(tm+1, 0) − Φ−1

e (tm, 0)Φp(tm, 0)
(4.27)

The pseudo-epoch state formulation saves memory and operations involved
in storing the potentially large matrices Φe and Φy, but the main reason for
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pseudo-epoch state formulation is that the dynamical part of the state vector
and their observation partials refer to the initial epoch of the integrated
dynamical equations.

The A matrix used in the measurement update equation mut be modified
too:

A = (Ae, A
c
p, Ay). (4.28)

Ae and Ay are epoch partials while Ac
p is current state partials given by:

Ac
p = Ap − AeΦ

−1
e (tm+1, t0)Φp(tm+1, t0) (4.29)

The final estimates of êM and ŷM are based on all the observations. The
estimate of a stochastic parameter at tm is not optimal since it is based only
on the m preceding observations. Rauch-Tung-Striebel (Rauch et al. 1965)
smoothing repeats the filtering process backward to find optimal estimates
for all dynamical parameters at all epochs. HELIOSAT includes Rach-Tung-
Striebel smoothing for both Kalman filters.
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CHAPTER V

Computed values of Doppler observables,
media corrections and partial derivatives

The high precision tracking data from the two Pioneer spacecraft and Rosetta
are Doppler observables. Total-count phase, range, GPS/TOPEX pseudo-
range and carrier-phase, spacecraft interferometry, quasar interferometry and
angular observables are therefore not considered in this thesis, although they
can be trivially added to HELIOSAT. This chapter explains how to compute
theoretical values for the Doppler observables, studies the magnitudes of the
major terms involved in the calculation and introduces a new algorithm to
compute ionospheric corrections .

5.1 Computed values of the Doppler observ-

ables

Moyer (2000) discusses in detail how to compute theoretical values of the
Doppler observables. Therefore, only a short overview will be given here.
Moyer (2000) designates the transmission time from Earth as t1, the epoch of
retransmission as t2 and the reception time as t3. At each of these epochs the
Solar-System barycentric (SSB) positions of the uplink station r1, spacecraft
r2 and downlink station r3 must be calculated. The range rij is defined as the
magnitude of the vector rj −ri. Computed values for two-way and three-way
Doppler observables are then found from

F2,3 =
M2R

TC

∫ t3e

t3s

fT (t3)dt3 − M2

TC

∫ t1e

t1s

fT (t1)dt1, (5.1)

where M2R = M2 = 240/221 for S-band communication. fT (t3) and fT (t1)
are the transmitter frequencies at reception and transmission time at the
receiving and transmitting electronics. The integration limits t3s and t3e are
the beginning and end of each count interval (TC) at the receiving station,
while t1s and t1e are the start and end times of the corresponding interval
at the uplink station. t1s and t1e can be found from t3s and t3e and the
precision round-trip light time solutions ρe and ρs. The precision round-trip
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light times are calculated from:

ρ =
r23

c
+ RLT23 +

r12

c
+ RLT12

− ΔTt3 − ΔTt1 (5.2)

+
1

c

(
ΔAρ(t3) + ΔSCρ23 + ΔAρ(t1) + ΔSCρ12

)
,

where RLTij is the Shapiro delay on the up-leg and down-leg light time solu-
tions. r23 is the distance between receiver at reception time and the spacecraft
at retransmission time. Similarly, r12 is the distance between transmitter at
transmission time and the spacecraft at retransmission time. c is the speed
of light. ΔAρ(ti) are the off-axis antenna corrections to the receiving and
transmitting station on Earth. Imbriale (2002) provides the values used to
calculate these corrections. ΔSCρ3 and ΔSCρ1 are the solar corona correc-
tions on the down and up leg. ΔTt3 and ΔTt1 are the differences between
Coordinated Universal Time (UTC) and Barycentric Dynamical Time (TDB)
at transmission and reception time.

Troposphere and ionosphere corrections were not included in the light
time solution, but added as a media correction to the Doppler observable.
Media corrections for two-way and three-way computed Doppler observables
are given by

ΔF2,3 =
M2

TC
(fT (t1e)Δρe − fT (t1s)Δρs) . (5.3)

Δρe and Δρs are the correction to the precision round-trip light times at
the end and beginning of the transmission interval. Media corrections are
computed both for the up-leg and down-leg part of the light time solution.
Finally, partials of the computed Doppler observables with respect to solve-
for parameters q are required:

∂F2,3

∂q
=

M2

TC

(
fT (t1e)

∂ρe

∂q
− fT (t1s)

∂ρs

∂q

)
. (5.4)

5.2 Relativistic light time delay

General relativity predicts how a massive body deflects an electro-magnetic
wave. This increases the effective path length travelled by a photon, and
causes a delay that must be included in the light travel time solution. The
relativistic light time due to the Sun is calculated from (Moyer 2000):

Δt =
(1 + γ)μ

c3
ln

(
r1 + r2 + r12 + (1 + γ)μ/c2

r1 + r2 − r12 + (1 + γ)μ/c2

)
, (5.5)



Computed values of Doppler observables 37

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  500  1000  1500  2000  2500

R
es

id
u
al

s 
(H

z)

Days since July 12th 1992

’res_correct.dat’ using 1:4
’res_bwlsq_000.dat’ using 1:4

Figure 5.1: This figure shows in red the magnitude of S-band Doppler residuals

if only relativistic light time delay is excluded from the estimation program. The

blue residuals on the other hand include all effects and show the noise level of the

Doppler data.
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where μ is the gravitational constant of the Sun. γ is a parameter of the Pa-
rameterized Post-Newtonian (PPN) formulation of gravity (Will & Nordtvedt
1972). Relativistic light time delay gives in the S-band an annual signal with
an amplitude of ±150mHz (Markwardt 2002).

It is possible to analyze how the different terms in the precision round-trip
light time algorithm affect the Doppler residuals, but real Doppler data suffer
from noise and unmodelled effects, see paper III, which may partially mask
the term studied. Therefore, a set of simulated Doppler data was created
using the trajectory of the Pioneer 10 spacecraft.

The output from the simulation program is compatible with JPL’s Orbit
Data File (ODF), and the simulated data can be analyzed with HELIOSAT’s
orbit determination programs in the same manner as real data. A straight-
forward way to study the effect of any specific term in the light travel time
algorithm is to remove the corresponding code from HELIOSTAT. Figure 5.1
shows the residuals with and without relativistic light time delay. The mag-
nitude of the Doppler residuals when including relativistic light time delay
is 4.0mHz compared to 5.8mHz as seen in paper III. It is quite clear that
relativistic light time delay due to the Sun is a trivial effect to account for,
and that HELISOAT correctly models the relativistic light time delay.

Given the trajectory of the Pioneer spacecraft in the outer Solar System
and the noise level of the Pioneer Doppler data, it is not possible to detect
relativistic light time delay from any of the major planets of the Solar System.
Still, HELIOSAT does compute this effect for all the planets too, but it uses
a simplified version of equation (5.5):

Δt =
(1 + γ)μ

c3
ln

(
r1 + r2 + r12

r1 + r2 − r12

)
(5.6)

In fact, use of the above approximation for the Sun’s relativistic light time
delay is more than sufficient given the noise level of the Pioneer Doppler
data.

5.3 Solar corona corrections

Solar corona corrections are calculated from (Anderson et al. 2002):

Δscρ = ±
[
A

(
RS

p

)
F + B

(
RS

p

)1.7

e−(φ/φ0)2 + C

(
RS

p

)5
]

×
(

2.295 × 109

f

)2

,

(5.7)
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Figure 5.2: The magnitude of the Doppler residuals with and without Solar

Corona corrections in the light travel time algorithm.

where A, B and C are solve-for parameters, RS is the radius of the Sun, p
is the closest approach of the light travel path to the Sun, φ is the latitude
relative to the Sun’s mean equator of date of the closest approach point
to the Sun, φ0 is a reference latitude of 10◦ and f is the carrier frequency.
Solar corona studies done for the Cassini mission provide default values for
the solve-for parameters. They are A = 6.0 × 103, B = 2.0 × 104 and
C = 0.6 × 106, all in meters.

The value of F is obtained from:

F =
1

π
tan−1

√
r2
2 − p2

p
+

1

π
tan−1

√
r2
3 − p2

p
(5.8)

on the down-leg of the light time solution for a spacecraft. Change the index
3 to 1 to compute the F -factor on the up-leg of the light path. Moyer (2000)
describes how to calculate all the necessary quantities. The sign in equation
(5.7) is negative for Doppler data and positive for range data. Solar corona
corrections are only computed when the tracking stations and spacecraft are
on the opposite sides of the Sun.
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Figure 5.2 shows that solar corona correction is not an important factor
when analyzing the Pioneer tracking data.

5.4 Time scales

The time scale (ET) of the JPL ephemeris is equivalent to the IAU definition
of Barycentric Coordinate Time (TBC). They differ only by an offset and a
constant rate (Standish 1998). The JPL and ESA provide the Doppler data
as cycles per unit of UTC time. It is therefore necessary to convert between
UTC and ET. The time transformation consists of two steps:

UTC → TAI → ET. (5.9)

IERS1 provides the first transformation as a table. The last transformation
is governed by the following differential equation (Moyer 1981b,a):

dτ

dt
= 1 − U

c2
− 1

2

v2

c2 + L, (5.10)

where U is the gravitational potential at the tracking station using the posi-
tive sign convention and L is the long term average of the two terms preceding
L, such that TAI and ET tick on average at the same rate.

Moyer (1981b,a, 2000) provides two different expression for calculating
ET−TAI. The vector expression for ET−TAI in the Solar System barycen-
tric frame of reference is:

ET − TAI = 32.184s +
2

c2

(
ṙS

B · rS
B

)
+

1

c2

(
ṙC

B · rB
E

)
+

1

c2

(
ṙC

E · rE
A

)
+

μJ

c2(μS + μJ)

(
ṙS

J · rS
J

)
+

μSa

c2(μS + μSa)

(
ṙS

Sa · rS
Sa

)
+

1

c2

(
ṙC

S · rS
B

)
,

(5.11)

where the subscripts or superscripts C, S, B, E, M , J , Sa and A represent
the Solar-System barycenter, Sun, Earth-Moon barycenter, Earth, Moon,
Jupiter, Saturn and the location of atomic clock on Earth which reads TAI.
The expression is slightly modified if TAI is obtained from an Earth satellite:

ET − TAISAT = [ET − TAI]A=SAT +
2

c2

(
ṙE

SAT · rE
SAT

)
(5.12)

A few algorithms need an approximate expression for ET − TAI.

ET − TAI = 32.184 + 1.657 × 103 sin E (5.13)

1http://www.iers.org/MainDisp.csl?pid=95-105
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Figure 5.3: Magnitude of Doppler residuals (red) when assuming that ET ticks

at the same rate as TAI.

where the eccentric anomaly for the heliocentric orbit of the Earth-Moon
barycenter is approximated by (Moyer 1981a):

E = M + 0.0167 sinM (5.14)

The mean anomaly (M) in radians is calculated from:

M = 6.239996 + 1.99096871× 10−7t, (5.15)

where t is TAI or ET seconds since J2000.0.

Figure 5.3 shows the Doppler residuals in red if it is assumed that that
ET ticks at the same rate as TAI. Using the vector expression for TAI −ET
results in blue residuals. The approximate expression for ET − TAI gives
residuals almost indistinguishable, i.e. less than 0.1mHz, from the residuals
using the vector expression.
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Figure 5.4: Doppler residuals due 25-meter errors in the tracking stations coor-

dinates.

5.5 Tracking station locations

Figure 5.4 shows the Doppler residuals due to errors in the tracking sta-
tion coordinates. Each of the tracking stations was moved 25 meters along
the y-axis during the analysis of the simulated Doppler data. It is possible
to detect errors of a few meters even with noisy S-band data. Hence, it is
also necessary to include media corrections due to the ionosphere and tro-
posphere. Orbit data files for Mars Express and Rosetta contain computed
media correction for the propagation of the signal in the Earth’s atmosphere,
based on meteorological data observed at the ground station site. The iono-
sphere correction can be calculated using global maps of Earth’s ionosphere
available from Center for Orbit Determination (CODE) or from differential
Doppler observables if available. HELISOAT can estimate the day and night
components of ionosphere and corrections to the dry and wet components of
the troposphere delay if no information about the ionosphere and troposphere
is available.
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5.6 Earth orientation

The transformation of the terrestrial reference system to the celestial refer-
ence system at the epoch t is given by (McCarthy & Petit 2003):

[CRS] = Q(t)R(t)W (t)[TRS] (5.16)

Q(t) defines the motion (precession-nutation figure) of the celestial pole in
the celestial system. R(t) and W (t) are respectively rotation of the Earth
around the pole and polar motion. A transformation from [TRS] by applying
W (t) and R(t) is the intermediate reference frame of epoch t. The Celes-
tial Intermediate Pole (CIP) is the realized celestial pole according to IAU
resolution B1.7, and its direction at J2000.0 is offset from the Geocentric
Celestial Reference System (GCRS) specified by the IAU 2000A precession-
nutation model. The motion of the CIP in GCRS is realised through the
IAU 2000A precession-nutation model for periods greater than two days and
through time-dependent corrections derived from astro-geodetic observations
provided by the IERS. In a similar way IAU 2000A defines the polar motion
W (t) and Earth’s rotation R(t).

IERS provides a time-dependent list of observed differences between UT1
and UTC. Figure 5.5 shows typical Doppler residuals if the analyst ignores
the changes in the length of day. Each discontinuity is caused by insertion
of a leap second by IERS. Leap seconds are used to keep UTC within 0.9s
of UT1. From figure 5.5 it appears that ignoring the secular change in UT1
results in Doppler residuals comparable to those seen in the Pioneer tracking
data, but it is not a possible explanation. An error of 1 second in UT1 is
equivalent to a positional error up to a few hundred meters for the tracking
stations. Section 5.5 shows that such errors are easily detectable.

Polar motion has little effect on S-band Doppler residuals as can be seen
from figure 5.6. The red dots show simulated Doppler residuals without polar
motion in the ITRF to the ICRF transformation, while the blue dots show
residuals with the full transformation.

Precession and nutation are easily detectable in Doppler residuals. Fig-
ure 5.7 shows the effect of removing the IAU 2000A precession-nutation model
from ITRF to ICRF transformation (red). It is not necessary to include the
observed corrections to the coordinates of CIP. They do not have a measur-
bale effect on the S-band residuals.
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Figure 5.5: Realistic S-band Doppler residuals (blue) are compared to Doppler

residuals when ignoring changes in the length of day (red). Each discontinuity is

caused by insertion of a leap second by IERS.



Computed values of Doppler observables 45

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0  500  1000  1500  2000  2500

R
es

id
u
al

s 
(H

z)

Days since July 12th 1992

’res_correct.dat’ using 1:4
’res_bwlsq_000.dat’ using 1:4

Figure 5.6: The red dots show simulated Doppler residuals without polar motion

in the ITRF to the ICRF transformation, while the blue dots show residuals with

the full transformation. Polar motion has little effect on the S-band Doppler

residuals.

5.7 Updated ionosphere model

The delay of a radio signal through the ionosphere can be expressed by

Δt =
40.3

c f 2 cos(Z)
V TEC (5.17)

where VTEC is the Vertical Total Electron Content in electrons/m2, f is
the frequency of the signal in Hz, Z is the angle between the topocentric
direction to the satellite and the normal to the ionospheric layer through
the pierce-point and c is the speed of light (m/s). The point on the sur-
face of Earth below the pierce-point is the sub-ionospheric point. Both the
Klobuchar model (Moyer 2000) used by JPL and the global ionosphere maps
generated by Center for Orbit Determination in Europe (CODE) require the
sub-ionospheric point to evaluate the total electron count.

Figures 5.8 and 5.9 display the computed vertical total electron content
(VTEC) at the ionospheric pierce point in units of TECU. A global iono-
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Figure 5.7: The effect of ignoring precession and nutation in the ITRF to ICRF

transformation.

sphere map produced by CODE for the year 2000 and day number 178 was
used to generate these figures. The coordinates represent the surface posi-
tions of emitters relative to the sub-satellite point at 75◦N and 20◦E with the
Y-axis along the 20◦E longitude line. The satellite altitude is 600km. Fig-
ures 5.8 and 5.9 show respectively the results using JPL’s algorithm (Moyer
2000) and the new algorithm provided in this section. The errors from the
JPL algorithm are as large as 8 TECU in this case. JPL’s algorithm only
fails if the line of sight passes by any of the poles. The North Pole is located
at x = 0km and y ≈ 1800km in both figures.

5.7.1 Geodetic coordinates of the sub-ionospheric

point

This section contains a new algorithm for the sub-ionospheric point.
Given the un-refracted spacecraft elevation angle γ at the tracking station,

compute the zenith angle Z at the mean ionospheric height of 350km from

Z = sin−1(0.94798 cos(γ)) (5.18)
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Figure 5.8: Computed vertical total electron content using Moyer’s algorithm

for the sub-ionospheric point. The coordinates represent the surface positions of

tracking stations relative to the sub-satellite point at 75◦N and 20◦E with the

Y-axis along the 20◦E longitude line. The VTEC is given in TEC-units, while the

distances are in km.

where the numerical coefficient is ae/(ae + 350). ae is the the equatorial
radius of Earth. Calculate the angle between emitter, Earth’s centre and the
sub-ionospheric point from

θ =
π

2
− Z − γ (5.19)

Let ρ be the distance from Earth’s centre to the emitter. The distance from
the emitter to the ionospheric pierce point is

d = ρ
sin(θ)

sin(Z)
. (5.20)

Given the unit vector L directed from a tracking station on Earth towards
the spacecraft and the position vector of the tracking station re, both in
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Figure 5.9: Computed vertical total electron content values using the algorithm

given in this section for the sub-ionospheric point.

ITRF, calculate the ITRF position of the ionospheric pierce point as follows:

ri = re + dL (5.21)

Now use the algorithms of Moyer (2000) to transform the Cartesian coordi-
nates of the sub-ionospheric point into geodetic coordinates.
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CHAPTER VI

Analysis of Pioneer and Rosetta doppler data

There passed a weary time. Each throat

Was parched, and glazed each eye.

A weary time! a weary time!

How glazed each weary eye,

When looking westward, I beheld

A something in the sky.

Per Helge Andersen1 uses numerical weather data and ray tracing to com-
pute corrections for VLBI, GPS and satellite laser ranging observations. He
provided me with light travel time delays due to the troposphere as a func-
tion of elevation, azimuth and time with resolutions in azimuth and time of
6◦ and 6 hours. Analysis performed by Andersen show that these ray-tracing
files have accuracies better than 1cm even at low elevations. The purpose
of this chapter is to study the effect of different troposphere models on the
Doppler residuals.

6.1 The diurnal signal in the Pioneer Doppler

residuals

Anderson et al. (2002) analyzed a limited dataset centered on the 1996 op-
position and found a diurnal signal in the Pioneer Doppler residuals with
amplitude of approximately 0.1mm/s. It was attributed to a possible error
in the spacecraft’s orbital inclination with respect to Earth’s equator. A
diurnal signal was also seen by Olsen (2007). After Anderson et al. (2002)
removed this term, the RMS Doppler residuals were reduced to 0.054mm/s.

The Doppler data was reanalyzed using ray-tracing data to see if at least
parts of the diurnal signal can be explained by the media corrections. These

1Norwegian Defense Research Establishment
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datasets provide the light time delay used in equation (5.3) to compute the
troposphere corrections.

Ionosphere maps from CODE were used to compute plasma corrections
to the theoretical Doppler observables. Although the time spacing of these
maps was as much as 24 hours in 1996, they still provide a reasonably good
description of the ionosphere ,since the 1996 opposition coincided with a
solar minimum. The solar minimum also helps to ensure that there was little
change in the plasma between the Earth, the Sun and Pioneer 10.

The new results show no diurnal signal in the data, and the residuals are
reduced to 0.034mm/s. If the ionospheric corrections are excluded, then the
residuals increase to 0.036mm/s. The conclusion is that incorrect modeling
of the troposphere causes the diurnal signal in the residuals.

6.2 Tropospheric corrections in the Rosetta

data

Doppler data from the inbound part of Rosetta’s Earth flyby in March 2005
were analyzed to check the sensitivity of the initial conditions to the tropo-
sphere model. Corrections due to the troposphere are included with the level
2 Rosetta Doppler data. Figure 6.1 shows the included corrections (red) and
the corrections calculated using ray-tracing (blue). It includes data down
to 10◦ elevation. Figure 6.2 shows the corresponding residuals when using
the media corrections included with the Doppler data and when using ray-
tracing.

Incorrect modeling of the troposphere does have an effect on the esti-
mated orbit. The difference between the initial position using ray-tracing
and included media corrections is

Δr = (4.1174,−1.0425,−7.01138)km± (0.17, 0.06, 0.20)km, (6.1)

with the standard deviations being identical to within 0.1% in both cases.
The differences in the estimated initial coordinates range from 17 to 35 stan-
dard deviations.

A less CPU intensive algorithm for the troposphere corrections involves
the NMFH2.0 and NMFW2.0 mapping functions (Niell 1996). The difference
between the estimated coordinates using the Niell mapping function and ray-
tracing data are

Δr = (0.1114,−0.0342, 1.9239)km. (6.2)

This is between 0.5 to 9.5 standard deviations.
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Figure 6.1: The troposphere corrections included with the Rosetta tracking data

(red) and corrections computed with the ray-tracing data (blue).
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To conclude, media corrections do have a significant effect on the esti-
mated orbits. The effect will be especially important for short data arcs as
will be available from flybys of asteroids, and this may result in incorrect
estimates of for example the asteroids’ mass and gravity field.
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Figure 6.2: The residuals when using the media corrections included with the

Doppler data (red) and when using ray-tracing calculations(blue).
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