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Different data types often occur in psychological and edu-
cational measurement such as computer-based assessments 
that record performance and process data (e.g., response 
times and the number of actions). Modelling such data re-
quires specific models for each data type and accommo-
dating complex dependencies between multiple variables. 
Generalized linear latent variable models are suitable for 
modelling mixed data simultaneously, but estimation can 
be computationally demanding. A fast solution is to use 
Laplace approximations, but existing implementations of 
joint modelling of mixed data types are limited to ordinal 
and continuous data. To address this limitation, we derive 
an efficient estimation method that uses first- or second-
order Laplace approximations to simultaneously model or-
dinal data, continuous data, and count data. We illustrate 
the approach with an example and conduct simulations to 
evaluate the performance of the method in terms of estima-
tion efficiency, convergence, and parameter recovery. The 
results suggest that the second-order Laplace approximation 
achieves a higher convergence rate and produces accurate 
yet fast parameter estimates compared to the first-order 
Laplace approximation, while the time cost increases with 
higher model complexity. Additionally, models that consider 
the dependence of variables from the same stimulus fit the 
empirical data substantially better than models that disre-
garded the dependence.
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1   |  INTRODUCTION

Due to technological advances in data collection via digital devices, mixtures of continuous and dis-
crete data (e.g., binary, categorical, and count) frequently occur in assessment contexts (De Leon & 
Chough, 2013, Chapter 1). Compared to traditional paper-and-pencil tests that only record the final 
answer to the items, computer-based assessments can track the entire human–computer interaction 
sequence (e.g., mouse clicks and keyboard input with time-stamps) and compile such information in log 
files. From log files, researchers can extract different types of indicators for further analysis, such as 
scored responses (categorical), response time spent on single items (continuous), response time until the 
first action (continuous), and the number of actions for each item (count). Such information is widely 
available in large-scale assessments, providing abundant research material for understanding partici-
pants' task-taking behaviours (Costa & Chen, 2023; De Boeck & Scalise, 2019; Ulitzsch et al., 2020b). 
These data also commonly exist in game-based assessments (Landers et al., 2022), which routinely col-
lect the number of correct or incorrect trials, the number of mouse clicks, and the performance scores. 
In addition, sophisticated measurement tools such as eye-tracking devices also produce mixed data 
such as fixation count and fixation duration (Man et al., 2022; Man & Harring, 2023; Steinfeld, 2016). 
Hence, a combination of continuous and discrete data widely exists in educational and psychological 
assessments, providing researchers and practitioners with valuable information on diverse aspects of 
the respondents.

However, a mixture of different types of data poses challenges for conventional statistical methods 
because of the complex dependence structures that often exist (De Leon & Chough, 2013, Chapter 1). 
To be specific, dependence can stem from the same type of indicator, such as the responses to a number 
of items or tasks, and from different types of indicators based on the same stimulus, such as the item 
response and the response time from the same task. The former type of dependence is typically handled 
by introducing latent variables, while the latter type is often ignored. However, ignoring the dependence 
of indicators from the same task can lead to biased parameter estimation (De Boeck & Scalise, 2019; 
Meng et al., 2015). Additionally, the inherent non-normality of categorical and count data means that 
traditional analysis methods that assume continuous and normally distributed observed variables are 
less suitable to use.

Despite the above-mentioned challenges, multiple approaches to handling the issue of a mix-
ture of different types of data exist. Among them, drawing inferences for each type of measure 
via separate models is the simplest approach. For example, researchers can analyse ordinal per-
formance data via item response theory models, continuous response time via factor analysis, and 
the number of actions via count data models. However, a multiple-testing issue arises (De Leon 
& Chough, 2013, Chapter 2) and the approach cannot capture relationships between the measures 
because they are modelled separately. Therefore, a single multivariate model is regarded as a more 
appealing approach. To estimate such models with traditional methods, data may be converted into 
the same type by recoding continuous data as categorical data according to certain cut-off values or 
treating discrete data as continuous. The former method causes a loss of information while the lat-
ter violates a model assumption. Neither of these approaches is ideal and it is instead recommended 
to treat the observed variables as they are (Huber et al., 2004). For joint analysis of ordinal and 
continuous data, limited-information estimation with polyserial correlations may be used (Olsson 
et al., 1982). However, such a method cannot handle count data and the existence of missing data 
poses an issue in estimation.

An alternative approach is therefore to model mixed data jointly under the framework of gen-
eralized linear latent variable models (GLLVMs; Bartholomew et  al.,  2011; Huber et  al.,  2004; 
Rabe-Hesketh et al., 2004). A complicating factor for GLLVMs concerns the estimation of model 
parameters. Typically, full-information maximum likelihood or Bayesian estimation has been pro-
posed. Bayesian inference is based on the posterior distribution of the freely estimated parameters 
given the data and priors of the parameters (Bartholomew et al., 2011, p. 30). When the dimension 
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ESTIMATING GENERALIZED LINEAR LATENT VARIABLE 
MODELS

is high or models are very complex, Markov chain Monte Carlo (MCMC) methods are often used. 
For example, Man and Harring  (2023) and Qiao et  al.  (2022) jointly modelled ordinal, continu-
ous, and count data with Bayesian methods. MCMC methods are computationally demanding with 
many latent variables, and residual dependence between multiple observed variables related to the 
same stimulus or task has therefore commonly been ignored when using Bayesian methods (Man & 
Harring, 2023; Qiao et al., 2022; Ulitzsch et al., 2020b).

In contrast to Bayesian estimation, full-information maximum likelihood integrates out the la-
tent variables from the likelihood function and maximizes the marginal likelihood. However, the 
integrals do not have closed-form solutions for GLLVMs, and approximation methods are required 
to compute them. One approach is Gauss–Hermite quadrature (GHQ), which has been imple-
mented for GLLVMs with a collection of data from different distributions in the exponential family 
(Moustaki, 1996; Moustaki & Knott, 2000). GHQ works well for simple models but becomes unfea-
sible with more than three latent variables because the computational cost grows exponentially as the 
latent variable dimension increases (Andersson & Xin, 2021; Huber et al., 2004). Adaptive Gauss–
Hermite quadrature (AGHQ) identifies integration intervals with rapid changes and reduces the 
required number of quadrature points (Rabe-Hesketh et al., 2002). AGHQ methods for generalized 
linear latent and mixed models are available in the Stata package gllamm (Rabe-Hesketh et al., 2004) 
and both quadrature methods are available in Mplus (Muthén & Muthén, 2017). Although AGHQ 
is faster than GHQ, it is still computationally demanding when the dimension is high. Instead, 
methods using Laplace approximations are showing promise for approximating the required inte-
grals accurately and fast (Andersson & Xin, 2021; Huber et al., 2004; Niku et al., 2017). First-order 
Laplace approximations have been proposed to estimate GLLVMs for mixed data with distributions 
in the exponential family (Huber et al., 2004). Estimation with first-order Laplace approximations 
has been implemented in the R package gllvm (Niku et al., 2017) but supports only one type of indi-
cator at a time. It is worth noting that first-order Laplace approximations (Lap1) are equivalent to 
AGHQ with one quadrature point per dimension when using the posterior mode and Hessian, and 
the method thus works highly efficiently with complex, high-dimensional models. However, this 
comes at the cost of non-convergence and inaccuracy with binary data and few observed variables 
(Andersson & Xin, 2021; Joe, 2008). To handle issues regarding convergence and accuracy in param-
eter recovery, a second-order Laplace approximation (Lap2) can be used (Shun, 1997). Lap2 requires 
higher-order derivatives to obtain a more accurate approximation by including more information, 
but with the downside that it needs more time in estimation (Andersson et al., 2023b).

In this paper we propose to apply both first- and second-order Laplace approximations to 
GLLVMs with mixed observed variables. Our main interest is in applying Laplace approximations 
(both Lap1 and Lap2) to enable joint modelling of ordinal, continuous, and count variables based 
on process data and performance data in educational and psychological measurement, where the 
residual dependence between observed variables related to the same stimulus is accounted for. This 
paper makes three main contributions beyond the existing literature. First, we implement estimation 
of joint models for count data, continuous data, and ordinal data using Laplace approximations, 
extending the papers by Huber et  al.  (2004) and Niku et  al.  (2017). Second, compared to Huber 
et al. (2004) and Niku et al. (2017) who only implemented the first-order Laplace approximation, we 
further implement a second-order Laplace approximation. Third, we provide a comparison between 
Lap1 and Lap2 in estimating GLLVMs with a mixture of different observed variables, extending the 
comparison in Andersson and Xin (2021) and Andersson et al. (2023b) from only categorical data to 
also include continuous and count data.

The remainder of the paper is organized as follows. In Section 2 we introduce GLLVMs and derive 
the estimation algorithm. In Section 3 we then describe a motivating example from the Programme for 
International Student Assessment (PISA) to guide our simulation design. In Section 4 simulations are 
conducted to evaluate estimation of joint models for ordinal, continuous, and count data with or with-
out considering the dependence of indicators from the same task. Section 5 concludes.
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4  |      ZHANG et al.

2  |  METHODS

2.1  |  Generalized linear latent variable models

GLLVMs are extensions of generalized linear models (Nelder & Wedderburn, 1972), which are a class 
of regression models for discrete or continuous outcomes. GLMs consist of three components (Nelder 
& Wedderburn, 1972): a linear combination of predictors, 

where b and � are the intercept and regression coefficients, and w represents D-dimensional predic-
tors; the outcome variable belonging to an exponential dispersion family; and a monotone and dif-
ferentiable link function g, such as the identity, logit, or probit function, which relates the expected 
value of the outcome variable to the linear combination of predictors �. In GLMs, there is only one 
outcome variable and all the variables are observable. When there are multiple correlated indicators 
that are developed to measure the same construct, such as responses from several cognitive tasks, 
we can incorporate latent variables to account for the dependence between the indicators. In social 
science, it is common to develop a battery of tests to measure theoretical constructs since they cannot 
be directly observed.

GLMs are extended to GLLVMs (Bartholomew et al., 2011) by introducing latent variables. Let yi 
denote the ith observed outcome variable. Following Rabe-Hesketh et al. (2004), a general formula for 
GLLVMs can be written as 

where a
i
 is a vector of slope parameters or factor loadings of variable i, �

i
 is a D-dimensional vector of re-

gression coefficients, and z is a P-dimensional vector of latent variables. To link the linear combination and 
the expected value of the observed variables, the link function g

i
 must be defined for each observed variable. 

For the distribution of the latent variables, we assume a multivariate normal distribution. For identification 
purposes, the means and variances of the latent variables are constrained to zeros and ones, respectively. 
The observed outcome variables are assumed to be independent conditional on the latent variables (Huber 
et al., 2004).

Let y be the I × 1 vector of observed outcome variables. The marginal log-likelihood for a response 
vector y is then 

where � represents the unknown parameters, P
i
 defines the measurement model for variable i, and � ( ⋅ ) is 

the multivariate normal density function with mean � and covariance matrix �. The latent variables z are 
unknown and need to be integrated out, which requires approximation methods.

2.2  |  Measurement models

Equation (3) provides a general form of the marginal log-likelihood function for GLLVMs. As men-
tioned above, the measurement models P

i
 and link functions g

i
 need to be defined according to the 

specified distribution of the observed variable. Recall that z is the P-dimensional vector of latent vari-
ables and let b

i
 be the intercept parameter, a

i
 be a vector of slope parameters, and �

i
 be the scale param-

eter, all for the observed variable i. Three types of observed data, namely ordinal, continuous, and count 
data, are considered in this paper and the associated measurement models are given below.

(1)
� = b + ��

w,

(2)g
i
(E[y

i
|w, z]) = b

i
+ ��

i
w + a�

i
z,

(3)l (�|y,w) = log ∫
I∏

i=1

P
i
(y
i
|w, z)� (z;�,�)dz,
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1. Ordinal responses. One model for ordinal data is the generalized partial credit model (GPCM; 
Muraki, 1992) where the probability of observing each category c ∈ 1,…,m

i
 given the latent variables is 

where b
iv
 represents threshold parameters for item i and where a logit link function is assumed. A second 

model is the graded response model (GRM; Samejima, 1969), with 

where 

with P∗
i
(1|z,w) = 1 and P∗

i
(m
i
+ 1|z,w) = 0.

2. Continuous responses. Here we define P
i
(y
i
|z,w) as a conditional density function. Following Huber 

et al. (2004), we assume a normal distribution with an identity link and obtain 

If the continuous data are not normally distributed (e.g, positively skewed response times), it is 
common to apply a log-transformation (as in De Boeck & Scalise,  2019; van der Linden,  2006, 
2007; Wang et al., 2018) before applying Equation (7) in the field of educational and psychological 
measurement.

3. Count responses. We consider Poisson and negative-binomial distributions with a log link function 
for count data. In the former case, we have 

where �
i
= exp(b

i
+ ��

i
w + a�

i
z). With a negative-binomial distribution, we have the conditional probability 

mass function (Niku et al., 2017) 

where Γ( ⋅ ) denotes the gamma function Γ(�) = ∫∞
0
t
� − 1

e
− t
dt .

2.3  |  Laplace approximations for generalized linear latent variable  
models

As mentioned above, Equation (3) does not have an explicit solution, requiring approximation methods for 
parameter estimation. In this paper we utilize Laplace approximations to approximate the integrals in the 
likelihood function. We define h

f
(z) = − logP(y

f
|z)� (z;�,�), ĥ = h

f
(�z
f
), and H

f
= 𝜕2ĥ∕𝜕z𝜕z�, where ẑ

f
 

represents the posterior modes of the latent scores of individual f ∈ 1,…,N . The second-order Laplace 
approximation of the marginal log-likelihood for an individual f  can then be written as (Shun, 1997) 

(4)P
i
(y
i
= c�z,w)=

exp

�∑
c

v=1
(a

�
i
z+b

iv
+�

�

i
w)

�

∑m
i

c
�=1
exp

�∑
c
�

v=1
(a

�
i
z+b

iv
+�

�

i
w)

� ,

(5)P
i
(y
i
= c|z,w)=P∗

i

(c|z,w)− P∗
i

(c +1|z,w),

(6)P
∗
i

(c|z,w)=
1

1+exp( − a�
i

z− b
iv
− �

�

i

w)

,

(7)P
i
(y
i
|z,w)= exp

[
y
i
(b
i
+��

i
w+a�

i
z)− (b

i
+��

i
w+a�

i
z)
2∕2

�
i

−
y
2

i

2�
i

−
log(2��

i
)

2

]

.

(8)P
i
(y
i
= c|z,w)=

�c
i

c!
exp( − �

i
),

(9)P
i
(y
i
= c�z,w)=

Γ
�

c+
1

�
i

�

c!Γ
�
1

�
i

�

⎛
⎜
⎜
⎝

exp(b
i
+��

i
w+a�

i
z)

1

�
i

+exp(b
i
+��

i
w+a�

i
z)

⎞
⎟
⎟
⎠

c�

1

1+�
i
exp(b

i
+��

i
w+a�

i
z)

� 1

�
i

,

(10)l̃
Lap2

f
(�|y) =

P

2

log(2𝜋)−
1

2

|H
f
|− ĥ + log(1 + 𝜖

f
),
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6  |      ZHANG et al.

with 

where b
jk

 represents the entry of row j and column k in H− 1
f

. By setting �f = 0 in Equation (10), the second-
order Laplace approximation reduces to the first-order Laplace approximation. To efficiently compute �

f
, 

it is necessary to consider the particular model structure used and identify unique and zero entries of �
f
. 

Readers are directed to Andersson et al. (2023b) for details of the filtering procedure used to compute �
f
. 

We utilize the same estimation approach that Jin and Andersson (2020) and Andersson et al. (2023b) pro-
posed for categorical observed variables and extend it to support continuous and count data measurement 
models, where the derivatives in Equation (10) and its gradient are derived analytically. Each entry � ∈ � of 
the gradient is given by 

where the second term is needed to account for the dependence between � and ẑ
f
. The needed derivatives 

(up to the fifth order) are presented in Appendix 2. A quasi-Newton method using the Broyden–Fletcher–
Goldfarb–Shanno algorithm is utilized to maximize the approximated marginal log-likelihood function. 
The estimation approach has been implemented in the R package lamle (Andersson et al., 2023a).

The approximation error of the Laplace approximations is O(I − 1) for the first-order Laplace 
approximation and O(I − 2) for the second-order Laplace approximation (Bianconcini, 2014; Huber 
et al., 2004). Hence, the Laplace-approximated likelihood functions approach the true likelihood as 
the number of observed outcome variables increases, but at different rates. As a consequence of this, 
we expect that the Laplace-approximated estimators have the same statistical properties as the true 
maximum likelihood estimator (MLE) with finite sample sizes when the number of observed out-
come variables is large, with the second-order Laplace approximation attaining the properties of the 
true MLE at a faster rate than the first-order Laplace approximation. The simulation study presented 
in Section 4 examines the finite-sample properties of the estimators based on first- and second-order 
Laplace approximations.

2.4  |  Inference and model evaluation

To estimate standard errors and confidence intervals we propose to use the observed information ma-
trix (Andersson et al., 2023b). The observed information matrix can be obtained analytically by comput-
ing the Jacobian matrix of the observed gradient in Equation (12). However, this requires accounting 
for the dependence between the parameter estimates and the mode estimates, which makes the com-
putation excessively laborious. Instead, we propose approximating this matrix by computing numerical 
derivatives of the gradient with respect to the unknown parameters. We accomplish this by defining a 
vector-valued function which, for a given input vector of model parameters, computes the mode of the 
latent variable vector for each individual and then computes the gradient in Equation (12). The deriva-
tives of this function are then approximated with a finite-difference approach to obtain the approxi-
mated observed information matrix.

To evaluate the model fit, we adopt a method from the factor analysis and item response theory lit-
erature that uses differences between the sample and model-implied correlation matrix of the observed 

(11)

𝜖
f
= −

1

2

[

1

4

P∑

jklm

𝜕4 ĥ

𝜕z
j
𝜕z
k
𝜕z
l
𝜕z
m

b
jl
b
km

−
1

4

P∑

jklrst

𝜕3ĥ

𝜕z
j
𝜕z
k
𝜕z
l

𝜕3ĥ

𝜕z
r
𝜕z
s
𝜕z
t

b
jr
b
kl
b
st

−
1

6

P∑

jklrst

𝜕3ĥ

𝜕z
j
𝜕z
k
𝜕z
l

𝜕3ĥ

𝜕z
r
𝜕z
s
𝜕z
t

1

6

b
jr
b
ks
b
lt

]

,

(12)∇�
f

=
�l
Lap2

f
(�|y)

��
+

�ẑ
f

��

�l
Lap2

f
(�|y)

�z

|
|
|
|
|
|

z=ẑ
f

,
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outcome variables to define the standardized root mean squared residual (SRMSR) statistic. Let r
jk

 be 
the sample Pearson correlation and let �̂

jk
 be the model-implied Pearson correlation, for the observed 

outcome variables j  and k. The SRMSR is then defined as (Maydeu-Olivares & Joe, 2014) 

In the implementation here, we computed the model-implied correlations �̂
jk

 by simulating a data matrix 
from the estimated model with a very large sample size and then computing the correlation matrix from the 
resulting data matrix.

3  |  MOTI VATING EX A MPL E

3.1  |  Sample and data

In this section we provide an example based on the computer-based assessment of mathematics 
(CBAM) in PISA 2012, which aims to assess 15-year-old students' mathematical literacy and reflects 
the importance of using digital tools to solve mathematics tasks (OECD, 2013). Students can, for 
example, rotate representations of three-dimensional objects and draw points and lines to facilitate 
their thinking processes. The full CBAM instrument consists of 41 items from 15 units, and the 
items are organized into four clusters. Each student was given two clusters with 40 minutes' total 
testing time (OECD, 2013). PISA released three units out of 15 and the data are available on the 
website of the Organisation for Economic Co-operation and Development. We chose unit CM015 
(CD Production) to illustrate the practical use of the proposed method and to guide our simulation 
design. CM015 presents an interactive graph and a price calculator and asks participants to enter 
the number of copies to discover its relationship with the cost of copying CDs using duplication 
and replication methods. Three items were included in CM015, with one multiple-choice and two 
constructed-response items. As an example, we used the Australian data set because it had the larg-
est sample size (N = 1824) participating in this unit.

3.2  |  Measures

Three types of indicators were extracted from each task: task scores (P1–P3), response time (T1–T3), 
and the number of actions (A1–A3). We pre-processed the data by log-transforming and centring the 
response time to deal with its positively skewed distribution (van der Linden, 2006) and by exclud-
ing outliers in terms of response times and the number of actions that were beyond the range from 
Q
1
− 3× IQR to Q

3
+ 3× IQR, where Q

1
, Q

3
, and IQR represent the first quantile, the third quantile, 

and the interquartile range, respectively. These procedures are introduced to reduce the potential influ-
ence of the high skewness and extreme values on the model estimation. After excluding these outliers 
and missing values, 1029 respondents remained and were used for the following analysis. A summary of 
the three indicators is presented in Figure 1.

It is worth noting that previous studies have extracted similar indicators from process and per-
formance data. For example, two studies used task scores, log-transformed response time, and log-
transformed action counts as observed indicators for cognitive proficiency, speed, and exploration 
behaviour (Costa & Chen, 2023; De Boeck & Scalise, 2019). In their studies, all the indicators were 
regarded as continuous variables. In another study, finer-grained process indicators, the longest dura-
tion and the number of non-targeted operations, were defined to measure latent variables representing 
planning and non-targeted exploration, respectively (Zhang et al., 2023). These process indicators were 
subsequently recoded as ordinal data in their paper. Different from these studies (Costa & Chen, 2023; 

SRMSR =
∑

j <k

(r
jk
−�𝜌

jk
)
2

I (I − 1)∕2
.
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8  |      ZHANG et al.

De Boeck & Scalise, 2019; Zhang et al., 2023), this study treats the measures as they are; that is, task 
scores are considered as binary or ordinal data, log-transformed response times as continuous data, and 
the number of actions as count data.

3.3  |  Analysis

A two-step procedure was used in the motivating example. The first step included three unidimen-
sional measurement models. Specifically, P1–P3 were used to measure mathematical literacy, indicat-
ing ‘an individuals capacity to formulate, employ, and interpret mathematics in a variety of contexts' 
(OECD, 2013, p. 17); T1–T3 were used to measure speed, indicating how fast or slowly respondents 
completed the tasks; and A1–A3 were used to measure interactivity, indicating the tendency to interact 
with the computer. Second-order Laplace approximations were used for model estimation. All models 
converged and the parameter estimates are used as a reference for the following simulation studies.

In the next step, we combined the three indicators in a single model using GLLVMs with the resid-
ual correlations of indicators from the same stimulus or item considered (ModRes, see Figure 6) or not 
(ModInd, see Figure 2). Equality constraints were added to residual factor loadings from the same item for 
simplification. In total, we estimated 2 (model structure: ModInd or ModRes) × 2 (count type: Poisson or 
negative-binomial) × 2 (algorithms: Lap1 or Lap2) = 8 models. By comparison, previous studies using similar 
indicators primarily adopted confirmatory factor analysis (Costa & Chen, 2023; De Boeck & Scalise, 2019) or 
item factor analysis (Zhang et al., 2023). However, converting continuous variables and count variables into 
a few categories can cause loss of detailed information embedded in the data (De Leon & Chough, 2013).

3.4  |  Results

In this subsection we present the results of multidimensional GLLVMs in terms of model fit and tim-
ing information (Table 1). Lap2 achieved convergence in all models, whereas Lap1 failed to converge 

F I G U R E  1   Summary of observed indicators. P1–P3, A1–A3, and T1–T3 represent scored responses, the number of 
actions, and transformed response times of items 1–3, respectively.
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with ModRes regardless of the type of count data model. Table 1 indicates that the estimation time 
of ModInd was around 15 s, whereas ModRes required longer time (approximately 70 s). A negative-
binomial distribution fitted better than the Poisson distribution when the residual factors were not 
considered. After accounting for the residual correlations among the observed variables (ModRes), 
both the BIC and SRMSR values decreased, which indicated a substantially better fit to the data. This 
conclusion was in line with existing studies (Costa & Chen, 2023; De Boeck & Scalise, 2019; Zhang 
et al., 2023), which reported significant within-task relationships after considering the covariance of 
the latent variables. This underscores the importance of integrating task-level correlations into the joint 
model of performance and process data, something which several previous studies have not considered 
(Man et al., 2022; Man & Harring, 2023; Qiao et al., 2022).

Given that ModRes with a negative-binomial distribution using Lap2 had the lowest BIC, we con-
cluded that this model best represented the observed data and present the item parameter estimates in 
Table 2. The factor loadings were all positive, with varied magnitudes found for the performance model 
and the action model. The residual factor loadings indicated a consistent magnitude of within-task 
relationships across the CM015 unit. In terms of the relationships of the latent variables, our results 
mirrored those of the study of Costa and Chen (2023). This similarity is expected since we utilized the 
same tasks, albeit in different countries. Specifically, the latent variable correlations of mathematical 
literacy with interactivity (.876) and speed (.658) are moderately to highly positive. This suggests that 
individuals who interact more actively with the problem environment (e.g., the computer interface), 
or who invest more time in the tasks, generally exhibit higher mathematical literacy. This makes sense 
because a correct solution requires appropriate operations and sufficient time to represent, plan, and 
implement the strategy.

In empirical studies investigating the relationship between response accuracy and response times, 
a common phenomenon is the speed–accuracy trade-off (Schnipke & Scrams, 2002). This refers to 

F I G U R E  2   Model illustration of three-dimensional GLLVMs. X, Y, and Z denote three different types of indicators. 
F1–F3 denote latent variables.

T A B L E  1   Model fit and timing (seconds) of generalized linear latent variable models using the empirical data

Count Method

ModInd ModRes

BIC SRMSR Timing BIC SRMSR Timing

Poisson Lap1 32,925 0.127 15.7 – – –

Poisson Lap2 32,897 0.126 16.8 28,325 0.088 71.5

Negbin Lap1 28,372 0.086 11.4 – – –

Negbin Lap2 28,353 0.086 13.1 27,923 0.070 73.9

Note: Lap1 failed to compute the observed information matrix for ModRes, regardless of the count data model used, and indicated non-
convergence. Lap1, first-order Laplace; Lap2, second-order Laplace; BIC, Bayesian information criterion; SRMSR, standardized root mean 
squared residuals; Negbin, negative-binomial.
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10  |      ZHANG et al.

the phenomenon that when an individual works at a quick pace, her/his accuracy tends to decline, 
whereas working at a slower pace tends to increase response accuracy. Van der Linden (2007) argued 
that the speed–accuracy trade-off is a within-person trade-off; however, the relationship between 
ability and speed at a cross-person level can be positive, negative, or non-significant depending 
on the item content and assessment settings (Schnipke & Scrams, 2002). In the current empirical 
studies, we found a positive relationship between mathematical literacy and speed, similar to the 
results of Costa and Chen  (2023), but different from the negative relationship of De Boeck and 
Scalise (2019) that employed collaborative problem-solving tasks. Different task domains can be an 
explanation for the varied results.

In addition, respondents with a higher level of interactivity typically spent more time on the tasks, 
evidenced by a correlation of .584 between interactivity and speed. This relationship can be interpreted 
in two ways: performing more operations inherently requires more time; and respondents who were 
more engaged in the tasks tended to make more effort to solve the tasks. Note that although interactivity 
and speed are moderately correlated, they represent different latent traits. Speed describes the pace of 
work, while interactivity refers to the extent to which respondents tend to conduct operations on the 
computer and indicates exploratory behaviour (Costa & Chen, 2023).

4  |  SIMUL ATIONS

We conducted two simulation studies to assess the performance of Laplace approximations in the con-
text of mixed data using newly developed code written in C++ and R 4.1.2 (Andersson et al., 2023a; 
R Core Team, 2021). In Simulation 1, we considered three-dimensional GLLVMs with three types of 
indicators: ordinal, continuous, and count data. In Simulation 2, we also considered residual correlations 
between indicators from the same task.

We evaluated the performance of the proposed methods in terms of convergence rate, estimation 
time, and the recovery of model parameters. Convergence was determined by satisfying three crite-
ria: the algorithm stopped before 500 iterations, the approximated observed information matrix was 
positive definite, and all parameter estimates had absolute bias lower than 5. Regarding parameter 
recovery, we computed the bias and the mean squared error (MSE) to assess the accuracy and pre-
cision of parameter estimates via 

T A B L E  2   Parameter estimates (standard error) of the final model

Indicator Slope Intercept 1 Intercept 2 Scale

Performance P1 1.361 (0.125) 0.441 (0.088) – –

P2 2.695 (0.312) −3.346 (0.317) −3.987 (0.355) –

P3 3.093 (0.288) 0.120 (0.139) −3.042 (0.264) –

Action A1 0.515 (0.087) 1.101 (0.029) – 0.080 (0.020)

A2 0.421 (0.025) 2.679 (0.025) – 0.209 (0.017)

A3 1.046 (0.039) 2.315 (0.044) – 0.272 (0.038)

Time T1 0.288 (0.019) −0.018 (0.017) – 0.108 (0.012)

T2 0.481 (0.023) 0.132 (0.021) – 0.079 (0.015)

T3 0.388 (0.018) 0.170 (0.017) – 0.009 (0.013)

Residual Task 1 0.355 (0.018) – – –

Task 2 0.382 (0.018) – – –

Task 3 0.354 (0.023) – – –

Note: P2 and P3 have three categories and thus have two intercept parameters. Correlations between latent variables: Cor(mathematical literacy, 
interactivity) = .876 (SE = 0.023), Cor(mathematical literacy, speed) = .658 (SE = 0.035), and Cor(interactivity, speed) = .584 (SE = 0.032).
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and 

where � and �̂
r

 denote the true value and the parameter estimate in replication r ∈ 1,…,R, respectively.

4.1  |  First simulation study

4.1.1  |  Design

In Simulation 1, we considered three correlated latent variables with ordinal, continuous, and count data 
as indicators, respectively. We illustrate the model in Figure 2. Four experimental factors were manipu-
lated: the distribution of the count data model (Type: Poisson or negative-binomial distributions); the 
number of observed outcome variables per dimension ( J : 3 or 6); the covariance between the latent vari-
ables (�: small and large), and sample size (N : 250 and 1000). This design resulted in 2× 2× 2× 2 = 16 
conditions. We used 1000 replications for each condition. To determine the ranges of the simulated 
parameters, we used the result from the motivating example and the PISA 2018 item parameter pool. 
Specifically, the item pool provides the estimates of item parameters in terms of task scores, and we 
used the 10% and 90% quantiles as the range of the item parameters for the ordinal data model. For the 
models corresponding to response time and number of actions, we generated the item parameters based 
on the above motivating example. The item parameters and the covariance of the latent variables used 
in the simulation are presented in Appendix 1: Tables A1–A4. Latent variables were randomly simulated 
from a multivariate normal distribution with a zero mean vector and unit variances. The observed data 
were then generated based on Equations 4–9. With the data sets generated, we estimated unidimen-
sional models for each type of outcome variable, and if convergence was achieved, then the parameter 
estimates were used as the starting values to estimate the three-dimensional model with the first- and 
second-order Laplace approximation methods. If convergence failed for any of the unidimensional 
models, we used non-informative default starting values instead.

4.1.2  |  Results

The convergence rates and estimation times of each algorithm are presented in Table 3. Averaged across 
all conditions, Lap1 and Lap2 reached high convergence rates, exceeding 98%. Lap2 achieved a con-
vergence rate higher than or equal to Lap1 under all conditions in Simulation 1. Increasing the number 
of observed outcome variables, the sample size, or the covariance of the latent variables improved the 
convergence rates. Among the converged replications, both methods completed the estimation proce-
dure within an average of 4 and 13 seconds for small and large sample sizes, respectively. As expected, 
Lap1 required less time than Lap2 in all conditions, but the difference was minor. For the experimental 
factors, Table 3 suggests that increasing the number of observed outcome variables or the sample size 
increased estimation time.

Next, we summarize the recovery of the parameters. Overall, the estimators showed small bias, indi-
cating that the methods recovered the true parameters accurately. Both Lap1 and Lap2 produced small 
and similar biases in the parameter estimates for both the continuous data and the Poisson-distributed 
data, with an average absolute bias smaller than 0.002. To illustrate the differences between the Lap1 

(13)bias� =

R∑

r=1

(�̂
r

− �)∕R ,

(14)MSE� =

R∑

r=1

(�̂
r

− �)2∕R ,
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12  |      ZHANG et al.

and Lap2 results, we present only the results related to relatively large biases, namely cases with average 
absolute bias greater than 0.01. These cases involved the ordinal data model, the count data model with 
a negative-binomial distribution, and the covariances of the latent variables. Because sample size plays 
an important role in the results, we separately present the parameter recovery for small and large sample 
sizes.

We summarize the average absolute bias for the conditions with a small sample size in Table 4 and 
plot the biases in Figures 3a–5a. Overall, Lap2 outperformed Lap1 in estimating the slope parameters 
in the negative-binomial model, and especially in estimating the covariance of the latent variables (av-
erage absolute bias: Lap1 = 0.0219 and Lap2 = 0.0039), under all conditions. However, Lap1 produced 
smaller absolute biases than Lap2 in the estimation of the slope and threshold parameters in the graded 
response model when the number of observed outcome variables was three and the covariance was 
small, as shown in Table 4. This result was somewhat unexpected, and we further investigated the fifth 
condition shown in Table 3 by comparing the results to AGHQ with 13 quadrature points, which has a 
fifth-order accuracy ( Jin & Andersson, 2020) and can essentially be viewed as the true MLE. Following 
a similar approach of Andersson et al. (2023b) and Zhang and Chen (2022), we then compared Lap1 
and Lap2 to the AGHQ estimates which indicated that Lap2 had more similar estimates to AGHQ. 
Regarding the effects of the simulating factors, Table 4 suggests that both the number of observed out-
come variables and the magnitude of the covariance showed a positive effect on the estimation accuracy, 
especially for Lap2.

For sample size 1000, we summarize the average absolute bias under each simulating factor in 
Table 5. The results show that Lap2 produced smaller absolute biases in estimating all the parameters 
than Lap1 did, with the largest differences in the slope parameters for the ordinal data (average absolute 
bias: Lap1 = 0.0367 and Lap2 = 0.0086) and the covariances of the latent variables (average absolute 
bias: Lap1 = 0.0172 and Lap2 = 0.0016). With respect to the influence of the simulating factors, Table 5 

T A B L E  3   Convergence rate and timing (seconds) of Lap1 and Lap2 in Simulation 1

Sample size Type J �

Convergence rate Timing

Lap1 Lap2 Lap1 Lap2

250 Pois 3 Small 93.3% 97.5% 2.3 2.7

250 Pois 3 Large 99.3% 100% 2.3 2.8

250 Pois 6 Small 100% 100% 3.4 3.9

250 Pois 6 Large 100% 100% 3.3 3.7

250 Negbin 3 Small 94.8% 95.4% 2.3 2.9

250 Negbin 3 Large 98.7% 99.5% 2.4 2.8

250 Negbin 6 Small 100% 100% 4.0 4.6

250 Negbin 6 Large 100% 100% 3.8 4.4

1000 Pois 3 Small 93.6% 100% 7.7 9.4

1000 Pois 3 Large 99.7% 100% 7.8 9.6

1000 Pois 6 Small 100% 100% 14.8 17.1

1000 Pois 6 Large 100% 100% 14.2 16.1

1000 Negbin 3 Small 97.9% 99.9% 8.0 9.7

1000 Negbin 3 Large 99.1% 100% 7.5 10.0

1000 Negbin 6 Small 100% 100% 14.5 16.9

1000 Negbin 6 Large 100% 100% 13.7 15.9

250 Overall 98.3% 99.0% 3.0 3.5

1000 Overall 98.8% 100% 11.0 13.1

Note: Lap1, first-order Laplace; Lap2, second-order Laplace; Pois, Poisson; Negbin, negative-binomial; J , the number of observed outcome 
variables per dimension; �, covariance of latent variables.
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suggests that increasing the number of observed outcome variables or the covariance between the latent 
variables improves the accuracy of the parameter estimates, especially for Lap1, and that when estimat-
ing the covariance parameters, Lap2 was less influenced by the simulating factors and recovered the 
covariances satisfactorily under all conditions, whereas Lap1 showed a relatively large bias, especially 
when the number of observed outcome variables was three. We also plot the bias of the parameter es-
timates for the ordinal data, the count data, and the covariances in Figures 3b, 4b, and 5b, respectively. 
The figures suggest that Lap1 can produce relatively large biases for certain parameters, whereas the 
biases of the model parameters were generally small using Lap2.

In terms of the estimation precision, Lap2 had a larger MSE than Lap1 when the sample size, the 
number of observed outcome variables, and the true covariance were small. In other cases, Lap1 and 
Lap2 shared a similar level of estimation precision. The detailed results regarding the MSE can be found 
in the Appendix S1.1

In summary, both algorithms achieved high convergence rates within a short estimation time, 
but Lap2 had slightly higher convergence rates when the number of observed outcome variables 
was three. When the sample size was large, Lap2 estimated the model parameters accurately and 
outperformed Lap1, especially in terms of the estimation of the graded response model and the 
covariances of the latent variables. However, a small sample size and few observed outcome vari-
ables can result in a larger bias and MSE of the slope and threshold parameters with ordinal data, 
particularly for Lap2.

4.2  |  Second simulation study

4.2.1  |  Design

In Simulation 2 we considered residual correlations of indicators from the same stimulus to capture 
the task-specific effect for a single stimulus (Figure 6). We specified that the residual latent variables 
impose the same effect on the indicators; namely, we set equal residual factor loading across indicators 
from the same stimulus (e.g., equal residual factor loadings for X1, Y1, and Z1). Accordingly, we added 

 1https://​osf.​io/​nec8m/​?​view_​only=​fc93a​3e633​ea47e​ba597​35772​2fe8c83.

T A B L E  4   Average absolute bias of selected parameter estimates under the simulating factors in Simulation 1 (sample 
size = 250)

Factor Level Method

Ordinal model Negbin model

CovarianceSlope Thresholds Slope Scale

J 3 Lap1 0.0417 0.0073 0.0141 0.0078 0.0341

6 Lap1 0.0266 0.0102 0.0050 0.0049 0.0097

3 Lap2 0.0558 0.0268 0.0033 0.0080 0.0056

6 Lap2 0.0210 0.0106 0.0024 0.0061 0.0022

� Small Lap1 0.0406 0.0103 0.0094 0.0077 0.0205

Large Lap1 0.0226 0.0081 0.0067 0.0040 0.0233

Small Lap2 0.0464 0.0206 0.0028 0.0076 0.0043

Large Lap2 0.0188 0.0114 0.0027 0.0059 0.0036

Overall Lap1 0.0316 0.0092 0.0080 0.0059 0.0219

Lap2 0.0326 0.0160 0.0027 0.0067 0.0039

Note: Lap1, first-order Laplace; Lap2, second-order Laplace; Negbin, negative-binomial; J , the number of observed outcome variables per 
dimension; �, covariance of latent variables.
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14  |      ZHANG et al.

the magnitude of the residual factor loadings (small or large) to the simulation design. Specifically, large 
residual factor loadings were generated from U (0. 4, 0. 8), the same distribution as the slope parameter 
for the continuous data and count data, whereas the small residual factor loading was set to half of the 
large one. The true values of the residual factor loadings are presented in Table A4. In sum, Simulation 
2 resulted in 2 (Poisson or negative-binomial distribution) × 2 (3 or 6 observed outcome variables per 
dimension) × 2 (small or large covariance) × 2 (small or large residual factor loading) × 2 (small or large 
sample size) = 32 conditions, and we generated 1000 data sets under each condition. The number of 
latent variables in Simulation 2 was either six or nine. Both Lap1 and Lap2 were applied to analyse the 
data sets.

F I G U R E  3   Bias of the slope (a) and threshold (b1 and b2) parameters in the ordinal data model in Simulation 1. a−ip 
represents the slope parameter of latent variable F

p
 on item i. ‘Three items’ and ‘six items’ indicate three or six observed 

outcome variables per dimension. (a) Bias of the estimates of the ordinal data model when the sample size was 250. (b) Bias of 
the estimates of the ordinal data model when the sample size was 1000.
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4.2.2  |  Results

We now summarize the results from Simulation 2. In line with Simulation 1, Lap2 reached a higher 
average convergence rate than Lap1 did in both small and large sample size conditions, as shown 
in Tables 6 and 7. Both Lap1 and Lap2 achieved over 99% convergence rates when the number of 
observed outcome variables was six, while decreasing the number of observed outcome variables 
can lead to a decrease in convergence rates, especially for Lap1. When there were three observed 
outcome variables per dimension, increasing the residual factor loadings was associated with higher 
convergence rates for large sample sizes, but this effect was less pronounced when the sample size 
was 250. In terms of estimation time, Lap2 required more time than Lap1, especially as the number 

F I G U R E  4   Bias of the slope (a), threshold (b), and scale (�) parameters in the count data model in Simulation 1. a−ip 
represents the slope parameter of latent variable F

p
 on item i. ‘Three items’ and ‘six items’ indicate three or six observed 

outcome variables per dimension. (a) Bias of the estimates of the count data model when the sample size was 250. (b) Bias of 
the estimates of the count data model when the sample size was 1000.
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16  |      ZHANG et al.

of observed outcome variables or sample size increased. For both algorithms, an increase in the 
number of observed outcome variables, the sample size, or the magnitude of residual factor loadings 
resulted in a longer estimation time.

Next, we summarize parameter recovery in Simulation 2. First, regardless of the algorithm used, the 
sample size, the number of observed outcome variables, and the covariance of the latent variables pos-
itively influenced the estimation accuracy and precision. Second, larger biases (i.e., absolute bias larger 
than 0.01) were observed in parameter estimates for ordinal data, count data with a negative-binomial 
distribution, and covariance. Third, Lap2 generally outperformed Lap1 in estimating the model param-
eters when the sample size was 1000. However, Lap1 outperformed Lap2 in estimating the ordinal data 
model parameters when both the sample size and the number of observed outcome variables were small.

F I G U R E  5   Bias of the covariance parameters in Simulation 1. cov
pq

 represents the covariance estimate of latent variable 
F
p
 and F

q
. ‘Three items’ and ‘six items’ indicate three or six observed outcome variables per dimension. (a) Bias of the 

estimates of the covariance when the sample size was 250. (b) Bias of the estimates of the covariance when the sample size 
was 1000.
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Simulation 2 introduced residual factors to the model and we therefore focus on the impact of these. 
We plot the biases of the residual factor loading estimates with negative-binomial count data in Figure 7 
and summarize the influences of the magnitude of the residual factor loadings in Table 8. The figure 
indicates that Lap2 produced less biased estimates of residual factor loadings, especially when the sam-
ple size was 250. We also manipulated the magnitude of the residual factor loadings in Simulation 2. As 
Figure 7 reveals, a higher magnitude of residual factor loadings was related to less biased estimates of 
residual factor loadings. However, Table 8 suggests that higher residual factor loadings were associated 
with greater biases in other parameter estimates.

T A B L E  5   Average absolute bias of selected parameter estimates under the simulating factors in Simulation 1 (sample size 
= 1000)

Factor Level Method

Ordinal model Negbin model

CovarianceSlope Thresholds Slope Scale

J 3 Lap1 0.0528 0.0074 0.0104 0.0087 0.0247

6 Lap1 0.0286 0.0064 0.0039 0.0016 0.0096

3 Lap2 0.0117 0.0052 0.0013 0.0033 0.0021

6 Lap2 0.0070 0.0032 0.0011 0.0025 0.0011

� Small Lap1 0.0456 0.0087 0.0069 0.0051 0.0160

Large Lap1 0.0278 0.0048 0.0052 0.0028 0.0184

Small Lap2 0.0110 0.0046 0.0015 0.0034 0.0017

Large Lap2 0.0062 0.0031 0.0009 0.0022 0.0015

Overall Lap1 0.0367 0.0067 0.0061 0.0039 0.0172

Lap2 0.0086 0.0038 0.0012 0.0028 0.0016

Note: Lap1, first-order Laplace; Lap2, second-order Laplace; Negbin, negative-binomial; J , the number of observed outcome variables; �, 
covariance of latent variables.

F I G U R E  6   Model illustration including residual latent variables, where X, Y, and Z denote three different types of 
indicators, F1–F3 are latent variables measured by the X-, Y-, and Z-variables, respectively, and R1–R3 are residual latent 
variables.
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18  |      ZHANG et al.

T A B L E  6   Convergence rates and timing (seconds) of Lap1 and Lap2 in Simulation 2 (sample size = 250)

Sample size Type J � Residuals

Convergence rate Timing

Lap1 Lap2 Lap1 Lap2

250 Pois 3 Small Small 92.1% 95.2% 4.1 15.1

250 Pois 3 Small Large 93.2% 95.6% 4.3 16.0

250 Pois 3 Large Small 95.2% 100% 3.9 15.1

250 Pois 3 Large Large 94.0% 99.1% 4.2 15.3

250 Negbin 3 Small Small 91.5% 91.8% 4.1 16.7

250 Negbin 3 Small Large 88.6% 91.9% 4.3 16.9

250 Negbin 3 Large Small 91.5% 98.0% 4.2 17.0

250 Negbin 3 Large Large 94.6% 98.9% 4.2 17.1

250 Pois 6 Small Small 100% 100% 11.5 92.1

250 Pois 6 Small Large 99.5% 99.7% 12.3 98.7

250 Pois 6 Large Small 100% 100% 10.3 83.7

250 Pois 6 Large Large 99.0% 99.3% 12.6 101.8

250 Negbin 6 Small Small 100% 100% 12.8 108.4

250 Negbin 6 Small Large 99.8% 100% 12.8 109.7

250 Negbin 6 Large Small 100% 100% 12.6 106.4

250 Negbin 6 Large Large 100% 100% 12.9 110.9

Overall 96.2% 98.1% 8.2 58.8

Note: Lap1, first-order Laplace; Lap2, second-order Laplace; Pois, Poisson; Negbin, negative-binomial; J , the number of observed outcome 
variables; �, covariance of latent variables.

T A B L E  7   Convergence rates and timing (seconds) of Lap1 and Lap2 in Simulation 2 (sample size = 1000)

Sample size Type J � Residuals

Convergence rate Timing

Lap1 Lap2 Lap1 Lap2

1000 Pois 3 Small Small 87.6% 97.1% 13.7 56.5

1000 Pois 3 Small Large 93.3% 97.6% 15.1 63.5

1000 Pois 3 Large Small 84.7% 95.5% 13.2 52.7

1000 Pois 3 Large Large 91.1% 99.8% 15.3 59.6

1000 Negbin 3 Small Small 82.9% 97.7% 14.0 61.8

1000 Negbin 3 Small Large 92.0% 98.2% 15.2 69.1

1000 Negbin 3 Large Small 81.7% 95.2% 14.4 60.8

1000 Negbin 3 Large Large 90.5% 99.8% 15.5 66.0

1000 Pois 6 Small Small 100% 100% 40.1 351.4

1000 Pois 6 Small Large 99.6% 99.7% 47.4 410.8

1000 Pois 6 Large Small 100% 100% 38.0 333.9

1000 Pois 6 Large Large 99.2% 99.7% 48.7 423.0

1000 Negbin 6 Small Small 100% 100% 44.8 413.7

1000 Negbin 6 Small Large 100% 100% 44.7 416.8

1000 Negbin 6 Large Small 100% 100% 43.9 405.9

1000 Negbin 6 Large Large 100% 100% 45.0 415.5

Overall 93.9% 98.8% 29.32 228.81

Note: Lap1, first-order Laplace; Lap2, second-order Laplace; Pois, Poisson; Negbin, negative-binomial; J , the number of observed outcome 
variables; �, covariance of latent variables.
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5  |  DISCUSSION

The advent of complex measurement tools has facilitated research by providing more detailed infor-
mation on the response process. As a result, the data often consist of different types. In this paper we 
implemented first- and second-order Laplace approximations to jointly model a mixture of ordinal, 
continuous, and count data within the framework of GLLVMs. An empirical study demonstrated the 
usage of the proposed methods in practice, and two simulation studies were conducted to examine the 
performance of both algorithms in the scenario of computer-based assessment with process indicators 
and performance data. The results indicated that Lap2 had a higher convergence rate and better param-
eter recovery compared to Lap1, especially when the sample size was large. However, Lap2 took longer 
to estimate, especially with complex models that incorporated residual factors.

F I G U R E  7   Bias of the estimates of the residual factor loadings in Simulation 2. ‘Three items’ and ‘six items’ indicate 
three or six observed outcome variables per dimension. (a) Bias of residual factor loading estimates when the sample size was 
250. (b) Bias of residual factor loading estimates when the sample size was 1000.
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The experimental factors impacted the results in the following ways. First, higher sample sizes improved 
the estimation accuracy, especially for Lap2. Second, a larger number of observed outcome variables had a 
positive influence on convergence and parameter recovery. As the number of observed outcome variables 
increased, both Lap1 and Lap2 approximated the marginal log-likelihood better and the error of the esti-
mators decreased (Huber et al., 2004). Moreover, higher-order Laplace approximations have a faster rate 
of approximation error decrease (Andersson & Xin, 2021), which means that fewer indicators are needed 
to achieve a high accuracy. Third, the magnitude of the covariance between latent variables had a positive 
effect on the estimation. Fourth, the magnitude of the residual factor loadings had some influence on the 
convergence and estimation time but a mixed effect on parameter recovery. Larger residual factor loadings 
implied stronger task-specific effects, which should be considered in the model specification. In the empir-
ical study, we found that considering the residual correlation improved the model fit and that the residual 
factor loadings were substantial. In this study, we imposed equality restrictions on residual factor loadings 
from the same stimulus. If there are prior hypotheses about the residual factor loadings, it is flexible to take 
them into account and specify such a hypothesized model as long as it is identifiable.

5.1  |  Contributions and limitations

The study makes significant contributions in several ways. First, we derived the second-order Laplace 
approximation likelihood form of Poisson and negative-binomial distributions for count data, which 
extended existing research that only included first-order Laplace approximations for count data (Niku 
et al., 2017). Employing Lap2 can improve the estimation accuracy in terms of the slope and scale parame-
ters compared to using Lap1 for data with a negative-binomial distribution. Second, the current study pro-
vided a fast yet accurate solution for a combination of count data, continuous data, and ordinal data within 
the framework of GLLVMs. Compared to a Bayesian or quadrature approach, Laplace approximations 
greatly increase the computational efficiency in high-dimensional GLLVMs (Huber et  al.,  2004). Our 
research considered different types of observed variables and potential residual correlations between the 
indicators in a single model. This extended the study of Niku et al. (2017) by considering different types 
of indicators at the same time, and the research related to joint modelling of responses and response times 
within a hierarchical framework (van der Linden, 2007) by incorporating count data. Third, compared to 
Andersson et al. (2023b) who only considered categorical data, we compared the first- and second-order 
Laplace approximation in the case of GLLVMs with a mixture of ordinal, count, and continuous indica-
tors, which advanced our knowledge of the performance of both algorithms in the mixed-data situation, 
correlations of latent variables, and magnitudes of residual factor loadings.

T A B L E  8   Absolute bias of parameter estimates under different levels of the residual factor loadings in Simulation 2

Sample size Res Method

Ordinal model Negbin model

CovarianceSlope Thresholds Slope Scale

250 Small Lap1 0.0369 0.0083 0.0101 0.0067 0.0263

Large Lap1 0.0384 0.0094 0.0141 0.0080 0.0275

Small Lap2 0.0377 0.0191 0.0025 0.0104 0.0050

Large Lap2 0.0477 0.0212 0.0045 0.0112 0.0057

1000 Small Lap1 0.0402 0.0075 0.0098 0.0066 0.0213

Large Lap1 0.0440 0.0074 0.0116 0.0100 0.0214

Small Lap2 0.0110 0.0044 0.0017 0.0030 0.0017

Large Lap2 0.0155 0.0060 0.0017 0.0032 0.0033

Overall Lap1 0.0399 0.0081 0.0114 0.0078 0.0241

Lap2 0.0280 0.0127 0.0026 0.0070 0.0079

Note: Lap1, first-order Laplace; Lap2, second-order Laplace; Negbin, negative-binomial; Res, the residual factor loadings.
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On the other hand, some limitations of the paper should be noted. First, the Laplace approximations 
require computing higher-order derivatives for the distributions of the observed outcome variables. This 
means that substantial derivations are necessary to support additional distributions. In the current study, 
only certain types of continuous, count, and ordinal data were considered. However, it is feasible to con-
sider other types/distributions of indicators, which is a potential direction for future studies. Second, we 
only compared the first- and second-order Laplace approximations and did not compare them against 
quadrature-based methods. This was due to the computational expense of quadrature-based methods. 
Other approaches, such as Bayesian methods, were not considered in this study because of the focus 
on likelihood-based estimation. Bayesian approaches employing MCMC methods have been applied to 
estimate joint models of continuous, count, and binary data (Man et al., 2022; Man & Harring, 2023) 
but these implementations have so far not considered residual correlations between the indicators. It is 
worth noting that Bayesian methods can be time-intensive in estimating model parameters (Ulitzsch 
et al., 2020a). In addition, practitioners may face challenges in deciding on parameter priors. Third, the 
GLLVMs used in this study did not consider potential latent subgroups. In empirical studies of response 
times and responses, mixture modelling that distinguishes respondents with aberrant behaviour from 
those with solution behaviour have been considered (Wang et al., 2018). A future direction could be to 
extend GLLVMs by incorporating finite-mixture models to account for latent subgroups.

5.2  |  Practical suggestions

In this study, we used process and performance data from computer-based assessments to demonstrate 
the application of the proposed method. The method can also be applied to game-based assessments 
to model the number of trials, response times, and performance scores (Landers et al., 2022), or psy-
chophysiological multimodal data including item responses, response times, and visual fixation counts 
using eye-tracking equipment (Man et al., 2022; Man & Harring, 2023). Additionally, the method has 
the potential to be applied to broader areas beyond psychological and educational assessments. For ex-
ample, a combination of different data types often occurs in ecological data such as species counts and 
biomass in biology (Niku et al., 2017) and patient data relevant to symptoms such as presence/absence, 
frequency, and scale scores in health (Daniels & Normand, 2006).

For practitioners dealing with a mixture of different types of data, we offer some suggestions. First, 
a proper treatment of data pre-processing is necessary for achieving accurate estimates. For exam-
ple, when dealing with highly positively skewed data, such as response times, it is recommended to 
apply a logarithm transformation to account for the skewness of the response time distributions (van 
der Linden,  2006). As with other statistical analyses, the presence of outliers can result in inaccu-
rate parameter estimates, necessitating the identification and proper corrections of outliers (Chambers 
et al., 2004). Second, when there are more than two latent variables, Laplace approximations have a 
great advantage over numerical quadrature or Bayesian approaches in terms of computational efficiency. 
Within Laplace approximations, Lap1 is faster than Lap2 and the efficiency advantage increases with 
the dimension of latent variables and the complexity of model structures. For example, the difference 
between the average time for estimating three-dimensional models (Simulation 1) was 2 seconds, while 
the value increased to 350 seconds for nine-dimensional models with residual correlations (Simulation 
2) when the sample size was 1000. Third, when both the sample size and the number of variables 
were small (e.g., 250 participants and three variables in our simulations), Lap1 and Lap2 showed their 
advantages in estimating different model parameters. In general, when practitioners are primarily in-
terested in investigating the relationships between latent variables or task-specific relationships (Costa 
& Chen, 2023), we recommend using Lap2, as it produced more accurate and precise estimates of the 
covariance and residual factor loadings in our simulations and was closer to the gold standard estimator. 
Finally, starting values have a large impact on the estimation of GLLVMs. This is because the observed 
likelihood can be multimodal when GLLVMs have a complex mean and latent variable structure (Niku 
et al., 2019). If researchers or practitioners have prior knowledge of the estimates based on existing 
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22  |      ZHANG et al.

literature or studies, it is possible to make use of that information. If no prior knowledge is available, it 
is possible to make use of the data provided to determine the starting values (Niku et al., 2019). In our 
simulation studies, we first fitted unidimensional measurement models and obtained the estimates as 
starting values if the unidimensional models converged. This greatly reduced the estimation time and 
increased the convergence rate.
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A PPEN DI X 1

TRUE VALUES OF THE PARAMETERS IN THE SIMULATION STUDIES

T A B L E  A 1   Distributions of true parameters

Data type Parameter Distribution

Ordinal data a slope parameter U (0. 74, 1. 69)

b1 threshold parameter U (0. 2, 1. 25)

b2 threshold parameter U ( − 1. 25, − 0. 2)

Continuous data a slope parameter U (0. 4, 0. 8)

b intercept parameter U ( − 0. 2, 0. 2)

� scale parameter U (0. 1, 0. 3)

Count data a slope parameter U (0. 4, 0. 8)

b intercept parameter U (1, 3)

� scale parameter (negative binomial) U (0. 5, 1)

Covariance parameters � covariance: small U (0. 2, 0. 4)

� covariance: large U (0. 6, 0. 8)

T A B L E  A 2   Covariance matrix for the latent variables when covariance is small

F1 F2 F3

F1 1 0.363 0.377

F2 0.363 1 0.204

F3 0.377 0.204 1

T A B L E  A 3   Covariance matrix for the latent variables when covariance is large

F1 F2 F3

F1 1 0.743 0.632

F2 0.743 1 0.630

F3 0.632 0.630 1

T A B L E  A 4   True residual factor loadings

Stimulus Small Large

1 0.633 0.316

2 0.715 0.357

3 0.627 0.313

4 0.649 0.325

5 0.426 0.213

6 0.505 0.253
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A PPEN DI X 2

DERIVATIVES
The derivatives required in Equation (10) are presented as follows. Let h

i
= − logP

iy
i

 and define 1() as 
an indicator function.

Ordinal data
We give the results for the GPCM and refer to Jin and Andersson (2020) for results with the GRM. Let 
P
ic
 represent P

i
(y
i
= c|z,w). The derivatives of h

i
 with respect to z are 

and 

The derivatives of h
i
 with respect to u ∈ {a

i
, b
i2
,…b

im
i

} are 

and 

�h
i

�z
j

= − a
ij

(

y
i
−

m
i∑

c=1

cP
ic

)

,

�2h
i

�z
j
�z
k

= a
ij

m
i∑

c=1

c

�P
ic

�z
k

,

�3h
i

�z
j
�z
k
�z
l

= a
ij

m
i∑

c=1

c

�2P
ic

�z
k
�z
l

,

�4h
i

�z
j
�z
k
�z
l
�z
m

= a
ij

m
i∑

c=1

c

�3P
ic

�z
k
�z
l
�z
m

,

�5h
i

�z
j
�z
k
�z
l
�z
m
�z
n

= a
ij

m
i∑

c=1

c

�4P
ic

�z
k
�z
l
�z
m
�z
n

.

�h
i

�u
= −

�P
iy
f

�u

P
iy
f

,

�2h
i

�z
j
�u

= − 1(u= a
ij
)

(

y
i
−

m
i∑

c=1

c

�P
ic

�u

)

+a
ij

m
i∑

c=1

c

�P
ic

�u
,

�3h
i

�z
j
�z
k
�u

= 1(u= a
ij
)

m
i∑

c=1

c

�P
ic

�z
k

+a
ij

m
i∑

c=1

c

�2P
ic

�z
k
�u
,

�4h
i

�z
j
�z
k
�z
l
�u

= 1(u= a
ij
)

m
i∑

c=1

c

�2P
ic

�z
k
�z
l

+a
ij

m
i∑

c=1

c

�3P
ic

�z
k
�z
l
�u
,

�5h
i

�z
j
�z
k
�z
l
�z
m
�u

= 1(u= a
ij
)

m
i∑

c=1

c

�3P
ic

�z
k
�z
l
�z
m

+a
ij

m
i∑

c=1

c

�4P
ic

�z
k
�z
l
�z
m
�u
.

 20448317, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12337 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [12/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



26  |      ZHANG et al.

The derivatives of P
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 with respect to z in the above equations are 
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and 

The derivatives with respect to �
id

 are equal to the product of w
d
 and the derivatives with respect to b

i
.

Continuous data
The derivatives of h

i
 with respect to z for continuous data (Huber et al., 2004) are given as follows. Note 

that only the first and second derivatives exist in this case. 
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and 

The derivatives with respect to �
id

 are equal to the product of w
d
 and the derivatives with respect to b

i
.

Count data: Poisson distribution
The first- to fifth-order derivatives of h
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The derivatives of h
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and 

The derivatives with respect to �
id

 are equal to the product of w
d
 and the derivatives with respect to b

i
.

Count data: Negative-binomial distribution
With a negative-binomial distribution, we have that 
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and 

The derivatives with respect to b
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and 

The derivatives with respect to �
i
 are, with � denoting the digamma function, 
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The derivatives with respect to �
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 are equal to the product of w
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 and the derivatives with respect to b
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