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Chapter 1

Introduction

The Sun is our nearest star. By providing heat and light it sustains life on
Earth and influences our climate. It is therefore interesting to understand
more about its physical processes. In addition, the Sun is important in the
study of other stars. The Sun is an average star, and its unique location
makes it possible to study in much greater details than the stars further
away. Better knowledge of the Sun improves our understanding of other
stars and astrophysical objects.

To increase our understanding of the Sun and its processes, further obser-
vations are needed. In this matter, the Hinode satellite, which is the subject
of the thesis, will make valuable contributions with its studies of the solar
atmosphere.

We begin the chapter by describing the structure of the Sun and one of
the important problems solar physicists are faced with today. Then we give
a short description of the Hinode satellite and its instruments. We end the
chapter by describing the aim of the thesis, the methods we are using, and
the thesis outline.

1.1 The Sun

1.1.1 Solar Structure

The Sun is commonly divided into two parts; the solar interior and the solar
atmosphere. An illustration of the solar structure is given in Figure 1.1. The
interior consists of a core which extends some 20 percent of the solar radius,
where the hydrogen fusion is taking place. This is the process by which the
Sun ultimately generates its energy of 3.9 × 1026 W, and with a radius of
7× 108 m this is equivalent to a flux of 6.3× 107 W/m2 at the solar surface.
This energy has to be transported out of the Sun, and throughout most of
the interior this is done by radiation. In the upper 20 percent of the Sun’s
radius the energy is transported by convection. The solar magnetic field,

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the solar structure. (NASA)

which is the source of much of the solar atmosphere’s activity, is continually
generated by the action of convection and by the Sun’s differential rotation.

The solar atmosphere is divided into four regions, namely the photo-
sphere, the chromosphere, the transition region, and the corona. The pho-
tosphere is the part of the Sun which is seen in visible light. Because of
the rapidly changing odds of a photon escaping the Sun through this region,
which has a depth of only 500 km, the Sun appears with a clear edge, the
solar limb. The temperature in the photosphere is about 6000 K, but de-
creases with height. The granulation pattern we see in the photosphere is
the last remnant of the convection zone which extends to the bottom of the
photosphere.

After temperature minimum, some few hundred kilometers above the
photosphere, the chromosphere’s temperature increases slightly, then re-
mains roughly isothermal for some 2000 km. The density decreases expo-
nentially with a scale height of some 200 km in this area. In the upper parts
of the chromosphere the magnetic field changes from being controlled by the
denser photospheric gas to controlling the plasma structure.

The outer layer of the solar atmosphere is the corona, which extends out
to a distance of several million km. The temperature here is some MK, and
with a density of some 10−11 kg/m3 it is only about 10−12 as dense as the
photosphere. With this density and temperature the corona can only be seen
in visible wavelengths when the light from the photosphere has been blocked
out by an eclipse or through the use of a coronagraph. Instead it is common
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to observe this region of the solar atmosphere in X-ray wavelengths. Here
the magnetic field expands in the increasingly tenuous plasma and fills all
space around the Sun some few thousand kilometers above the photosphere.

Between the chromosphere and the corona lies the transition region. In
this region the temperature rises rapidly, from some 104 K to 106 K in only
a few Mm. The transition region emits most of its radiation in extreme
ultraviolet (EUV) spectral emission lines, mainly originating from strongly
ionized metals.

The solar wind is an extension of the Sun’s atmosphere, with the high
speed electrons and ions from the corona escaping into interplanetary space.

1.1.2 The Heating Problem

As described above, the Sun’s energy is formed in the core and transported
from there and out to the Sun’s surface. Therefore one should expect, ac-
cording to the second law of thermodynamics, that the temperature would
decrease with distance from the Sun’s center. This is indeed the case for the
solar interior to the photosphere. From this point and upwards the opposite
is the case, the upper parts of the solar atmosphere have a much greater
temperature than the photosphere. This was shown by Edlén (1943) by
identifying forbidden lines of highly ionized atoms.

Because the corona is such a tenuous plasma the energy flux needed
to heat it up to a few MK is actually quite small, only some 100 W/m2.
This is only 10−6 of the radiative energy flux emerging from the Sun, which
therefore should be more than enough to heat the corona. The lack of energy
emerging from the solar interior is thus not the problem, but rather to find
a mechanism that is able to transmit the energy through the photosphere,
chromosphere, and transition region, and then to deposit it into the corona.
This is commonly called ’the heating problem’ and has been one of the major
questions for solar physicists the last 60 years.

Throughout the years several theories have been suggested; e.g. Bier-
mann (1946, 1948) and Schwarzschild (1948) suggested that sound waves
produced in the solar convection zone heated the chromosphere and corona,
while Alfvén (1947) and Osterbrock (1961) suggested that magnetic (MHD)
wave modes could carry the energy flux.

The leading idea today is that the energy transfer must be related to
the magnetic field, and possibly to the reconnection of magnetic field lines.
Photospheric motions concentrate the magnetic field into small elements or
patches that are spread over the entire solar surface. In some regions, such as
in sun spots or plage regions, the field becomes strong enough to dominate
the dynamics of the photosphere. Magnetic field lines are forced towards
the inter-granular lanes because of the convection, which randomly shuff-
ling them about, causing stress to build up. As the field lines become too
twisted they might snap and rearrange, causing dissipation of magnetic en-
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ergy in the corona, and thus heating it (Parker, 1983). This is commonly
called nano-flare heating by magnetic reconnection. Observational evidence
of this type of event has been found by e.g. Yokoyama et al. (2001). In
addition, ab initio simulations by Gudiksen and Nordlund (2005) based on
this idea, starting from a prescribed photospheric velocity field and observed
photospheric magnetic field, generate coronal structures very similar to those
observed. Even so, the answer to the heating problem is still not fully un-
derstood, and further observations are needed to better understand the role
of the magnetic field in the coronal heating. To determine how the energy is
transferred from below the photosphere and up into the outer atmosphere,
we need to simultaneously measure the changes in the magnetic field and
the emission lines’ intensities from the transition region and corona.

1.1.3 Observations of the Solar Atmosphere

Since the recognition of the high temperatures in the upper solar atmosphere
there has been a need for better observations of this region. As described
above, the transition region and the corona emit most of their radiation
in EUV and X-ray wavelengths, respectively. The Earths atmosphere is
opaque to these wavelengths, so to be able to observe these regions in the
wavelengths they are emitting strongest, the detector must be sent up above
our atmosphere.

There have been several successful rocket and satellite experiments so
far, e.g. Orbiting Solar Observatory, Skylab, Spacelab 2, and in later times
the Solar and Heliospheric Observatory (SOHO) and Transition Region and
Coronal Explorer (TRACE).

1.2 Hinode

The Japanese Hinode (Solar-B) (Ichimoto and Solar-B Team, 2005), the
successor to YOHKOH (Solar-A) mission, was launched 22 September 2006
21:36 UT. It studies the Sun in visible, EUV, and X-ray wavelengths, in
addition to being able to produce vector magnetogram maps. The satel-
lite is moving in a 680 km circular Sun-synchronous orbit over the Earth’s
day/night terminator, which allows near-continuous observation of the Sun.
Each orbit takes 96 minutes, which yields 15 orbits a day. Data is brought
down at a number of ground stations, including at the Uchinoura Space
Centre in Japan and at KSAT’s Svalbard Station. This allows at least 17
daily ground station contacts, and thus an average of 6 Gbytes data telemetry
a day. Hinode carries three instruments; a Solar Optical Telescope (SOT), an
X-ray Telescope (XRT) and an EUV Imaging Spectrometer (EIS). A short
description about each of them are given below.
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SOT

SOT (Ichimoto et al., 2004) consists of two major components; namely the
Optical Telescope Assembly (OTA) and the Focal Plane Package (FPP).
OTA is with its 50 cm, the largest optical solar telescope that has ever
been sent out into space. It has a wavelength coverage of 3870–6680 Å
(visible light), and will thus observe the photosphere and chromosphere. It
has a resolution of 0.25 arc seconds, which means that details down to 175
km can be resolved on the Sun. The light captured by SOT is analyzed
in the FPP consisting of three instruments; a Narrowband Filter Imager
(NFI), a Broadband Filter Imager (BFI) and a Spectropolarimeter (SP).
NFI can compute the four Stokes parameters and Dopplergrams (line-of-
sight velocity) of the photosphere and chromosphere. BFI produces high
spatial and temporal resolution images and measures horizontal flow and
the temperature in the photosphere. With the polarized spectra from SP
one can produce photospheric 3D vector magnetograms.

XRT

XRT (Kano et al., 2004) is a high resolution grazing incidence telescope,
and its goal is to observe the high temperature plasma of the corona. By
producing images with different X-ray filters, XRT can observe in a wider
temperature band (1–30 MK) than previous X-ray telescopes. This allows
for detections of dissipation of magnetic energy in forms of flares and coronal
mass ejections. XRT can either observe the full solar disk or a smaller area
with higher resolution. XRT is expected to have an angular resolution of 2
arc seconds, or about 1400 km on the Sun. Built-in visible light optics allow
for sub-pixel accuracy image alignment with SOT.

EIS

EIS (Culhane et al., 2007) is an EUV spectrometer which can observe various
lines in two wavelength intervals, 170–210 Å and 250–290 Å, covering a wide
range of plasma temperatures (0.1–20 MK). With the spectra from EIS it is
possible to determine the intensity, the Doppler velocity, the line width, and
the temperature and density of the plasma where the line is formed.

Due to the use of multi-layer coated optics and back-illuminated CCDs,
EIS has approximately a factor 10 enhancement in effective area compared
to CDS (on board SOHO). In addition, the spectral resolution (3 km/s for
Doppler velocities) is also improved by an order of magnitude, and the spatial
resolution (2 arc seconds) is improved by a factor two or three compared to
CDS.
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1.2.1 Scientific Aims

The scientific aims of the Hinode mission are focused on three main goals:

• To determine the mechanisms responsible for heating the corona in
active regions and the quiet Sun.

• To establish the mechanisms responsible for transient phenomena, such
as flares and coronal mass ejections.

• To investigate the processes responsible for energy transfer from the
photosphere to the corona.

These goals will be approached by using the combination of the three
different instruments on board the satellite. By observing the photosphere
and the underlying magnetic field at the same time as the chromosphere and
corona, one gets a better possibility of understanding the connection between
the different parts of the Sun. In particular, it is interesting to observe the
dynamic and thermal response of the corona to the changing magnetic and
velocity fields of the photosphere and convection zone, to see if we can get
closer to the answer to the heating problem.

1.3 The Thesis

The aim of the thesis is to better understand how we can relate the EIS ob-
servations to physical phenomena in the solar atmosphere. Specifically, we
want to study how the diagnostic variables react to changes in the morpho-
logy in the solar atmosphere. That is, we will study how the line intensity
and the Doppler velocity for the spectral lines observable with EIS react to
the changes in temperature, density, and velocity. Especially, we want to
study the iron lines formed in the corona around 1 MK, and examine what
they can tell us about the condition in the upper solar atmosphere.

Since we can not ’check’ what is really happening when there is an event
on the Sun for then to see how the EIS lines respond to these, we approach
this problem by numerical simulations. We make a model of the solar atmo-
sphere, introduce perturbations to this system, and examine how the proper-
ties of the gas change according to these events. Then we study how the EIS
emission lines change as a result of this perturbation. Thereafter, we discuss
which of these changes EIS is actually able to detect, and whether observing
with EIS can explain the physical phenomena causing these changes.

EIS is only able to detect the emission line intensity, Doppler velocity,
and line width. In addition, one can also compute the temperature and
density in the region where the line is formed. These temperature and dens-
ity diagnostics are only reliable as long as the line is formed in ionization
equilibrium. Therefore, we also examine whether any of our spectral lines
are driven out of equilibrium during our simulations.
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By following this procedure we can come to a better understanding of
which phenomena EIS is able to detect, which limitations the data have,
and which cautions must be taken when drawing conclusions from the EIS
observations to the physical explanations about what is actually happening.
Thus we find out how to better use the EIS data.

1.3.1 Methods

To solve this problem we use a combination of the simulation code TTRANZ

(Hansteen, 1991) and the IDL package CHIANTI (Landi et al., 2006; Dere
et al., 1997). TTRANZ solves the hydrodynamic plasma equations in one
dimension along with the rate equations which determine the radiative losses
from the transition region and corona. CHIANTI is an atomic database and
contains routines for exploitation of this data.

A schematically overview of the work is given by:

1. Identifying the most important EIS spectral emission lines by using
the CHIANTI atomic database.

2. Constructing usable TTRANZ atomic data files, using the CHIANTI
atomic database, the HAO-DIAPER package (Judge and Meisner,
1994), and the NIST line database (Ralchenko et al., 2005) as refer-
ences.

3. Constructing a coronal loop model and examining how this reacts to
perturbations, such as changes in the heating rate and forced waves on
the system.

4. Examining how the chosen EIS spectral lines’ intensities and velocities
react to the loop changes.

5. Examining whether any of the chosen EIS spectral lines are driven out
of ionization equilibrium in the scenarios described above.

1.3.2 Thesis Outline

The remainder of this thesis is divided into five chapters. We start by going
through the basic physics behind emission line formation and the hydro-
dynamic plasma equations in Chapter 2. Further, in Chapter 3 we describe
our simulation code, explain the numerical schemes in use, and how input
are given to the program. In Chapter 4 we examine the performance of the
EIS spectrograph and decide which emission lines in the EIS passband that
are usable for our purpose. In this chapter we also design the atomic models
needed. In Chapter 5 we run our simulation code with the input found in the
previous chapters. We perturb the system by changing the heat input and
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forcing waves on the system, and analyze the changes in the loop morpho-
logy. Thereafter, we examine the diagnostic variables for the chosen lines to
see if they can explain the loop changes. Finally, in Chapter 6 we summarize
what we have done and which results we have come to and give suggestions
for further work and improvements.



Chapter 2

Basic Line and Plasma Physics

In this chapter we first give an introduction to what an emission line is.
Thereafter, we go through the different processes that contribute to the
emission line formation and the processes that determine the ionization state
of an element. Then we explain how we can compute the emission lines’
intensity and Doppler velocity. Finally, we give a short introduction to the
hydrodynamic plasma equations, which describe the behavior of the plasma
in the solar atmosphere.

2.1 Introduction

The solar atmosphere consists of a warm and low density gas. Below lies
the cooler and denser photosphere, which radiates as a black body with its
emission peak in the visible wavelength interval. Therefore, the atmosphere
is most easily observed in the short wavelength part of the spectrum, where
its emission lines out-shine the continuum.

Emission lines are caused by photons emerging from the solar atmosphere
when an ion de-excites from an excited upper energy level ’u’ to a lower
energy level ’l’. The energy taken away by the photon is given by the energy
difference of the two levels,

∆E = Eu − El = hν , (2.1)

where h is the Planck constant, ν is the frequency, and Eu and El are the
energies of the upper and lower levels, respectively.

The gas is considered optically thin when all the emitted photons leave
the atmosphere without being scattered, and effectively thin if all created
photons eventually escape after a number of scatterings before being thermal-
ized. The intensity Iν of an optically thin spectral emission line with fre-
quency ν is related to the number density of ions in the correct upper energy

9
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level (nu), and the rate at which these de-excite by emitting a photon (Aul).

Iν =
hν

4π

∫ s

0
nuAul φν ds , (2.2)

where we have divided by the sphere solid angle unit since the photon can
be sent out in any direction, and integrated along the line of sight s. φν is
the line’s emission profile which we will come back to in Section 2.4.1.

To compute the intensity we thus have to find expressions for our two
unknowns nu and Aul. These are both related to the ion’s excitation and
de-excitation processes which we discuss in Section 2.2.

2.2 Electron Excitation and De-excitation

Electron excitation is the process in which a bound electron transfers from
a low lying energy level ’l’ (ground or excited) to a higher energy level ’u’
by stealing energy from a photon or a free electron. The inverse process is
called electron de-excitation, and take place when a bound electron transfers
from an excited energy level to a lower lying level (ground or excited) and
the extra energy is taken away either by a photon or a free electron.

Bound-bound transitions between two levels can occur in different ways,
and we will give a short introduction to each of them:

• radiative excitation and de-excitation (photoabsorption, spontaneous
radiative de-excitation, and stimulated emission) (Section 2.2.1)

• collisional excitation and de-excitation (Section 2.2.2)

2.2.1 Radiative Excitation and De-excitation

Absorption is the process in which an ion absorbs a free photon and becomes
excited up into a higher energy level. The rate coefficient for this process is
denoted Blu. The inverse process, called spontaneous radiative de-excitation,
is the process where an excited atom decays into a lower level, and thus emits
a photon which carries away the energy difference between the two levels.
Its rate coefficient is denoted Aul.

Xl + hν ⇔ Xu , (2.3)

where Xl and Xu denote the lower and upper energy levels, respectively.
The principle of detailed balance states that in thermal equilibrium (TE)

the number of transitions due to one process is exactly balanced by its inverse
process. To meet this requirement of TE, we need a third process, namely
stimulated emission, with rate coefficient Bul. In this process a photon hits
an excited atom, which then de-excites and sends out another photon,

Xu + hν ⇒ Xl + hν + hν . (2.4)
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These three rate coefficients are all called Einstein coefficients, and are
related by

Bul

Blu
=

ωl

ωu
, (2.5)

where ωu and ωl are the multiplicities (statistical weights) for the upper and
lower levels, respectively, and

Aul

Bul
=

2hν3

c2
, (2.6)

where c is the speed of light in vacuum. These two relations hold universally
since they do not depend on any property of the medium.

The spontaneous de-excitation rate is in the literature often given by the
oscillator strength (ful), which is related to the Einstein A coefficient by
(Rutten, R. J., 2003),

Aul = 6.671 × 1015 ωl

ωu

ful

λ2
, (2.7)

with λ in Å.

2.2.2 Collisional Excitation and De-excitation

A free electron that moves close to an ion can transfer some of its energy
to one of the bound electrons. The free electron loses the same amount of
energy as it takes to excite the bound electron from a lower level ’l’ into an
upper level ’u’. The transition rate for collisional excitation is denoted Clu.
In the inverse process an electron hits an excited atom, the bound electron
de-excites to a lower level and the free electron takes away the extra energy.
The rate coefficient for this process is denoted Cul. These processes are also
called electron impact excitation and electron impact de-excitation.

Xl + e ⇔ Xu + e (2.8)

The collisional excitation rate coefficient is related to the collision cross
section (σ) of the collision between the ion and electrons of velocity u.

Clu =

∫ ∞

u0

σlu(u)f(u)u du , (2.9)

where the threshold energy is given by 1
2meu

2
0 (me is the electron mass)

and f is the velocity distribution function of the electrons. The collision
cross section can be found either by theoretical calculations or in laboratory
experiments.

Assuming that the electron distribution function is Maxwellian, we can
write the collision rate as a function of the temperature alone (Mason and
Fossi, 1994),

Clu(Te) =
C0

ωl
T−1/2

e e−∆E/kBTeΥlu(Te) , (2.10)
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where ωl is the multiplicity of the lower level, C0 = 8.63×10−6 is a constant,
kB is the Boltzmann constant, and Te is the electron temperature. Υlu is
the thermally averaged collision strength, which is a slowly varying function
with temperature.

The rate coefficients for the collisional excitation and de-excitation pro-
cesses are related through the detailed balance principle,

Clu

Cul
=

ωu

ωl
e−∆E/kBTe . (2.11)

This relation also holds outside TE, as long as the electron velocity distri-
bution function is Maxwellian.

2.2.3 Coronal Equilibrium

We have now given an overview of the different excitation and de-excitation
processes that can occur. We are interested in the region of the solar at-
mosphere where the extreme ultraviolet (EUV) radiation is emitted. In this
region the electron density is low (ne < 1018 m−3) and the temperature is
high (Te > 104 K). This leads to the so-called Coronal Equilibrium (CE)
condition, which allows us to do some simplifications.

Excitation – De-excitation Rate Equation

With CE conditions it is usually safe to assume that the population of the
upper level mainly is produced by collisional excitation from the ground
level, and that the spontaneous radiative decay overwhelms the other de-
population processes. The number of excitations and de-excitations must
balance each other, so we get the simple relation

nuAul = nlneClu . (2.12)

This approximation is not correct if there is no allowed transition (ac-
cording to the electric dipole approximation) down from the excited state
’u’. If this is the case, the spontaneous radiative de-excitation rate is quite
small and the collision de-excitation rate becomes comparable to it. This
kind of upper level is called a meta-stable level, and extra attention must be
given to these levels when designing our atomic model.

Assuming Equation 2.12 to be valid, another expression for the unknown
parameters in Equation 2.2 (nuAul) are found. In the previous section we
also found an expression for the collision excitation rate (Equation 2.10), so
our challenge is now to find the number density of ions in the lower energy
level, nl.
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Number Density

Within CE we can assume that the de-excitation rates are much higher than
the excitation rates. As noted above, this is not the case for meta-stable
levels, which can cause a notable amount of the ions to not be in the ground
state.

Without meta-stable levels the number of ions in the low-energy level can
be considered the same as the total number of ions in the ionization state.

nl(X
m) ≈ n(Xm) , (2.13)

where Xm represent the ionization state m, and the subscript ’l’ denotes the
excitations level, which is normally the ground level. We can express the
number of ions in the lower level as

nl(X
m) =

(

n(Xm)

n(X)

)(

n(X)

nH

)

nH , (2.14)

where the first ratio is the fraction of the element in the correct ionization
state and the second is the element abundance relative to hydrogen,

n(X)

nH
= Ab . (2.15)

This abundance can, as a first approximation, be considered constant through
the solar atmosphere. The ionization fraction on the other hand, varies a lot
according to the temperature and density. We examine the ionization and
recombination processes in Section 2.3.

2.3 Ionization and Recombination

It is the bound-free and free-bound processes that make an atom trans-
fer from one ionization stage to the next as the surrounding environment
changes. The ionization state is found by solving the rate equation,

∂n(Xm)

∂t
+

∂

∂z
(n(Xm)u) = Sources − Sinks . (2.16)

We will take a look at the ionization and recombination processes, which can
be both sources and sinks:

• collisional ionization and 3-body recombination (Section 2.3.1)

• photoionization and radiative recombination (Section 2.3.2)

• autoionization and dielectronic recombination (Section 2.3.3)
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2.3.1 Collisional Ionization and 3-Body Recombination

In collisional ionization, also called electron impact ionization, a free electron
hits an atom and knocks free a bound electron. In the recombination process
two free electrons enter at the same time into the volume of the ion, one of
them is captured in an excited energy level while the other carries away the
extra energy.

Xm
i + e ⇔ Xm+1

j + e + e (2.17)

where m is the ionization state and i, j are the excitation levels.
As for the collisional excitation, the collisional ionization rate Icol is re-

lated to the collisional ionization cross section (σ). The total number of
ionizations because of this process is given by

I(col)neni(X
m) = neni(X

m)

∫ ∞

u0

σ(u)f(u)u du , (2.18)

where the threshold energy is given by 1
2meu

2
0 and f is the electron velocity

distribution function.
The 3-body recombination rate is denoted R(3). This rate is because of

the detailed balance principle related to the collisional ionization rate by the
Saha equation (Mihalas, 1978);

(

ni(X
m)

nj(Xm+1)

)∗

= C1ne
ωm

ωm+1
T−1.5e

E(Xm+1)−E(Xm)
kBTe , (2.19)

where C1 = 2.07×10−16 (in cgs units) and the superscript ’∗’ denotes thermal
equilibrium. The total number of recombinations due to the 3-body process
is given by

R(3)nenj(X
m+1) = nenj(X

m+1)I(col)

(

ni(X
m)

nj(Xm+1)

)∗

. (2.20)

This holds also outside of TE as long as the velocity is Maxwellian.
Since the 3-body recombination requires the presence of two electrons

at the same time, this rate is quite small for low density plasma, where the
collisional ionization is the dominant ionization process.

2.3.2 Photoionization and Radiative Recombination

In photoionization a photon is absorbed by a bound electron which then
breaks free from the atom. In the inverse process, radiative recombination, a
free electron is captured by a ’bare’ ion while a photon takes away the extra
energy.

Xm+1
j + e ⇔ Xm

i + hν (2.21)



2.3. IONIZATION AND RECOMBINATION 15

The total number of ionizations because of photoionizations is given by

I(ph)ni(X
m) = ni(X

m)4π

∫ ∞

ν0

α(ν)

hν
Jν dν , (2.22)

where α is the photoionization cross section and Jν is the mean intensity.
Note that I(ph) is a function of the radiation temperature and that the total
number of transitions of this kind do not depend on the electron density.

In TE the number of spontaneous recombinations must equal the number
of photoionizations

R(r)

(

nj(X
m+1)

)∗
= I(ph) (ni(X

m))∗ . (2.23)

The total number of radiative recombinations is therefore given by

R(r)nenj(X
m+1) =nenj(X

m+1)

(

ni(X
m)

nj(Xm+1)

)∗

×

4π

∫ ∞

ν0

α(ν)

hν
Bν dν ,

(2.24)

where the mean intensity is given by the Planck function (Jν = Bν) in TE.
This rate also holds when TE is not valid as long as the velocity distribution
is Maxwellian.

The photoionization is negligible in optically thin plasma, because there
are very few photons with enough energy to ionize the atom, while the radi-
ative recombination, on the other hand, is the main recombination process.

2.3.3 Autoionization and Dielectronic Recombination

We can have a spontaneous ionization in a doubly excited atom if the energy
of the lowest excited electron is larger than the binding energy of the other
excited electron. This is called autoionization. The inverse process is of two
steps. First, a free electron is captured into an excited state of the ion and
another bound electron takes up the rest energy, and becomes excited too.
This is the opposite of autoionization. To have dielectronic recombination
we also need the second step; at least one of the two excited electrons goes
through a radiative decay and sends out a photon.

Xm+1
g + e ⇔Xm

ij

Xm
ij → Xm

gj + hν
(2.25)

Here g refers to the ground level and i, j to excited levels.
Recall from the discussion of coronal equilibrium that most of the atoms

are in their ground states, so the autoionization process can not happen
very often. The dielectronic recombination on the other hand, happens quite
frequently in hot, low density plasma.
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The dielectronic rate coefficient R(d) is a function of the electron temper-
ature, and the total numbers of recombinations of this kind is given by

R(d)neng(X
m) . (2.26)

2.3.4 The Rate Equation

In the beginning of this section we stated the general rate equation (Equation
2.16), and we have now outlined its sources and sinks to see which of them
that play an important role in our model. We found that in the transition
region ionization is dominated by electron impact, and recombinations are
dominated by radiative and dielectronic processes. We can thus simplify the
rate equation by choosing R = R(r) + R(d) and I = I(col). Further, if the left
hand side of the rate equation is negligible, it is even more straightforward.
It is negligible when the perturbation time scales are long compared to the
rate characteristic times, which are in the order of tens of seconds. We can
then set the left hand side of Equation 2.16 to zero and the sources and sinks
have to balance each other,

ne

[

n(Xm−1)Im−1 + n(Xm+1)Rm+1
]

= ne [n(Xm)(Im + Rm)] . (2.27)

If we want to study effects that have shorter time scales than the rate char-
acteristic time, we need to include the left hand side of the rate equation
too.

Example: The Ionization Balance for Hydrogen

To clarify the concept of the rate equation we will solve it for the simplest
case, that is, hydrogen with only two allowed states, neutral hydrogen with
number density nHI and ionized hydrogen with number density nHII . We
will study how the ionization fraction reacts to changes in the temperat-
ure and electron density, and relate this to the changes in the ionization
and recombination rates. We also check if it is reasonable to ignore 3-body
recombination, and if TE is a good approximation in the transition region.

The hydrogen atom does not have two electrons, so we can not have
dielectronic recombination or autoionization. The rate equation for this sys-
tem is thus given by

nHIIne

[

R(r) + R(3)

]

= nHI

[

I(col)ne + I(ph)

]

, (2.28)

which can be rewritten

nHI

nHII
=

R(r) + R(3)

I(col) +
I(ph)

ne

. (2.29)
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This is one equation with two unknowns, so we need one more equation to
solve our problem. We can use the fact that the total number of hydrogen
atoms must be constant,

nHI + nHII = nH . (2.30)

The fraction of ionized hydrogen to the total number of hydrogen atoms
is thus given by

nHII

nH
=

(

1 +
nHI

nHII

)−1

=



1 +
R(r) + R(3)

I(col) +
I(ph)

ne





−1

. (2.31)

To be able to solve this equation we need expressions for the different rates
that are involved. The following expressions are taken from a hydrogen
atomic model made by P. Judge for V. Hansteen in 1995. It includes atomic
data from (Janev et al., 1987) as given by the HAO-DIAPER package
(Judge and Meisner, 1994).

The Collisional Ionization Rate

I(col)(Te) = T 1/2
e e−hν/kBTeΥ(Te) (2.32)

with Υ being a slowly-varying function of Te, with values around 4.2×
10−11.

The Photoionization Rate

I(ph)(Trad) =
8πα(ph)g(ph)ν3

c2
E1

(

hν

kBTrad

)

(2.33)

where α(ph) = 7.9 × 10−18, g(ph) = 0.8 is the gaunt factor, and E1 is
the exponential integral.

The Radiative Recombination Rate

R(r)(Te) = α

(

Te

1 × 104

)−ǫ

(2.34)

where α = 4.25 × 10−13 and ǫ = 0.69.

The 3-Body Recombination Rate

R(3)(Te, ne) = Icol × 2.07 × 10−16ne
ωHI

ωHII
T−1.5

e ehν/kBTe (2.35)

where the multiplicities are ωHI = 2 and ωHII = 1.
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Figure 2.1: Ionization fraction for hydrogen for different electron densities; ne =
1014 m−3 (upper left), ne = 1016 m−3 (upper right), ne = 1017 m−3 (lower left),
and ne = 1019 m−3 (lower right). The solid line is the fraction of neutral hydrogen,
while the dotted line is the fraction of ionized hydrogen. The dashed line is the
fraction of ionized hydrogen calculated from the Saha equation.

The fractions of ionized and neutral hydrogen to the total hydrogen popula-
tion are plotted in Figure 2.1 as a function of temperature and for different
electron densities. In the same figure we have also over-plotted the fraction
of ionized hydrogen as computed from the Saha equation (Equation 2.19).

In the upper left panel, the ionization fraction is much larger for low
temperatures compared to the other panels. The photoionization is neither
dependent of the electron density nor the electron temperature. We would
therefore expect this rate to become the dominating part of Equation 2.31
when the electron density and temperature is small. This is what we see in
the upper left panel.

When the electron density is high we would expect that the 3-body re-
combination would dominate the radiative recombination, since the former
varies as ∼ n2

e, while the latter varies as ∼ ne. This effect can not be seen
in any of our plot. Probably the electron densities must be even higher than
1019 m−3 for the 3-body recombination to dominate. In CE the electron
densities are less than 1018 m−3. Therefore, it should be safe to ignore the
3-body recombination.

The Saha equation is only valid in TE, so plotting the solution to this
equation shows us how far the corona approximation is from TE. We can
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see that our results are getting closer to the Saha solution as the density is
increasing, but clearly TE is not a good approximation for the densities we
are interested in.

2.4 Emission Lines

So far we have discussed details about the atomic processes which contribute
to emission line formation. It is now time to look at the observed emission
line. First we explain how to compute the line intensity, Doppler velocity,
and line width. Then we take a new look at how to compute the emission
line intensity, and define the contribution function and branching fraction.
At the end we collect the threads to get a better understanding of which
plasma parameters that are important in the study of emission lines.

2.4.1 Line Profile

Emission lines are not, despite their names, infinitely thin lines but are in
reality smeared out according to a line profile. The emission profile due to
thermal Doppler broadening is given by

φν =
1√

πwD
exp

[

−
(

∆ν − u
c ν cos θ

wD

)2
]

, (2.36)

where ∆ν = ν − ν0 is the distance from the laboratory frequency, θ is the
aspect angle, u is the gas velocity, and the Doppler width is given by

wD =
ν0

c

√

2kBTe

mA
, (2.37)

where mA is the mass of the radiating ion.

2.4.2 Line Momentum Analysis

The line’s intensity, velocity and width are not the same throughout the solar
atmosphere. We therefore have to perform a column-integration to find the
values that we would observe with a spectrograph. A powerful way of doing
this is momentum analysis.

Line Intensity

The total line intensity at a wavelength can be found by integrating the
intensities at each depth point along the loop (z),

Iν =

∫ z

0
Iν(z) dz . (2.38)
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Doppler Velocity

Because of relative velocities between the gas and the observer the lines are
shifted according to the Doppler effect,

ν = ν0

(

1 +
u

c

)

, (2.39)

where u is the velocity difference between the gas and the observer. We are
here assuming motion along the line of sight only, and that the velocity is
small compared to the speed of light.

The first moment,

M1 = ∆ν =

∫

Iν(ν − ν0)dν
∫

Iνdν
, (2.40)

defines the mean line shift. This can be transformed to the mean velocity
〈u〉 by

〈u〉 =
∆ν

ν0
c . (2.41)

Line Width

As mentioned above, thermal Doppler broadening is one of the processes
that increases the line width. When calculating the line width it is common
to use the standard deviation,

〈wν〉 = σ =
√

M2 − M2
1 , (2.42)

where the subscript ’ν’ means that the width is measured in frequency, and
the second moment is given by

M2 =

∫

Iν(ν − ν0)
2dν

∫

Iνdν
. (2.43)

The line width can also be expresses as a function of wavelength, by using

∆λ ≈ c
∆ν

ν2
0

, (2.44)

so that we get
〈wλ〉 = c

wν

ν2
0

. (2.45)

By using equation 2.37 we can express the line width as a function of tem-
perature,

〈wT 〉 =

(

cwν

ν0

)2 mA

2kBTe
. (2.46)
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2.4.3 The Emission Line Intensity

We started this chapter by giving an expression for the emission line intensity,
Equation 2.2,

Iν =
hν

4π

∫ s

0
nuAul φν ds .

Then we discussed the processes which contribute to emission line formation
and found that in CE we can substitute Equation 2.12 and 2.14 into this
expression. The emission line intensity is then given by

Iν =
hν

4π
Ab

∫ s

0

n(Xm)

n(X)
nenHCluφνds . (2.47)

It is not intuitive from this expression which variables we need to know to
be able to compute the emission line intensity. Let us therefore define some
functions which include some of these parameters, and write explicitly which
variables they depend on.

Contribution Function

The contribution function is defined as

G(Te, ne) =
n(Xm)

n(X)
Clu . (2.48)

Since both the ionization fraction and the collision rate are dependent on
the electron temperature (see Equation 2.10 and Section 2.3.4), so is the
contribution function. Actually, it is strongly dependent on the temperature
and weakly dependent on the electron density. The contribution function
gives information about which temperature regimes in the stellar atmosphere
that contribute to the emission line. A plot of the contribution function
for two iron lines (Fe XI 188.2 Å and Fe XV 284.2 Å) and one sulfur line
(S VIII 198.6 Å) made using the CHIANTI (Dere et al., 1997; Landi et al.,
2006) function ’ch_synthetic’ can be seen in Figure 2.2. Clearly the S VIII
line originate at the coldest temperature regime, the Fe XI line at a warmer,
and the Fe XV line at an even hotter temperature regime of the atmosphere.
The contribution function is very narrow, thus we only need to consider a
few dex1 on each side of the temperature maximum, to include the regime
where this function is non-zero.

Differential Emission Measure

We can also define the differential emission measure,

DEM(Te) = nenH
ds

dTe
. (2.49)

1Dex is a measure of the difference in logarithmic values. E.g. the difference between
10

5.5 and 10
5.6 is one dex.
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Figure 2.2: The contribution function for three UV lines, Fe XI 188.2 Å (solid),
Fe XV 284.2 Å (dotted), and S VIII 198.6 Å (dashed).

The DEM gives an indication of the amount of plasma along the line of
sight (s) that is emitting the radiation observed and has a temperature
between Te and Te + dTe.

The Branching Fraction

In Equation 2.2 we could also have included the branching fraction (Brul).
This is a correction term that should be included if the electron has more
than one lower level it can de-excite to. The branching fraction is the fraction
of the ions that actually de-excites to the desired lower level, and is defined

Brul =
Aul

∑

k Auk
k < u , (2.50)

where Auk are the de-excitation rates for the different possible transitions
from level ’u’.

Computing the Emission Line Intensity

By using our newly defined functions, the intensity can be written

Iν =
hν

4π
Ab

∫

∆T
G(Te, ne)DEM(Te)φdTe , (2.51)

where ∆T is the area where the contribution function is non-zero as explained
above. The first part of this expression is as a first approximation considered
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constant through the solar atmosphere, while the contribution function and
DEM are functions of the electron density and temperature. To compute the
emission line intensity we thus need to know how the electron temperature
(Te) and the density (ne, nH) vary as functions of time (t) and height (z).
That is, we need to solve the hydrodynamic plasma equations.

2.5 The Hydrodynamic Plasma Equations

When describing the flow of plasma and gases it is common to use the hy-
drodynamic equations characterized by the density (ρ), velocity (u), and
internal energy (e). We are actually interested in the temperature, which is
related to the internal energy, e ∝ ρTe.

We assume the magnetic field to be strong, that is that the tension in
the magnetic field pB (a magnetic analogous to pressure) is much stronger
than the pressure pg,

β =
pg

pB
=

2µ0nkBT

B2
≪ 1 , (2.52)

where µ0 = 4π×10−7 H/m is the magnetical permeability of empty space, n
is the particle number density, and B is the magnetic field strength. When
this is the case the plasma dynamics have to follow the magnetic field lines,
and it is safe to restrict our calculations in one dimension along the magnetic
field.

We consider a transition region flux tube with length z of time independ-
ent area, A(z) = constant, and assume the atmosphere to be homogeneous
in the direction normal to z within the tube.

2.5.1 The Conservation Equations

As stated above, in a low-β plasma we can use the conservation equations
in one spatial dimension.

Conservation of Mass

∂ρ

∂t
+

∂

∂z
(ρu) = 0 (2.53)

This equation state that there are no sources or sinks for matter.

Conservation of Momentum

ρ
∂u

∂t
+ ρu

∂u

∂z
= − ∂

∂z
(p + Q) − ρg‖ , (2.54)

where g‖ is the absolute value of the component of gravity parallel with the
magnetic field, and the pressure is given by the ideal gas law,

p =
ρkBT

m
. (2.55)
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To ensure a continuous solution through the shocks that may develop, we
add an artificial viscous pressure (von Neumann and Richtmyer, 1950).

Q =

{

4
3ρl2 (∂u/∂z)2 for (∂u/∂z) < 0
0 for (∂u/∂z) ≥ 0

, (2.56)

where l is chosen to be some fraction of the average grid spacing.

Conservation of Energy

∂

∂t
(ρe) +

∂

∂z
(ρue) + (p + Q)

∂u

∂z
=

∂

∂z
(Fc + Fr + Fh) , (2.57)

where the internal energy (e) is the sum of the thermal and ionization energy
and the source and sink terms on the right hand side are:

• the conductive flux (Fc)

• the radiative losses (∂Fr/∂z)

• the heating function (Fh)

We give more details about how these are computed in Section 3.1.1.



Chapter 3

The Simulation Code

In this chapter we give an introduction to our numerical analysis. First we
explain what our problem is and why the solution has to be found numer-
ically. Then we examine how our simulation code computes the solution to
our problem. Finally, we describe how input is given to the program.

3.1 The Physical Problem

The aim of the thesis is to examine how the intensity and Doppler velo-
city of the emission lines detected by EIS respond to changes in the solar
atmosphere. The intensity is computed from Equation 2.47

Iν =
hν

4π
Ab

∫ s

0

n(Xm)

n(X)
nenHCluφνds .

As we discussed in Section 2.3, the ionization fraction n(Xm)
n(X) is determined

by the rate equation (Equation 2.16),

∂n(Xm)

∂t
+

∂

∂z
(n(Xm)u) = Sources(Te, ne) − Sinks(Te, ne) .

The sources and sinks in this equation are determined by the electron tem-
perature and to a smaller degree by the electron density. How these para-
meters vary as a function of time and space are described by the conservation
equations.

As explained in Section 2.5, we consider the magnetic field to be strong,
β ≪ 1, which restricts the plasma to follow the magnetic field lines. Thus
we can use the one dimensional conservation equations given by Equations
2.53, 2.54, and 2.57:

∂ρ

∂t
+

∂

∂z
(ρu) = 0

ρ
∂u

∂t
+ ρu

∂u

∂z
+

∂

∂z
(p + Q) − ρg‖ = 0

25
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∂

∂t
(ρe) +

∂

∂z
(ρue) + (p + Q)

∂u

∂z
− ∂

∂z
(Fc + Fr + Fh) = 0

In Section 2.5.1 we did not go into the details about how we compute the
sources and sinks in the energy equation. We look at this in the following
section.

3.1.1 Energy Sources and Sinks

Radiative Losses

We consider radiative losses from the transition region to be optically thin.
This should be a reasonable assumption, except for the Ly-α line which can
be treated as effectively thin (cf. Section 2.1).

We calculate the radiative loss by summing up the losses from the indi-
vidual processes

∂Fr

∂z
= Lr = ne

∑

hνulnlClu + Lrec + Lff . (3.1)

The resonance line losses are calculated by summing over all ionization stages
of the major elements hydrogen, helium, carbon, oxygen, neon, nitrogen,
and iron. Lrec is the loss from recombinations and Lff is the loss from
bremsstrahlung, which becomes important when the temperature exceeds
1 MK.

Conductive Flux

The conductive flux is mainly carried by electrons, and since the magnetic
field is strong, the electrons can only run parallel with the magnetic field.
Energy is transported away from the hot corona and down to the colder
chromosphere.

The conductive flux is computed according to Spitzer (1962)

Fc = −κ0T
5/2
e

dTe

dz
, (3.2)

where κ0 = 1.1× 10−11 Jm−1s−1K−7/2. The heat conduction is not depend-
ent of the number of electrons, only of the temperature and the temperature
gradient.

Heating Function

The heating function is the main heat source of the corona, and it is not well
known. We will not go into the physical details about it here, but only focus
on the way the heat is distributed.
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In our model the left and right hand side of the loop are heated independ-
ently. At the left hand side we add constant heat flux from z = 0 Mm and
up to a given point zleft

0 . From this point to the center of the loop the heat
input decays exponentially with scale height zleft

H . Similarly, from the right
hand side, the heat flux is constant from z = 15 Mm and down to a given
point zright

0 , from where it decays exponentially with scale height zright
H , to

the center of the loop. The heating amplitudes Fh,0, can also be differing for
the two sides of the loop.

The energy flux is for the left hand side given by

Fh(z) = Fh,0 m(zH , z0)

{

1 if z ≤ z0

e
−

z−z0
zH if z0 < z < L/2

, (3.3)

where L is the length of the loop. (Similar for the right hand side, but
heating in the opposite direction.) The scaling function m(zH , z0) is included
to ensure that all of the energy is deposited into the chosen area, and is given
by

m(zH , z0) =
1

1 − e−
Zdis
∆z

, (3.4)

where the heating distance is given by

Zdis =
L

2
− z0 . (3.5)

The actual heating rate, i.e. the energy deposition per unit time and unit
volume, is given by the negative divergence of the energy flux

Wh(z) = −dFh

dz
=

{

0 if z ≤ z0

z−1
H Fh if z0 < z < L/2

. (3.6)

An example of the energy deposition is shown in Figure 3.1. A given
total energy will produce higher temperatures when deposited in the corona
than in the transition region or chromosphere, since there are fewer particles
to share the energy.

3.1.2 Summary

To solve our problem we need to compute the rate equations, which are de-
termined by the conservation equations. We found in the previous section
that the energy equation has radiative losses (∂Fr/∂z) as one of its sink
terms. The radiative losses are again determined by the rate equation. We
clearly need a system that solves the conservation equations and the rate
equations consistently. This system is a coupled set of non-linear equations,
too large to be solved analytically. Therefore, we turn to numerically mod-
eling and use the numerical simulation code TTRANZ (Hansteen, 1991).
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Figure 3.1: The gradient of the heating function, Wh(z) (solid line) using zleft
0

=

4.5 Mm, zright
0

= 10.5 Mm, and zleft
H = zright

H = 4.0 Mm, over-plotted with a
typical loop temperature distribution (dotted line).

3.2 TTRANZ

TTRANZ is a numerical simulation code made to study the ionization state
and its coupling to line formation in the transition region. TTRANZ solves
the conservation equations of mass, momentum, and energy consistently with
the ionization rate equations, computed with the radiative losses consistent
with the ionization state we included in the energy equation.

TTRANZ solves an initial value problem, that is, we give as input the
solution to the problem at time t = t0, and then the program tries to calculate
the solution at the next time step. When the state at the new time is known,
TTRANZ uses it as an input to calculate the solution at the next, and so
forth, until a given time or number of time steps are reached. We will come
back to the details about how this is done below.

3.2.1 Discretization

Our first concern is to transform a mathematically formulated problem to one
that can be solved numerically. Thus, we have to discretize the equations we
wish to solve, that is, the conservation equations and the rate equations. We
choose to use the finite difference method. The equations are to be solved in
one spatial dimension and in time. The temporal and spatial discretizations
are done in two different ways.
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Temporal Discretization

The temporal discretization is done by using a weighted average of the
known, old value (superscript ’o’) and the unknown, new value (super-
script ’n’),

y = θy(n) + (1 − θ)y(o), 0 ≤ θ ≤ 1 . (3.7)

We will come back to the details about how the new solution is found in
Section 3.2.2. For θ = 1 this is an explicit scheme, for θ 6= 1 this is an
implicit scheme, and for θ = 1

2 this method is called the Crank-Nicolson
method. We use θ = 0.55.

Spatial Discretization

Even though we are doing our calculations in one dimension, we are still
dividing our space (a line) into boxes, where each box only has two interfaces
where plasma and heat can flow. The scalars, such as the density and internal
energy, are defined in the center of the boxes, while the vectors, such as the
velocity, are defined at the interfaces.

The spatial discretization is computed using the second order upwind
scheme of van Leer (1974). Upwind means that we are choosing which cells to
involve in the calculation by looking at which direction the advected quantity
is moving. For instance, if the velocity is moving to the right we are using
cells to the left of our point to estimate the momentum flux.

A second order method requires information from the two nearest neigh-
bor cells on either side of the computational cell being considered. This
results in a block penta-diagonal system which needs to be inverted.

The Adaptive Grid

In order to resolve the large gradients and shocks that might arise, the equa-
tions are formulated on an adaptive grid. That is, the mesh points are moved
towards the regions where the spatial gradients are large, so that the grid
density is greatest where it at any time is needed the most. The grid step
can vary in size both as a function of the loop length (z) and time (t).

The grid is allocated to follow gradients in the dynamic variables. The
spatial grid density, ρz = 1/(zi+1 − zi), is computed by solving the grid
equation of Dorfi and Drury (1987),

ρz(z) ∝ R(z) ≡

√

1 +

(

zav

fav

df

dz

)2

, (3.8)

where R is the required resolution, f represent any quantity that the grid
should respond to; e.g. u or Te. The subscript ’av’ means that we should
use some appropriate average of the subscripted variable, with fav used to
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weight quantities for which resolution is vital. There is a limit on how far a
given mesh point is allowed to move from one time step to the next.

Allowed changes in grid position as a function of time are controlled in
a similar manner.

3.2.2 Calculating the Next Time Step

To go from one (known) time step to the next we have to solve the coupled set
of non-linear equations including the grid equation, the conservation equa-
tions, and the rate equations for hydrogen and helium. The rate equations
for the other elements are calculated separately afterwards.

Mathematically the set of equations can be written

Fi(x1, x2, ..., xN ) = 0, i = 1, 2, ..., N , (3.9)

where F is the vector containing the conservation equations and rate equa-
tions, while x is the vector containing our variables, z, ρ, n, Te, nHI ...nHmH

,
nHeI ...nHemHe

, and ne. Assuming that we have mH levels of hydrogen and
mHe levels of helium, this gives 4 + mH + mHe + 1 variables at each depth
(grid) point. In total we then have

ndep × (5 + mH + mHe) (3.10)

unknowns to be solved at each time step, where ndep is the number of depth
points.

Each of the functions in F can be expanded in a Taylor series

Fi(x + δx) = Fi(x) +

N
∑

j=i

∂Fi

∂xj
δxj + O(δx2) . (3.11)

If Fi is linear in xj then ∂Fi/∂xj is independent of xj and our problem
is linear. Hence, the solution for δxj will converge immediately. If Fi is
non-linear, we must iterate to the correct solution at time step ’n’.

Let us denote the current and next iteration step with superscript ’k’
and ’k + 1’, respectively, and neglect the terms of order δx2 and higher, so
that

x
(k+1) = x

(k) + δx . (3.12)

By introducing vector form and writing the Jacobian ∂Fi

∂xj
≡ Jj we get

F(x(k+1)) = F(x(k)) + Jδx = 0 . (3.13)

The correction term can be found by inverting the Jacobian

δx = J
−1(−F(x(k))) . (3.14)
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Since the equations in F are non-linear we can not find the correct solu-
tion directly, but if we are sufficiently close to the solution, this method
should converge. We can now use these new values to recalculate the radi-
ative losses, and put them back into the conservation equations for a better
calculation to be done.

Iterating like this until the correction is less than some preset value is
called the Newton-Raphson method. The convergence of this method is
quadratic, meaning that an error of magnitude ǫ < 1 reduces to ǫ2 in the
next step. This is a very fast convergence, as long as it converges at all. If
the initial guess is too far from the solution it never converges, and we have
to restart the calculation of the new time step with a shorter dt. In our case
the convergence usually takes 4-5 iterations.

3.3 Input

We have now discussed how TTRANZ solves our problem, but we have not
said anything about how we are feeding the program with information. Since
TTRANZ solves an initial value problem, the initial state must be given.
In addition, we must inform the program about what our environment looks
like. This is given through the atomic models and the initialization file ’init’.
We take a look at these three input sources below.

3.3.1 The Atomic File

Every atom that we want to include in the model must have its one atomic
file, where all the information about the atom is listed. We have included the
elements hydrogen, helium, carbon, oxygen, iron, and magnesium. We are
interested in emission lines from helium and iron and therefore, we return
to the details about these elements in Chapter 4. The other elements are
included because they are among the most abundant elements in the Sun,
and therefore these atoms play an important part in the radiative losses at
temperatures around 105 K. Thus, it is important to calculate their states
correctly also when they are driven out of equilibrium.

The atomic model used by TTRANZ is defined by a text file structure
designed by Carlsson (1986, and later modifications) for the computer pro-
gram MULTI. The file is divided into different parts containing the needed
input:

• the element abundances

• the energy levels

• the excitation and de-excitation rates

• the ionization rates
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We will take a look at the different parts of the file below. Lines marked
with ’∗’ are comments for the reader and are not used by the program. We
use examples from the iron atomic model

Most of he data in the atomic files are from the HAO-DIAPER package
(Judge and Meisner, 1994). We have made some modifications to the iron
and helium atomic models, which we discuss in details in Sections 4.2 and
4.3.

We use the same set of atomic files throughout the thesis.

Element Abundances

The element abundance is considered constant through the solar atmosphere
and is calculated relative to the hydrogen abundance according to the for-
mula

n(X)

nH
= 10Abdex−12 . (3.15)

Abdex is listed in the atomic file like this:

fe rrum

*

* Ab_dex [dex] mass[mu] atom(Z)

7.67 55.85 26

Energy Levels

For every atom we need to state which energy levels to include. There is a
balance between including as few levels as possible to ensure computational
efficiency while still retaining enough levels to maintain physical fidelity.
That is, to ensure that there are enough levels for the ionization balance and
intensity output to be correct.

In this section of the atomic file we list the energy value in cm−1, the
multiplicity, and the spectroscopic notation for each energy level:

* #levels #transitions #continuum #fix

33 31 0 0

*

* energy multiplicity spectr. notation ion

0.000 1.00 ’fe vii 4s2 1se 0’ 7

1008184.600 2.00 ’fe viii 4s 2se 1/2’ 8

2226555.500 1.00 ’fe ix 3p6 1se 0’ 9

4122265.250 6.00 ’fe x 3p5 2po 3/2’ 10

4137948.450 2.00 ’fe x 3p5 2po 1/2’ 10

[..]
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Excitation and De-excitation Rates

In addition to listing the energy levels we also need to list the possible trans-
itions between the different energy levels and what their transition rates are.

The radiative rates are listed like this:

* radiative transitions

* upper lower f-value A coefficient

10 5 5.900e-01 [..] 2.22e+11 [..]

[..]

Even though both the oscillator strength (f) and the Einstein A coeffi-
cient are listed in the atomic file, TTRANZ only read the oscillator strength.
Thereafter it uses Equation 2.7 to calculate the Einstein A coefficient,

Aul = 6.671 × 1015 ωl

ωu

ful

λ2
.

The collision rates are found from CHIANTI (Dere et al., 1997; Landi et al.,
2006), which uses the design by Burgess and Tully (1992). They are listed
in the atomic file like this:

* temperature spline (2 indicates two knots)

temp

2 1.00000e+06 1.00000e+07

*

* thermally averaged collision strengths

ohm

* lower upper

5 6 2.69e-01 2.69e-01

TTRANZ uses the thermally averaged collision strength (Υ). When we
add lines and need to find this quantity we first use the CHIANTI procedure
’rate_coeff.pro’ to find the rate coefficient Clu, and thereafter Equation 2.10
to find Υ,

Υlu(Te) = Clu
ωl

C0
T 1/2

e e∆E/kBTe .

The energy differences are taken from CHIANTI.

Ionization and Recombination Rates

In the atomic file we also need to include the possible ionization and recom-
bination rates from the different levels in one ion to the different levels in
adjacent ions.
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The radiative recombination rates are given by Shull and van Steenberg
(1982), and listed in the atom file like this:

shull82

* lower upper acol tcol arad xrad

1 2 0.00e+00 1.45e+06 4.12e-11 7.59e-01

*

* adi bdi t0 t1

2.91e-01 2.29e-01 7.73e+05 6.54e+05

The electron impact ionization rates are given by Arnaud and Raymond
(1992), and listed in the atomic file like this:

* electron impact ionization coefficients

ar85-cdi

* lower upper

1 2

* #shell

3

* potential (eV) A B C D

124.20 14.60 -4.36 5.98 -10.50

180.00 67.90 -20.60 9.82 -53.70

220.90 15.60 -2.29 2.30 -10.60

The autoionization rates are given by Arnaud and Raymond (1992), and
listed in the atomic file like this:

ar85-cea

* lower upper

1 2

* Autoionization rate

1.000e+00

The dielectronic recombination rates are given by Burgess (1965), and listed
in the atomic file like this:

burgess

* lower upper rate

8 11 1.00e+00

3.3.2 The Init File

Input from the user to the program is given through the init file. In this file
we state what kind of simulation should be done and which considerations
that should be taken during the program run. The init file must be updated
before each simulation, in contrast to the atomic files, which are made only
once for one special type of study.
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The init file is divided into two parts. In the first section we set the time
length of our simulation, how often we save data, and how many iterations
we allow. Here we also specify quantities like the weighting in the tem-
poral discretization, the correction limit for the Newton-Raphson method,
the maximum allowed change in the grid, which elements to include in the
simulations, and so forth.

In the second part of the init file we decide the length of the loop, where
the heating is added, and what the heating scale height is. Here we can also
choose to add waves of different amplitudes to the system. We will address
the specific input in this part of the init file when discussing our simulations
in Chapter 5.

3.3.3 The Initial Solution

When starting TTRANZ we need the solution to our equations at time t = t0,
the initial values. The most common way to solve this challenge is to restart
the program with the output we have from an earlier run. E.g. if we want
a model with a different temperature structure than we already have, we
change the heating function in the init file, start the program and let it
simulate an hour or two (solar time), until the loop has settled. Then we
have the starting point we want for our new simulation.
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Chapter 4

The Atomic Model

In this chapter we describe our atomic models. Recall from Section 3.3.1 that
every atom included in our model must be defined in an atomic file, where
all the energy levels, transitions, and rates are listed. We limit ourselves
to go through in detail the atoms which have interesting lines in the EIS
wavelength band.

Before designing our atoms, we first have to look at the possibilities and
limitations of the spectrograph we are analyzing. We identify the spectral
lines usable for our purpose and plot the contribution functions for the most
interesting ones. Thereafter, we look in details at the atoms we choose to
use lines from, that is iron and helium. We identify which energy levels and
lines to include and check that our ionization balances are correct.

4.1 Identifying Spectral Lines

We want to simulate detections from the extreme ultraviolet (EUV) ima-
ging spectrograph (EIS) on board Hinode (Solar-B). EIS can observe in two
wavelength intervals, 170–210 Å (the short wavelength band) and 250–290 Å
(the long wavelength band). It is expected to have a spectral resolution of
3 km/s for Doppler velocities (Culhane et al., 2007). Some EIS specifica-
tions are listed in Table 4.1. We have to consider these specifications when
choosing which spectral lines to examine.

Wavelength coverage 170–210 Å and 250–290 Å
Dispersion 0.0223 Å/CCD pixel
Pixel equivalent width 34.3 km/s for 195 Å, and 23.6 km/s for 284 Å

Table 4.1: EIS specifications.

37
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Figure 4.1: Root-mean-square error in velocity due to counting statistics for the
short (dotted line) and long wavelength band (dashed line) as a function of total
number of counts.

4.1.1 Resolution Requirements

We are interested in examining the changes to the EIS spectral lines caused
by velocity changes in the solar atmosphere. Some of these velocities are
caused by oscillations with periods on the order of three or five minutes,
and we expect the velocity amplitudes to be in the order of 5–10 km/s. To
resolve these events we need to find spectral lines with which it is possible
to measure the velocity with an accuracy better than 5 km/s, with less than
about 60 seconds of exposure. Since EIS has a pixel equivalent width of
about 35 km/s for the short wavelength band and 25 km/s for the long
wavelength band (see Table 4.1), we clearly need sub-pixel accuracy to fulfill
our demands.

As noted in Section 2.4.1, an emission line is not an infinitely thin line,
but is in reality smeared out according to a line profile. Because of this, all
photons from one line are detected not only in one pixel, but are by EIS
actually detected in 5–7 neighboring pixels. By assuming that this emission
line has a given shape, e.g. Gaussian, we can estimate the maximum peak
better than the accuracy of the pixel equivalent width.

When using this technique we of course have to account for the counting
(Poisson) statistics, which is related to the total number of counts. The more
counts we get, the better our assumption of the line’s profile will be, and
thus also the assumption of the position of the peak.

In Figure 4.1 we have plotted the root-mean-square error in velocity due
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Figure 4.2: A synthetic spectra from a part of the short wavelength region made
with ’xspecplot.pro’, simulating an exposure time of 60 seconds with quiet sun.

to counting statistics. Here we have assumed that the lines are Gaussian
and the full width at half maximum (FWHM) is 0.05 Å (Mariska, 2005). To
get better resolution than 5 km/s we need 35-40 counts in total from the
emission line, both for the short and the long wavelength band.

4.1.2 Estimating the Number of Counts

To find the lines that give more than 35–40 counts in 60 seconds, which
is the criteria to resolve the expected velocity changes, we use the Solarsoft
(Bentely and Freeland, 1998) program ’xspecplot.pro’. This program is based
on the results from the CHIANTI atomic database (Dere et al., 1997; Landi
et al., 2006) and accounts for EIS’ effective area1. From this program we are
able to read out the maximum intensities for a line in data number2 (DN
= Nmax) as a function of the wavelength. See Figure 4.2. We need to find
how many counts we get in total (Ntot) for each spectral line. Therefore, we
need a relation between Ntot and Nmax. This can be found if we assume
the line to be Gaussian.

1The effective area describes how sensitive the detector is as a function of wavelength.
2Data number is the same as counts per pixel.
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Relation Between Nmax and Ntot for a Gaussian

The equation for a Gaussian distribution G(x) with area Ntot (which can
be associated by the total number of counts from one line) and standard
deviation σ is given by

G(x) =
Ntot
σ
√

2π
e
−

(

x2

2σ2

)

. (4.1)

The relation between Nmax and Ntot is given by

G(0) = Nmax =
Ntot
σ
√

2π

⇓
Ntot = Nmax · σ

√
2π .

(4.2)

The half maximum is found when e
−

(

x2

2σ2

)

= 1
2 , that is x = σ

√
2 ln 2. FWHM

is twice this size, and thus given by

FWHM = 2σ
√

2 ln 2 . (4.3)

This leads to the standard deviation

σ =
FWHM

2
√

2 ln 2
. (4.4)

Putting this into Equation 4.2 gives

Ntot = Nmax · FWHM ·
√

π

2
√

ln 2

≈ Nmax · FWHM .

(4.5)

If we assume that we need a total of at least 40 counts from each line,
this relates to DN as

DN = Nmax =
Ntot

FWHM
=

40 counts
0.05Å

0.0223Å/pix

≈ 18 counts/pix , (4.6)

where we have converted the FWHM of 0.05 Å into pixels by dividing by
the dispersion, 0.0223/pix (see Table 4.1). To be able to resolve the velocity
better than 5 km/s, we must thus have a spectral line with maximum counts
per pixel greater than 18.
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Wavelength Ion Temp. DN Lower level Upper level
[Å] [lg(T )] [counts/pix]

Short band
184.5 Fe X 6.0 18 3p5 2P3/2 3p4 (1D) 3d 2S1/2

186.9 Fe XII 6.1 21 3p3 2D5/2 3p2 (3P) 3d 2F7/2

188.2 Fe XI 6.1 65 3p4 3P2 3p3 (2D) 3d 3P2

192.4 Fe XII 6.1 77 3p3 4S3/2 3p2 (3P) 3d 4P1/2

192.8 Fe XI 6.1 26 3p4 3P1 3p3 (2D) 3d 3P2

193.5 Fe XII 6.1 182 3p3 4S3/2 3p2 (3P) 3d 4P3/2

195.1 Fe XII 6.1 285 3p3 4S3/2 3p2 (3P) 3d 4P5/2

198.6 S VIII 5.9 27 2p5 2P3/2 2s 2p6 2S1/2

202.0 Fe XIII 6.2 72 3p2 3P0 3p 3d 3P1

203.2 Fe XIII 6.2 2 3p2 3P1 3p 3d 3P0

203.8 Fe XIII 6.3 16 3p2 3P2 3p 3d 3D3

Long band
256.3 He II 4.9 22 1s 2S1/2 3p 2P3/2 (P1/2)
274,2 Fe XIV 6.3 20 3p 2P1/2 3s 3p2 2S1/2

284,2 Fe XV 6.3 30 3s2 1S0 3s 3p 1P1

Table 4.2: Wavelength, temperature of peak abundance, spectral notation, and
counts per pixel (assuming quiet sun) for the chosen EIS spectral lines. Full shells
are not included in the spectral notation.

4.1.3 Selected Lines

From ’xspecplot.pro’ we find the spectral lines which have Nmax higher than
18 for quiet sun with an exposure time of 60 seconds. Their wavelengths,
temperatures of peak abundance, spectral notations, and data numbers are
listed in Table 4.2. To this list we have also added the Fe XIII lines 203.2 Å
and 203.8 Å, which can be used for density diagnostics in combination with
the Fe XIII 202.0 Å line. He II 256.317 Å and 256.318 Å are for simplicity
treated as only one line, He II 256.3 Å. This line is blended by Si X 256.4 Å.

The list include interesting lines from the atoms iron, helium, and sulfur.
We have not included the element sulfur in our atomic model, but we will
go through the two other elements in greater details below.

The Contribution Functions

As stated in Section 2.4.3, the contribution function gives information about
which temperature interval an emission line is formed at. The temperature
noted in Table 4.2 is the temperature where the contribution function has
the greatest value. To get a better understanding about where the lines are
formed we have plotted the contribution functions for our iron lines in Figure
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Figure 4.3: The contribution functions, G(T), for our interesting iron lines. Upper
left: Fe X 184.5 Å (solid), Fe XI 188.2 Å (dotted), Fe XI 192.8 Å (dashed). Upper
right: Fe XII 186.9 Å (solid), Fe XII 192.4 Å (dotted), Fe XII 193.5 Å (dashed),
Fe XII 195.1 Å (dash-dotted). Lower left: Fe XIII 202.0 Å (solid), Fe XIII 203.2 Å
(dotted), Fe XIII 203.8 Å (dashed). Lower right: Fe XIV 274.2 Å (solid), Fe XV
284.2 Å (dotted).

Figure 4.4: The contribution function, G(T), for the He II 256.3 (solid) and the
Si X 256.4 blend (dotted).
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4.3, and the helium line with the silicon blend in Figure 4.4.3 Note that the
helium and silicone lines are formed in two different temperature intervals,
and that the silicone line’s contribution function takes on much higher values
than the helium one.

4.2 Designing the Iron Model

When we do numerical simulations it is important to decide to what degree
we want to include physical details in the simulations. The more details
we include, the more computationally demanding the simulations become.
It is important to find the balance between computational complexity and
accuracy. Because of this we have to pay attention to the information we
include in the atomic model. In the following subsections we will go through
the different iron ions and explain which levels we have chosen to include in
our model.

To make our iron-model we use the HAO-DIAPER package (Judge and
Meisner, 1994) as a starting point. Where this model lacks information we
use the CHIANTI atomic database (Dere et al., 1997; Landi et al., 2006)
to find the wavelength and spectral configuration, and the NIST online
database (Ralchenko et al., 2005) to find the oscillator strength. We will
come back to details about this below.

4.2.1 Included Ions

As can be seen from Table 4.2 we are interested in lines from the ions Fe X –
Fe XV. If we include only these ions, the ionization balance would not be
correct, because there exist other iron ions in the same temperature interval.
Therefore, we must include extra iron ions, even if we are not interested in
their lines. We choose to include the ions Fe VII – Fe XVIII in our model.
Ions outside this interval will only marginally influence our results. We will
come back to the ionization balance in Section 4.2.4.

4.2.2 Included Energy Levels

Now we have chosen which ions to include, and it is time to consider which
energy levels to include for each of them. The de-excitation rates for most of
the excited levels are much higher than the rates at which they are excited.
Therefore, there are very few ions in the excited stages. As noted in Section
2.2.3, this is not the case for meta-stable levels. We include the ground level,
which of course is the state in which most of the ions are, and the upper and
lower levels of our lines. In addition, we must consider whether there are

3These figures are made with the CHIANTI procedure ’ch_synthetic’ with data from
Mazzotta et al. (1998).
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any low-lying meta-stable levels which a notable fraction of the ions might
be in. If so, these must be included too.

Ions Without Interesting Lines

We are not interested in lines from the ions Fe VII – Fe IX and Fe XVI –
Fe XVIII. These are included only for the ionization balance to be correct. It
does not matter for us whether the ions are in the ground or excited states,
since this does not affect the ionization balance notably. Therefore, we only
include the ground levels of these ions.

Ions With Interesting Lines

For the ions Fe X – Fe XV we are interested in the lines listed i Table
4.2. In addition to the levels listed in this table, we use the CHIANTI

procedure ’show_pops.pro’ to examine if there are any meta-stable levels
that a notable part of the ions are in. We choose only to include levels with
population higher than 5% of the total ion population. We go through the
results below. The levels we include are summarized in Table 4.3, and the
Grotrian diagrams4 for the different ions can be seen if Figure 4.5.

Fe X has only one line we are interested in, 184.5 Å. We include the lower
and upper level of this line, 3p5 2P3/2 and 3p4 (1D) 3d 2S1/2. The first
is also the ground level of the ion. In addition this ion has one meta-
stable level which has a substantial fraction of the ion’s population
(19%), 3p5 2P3/2, which we include. Fe X is plotted in the upper left
panel of Figure 4.5.

Fe XI has two lines we are interested in, 188.2 Å and 192.8 Å. The first line
has the ground level as its lower level, 3p4 3P2, while the second line
has a meta-stable level as its lower level, 3p4 3P1. The lines have a
common upper level, 3p3 (2D) 3d 3P2. In addition to these levels, we
also include two meta-stable levels, 3p4 3P0 which has 6% of the ion’s
population and 3p4 1D2 which has 12%. Fe XI is plotted in the upper
right panel of Figure 4.5.

Fe XII has four lines we are interested in, 186.9 Å, 192.4 Å, 193.5 Å,
and 195.1 Å. The first line has 3p3 2D5/2 as its lower level while the
three others have 3p3 4S3/2. Their upper levels are 3p2 (3P) 3d 2F7/2,
3p2 (3P) 3d 4P1/2, 3p2 (3P) 3d 4P3/2, and 3p2 (3P) 3d 4P5/2, respect-
ively. In addition to these levels we also include the ground level, 3p3

2D3/2. Fe XII is plotted in the middle left panel of Figure 4.5.

4The Grotrian diagrams are made with the HAO-DIAPER procedure ’termdiag.pro’.
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Ion Spectr. not. Pop. Comment
Fe X 3p5 2P3/2 66 % Ground level, lower level

3p5 2P3/2 19 % Meta-stable level
3p4 (1D) 3d 2S1/2 <1 % Upper level

Fe XI 3p4 3P2 53 % Ground level, lower level
3p4 3P1 18 % Meta-stable level, lower level
3p4 3P0 6 % Meta-stable level
3p4 1D2 12 % Meta-stable level
3p3 (2D) 3d 3P2 <1 % Upper level

Fe XII 3p3 2D3/2 12 % Ground level
3p3 2D5/2 25 % Meta-stable level, lower level
3p3 4S3/2 58 % Meta-stable level, lower level
3p2 (3P) 3d 2F7/2 <1 % Upper level
3p2 (3P) 3d 4P1/2 <1 % Upper level
3p2 (3P) 3d 4P3/2 <1 % Upper level
3p2 (3P) 3d 4P5/2 <1 % Upper level

Fe XIII 3p2 3P0 15 % Ground level, lower level
3p2 3P1 30 % Meta-stable level, lower level
3p2 3P2 44 % Meta-stable level, lower level
3p2 1D2 10 % Meta-stable level
3p 3d 3P1 <1 % Upper level
3p 3d 3P0 <1 % Upper level
3p 3d 3D3 <1 % Upper level

Fe XIV 3p 2P1/2 54 % Ground level, lower level
3p 2P3/2 46 % Meta-stable level
3s 3p2 2S1/2 <1 % Upper level

Fe XV 3s2 1S0 92 % Ground level, lower level
3s 3p 1P1 <1 % Upper level

Table 4.3: Spectral notation (spectr. not.) and population percentage (pop.) for
the included levels in our iron atomic model. Only states with more than 5% of
the ion’s population and the states participating in making our lines are included.
The percentages have been rounded and full shells are not included in the spectral
notation.
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Figure 4.5: Grotrian diagrams for the iron ions: Fe X (upper left), Fe XI (upper
right), Fe XII (middle left), Fe XIII (middle right), Fe XIV (lower left), and Fe XV
(lower right).
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Fe XIII has three interesting lines, 202.0 Å, 203.2 å and 203.8 Å. The first
line has the ground level as its lower level, 3p2 3P0, while the others
have two meta-stable levels as their lower levels, 3p2 3P1 and 3p2 3P2.
Their upper levels are 3p 3d 3P1, 3p 3d 3P0, and 3p 3d 3D3, respect-
ively. In addition, we include a meta-stable level, 3p2 1D2, which has
10% of the ion’s population. Fe XIII is plotted in the middle right
panel of Figure 4.5.

Fe XIV has only one line we are interested in, 274.2 Å. This line has the
ground level as its lower level, 3p 2P1/2, and 3s 3p2 2S1/2 as its upper
level. In addition to these levels we include the meta-stable level, 3p
2P3/2, which has 46% of the ion’s population. Fe XIV is plotted in the
lower left panel of Figure 4.5.

Fe XV has only one line we are interested in, 284.2 Å. This line has the
ground level as its lower level, 3s2 1S0, and 3s 3p 1P1 as its upper level.
This ion has no meta-stable levels in which a substantial fraction of
these ions are in. Fe XV is plotted in the lower right panel of Figure
4.5.

4.2.3 Particular Changes

Two of the ions in the HAO-DIAPER package, Fe XIII and Fe XV, do not
include the levels and lines we are interested in. We therefore take a look at
the changes we have made to them below.

FE XIII

The 202.0 Å line is not included in the DIAPER file, but both the upper
and lower levels are. We add this line with the oscillation strength from
Aggarwal and Keenan (2004) and the collision strengths from CHIANTI.

The 203.2 Å line is listed with the wrong wavelength and further exam-
inations show that the upper level is listed with wrong energy compared to
CHIANTI. This is therefore changed from 503340 cm−1 to 501520 cm−1.

FE XV

The 284.2 Å line is not included in the DIAPER file. When comparing the
spectral notation with levels and lines in CHIANTI and NIST we find that
the upper level is listed with wrong energy value and therefore the wavelength
is wrong. We change the energy from 355439.156 cm−1 to 351911.000 cm−1,
and keep the rest of the parameters unchanged.
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Figure 4.6: Ionization balance for iron. The lines with the dots are CHIANTI

values using data from Mazzotta et al. (1998) and the lines with equal colors without
dots are our values for the same ion. Top panel: Fe IX (black), Fe X (red), Fe XI
(green), and Fe XII (blue). Bottom panel: Fe XIII (black), Fe XIV (red), Fe XV
(green), and Fe XVI (blue).

4.2.4 Comparing the Ionization Balance

To get an impression of how good our model is we can look at the ionization
balance, that is, the fraction of each ion to the total density of the element,

n(X+m)

n(X)
. (4.7)

Recall from Section 2.3 that the ionization and recombination rates are de-
pendent on the electron temperature (and weakly dependent on the electron
density), and therefore this fraction is also a function of temperature.

In Figure 4.6 we plotted the ionization equilibrium for our model (solid
line), together with the ionization equilibrium from CHIANTI using data
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from Mazzotta et al. (1998) (dotted line). The ions have the same color for
both models. Note that there are much fever data points in the CHIANTI

data, which makes the comparison more difficult.
Our Fe IX and Fe XVI ionic data do not agree with the CHIANTI data;

the former gives a much lower ionization fraction, while the latter gives a
much higher fraction. This disagreement is acceptable since we have no lines
from these ions. On the other hand, the ions we are interested in, Fe X –
Fe XV agree quite well with the CHIANTI data. Fe X, Fe XI and Fe XII
show a bit too low ionization fraction at temperatures lower than 106 K, but
are elsewhere in good agreement, assuming the CHIANTI data are missing
the point of maximum fraction for the Fe XII ion. Fe XIII, Fe XIV and
Fe XV are in good agreement, assuming the CHIANTI data are missing the
point of maximum fraction for the Fe XIV and Fe XV ions.

4.3 Designing the Helium Model

Helium is the other atom we want to design to be able to examine the Hinode
lines. The only helium line we are interested in is the He II 256.3 Å line.
This is in reality two lines (256.317 Å and 256.318 Å), but the wavelength
difference is so small that we consider them as only one line. This line is
blended by the Si 256.4 Å line.

4.3.1 Included Ions and Levels

Helium has only three possible ionization stages, so for the ionization balance
to be as correct as possible we include all of them.

Our atom file was originally made to study the 10840 Å line and includes
nine energy levels. This file is made with the HAO-DIAPER package and
uses excitation and ionization rates from Arnaud and Rothenflug (1985);
Shull and van Steenberg (1982); Burgess (1965), and photoionization rates
from Avrett et al. (1976). Instead of spending a lot of time examining which
levels could be removed, we choose to keep these nine levels and only add
the extra energy level and the transition rates for our line.

The information about the energy levels and rates for the combined 256.3
line are found from the HAO-DIAPER package. A Grotrian diagram5 for
our helium atom can be seen in Figure 4.7.

4.3.2 Comparing the Ionization Balance

As for hydrogen, we want to examine how good our model is. In Figure
4.8 we have plotted the ionization equilibria for our helium model (solid
line) along with the ionization equilibrium from CHIANTI using data from

5The Grotrian diagrams are made with the HAO-DIAPER procedure ’termdiag.pro’.
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Figure 4.7: Grotrian diagram for the helium atom.

Figure 4.8: Ion balance for helium. He I (black), He II (red), and He III (green).
The lines with the dots are CHIANTI values using data from Mazzotta et al. (1998)
and the lines with equal colors without dots are our values for the same ion.
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Mazzotta et al. (1998) (dotted line). As can be seen, the fit is generally
quite good. At T = 104.9 K and warmer, where our helium line is formed,
the fit is very good. Note that here it is our data which has less data points.
This is because the adaptive grid allocates the grid points away from the
almost isothermal chromosphere and towards the transition region where
the temperature and density gradients are larger.
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Chapter 5

Simulations

In this chapter we perform numerical simulations using the simulation code
TTRANZ and our atomic model. First we give an introduction to our loop
model and a short repetition of the heating mechanisms. Then we run three
distinct experiments: an initially hot loop that cools, an initially cold loop
that is rapidly heated, and a loop buffeted by acoustic waves from below.
For each simulation we go through the morphological changes in the loop.
Thereafter, we study how the different EIS spectral lines react to the event,
and examine whether any of our lines are driven out of ionization equilibrium.
Finally, we discuss which changes EIS is actually able to detect and whether
these changes can give us information about the physical processes in the
solar atmosphere.

5.1 The Loop Model

Loop Geometry and Boundary Conditions

The topology of the magnetic field in the solar atmosphere consists of loops
with footpoints connecting different photospheric regions. When the mag-
netic field is strong (low β) the dynamics in the plasma are constrained to
follow the magnetic field lines. Our loop model tries to resemble the plasma
in one loop. z is defined as a 180◦ semi-circular flux tube of length 15 Mm
and with no inclination relative to the vertical. The loop has footpoints in
the middle chromosphere, stretching through the transition region and up
into the almost isothermal corona. The area of the flux tube is kept constant,
which should be acceptable for a low β coronal loop.

The footpoint boundaries are set up so that the temperature and pressure
are driven towards 7000 K and 100 Pa, respectively, while at the same time
varying in a manner that allows the propagation of sound waves out of the
computational domain without reflection.

53
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The Heating Mechanism

As described in Section 2.5 the internal energy, and thus the temperature,
are defined by the conservation of energy equation (Equation 2.57),

∂

∂t
(ρe) +

∂

∂z
(ρue) + (p + Q)

∂u

∂z
=

∂

∂z
(Fc + Fr + Fh) .

Radiative losses (∂Fr/∂z) are determined by radiation mainly in the spec-
tral lines of highly ionized elements such as carbon, oxygen, and iron, and in
part by radiative recombination, and at temperatures higher than 1 MK, by
bremsstrahlung. The conductive flux (Fc) is determined solely by the tem-
perature profile, while the amplitude and scale height of the heating function
(Fh) are set manually in the ’init’ file (cf. Section 3.3.2). It is therefore the
latter parameter we can adjust to make changes in the temperature distribu-
tion of our atmosphere. All our simulations are run with a heating function
that exponentially decays with a scale height of 4 Mm, while the heating
amplitude is varied according to the experiment being conducted. Equal
amounts of energy are inserted into both footpoints. The sources and sinks
in the energy equation are described in greater detail in Section 3.1.1.

In this work we are not interested in the nature of the heating, only the
dynamic effects it has on the emission lines’ intensities and Doppler shifts
as detected by the EIS instrument. Our aims are to present a physically
reasonable scenario and to pursue its consequences in the EIS spectral lines.

Before starting our simulations we let the system relax into a steady
state, which is reached when the three sources and sinks are in balance,

∂

∂z
(Fc + Fr + Fh) = 0 . (5.1)

This is done to ensure that we are starting from an atmospheric state that
is more or less in equilibrium, so that we can isolate the effects we are
specifically studying here.

5.2 Warm Loop Cooling

An initially warm loop has been constructed and is shown in Figure 5.1. In
the left panel we plot the logarithm of the temperature, pressure and electron
density as functions of position along the loop (z). In the right panel we plot
the plasma velocity as a function of z.

The temperature is of order 6000 K in the loop footpoints (z = 0 Mm and
z = 15 Mm) extending almost 1 Mm up before the rapid transition region
temperature rise is encountered. Here at z ∼ 0.6 Mm the temperature rises
to some 1.8 MK in a few Mm. This temperature structure is maintained by
an input heat flux of 6000 W/m2 in both sides of the loop, deposited from
zleft
0 = 4.5 Mm and zright

0 = 10.5 Mm, with a scale height zleft
H = zright

H =
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Figure 5.1: Left panel: The initial distribution of temperature (solid), pressure
(dashed) and electron density (dotted) with distance (z) along loop. Right panel:
The initial velocity distribution with distance (z) along loop.

4.0 Mm. See Figure 3.1. The electron density starts out at 3×1018 m−3 in the
footpoints, decreasing to 2×1017 m−3 in the upper part of the chromosphere.
In the transition region the density drops of even more, and continues to
decrease down to 1016 m−3 in the corona.

The pressure starts of at 100 Pa in the footpoints, decreasing rapidly
with a scale height1 of some 100 km in the chromosphere, to about 0.5 Pa at
the bottom of the transition region. As the temperature rises the pressure
scale height increases and the pressure is almost constant through the upper
part of the loop. As seen in the right panel of Figure 5.1, the velocity is
nearly zero through the entire initial model.

At time t = 0 s the heating amplitude is reduced to 60 W/m2, and kept
at that value throughout the simulation. No other changes are made.

5.2.1 Loop Changes

We will describe the morphology of the loop plasma in terms of the thermo-
dynamical variables temperature, velocity, and density, and describe the
changes caused by the abrupt reduction in heat deposition. Have in mind
that these are actually changes in the loop morphology, and not necessarily

1The pressure scale height is given by Hp =
kBT

mg
, where g =

GMr

r2 is the local acceler-
ation of gravity.
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Figure 5.2: Temperature variations in the cooling loop. Left panel: Temporal
evolution of the temperature along the loop. Right panel: A time series of footpoint
to footpoint temperature profiles as a function of the distance (z) along the loop
taken at t = 0 s (solid), t = 40 s (dotted), t = 500 s (dashed), t = 1300 s (dash-
dotted), and t = 2500 s (dash-dot-dot-dotted).

changes that would be detected by the EIS instrument. We will come back
to the detectable changes, that is, the line intensity and Doppler velocity in
Section 5.2.2, and discuss which changes EIS is actually able to detect in
Section 5.2.4.

Temperature

When the heat flux is reduced, the loop cools. The evolution of the loop
temperature is shown in Figure 5.2 for the first hour after the heat flux
is reduced. Initially, the apex temperature falls some 0.1 MK, to less than
1.7 MK, during the first 40 seconds. The decrease is most rapid in the hottest
upper part of the loop, presumably due to the temperature sensitivity of the
conductive flux (Equation 3.2) which is the main energy loss mechanism in
the loop corona.

The loop continues to cool rapidly, falling some additional 0.7 MK to
1 MK in the next 460 s. After this time the temperature decrease is somewhat
slower and the lowest loop temperatures are found 1300 s after the heat flux
was reduced. At this time the loop apex has a temperature of 0.7 MK. In
the period t = 1300 s to t = 2500 s the loop apex temperature rises slowly
to some 0.9 MK at which time the temperature structure becomes static.

While the temperature of the upper, coronal part of the loop changes
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Figure 5.3: Velocity variations in the cooling loop. Left panel: Temporal evolution
of the velocity along the loop. Right panel: A time series of footpoint to footpoint
velocity profiles as a function of the distance (z) along the loop. The curves are
labeled in the same manner as in Figure 5.2.

rapidly, only small changes can bee seen in the loop footpoints. The upper
part of the chromosphere cools slightly, and the bottom of the transition
region moves upward some 0.2 Mm.

Velocity

The abrupt reduction in heat flux also has an effect on the plasma velocity
in the loop. There are no movements in the plasma at the onset of the
simulation, but after t = 0 s velocities start propagating along the loop,
as can be seen in Figure 5.3. The left panel of this figure shows a wave
pattern in the first 1000 s, fading out as time passes. From t = 500 s to
t = 2000 s there are plasma moving away from the loop apex and down into
both footpoints. After some 2500 s there are almost no movements left in
the loop.

The preferential rapid cooling of the loop apex causes a pressure drop
which generates a sound wave propagating towards the loop apex. The sound
speed is given by

us =

√

γ pg

ρ
. (5.2)

In our loop the coronal pressure is ∼ 0.5 Pa and the density is ∼ 10−11 kg/m3,
which yield a sound speed of some 100 km/s, assuming the ratio of specific
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heats to be γ = 5/3. From the left panel of Figure 5.3 the sound wave
period is estimated to be 100 s, giving a wavelength of some 10 Mm. This
wavelength is much larger than the temperature scale height in the transition
region and the wave is reflected due the rapid change in sound speed. Thus,
the wave is trapped in the corona, and is bouncing back and forth between
the two footpoints. It is this standing wave which is visible in the left panel
of Figure 5.3 during the first 1000 s of our simulation. The amplitude of
the wave is initially some 3 km/s, which can be seen at t = 40 s (dotted
line) in the right panel of the figure. The velocity drops steadily as the
wave is damped, presumably due to leakage into the transition region or by
radiative damping. The amplitudes in the lower parts of the loop decrease
fastest because of the higher density.

The changes in temperature described above have consequences for the
pressure balance in the loop. The loop is being supported by the pressure
gradient, and when the temperature changes, so does the pressure, according
to Equation 2.55,

p =
ρkBT

m
.

As the plasma cools it loses hydrostatic support, causing the material to
drain out of the loop. First, as noted above, the temperature and thus the
pressure near the top of the loop falls very rapidly, causing a short lived up-
flow towards the loop apex. As the loop continues to cool, the flow is being
moved downwards with an increasing velocity, reaching a 4 km/s maximum
some 1300 s after the simulation begins. As the loop re-heats, the flow slows
and the velocity is nearly zero after 2500 s.

Density

As seen in Figure 5.4 the density is almost unchanged during the first
500 s after the onset of our simulation. However, after this time and un-
til t = 1300 s the density at the loop apex is reduced by a factor three as
material drains out of the loop, from log(ρ) = −10.8 to log(ρ) = −11.2.
After this time the density continues to decrease, though more slowly, and
first stabilizes after 2500 s at log(ρ) = −11.4. While the fall of density in
the corona is dramatic, only small changes are seen in the density structure
of the transition region and none is seen in the chromosphere.

The measured drop in density can explain the temperature increase in
the latter stages of our simulation after t = 1300 s. The energy input is
constant throughout the simulation, and a reduction in density causes fewer
particles to share this energy input. As a result the temperature will rise
slightly as the density drops.
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Figure 5.4: Density variations in the cooling loop. Left panel: Temporal evolution
of the density along the loop. Right panel: A time series of footpoint to footpoint
density profiles as a function of the distance (z) along the loop. The curves are
labeled in the same manner as in Figure 5.2.

5.2.2 The EIS Lines’ Response to the Changes

Let us now see how the EIS spectral lines are affected with the changes
in loop temperature, density and velocity as described above. The lines’
intensity and velocity are calculated according to the line momentum analysis
described in Section 2.4.2.

In order to cover a large span in temperature we choose to study in detail
six iron lines, one from each of the ions Fe X to Fe XV, as well as one He II
line. The lines’ wavelengths and temperatures of peak abundance are listed
in Table 5.1.

Intensity

Changes in intensity as a function of time are shown in Figure 5.5. The
intensity of the three iron lines with the lowest temperatures of peak abund-
ance, Fe X 184.5 Å, Fe XI 188.2 Å, and Fe XII 195.1 Å, are plotted with
solid, dotted, and dashed lines, respectively. These lines’ intensity increases
slightly during the first few hundred seconds of the simulation. After this
time, their intensities fall dramatically until t ≈ 1300 s. The coolest line
(184.5) drops off by a factor ten from its initial value, while the warmest
line (195.1) decreases by three orders of magnitude. After t ≈ 1300 s, as the
loop re-heats the decrease of intensity is halted, and the intensity increases.
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Wavelength Ion Temperature
[Å] log(T [K])

184.5 Fe X 6.00
188.2 Fe XI 6.08
195.1 Fe XII 6.13
202.0 Fe XIII 6.20
274.2 Fe XIV 6.28
284.2 Fe XV 6.32
256.3 He II 4.92

Table 5.1: Temperature of peak abundance for the examined EIS lines.

Figure 5.5: Intensity variations for the EIS spectral lines Fe X 184.5 Å (solid), Fe
XI 188.2 Å (dotted), Fe XII 195.1 Å (dashed), Fe XIII 202.0 Å (dash-dotted), Fe
XIV 174.2 Å (dash-dot-dot-dotted), Fe XV 284.2 Å (plus), and He II 256.3 Å (long
dashes) as a function of time. The intensities have been normalized to be one at
t = 0 s.
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When the loop has stabilized after 2500 s, the intensity of the first line has
been reduced by a factor 30 compared to its level at the onset of the simu-
lation, the second has fallen by two orders of magnitude, and the third by
three orders of magnitude.

The three hotter iron lines Fe XIII 202.0 Å, Fe XIV 274.2 Å, and
Fe XV 284.2 Å are also plotted in Figure 5.5. These lines start decreasing in
intensity immediately, with the ion of highest temperature of peak abundance
falling very rapidly indeed. All these lines have a minimum after about
1300 s, when the coolest (202.0) has been reduced by five orders of magnitude
while the warmest (284.2) has been reduced by nine orders of magnitude.
When the loop has stabilized after 2500 s, the 202.0 line has fallen by four
orders of magnitude compared to the onset of the simulation, the 274.2 line
is reduced by five orders of magnitude, and the 284.2 line by six orders of
magnitude.

In contrast, the He II 256.3 Å, which is formed in the lower transition
region, shows fairly small variations in intensity. This line is plotted with
long dashes in Figure 5.5. The intensity of this line falls less than a factor
ten, and it has no distinct minimum at t ≈ 1300 s when the loop is at its
minimum temperature.

Let us now try to explain why these lines’ intensity changes as it does.
The intensity is related to the number density in the upper level that con-
tributes in the line formation (nu) as stated in Equation 2.2,

Iν =
hν

4π

∫ s

0
nuAul φν ds .

When coronal equilibrium is valid, nu should relate to the temperature and
density as (cf. Equation 2.12)

nu = nlne
Clu

Aul
∝ ρ2f(T ) . (5.3)

We will now try to explain the variations in nu by the changes in temperature
and density, and examine whether these variations relate to the changes in
the lines’ intensity.

The number density of the upper level of the three iron lines which
start by increasing in intensity the first few hundred seconds, Fe X 184.5 Å,
Fe XI 188.2 Å, and Fe XII 195.1 Å, are plotted in the upper left, upper right,
and middle left panels of Figure 5.6, respectively. At time t = 0 s these lines
are mostly formed in the transition region and lower corona. After 40 s,
the number density in each of the upper levels has barely decreased in these
regions while it has increased substantially in the corona, where the temper-
ature is falling rapidly. In total nu for these lines has increased (or at least
not decreased), resulting in a stronger emission from these lines.

The temperature keeps falling, and is reduced to 1 MK after 500 s. In
the mean time, the number density population has continued to fall of in
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Figure 5.6: Variations in the number density of the upper level (nu) for the EIS
spectral lines Fe X 184.5 Å (upper left panel), Fe XI 188.2 Å (upper right panel),
Fe XII 195.1 Å (middle left panel), Fe XIII 202.0 Å (middle right panel), Fe XIV
174.2 Å (lower left panel), and Fe XV 284.2 Å (lower right panel) as a function of
the loop distance (z) plotted for different times. The curves are labeled in the same
manner as in Figure 5.2.
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Figure 5.7: Variations in the number density of the upper level (nu) for the EIS
spectral line He II 256.3 Å as a function of the loop length (z). The left panel
shows the whole loop, while the right panel only shows the left transition region.
The curves are labeled in the same manner as in Figure 5.2.

the transition region and increased in the corona. Now nu is greatest in
the loop apex. This transfer in line formation region, in addition to the
small reduction in density so far, yield that the total nu has not decreased
substantially. After t = 500 s, there are no places in the loop warm enough
for these ions to be formed in sufficient numbers, as the apex temperature is
lower than the ions temperature of peak abundance. In addition, the density
(ρ) in the upper parts of the loop starts decreasing. Therefore, the number
population of the upper level of these ions falls of, and nu reaches a minimum
after 1300 s as the temperature reaches its minimum value. From t = 1300 s
to t = 2500 s nu increases slightly in all parts of the loop as a result of the
rise in temperature, and despite the continuing reduction in density.

After 2500 s, nu for the 184.5 line is reduced by almost a factor 30, the
188.2 lines is reduced by almost a factor 100, while nu for the 195.1 line is
reduced by a factor 3000. This is exactly the same difference as we found
for the intensity for these lines.

The number density of the upper level of the three hotter iron lines,
Fe XIII 202.0 Å, Fe XIV 274.2 Å, and Fe XV 284.2 Å, are plotted in the
middle right, lower left, and lower right panels of Figure 5.6, respectively.
These lines are mostly formed in the upper parts of the loop at the onset of
the simulation (t = 0 s), and as the temperature falls there are no warmer
places where the population can increase, as it was for the lines formed
at lower temperatures. Therefore, the total nu for these lines is reduced
immediately, and so is the intensity. As the temperature continues to drop
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off and the density is reduced substantially in the upper parts of the loop, nu

continues to decrease. This causes the intensity to fall of by a large number
of magnitudes and the lines to essentially disappear.

The number density of the upper level of the transition region He II
256.3 Å line is plotted in Figure 5.7. This line is mostly formed in the
transition region, but also partly in the corona. Therefore, we plot nu for
different times as a function of the loop distance in the left panel, while
in the right panel we focus on the left footpoint transition region only. As
the loop cools, its apex never reaches the temperature of peak abundance
for the helium line at 104.9 K. Therefore, the reduction in temperature does
not effect the nu-population as much as for the iron lines. This causes the
intensity to decrease as the density goes down, but in much less degree than
the iron lines. After 2500 s, nu for this line has been reduced by almost
a factor ten, which is the same as the reduction in intensity. The moving
transition region is clearly visible in the right panel of Figure 5.7.

Doppler Velocity

The Doppler velocity for the lines discussed above is plotted in Figure 5.8.
Each line shows a sum of the two velocity signals, that is, the sound wave
with period of 100 s and on longer time-scales the mass flow from the apex
and down into the footpoints.

The velocity is different for the different lines, with the iron ions with
lowest temperature of peak abundance having the greatest negative velocities
the first 500 s, and after this the helium line has greatest negative velocity.
The maximum velocity of the plasma movement along the loop was found
in the previous section to be after 1300 s, which is almost the same time as
the maximum Doppler velocity measured by the helium line. The iron lines
on the other hand, do not show an exact minimum but have their greatest
negative velocity from 400 to 700 s after the onset of the simulation. The
reason for this is that in the beginning of the simulation, the plasma velocity
is greatest in the corona, where the iron lines are formed. As time passes
the region of the maximum velocity is moving down into the lower corona
and transition region, where the helium line is formed. This can be seen in
the right panel of Figure 5.3. Therefore, the velocity of this line is rising
(negatively) as long as the loop velocity is increasing. The iron lines, on the
other hand, stop increasing as the plasma velocity peak passes the region
of their peak abundance. In addition, the lines with lowest temperature of
peak abundance are formed more in the lower regions of the loop, where the
velocities contribute more to the line of sight velocity.
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Figure 5.8: Doppler velocity variations for the EIS spectral lines Fe X 184.5 Å
(solid), Fe XI 188.2 Å (dotted), Fe XII 195.1 Å (dashed), Fe XIII 202.0 Å (dash-
dotted), Fe XIV 174.2 Å (dash-dot-dot-dotted), Fe XV 284.2 Å (long dashes), and
He II 256.3 Å (plus) as a function of time. Velocities are defined as positive towards
a detector situated vertically above the loop apex.

The amplitude of the sound wave pattern is also different for the different
lines. There are not many differences between the iron lines, but the helium
line has clearly smaller amplitudes. This comes from the fact that the helium
line is formed in the transition region, where the density is much higher than
in the corona.

5.2.3 Ionization Equilibrium

We want to examine whether any of our lines go out of equilibrium during
the simulation. This is done by looking at how the fraction of the number
density of the upper level of the line to the total density of the element is,
compared to the contribution function.

In ionization equilibrium it is assumed that the ion populations respond
instantaneously to changes in the plasma temperature (and density), e.g.
for iron according to Figure 4.6. However, if there is a rapid change in
temperature, such as in this simulation, then we could have cases where this
assumption might not be valid. For instance, this might result in ions of
high charge state existing at much lower temperatures than they would if
they where in ionization equilibrium. Emission lines can be driven out of
equilibrium by mass flows through temperature gradients. In this case, the
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Figure 5.9: Variations in the ratio of the number density of the upper level (nu)
to the total number density of iron (nfe) for the EIS spectral lines as a function of
temperature and for different times. Fe X 184.5 Å (upper left panel), Fe XI 188.2
Å (upper right panel), Fe XII 195.1 Å (middle left panel), Fe XIII 202.0 Å (middle
right panel), Fe XIV 174.2 Å (lower left panel), and Fe XV 284.2 Å (lower right
panel). The curves are labeled in the same manner as in Figure 5.2. All panels are
over-plotted by the contribution function of the line (plus) in arbitrary units.
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Figure 5.10: Variations in the ratio of the number density of the upper level (nu)
for He II 256.3 Å to the total number density of helium (nhe) as a function of
temperature and for different times, over-plotted by the contribution function of
the line (plus) in arbitrary units. The curves are labeled in the same manner as in
Figure 5.2.

ions might be transported into regions with temperatures different from their
temperature of peak abundance before they have time to recombine or ionize
(Joselyn et al., 1979). In low density plasma the characteristic time-scale of
an ionic population can be many minutes.

It is important to know whether the lines go out of equilibrium if one want
to use the lines to do temperature or density diagnostics. In addition, one
should pay attention to the ionization equilibrium when using the assumption
I ∝ nenHG(T ), since the lines can have non-zero contribution also where
the contribution function is zero.

The fraction of the number density population of the upper level to the
total element number density is plotted for the iron lines in Figure 5.9 and
for the helium line in Figure 5.10. In the same figures we have also plotted
the contribution functions for the lines to examine whether the populations
have moved out of equilibrium during the simulation.

At t = 0 s, all our lines are in ionization equilibrium; this is expected since
the loop was relaxed into a steady state before the onset of the simulation.
Despite the rapid changes in the temperature and the subsequent mass flows
in the beginning of this simulation, none of our iron lines go notably out of
equilibrium. The helium line does not go far out of equilibrium, but it might
seem like the temperature of peak abundance at t = 500 s and t = 1300 s are
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a bit higher than they should be in ionization equilibrium. At t = 2500 s,
the loop has settled and the line is brought back to equilibrium.

The helium line is more easily brought out of equilibrium since it is
formed in the transition region where the temperature scale height is much
shorter than in the corona. In this region only small plasma velocities are
needed to move the ions away from their equilibrium.

5.2.4 Interim Conclusion

We have in the previous sections discussed the real changes in temperature,
velocity and density in our loop, as a consequence of the abrupt reduction
of heat input at time t = 0 s, and how these changes would affect some
of the EIS spectral lines. EIS has limitations in its spectral resolution, so
all the changes we have seen here might not actually be detected by the
spectrograph. When choosing which lines to study in Chapter 4, we set the
requirements to lines for which it is possible to resolve velocities of 5 km/s
with 60 s exposure time.

The sound wave periods detected in this simulation are in the order of
100 s, with only the first period having amplitudes greater than 1.5 km/s (see
Figure 5.8). This would unlikely be resolved by EIS. The greatest Doppler
velocity amplitude is the one of the He 256.3 Å line of 2 km/s which is also
probably a bit too small to be detected, but since the flow lasts for more
than 500 seconds the cooling loop flow may be marginally detectable.

Even so, the EIS spectrograph is still not useless for detecting this kind
of event. The enormous reduction in intensity, e.g. the Fe XV 284.2 Å
decreasing with nine orders of magnitude, would definitely be detected, and
give a hint that the heating rate and thus the temperature has been reduced.
Not all of the lines react as violently to the changes though, e.g. He II 256.3
Å which falls by almost a factor ten, and Fe X 184.5 Å which is reduced by
almost a factor thirty.

We have also seen that none of our iron lines go far out of equilibrium
during this simulation, so we can relatively safely use these lines for temper-
ature and density diagnostics. We can also assume that I ∝ nenHG(T ) is a
good model for the iron line formation for a cooling loop. With the helium
line on the other hand, more care must be taken, since this line might be
brought out of equilibrium by the cooling event that defines this simulation.

5.3 Cold Loop Heating

The starting point of this simulation is the cool loop that resulted from the
simulation described in Section 5.2, that is, t = 3600 s is now set to t = 0 s.
The initial temperature, pressure, electron density, and velocity as functions
of position along the loop can be seen in Figure 5.11.
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Figure 5.11: Left panel: The initial distribution of temperature (solid), pressure
(dashed) and electron density (dotted) with distance (z) along loop. Right panel:
The initial velocity distribution with distance (z) along loop.

The temperature is of order 6000 K in the loop footpoints extending
almost 1 Mm up before the rapid transition region temperature rise is en-
countered. Here, at z ≈ 0.8 Mm, the temperature rises to almost 1 MK over
a few Mm. This temperature structure is maintained by an input heat flux
of 60 W/m2 in both sides of the loop, deposited from zleft

0 = 4.5 Mm and
zright
0 = 10.5 Mm, with a scale height zleft

H = zright
H = 4.0 Mm. The electron

density starts out at 3 × 1018 m−3 in the footpoints, decreasing to 2 × 1017

m−3 in the upper part of the chromosphere. In the transition region the
density drops of even more, and continues to decrease down to 1015 m−3 in
the corona.

The pressure starts of at 100 Pa in the footpoints, decreasing rapidly to
less than 0.05 Pa, until the end of the transition region. As the temperature
rises, the pressure scale height increases, and the pressure is almost constant
through the upper part of the loop. As seen in the right panel of Figure
5.11, the velocity is nearly zero through the entire initial model. At t = 0 s
we change the heating flux back to what it was before the cooling started
in the previous section, namely 6000 W/m2, and start our new experiment.
No other changes are made.
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Figure 5.12: Temperature variations in the heating loop. Left panel: Temporal
evolution of the temperature along the loop. Right panel: A time series of footpoint
to footpoint temperature profiles as a function of the distance (z) along the loop
taken at t = 0 s (solid), t = 40 s (dotted), t = 80 s (dashed), t = 280 s (dash-dotted),
and t = 2000 s (dash-dot-dot-dotted).

5.3.1 Loop Changes

As in the Section 5.2.1 we first describe the morphology of the loop plasma in
terms of the thermo-dynamical variables temperature, velocity, and density,
and study the changes caused by the abrupt rise in heat deposition.

Temperature

When we increase the heat flux, the loop heats. The evolution of the loop
temperature is shown in Figure 5.12 for the first hour after the heat flux is
increased. Initially, the loop heats rapidly with the apex temperature rising
some 0.5 MK during the first 40 seconds, and some additional 0.3 MK over
the next 40 s. The heat flux is added in the upper parts of the loop, so this
is where the loop temperature rises first, but since conduction is effective
in transporting heat, the other parts of the upper loop soon follow. The
temperature continues to increase another 200 s, but much more slowly, and
the loop apex has a maximum temperature of almost 2 MK at t = 280 s.
Then the loop cools slightly to some 1.8 MK, at which the temperature is
stable after some 2000 s.

While the temperature of the upper, coronal part of the loop changes
rapidly, only small changes can bee seen in the footpoints. The upper part
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Figure 5.13: Velocity variations in the heating loop. Left panel: Temporal evolution
of the velocity along the loop. Right panel: A time series of footpoint to footpoint
velocity profiles as a function of the distance (z) along the loop. The curves are
labeled in the same manner as in Figure 5.12.

of the chromosphere heats up slightly, moving the bottom of the transition
region downwards some 0.2 Mm.

Velocity

Also in this experiment does the change in heat input affect the velocities
in the plasma, and this time more violently and on shorter time-scales than
in the previous experiment. The loop velocities for the first hour of the
simulation can be seen in Figure 5.13. The left panel of this figure shows a
wave pattern the first 300 s, and a mass flux from the footpoints towards the
apex during the first 1500–2000 s.

The rapidly increasing temperature in the loop apex causes an increased
pressure which creates a sound wave propagating from the loop apex and
down towards the footpoints. With a pressure of ∼ 0.05 Pa and density of
∼ 10−12 kg/m3 we get a sound velocity of some 100 km/s. As in the previous
experiment the wave is being reflected when it reaches the transition region
due to the rapid change in sound speed. The wave amplitude reaches its
maximum of 20 km/s after 80 s, and thereafter it is being quickly damped.
The left panel of Figure 5.13 shows only three oscillations, with a period of
about 100 s. As in the previous experiment the wave is damped presumably
due to leakage into the transition region or by radiative damping. The
oscillations disappear in the lower parts of the loop first, because of the
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Figure 5.14: Density variations in the heating loop. Left panel: Temporal evolution
of the density along the loop. Right panel: A time series of footpoint to footpoint
density profiles as a function of the distance (z) along the loop. The curves are
labeled in the same manner as in Figure 5.12.

higher density. As noted above, the plasma is first moving downwards, but
as the loop heats it is able to support more mass, causing the material to
flow upwards. This mass flux lasts some 2000 s, with continuously decreasing
velocity.

Density

As can be seen in Figure 5.14, the density is almost constant the first 80
seconds, except for a small decrease around the loop apex and increase in
the lower part of the corona. From 80 s the density is increasing through all
of the upper parts of the loop, with the apex value increasing with a factor
four, from log(ρ) = −11.4 at t = 0 s to log(ρ) = −10.8 at t = 3600 s. As in
the previous experiment, only small changes are seen in the density structure
of the transition region and none is seen in the chromosphere.

The increased density causes the loop heating to stabilize and the loop
cools slightly after 280 s. This is the opposite effect of what was seen in the
previous experiment.

5.3.2 The EIS Lines’ Response to the Changes

Now we take a look at what happen to the EIS spectral lines as a result of the
loop changes in temperature, density, and velocity as described above. The
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Figure 5.15: Intensity variations for the EIS spectral lines Fe X 184.5 Å (solid), Fe
XI 188.2 Å (dotted), Fe XII 195.1 Å (dashed), Fe XIII 202.0 Å (dash-dotted), Fe
XIV 174.2 Å (dash-dot-dot-dotted), Fe XV 284.2 Å (plus), and He II 256.3 Å (long
dashes) as a function of time. The intensities have been normalized to be one at
t = 0 s.

lines’ intensity and velocity are calculated according to the line momentum
analysis described in Section 2.4.2.

We discuss the same lines as in the previous simulation. Their wavelength
and temperature of peak abundance are listed in Table 5.1.

Intensity

The four hottest iron lines, Fe XII 195.1 Å, Fe XIII 202.0 Å, Fe XIV 274.2 Å,
and Fe XV 284.2 Å, show a rapid intensity rise the first few hundred seconds
after the heat flux is increased. Changes in intensity as a function of time
is shown in Figure 5.15. The lines with the highest temperature of peak
abundance are increasing the most, with 284.2 increasing by five orders of
magnitude in 100 s. The two coldest iron lines (Fe X 184.5 Å and Fe XI
188.2 Å) do not share that rapid increase, but rather more varying intensity,
before they start rising. After the first few hundred seconds the iron lines’
intensity out-level, and after 1000 s it is more or less constant. The hottest
line (284.2) has then increased by six orders of magnitude, while the coldest
(184.5) has increased by a factor ten.

The helium line shows a different pattern after the rise in the first few
hundred seconds. Thereafter, the intensity is almost constant until t =
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500 s, and then it falls of slowly the rest of the simulation, ending up having
increased by less than a factor ten.

As in the previous experiment, we take a look at the number density of
the upper level that contributes to each of the lines and examine whether the
changes in this variable relates to the changes in density and temperature,
and if it can explain the variations in intensity. nu is plotted for the iron
lines in Figure 5.16 and for the helium line in Figure 5.17.

At the onset of the simulation, the two coldest iron lines, Fe X 184.5 Å
and Fe XI 188.2 Å, are formed mainly in the upper parts of the loop. nu for
these lines is plotted in the upper left and upper middle panel of Figure 5.16,
respectively. As the temperature starts rising, the lower corona is getting
warm enough and the upper corona is getting too warm for these ions to
be formed in sufficient numbers. Therefore, the number density falls in the
loop apex and increases in the transition region and lower corona. These
changes cause the varying intensity the first 100 s for these lines. As the
density starts increasing after 80 s, nu increases in all parts of the loop, and
the intensity starts rising. At the end of the simulation, nu for the 184.5 line
has increased by a factor ten and for the 188.2 line by a factor hundred.

The number density of the upper level of the four hotter iron lines,
Fe XII 195.1 Å, Fe XIII 202.0 Å, Fe XIV 274.2 Å, and Fe XV 284.2 Å,
increases all over the loop. nu for these lines is plotted in the middle left,
middle right, lower left, and lower right panels of Figure 5.16, respectively.
The lines nu increases rapidly in the beginning of the simulation, because of
the enormous rise in temperature. This explains the rapid intensity growth
during the first 100 s of the simulation. The 195.1, 202.0 and 274.2 lines get
a small ’bump’ at the apex at t = 280 s, probably because of the temperature
there being greater than their temperature of peak abundance. nu continues
to increase after t = 280 s, even if the temperature goes down, since the
density is still rising. At the end of the simulation, nu for the 284.2 line has
increased by six orders of magnitude, the 274.2 by five orders of magnitude,
the 202.0 line by three orders of magnitude, and the 195.1 line by two orders
of magnitude. This matches the intensity variations.

The number density of the upper level of the He 256.3 Å line is plotted
in Figure 5.17. The peak abundance of this line is at 104.9 K, but the
contribution function is non-zero up until 106 K (cf. Figure 4.4). As the
temperature rises in the loop apex, nu decreases there, which can be seen in
the left panel of the figure. At the same time, nu increases in the transition
region and lower corona, so that in total nu increases. After 80 s the density
starts rising, causing nu, and thus the intensity, to increase even further. nu

is increasing the first 280 s, and then decreases slightly as the temperature
falls. nu increases from t = 0 s to t = 2500 s by almost a factor ten, which is
the same as for the intensity. The moving transition region is clearly visible
in the right panel of Figure 5.17.
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Figure 5.16: Variations in the number density of the upper level (nu) for the EIS
spectral lines Fe X 184.5 Å (upper left panel), Fe XI 188.2 Å (upper right panel),
Fe XII 195.1 Å (middle left panel), Fe XIII 202.0 Å (middle right panel), Fe XIV
174.2 Å (lower left panel), and Fe XV 284.2 Å (lower right panel) as a function of
the loop distance (z) plotted for different times. The curves are labeled in the same
manner as in Figure 5.12.
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Figure 5.17: Variations in the number density of the upper level (nu) for the EIS
spectral line He II 256.3 Å as a function of the loop length (z) plotted for different
times. The left panel shows the whole loop, while the right panel only shows the
left transition region. The curves are labeled in the same manner as in Figure 5.12.

Doppler Velocity

The Doppler velocity for the lines discussed above is plotted in Figure 5.18.
The iron lines show both the sound wave bouncing back and forth in the
corona the first 300 s and the mass flux towards the apex. The helium line
shows only the first period of the sound wave and a small mass flow towards
the apex until t = 700 s, before it shows essentially no velocity.

At the onset of this simulation all iron lines are formed in the corona,
whereas the helium line is formed in the transition region. Because of the
lower density in the loop apex the iron lines show more of the wave pattern
than the helium line does.

As in the previous experiment the lines with lowest temperature of peak
abundance, except the helium line, have the greatest Doppler velocity. The
reason for this is that the lines formed furthest down in the loop contribute
more to the line of sight velocity. After 80 s the loop velocity is at its
maximum, with greatest amplitude around z = 5 Mm (and z = 10 Mm).
Therefore, the iron lines, which are formed in this region, have their greatest
Doppler velocity at this time. The helium line has its maximum velocity
a bit later when the maximum loop velocity amplitude reaches the region
of the helium line’s peak abundance. As the loop stabilizes, the mass flow
decreases, until there are essentially now velocities left after 2000 s.
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Figure 5.18: Doppler velocity variations for the EIS spectral lines Fe X 184.5 Å
(solid), Fe XI 188.2 Å (dotted), Fe XII 195.1 Å (dashed), Fe XIII 202.0 Å (dash-
dotted), Fe XIV 174.2 Å (dash-dot-dot-dotted), Fe XV 284.2 Å (long dashes), and
He II 256.3 Å (plus) as a function of time. Velocities are defined as positive towards
a detector situated vertically above the loop apex.

5.3.3 Ionization Equilibrium

As in the previous section, we want to examine whether any of our lines go
out of equilibrium during the simulation. This is done by looking at how
the fraction of the number density of the upper level of the line to the total
density of that element is, compared to the contribution function. This is
plotted as a function of temperature and for different times for the iron lines
in Figure 5.19 and for the helium line in Figure 5.20.

At t = 0 s all our lines are in ionizational equilibrium. This is expected
since the loop was relaxed into a steady state before the onset of the simu-
lation. Despite the rapid changes in temperature and the subsequent mass
flows in the beginning of this simulation, none of our iron lines go far out of
equilibrium.

The helium line, on the other hand, does go out of ionizational equilib-
rium. Already after 40 s, the nu peak of this line has moved to a higher
temperature than it should be at in equilibrium. The line continues to stay
out of equilibrium for at least the next 300 s, but has returned to equilibrium
at t = 2000 s when the loop is back in a steady state.
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Figure 5.19: Variations in the ratio of the number density of the upper level (nu)
to the total number density of iron for the EIS spectral lines as a function of
temperature and for different times. Fe X 184.5 Å (upper left panel), Fe XI 188.2
Å (upper right panel), Fe XII 195.1 Å (middle left panel), Fe XIII 202.0 Å (middle
right panel), Fe XIV 174.2 Å (lower left panel), and Fe XV 284.2 Å (lower right
panel). The curves are labeled in the same manner as in Figure 5.12. All panels
are over-plotted by the contribution function of the line (plus) in arbitrary units.
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Figure 5.20: Variations in the ratio of the number density of the upper level (nu)
for He II 256.3 Å to the total number density of helium as a function of temperature
and for different times, over-plotted by the contribution function of the line (plus)
in arbitrary units. The curves are labeled in the same manner as in Figure 5.12.

5.3.4 Interim Conclusion

We have in the previous sections discussed the real changes in temperature,
velocity and density in our loop model, as a consequence of the abrupt in-
crease of heat input at time t = 0 s, and how these changes affect some of
the EIS spectral lines. It is now time to discuss which of these changes EIS
would actually be able to detect.

The iron lines, and especially those with low temperature of peak abund-
ance, show great Doppler velocity amplitudes the first few hundred seconds
after the onset of the simulation. The detector will probably be able to de-
tect these mass flow velocities of more than 5 km/s, but not likely notice
the sound wave signal because of the rapid amplitude damping. EIS will not
be able to detect the Doppler velocities of the helium line and the iron lines
with highest temperature of peak abundance. The great intensity increase in
the iron lines will surely be noted by EIS. The Fe 284.2 Å line increases with
five orders of magnitude in only 100 s. The helium line and the iron lines
with low temperature of peak abundance do not have this violent increase in
intensity. The He II 256.3 Å and Fe X 184.5 Å increase by about an order
of magnitude. Both the Doppler velocity and the intensity increase would
indicate a change in the heating rate, causing the temperature in the loop
to rise.
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Figure 5.21: Left panel: The initial distribution of temperature (solid), pressure
(dashed) and electron density (dotted) with distance (z) along loop. Right panel:
The initial velocity distribution with distance (z) along loop.

We also see that care must be taken with ionization equilibrium assump-
tions. The He II 256.3 Å line observed by EIS is easily brought out of
equilibrium by the heating event that defines this simulation.

5.4 Medium Hot Loop with Waves

An initially medium hot loop has been constructed and is shown in Figure
5.21. In the left panel we plot the logarithm of the temperature, pressure,
and electron density as functions of position along the loop (z). In the right
panel we plot the plasma velocity as a function of z.

The temperature is of order 6000 K in the loop footpoints. At z ≈ 0.8 Mm
the transition region begin, and the temperature rises to some 1.1 MK over
a few Mm. This temperature structure is maintained by an input heat flux
of 850 W/m2 in both sides of the loop, deposited from zleft

0 = 4.5 Mm
and zright

0 = 10.5 Mm, with a scale height zleft
H = zright

H = 4.0 Mm. The
electron density starts out at 3 × 1018 m−3 in the footpoints and decreases
to 2 × 1016 m−3 in the upper part of the chromosphere. In the transition
region the density drops of even more, and continues to fall down to some
1015 m−3 in the corona.

The pressure starts of at 100 Pa in the footpoints, decreasing rapidly to
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less than 0.1 Pa until the end of the transition region. As the temperature
rises, the pressure scale height increases and the pressure is almost constant
through the upper parts of the loop. As seen in the right panel of Figure 5.21,
the velocity is nearly zero through the entire initial model.

At time t = 0 we start forcing on waves from the left footpoint of the
loop. To introduce the sound wave, the lower left boundary moves as a piston
with velocity

u = uamp cos (2πfrt − π/2) , (5.4)

where t is the time, fr = 0.0056 Hz is the frequency (three minute oscilla-
tion), and uamp = 0.7 km/s is the amplitude. No other changes are made.

5.4.1 Loop Changes

Now we describe the morphology of the loop plasma in terms of the thermo-
dynamical variables temperature, velocity, and density, and study the changes
caused by the forced oscillation.

Velocity

There are no movements in the loop at the onset of the simulation, but
starting at t = 0 s we force a wave from the left footpoint every 180 s. The
loop velocity the first hour of the simulation can be seen in the left panel
of Figure 5.22. A wave can be seen traveling from left to right, the first
starting from the left transition region (z ∼ 1 Mm) after 100 s, and then a
new wave starts every 180 seconds. At first, the velocity amplitude increases
for each oscillation, but from t = 1000 s the amplitude is constant. The right
panel of the same figure shows the footpoint to footpoint velocity profile as
a function of the loop length for chosen time steps through one wave period.

The first wave is visible in the lower left part of the corona after 100 s.
In the chromosphere the pressure is about 100 Pa and the density is about
10−6 kg/m3, which yield a sound speed of some 10 km/s. With this speed it
should take about 60 s to pass trough the chromosphere, where the density is
high, so the wave amplitude will be small and barely visible. In addition, with
the piston movement given in Equation 5.4, the first sound wave maximum
originates in the left footpoint (z = 0) after some 45 s. Therefore, the wave
is first visible when it reaches the corona after some 100 s, as is shown in the
left panel of Figure 5.22.

In the corona the pressure is about 0.07 Pa and the density is about
5 × 10−12 kg/m3, which yield a sound speed of 150 km/s. As in the two
previous experiments, the wave is reflected when it reaches the right footpoint
transition region due to the rapid reduction in sound speed. With this sound
speed and a distance of some 13.5 Mm from one transition region to the other,
it should take the wave about 180 s back and forth through the corona. This
is exactly what is seen in the left panel of Figure 5.22; a new wave is starting
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Figure 5.22: Velocity variations in the loop with forced oscillations. Left panel:
Temporal evolution of the velocity along the loop. Right panel: A time series of
footpoint to footpoint velocity profiles as a function of the distance (z) along the
loop taken at t = 900 s (solid), t = 950 s (dotted), t = 1000 s (dashed), t = 1150 s
(dash-dotted), and t = 1100 s (dash-dot-dot-dotted).

when the previous one has come back to the left transition region. The first
few waves show greater and greater velocity amplitude because the reflected
wave is added to the new. After some 1000 s an equilibrium situation has
occurred, and all successive waves have the same amplitude.

In the right panel of Figure 5.22 we follow the sixth wave, starting at
t = 900 s. The new wave is starting from z = 0 Mm, but is not yet visible,
while the previous wave has been reflected and is moving back towards the
loop apex. At t = 950 s, the wave has come up into the transition region and
the amplitude has increased, an effect of the reduced density. 50 s later, the
wave amplitude is at its maximum, some 40 km/s, passing the loop apex.
At t = 1050 s, the wave has been reflected at the right transition region
and is moving back towards the loop apex. Another 50 s later, the wave is
still moving towards lower z-values, now passing the loop apex again. At
the same time, a new wave is forming at z = 0 Mm. The amplitude of the
reflected wave is slightly less than the one of the original wave.

Density and Temperature

The waves we are forcing on the system are sound waves, which of course
compress the plasma as they travel along the loop, causing the density and
temperature to increase. At the same time, the density and temperature are
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Figure 5.23: Density variations in the loop with forced waves. Left panel: Temporal
evolution of the density along the loop. Right panel: A time series of footpoint to
footpoint density profiles as a function of the distance (z) along the loop. The lines
are labeled as in Figure 5.22.

reduced in the tracks of the previous wave front, with a minimum 90 s after
the maximum. The evolution of the loop density can be seen in Figure 5.23
and the loop temperature in Figure 5.24. The left panels show the evolution
the first hour after we started forcing on the waves, while the right panels
show the footpoint to footpoint density and temperature, respectively, along
the loop for some chosen times.

At t = 900 s, the previous wave has been reflected and is now moving
towards lower z-values. This can be seen by the density decrease in the left
hand side of the loop, in the tracks of the wave before it was reflected, and
the increased density around the wave at z = 10 Mm. No effect of the new
wave that is forming can yet be seen in the left footpoint. The transition
region is oscillating with a period of 180 s, moving some 0.3 Mm up and down
from its starting point, which can be clearly seen in the left panel of Figure
5.23. At t = 950 s, the new wave reaches the beginning of the transition
region, where the density now is at its minimum. At t = 1000 s, the wave
passes the apex and increases the density there. As the wave is reflected, the
wave amplitude in the left footpoint reaches its maximum. 50 s later, the
increased density due to the reflected wave can be seen at the right transition
region. The reflected wave increases the density, but not as much as it did
before it was reflected.

In addition to the increased density in the region of the wave peak, there
is always a temperature increase too, as can be seen in the right panel of
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Figure 5.24: Temperature variations in the loop with forced oscillations. Left panel:
Temporal evolution of the temperature along the loop. Right panel: A time series
of footpoint to footpoint temperature profiles as a function of the distance (z) along
the loop. The lines are labeled as in Figure 5.22.

Figure 5.24. The temperature increase is, as for the density, smaller when
it is the reflected wave that passes. The velocity amplitude is largest in the
upper parts of the loop, where the density is smallest. The propagating wave
amplitude, the reduced temperature in the tracks of the previous wave, and
the moving transition region is clearly seen in the temperature plot in the
left panel of the same figure.

5.4.2 The EIS Lines’ Response to the Changes

Now we take a look at how to the EIS spectral lines react to the loop changes
in temperature, density, and velocity described above. The lines’ intensity
and velocity now to be discussed are calculated according to the line mo-
mentum analysis described in Section 2.4.2.

We are discussing the same lines as in the two previous experiments.
Their wavelength and temperature of peak abundance are listed in Table
5.1.

Intensity

The changes in the lines’ intensity as a function of time is shown in Figure
5.25. All lines show oscillating intensities with periods of some 180 s. The
amplitudes are increasing for every new wave for the first 1000 s and then



5.4. MEDIUM HOT LOOP WITH WAVES 85

Figure 5.25: Intensity variations for the EIS spectral lines Fe X 184.5 Å (solid), Fe
XI 188.2 Å (dotted), Fe XII 195.1 Å (dashed), Fe XIII 202.0 Å (dash-dotted), Fe
XIV 174.2 Å (dash-dot-dot-dotted), Fe XV 284.2 Å (plus), and He II 256.3 Å (long
dashes) as a function of time. The intensities are normalized to one at t = 0 s.

stabilizes. The iron lines are in phase, but have different amplitudes. The
ions with highest temperature of peak abundance show the greatest intensity
variations, with Fe XV 284.2 Å increasing and decreasing with more than
a factor ten. The helium line has its top some 50 s earlier and its bottom
some 50 s later than the iron lines. This line has at maximum three times
its original intensity.

Let us now see if we can explain the varying intensities by the changes
in the loop morphology. As the wave passes, both the density and the tem-
perature increase, and afterwards they both decrease, as discussed above.
This cause the number density of the upper levels of our lines (nu) to change
according to Equation 5.3,

nu ∝ ρ2f(T ) .

This again affects the intensity as stated in Equation 2.2,

Iν =
hν

4π

∫ s

0
nuAul φν ds .

The number density of the upper level for the iron lines is plotted in Figure
5.26 and for the helium line in Figure 5.27.
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Figure 5.26: Variations in the number density of the upper level (nu) for the EIS
spectral lines Fe X 184.5 Å (upper left panel), Fe XI 188.2 Å (upper right panel),
Fe XII 195.1 Å (middle left panel), Fe XIII 202.0 Å (middle right panel), Fe XIV
174.2 Å (lower left panel), and Fe XV 284.2 Å (lower right panel) as a function of
the loop distance (z) plotted for different times. The curves are labeled in the same
manner as in Figure 5.24.
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Figure 5.27: Variations in the number density of the upper level (nu) for the EIS
spectral line He II 256.3 Å plotted for different times. The left panel shows the
whole loop, while the right panel shows only the left transition region. The curves
are labeled in the same manner as in Figure 5.24.

At t = 900 s, the wave is in the right part of the loop, which can be
seen by the increased nu in all panels of Figure 5.26. At the same time,
nu is decreased in the left part of the loop including the loop apex, due
to the reduced density and temperature in the track of the wave that just
passed by. Therefore, the iron lines have reduced intensity. The larger the
line’s temperature of peak abundance is, the greater is the reduction in the
left part of the loop, causing the warmest lines to have the greatest drop-
off in intensity. A few tens of seconds later the reflected wave passes the
loop apex, and the temperature and density in this area increase. This give
a small growth in the iron lines’ intensity. The helium line, which is now
partly formed in the reduced density area from the previous wave, has almost
its lowest intensity.

At t = 950 s, the new wave has reached the left transition region. This
can be seen by the nu increase in this region in all panels of Figure 5.26.
But, at the same time the nu reduction in the right hand side including the
apex, is much greater than the increase, which causes these lines to have
reduced intensity. The helium line has a larger population in the upper level
now, due to the down-movement of the transition region. Therefore, the
helium line brighten. As the wave reaches the corona, some 30 s later, the
intensity of the iron lines also increases. The density is lowest in the loop
apex, causing the wave amplitude, and thus the density and temperature to
increase more in this region. Therefore, the lines with highest temperature of
peak abundance, which are formed furthest up in the loop, show the largest
intensity amplitude. This amplitude is at its maximum when the wave passes
the loop apex at t = 1000 s. As the wave passes, nu increases in the right
side of the loop, but falls off in the left part and the loop apex, so the the
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Figure 5.28: Doppler velocity variations for the EIS spectral lines Fe X 184.5 Å
(solid), Fe XI 188.2 Å (dotted), Fe XII 195.1 Å (dashed), Fe XIII 202.0 Å (dash-
dotted), Fe XIV 174.2 Å (dash-dot-dot-dotted), Fe XV 284.2 Å (long dashes), and
He II 256.3 Å (plus) as a function of time. Velocities are defined as positive towards
a detector situated vertically above the loop apex.

total nu is reduced. Therefore, the intensity of the iron lines is reduced. As
the transition region moves upwards, the total nu for the helium line also
falls, causing this line’s intensity to decrease. After 180 s a new wave starts
forming, and the variations are repeated.

Doppler Velocity

The Doppler velocity for the lines discussed above is plotted in Figure 5.28.
All lines show a wave pattern with periods of 180 s, but the helium line
is a bit out of phase compared to the iron lines. The helium line and the
iron lines with highest temperature of peak abundance are the ones with
largest positive amplitude, while the iron lines with lowest temperature of
peak abundance have greatest negative amplitude. As for the intensity, the
velocity amplitude is increasing for the first 1000 s and is thereafter constant.
The velocity peak is then some 15 km/s for the helium line and -20 km/s for
the Fe X 184.5 Å line.

At t = 900 s, the reflected wave causes most of the loop plasma to travel
towards the left hand side of the loop, with less movement in the apex and
most movement in the left transition region. This causes the iron lines to
show almost no velocity while the helium line shows negative velocity. As
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Figure 5.29: Variations in the ratio of the number density of the upper level (nu)
for He II 256.3 Å to the total number density of helium as a function of temperature
and for different times, over-plotted by the contribution function of the line (plus)
in arbitrary units. The curves are labeled in the same manner as in Figure 5.24.

the wave passes the loop apex, the iron lines show negative velocity too.
Some 40 s later, the new wave passes through the transition region where
the helium line is formed. Thus, this line changes instantly from a negative
to a positive velocity. At this time the iron lines still show negative velocity,
but a few tens of seconds later, when the wave reaches the area where the
iron lines are formed, they get a positive velocity too. As the wave passes
the loop apex around t = 1000 s, all lines still have positive velocity, but the
amplitudes are decreasing.

5.4.3 Ionization Equilibrium

As in the two previous experiments, we want to examine whether any of our
lines go out of equilibrium during the simulation. This is done by looking
at how the fraction of the number density of the upper level of the line to
the total density of that element is, compared to the contribution function.
This is plotted as a function of temperature and for different times for the
iron lines in Figure 5.30 and for the helium line in Figure 5.29.

At the onset of the simulations the loop is in a steady state and thus all
lines are in ionization equilibrium. Despite the forced waves, with subsequent
changes in temperature and density, none of our iron lines go far out of
equilibrium. The helium line on the other hand, does go out of ionizational
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Figure 5.30: Variations in the ratio of the number density of the upper level (nu)
to the total number density of iron for the EIS spectral lines as a function of
temperature and for different times. Fe X 184.5 Å (upper left panel), Fe XI 188.2
Å (upper right panel), Fe XII 195.1 Å (middle left panel), Fe XIII 202.0 Å (middle
right panel), Fe XIV 174.2 Å (lower left panel), and Fe XV 284.2 Å (lower right
panel). The curves are labeled in the same manner as in Figure 5.24. All panels
are over-plotted by the contribution function of the line (plus) in arbitrary units.
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equilibrium. As the sound wave passes through the transition region, e.g.
at t = 950 s, the greatest number density of He II ions is transported to
a warmer part of the loop than it would normally be, because of the large
temperature gradient in this region. This is easily seen at t = 950 s in
Figure 5.29. As the mass flow is reduced the helium line starts returning to
equilibrium, and reaches it before t = 1050 s.

5.4.4 Interim Conclusion

We have in the previous sections discussed the real changes in temperature,
velocity, and density in our loop as a result of the forced sound waves, and
examined how this would affect some of the EIS spectral lines. It is now
time to discuss which of these changes EIS would actually be able to detect.

All our spectral lines show Doppler velocity oscillations with a period of
180 s. With amplitudes of more than 10 km/s EIS will clearly be able to
detect these. The iron lines with highest temperature of peak abundance
show an intensity increase and decrease of about one order of magnitude,
while the iron lines with lowest temperature of peak abundance only show
50 per cent variation. All have a period of 180 s. Even though these intensity
changes are not as violent as for the previous experiments, they should still
be detected by EIS. Both the intensity variations and the Doppler velocities
will indicate a three minute oscillation traveling through the loop, changing
the density and temperature.

We also find that the He II 256.3 Å line might be brought out of equi-
librium when waves travel through the loop, as observed in this simulation.
The iron lines do not go far out of equilibrium, and should thus be safe to
use for temperature and density diagnostics.
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Chapter 6

Conclusion

6.1 Summary

The aim of this thesis is to find out more about how we can relate the
EIS observations to the physical phenomena in the solar atmosphere. More
explicitly, we want to examine how the EIS spectral emission lines’ intensity
and velocity react to temperature, density, and velocity changes. We are
especially interested in the iron lines formed in the corona around 106 K. To
solve this problem we do numerical simulations of phenomena in the solar
atmosphere and estimate how the quantities detectable with EIS react to
the changes.

Before we start simulating, we need to know which spectral lines are ob-
servable with EIS. To identify these lines, we make use of a Solarsoft (Ben-
tely and Freeland, 1998) program based on the CHIANTI atomic database
(Dere et al., 1997; Landi et al., 2006). We need lines for which the velocity
is possible to resolve with an accuracy better than 5 km/s with 60 seconds
quiet sun observation. The following lines fulfill our demands: Fe X 184.5 Å,
Fe XII 186.9 Å, Fe XI 188.2 Å, Fe XII 192.4 Å, Fe XI 192.8 Å, Fe XII 193.5 Å,
Fe XII 195.1 Å, S VIII 198.6 Å, Fe XIII 202.0 Å, He II 256.3 Å, Fe XIV 274.2 Å,
and Fe XV 284.2 Å. The helium line is actually two separate lines, 256.317 Å
and 256.318 Å, but we treat them as only one line. This line is blended by
Si X 256.4 Å.

As the EIS spectral lines are found, we design atomic models including
these lines. We concentrate on the design of the iron atomic model, but we
also make small modifications to the helium atomic model. The atomic data
are mostly found from the HAO-DIAPER package (Judge and Meisner,
1994), but supplied with data from the CHIANTI atomic database and the
NIST online database (Ralchenko et al., 2005).

For our numerical calculations we use the simulation code TTRANZ

(Hansteen, 1991). This program solves the hydrodynamic plasma equations
in one dimension, along with the rate equations which determine the radiat-
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ive losses from the transition region and corona. The code simulates a plasma
caught in a semi-circular magnetic loop with footpoints in the chromosphere,
stretching through the transition region and up into the corona.

We do three simulation runs; a warm loop cooling, a cold loop heating,
and a medium warm loop with forced waves. Before each run we let the
system relax into a steady state, to isolate the effects we want to study. In
the two first simulations we alter the heat input while in the last we force
three minute waves on the system from the left footpoint. For each of the
runs we analyze how the temperature, velocity, and density change in the
different parts of the loop as a result of these events. We also examine how
the EIS spectral emission lines react.

Intensity variations can be seen in all our lines, with the most extreme,
Fe XV 284.2 Å, changing by several orders of magnitude in the two first
experiments. Doppler velocities are also measured from our lines. The lines
showing the largest velocities are He II 256.3 Å in the cooling loop experiment
and Fe X 184.5 Å in the heating loop experiment. All our simulations cause
sound waves to propagates in the corona. These signals can only be resolved
with EIS in the wave experiment.

We are also interested in whether our lines are driven out of ionization
equilibrium. We find that none of our iron lines go far out of equilibrium
during any of our simulations, but that the helium line does. Therefore,
care must be taken when the helium line is used for temperature and density
diagnostic. The iron lines should be safe to use, at least as long as the event
is not much more dramatic than in our simulations.

Changes in the EIS spectral lines’ intensity and Doppler velocity can
thus give us information about events in the solar atmosphere. The iron
lines should be safe to use for temperature and density diagnostics, while
care has to be taken with the helium line.

6.2 Further work

There are still more work that can be done to get a better understanding of
the interpretation of the EIS data. First of all, we can do better examinations
of which EIS spectral lines that are usable. We have only gone through the
lines which have good enough resolution in quiet sun. The list for active
regions and flares would contain more lines. Secondly, the design of the
atomic models can be done in a more thorough way. We only included the
energy levels that contain more than five per cent of the total population of
the ion. To make a more qualified guess of which levels it is safe to remove,
we should remove one level at a time, run a simulation and examine the
effect on the lines’ intensity due to the change. In addition, there have been
published newer data, e.g. dielectronic rates coefficients by Gu (2003), and
these should be examined to decide whether changes to our atomic models
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should be made. At last, we do not know exactly how small intensity and
velocity variations the EIS instrument is able to detect and how good our
model is at representing the Sun. Thus, comparing our simulations with real
data would give better understanding of the reliability of our results and
conclusions. Last, but not least, further simulation experiments are needed
to see how the lines respond to other types of events than discussed in the
thesis.
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