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Abstract

Hybrid particle–field molecular dynamics is a molecular simulation strategy wherein parti-

cles couple to a density field instead of through ordinary pair potentials. Traditionally consid-

ered a mean-field theory, a momentum and energy-conserving hybrid particle–field formalism

has recently been introduced, which was demonstrated to approach the Gaussian Core model

potential in the grid-converged limit. Here, we expand on and generalize the correspondence

between the Hamiltonian hybrid particle–field method and particle–particle pair potentials.

Using the spectral procedure suggested by Bore and Cascella, we establish compatibility to

any local soft pair potential in the limit of infinitesimal grid spacing. Furthermore, we docu-

ment how the mean-field regime often observed in hybrid particle–field simulations is due to

the systems under consideration, and not an inherent property of the model. Considering the

Gaussian filter form in particular, we demonstrate the ability of the Hamiltonian hybrid par-

ticle–field model of recovering all structural and dynamical properties of the Gaussian Core

model, including solid phases, a first-order phase transition, and anomalous transport proper-

ties. We quantify the impact of the grid spacing on the correspondence, as well as the effect of

the particle–field filtering length scale on the emergent particle–particle correlations.
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1 Introduction

Hybrid particle–field (hPF) methods are a group of schemes for efficient molecular resolution

simulations of soft matter systems. In hPF, the computationally expensive non-bonded pair in-

teractions of traditional molecular dynamics approaches are done away with, instead coupling

particles not explicitly bonded to each other only through interactions with a density field. In

the last two decades, these strategies have been employed to simulate a wide range of soft mat-

ter systems through the Monte Carlo-based single chain in mean-field (SCMF) method developed

by Müller and co-workers1,2 and by molecular dynamics (MD).3,4 Through coarse particle repre-

sentations and quasi-instantaneous approximations of the time-evolution of the density field, hPF

approaches have been successful in modelling many important phenomena, including lamellar and

non-lamellar lipid phases,5–10 polyelectrolytes,11–13 polypeptides,14 nanoparticles,15 carbon nan-

otubes,16 and self-assembly of block copolymers.17

The original derivation of the hPF scheme relied upon a self-consistent field theoretical ap-

proach and the mean-field approximation through the application of a saddle point approximation.

In fact, to what extent the mean-field approximations introduced in the formal derivation of the

hPF-MD equations affect the sampled conformational space, and more directly, MD equations,

have not been rigorously discussed in the past literature. In general, it has been accepted that, in

an hPF simulation, particles move rather independently, producing weakly structured liquids.

Traditionally in hPF approaches, a particle–mesh strategy is employed wherein molecules are

distributed on a coarse computational grid according to a distribution window function, e.g. cloud-

in-cell18 (CIC). Subsequently, the force density is calculated as finite difference derivatives of the

density grid at each vertex using a staggered grid setup.19 This naturally lends itself to efficient

parallelization because of the time scale separation; the coarse density grid is very slowly varying

compared to the individual microscopic particle positions. This approach necessarily entangles

the spacing of the grid to the level of coarsening of the model, thus hPF calculations must com-

promise between the wanted density spread and the numerical accuracy of the grid operations.

Particle–particle correlations have been shown to arise in canonical hPF-MD simulations with
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very short grid spacing, displaying some limited ability to recover radial distribution functions of

coarse-grained (CG) MD simulations3,20 However, such grid setups are rarely if ever used in pro-

duction runs, as using grids with a sufficient number of vertices for this to present is prohibitively

expensive, and their usage curtails the intrinsic strength of the hPF approach—its parallelizability

and speed. Additionally, it may create numerical stability issues related to excessively fast oscil-

lations in the density function. As such, the majority of hPF-MD results reported in the literature

lie solidly in what appears as a mean-field regime where steric interactions are poorly represented.

The literature also lacks a proper discussion on the ability of hPF models to respect mechanical

conservation laws, and whether any discrepancy might be connected to such approximation, either

on a formal level or through the algorithmic implementation.

Recently, stemming from seeding work by Theodorou and coworkers,21 two of us presented

a reformulation of the hPF scheme22 foregoing entirely the statistical mechanics arguments, ob-

taining instead the forces acting on the particle directly from spatial derivatives of the interaction

density functional. The new formalism defines a direct connection between the individual micro-

scopic states of the system and its energetics, in full accord with standard Hamiltonian mechanics.

In the following, we will refer to this new framework as the Hamiltonian-hPF (HhPF).

HhPF profits from the employment of a grid-independent filtering function G(x) that deter-

mines the intrinsic density spread associated with each particle, separately from the window func-

tion P, which assigns particles to the computational grid,

φ̃(r)≡
∫

dxφ(x)G(r−x), with φ(r) =
N

∑
i=1

P(r− ri). (1)

By decoupling the definition of the density spread from the computational grid, systematic con-

vergence of the numerical force calculations is possible. Moreover, by propagating in parallel

the fast intramolecular and the slow density-field forces via a multiple time-step algorithm, we

showed that it is possible to retain rigorous, well-behaved dynamics with strict conservation of the

energy.23 The HhPF framework represents a type of simplified long-range Ewald approach. Such
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particle–mesh methods have a long history in atomic simulations,18 most notably through the ubiq-

uitous particle–mesh Ewald (PME) approach to electrostatic interactions.24 Beyond this, a large

body of work dating back to the early 1970s involves employing Ewald summation techniques

to compute the long-range interactions of the Lennard-Jones (L-J) potential.25,26 The r−6 term is

usually handled by cut-off strategies, but in some cases, the long-range dispersion part of the L-J

potential is particularly important and should not be neglected, e.g. for interfacial phenomena.27

Thanks to its well-behaved numerical convergence, HhPF allows for a systematic exploration

of all mechanical properties of hPF models, and in particular, their relationship to standard particle-

particle models interacting by two-body potentials. In fact, for a pertinent choice of the filtering

function,22,28,29 we argued that it was possible to establish a direct link between the HhPF model

and the Gaussian Core model (GCM) of purely repulsive interparticle interactions by Stillinger,30

and we recently also showed how it could reproduce the full anisotropic pressure tensor.31

In this work, we extend and generalize the preliminary result reported in Ref.22 showing that

grid-converged filtered spectral hPF models fully describe particle–particle correlation, and in par-

ticular, that they can recover the behaviour of any soft-core pair potential. As a natural example,

we consider, for careful study, the GCM model, showing how the HhPF reproduces exactly the

GCM’s microscopic dynamics. Moreover, we show how the strength of particle–particle corre-

lations is controlled by the HhPF filtering length scale, and that the apparent mean-field regime

observed in hPF simulations must be understood as an approximation of the behaviour of an inter-

acting particle model in the high temperature / weak interactions limit.

2 Theory and methods

2.1 Hamiltonian hybrid particle-field

In the following, we briefly present the HhPF method. For a thorough derivation of the hPF and

HhPF schemes, the reader is directed to Refs. 3 and 22. We consider a system of N particles in M
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molecules subject to the Hamiltonian

H(R,P) =
M

∑
m=1

H0(Rm,Pm)+W [φ̃(r)], (2)

where particle positions R = {ri}N
i=1 and momenta P = {pi}N

i=1 fully specify microstates of the

system, and Rm and Pm indicate the positions and momenta associated with particles in molecule

m. Here, H0 is the Hamiltonian of a single non-interacting molecule m, and W is an interaction

energy functional depending on the filtered particle number densities φ̃(r),

φ̃(r)≡
∫

dxφ(x)G(r−x), φ(r) =
N

∑
i=1

P(r− ri), (3)

where G is a filtering function, and P is a window function used to distribute the particles in the

space.

The sampling of the phase space associated with Eq. 2 using MD requires computing the forces

due to both H0 and W . The forces due to bonded interactions terms of single molecules, H0(Rm),

are computed by

Fbonded
i =−∂H0(Rm)

∂ri
. (4)

Forces due to particle–field interactions are obtained by

FHhPF
i =−

∫
dr∇V (r)P(r− ri), V (r) =

∫
dy

∂w
∂ φ̃

(y)G(r−y). (5)

Here, V is the external potential acting on the particles, and lower-case w denotes the interaction

energy density, with W =
∫

w(φ̃(r))dr.

In practice, the estimation of discrete densities is done using a CIC window function P, which

distributes particles on the nearest grid points by trilinear interpolation. The density is computed

at the discretized (n,m, ℓ) grid point at position rnmℓ by

φnmℓ ≡ φ(rnmℓ) =
N

∑
i=1

P(rnmℓ− ri). (6)
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The spectral method suggested by Bore and Cascella22 dictates performing the convolution of

equation 3 in reciprocal space, via

φ̃ = FFT−1 [FFT(φ)FFT(G)] , (7)

with the external potential computed as:

V = FFT−1
[

FFT
(

∂w(φ̃(r))
∂ φ̃

)
FFT(G)

]
. (8)

The derivative of V is further computed in reciprocal space,

∇V = FFT−1
[

ik FFT
(

∂w(φ̃(r))
∂ φ̃

)
FFT(G)

]
. (9)

Note that grid-indices have been suppressed in Eqs. 7, 8, and 9, but these operations are performed

on the full computational grid. From the discretized ∇Vnmℓ ≡ ∇V (rnmℓ), the forces are computed

by interpolating back onto particle positions ri through equation 5 by

FHhPF
i =−∑

nmℓ

∇VnmℓP(rnmℓ− ri)h3, (10)

where h3 is the volume of a single cell. The interpolating sum is taken over all grid points, however

the window function P centered at r normally vanishes on any grid vertex which is not in the

immediate vicinity of r.

2.2 Gaussian core model

The Gaussian core model (GCM), introduced by Stillinger et al.,30 defines a purely repulsive par-

ticle–particle interaction in the functional shape of a Gaussian,

V (r) = ε × exp
(
−r2

σ2

)
, (11)
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where r ≡ |ri − r j| denotes the i– j inter-particle distance, ε is an energy scale, and σ defines

the effective interaction length. As we will make clear shortly, the Gaussian core interaction can

alternatively be viewed as the overlap integral between the densities of two smeared particles of

Gaussian spreads (with variance σ2/2), with centers separated by a distance r.

In terms of the reduced density ρ∗ = ρσ3 and reduced temperature T ∗ = T kB/ε , the GCM

admits thermodynamically stable solid phases in the low-temperature regime, T ∗ < 0.01.32,33 In

fact, despite its deceptively simple form, the GCM exhibits a range of interesting and anomalous

dynamical and structural properties, including increasing isothermal diffusivity and shear viscosity

for increasing density,34 reentrant compression melting at constant temperature and a maximum

freezing temperature,35 hard-sphere behaviour in the limit of vanishing temperature and density,30

and negative thermal expansion.36

2.3 Simulation details and reduced units

Here we outline all the details necessary to reproduce the figures and results contained in this

work. Unless otherwise noted, all results presented have scaled lengths, energies, and masses

scaled to unity, kB = σ = ε =m= 1, with reduced temperature T ∗ and reduced density ρ∗ uniquely

determining the chemical state. Times are measured in the characteristic time scale of the GCM,

t∗ =
√

mσ2/ε . Apart from the one-dimensional test cases, all HhPF simulations are run using

HylleraasMD.23 The corresponding GCM simulations are performed in LAMMPS.37

The one-dimensional simulations are calculated with HhPF using an idealized system of two

particles separated by a distance r on a computational grid of 211 grid points across a simulation

box length L ≫ σ , with a real space grid spacing of 0.0073.

For the force comparison, a system of N particles varying from 800 to 5250 with corresponding

reduced densities between ρ∗ = 0.1 and ρ∗ = 0.66 is used with the force deviation being averaged

over all particles in the simulation. The forces are calculated from a single snapshot of a random

particle conformation in each case for each value of the grid spacing h.

The solid/liquid systems are constituted by 1458 (1372) particles for the ρ∗= 0.25 and ρ∗= 1.0
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(ρ∗ = 0.12) cases with grid spacings h = 0.2813 and h = 0.1771 (h = 0.352). In each case, the

temperature is held at T ∗ = 0.001 using the canonical sampling through velocity rescaling (CSVR)

thermostat38 with coupling strength τ = 0.1 for n = 5 ·104 MD steps of time step ∆t = 0.01. The

ρ∗ = 0.25 BCC crystal system presented exhibiting the first-order phase transition is the same as

that of the previously mentioned ρ∗ = 0.25 system, being slowly cooled using a CSVR thermostat

(τ = 0.1) from T ∗= 0.02 to T ∗= 0.006 over n= 106 time steps of ∆t = 0.025 with grid spacing h=

0.0703. The GCM critical temperature and latent heat of melting is estimated from a corresponding

GCM simulation of the same reduced density and the same number of particles.

The dependency of the radial distribution function on the numerical grid spacing was monitored

on the ρ∗ = 0.12 system at a temperature T ∗ = 0.001, running n = 5 ·104 MD steps with ∆t = 0.05

at varying grid spacings.

The velocity autocorrelations were estimated from simulations of systems containing N = 1041

particles, at number density ρ = 8.33, with T ∗ = 0.008, and varying values of the HhPF filtering

widths, between σhPF = 0.1 and σhPF = 1.0. The diffusion constants were calculated from N =

1458 particle simulations with reduced densities varying between ρ∗ = 0.1 to ρ∗ = 1.0.

3 Results and discussion

3.1 Equivalence of the Hamiltonian hybrid particle–field method and any

finite pair potential

As evidenced by Bore and Cascella,22 a quadratic density dependence in W [φ̃ ], e.g. the commonly

used interaction term

W [φ̃ ] =
1

2φ0

∫
dr χ̃ABφ̃A(r)φ̃B(r), (12)

allows establishing a correspondence between any potential form and the hPF formalism through

the filtering function. Here, χ̃AB is the interaction energy parameter between species A and B, and

φ0 is the average number density across the simulation domain.
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In the following, let K(x − y) denote any local, almost everywhere finite, absolutely-, and

square-integrable function over the simulation volume. Let the interaction be modulated by an

energy scale ε ,

WK[φ̃ ] =
ε

2φ0

∫∫
drdr′ φ̃A(r)K(r− r′)φ̃B(r′) =

ε

2φ0

∫
dr′
[∫

dr φ̃A(r)K(r− r′)
]

φ̃B(r′). (13)

With F denoting the Fourier transform, applying the convolution theorem to the inner integral

yields

WK[φ̃ ] =
ε

2φ0

∫
dr′ φ̃B(r′)F−1 [

φ̃A(k)K(k)
]
. (14)

Noting that in periodic boundary conditions, any filtered density is necessarily an even function and

the r = |r− r′|-dependent pair potential K(r− r′) is real and symmetric, the Fourier transformed

convolution is guaranteed to be real. Application of the Plancherel theorem thus gives

WK[φ̃ ] =
ε

2φ0

∫
dk φ̃A(k)K(k)φ̃B(k). (15)

Recall that φ̃(r) =
∫

dr′G(r− r′)φ(r′). Together with equation 12, this establishes a correspon-

dence between the squared filter in reciprocal space, G(k)2, and the Fourier transformed pair po-

tential, K(k).

3.2 Real-space derivation of the hybrid particle–field–Gaussian core model

equivalency

Evidently, it is possible to identify a filtering function–pair potential link in reciprocal space for

any suitable soft-core potential K(r− r′). However, applying a Fourier space square root in no

way guarantees that the resulting filter function is easily representable in direct space as a closed-

form expression, and neither does it guarantee that the resulting square root is real. One notable

exception, however, is the Gaussian functional form, which survives both Fourier transforms and

exponentiation (in real-, or Fourier space) without changing its fundamental character.
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In the following, assume the filtering length is much smaller than the simulation box size,

σ ≪ L. In this regime, we extend real-space interaction integrals to cover R3, and ignore self-

interaction between particles and periodic images of the same particle. Under this assumption, the

Gaussian-filtered hPF interaction energy integral

W [φ̃ ] =Wχ [φ̃ ]+Wκ [φ̃ ] =
1
φ0

∫
dr ∑

i< j
χ̃i jφ̃i(r)φ̃ j(r)+

1
2κφ0

∫
dr

(
∑

i
φ̃i(r)−φ0

)2

(16)

becomes analytically tractable in direct space.

The microscopic number density arising from N particles of type k at positions {rℓ}N
ℓ=1 is given

by

φk(r) =
N

∑
ℓ=1

δ (r− rℓ), (17)

with the filtered density

φ̃k(r) =
N

∑
ℓ=1

1√
8π3σ3

exp
[
−(r− rℓ)2

2σ2
hPF

]
. (18)

Using the Gaussian product rule,39 the φ̃i(r)φ̃ j(r) product in the Wχ -term may be expressed as

φ̃i(r)φ̃ j(r) =
1

8π3σ6
hPF

N

∑
k=1

N

∑
ℓ=1

exp
[
−(rk − rℓ)2

4σ2
hPF

]
exp

[
−
(
r−
[rk+rℓ

2

])2

σ2
hPF

]
. (19)

Integrating such terms yields the Wχ -term of the interaction energy integral as

∫
dr φ̃i(r)φ̃ j(r) =

1
8π3σ6

hPF

N

∑
k=1

N

∑
ℓ=1

exp
[
−(rk − rℓ)2

4σ2
hPF

]∫
dr exp

[
−
(
r−
[rk+rℓ

2

])2

σ2
hPF

]

=
1

8
√

π3σ3
hPF

N

∑
k=1

N

∑
ℓ=1

exp
[
−(rk − rℓ)2

4σ2
hPF

]
.

(20)

The Wκ -term contains three contributions: The constant contributes a factor proportional to

the simulation box volume, while the cross-term contains integrals of the form
∫

dr φ̃k(r) which

trivially evaluate to unity by design of the normalization. The
∫

dr φ̃k(r)φ̃k(r) term contributes a

term of the same form as Wχ .
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In full, the interaction energy is given by

W [φ̃ ] =
1

8
√

π3σ3
hPFφ0

K

∑
i=1

K

∑
j=i+1

Ni

∑
k=1

N j

∑
ℓ=1

χ̃i j exp
[
−(rk − rℓ)2

4σ2
hPF

]
,

+
1

16
√

π3σ3
hPFκφ0

K

∑
i=1

Nk

∑
k=1

Nk

∑
ℓ=1

exp
[
−(rk − rℓ)2

4σ2
hPF

]
− N

2κ
,

(21)

where K is the number of different moieties, each with Nk particles. In summary, apart from a

constant energy shift that does not impact dynamics, the Gaussian-filtered HhPF corresponds to a

GCM with σ2 = 4σ2
hPF, and

ε =
1

16
√

π3σ3
hPFφ0

(
2χ̃i j +

1
κ

)
. (22)

3.3 Grid-converged HhPF recovers any soft-core pair potential

The correspondence between the filtered hPF approach and any soft local pair potential K is

demonstrated explicitly in Figure 1, where a few simple one-dimensional examples are shown.

The dissipative particle dynamics (DPD) potential is

VDPD(ri j) =
(

1−
ri j

σ

)2
, (23)

commonly used also as the ωR(ri j) potential which modulates the random DPD Wiener process.

The soft-core version of the Lennard-Jones potential used here takes the form

VSoft L−J(ri j) =
σ12

(r6
i j +

1
2)

2
− σ6

r6
i j +

1
2

. (24)

In both cases, σ denotes an arbitrary length scale. On the right-hand side of Figure 1 is shown

the reciprocal space representation of the filters used, resulting from the square root of the Fourier

transformed pair potential, H2(k) = K(k). Evidently, the potential energy of the explicit pair-
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Figure 1: Example correspondence between filtered hPF interactions arising from using the square
root of F [V (r− r′)] as the filter. Left: Energies for a one-dimensional example HhPF in the small
grid length limit, comparison with explicit particle–particle potentials. Right: Reciprocal space
representation of the filters used. The shaded red area represents the imaginary part of the soft-
core Lennard-Jones filter, containing a rapidly oscillating region.

potentials is matched to arbitrary precision by the HhPF scheme, provided the corresponding fil-

tering function is used.

We note that in the case of the soft-core Lennard-Jones potential, the rapidly oscillatory region

(the negative, attractive part) introduces instabilities in the HhPF model at very small (h ≲ 0.005)

grid spacings.

3.4 Dynamical properties of HhPF and GCM

Having established the correspondence between explicit pair-potentials and HhPF for static prop-

erties, it is of further interest to investigate the matching dynamical properties. To gauge this, the

forces must necessarily match between the two schemes. In order to thoroughly examine the ex-

tent to which pair-potential derivatives are recovered by the HhPF scheme, we turn our attention,

in the rest of the present work, to only consider the GCM correspondence. The relative differ-

ences in the calculated forces for varying grid spacings, h, are displayed in Figure 2. For each

grid spacing used, the forces are averaged over all particles in each of a collection of systems of

46 different reduced densities between 0.1 ≤ ρ∗ ≤ 0.66. As the differences of the total forces on

all particles in the simulation box is compared, the steadily decreasing value indicates clearly that

the calculated HhPF forces are fully rototranslationally invariant, as previously indicated by us.6,22
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Figure 2: Relative errors of the calculated HhPF forces w.r.t. the pure GCM forces for varying grid
spacings. For all grid spacings, the relative errors were averaged over 46 different reduced density
values in the range 0.1 ≤ ρ∗ ≤ 0.66.

The log-log slope of the relative error approaches 1.99±0.01, indicating a quadratic dependence,

rel.error(F;FGCM)∼ h2.

With energies and forces matching between the GCM and the HhPF scheme essentially to arbi-

trary precision, we may now consider structural properties of the Gaussian filtered HhPF model. In

Figure 3 we present radial distribution functions for select reduced system densities, representing

a face-centered cubic (FCC) crystal (ρ∗ = 0.12), a body-centered cubic (BCC) crystal (ρ∗ = 0.25),

and a fluid state (ρ∗ = 1.0). The former two are known to be stable solids in the GCM at the

specified reduced temperature T ∗ = 0.001.30,32 Note that the structure is excellently reproduced

in the HhPF scheme, even using modest grid spacings between h = 0.352 (for the FCC crystal)

and h = 0.1771 (for the liquid). To the best of our knowledge, this represents the first-ever hybrid

particle–field simulations of thermodynamically stable solids.

The FCC–BCC–liquid transition progression for isothermal compression is typical of the GCM.30,32

In fact, Stillinger showed already in the 1970s that the model exhibits negative thermal expansion

and a reentrant compression melting phenomenon akin to water in the 250K ≲ T ≲ 273K range.

Because constant temperature simulations are easier to perform than constant pressure simulations

in the HhPF framework, we consider in detail the melting of the BCC crystal at fixed density

ρ∗ = 0.25. Shown in Figure 4 is the reduced potential energy per particle of a liquid being slowly

cooled. The sharp sigmoidal shape of the plot is the unmistakable fingerprint of a first-order phase
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Figure 3: Radial distribution functions for GCM simulations with comparisons for corresponding
HhPF at reduced densities, ρ∗ with reduced temperature T ∗ = 0.001. Top: Liquid. Middle: Stable
BCC crystal conformation. Bottom: Stable FCC crystal conformation.
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Figure 4: Reduced potential energy, E∗
p = Ep/ε , per particle for a slowly cooling monoatomic fluid

of reduced density ρ∗ = 0.25. The vertical black line indicates the reduced temperature where the
GCM liquid–solid phase transition (to BCC crystal conformation) happens.

transition. The HhPF model freezes at T ∗ = 0.0107±0.0001. This is in excellent agreement with

a small GCM test system in the BCC conformation which melts at T ∗ = 0.0106 upon slow heating,

as reported by Prestipino et al. The reduced latent heat of melting per particle, L/ε , is calculated

for the GCM change at LGCM = 0.00566, which is shown inset in Figure 4, also matching the

melting heat in the HhPF model.

Grid dependency of the interaction strength Traditional hPF models rely on the use of an in-

trinsically coarse grid to define the density fields. It is thus interesting to examine the dependence

on the equivalence of the grid spacing h. Whereas small grid spacings yield g(r)-s nearly indis-

15



0 3 6 9
r

0

5

10

g(
r)

h = 11.3
h = 5.63
h = 2.82

0 3 6 9
r

0

5

10

g(
r)

h = 9.0
h = 4.50
h = 2.25

Figure 5: Radial distribution functions for HhPF of varying grid spacings, h. Left: Reduced density
ρ∗ = 0.12 with reduced temperature T ∗ = 0.001. Right: Reduced density ρ∗ = 0.25 with reduced
temperature T ∗ = 0.0014.

tinguishable from the GCM, in the extreme case of a single grid point across the entire simulation

box, the field is necessarily constant, and no structure is possible. Thus it is reasonable to assume

a gradual softening of the field interactions as h is enlarged. This effect is illustrated by Figure 5,

where we note that increasing the grid spacing beyond ∼ 3 results in the crystalline conformations

previously shown no longer being stable, with the system taking on an ordered fluid phase state.

An additional increase in h results in further loss of order, but the clear correlation hole around

g(0) is still present.

Reduced hPF units It is clear from equation 20 that for any change in the HhPF filtering width

σhPF → σ̄hPF, a corresponding scaling of the strength of the interaction by σ3
hPF/σ̄3

hPF leaves the

effective reduced temperature constant while scaling the reduced density by σ̄3
hPF/σhPF. In order

to probe the dynamics of the HhPF model for varying filtering widths, it is thus sufficient to vary

the reduced density ρ∗.

In order to exemplify what typical conditions in hPF simulations correspond to in terms of

GCM reduced properties, let us consider a simulation box of water at ambient conditions. In the

commonly used Martini40 four-to-one heavy atoms coarse-graining level, this water is represented

by coarse-grained beads of number density ρ = 8.33nm−3. With a filtering width around σhPF ≈

0.25nm, which has previously been shown to approximate well the unfiltered canonical hPF,23
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Figure 6: HhPF freezing temperature of coarse-grained water at density ρ = 103 kgm−3 and 1atm.
pressure versus the filtering width, σhPF.

this corresponds to σ ≈ 0.5. Using κ−1 ≈ 8RT , which has been shown to emulate the density

fluctuations of particle–particle coarse-grained MD simulations,20 this corresponds to ρ∗ ∼ 1 and

T ∗ ∼ 0.01. Thus the conditions illustrated in the present work are indicative of typical conditions

simulated under the HhPF framework. With this filtering width, the freezing temperature of water

is around 28K. In order to obtain a freezing temperature for the coarse-grained water of 273.2K,

a filtering width of σhPF ≈ 0.111nm is necessary, see Figure 6.

Momentum transfer We now demonstrate further evidence that the microscopic dynamics of

the HhPF is equivalent to that of the GCM, by considering the collisions of two particles compared

across the two different models. First, Because HhPF is a soft-core model, we expect two different

scattering regimes, depending on the kinetic energy of the system. Considering a particle with

kinetic energy Ek = p2/2m colliding into a resting particle with an impact parameter b (Figure 7).

As long as Ek is smaller than the potential energy associated with full particle–particle overlap,

Vext(0), the b = 0 scattering event will be fully elastic, with the entirety of the incident momen-

tum being transferred to the target particle. In the case of Ek > Vext(0), the incident particle will

pass through the target particle, only imparting some fraction of the momentum depending on the

Ek/Vext(0) ratio. In any case, HhPF equations guarantee the correct microscopic dynamics with

the rigorous conservation of the total momentum (Figure 7).
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Figure 7: Deflection angle ψ and momentum transfer as a function of the impact parameter b in
simple two-particle scattering events in the lab frame, using equal-mass particles. Low-temperature
conditions are used, meaning EK ≪ ε , i.e. the kinetic energy is not high enough to overcome the
energy at full particle-particle overlap.

Transport properties As a final demonstration, we consider that the non-trivial temperature

dependence of the HhPF diffusion coefficient reported in Ref. 22 associated with the scattering

properties of the particles in the system is fully consistent with the behaviour of the GCM. In the

low-density, low-temperature limit, the GCM exhibits a decreasing diffusion rate as the density

is increased, as expected of a dilute fluid model. However, around the critical reduced density

ρ∗ = π−3/2, an inflection point is encountered, and the trend reverses, yielding increasing self-

diffusion as the reduced density increases.41 Figure 8 (left) displays the equivalent behaviour under

the HhPF method. A matching initial decrease followed by an approximately linear increase has

previously been reported for the GCM by Mausbach and May.41,42 The diffusion constant D∗ is

expected to continue increasing upon further compression, at which point the GCM approaches a

so-called "infinite density ideal-gas limit."33

Also shown in Figure 8 (right) is the normalized velocity autocorrelation function (VACF)

for a set of different HhPF filtering widths. As mentioned, the state of the HhPF system is fully

determined by the reduced density and temperature. However, it may be more illuminating to

consider the case of constant (not reduced) density ρ , and varying σhPF, as would be natural in an

hPF-MD simulation setting. We note that increasing the filtering width rapidly eliminates any kind

of dynamical structure, as the VACF is constant until t > 103t∗. This indicates that for large σhPF,

the elastic collisions among particles do not efficiently exchange momentum, yielding a mean-field

like dynamical behaviour. However, in the small-σhPF regime, clear correlations are recovered as
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the characteristic time of the mean free path approaches 1 t∗.

4 Discussion and conclusion

The lack of excluded volume and steric effects in the hPF model can, on the one hand, be consid-

ered a strength; the smoothness of the hPF potential allowing particle overlap enables simulations

to easily avoid kinetic traps which plague traditional MD simulations of bio-matter self-assembly.

In fact, we demonstrated in a recent paper that the particle-field approach enables the equilibration

of dispersed surfactants to fully self-assembled structures in 10s of picoseconds, where the pair-

wise-based potential coarse-grained MARTINI model requires microseconds.23 On the other hand,

it severely limits the ability to model certain important biological soft-matter effects. For example,

the phospholipid lamellar gel phase, important for describing cholesterol-rich lipid microdomains

on the cell surface (so-called lipid rafts), is believed to be important for cellular signaling.43,44 It

is therefore of great interest to thoroughly elucidate the extent to which correlations are present

in hPF schemes and what determines their emergence. The results presented here clarify that the

HhPF does not introduce any mean-field approximation. On the contrary, the model reproduces ex-

actly the behaviour of a system of interacting particles via finite two-body potentials. Thus, HhPF

models must rigorously respect all conservation laws of mechanics, prominently the conservation
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of the total energy and of the momentum. Moreover, colliding particles must exchange momentum

to a maximum possible value dependent on the potential energy at the maximal particle-particle

overlap.

Our work demonstrates pair potentials can be equivalently represented using the HhPF formal-

ism. However, it is important to emphasize that HhPF models can have a non-quadratic functional

dependency on densities for which our mathematical derivation would not apply. For example,

generalization of the Flory-Huggins model, involving three particle species, would a priori require

at least three-body interactions. As such non-quadratic density functionals are no more expensive

to compute in HhPF than standard quadratic functionals, there is great untapped potential in HhPF

worthy of future research.

The possibility of changing the strength of particle pair-correlations in HhPF through the tun-

able length scale parameter σ makes it an attractive complementary alternative to traditional CG

simulation strategies which rely on pair-potentials such as the Martini model.5,40,45 In fact, by

changing the coarse-graining parameter on the fly it would be possible to e.g. quickly reach near-

equilibrium self-assembled bio-matter structures and then "turn on" the correlations before the start

of more accurate thermodynamic sampling. In fact, we demonstrated in a recent paper that the

particle-field approach enables the equilibration of dispersed surfactants to fully self-assembled

structures in 10s of picoseconds, where the pair-wise-based potential coarse-grained MARTINI

model requires microseconds.23

We notice that the more general HhPF formalism fully incorporates the traditional hPF. In fact,

in hPF the density functions built on coarse grids by direct CIC operation may be also defined by

the convolution operation (equation 3), by first writing the unfiltered density as a sum of Dirac’s

deltas centred at the various atom positions:

φ(r) =
N

∑
i=1

δ (r− ri) (25)

and by defining the filter function as a triangular distribution, to be estimated on the coarse grid of
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choice. The same effect could also be achieved by the normal CIC assignment, with a filter G =

δ (x). Thus, as much as for HhPF, hPF schemes must respect all the conservation laws of particle-

interacting systems. In this respect, a limitation of hPF lies in the direct coupling of the numerical

derivatives of the computational grid to the particle forces. This implies that changing the grid-

spacing changes the range and strength of intermolecular forces. As shown in this work, the use

of coarse grids for a dense system is associated with an intrinsic weakening of the interactions,

systematically placing hPF in a regime of loose correlation, thus in a condition where the behaviour

resembles that of a mean-field model.

In hPF, the transition from a mean field-like regime to one in which correlations arise via grid

refinement would necessitate systematic re-optimization of the χ interaction parameters. Although

an approach to efficiently perform such optimization has recently been suggested by us,6 it nev-

ertheless remains a costly process. This issue is massively exacerbated in the case of constant

pressure simulations, in which the simulation box volume is allowed to change, which, in prin-

ciple, changes the canonical hPF potential every single box rescaling step. In this respect, the

HhPF formalism promises a more solid theoretical basis for the determination of the properties of

systems subjected to any pressure coupling.

In general, phase coexistence is impossible to achieve in a model with monoatomic systems

with purely repulsive forces, such as the GCM, because the equation of state can be shown to be

monotonic.46 Recently, Sevink et al.47 proposed a modified hPF Hamiltonian in order to achieve

this, interchanging the quadratic incompressibility term for a Cell Model or a Carnahan–Starling

term. In the framework presented in this work, the futility of phase coexistence within the hPF is

further made clear as the two terms in the Hamiltonian turn out to be functionally equal (up to a

multiplicative constant). However, as we have demonstrated, a change of the Hamiltonian is, in

fact, not necessary—a small change in the filter would be sufficient, e.g. using the sum

H(x) ∝ ε exp
(
− x2

σ2

)
− exp

(
−x2

Σ2

)
, (26)
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where Σ > σ and ε > 1. This would introduce a Lennard-Jones-like long-range attraction with a

(finite) hard-core repulsion at close distances, opening up the possibility of a van der Waals loop

enabling liquid–vapour coexistence.

Finally, in closing, we point out a possibility opened up by the work presented here. As the

HhPF can be rigorously equated to a pair-interaction model, this potentially enables the employ-

ment of bottom-up coarse-graining techniques for parameter optimization. These techniques, e.g.

force matching,48 were previously thought unsuited for hPF because the model was not expected

to meaningfully be able to recover microscopic non-bonded interactions from pair-potentials. Cur-

rently, the only proposed automatic algorithm for finding χ̃kℓ-parameters in the literature is a

derivative-free black box optimization based on Bayesian optimization.6 The ability to use more

conventional bottom-up strategies has the potential to reduce the computational cost of hPF pa-

rameter optimization by several orders of magnitude.
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