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ABSTRACT

The solar corona has a temperature of order 1 MK, which is almost 200 times the temperature of the
underlying surface. This fact has puzzled solar physicistsfor more than six decades. As of today,
most solar physicists agree that the mechanism that heats the corona is connected to the dynamics of
the magnetic fields in the photosphere. The question is:howdoes the coronal heating depend on the
photospheric magnetic fields? That is the problem which thisthesis focuses on.

Before investigating the problem, an introduction to the Sun is given, reviewing everything from the
basics of a general star to the structure of the entire Sun, going through each layer, with focus on
the atmosphere. Finally, the corona is brought into discussion, which leads us to thecoronal heating
problem. Two plausible heating mechanisms are discussed, both related to the generation ofcurrent
sheets: 1) the stressing of a magnetic field which collapses into tiny current sheets (width of order
10 m) which eventually burst out as ananoflare, a mechanism introduced by Parker (1988), and 2)
a hierarchy of current sheets, analyzed by Galsgaard & Nordlund (1996), which also includes large-
scale current sheets (width of several megameters) not related to nanoflares. Both mechanisms are
actively referred to in the later chapters of this thesis.

To analyze the problem, the numerical code Bifrost is applied to solve the MHD equations on three-
dimensional cutouts of the quiet-Sun (QS) atmosphere. Fivetheoretical models with different mag-
netic field configurations are evolved over time intervals of30-80 min of solar time, and the result-
ing coronal temperatures and amounts of Joule heating (ohmic heating) in each model are analyzed,
compared to each other and compared to the corresponding results of a standard model evolved by
Hansteen et al. (2010).

The results confirms that both the tiny current sheets related to nanoflares and the hierarchy of large-
scale current sheetsare plausible mechanisms for coronal heating. It is plausible that the magnetic
field structure in the QS photosphere is in the form of a “salt-pepper” pattern with poles of upward-
and downward-oriented fields. The simulations indicate that the coronal heatingincreaseswith the
typical separation distance between magnetic poles in the photosphere, at least when this separation
distance is shorter than 6-7 Mm (which is approximately the numerical upper limit for typical sep-
aration distances in the models evolved in this thesis). This is probably because an increased mean
separation distance between magnetic poles allows a more complex hierarchy of current sheets to
evolve. It is also confirmed that an atmosphere of homogeneous vertical magnetic fields does not
produce the high temperatures observed in the corona above unipolar regions such as plage.
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1

I NTRODUCTION

Our life-giving star, known as the Sun, has always fascinated humanity. For thousands of years,
natural philosophers and, later, scientists have tried to understand its workings. As early as 2000 B.C.,
Chinese astronomers observed and predicted solar eclipses(which later have become an important
source of information about the Sun), and in 350 B.C., sunspots were discovered by one of Aristotle’s
pupils, Theophrastus. The sunspots were, unfortunately, forgotten in Europe for more than a thousand
years, but in China these features were being observed systematically (Priest 1982).

The real boost of knowledge about the Sun began in the 16th and17th centuries: Copernicus (1543)
stated that the Earth, as well as the five other planets known at that time, orbits the Sun instead of
the Sun and the other planets orbiting Earth. Galileo Galilei “rediscovered” sunspots (after being ob-
served by Thomas Harriot, Johannes and David Fabricius in 1611) as well as promoting Copernicus’
idea of a heliocentric system, proposing that falling bodies are accelerated equally if the resistance of
the medium is negligible and also proposing the principle ofinertia; Johannes Kepler formulated three
laws of planetary motion; Isaac Newton formulated the gravitational law and the three laws of motion.
With the 18th and 19th centuries came the development of thermodynamics and atomic theory, the
invention of photography and the discovery of atomic spectra, and with the 20th century came the
development of quantum physics, the invention of the computers (and later parallel computers), the
invention of CCDs (digital imaging devices used in telescope) as well as great enhancement in several
observational instruments, amongst others telescopes andspectrographs. All of this has helped astro-
nomers to gain a solid physical understanding of our mother star. Still, there are several mysteries
about the Sun that remain to be solved.

1.1 A Review of our Current Knowledge about Stars

The Sun is astar, located in agalaxyknown as the Milky Way, orbiting the galactic center with a
speed of 220 km/s at a distance of 26400 light years (Kerr & Lynden-Bell 1986) . A galaxy is a huge
accumulation of stars, usually shaped like an ellipsoid or aspiral disc, where the latter is the case of our
galaxy. Assuming circular orbit, we can use the orbital speed of the Sun to find out that the solar orbit
encloses a mass of∼ 1011 M⊙, whereM⊙ is the solar mass. Since the outer-lying mass in fact counts
at least 50 % of the total mass, and since most of the stars are less massive than the Sun (because the
more massive stars die more quickly due to a much higher hydrogen burning rate), we can estimate
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2 CHAPTER 1

that there are between a few hundred billion and one trillionstars in the Milky Way. The Milky Way is
one of more than 30 galaxies in a galaxy cluster known as the Local Group (Karachentsev et al. 2009).
The cluster is∼ 10 Mly (megalightyears) from the nearest neighbor cluster (Karachentsev 2005) and
part of a∼ 100 Mly wide disk-shaped supercluster (Kalinkov 1983), theVirgo Supercluster, making
the Local Group one of∼ (100 Mly/10 Mly)2 = 100 clusters in the Virgo supercluster. The nearest
neighbor superclusters are about 300 Mly away. Assuming that the density of superclusters is more or
less homogeneous in the observable universe, which has a radius of∼ 50 Gly (Gott et al. 2005), we
can estimate that there are about4/3π(50 000/300)3 ∼ 107 superclusters in the observable universe.
This means that there are more than 30 billion galaxies in theobservable universe (the Hubble Space
Telescope has estimated at least 80 billion), and the Sun is only one of more than1022 stars. Before
going into the details about the Sun, it is therefore important to have some basic knowledge about
stars, i.e. what they are and how they work.

A star is aball of self-gravitating gasthat produces energy through atomicfusionin the core. Energy
is transported through the different layers of the star until it leaves the star’s surface, mostly in the form
of electromagnetic radiation, while some of the energy that leaves the surface is deposited in a stellar
wind, i.e. particles which move away from the star with a highvelocity. A star can be surrounded by
smaller spherical objects, known asplanets, and if a planet is made of right material and lies close
enough to the star, but not too close, the electromagnetic radiation from the star will warm up the
planet sufficiently for the possibility oflife.

We usually put the stars into differentspectral classesby considering theireffective temperatureTeff .
Stars radiate almost like perfect black bodies, and therefore, after measuring the spectrum of a star,
we can find the Planck radiation curve that fits the spectra optimally, see figure 1.1. More specifically
Wien’s displacement law states that the effective temperature of a star is related to the wavelength
λtop (measured in Ångstrøm), where the top of the Planck curve occurs, byλtopTeff = 2.90 · 107

Å·K. The effective temperature of a star is roughly equal to itssurface temperature, where the surface
is defined as the spherical layer around the star where the bulk of the visual light emitted from the
star becomes optically thin. The red stars, which have spectra centered around the longer wavelengths
(λtop > 6 500 Å), therefore have cooler surfaces (Teff < 4 500 K), while the blue stars, with spectra
centered around the shorter wavelengths (λtop < 1000 Å), have hotter surfaces (Teff > 30 000 K).
Since the visible light only ranges from about 3800 Å to 7400 Å, we only see a small part of the
spectrum of the hottest stars (λ ∼ 4000 Å, which is blue light). The main spectral classes are, from
hottest too coolest, the following: O, B, A, F, G, K, M. Additionally, each spectral class is divided
into 10 bins indicated by a number from 0 to 9.

The other important stellar classification is theluminosity class, denoted by a roman number from I
to V. The luminosity of a star is a measure of the electromagnetic energy which the star releases per
time unit, and for a specific spectral class, the most luminous stars are in class I and the least luminous
in class V. But this doesnot mean that the stars in the same luminosity class have roughlythe same
luminosity. In reality, the luminosity class tells us more about what kind of stars we are dealing with.
Stars in class V are the so-calledmain sequencestars, while stars in classes I-IV are giants (class
I denotes the most luminous supergiants). A main sequence star is a star which is in a physically
stable state (does not undergo any dramatic changes in temperature and density) and where the only
fusion process that takes place is fusion of hydrogen to helium (H→He) in the stellar core. Giant
stars (classes I-IV) are older stars, depleted of core hydrogen, where H→He fusion takes place in
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(a) Planck curves for black bodies with different tem-
peratures.

(b) The solar spectrum fitted with a Planck curve for a black
body with a temperature of 5800 K.

Figure 1.1: Planck curves and the Solar spectrum. Images arereprinted fromhttp://en.wikipedia.org/
wiki/Planck’s_law and http://www.pages.drexel.edu/~brooksdr/DRB_web_page/papers/
UsingTheSun/using.htm

surrounding shells. Additionally, fusion into heavier elements might occur, depending on the mass of
the star. Figure 1.2 shows a Hertzsprung-Russell diagram where the stellar classification is visualized.
It also shows the position of the Sun in an HR diagram.

Stars are formed in dense clouds of interstellar medium (ISM). The ISM is the matter that exists in
space outside star systems, consisting of both ionized, atomic and molecular gas. Since these clouds
are always in chaotic movement, several clouds might collide into each other, and this will cause the
gas to compress. When a cloud gets dense enough, its internalgravitational forces will be so strong
that it cannot be balanced by the forces due to the gas pressure. The mass of the cloud is then greater
than the Jeans mass,

MJ =
4π

3
ρR3

J =
πc3

s

6G3/2ρ1/2
,

whereρ is the mass density,RJ the Jeans radius,cs the sound speed andG the gravitational constant.
This triggers a gravitational collapse, where gas falls towards the centre of the cloud (i.e. the cloud
is accreting). Since the accreting cloud is initially rotating, and since the angular momentum of the
cloud is conserved, the gas outside the central part of the cloud rotates faster. This leads to a rapidly
increasing centrifugal force which halts the in-falling gas in the rotation plane. Since there are no
forces halting the gas from falling in from other directions, this leads to the development of a central
mass, i.e. aprotostar, surrounded by a flattened disc of rotating plasma (accretion disc). At some
point, the accretion of the surrounding plasma stops, and wehave apre-main-sequence star(PMS
star), which gets its energy from gravitational contraction, surrounded by orbiting clouds of cooler
gas. The gravitational contraction in the PMS star continues until its core gets hot enough (107 K) to
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Figure 1.2: Hertzsprung-Russell diagram with stellar classification. The image is reprinted fromhttp://www.astro.
lsa.umich.edu/undergrad/Labs/MWDisk/mwdisk.html

start H→He fusion, and we have amain sequence star. Meanwhile, the surrounding orbiting clouds
of gas cool down and condense into denser objects and end up assolid objects e.g. planets, asteroids
and comets.

The high increase in the temperature due to the ignition of the hydrogen core (i.e. beginning of H→He
fusion) causes the pressure gradient force to increase (dueto an increase in the gas pressure) until it
becomes strong enough to balance the gravitational force. In other words, hydrostatic equilibrium is
achieved. The star is now in a stable phase and will remain so until the core hydrogen is more or less
depleted. In fact, most stars spend more than 80 % of their lifetime as main sequence stars.

The core is only a small part of the stellar interior. Betweenthe core and the surface, a star can have
a radiative and/or aconvectivezone. These zones are discussed more in detail in section 1.2.1, but
the main distinction between these two zones is the following: in a radiative zone, the efficient way
of transporting energy outwards is by the diffusion of electromagnetic radiation, while in a convective
zone, the energy transport is dominated by convective motion i.e. parcels of hot gas are buoyant and
rise up to cooler regions, thereafter they cool and sink again. Convection is efficient in regions where
the temperature drops fast enough with height (see section 1.2.1). Red dwarf stars (class M) are much
smaller than other main sequence stars and have relatively cool surfaces (∼ 3000 K), which means
that they have a temperature that drops much faster with height than in the larger main sequence stars.
In fact, the temperature drops fast enough to cause the entire star to be convective outside its core. As
a result, the helium produced in the core is continuously mixed with the hydrogen in the envelope,
which secures fresh amounts of hydrogen for the core to burn to helium. This means that the entire
star works as a H→He “power plant” until all hydrogen in the star has turned to helium. Because red
dwarfs have relatively small masses (down to 0.4 solar masses), the gravitational force on the core
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is also relatively small and requires therefore less gas pressure from the core to maintain hydrostatic
equilibrium. Therefore, the hydrogen burning goes quite slowly, and the time it takes from the birth
of a red dwarf until the star is depleted of hydrogen can be calculated to be of order trillions of years
i.e. much longer than the current age of the universe. Solar-like stars have a radiative zone around
the core, and then a convective zone. Stars heavier than1.1M⊙ (Maeder & Meynet 1989) have cores
which fuse hydrogen to helium in a different way than stars with smaller masses (CNO-cycle instead
of pp-chain), and this results in a higher core temperature,hence a higher temperature gradient around
the core, which leads to a thin convective layer around the core. More massive stars have thicker
convective layer around the core and thinner convective layer below the surface. In general, according
to Schwarzschild (1958), upper main sequence stars (OBA class stars) have convective inner envelope
and radiative outer envelope, while it is the opposite for lower main sequence stars (solar-like stars and
lighter stars) except for M class dwarfs. OBA class stars therefore have smooth surfaces compared
to lower main sequence stars, both because they have no granulation pattern (a characteristic surface
pattern due to underlying convection) and because they haveno magnetic field which extends outside
the surface (hence no starspots, which are concentrations of strong magnetic fields on the surface). The
only exceptions are some OB class stars where observations indicate magnetic fields which extends
out of the surface, probably in the form of a stable field configuration (Braithwaite & Nordlund 2006).

When a star is depleted of core hydrogen, unless it is an M class dwarf (where all hydrogen is turned
to helium in the end), the temperature and hence the gas pressure decreases abruptly due to the halt in
the H→He fusion, and the star begins to contract. This continues until the shell which surrounds the
core is hot enough to start H→He fusion. This produces a pressure gradient force which is too strong
to be balanced by the gravitational force, and the outer envelope of the star expands rapidly. Solar-like
stars are at this point in a phase known as thered giant branch(RGB), because they have expanded
so quickly that the surface has cooled and turned red. What happens after the H→He burning shell
is depleted of hydrogen depends on the mass of the star. Figure 1.3 shows how different post-main-
sequence stars change their position in an HR-diagram during the final stages of their lives.

According to Lattanzio & Forestini (1999), stars heavier than 0.6M⊙ start fusing helium to carbon
and oxygen in the core and later in the surrounding shell (after depletion of core helium). Solar-like
stars are at this point entering ahorizontal branch(HB) where they move to the left and right several
times in the HR diagram i.e. their size and surface temperature are oscillating. The existence of a
horizontal branch was discovered in the first detailed studies of globular clusters (Arp et al. 1952;
Sandage 1953).

When the core is depleted of helium, i.e. when the entire coreconsists of carbon and oxygen, the
star contracts due to the lack of a sufficient pressure gradient. When the gravitational pressure on the
helium shell around the core is high enough, this shell starts fusing helium into carbon and oxygen.
The star is now in theasymptotic giant branch(AGB) where it undergoes an enormous expansion
because of the enormous pressure gradient due to the shell helium fusion. Because of the rapid
expansion, the surface will be cold and red, hence this kind of star is known as a (super)red giant.
Finally, the outer layers of the red giant are thrown off in the form of a planetary nebula, and the
remainder is a hot core made of oxygen and/or carbon, known asa white dwarf.

Stars with higher mass can fuse carbon and oxygen into even heavier elements, but not heavier than
iron (which is the element with the lowest energy per nucleon). These stars turn into supergiants
and end their lives in powerful explosions known assupernovae. Possible stellar remnants after a
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Figure 1.3: Selected stellar evolutionary tracks in an HR diagram. The numbers along the main sequence line shows the
stellar mass in units of the solar mass. Image is reprinted fromhttp://en.wikipedia.org/wiki/Asymptotic_
giant_branch

supernova areneutron starsandblack holes. Supernovae are powerful enough to produce elements
heavier than iron.

In the early universe, there was only hydrogen and helium andsome lithium, because these where the
only elements which were efficiently created by Big Bang nucleosynthesis. Therefore, the oldest stars
in the universe contained only these three elements. Later,after stars had produced heavier elements
and released them in supernovae, these elements was spread into the ISM, and then new stars could
be born with small amounts of heavier elements. The youngeststars are therefore the ones which are
the richest in metals. Astronomers distinguish between population I, II and III stars, population I stars
are rich on metals while population II and III stars have little or no metals. This means that population
I stars are the youngest stars in the universe, and population II and III stars are the oldest. Note that
very few, if any, population III stars have been found.

It is important to point out that our main (and practically only) source of information about a star is
the electromagnetic (EM) radiation that we receive from it.As mentioned earlier in this section, from
the spectrum of EM radiation we can first extract a Planck curve which tells us immediately about
the star’s effective temperature. But this Planck curve is “disturbed” by emission and absorption
lines, because a star (obviously) consists of atoms that canabsorb and emit photons. Because each
chemical element has its characteristic absorption/emission lines, we can first of all use the line spectra
to find out which elements that are present in the star and estimate the abundance of each element
by measuring the intensities of the lines. The lines might beDoppler shifted or broadened due to
velocities, and therefore Doppler shifts and Doppler widths can give us information about the star’s
rotation velocity, large-scale velocities of plasma inside the star and its temperature (since the Doppler
width increases with the thermal velocities). The presenceof a magnetic field can cause a Zeeman
effect i.e. a splitting of one spectral line into several spectral lines, and by measuring the distance
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between the lines it is possible to estimate the magnitude ofthe magnetic field. Because the light
(or absence of light in the case of an absorption line) at a specific line that we receive from a star is
often mainly produced at a specific depth inside the star, we can measure the intensity, Doppler shifts,
Doppler widths, Zeeman effect and other spectral line effects from many different lines to estimate the
temperature, large-scale velocities, magnetic fields and abundances of the different chemical elements
in different regions inside the star’s atmosphere and thus obtain a detailed knowledge about it.

1.2 A Review of our Current Knowledge about the Sun

The Sun is a yellow dwarf star, and figure 1.2 shows that it is a main sequence star in spectral class G.
More specifically, it is a population I star of spectral classG2 V. It is in its middle age, approximately
5 billion years old, and has a massM⊙ = 2 ·1033 g, a radiusR⊙ = 700 Mm, an effective temperature
Teff = 5780 K and a luminosityL⊙ = 3.84 ·1033 erg/s (Schrijver & Siscoe 2009; Rusov et al. 2010).
According to recent works by Asplund et al. (2009), the Sun consists of 73.81 % (of total mass) hy-
drogen(H), 24.85 % helium(He), and the last 1.34 % is oxygen(O), carbon(C), neon(Ne), silicon(Si),
nitrogen(N), Magnesium(Mg), iron(Fe), sulfur(S) etc. in order of decreasing mass abundance.

The Sun, as other stars, is divided into several layers. The solar interior consists of acore, where
energy is produced by H→He fusion, aradiative zonewhere the energy produced in the core is trans-
ported (very slowly) outwards by diffusion of electromagnetic radiation, and aconvective zonewhere
the energy is transported further outwards by convection until it reaches the surface. The surrounding
solar atmosphere consists of aphotosphere, where the bulk of the electromagnetic radiation that leaves
the Sun is emitted, achromosphere, being a mostly transparent layer with relatively constanttemper-
ature (about 4000-7000 K), atransition region, where the temperature rises to 1 MK within a height
range of no more than a few megameters, and acorona, which is a very hot (∼ 1 MK) and transparent
layer (in visible light) which can be seen as a crown around the Solar disk at Solar eclipses.

The Sun undergoes differential rotation, which means that the gas at different latitudes moves around
the Solar axis with different angular velocities. The rotation period is about 25 days at equator,
increases with latitude and is more than 30 days at latitudeshigher than 60◦ (Khokhlova 1959). Dif-
ferential rotation, combined with convective motions beneath the surface (which in fact is the cause of
the differential rotation), is responsible for the dynamo which generates and maintains the magnetic
fields and the magnetic activity on the Sun.

1.2.1 An Overview of the Solar Interior

Leighton et al. (1962) discoveredsolar oscillationsduring analysis of velocity fields in the solar
atmosphere. This gave rise to a study known ashelioseismology, which has later played a large role in
mapping the solar interior. According to Gizon et al. (2010), helioseismology provides precise tests
of the theory of stellar structure and evolution, and it alsoenables the study and discovery of effects
not included in standard solar models (standard models of the solar interior are spherically symmetric
models without rotation and magnetic fields and with a simplified treatment of convection). There are
three kinds of solar oscillations that are usually studied in helioseismology: 1) p-modes i.e. pressure-
driven waves, 2) g-modes i.e. gravity-driven waves and 3) f-modes which are gravity waves that
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Figure 1.4: Structure of the Solar interior, adapted from Inglis (2003)

Figure 1.5: Log of temperature in K, pressure in108 dyn/cm2 and density in10−5 g/cm3 as function of fractional radius,
whereR = 0.886R⊙. The plot is reprinted from Hansen et al. (2004).

occurs near the surface.

The solar interior is made up by a core, a radiative zone and a convective zone as shown in figure 1.4.
It has a temperature, density and pressure which decreases with height as in figure 1.5. It consists
mainly of hydrogen and helium and less than 2 % of heavier elements. Since the core continually
fuses hydrogen to helium, the abundances of helium is much higher near the core than in the outer
regions, while it is the opposite case for hydrogen. Kosovichev (1995, 1996) applied helioseismology
to estimate how the abundances of hydrogen and helium dependon the distance from the core, as
shown in figure 1.6.

The battery of the Sun lies inthe core. It has a temperature of14.5 · 106 K and a pressure of∼
1017 dyn/cm2, causing hydrogen to be fused into helium by a process known as the proton-proton
chain (and not the CNO cycle which requires an even higher temperature to be efficient). The process
consists of several steps, but roughly it produces one helium nucleus (He2+) and some positrons and
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Figure 1.6: Measures of the abundance of hydrogen (left) andhelium (right) inside the Sun, reprinted from papers by
Kosovichev (1995, 1996).

neutrinos out of four H+ ions1 (or protons). The He nucleus has slightly less mass than the 4H+ ions,
and the rest energy of this mass difference∆m is released as photons, with energy given byE =

∆mc2 (Einstein 1905). We must also count the photons produced when the positrons released during
the pp-chain annihilates with electrons (there is roughly one electron for each proton). Since almost
all of the energy released by the fusion processes in the coreexits the Sun as electromagnetic radiation,
the total energy per second released from the core due to the hydrogen fusion is approximately equal
to the luminosity, that is3.84 · 1033 erg/s.

Outside the core, at a radius ofr ∼ 0.2 R⊙ is a radiative zone. Here, the photons produced in the
core diffuse slowly outwards. According to Mitalas & Sills (1992), it takes about1.7 · 105 years for
an average photon to travel through the radiative zone. Because of the high density and pressure, the
mean free path (averaged over the entire zone) is about 0.09 cm, which causes a travelling photon to
be absorbed by an atom and then re-emitted in another direction almost every10−12 s.

Above r = 0.7 R⊙, convective instability occurs. This means that if a parcelof gas starts to move
upwards, the parcel will continue to rise, because it is buoyant,

δρi < δρ, (1.1)

whereδρi andδρ are the density changes inside the parcel and in the surrounding medium, respect-
ively. Considering the temperatureT , densityρ, pressureP , gravitational accelerationg and mean
particle massm in the fluid, we assume horizontal pressure equilibrium i.e.no excess pressure in
horizontal direction, ideal gas law i.e.P = ρkBT/m and hydrostatic equilibrium i.e.∂P/∂r = −ρg

(which means that the gravitational force is balanced by thepressure gradient) to obtain the Schwarz-
schild condition for convective instability,

−∂T

∂r
>

γ − 1

γ

gm

kB
, (1.2)

1Because of the extremely high temperature, all atoms are completely ionized



10 CHAPTER 1

wherer is the radial coordinate,γ = 5/3 the adiabatic exponent andkB the Boltzmann constant. The
right-hand side term is known as theadiabatic temperature gradient(Priest 1982).

As already mentioned, this criterion is fulfilled abover = 0.7 R⊙, in the convection zone. As a
consequence of the convective instability, parcels of heated gas are transported up towards the surface,
then slowed down due to radiative cooling. The parcels keep moving horizontally along the surface
until they are dense enough to sink again. The convective mechanism, rather than radiation, transports
energy upwards through this zone.

Figure 1.7: Two-dimensional sketch of (the top of) convective cells.

In convection, the upflows of heated plasma are organized in cells while downflows of cool and denser
plasma are concentrated in thinner inter-lying lanes, as shown in figure 1.7, but with higher velocity
than the upflows so that the total mass flux over a large convection pattern is zero. Convective cells
appear in several sizes, all from 1-2 Mm (in upper convectionzone, seen asgranulationin the surface)
to ∼ 100 Mm (giant cells, extends through almost the entire depth of the convection layer but not
visible on the surface), according to Stix (2004).

1.2.2 An Overview of the Solar Atmosphere

The solar atmosphere is usually divided into four layers, from innermost to outermost, these are known
as thephotosphere, thechromosphere, the transition regionand thecorona. Each layer can be char-
acterized by how thetemperaturebehaves. Let us therefore consider figure 1.8(a) which showsthe
modeled temperature in the solar atmosphere as function of height obtained from a numerical simu-
lation (using Bifrost, described in the next chapter). Starting at z = −1, the temperature decreases
relatively slowly, but aroundz = 0, there is a 200-300 km thick region where it decreases quite rap-
idly. This is thephotosphere, where the bulk of the visible light becomes optically thin,causing the
fluid to undergo radiative cooling. Abovez = 200-300 km is a region of relatively constant mean
temperature (or decreasing and then increasing slowly withheight) which is calledchromosphere. It
extends up to heights between 1.5 Mm and 3.0 Mm above the photosphere,2 depending on the local
fluid dynamics. The region where the temperature increases rapidly with height, fromT = 2 · 104 K
to T ∼ 106 K, is thetransition region. It extends fromz ∼ 1.5-3.0 Mm toz ∼ 2.5-3.5 Mm, depending

2When discussing regions above the photosphere in this thesis, the photosphere simply refers toz = 0.
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(a) Temperature in the Solar Atmosphere (b) Density in the Solar Atmosphere

(c) Pressure in the Solar Atmosphere (d) Plasmaβ in the Solar Atmosphere

Figure 1.8: Histograms of temperature, density, pressure and plasmaβ as function of height in the solar atmosphere,
obtained from a BIFROST simulation. The (negative) intensity in each histogram represents the log frequency of each
specific value of the plotted variable at each specific height(hence histogram). Over-plotted is the horizontal averages of
the same measures as function of height.
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(again) on the local fluid dynamics. Finally, the outermost layer is thecorona, which goes fromz ∼
2.5-3.5 Mm and outwards, characterized by a high and nearly constant temperature (of order 1 MK).

In addition to temperature, it is also interesting to study thedensityand the (gas)pressure. These two
quantities are plotted in figure 1.8(b) and figure 1.8(c), respectively. Both quantities decrease with
height. The decreasing pressure can be seen directly from the fact that the Solar Atmosphere is more
or less inhydrostatic equilibrium,

∂P

∂z
= −ρg (1.3)

Combining this with the ideal gas law,P = ρ
mkT while assuming a slowly varying temperature,

which is mostly true except from the transition zone, we obtain the following equation

∂ ln ρ

∂z
= −gm

kT
, (1.4)

i.e. the density decreases with height. It is also easy to show that the density will decrease with height
in the transition zone. Omitting the assumption of slowly varying temperature, we have

∂ ln ρ

∂z
= −∂ ln T

∂z
− gm

kT
, (1.5)

and since the temperature in the transition zone increases with height, we will still have a negative
right-hand side.

In the case of a slowly varying temperature, integrating eq.(1.4) over height gives

ρ = ρ0e
− gm

kT
(z−z0) = ρ0e

−
z−z0
Hρ (1.6)

whereHρ is thedensity scale height, defined asHρ ≡
(

∂ ln ρ
∂z

)−1
, i.e. the height you have to travel

upwards before the density is reduced by a factor ofe. When the temperature is only slowly varying,
as in the chromosphere, the pressure will also follow a similar exponential function with a pressure
scale heightHP ≡

(

∂ ln P
∂z

)−1
= Hρ = kT

gm . Using the solar surface gravitational acceleration

g = GM⊙/R2
⊙ = 2.74 · 104 cm/s2, a typical chromospheric temperatureT = 6000 K and a mean

particle massm ∼ mH ∼ 1.5 · 10−27 g,3 we getHρ = Hp ∼ 1 − 200 km. We also get a similar
estimate of the scale height by measuring the slope of the horizontally averaged pressure and density
in the chromosphere in figures 1.8(b) and 1.8(c).

As mentioned earlier, the Sun hasmagnetic fields, which play an important role on the plasma in the
atmosphere. Its presence might either decrease or increasethe temperature significantly, depending
on the field topology, as well as affecting the density and thelarge scale velocities in the fluid. A
magnetic fieldB exerts a (magnetic) pressure on the surrounding fluid, similar to the gas pressure,
given by

PB =
B2

2µ
(1.7)

3The hydrogen mass is1.67 · 10−27 g, but since a significant fraction of the particles are ionized, the abundance of free
electrons leads to a (slightly) less mean particle mass, andtherefore1.5 · 10−27 g is a good estimate here.
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whereµ is the vacuum permeability. Its gradient is themagnetic pressure force(per volume),∇PB =
1
µ [(B · ∇)B − (∇× B) × B] where the first term is themagnetic tension force, and the second term
is theLorentz force, j × B. We often want to know whether the fluid velocity fields are driven by the
magnetic fields or the other way round. Therefore we define theplasmaβ, defined byβ = P/PB , i.e.
the ratio between the gas pressure and the magnetic pressure. If β >> 1, the velocities in the plasma
drives the magnetic field, but ifβ << 1, the magnetic fields drives the plasma velocities.

A histogram of the plasmaβ is shown in figure 1.8(d). Below the surface, in the convective layer,
wee see thatβ >> 1. The magnetic fields are in fact generated by the turbulent velocities in the that
region. In the photosphere and lower chromosphere,β is both above and below 1, so the magnetic
fields are some places driven by the fluid velocities and otherplaces the other way round. From the
upper chromosphere and upwards,β << 1, so the plasma motions here are more or less driven by the
magnetic fields.

In the solar atmosphere, we distinguish betweenquiet Sun(QS) regions andactive regions(AR).
Active regions are characterized by high magnetic activity, and the magnetic field is strong enough
to modify the granulation (a photospheric pattern discussed later in this section). It features amongst
other phenomenasunspotsandporeswhere the magnetic field strength can reach up to 4000 G,plage
where the plasma is acting turbulently andflareswhich are high energy bursts. The Quiet Sun, on
the other hand, is characterized by weaker magnetic fields, and the magnetic field structure consists
mainly of magnetic bright points organized in a magneticnetworkwhich comprises the pattern seen in
chromospheric lines (a phenomenon calledsupergranulation, described briefly later in this section),
as seen in figure 1.9.

1.2.3 Observations and Simulations of the Photosphere

This thesis focuses on the solar atmosphere, and it is therefore important to have some physical know-
ledge each region of the solar atmosphere in particular, from innermost to outermost. This section
presents what we know about the photosphere, based on observations and numerical simulations.

If we look directly, or through an optical telescope, at the Sun, we see thesolar surface, at r = R⊙,
which marks the bottom of the solar atmosphere. The surface is often defined as the layer where the
optical depth for light with wavelength 5000 Å, as seen from space, equals 1. As already mentioned,
thephotosphereis located here, with a thickness of 1-200 km and characterized by a rapid temperature
decrease from about 8000 K to 5-6000 K. The density in this region is about2 · 10−7 g/cm3, and the
pressure is about2 · 104 dyn/cm2.

The most important feature of the QS photosphere is thegranulation pattern. In figure 1.10, this
pattern is showed as a intensity plot of the continuum wavelengths in the visible spectrum, simulated
with Bifrost. The pattern looks like a mosaic pattern as seenfrom above, composed of many cells
fitting tightly together. These cells, known asgranules, are in fact the top of (relatively small) con-
vective cells in the upper convection zone, and they have a typical diameter of 700-1500 km. The
“borders” which surrounds the cells, known asintergranular lanes, have a typical thickness of∼ 100

km. Up-flows of hotter gas (at velocities of 1-2 km/s) from theconvection zone form the granule
interiors in the photosphere. When this gas reaches the photosphere, it cools radiatively, decelerates
and thereafter floats (at velocities of 2 km/s) along the surface towards the intergranular lanes. Finally,
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Figure 1.9: An image of the Sun, showing the chromospheric network (supergranulation) taken at Solar Dynamics Obser-
vatory (SDO) at continuum wavelength 1700 Å.

the gas becomes dense and cool enough to sink (at velocities of 4 km/s) along the lanes. Gas from 3-4
near-lying intergranular lanes comes together in the granular “vertices” and from there sink (almost)
vertically in tubes with a typical thickness of∼ 100 km. Because of the high plasmaβ in the granules,
the magnetic fields in the photosphere are concentrated in the intergranular lanes, while the magnetic
fields in the granules are weaker. Since the underlying convective cells do not have uniform pressure,
the cells are moving all the time. The average lifetime of onegranule is∼8 min, but some granules
may live for up to 15 min (Priest 1982).

The photosphere also features cellular patterns similar togranulation but with larger cell structures,
namelymesogranulationandsupergranulation. Supergranulation was first observed by Hart (1954) as
fluctuations in the velocity field on top of the mean rotational speed on the solar equator, and has later
showed up in Dopplergrams, i.e. plots of the Doppler shifts on the solar surface, as a pattern similar
to the granulation pattern but with cells that are∼100 times as large. As summarized by Rieutord
& Rincon (2010), this is (very briefly) what we know about supergranulation: supergranules have
typical diameters of 10-30 Mm and typical lifetimes of1.6 ± 0.7 days. The rms horizontal velocities
on supergranular scales are∼350 m/s, while the rms vertical velocities in the supergranular lanes
are∼30 m/s (which means that the upflows below the supergranules are slower than this, while the
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Figure 1.10: Simulated intensity plot of the continuum wavelengths in the visible specter, showing the granulation pattern
in the photosphere.

downflows along the lanes are faster). Local helioseismology shows that supergranules are shallow
structures with a depth of a few megameters. Several theories have been constructed about what causes
supergranulation, but it seems most likely to be caused by large scale convection. In the chromosphere,
supergranule boundaries show up in bright points, forming the chromosphericnetworkin e.g. the Ca
H and K lines, as shown in figure 1.9, which coincides with the QS magnetic network. The bright
points in the network have field strengths of∼1500-2000 G in the photosphere, while the regions
inside the supergranules, known as theinternetwork, has magnetic fields of∼100 G (Socas-Navarro
et al. 2004; Hasan et al. 2005; Wedemeyer-Böhm et al. 2009).

Mesogranulation was first observed by November et al. (1981)as a pattern of cellular flow with a
spatial scale of 5-10 Mm, lifetime of∼2 hours and rms vertical velocity amplitude of about 60 m/s.
Recent works on this feature, e.g. Yelles Chaouche et al. (2011), state that there are no indications of
convective flows at mesogranular scales. However, mesogranulation might be a result of a collective
interaction between several granules.

Sunspots

A very important feature in the non-QS photosphere aresunspots. A sunspot is often circular of shape
and consists of a central dark area known as theumbra, which is surrounded by a slightly brighter
region known aspenumbraas shown in figure 1.11 (where we also see the surrounding granulation
pattern). According to Priest (1982), the umbra has a typical diameter of 10-20 000 km and a magnetic
field which can reach up to magnitudes of about 4000 G. Becauseof this strong magnetic field, the
magnetic pressure is also higher than in the QS, and therefore the gas pressure is lower in order to
maintain pressure balance. Since the gas pressure is proportional to density and temperature, these
two quantities are both lower in sunspots than in the QS. The typical temperature in a sunspot is
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Figure 1.11: Two observational images of the same sunspot. Left panel is a photospheric image, showing how the sunspot
“disturbs” the granulation pattern, taken at SST with an FWHM = 1 nm wide filter centered between the Ca H & K lines at
3954 Å. Right panel is a chromospheric image taken with CRISPin the line core ofHα.

3700 K, compared to the typical photospheric temperatures of 5-8000 K. This gives a radiative energy
flux of only 1.2 · 1010 erg cm−2 s−1 which is about one fifth of the normal photospheric radiative
flux. Since the density in sunspots is smaller than in the QS surface, the opacity is smaller as well, and
therefore, when we look at a sunspot, we see deeper into the Sun than we do in the QS sun plasma. In
other words, sunspots are cavities on the Solar surface.

Sunspots appear in active regions, usually as pairs with opposite polarities, where the strong magnetic
field exits upwards from one sunspot, makes a loop and enters the companion sunspot. There are
single sunspots as well, e.g. a sunspot where the magnetic field that exits the sunspot is spread into
all directions and reenters the surface in smallerpores. Since the Sun rotates from east to west (as
seen from Earth), we refer to the west-most sunspot in a sunspot pair as theleading spotor p-spot
(preceding) and the east-most spot as thefollowing or f-spot. The appearance of sunspots follows 11-
year cycles which can be characterized by three (all empirical) rules, formulated by Hale & Nicholson
(1938):

• Hale-Nicholson’s rule: During one sunspot cycle, the majority of the leading sunspots on the
northern hemisphere have the same polarity, while the leading sunspots on the southern hemi-
sphere have the opposite polarity. In the next cycle, all polarities are reversed. This gives atotal
magnetic cycleon 22 years

• Joy’s rule: The center of gravity of the leading sunspot tends to lie closer to the equator than
the following sunspot

• Spörer’s rule: Sunspot groups tend to emerge at progressively lower latitudes as a cycle pro-
gresses. The latter rule is demonstrated in figure 1.12 as a “butterfly diagram”.
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Figure 1.12: A “butterfly diagram” showing the appearances of sunspots as function of time and latitude, reprinted from
Major (2004)

Magnetic Fields in the QS Photosphere

Magnetic fields also play an important role in the QS photosphere. Since the intergranular lanes, as
well as the granules, are in constant motion, and since the foot-points of the magnetic fields which
emerge from the surface are concentrated in the lanes, the magnetic foot-points are also shifted around
on the surface. This can cause two initially vertical and parallel magnetic field lines to start twisting
around each other (which causes a tangential discontinuityin the magnetic field known as a current
sheet, which will be discussed later in this chapter), creating a vertically propagating Poynting flux
which increases as the magnetic field lines are twisted further around each other. When the Poynting
flux propagates upwards, it will reach into the corona in the form of twisted field lines. When the
magnetic tension force,(B · ∇)B, in the twisted field lines becomes too high, the field lines will
break and reconnect, and the energy which was stored in the twisted lines is transferred into thermal
energy by dissipating currents into the surrounding medium. This rapid energy dissipation gives rise
to a powerful energy burst known as ananoflare(Parker 1988). This is one of the leading ideas for
explaining the coronal heating.

1.2.4 Chromosphere

Above the photosphere lies thechromosphere, going fromz ∼ 100-200 km toz ∼ 1.5-3.0 Mm (de-
pending on the local fluid dynamics) with a temperature that varies slowly between 4000 K and 7000
K, but can reach below 2000 K in some extreme cases (Leenaartset al. 2011). This atmospheric
layer is transparent in the continuum of visible light, but can be studied in some spectral lines which
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Figure 1.13: Simulated intensity plot of the wings of chromospheric lines, showing the reversed granulation pattern inthe
lower chromosphere.

are produced mainly in the chromosphere. Khokhlova (1959) states that the chromosphere is opaque
enough at the center of the Ca II H and K lines that most of the radiation we obtain from these line
centers are emitted in the chromosphere. Several scientists (Sotnikova 1978; Kneer & von Uexkuell
1985; Aquilano et al. 2003) have also used the Hα line as a source of information on the chromo-
sphere. Studies of these lines has amongst other things revealed the chromosphericnetwork(shown in
figure 1.9) very clearly (Priest 1982). The lower chromosphere is also characterized by thereversed
granulation pattern, shown in figure 1.13, which is an imprint of the underlying granulation pattern,
but where the imprints of the granules is darker than the lanes. Several scientists have tried to find
an explanation for this, and the most recent and plausible explanation, given by Cheung et al. (2007)
based on theories which dates back to Nordlund (1984), states that the horizontally moving gas in
the lower chromospheric region above a granule interior undergoes adiabatic expansion and radiative
heating. The former decreases the temperature in the gas, while the latter increases it to aradiative
equilibrium temperature, still lower than the temperature in the underlying granules. The gas in the
region above an intergranular lane, on the other hand, undergoes adiabatic compression, because gas
from both sides come together, increasing the temperature.Therefore, the temperature in the lower
chromospheric region above an intergranular lane is hotterthan the region above a granule interior,
leading to a higher intensity in chromospheric lines along the intergranular lanes.

In the chromosphere, the scale heights for the density and for the pressure both stay at∼ 100 − 200

km. In the middle chromosphere, atz ∼ 1.0 Mm, the plasmaβ is of order∼ 1, but as the gas pressure
keeps decreasing rapidly with height while the magnetic pressure decreases more slowly, the plasma
β hence decreases with height and is<< 1 in the upper chromosphere.

We can also gain physical knowledge about the chromopshere by studying limb features such as
prominencesandspicules. Prominences are located in the corona, but consists of plasma that has
parameters comparable to those in the chromosphere (Galsgaard & Longbottom 1999), in other words,
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Figure 1.14: Image of a Sun including a large prominence, taken by the Atmospheric Imaging Assembly (AIA) at the Solar
Dynamics Observatory (SDO) in the wavelength band centeredat 304 Å.

they are extensions of the chromosphere into the corona. They can extend to heights over many
thousands of kilometers, and the largest that has been observed has a height of 700 Mm. Figure
1.14 shows a prominence. Spicules are jets of plasma ejectedfrom the chromospheric part of the QS
network and reach velocities between 20 and 300 km/s and can reach up to coronal heights (5-10 000
km) before fading or falling down. We distinguish between two different kinds of spicules, namely
type I and type II spicules. According to de Pontieu et al. (2007), type I spicules appear to rise up
from the limb and fall back again. They have typical velocities of 10-40 km/s, lifetimes of 3-7 min
and heights up to 5-6 Mm above the limb. These are created whenphotospheric oscillations and
convective motions leak into the chromosphere along magnetic flux concentrations (e.g. the magnetic
network) where they form shock waves that drive jets of plasma upwards (Hansteen et al. 2006). The
same features exist on the solar disk where they are seen asmottlesin the QS regions anddynamic
fibrils in active regions, aboveplage, which are magnetic bright spots in the vicinity of sunspots.
Type II spicules start with upward motion, but then fade rapidly instead of falling back, as seen in
the Hinode Ca II H passband. They have typical velocities of 50-150 km/s and lifetimes of∼10-
100 s. Their typical heights can be up to 10 Mm in coronal holes, while they only reach 1-2 Mm in
regions above AR plage and something in-between above the QSnetwork. On the solar disk, a similar
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feature is observed as rapid blue-ward excursions (RBEs) inthe Ca II 8542 Å and Hα lines, according
to Rouppe van der Voort et al. (2009). It is very likely that type II spicules and RBEs are due to
magnetic reconnection, which may occur due to braiding of strong magnetic field lines. According to
De Pontieu et al. (2009), type II spicules are likable to playa significant role in coronal heating and
may represent the lowest lying nanoflares

1.2.5 Transition Region and Corona

Above the chromosphere is the narrowtransition region, where the temperature jumps from about
104 K to 106 K. The height where this region occurs depends highly on the atmospheric feature and
is highly dynamic in time. Examples are shown in figure 1.15, which shows the temperature profile
in four selected columns in the modeled solar atmosphere. The height whereT = 105 K varies
from z = 1.7 Mm to z = 2.3 Mm, and the same result is also obtained while using data fromall
columns in the simulated atmosphere and computing the average and standard deviation of the height
whereT = 105. In all four columns used in figure 1.15, the temperature jumps from 3 · 104 K to
3 · 105 K in a height scale of∼ 10 − 100 km and from3 · 105 K to ∼ 106 K in a height scale
of a few megameters. This wide span of heights where the transition region occurs explains why
the transition region seemed much broader at the average temperature profile in figure 1.8(a). The
density also changes rapidly in this region, but in the otherdirection: it decreases from10−11 g/cm3

to 10−15 g/cm3. The pressure only decreases slightly. The transition region is mainly observed in
extreme ultraviolet(EUV) emission lines from He II, C III, CIV, O III, O IV and O VI, since this
region is where the temperature is high enough for the above-mentioned ionized states to be dominant
(Feldman et al. 2010).

The outermost layer of the solar atmosphere is known as thecorona, which comes from Greek and
means crown. Originally, this layer was only seen during a solar eclipse, where one could see it as a
white crown surrounding the darkened solar disk. Nowadays,coronagraphs are used, i.e. telescopes
with a small occulting disc that creates an artificial solar eclipse for the observer, making the corona
viewable. The solar corona can also be viewed directly insoft X-rays, because the contribution to
this radiation from the lower atmosphere is negligible (Priest 1982). The temperature in the corona is
more than 1 MK, and the density is of order10−15 g/cm3. These facts bring us to the problem dealt
with in this thesis,the coronal heating problem.

Finally, before going into the problem of this thesis, I havereprinted a two-dimensional sketch of the
QS atmosphere from Wedemeyer-Böhm et al. (2009), see figure 1.16. It includes both granulation and
supergranulation as well as the magnetic network which coincides with the supergranular lanes. The
magnetic field lines are plotted by solid lines, and fields from neighbouring supergranular lanes come
together and form acanopy. Magnetic fields with foot-points in the internetwork are plotted with
dashed lines and forms small canopies as well. This is a very simplified illustration, and the structure
of the QS atmosphere becomes much more complicated in three dimensions, but the magnetic struc-
ture will still include a canopy above each supergranule. The figure also illustrates where features like
spicules and fibrils are generated.
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Figure 1.15: Temperature as function of height in 4 different columns in a numerical model of the Solar Atmosphere,
simulated with Bifrost, showing the different heights (in Mm) where the transition region occurs. The figure indicates what
region in the photosphere each column is located around, even though there is probably no 1-1 connection between that and
the height of the transition region. Upper panel shows an intensity plot of the photosphere, where the numbers shows where
each of the for columns lies.
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Figure 1.16: A two-dimensional sketch of the quiet-Sun atmosphere, reprinted from Wedemeyer-Böhm et al. (2009).

1.3 The Coronal Heating Problem

To understand the mechanism that heats the corona up to more than 1 MK is a problem that has
puzzled astronomers for more than sixty years. Several theories have been suggested and dismissed,
a few plausible models remain under scrutiny.

One traditional model suggests that the convection in the convection zone produces sound waves,
gravitational waves and magnetohydrodynamic (MHD) waves which propagates upwards and dissip-
ate their energy into the overlying atmospheric layers. It has been concluded that only Alfvén waves
can reach up to the corona, while the other waves are dissipated and/or refracted before they reach
that far (Parker 1988).

Another theory which has been suggested by Parker (1988) is based on the idea that the (X-ray) corona
is a superposition of a large number ofnanoflares, which are tiny and intermittent impulsive bursts of
energy. Parker suggests here that nanoflares are generated this way: Convective motion at the bottom
of the photosphere shuffles the magnetic foot-points around. This may cause two near-lying magnetic
field lines which originally was vertical to twist around each other. Tangential discontinuities will then
occur between neighbouring field lines, which generates current sheets (Galsgaard & Nordlund 1996).
The strength of the current sheets increases with time untilthe stressing of the twisted magnetic field
is high enough (just like a rubber band which is twisted too much) to cause the twisted field lines to
“break” and reconnect, releasing an impulsive burst of energy, which is the nanoflare. The stressing
of the magnetic field which eventually bursts out in a nanoflare occurs within widths comparable to
the diffusion length, which in the solar photosphere is of order 10 m (de Wijn et al. 2009). This
mechanism for coronal heating has been a promising candidate, but according to Aschwanden &
Charbonneau (2002), it seems that the energy dissipated in the observed distribution of microflares
and nanoflares is too small to be the dominating component. Inboth observations and simulations,
however, we are restricted to a lower cutoff nanoflare energy, and when increased technology allows
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us to see nanoflares at even lower energies, we might see a significant increase of the heat input from
this mechanism.

Figure 1.17: Anxz-outcut of a possible magnetic field configuration in the QS atmosphere, showing a magnetic neutral
point. The field is initially uniform in they-direction.

A third plausible candidate for the coronal heating is a hierarchy of current sheets. According to
Priest (1982), a current sheet is a tangential discontinuity in the magnetic field i.e. a non-propagating
boundary between two fluids, where the magnetic field on each side of boundary is tangential to the
boundary, but may be oriented in different directions and/or have different magnitude, generating a
current densityj = ∇× B/µ. Current sheets are created in several ways in the solar atmosphere:

1) When the magnetic field is stressed due to convective motions, it collapses into tiny current
sheet (width of order 10 m), which eventually burst out in a nanoflare, as discussed earlier.

2) When topologically separate parts of a magnetic configuration are pushed together (by the fluid
motion), this causes large gradients in the magnetic field which leads to the generation of a
current sheet, which in this case may extend over several megameters. If this happens in an
evolving AR field, asolar flarecan be generated

3) When discontinuities arise near a magnetic neutral point/line, current sheets can be generated
nearby this point/line (which can extend over several megameters). As an example, consider a
magnetic field in thexz-plane as shown in figure 1.17, which is initially uniform iny-direction.
It features a magnetic neutral line, marked by the “+” symbol, along they-direction. On the
different sides of the line, the fluid might have different motions which might push the magnetic
field in different ways, so the magnetic field on opposite sides of the neutral line will be tilted
in different directions. This give rise to tangential discontinuities in the magnetic fields, i.e.
current sheet generation.

Galsgaard & Nordlund (1996) state that the formation of current sheets causes magnetic reconnection
which drives supersonic and super-Alfvénic jet flows, whichfurther causes generation of smaller-
scale current sheets. This “hierarchy” of current sheets extends to ever smaller size as the numerical
resolution increases, i.e. there might be large amounts of current sheets even thinner than the smallest
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(numerical and/or observational) resolution used in models today which still needs to be discovered.
Therefore, the hierarchy of current sheets is a possible candidate for the coronal heating.

Gudiksen & Nordlund (2005) used numerical simulations to show that moving the foot-points of
the magnetic field in a way consistent with the observed photospheric velocity fields leads to a heat
input in the corona that is within the observational limits.The simulations did not deal directly with
nanoflares, but rather anab initio approach to the coronal heating, using only observed facts,such
as the observed average velocity field and realistic magnetic fields in the photosphere, to compute
the heat input dissipated by this mechanism. Nanoflaresarean effect of moving magnetic foot-points
around in the photosphere, but even though nanoflares might not dissipate enough heat into the corona
to account for the entire coronal heating, the mechanism of shuffling magnetic foot-points might cause
other effects which together with nanoflares dissipate a sufficient amount of heat into the corona. The
exact amount of heat which is dissipated into the corona by moving the magnetic foot-points around
in the photosphere will depend on how complex the structure of the photospheric magnetic field is.

1.3.1 The Aim of this Thesis

The aim of this thesis is to study atmospheric models with different magnetic field configurations in
the photosphere to see how this affects the heating of the corona. The models that are studied rep-
resent regions in the QS atmosphere located along the photospheric internetwork, where the average
magnetic field strength (in the photosphere) is of order 100 G. The magnetic fields in the photospheric
internetwork are concentrated in the intergranular lanes (where the fields can be more than 1 kG of
magnitude) and probably organized a pattern of upward- or downward-oriented fields spread randomly
along the pattern of intergranular lanes (Socas-Navarro etal. 2004; Hasan et al. 2005; Wedemeyer-
Böhm et al. 2009). This pattern of upward- and downward-oriented fields are often referred to as a
magnetic “salt-pepper pattern” (where the salts are the downward fields, while the peppers are the
upward fields). In this thesis will deal with different kindsof salt-pepper patterns in order to find a
correlation between the complexity of the photospheric magnetic field and the amount and location of
heat dissipated into the corona.
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M ODEL

In order to study the coronal heating and its dependence of the magnetic field structure in the solar
atmosphere, we solve the MHD equations numerically for a cube of solar atmosphere using the Bifrost
code, described in details by Gudiksen et al. (2011). We write the MHD equations as

∂ρ

∂t
= −∇ · ρu (2.1)

∂ρu

∂t
= −∇ · (ρuu− τ) −∇P + J× B + ρg (2.2)

µJ = ∇× B (2.3)

E = ηJ− u× B (2.4)

∂B

∂t
= −∇× E (2.5)

∂e

∂t
= −∇ · eu− P∇ · u + Q (2.6)

whereρ,u, e andB are the density, the fluid velocity, the internal energy and the magnetic flux density,
respectively.τ, P,J,g, µ,E, η andQ are the stress tensor, the gas pressure, the current density, the
gravitational acceleration, the vacuum permeability, theelectric field strength, the magnetic diffusivity
and the heat input. The latter quantity usually contains several terms, e.g. Joule dissipation, viscous
dissipation, heating from Spitzer conduction and a radiative heating/cooling.

In addition to the MHD equations, the temperatureT and pressureP is related to the internal energy
e and densityρ by an equation of state(EOS). A typical EOS is theideal gas law, P = ρkBT

m̄ ,

whereT is related toe andρ with the equatione = 3
2

ρkBT
m̄ . The ideal gas law is only completely

valid for a gas of randomly-moving non-interacting particles. It is a good approximation for relatively
high temperatures and lower densities (lower pressure), but it fails for dense and cool gases where
interaction forces and molecular size become important. The ideal gas law is generally not valid in
the solar atmosphere, because the gas haveinternal degrees of freedom, and in the models studied
in this thesis,EOS tablesare used instead to computeT andP from e andρ. The EOS tables are
generated with the Uppsala Opacity Package (Gustafsson et al. 1975). To calculate atomic level
populations, the table generator assumeslocal thermodynamic equilibrium(LTE). LTE is a condition
which includes several assumptions, but in few words it means that the state of the gas (i.e. ionization
degree, populations of the different excited states of eachchemical element) can be described by

25
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only e (andρ). Perfect LTE requiresdetailed balancei.e. each atomic reaction which takes place is
balanced by the exact opposite reaction, e.g. a specific photo-excitation of an atom have to be balanced
by the corresponding deexcitation. In the convection zone,photosphere and chromosphere, LTE is a
good to middling approximation. In the corona, on the other hand, LTE is not valid, so the state of
the gas must be described byrate equationsfor each excited state of each element. However, the
calculation of the state of the coronal gas is simplified by the following fact: all upward transitions in
an atom (ionization, excitation) are (approximately) due to collisions, while all downward transitions
are due to radiation. To satisfy detailed balance, collisional ionization has therefore to be balanced by
radiative recombination, and collisional excitation has to be balanced by spontaneous deexcitation.

Bifrost is built on several generations of previous numerical codes, amongst other the (Copenhagen)
Stagger Code (Nordlund & Galsgaard 1995) and Oslo Stagger Code (Martínez-Sykora et al. 2008,
2009). The main improvement from the older Stagger codes to Bifrost is that instead of requiring
shared memory architecture (a system of multiple processors which have access to one large block of
memory) as the older codes did, Bifrost is an MPI (Message Passing Interface) parallel code able to
run on distributed memory architecture (a system where eachprocessor has its own private memory).

2.1 Spatial Discretization, Staggered Mesh

To discretize the spatial derivatives which occurs at the right-hand sides of the MHD equations, Bifrost
applies a sixth order accurate method, which calculates thepartial derivative of a function by using
the three nearest neighbor points on each side. Starting at one specific point, applying the derivative
operator will shift the evaluation point a half grid length in the direction we differentiate with respect
to. The two possible shift directions and three spatial dimensions gives us 6 different derivative
operators,∂±

[xyz] (f(x, y, z)). E.g. the operator which returns the derivative off with respect tox,
shifted a half-stepforward in thex direction, is given by

∂+
x (fi,j,k) =f ′

i+ 1
2
,j,k

= (2.7)

a

∆x
(fi+1,j,k − fi,j,k) +

b

∆x
(fi+2,j,k − fi−1,j,k) +

c

∆x
(fi+3,j,k − fi−2,j,k), (2.8)

a =
1

2
− b − c, b = − 1

16
− 3c, c =

3

256
, (2.9)

while the operator which calculates the derivative a half-stepbackwardin thex direction is given by

∂−
x (fi,j,k) =f ′

i− 1
2
,j,k

= (2.10)

a

∆x
(fi,j,k − fi−1,j,k) +

b

∆x
(fi+1,j,k − fi−2,j,k) +

c

∆x
(fi+2,j,k − fi−3,j,k). (2.11)

(2.12)

Because of the half-point shifts which the derivative operators cause, we will also need six correspond-
ing interpolation operators,T±

[xyz]. E.g. the interpolation that shifts the evaluation point a half-step
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forward in thex direction is given by

T+
x (fi,j,k) =fi+ 1

2
,j,k = (2.13)

a(fi,j,k + fi+1,j,k) + b(fi−1,j,k + fi+2,j,k) + c(fi−2,j,k + fi+3,j,k) (2.14)

a =1 − 3b + 5c, b = − 1

24
− 5c, c =

3

640
(2.15)

while the interpolation that shifts the evaluation point a half-step backward in thex direction is given
by

T−
x (fi,j,k) =fi− 1

2
,j,k = (2.16)

a(fi−1,j,k + fi,j,k) + b(fi−2,j,k + fi+1,j,k) + c(fi−3,j,k + fi+2,j,k). (2.17)

(2.18)

As mentioned, Bifrost applies astaggered mesh. This means the following: For each cube in the three-
dimensional Cartesian grid, we choose the location of the evaluation points for the different variables
at strategic points at the cube in such a way that minimizes the need for interpolating. Thereforeρ and
e are volume centered,B andρu are face centered, andE andJ are edge centered, as shown in figure
2.1 (Nordlund & Galsgaard 1995).

Figure 2.1: Sketch of the staggered mesh, reprinted from Nordlund & Galsgaard (1995).Px,Py,Pz are here the compon-
ents ofρu, andIx,Iy,Iz the components ofJ.

2.2 Artificial Diffusion

With numerical approximations come different kinds of approximation errors. Some of these errors
can be magnified for each timestep, and need to bediffusedaway in order to maintain a stable simu-
lation . Therefore, we need to includeartificial diffusion terms on the right-hand sides of equations
(2.1)-(2.6). In general, a variablea(x, t) (using only one dimension for simplicity) should have a
differential equation on the form

∂a

∂t
= f(x, t) +

∂

∂x

(

D
∂a

∂x

)

, (2.19)
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where the first term on the right-hand side is the normal right-hand side of the differential equation
(including spatial derivatives) while the second term is the diffusive term. The diffusion coefficientD
is then defined in a way so it is large when the fluid acts in a way which might cause numerical errors
which increase in time, and otherwise small. In order to ensure this, the diffusion coefficient must
consist of several terms, which we will have a look at in the next paragraphs.

One case where the truncation error grows rapidly in time is when a variable consists of variations with
wave-numbers near the Nyqvist wavenumber,k ∼ kN = π/∆x, because the numerical propagation
speed of these waves decreases ask approacheskN , which gives rise to phase errors. Therefore,

the diffusion coefficient consists of awave viscosityterm on the formν1cf wherecf =
√

B2+γP
ρ

is the speed of fast mode waves, andν1 is of order 0.1. Thus, the diffusion coefficient increases
when very fast propagating waves arise. Since the phase error is large for wave-numbers near thekN

and negligible for smaller wave-numbers, we want the diffusive term to scale with the wavenumber.
If we use second order diffusive terms, the damping length for waves scales ask−2, giving a wave
diffusion which, according to Nordlund & Galsgaard (1995),does not increase significantly with
the wavenumber. It can be shown that the next possible diffusive term that behaves qualitatively
correct is a fourth order diffusion operator. This gives a wave damping length which scales ask−4,
which ensures waves with wave-numbers nearkN to die out rapidly while waves with smaller wave-
numbers, which have negligible phase errors, can survive for longer times. In order to have a fourth
order diffusive term, it is necessary to include a factor in the diffusion coefficient which scales with
the third order spatial derivatives, and therefore aquenching operatoris included, discussed later in
this section.

A second case which gives rise to numerical errors which growin time is when physical properties
are advected with high velocities. To keep this advection stable, it is therefore necessary to include
anadvective viscosityon the formν2|u|, whereν2 is of order 0.5. This term is also multiplied by the
quenching operator in the expression for the diffusion coefficient, because the advection is generally
stable when the variations of the physical quantities in thefluid are of small wave-numbers, while
variations of larger wave-numbers can more easily make high-velocity advection unstable.

A third case which might cause numerical errors to grow is when shocks occur, especially when the
shock front has a width comparable to the numerical grid size. To make sure that the shocks are
numerically resolvable, we include ashock viscosityterm,ν3|∇1

xux|−, whereν3 is of order 1.0.∇1
x

denotes a first order gradient in thex-direction, and| . . . |− denotes the absolute value of thenegative

contributions. In other words, the shock viscosity scales as the negative contributions to the velocity
gradients. This is because shock fronts always have large negative gradients, since the velocity gradi-
ent in a shock front points in opposite direction of the direction which the shock propagates. In this
way, numerically unresolvable shocks will be heavily diffused until the width of the shock front is
larger than a few grid zones.

As already discussed, it is desirable to include a factor in the diffusion coefficient which scales with
the third order derivatives. Therefore, aquenching operatoris introduced, defined by

Qx(g) = maxx±1

(

|∆2
xg|

|g| + 1
qmax

|∆2
xg|

)

, (2.20)

where∆2
x denotes a second order difference (proportional to a secondderivative) between neighbor-

ing points in thex-direction, andmaxx±1 denotes the maximum over the three nearest grid points.
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The factor which is put into the diffusion coefficient is given by Qx

(

∂a
∂x

)

, which scales as the third
derivative, going to 1 as the third derivative goes to zero and going to the maximum quenching number
qmax as the third derivative gets big. In Bifrost, we useqmax = 8.

Putting all the terms discussed above together, the continuity equation (2.1) in one dimension with a
diffusive term is given by

∂ρ

∂t
= − ∂

∂x
(ρux) +

∂

∂x

[

νρ∆x
(

ν1cf + ν2|u| + ν3|∆1
xux|−

)

Qx

(

∂ρ

∂x

)

∂ρ

∂x

]

(2.21)

whereνρ is a coefficient which scales the total mass diffusion, usually of order 0.1. For three dimen-
sions, we add similar diffusive terms where we thex’s are replaced byy’s andz’s. The diffusive terms
in the energy equation (2.6) are very similar. Thex-component of the momentum equation (2.2) with
the diffusive terms (I now take into account all three dimensions because of the cross-terms between
the different dimensions) is given by

∂(ρux)

∂t
=

∂

∂x

(

τxx − ρu2
x − P

)

+
∂

∂y
(τxy − ρuxuy) +

∂

∂z
(τxz − ρuxuz)

+ (J × B)x + ρgx (2.22)

where

τij =



















ρ∆xi

(

ν1cf + ν2|u| + ν3|∆1
i ui|−

)

Qi

(

∂ui

∂xi

)

∂ui

∂xi
, i = j

ρ
[

∆xi

(

ν1cf + ν2|u| + ν3|∆1
i ui|−

)

Qi

(

∂uj

∂xi

)

∂uj

∂xi

+ ∆xj

(

ν1cf + ν2|u| + ν3|∆1
juj|−

)

Qj

(

∂ui

∂xj

)

∂ui

∂xj

]







i 6= j
(2.23)

for thei-th andj-th dimension.

We also have magnetic diffusion, which (inx-direction) consists of the following two terms

η(1)
x =

∆x

PrM
(ν1cf + ν2|ux|) (2.24)

η(2)
x = ν3

∆x2

PrM
|∇⊥ · u|− (2.25)

wherePrM is the magnetic Prandtl number, that scales the ratio of viscous to magnetic hyperdiffusion.
Here,∇⊥ · u means the divergence of the component of the velocity which is perpendicular to the
magnetic field. The diffusion terms are put into the resistive part of the electric field in equation (2.4):

E(η)
x =

{

1

2

(

η(1)
y qy(Jx) + η(1)

z qz(Jx)
)

+
1

2

(

η(2)
y + η(2)

z

)

}

Jx (2.26)

E(η)
y =

{

1

2

(

η(1)
z qz(Jy) + η(1)

x qx(Jy)
)

+
1

2

(

η(2)
z + η(2)

x

)

}

Jy (2.27)

E(η)
z =

{

1

2

(

η(1)
x qx(Jz) + η(1)

y qy(Jz)
)

+
1

2

(

η(2)
x + η(2)

y

)

}

Jz (2.28)
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2.3 Time Stepping

Equipped with the necessary diffusive terms in addition to the derivative and interpolation operators
for the staggered mesh, we are ready to do the time stepping, the left-hand side of the MHD equations.
In Bifrost, this can be done two ways: A third-order Runge-Kutta method or a third-order Hyman
method. In this project, we use the Hyman method, described by Hyman (1979). It is a third order
predictor-corrector scheme modified for variable time steps. Starting with

∂f

∂t
= F (t, f(t)) , (2.29)

whereF (t, f(t)) is the right-hand side of one of the PDE’s, solved with the derivative and interpola-
tion operators described in section 2.1, the predictor stepis given by

f
(∗)
n+1 = a1fn−1 + (1 − a1)fn + b1Fn (2.30)

Then we calculate the right-hand sides of the PDE’s again by using the “predicted” solutionsf (∗)
n+1,

and we use the resultsF (∗)
n+1 to do the corrector step, given by

fn+1 = a2fn−1 + (1 − a2)fn + b2Fn + c2F
(∗)
n+1 (2.31)

where

a1 = r2 (2.32)

b1 = ∆tn+1/2(1 + r) (2.33)

a2 = 2(1 + r)/(2 + 3r) (2.34)

b2 = ∆tn+1/2(1 + r2)/(2 + 3r) (2.35)

c2 = ∆tn+1/2(1 + r)/(2 + 3r) (2.36)

r = ∆tn+1/2/∆tn−1/2 (2.37)

tn = tn−1 + ∆tn−1/2, tn+1 = tn + ∆tn+1/2 (2.38)

Finally, the length of the time-step itself is determined byseveral limitations. First, we must make a
requirement that makes sure that information is only transported over a fraction of one grid length for
each time step, i.e.

(|u| + cf )∆t/∆x ≤ C (2.39)

which is known as the Courant condition, where0 < C < 1. We useC ≈ 0.15 − 0.30 to make sure
the time stepping is inside the limits of stability.

We have similar conditions considering the diffusive terms:

max(η,D)f∆t/∆x2 ≤ C (2.40)
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wheref is a “safety factor” that depends on the expression used for the quenching operator. In the
Hyman scheme that Bifrost uses,f = 17.36. D is here the diffusive terms which occurs in the
equations for∂ρ

∂t , ∂ρu
∂t and ∂e

∂t , given (for thex-component) as

∆x
(

ν1cf + ν2|u| + ν3|∆1
xux|−

)

, (2.41)

while η is the magnetic diffusionη(1) + η(2).

Finally, Bifrost requires that

max(

∣

∣

∣

∣

∂ρ

∂t

∣

∣

∣

∣

/ρ,

∣

∣

∣

∣

∂e

∂t

∣

∣

∣

∣

/e)∆t ≤ C (2.42)

which means that the timestep will be decreased if theρ or e changes with a fraction higher thanC.

2.4 Boundary Conditions

Five different models have been evolved during this thesis,given the names C1x1, C2x1, C2x2, C4x2
and C4x3. All of them have boundary conditions which are similar to those described by Martínez-
Sykora et al. (2008). The computational box, where a part of the QS atmosphere is modeled, is a
Cartesian grid with dimensions of16.6× 8.3× 15.8 Mm3, divided into256× 128× 160 grid points.
The box reaches from the upper convection zone, at a depth of 1.4 Mm below the photosphere (defined
to bez = 0) to a (coronal) height of 14.4 Mm above the photosphere, including the upper convection
zone, photosphere, chromosphere, transition region and (lower) corona.

The boundary conditions for the four “side-walls” of the boxare determined byperiodicity. To demon-
strate what this is, think that you are inside the box and walkforwards in thex-direction till you are
at the lastyz-plane in the box; then you go one step further in thex-direction, out of the box, and you
find yourself in ayz-plane with the same physical properties as the firstyz-plane in the box. It works
the same in they-direction. In practice, this means that we can put several copies of the same com-
putational box side by side in thexy-plane without losing continuity. We’ll then get a self-repeating
pattern in thexy-plane, and that is not a bad approximation of the quiet-Sun internetwork inside one
cell in the magnetic network.

Non-periodic boundary conditions are implemented on upperand lower boundary by adding ghost
zones beyond these boundaries and treating them according to a chosen boundary. The upper and
lower boundary have 5 ghost zones each. At the lower boundary, the average temperature are main-
tained by keeping the inflowing entropy fixed. The boundary isotherwise kept open to allow fluid to
enter and leave if required. The upper boundary is also kept open, but with a temperature gradient set
to zero to keep conductive flux from leaving or entering through this boundary. To avoid reflection
of outgoing waves that reach the upper boundary, characteristic equations are used in this boundary.
Except for the temperature, the hydrodynamic variables areset by characteristic extrapolations in the
upper ghost zones. However, in some of the models the vertical fluid velocity in the upper ghost zones
is ramped to zero instead of being extrapolated to maintain stability, see table 2.1.
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(a) Initial temperature (b) Initial density

(c) Initial pressure (d) Initial vertical velocity

Figure 2.2: Initial structure of hydrodynamic variables inthe models used in this thesis. The grey-scale plots are histograms
where the darker points corresponds to the more frequent values of the variable for each specific height. The grey-scale is
logarithmic. The horizontally averaged variables are plotted asdashed lines.
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Model
Handling ofuz in
upper ghost zones

C1x1 Extrapolate
C2x1 Extrapolate
C2x2 Extrapolate
C4x2 Flat
C4x3 Flat

Table 2.1: Condition for the vertical velocity at upper boundary. More details about the different models are given in next
section and next chapter.

(a) Initial vertical velocity in the photosphere (b) Initial vertical velocity in the photosphere

(c) Initial vertical velocity in the photosphere (d) Initial vertical velocity in the photosphere

Figure 2.3: Initial structure of hydrodynamic variables inthe photosphere.
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2.5 Initial Conditions

In the five models evolved during this thesis, the initial condition for the hydrodynamic variables
(density, fluid velocity, internal energy) are taken from a model which has already been running for a
while, evolved by Hansteen et al. (2010). The initial structure of the temperature, density, pressure and
vertical velocity are shown in figure 2.2. Lower boundary (z = −1.4 Mm) has an average temperature
of ∼ 16 100 K, an average density of6.7 ·10−6 g/cm3 and an average pressure of8.7 ·106 dyn/cm2.
Going upwards, we see a structure similar to the QS atmosphere described in the introduction, from the
upper convection zone, through the photosphere, chromosphere, and transition region to the corona,
where both temperature, density and pressure are relatively constant with height. The temperature is
around∼ 0.8 − 1.0 MK in the uppermost last 5 Mm, and the density and pressure decreases only
slowly with height and reach7.2 · 10−16 g/cm3 and8.0 · 10−2 dyn/cm2 at upper boundary.

The fluid velocity in the sub-coronal zones is mostly of order∼ 1−5 km/s, while the coronal velocities
are of order∼ 10 − 20 km/s (only vertical component of the fluid velocity is plotted here, but the
horizontal component behaves similarly). The velocity in the photosphere (figure 2.3(d)) and below
has a granular structure with upflows in granules and downflows in intergranular lanes. Temperature,
density and pressure also have a granular structure in the photosphere, as seen in figure 2.3, where the
temperature and pressure is higher in the granules than in the lanes, while the density is highest in the
lanes.

The only quantity which is initially different from the Hansteen et al. (2010) model is the magnetic
field. The aim in this thesis is to experiment with different magnetic topologies and see how it affects
the coronal heating and temperature. Therefore the different models have magnetic fields with dif-
ferent degrees of complexity. The initial magnetic field inside the modeled atmosphere is generated
by setting up an array for the vertical component of the magnetic field at lower field boundary, then
calculate the other two components of the magnetic field and extrapolate each component into the
entire cube by usingpotential field extrapolation.

Setting up the Vertical Component of the Magnetic Field at Lower Boundary

The initial condition for the vertical magnetic component,Bz, at lower boundary in each of the five
models evolved in this thesis (in addition to a standard model described later) is shown in figures 3.15
and 3.16 in the end of next chapter. In four of these models, the initial condition forBz at lower
boundary looks like a “checkerboard” pattern, where the white “tiles” contains a circular concentra-
tions of downward-oriented magnetic fields, and the black ones have equally strong concentrations of
upward-oriented fields. These circular concentrations of vertical magnetic fields is referred to as mag-
neticpolesin the rest of this thesis. The numbers after the C in the modelname specifies how many
chess tiles there are in each direction. C2x1 has a magnetic bipole at the lower boundary, composed
of two poles of oppositely oriented vertical magnetic fields, while C2x2 has a magnetic quadrupole
at the lower boundary, and C4x2 and C4x3 have chess patterns of 4x2 and 4x3 tiles of upward- and
downward-oriented fields at the lower boundary. All models have a weak vertical background field
of ∼ 1-10 G as well. The magnitude of the the magnetic field in the poles at lower boundary (in
the “chess tiles”) is set in a way so that the mean value of|Bz| in the photosphere will be of order
∼ 100 G. To ensure this, the models with magnetic fields of higher complexity needs higher magnetic
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field strengths in the poles at lower boundary. Model C1x1 does not contain any circular poles of
magnetic fields, but rather a magnetic field which is initially homogeneous and vertical (i.e. one chess
tile), with a magnitude of∼ 100 G. The model is referred to as a magnetic monopole model. A brief
overview of the main differences in the initial magnetic fields is given in table 2.2.

Model
No. of magnetic poles
at lower boundary

Mean distance between
poles at lower boundary

Max |Bz| at
lower boundary

C1x1 0 – 100 G
C2x1 2 8.3 Mm 600 G
C2x2 4 6.3 Mm 1.35 kG
C4x2 8 4.2 Mm 1.90 kG
C4x3 12 2.8 Mm 3.17 kG

Table 2.2: Initial properties of the different models

Potential Field Extrapolation

Knowing the vertical component of the magnetic field at lowerboundary, we calculate the Fourier
transform of this quantity as a function of horizontal wave numberskx andky. A curl-free magnetic
field (∇ × B = 0) is assumed, because this will yield the magnetic field configuration with the
lowest possible energy. Furthermore, the Fourier transform of each component of the magnetic field

is set to decrease with height and horizontal wavenumber ase−
√

k2
x+k2

yz, which means that small-scale
variations in the magnetic field will diminish rapidly with height, and only variations with wavelengths
comparable to the box size will be exist in the upper boundary. This exponential rule, together with the
curl-free field assumption, makes sure that we obtain a divergence-free magnetic field (∇·B = 0) if we
neglect numerical errors. Using these assumptions, the Fourier transformed horizontal components of
the magnetic field at lower boundary can be obtained, and thenthe Fourier transformed magnetic field
in all the above-lying layers. Finally, the inverse Fouriertransform is applied to obtain the magnetic
field for each layer. Because of numerical errors in this routine, the magnetic field which is obtained is
not completely divergence-free, and therefore an additional ∇ ·B-cleaning routine need to be applied
sporadically.
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3

RESULTS

The goal of this thesis is to gain more knowledge on how the heating of the solar corona is connected
to the complexity of the magnetic field in the photosphere. While the first chapter reviewed our
theoretical background about stars and the sun in particular, leading to the problem investigated in
this thesis, and the second chapter described the numericalmethod which is used in attempt to solve
that problem, the aim of this chapter is to analyze six different numerical models of the QS atmosphere
in order to reach the goal of this thesis. One of these models is imported from Hansteen et al. (2010)
and will be used as astandard model. It is the model which Hansteen et al. refers to as B1, and it will
therefore have the same name in this thesis. The other five models have been evolved during working
with this thesis, and the results in each of those models willbe compared to the results of the standard
model and finally compared to each other.

Below is a short list of terms which will be actively used during analysis of the results and need
therefore to be defined:

• Magnetic pole, defined as a concentration of a vertical magnetic field in thephotosphere (or the
lower boundary) oriented in one specific direction (upwardsor downwards). Thus, the magnetic
field inside one magnetic pole is oriented either upward or downward, but not in both directions.

• Thecomplexityin the photospheric magnetic field (or sometimes just calledthe complexity in
the magnetic field): this term tells us about how complicatedthe magnetic field configuration is
in the photosphere. The complexity can be measured by measuring density of magnetic poles
in the photosphere, or measuring thetypical separation distancebetween magnetic poles in the
photosphere. The complexity is thus proportional to the former quantity and inversely propor-
tional to the latter. We distinguish between theinitial complexity and theeffectivecomplexity
of the magnetic field. The effective complexity tells us how complex the photospheric field
tends to be as the simulation stabilizes and is proportionalto the initial complexity as long as
the typical separation distance between magnetic poles do not get short enough to cause some
of the poles “drown” below the photosphere or merge togetherwith another pole.

• Magnetic canopy: in most parts of the solar atmosphere, the magnetic fields that emerge
from the photosphere in separate regions connect together above the photosphere in loops.
Wedemeyer-Böhm et al. (2009) refers to the region in the atmosphere where those magnetic
loops occur as a canopy, a term originally introduced by Gabriel (1976). Magnetic loops also
occur in several of the models studied in this thesis, and theuppermost height where those
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loops occur in this thesis is defined as thecanopy height. The region below a magnetic canopy
is referred to as thesub-canopy region.

• Current sheet(Galsgaard & Nordlund 1996), defined as a tangential discontinuity in a magnetic
field, which can give rise to relatively strong currents. In the analysis of the results, we dis-
tinguish between large-scale current sheets (current sheets wider than∼0.5 Mm) and the tiny
current sheets (∼100 km) caused by the convective stressing of magnetic fieldswhich eventu-
ally burst out as nanoflares, described below.

• Hierarchy of current sheets: when a series of weaker current sheets arise near a strongercurrent
sheet, this is usually referred to as a hierarchy of current sheets(Galsgaard & Nordlund 1996).
In this thesis, the term exclusively concerns large-scale current sheets. Thecomplexity of the
hierarchy of current sheets tells us about how many weak current sheetsthat are generated
nearby each of the strong “main” current sheets.

• Nanoflare(Parker 1988): When near-lying magnetic field lines twist around each other due
to convective motion, the magnetic field get stressed. When the stress becomes too high, the
twisting of the field lines collapses into a tiny current sheet which eventually causes the twis-
ted magnetic field to reconnect. The reconnection dissipates the energy originally stored in the
twisted lines into the surrounding medium in an explosive burst which is referred to as a nan-
oflare. It is not possible to detect a physical nanoflare in particular in these models, because
the stressing of the magnetic field which causes a nanoflare occurs within widths comparable to
the diffusion length, which in the solar photosphere is of order 10 m (de Wijn et al. 2009). In
the code, however, the diffusion length is larger than the grid length, which is about∼60 km.
Therefore, a nanoflare in the models studied in this thesis will be defined as the (relatively) tiny
burst with a width of order 100 km which occurs due to the stressing of the field. In the models
where magnetic fields from below the photosphere connect together above the photosphere in a
canopy, the generation of nanoflares is likely to be much lessfrequent above this canopy than
below, because the fields above the canopy are both weaker andless directly connected to the
convective motions in the photosphere. Thus, the coronal heating due to nanoflares are likely to
increase when increasing the height of the canopy (above theTR).

3.1 Presenting the Physical Properties of Interest

Below is a short description of the physical properties which are analyzed in this thesis and how
they are presented. It includes both three-dimensional plots, two-dimensionalxy-plots, “function-of-
time”-plots and “function-of-height”-plots. In all three-dimensional plots, the photosphere is plotted
in as a plane atz = 0 with a two-dimensional temperature plot showing the granulation. The location
of the TR is also plotted in as the isosurface where theT = 0.1 MK. The purpose of plotting the
photosphere and the TR is to give the reader an idea of where the different regions of the modeled
atmosphere are located.
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3.1.1 Magnetic Fields

The magnetic field is is the only physical property which is initially set to be different in each model.
Thus, each model is “identified” by its magnetic field configuration, and it is therefore natural to start
studying each model by having a look at its magnetic fields. Since the initial magnetic fields are
put into the models by “brute force”, it needs some time (at least a few minutes) to adjust itself into
equilibrium with the fluid dynamics, especially in the photosphere and below, where the plasmaβ

is high. Therefore, in most of the plots, the magnetic fields are evaluated after a certain amount of
simulated solar time.

The magnetic fields in each model are presented in the following way:

• Three-dimensional plots of magnetic field lines are given, showing what the magnetic fields
look like at the end of each simulation.

• Two-dimensional plots of the vertical component of the initial magnetic field at lower boundary
are given, since this is the only free parameter (while the rest of the initial magnetic field is
generated by potential field extrapolation), as discussed in section 2.5. The resulting structure
of the vertical magnetic component in the photosphere att = 30.0 min is shown in a similar
way. The plots can be found at the end of this chapter, in figures 3.15 and 3.16.

• Horizontal averages of the (absolute values of the) vertical and horizontal components of the
magnetic field, as well as magnetic field inclination and magnetic energy density, are evaluated
at t = 30.0 min in each simulation. The plots can be found at the end of this chapter, in figures
3.17 and 3.18.

3.1.2 Temperature Structure

Since we want to study how the coronal heating depends on the magnetic field configuration, it is
convenient to study the resulting temperature in each model. The temperature structure in each model
are therefore presented the following way:

• Three-dimensional colour-plots of the temperature are given, evaluated at the end of each sim-
ulation, plotted together with magnetic field lines.

• To see how the coronal temperatures evolves with time, the average temperature in the entire
region abovez = 3.0 Mm is computed as a function of time. The plots can be found at the end
of this chapter, in figures 3.19 and 3.20.

• Histograms of the temperature as function of height are given, evaluated at the end of each
simulation. The plots can be found at the end of this chapter,in figures 3.19 and 3.20.

3.1.3 Joule Heating

Joule heating, or Ohmic heating, is defined by

QJ = E · J = ηJ2, (3.1)
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and is similar to the heating dissipated in electric circuits. Twisting of magnetic field lines (due to
convective shuffling in the photosphere) and other tangential discontinuities in the magnetic field can
transport energy from the photosphere to the corona throughcurrent sheets (Galsgaard & Nordlund
1996). These current sheets dissipate energy in the form of Joule heating to the surrounding medium,
sometimes in short bursts called nanoflares. Therefore, theJoule heating is the component of the
coronal heating which is likely to depend most on the magnetic field configuration and will therefore
be studied in this chapter.

The average Joule heating is computed in five selected regions of the solar atmosphere, described
briefly below:

• Region 1:z = 0.5 − 1.0 Mm which is more or less themiddle chromosphere. In a very few
cases, the transition region might reach down to these heights.

• Region 2:z = 1.0 − 1.5 Mm which is more or less theupper chromosphere, though it might
contain some coronal matter in cases where the TR height is low enough.

• Region 3: being defined as the region where the temperature isbetween20 000 and300 000

K, this region represents generally thelower TR. However, if the coronal model is cool enough,
this region might be the entire TR (or even include parts of the corona).

• Region 4: being defined as the region where the temperature isbetween300 000 and700 000

K, this region represents generally theupper TR. However, if the coronal model is cool enough,
this region will rather represent the base of the corona or even the entire corona.

• Region 5:z = 3.0− 12.0 Mm, i.e. the bulk of the modeled corona. It can contain fragments of
the upper chromosphere (and TR) in the (few) cases where the TR reaches abovez = 3.0 Mm.

The average Joule heating in these five regions are referred to asQ
(1)
J , Q

(2)
J , Q

(3)
J , Q

(4)
J andQ

(5)
J .

Time-evolution of these values is shown at the end of this chapter, in figures 3.21 and 3.22. These plots
are the most important results in this thesis, because they are used to study the correlation between
the complexity in the photospheric magnetic field and the resulting Joule heating in the chromosphere
and the corona.

Since Joule heating is closely related to current density, three-dimensional plots of the current density
are also given, evaluated at the end of each simulation. The purpose is to have a look at the resulting
current sheet structure in each model, since a hierarchy of current sheets is a possible coronal heating
mechanism (Galsgaard & Nordlund 1996). The current densityis given in the units of atypical
chromospheric current density, JB1

chr, defined as the mean current density in the middle chromosphere
(z = 0.5−1.0 Mm) in the standard model, averaged over the time period after the physical properties
of the standard model middle chromosphere have stabilized.

3.2 The Standard Model B1

3.2.1 Magnetic Fields

The magnetic field configuration in the standard model is shown in figure 3.1. In contrast to the models
simulated during this thesis, this model has relatively chaotically organized magnetic fields. Below
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Figure 3.1: Three-dimensional plot of the magnetic field in the standard model, evaluated att = 60.7 min. The horizontal
plane with the granulation pattern marks the location of thephotosphere, while the above-lying curved surface marks the
center of the TR (T = 105 K).

the photosphere, the magnetic fields are concentrated in a few randomly located poles of upward- and
downward-oriented fields. Above the photosphere, fields from the different poles bend outwards and
connect together in loops. The loops are located all from right above the TR up to heights of∼ 10 Mm
above the photosphere.

A closer look on the vertical magnetic field in the photosphere is given in figure 3.15(b). The poles of
upward- and downward-oriented fields are concentrated in the intergranular lanes, while the granules
are almost magnetically neutral. This cutout of the photosphere contains 5, maybe 6, magnetic poles,
separated by typical distances of 4-5 Mm.

The horizontal averages of the vertical and horizontal component of the magnetic field att = 30.0 min,
as well as the inclination of the magnetic field relative to the vertical axis and the magnetic energy
density, are plotted in figures 3.17 and 3.18 at the end of thischapter. The vertical magnetic component
is of order 200 G near the lower boundary and decreases with height to less than 1 G near the upper
boundary. The horizontal component decreases more slowly with height, going from about 150 G at
lower boundary to∼ 2 G at the upper boundary, but with a slight increase near the photosphere, where
the field inclination is relatively high due to the fact that the field is constantly shuffled around by the
convective motion. The field is more or less horizontal near the upper boundary, since the field here is
characterized by the top of magnetic loops. The magnetic energy density decreases with height, going
from about∼ 0.5 erg cm−3 at the lower boundary to∼ 10−5 erg cm−3 at the upper boundary.
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3.2.2 Temperature Structure

Figure 3.2(a) shows a three-dimensional colour-plot of thetemperature together with the magnetic
field structure in the standard model. This is a relatively hot model with much activity. The corona
has temperatures of order∼1.4-1.8 MK with some cooler coronal loops of∼1.0 MK which are aligned
with magnetic loops. The cooler loops can possibly be causedby cooler gas from below the corona
(where the temperature also is∼1.0 MK) which is transported up along the magnetic loops, or they
can be caused by radiative cooling. A large heating event with a temperature rising to 1.9 MK occurs
right above the TR, near one of the side-walls, as seen in figure 3.2(a). Only one of the five models
evolved in this thesis (C2x1) has a high level of coronal activity comparable to this model, but even
that model has a simpler coronal structure than this (even though that model obtains much hotter
corona).

As shown in 3.19(a), the mean temperature in the corona starts around 0.9 MK and increases with
time and ends up near 1.5 MK after 60 min (where it possibly stabilizes). The temperature histogram
in figure 3.19(b) shows that the height of the TR varies all from about 1.2 Mm to 2.5 Mm above the
photosphere. The temperature profile below the TR behaves quite as expected: the temperature in
the chromosphere ranges from 2000 K to 6-7000 K, while the photospheric temperature ranges from
5000 K (intergranular lanes) to 8-9000 K (granules), and thetemperature right below the photosphere
is higher than 10 000 K, increasing nearly adiabatically with depth.

3.2.3 Joule Heating

From the time-evolution plots of the mean Joule heating in the five selected regions in this model,
given in figure 3.21, we see first that the Joule heating in the chromosphere (Q(1)

J andQ
(2)
J for the

model B1) starts at a relatively low value, increases rapidly in the first 15-20 min (more or less),
then decreases during the next 5-10 min until it stabilizes around 0.055 erg s−1 cm−3 in the middle
chromosphere and 0.02 erg s−1 cm−3 in the upper chromosphere. The Joule heating in the TR (Q

(3)
J

andQ
(4)
J ) increases in the first 5-10 min before it stabilizes at around 0.023 erg s−1 cm−3 in the lower

TR and 0.014 erg s−1 cm−3 in the upper TR. The coronal Joule heating (Q
(5)
J ) increases in the first

5 min and stabilizes around 0.011 erg s−1 cm−3. These results will be used to compare with the results
from the models evolved in this thesis.

A three-dimensional colour-plot of the current density in this model is given in figure 3.2(b). The
region where the large heating event occurs (as mentioned shortly in the temperature section) seems
to generate current sheets with currents of chromospheric (i.e. relatively high) values. Weaker current
sheets do also occur nearby these strong current sheets. In the other regions of the corona, it is hard
to detect single current sheets, probably because the chaotically organized magnetic fields generates a
superposition of many chaotically current sheets, which results in a very chaotic current structure.
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(a) B1, temperature and magnetic fields att = 60.7 min. NOTE: Different colour scaling than
in the temperature plots for the other models.

(b) B1, current density relative to the typical chromospheric current density,J/JB1
chr, at t =

60.7 min. Current densities much higher than the peak value in this plot occurs near the TR
and below, but is ignored to make thecoronalcurrents more visible.

Figure 3.2: Three-dimensional plot of (a) temperature and magnetic field and (b) current density in the standard model. The
horizontal plane with the granulation pattern marks the location of the photosphere, while the above-lying curved surface
marks the center of the TR (T = 105 K).
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Figure 3.3: Three-dimensional plot of the magnetic field in model C1x1, evaluated att = 35.0 min. The horizontal plane
with the granulation pattern marks the location of the photosphere, while the above-lying curved surface marks the center
of the TR (defined here asT = 50 000 K).

3.3 The Magnetic Monopole Model C1x1

3.3.1 Magnetic Fields

The magnetic field in this model is initially homogeneous andvertical, and, as shown in figures 3.3
and 3.15(d), it remains fairly stable through the entire simulation, except for the region around the
photosphere and below, where the magnetic field is forced into the intergranular lanes and shuffled
around due to convective motion.

Figure 3.17 shows that the vertical magnetic component is more or less about 100 G in the entire at-
mosphere, which is half the corresponding value in the standard model lower boundary and more than
100 times that in the standard model upper boundary, making this model the one with the strongest
(vertical) magnetic field in the corona (as well as the model with the smallest level of magnetic activ-
ity). The horizontal component (figure 3.18) has values comparable to the vertical component below
the surface but decreases rapidly with height until it is less than 1 G at upper boundary. This model
is also the one with the smallest magnetic energy density at the lower boundary (about a third of that
in the standard model) and the largest magnetic energy density in the corona (∼ 0.02 erg cm−3, i.e.
about 2000 times the value at the standard model upper boundary) due to the uniformly strong coronal
magnetic field.
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3.3.2 Temperature Structure

As one can see in figures 3.4(a) and 3.19(d), this model ends upwith a relatively low coronal temper-
ature, ranging between 0.08 and 0.4 MK. As in the other models, the mean coronal temperature starts
at about 0.9 MK, but decreases slowly with time and is about 0.45 MK after 30 min before it suddenly
drops below 0.2 MK within the next 5 min (figure 3.19(c)). Thus, the corona ends up with a mean
temperature of less than 1/7 of what the standard model coronal temperature reaches. The height of
the TR is more or less constantly located around 2.0 Mm above the photosphere, with deviations no
larger than about 200 km. The chromospheric temperatures have also a smaller range than in the
standard model, from about 3000 K to 5-6000 K. Below the chromosphere, the temperature behaves
in a manner quite similar to the standard model temperature.

3.3.3 Joule Heating

From the time evolution plots of the Joule heating in the five selected regions in this model, given
in figure 3.21, one can see that the Joule heating in each region starts with the same values as in the
standard model. In the middle chromosphere, the Joule heating decreases rapidly the first 2-3 min and
stabilizes around0.015 erg s−1 cm−3 which is slightly more than 1/4 of that in the standard model.
The Joule heating in the upper chromosphere decreases even more rapidly within the same time and
stabilizes around only∼ 10−4 erg s−1 cm−3 (less than 1/200 of that in the standard model). The
TR Joule heating (Q(3)

J ) stabilizes around∼ 10−5 erg s−1 cm−3 after 5 min, and the coronal Joule

heating (bothQ(4)
J andQ

(5)
J in this model) stabilizes around∼ 1.7 · 10−5 erg s−1 cm−3 after 20 min

(∼1/1000 of that in the standard model). The fast stabilization of the Joule heating is probably due
to the relatively low level of magnetic activity in this model. This model is clearly the one which has
the lowest amount of Joule heating in all regions of the atmosphere, having almost no Joule heating
in the TR and the corona. This is not unexpected, since an atmosphere with an almost homogeneous
magnetic field will have very little magnetic activity whichcan generate Joule heating. Because of
the shuffling of magnetic fields in the photosphere, a small number of nanoflares per time unit will
probably be generated, but not enough to heat the corona up totemperatures above 1 MK.

As shown in figure 3.4(b), no generation of large scale current sheets (>0.5 Mm) seems to be present
in this model, only some vertical arms of weak currents whichreach from the chromosphere and into
the corona. These arms are probably a superposition of (tiny) current sheets due to the convective
twisting of the magnetic field which eventually burst out in nanoflares.

3.4 The Magnetic Bipole Model C2x1

3.4.1 Magnetic Fields

This model is a bipole model, which means that this atmospheric box has two poles of (almost)
vertical magnetic fields which go from lower boundary through photosphere and bend out into the
chromosphere and corona, as seen in figure 3.5 (and 3.15(f)).Magnetic field lines from the innermost
sides of the two poles (the sides which faces the center of thebox) loop together in the chromosphere,
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(a) C1x1, temperature and magnetic fields att = 35.0 min.

(b) C1x1, current density relative to the typical chromospheric current density,J/JB1
chr, at

t = 35.0 min. Current densities much higher than the peak value in this plot occurs near the
TR and below, but is ignored to make thecoronalcurrents more visible.

Figure 3.4: Three-dimensional plot of (a) temperature and magnetic field and (b) current density in model C1x1. The
horizontal plane with the granulation pattern marks the location of the photosphere, while the above-lying curved surface
marks the center of the TR (defined here asT = 50 000 K).
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Figure 3.5: Three-dimensional plot of the magnetic field in model C2x1, evaluated att = 40.0 min. The horizontal plane
with the granulation pattern marks the location of the photosphere, while the above-lying curved surface marks the center
of the TR (T = 105 K).

while field lines a bit closer to the center of each pole loop together in the corona. Field lines which
emerge in the photosphere near the centre of each pole do not loop together, but keep going upwards
(but not entirely vertically) through the corona. Field lines at the outwards facing side of each pole
loop together with field lines from poles outside this box (remember that this box is periodic in the
horizontal directions). The magnetic loops reach up to the canopy height which in this model is
located about 5.6 Mm above the photosphere. Fields which do not loop together in the canopy, or
in the sub-canopy region, continue upwards (but not exactlyvertically) through the corona. Right
above the pole to the right in figure 3.5, there is amagnetic neutral linegoing in they-direction (i.e.
the horizontal direction parallel to the shortest sidewall) which, as we will see later, generates strong
current sheets and heats the corona very rapidly.

As seen in figures 3.17 and 3.18, both the vertical and horizontal components of the magnetic field at
the lower boundary are approximately 200 G on average i.e. almost the same as in the standard model
(the horizontal component is just a bit larger here). The magnetic energy at the lower boundary is thus
only slightly larger than in the standard model. Since a significant part of the magnetic fields which
emerge from the photosphere loop together in the sub-canopyregion, the coronal magnetic field (es-
pecially above the canopy) is much weaker in this model than in the magnetic monopole model while
the mean magnetic field in the photosphere is almost equally strong in all models. More specifically,
the magnetic field at the upper boundary in this model has an energy density of∼ 4.0 erg cm−3 which
is 1/5 of that in the magnetic monopole model, but still 400 times that in the standard model.
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3.4.2 Temperature Structure

As seen in figure 3.6(a), this model obtains a much warmer corona than all the other models, reaching
a mean temperature of 2.8 MK after 40 min (figure 3.19(e)), where it seems to start stabilizing, i.e.
almost twice the mean temperature which the standard model obtained after 60 min. The peak tem-
perature occurs around the magnetic neutral line, mentioned in the discussion of the magnetic fields,
which is likely to be the main generator of coronal heating inthis model. Apart from this, the temper-
ature is higher than 1.7 MK in the entire corona, more or less,and higher than 2.5 MK at all heights
abovez =5-6 Mm.

The location of the TR seems to be slightly aligned with the above-lying magnetic loops, and the TR
height, according to figure 3.19(f), varies from about 1 Mm to2.5 Mm above the photosphere (similar
to the standard model, except that the TR height in the standard model varies more randomly withx
andy). The temperature profile below the TR is similar to that of the standard model.

3.4.3 Joule Heating

By studying the time evolution of the Joule heating in this model, as given in figure 3.21, we see first
that the Joule heating in middle chromosphere increases with time during the first 10 min and stabilizes
around0.04 erg s−1 cm−3 i.e. slightly more than 2/3 of that in the standard model. In the above-lying
zones, the Joule heating is still increasing at the end of this simulation att = 40 min. At that point,
the Joule heating in upper chromosphere and TR (Q

(4)
J ) are both about0.03 erg s−1 cm−3 i.e. slightly

larger than the corresponding values which the standard model stabilized around. The Joule heating
in the corona is at this point about0.003 erg s−1 cm−3, which is almost three times the corresponding
stabilization value in the standard model. Ideally this model should have run for a longer time, but
because of a growing numerical error and a lack of time to fix that error, it was necessary to stop the
simulation after 40 min of solar time. However, it is clearlythat the Joule heating in the regions above
middle chromosphere grows faster in this model than in any ofthe other models.

Figure 3.6(b) shows that this models has a lot of relatively strong currents in the corona. The region
around the magnetic neutral line generates currents of magnitude comparable to the chromospheric
currents, and large and relatively strong current sheets (coloured green in the figure) comes out of this
region, heating the corona to higher temperatures than any of the other models. All in all, this model
seems to have coronal currents of magnitudes comparable to that of the standard model, though not
so randomly organized.

3.5 The Magnetic Quadrupole Model C2x2

3.5.1 Magnetic Fields

This model has a photospheric magnetic field which is “twice as complex” as in the previous model,
as seen in figure 3.7 (and 3.15(h)), being concentrated in 4 poles of almost vertical fields which bend
out above the photosphere and connect together in loops reaching up to the canopy located about 3.4
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(a) C2x1, temperature and magnetic fields att = 40.0 min.

(b) C2x1, current density relative to the typical chromospheric current density,J/JB1
chr, at

t = 40.0 min. Current densities much higher than the peak value in this plot occurs near the
TR and below, but is ignored to make thecoronalcurrents more visible.

Figure 3.6: Three-dimensional plot of (a) temperature and magnetic field and (b) current density in model C2x1. The
horizontal plane with the granulation pattern marks the location of the photosphere, while the above-lying curved surface
marks the center of the TR (T = 105 K).
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Figure 3.7: Three-dimensional plot of the magnetic field in model C2x2, evaluated att = 65.0 min. The horizontal plane
with the granulation pattern marks the location of the photosphere, while the above-lying curved surface marks the center
of the TR (T = 105 K).

Mm above the photosphere (lying close to the TR). Above the canopy, the magnetic field is more or
less vertical.

According to figures 3.17 and 3.18, the magnetic field at the lower boundary has a vertical component
slightly larger than in the standard model (∼ 250 G) and a horizontal component almost twice that
in the standard model (∼ 300 G), yielding a magnetic energy about twice as large as in the standard
model (∼ 1.0 erg cm−3). The average photospheric magnetic field is approximatelyequally strong as
in the other models. Because this model has an even more complex photospheric (and chromospheric)
magnetic field than the previous model, more of the magnetic field lines which emerge from the
photosphere loop together, resulting in an even weaker coronal magnetic field, with a mean energy
density of∼ 1.0−3 erg cm−3 i.e. 1/4 of the corresponding upper boundary value in the bipole model,
but still 100 times that of the standard model (which has veryweak magnetic fields at the upper
boundary).

3.5.2 Temperature Structure

This model gets a much cooler corona than the bipole model, asseen in figure 3.8(a). Figure 3.20(a)
shows that the mean coronal temperature decreases slightlythe first 15 min and increases slowly
with time during the next 20-30 min. Then, the temperature increases more rapidly and is about
1.80 MK after 65 min and still growing rapidly. Thus, this model has a mean coronal temperature a
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(a) C2x2, temperature and magnetic fields att = 65.0 min.

(b) C2x2, current density relative to the typical chromospheric current density,J/JB1
chr, at

t = 65.0 min. Current densities much higher than the peak value in this plot occurs near the
TR and below, but is ignored to make thecoronalcurrents more visible.

Figure 3.8: Three-dimensional plot of (a) temperature and magnetic field and (b) current density in model C2x2. The
horizontal plane with the granulation pattern marks the location of the photosphere, while the above-lying curved surface
marks the center of the TR (T = 105 K).
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bit higher than that of the standard model after 60 min (still, less than the coronal temperatures the
bipole model reaches after 40 min), and it increases more rapidly and will presumablystabilize at a
higher significantly coronal temperature than the standardmodel (but that requires further simulation
to be confirmed). As seen in figure 3.20(b), the height of the TRvaries mostly between 1.2 Mm and
2.5 Mm above the photosphere, being especially high near thecanopy above two of the poles and
slightly aligned with the magnetic loops in the sub-canopy region. However, at the time this three-
dimensional snapshot is taken, the TR height seems to reach up to 4.0 Mm above the photosphere near
one of the poles. Below the TR, the temperature behaves similarly to the standard model temperature.

3.5.3 Joule Heating

From the time evolution of the Joule heating given in figure 3.21, we see that the Joule heating in
middle chromosphere increases with time for 5 min until it stabilizes around0.05 erg s−1 cm−3,
which is slightly less than in the standard model. In both theupper chromosphere and lower TR, the
Joule heating increases for about 25-30 min and stabilizes around0.015 erg s−1 cm−3, i.e. slightly
less than in the standard model. Since the coronal temperatures stays lower than 0.7 MK for the
first 45 min, region 4 represents the entire corona in that period with a Joule heating less than
0.002 erg s−1 cm−3. As soon as the coronal temperatures gets higher than 0.7 MK,this region rep-
resents the upper TR, having a Joule heating about0.01 erg s−1 cm−3 after 65 min and increasing
rapidly. The coronal Joule heating increases constantly with time and is about0.0003 erg s−1 cm−3

after 65 min, i.e. less than 1/3 of that in the standard model.This simulation should ideally have
run for a longer time to see which values the Joule heating stabilizes at. However, we can conclude
that this model obtains a much less coronal heating than the standard model and the magnetic bipole
model, but still more than the monopole model.

Figure 3.8(b) shows that this model has a well-organized setof vertical current sheets. A few current
sheets go diagonally between the regions above two of the opposite-lying magnetic poles (with the
same polarity), and from these poles, current sheets also godiagonally out of this box towards other
poles with the same polarity (remembering the periodicity of the box), while poles of the opposite
polarity will lie in-between these current sheets. The current sheets are weaker than those seen in
the bipole model, and they also have a simpler structure, which may be a reason why this model has
much less coronal heating. Along each current sheet, the (almost vertical) magnetic field on one side
of the sheet is tilted in a slightly different direction thanon the other side, as seen in figure 3.9, which
give rise to the strong currents inside the sheet. Closer analysis of the time evolution of the current
density reveals that a series smaller (and weaker) current sheets appear from time to time (but not
constantly) nearby and parallel to current sheets seen on this figure, i.e. a hierarchy of current sheets.
The hierarchy of current sheets are shown in figure 3.14.
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Figure 3.9: The horizontal components of the magnetic field (measured in gauss) in C2x2,z = 9.7, t = 30.0 min. The
magnetic field behaves more or less like this throughout the corona. Some of the current sheets are marked with dashed
lines.

Figure 3.10: Three-dimensional plot of the magnetic field inmodel C4x2, evaluated att = 80.0 min. The horizontal plane
with the granulation pattern marks the location of the photosphere, while the above-lying curved surface marks the center
of the TR (T = 105 K).
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3.6 The Magnetic 8-pole Model C4x2

3.6.1 Magnetic Fields

Again, we double the photospheric magnetic complexity of the previous model to get this model with
8 poles of vertical magnetic fields in the photosphere, as seen in figures 3.10 and 3.16(b). Above the
photosphere, the fields from the different poles bend out andconnect together in loops reaching up
to the canopy which here is located at 3.8 Mm above the photosphere, which is higher than in the
previous model, despite the shorter mean separation distance between poles in the photosphere. Thus,
the canopy is slightly above the transition region. As in theprevious model, the magnetic field above
the canopy in this model is more or less vertical.

According to figures 3.17 and 3.18, the lower boundary features a magnetic field even stronger than
in the previous models, with an energy density more than 3 times that of the standard model (i.e.
∼ 1.5 erg cm−3). Again, the average photospheric field is approximately equally strong as in the
other models, but the magnetic complexity which is even higher than in the quadrupole model results
in an even weaker coronal magnetic field, with an energy density at the upper boundary of order
10−4erg cm−3, i.e. 1/10 of that in the quadrupole model and 10 times that inthe standard model.

3.6.2 Temperature Structure

The coronal temperature in this model decreases slowly during the first 20-25 min before it starts
increasing and is about 1.75 MK and still increasing after 80min, as seen in figures 3.11(a) and
3.20(c). Comparing how the coronal temperature evolves in time in this model to the previous models,
this model is likely to end up with a higher coronal temperature than than the standard model, but
lower than the bipole and quadrupole models (unless the temperature in the quadrupole model stops
increasing before this model does). The height of the TR varies between 1.2 Mm an 3.5 Mm above
the photosphere, although it is mostly lower than 3.0 Mm. Thetemperature in the region below the
TR behaves similar to the standard model temperature.

3.6.3 Joule Heating

From the time evolution of the Joule heating in figure 3.22, wesee that the heating of middle chro-
mosphere increases the first 10-15 min and then stabilizes around 0.06 erg s−1 cm−3 i.e. slightly
more than in the standard model. The heating of the upper chromosphere increases during the first
40-50 min and ends up about0.025 erg s−1 cm−3 after 80 min, i.e. similar to the value which the
standard model stabilized around. The TR Joule heating increases throughout the entire simulation
and ends up about0.022 erg s−1 cm−3 in the lower TR and about0.020 erg s−1 cm−3 in the upper
TR after 80 min (i.e. similar to that in the standard model lower TR and a bit more than in the stand-
ard model upper TR). The coronal Joule heating increases also throughout the simulation, ending up
about0.00025 erg s−1 cm−3, i.e. 1/4 of that in the standard model.

From figure 3.11(b), we see that this model obtains a current sheet structure very similar to the quad-
rupole model, but because of the shorter distances between the poles of magnetic fields which emerge
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(a) C4x2, temperature and magnetic fields att = 80.0 min.

(b) C4x2, current density relative to the typical chromospheric current density,J/JB1
chr, at

t = 80.0 min. Current densities much higher than the peak value in this plot occurs near the
TR and below, but is ignored to make thecoronalcurrents more visible.

Figure 3.11: Three-dimensional plot of (a) temperature andmagnetic field and (b) current density in model C4x2. The
horizontal plane with the granulation pattern marks the location of the photosphere, while the above-lying curved surface
marks the center of the TR (T = 105 K).
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Figure 3.12: Three-dimensional plot of the magnetic field inmodel C4x3, evaluated att = 80.0 min. The horizontal plane
with the granulation pattern marks the location of the photosphere, while the above-lying curved surface marks the center
of the TR (T = 105 K).

from the photosphere, the distance between the current sheets are correspondingly shorter. Closer
studies of the time evolution of the current sheets reveal that this model does not get as complex
hierarchy of current sheets as the quadrupole model does, and this may explain why this model has
significantly less coronal heating. The structure of current sheets are shown (and compared to the
quadrupole model) in figure 3.14

3.7 C4x3, a Model with (initially) 12 Magnetic Poles

3.7.1 Magnetic Fields

This model has initially 12 poles of vertical magnetic fieldsat the lower boundary, as seen in figure
3.16(c), and, as in the other models, these poles reaches into the photosphere where the magnetic
fields are forced into the intergranular lanes, and follows the same pattern for a while (figure 3.16(d)).
However, because the separation distance between the magnetic poles are almost comparable to the
granule size, one of these poles seems to disappear at the later stages of the simulation, and another
becomes quite weak. Additionally, because of the periodicity of the box, one or two of the poles
which lies near one of the side-walls in thexz-plane (i.e. the two largest side-walls) seems to merge
more or less together with poles of same polarity near the theopposite side-wall. That gives this
model aneffective complexityin the photospheric magnetic field which is slightly lower than in the
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previous model. As seen in figure 3.12, magnetic fields from the different poles connect together in
loops reaching up to the canopy which in this model is located3.3 Mm above the photosphere. As in
the previous two models, a weaker vertical magnetic field rises above the canopy.

As seen in figured 3.17 and 3.18, the magnetic field at lower boundary is even stronger than in the
previous model, with an energy density more than 4 times thatin the standard model. The field gets
weaker with height, with the photospheric field being on average equally strong as in the other models,
but with a coronal field which is stronger than in the previousmodel and only slightly weaker than
in the quadrupole model, with an energy density about 60 times that in the standard model. The
reason this model gets a stronger coronal field than the 8-pole model is probably because this model
has an initial density of magnetic poles which is so high thata larger fraction of the field is forced
to continue vertically through the corona than in the 8-polemodel. Thus, the coronal field strength
does not decrease monotonically with the complexity of the magnetic field in the photosphere (while
the average photospheric field strength is kept constant), but reaches a minimum value for a certain
complexity (near that of the 8-pole model) before it increases with complexity.

3.7.2 Temperature Structure

From figure 3.13(a), 3.20(e) and 3.20(f), we can see that, amongst those models which have a magnetic
complexity (i.e. all except the magnetic monopole model), this is the one which has the coolest
corona, reaching coronal temperatures between 0.8 MK and 1.0 MK and a mean coronal temperature
of approximately 0.9 MK after 80 min, which is about 3/5 of themean temperature which the standard
model corona obtains after 60 min. The height of the TR variesbetween 1.5 Mm and 3.5 Mm above
the photosphere, although it is mostly lower than 3.0 Mm. As in the other models, the temperature
profile below the TR behaves mostly similar to that of the standard model.

3.7.3 Joule Heating

From the time evolution of the Joule heating in this model given in figure 3.22, we see that the
heating of the middle chromosphere increases with time the first 15 min and then stabilizes around
0.055 erg s−1 cm−3, similar to the heating rate in the standard model middle chromosphere. The
upper chromosphere has a heating rate which increases for the first 30 min, then stabilizes around
0.015 erg s−1 cm−3 i.e. slightly less than in the standard model. The heating ofthe TR increases
slowly with time through the entire simulation (ignoring some oscillations) and ends up around
0.015 erg s−1 cm−3 in the lower TR (half of that in the standard model) and about 0.0025 in the
upper TR (1/5 of that in the standard model). The coronal heating increases very slowly with time,
ending up about0.0001 erg s−1 cm−3 i.e. 1/10 of that in the standard model.

Figure 3.13(b) shows that the corona in this model also has a structure of vertical current sheets that
is similar to that in the previous model. Closer analysis of the current sheets in this model reveals a
hierarchy of current sheets almost as complex as in the quadrupole model. However, that analysis (not
shown in any figure here) also reveals that the currents in thecurrent sheets tend to be weaker, which
may explain why this model has a lower coronal heating than both of the previous two models.
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(a) C4x3, temperature and magnetic fields att = 80.0 min.

(b) C4x3, current density relative to the typical chromospheric current density,J/JB1
chr, at

t = 80.0 min. Current densities much higher than the peak value in this plot occurs near the
TR and below, but is ignored to make thecoronalcurrents more visible.

Figure 3.13: Three-dimensional plot of (a) temperature andmagnetic field and (b) current density in model C4x3. The
horizontal plane with the granulation pattern marks the location of the photosphere, while the above-lying curved surface
marks the center of the TR (T = 105 K).
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3.8 Comparing the Results of the Different Models

3.8.1 Magnetic Fields

All five models evolved in this thesis keep a relatively simple and organized magnetic field structure
during the simulations, compared to the standard model. Thesimplest magnetic field structure is seen
in the magnetic monopole model C1x1, where the field stays more or less vertical and homogeneous
throughout the simulation, except the photospheric field which follows the granular pattern. The other
four models have poles at lower boundary where concentrations of vertical fields rise up through
the photosphere, bend outwards above the photosphere whereparts of the fields from different poles
connect together in loops which reach up to thecanopy, while the rest of the fields continue almost
vertically upwards above the canopy.

Closer analysis of the models (not shown in any figure here) reveals estimates of the canopy height in
each model – defined as the height where the horizontal plane is tangent to the uppermost magnetic
loops which bind together fields from the different poles – which are written in table 3.1. As expected,
the highest canopy height occurs in the bipole model C2x1, where the separation distance between
magnetic poles is highest, and as we see from figure 3.18, the magnetic field above the canopy in
this model is much more inclined than on similar heights in the other models. The three models
with magnetic fields of higher complexity have canopy heights near or within the transition region.
However, the canopy height does not seem to decrease with increasing magnetic complexity within
those three models. That can be caused by the fact that the fluid dynamics forces the magnetic canopy
(which binds the different poles together) to lie near the TR(and that the TR tries to align itself with
the canopy), causing the exact height of the canopy to be a bitrandom. The standard model have
magnetic loops which is chaotically located all over the corona, and it is therefore futile to measure a
specific canopy height in that model.

Model Canopy height
C1x1 –
C2x1 5.6 Mm
C2x2 3.4 Mm
C4x2 3.8 Mm
C4x3 3.3 Mm

Table 3.1: Height above photosphere where the top of magnetic canopy occurs.

Comparing the plots of the horizontally averaged magnetic field components and especially magnetic
energy density as function of height in figure 3.18, one can observe the following: the magnetic field
at the lower boundary has an average which increases with thecomplexity in a way that ensures the
mean magnetic field strength in the photosphere to be approximately the same in all models. Because
the fraction of the field emerging through the photosphere which connects together in loops increases
with the density of magnetic poles for densities less than that of the 8-pole model, the magnitude of
the remaining magnetic field above the canopy decreases withthe complexity in the photospheric field
for all models except model C4x3 which has a stronger coronalfield than the 8-pole model.

Considering the periodicity of the box and imagining putting several boxes together, the magnetic
monopole model will correspond to a larger area of homogeneous magnetic fields (a “quiet quiet-
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Sun” region). Such kind of homogeneous vertical fields occurin an active region-phenomenon known
asplage, but plage regions tends to be warmer the surrounding QS regions, in contrast to what we
saw in the monopole model. There is currently no good explanation for the high temperatures which
occurs in plage. The magnetic field configuration in the bipole model will correspond to a line of
magnetic poles bound together in magnetic loops which reachinto the corona. The supergranular
lanes, where magnetic fields are much stronger than in the internetwork, might consist of such lines
of magnetic poles. The three models of higher magnetic complexity will all correspond to grids of
magnetic poles, bound together in loops reaching up to a canopy near the TR, but with different grid
sizes. Such grids of magnetic poles may represent a simplified version of the salt-pepper pattern of
magnetic fields in the QS internetwork. The standard model represents a more realistic salt-pepper
pattern of magnetic fields in the internetwork.

3.8.2 Temperature Structure

The model which in which we find the lowest coronal temperature is definitely the magnetic monopole
model, which ends up with a mean temperature about 0.2 MK. That model has also the most constant
location of the TR. The opposite extreme is the bipole model,which after 40 min reaches a mean
coronal temperature of almost 15 times that in the monopole model (∼3.0 MK) and temperatures up
to 3.5 MK in a smaller region. That model also has the highest temperature variance in the corona (all
between 1.7 MK and 3.5 MK).

The three models of higher magnetic complexity reach temperatures in between those of the mono-
pole model and the bipole model. Those three models also havethe highest variance in the TR height.
Amongst those models, the quadrupole model, which has the lowest density of magnetic poles in the
photosphere, has the highest coronal temperature, reaching 1.7 MK after 63 min when it is still in-
creasing rapidly. The coronal temperature in the 8-pole model reaches 1.2 MK within the same time
interval and continues to increase, but slower than the quadrupole model. The model C4x3 reaches a
coronal temperature of 0.6 MK at that time and continues to increase, but more slowly than in the pre-
vious two models, and it seems to end up with the coolest corona of those three models. Thus, amongst
those three models, the resulting coronal temperature seems to decrease with theinitial complexity in
the photospheric magnetic field (C4x3 had initially the highest photospheric complexity).

The standard model ends up with a coronal temperature slightly lower than in the 8-pole model despite
having a much higher coronal Joule heating. We must rememberthat the coronal temperature might
be affected by other factors than the Joule heating. A possible mechanism which keeps the coronal
temperature in this model down could be cooler gas which is transported up to coronal heights in
coronal loops, or it could be radiative cooling.

3.8.3 Joule Heating

Table 3.2 shows the mean Joule heating which each region in each model ends up with. By using this
and figures 3.21 and 3.22 to compare the Joule heating in each model, it is clearly that the Joule heating
in the middle chromosphere increases more or less with the effective complexity in the photospheric
magnetic field (where C4x3 had a lower effective complexity than the 8-pole model). In all of the
above-lying regions, the magnetic bipole model seems to have the highest amount of Joule heating,
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and especially in the corona, the Joule heating is much higher than in the other models. Of the three
models of higher magnetic complexity, the 8-pole model has the highest amount of Joule heating in
the upper chromosphere and TR, while the quadrupole model has the highest coronal Joule heating.
Model C4x3 has an almost equal amount of Joule heating as the quadrupole model in the upper
chromosphere, but has a lower amount of Joule heating than both the quadrupole and 8-pole model in
the above-lying regions. Thus, the coronal Joule heating decreases with the initial complexity in the
photospheric magnetic field amongst those three models. Themagnetic monopole model has a Joule
heating, in the upper chromosphere and above, which is much lower than in all of the other models.

The large amount of Joule heating in the magnetic bipole model, which heats the corona up to tem-
peratures of 2.5-3.5 MK, is most probably due to the strong current sheets which are generated in the
region near the magnetic neutral line and reach out through large parts of the corona. It is also possible
that the generation of nanoflares due to twisting and reconnection of magnetic fields is present below
the canopy, heating the sub-canopy corona (since the canopylies relatively high up in the corona).

The corona in the three models of higher magnetic complexity, which contain “grids” of magnetic
poles, are all heated by a corresponding grid of vertical current sheets which go diagonally between the
magnetic poles with the same polarity (while the poles of opposite polarity lies in the middle of each
“grid zone”), as seen in the three-dimensional plots of the current density earlier in this chapter. Of
these models, the quadrupole model gets the largest amount of coronal heating, even though the 8-pole
model have a tighter grid of current sheets (due to a higher complexity in the photospheric field) with
currents approximately equally strong as in the quadrupolemodel. This may be explained by the fact
that the quadrupole model seems to obtain a more complexhierarchyof weaker current sheets within
each “current sheet grid zone” than the 8-pole model does, asseen in figure 3.14. The model C4x3,
which has a lower effective complexity in the photospheric magnetic field than the 8-pole model, also
seems to get a bit more complex hierarchy of current sheets within each “grid zone”, but the currents
in this model are weaker than in the other two “magnetic grid”-models, which may explain why this
model gets less coronal Joule heating. The reason why the strongest current sheets in this model are
weaker than in the other two similar model may be explained the following way: this model has an
initially too high complexity in the photosphere (12 poles), with separation distances comparable to
a typical granule size. Therefore, some of the loops that bind fields from different poles together
happens to lie very near the photosphere and eventually “drown” beneath the photosphere, making the
photospheric field much weaker than in the other models at thelatter stages of the simulation. Thus,
even though having a lower density of magnetic poles in the photosphere than the quadrupole 8-pole
model, which leads to a larger hierarchy of current sheets, the field is much weaker, and therefore
the current sheets which are generated in the corona are too weak to heat it more than in the 8-pole
model. Another factor which can play a role here is the generation of nanoflares, which is more likely
to happen below the canopy than above. The canopy in the quadrupole and 8-pole models reach a bit
higher into the corona than in the model C4x3 (where the canopy is mostly below the TR) and thus
makes it more probable for nanoflares to reach into the coronaand heat it.

The reason the magnetic monopole model has much less coronalheating than the other models is due
to the absence of strong currents. The fact that the corona still manage to maintain a temperature in
the order of105 K may be explained by the generation of weak nanoflares, sincethe vertical fields in
this model might twist around each other (due to convective motion) and reconnect all the time.
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Figure 3.14: Current density, relative to the typical chromospheric current density, in C2x2 (left panel) and C4x2 (right
panel),z = 9.7 Mm, t = 30.0 min. The currents behave similar to this throughout the entire corona. The horizontal
locations of poles of upward- and downward-oriented fields (in the photosphere) are marked by⊙ and⊗, respectively.

Model 〈Q(1)
J 〉[erg/s] 〈Q(2)

J 〉[erg/s] 〈Q(3)
J 〉[erg/s] 〈Q(4)

J 〉[erg/s] 〈Q(5)
J 〉[erg/s]

B1 5.4 · 10−2 2.4 · 10−2 2.3 · 10−2 1.4 · 10−2 1.1 · 10−3

C1x1 1.3 · 10−2 1.0 · 10−4 1.1 · 10−5 1.7 · 10−5 1.7 · 10−5

C2x1 4.2 · 10−2 3.0 · 10−2 (*) 2.9 · 10−2 (*) 3.1 · 10−2 (*) 3.1 · 10−3 (*)
C2x2 5.2 · 10−2 1.6 · 10−2 1.3 · 10−2 1.0 · 10−2 3.0 · 10−4 (*)
C4x2 6.3 · 10−2 2.6 · 10−2 2.1 · 10−2 1.7 · 10−2 (*) 2.5 · 10−4 (*)
C4x3 5.6 · 10−2 1.5 · 10−2 1.5 · 10−2 2.6 · 10−3 (*) 1.2 · 10−4 (*)

Table 3.2: The mean Joule heating which each model ends up with in each of the 5 selected regions. In the cases where the
Joule heating has not yet stabilized, marked with (*), the heating is evaluated over the last 5-10 min. Otherwise, the heating
is an average over the period after it gets more or less stable.

Model
〈Q

(1)
J 〉

〈Q
(1,B1)
J 〉

〈Q
(2)
J 〉

〈Q
(2,B1)
J 〉

〈Q
(3)
J 〉

〈Q
(3,B1)
J 〉

〈Q
(4)
J 〉

〈Q
(4,B1)
J 〉

〈Q
(5)
J 〉

〈Q
(5,B1)
J 〉

C1x1 0.25 0.004 0.0005 0.001 0.0015

C2x1 0.77 1.3 (*) 1.2 (*) 2.1 (*) 2.8 (*)
C2x2 0.96 0.66 0.55 (*) 0.71 (*) 0.27 (*)
C4x2 1.2 1.1 0.91 (*) 1.2 (*) 0.23 (*)
C4x3 1.0 0.64 0.65 (*) 0.18 (*) 0.11 (*)

Table 3.3: The mean Joule heating which each model ends up with in each of the 5 selected regions, relative to the mean
Joule heating in the corresponding region in the standard model. In the cases where the Joule heating has not yet stabilized,
marked with (*), the heating is evaluated over the last 5-10 min. Otherwise, the heating is an average over the period after
it gets more or less stable.
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(a) Model B1,Bz at lower boundary att = 0 s. (b) Model B1,Bz in the photosphere att = 30.0 min.

(c) Model C1x1,Bz at lower boundary att = 0.0 min. (d) Model C1x1,Bz in the photosphere att = 30.0 min.

(e) Model C2x1,Bz at lower boundary att = 0 s. (f) Model C2x1,Bz in the photosphere att = 30.0 min.

(g) Model C2x2,Bz at lower boundary att = 0 s. (h) Model C2x2,Bz in the photosphere att = 30.0 min.

Figure 3.15: InitialBz at the lower boundary andBz in the photosphere after some relaxation time, measured in gauss.
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(a) Model C4x2,Bz at the lower boundary att = 0 s. (b) Model C4x2,Bz in the photosphere att = 30.0 min.

(c) Model C4x3,Bz at the lower boundary att = 0 s. (d) Model C4x3,Bz in the photosphere att = 30.0 min.

Figure 3.16: InitialBz at the lower boundary andBz in the photosphere after some relaxation time, measured in gauss.

(a) Mean|Bz| in the lower depths. (b) Log mean|Bz|.

Figure 3.17: Plots of mean|Bz| as function of height att = 40.0 min.
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(a) MeanBh in the lower depths. (b) Log meanBh.

(c) MeaneB in the lower depths. (d) Log meaneB.

(e) Mean| sin θ|.

Figure 3.18: Plots of the meanBh ≡
p

B2
x + B2

y , field inclinationsin θ ≡ Bh/|B| and magnetic energy densityeB =

B2/2µ as function of height att = 40.0 min
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(a) 〈T 〉 atz > 3 Mm, B1 (b) Temperature histogram for B1,t = 60.7 min.

(c) 〈T 〉 at z > 3 Mm, C1x1 (d) Temperature histogram for C1x1,t = 35.0 min.

(e) 〈T 〉 atz > 3 Mm,C2x1 (f) Temperature histogram for C2x1,t = 40.0 min.

Figure 3.19: Left panels shows how the mean temperature in the regions abovez = 3.0 Mm evolve in time, while right
panels shows temperature histogram and mean temperature asfunction of height (dashed line).
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(a) 〈T 〉 at z > 3 Mm, C2x2 (b) Temperature histogram for C2x2,t = 65.0 min.

(c) 〈T 〉 atz > 3 Mm,C4x2 (d) Temperature histogram for C4x2,t = 80.0 min.

(e) 〈T 〉 at z > 3 Mm, C4x3 (f) Temperature histogram for C4x3,t = 80.0 min.

Figure 3.20: Left panels shows how the mean temperature in the regions abovez = 3.0 Mm evolve in time, while right
panels shows temperature histogram and mean temperature asfunction of height (dashed line).
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(a) B1, chromosphere (b) B1, TR (c) B1, corona

(d) C1x1, chromosphere (e) C1x1, TR/corona (f) C1x1, corona

(g) C2x1, chromosphere (h) C2x1, TR (i) C2x1, corona

(j) C2x2, chromosphere (k) C2x2, TR/coronal base (l) C2x2, corona

Figure 3.21: Time plots of the mean Joule heating in the 5 selected regions for each model. Left column shows the mean
Joule heating in the regions 1 and 2, middle column in region 2and 3, right column in region 5. Note that the plots for C1x1
have different scaling than the the plots in the same column,because this model obtains much less Joule heating in the TR
and the corona than the other models (and it runs for a quite short time). Several of the plots for the coronal heating (right
column) have different scaling on the vertical axis (but theplots for C2x2, C4x2 and C4x3 have the same scaling.). The
plots continues on figure 3.22.
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(a) C4x2, chromosphere (b) C4x2, TR/coronal base (c) C4x2, corona

(d) C4x3, chromosphere (e) C4x3, TR/coronal base (f) C4x3, corona

Figure 3.22: Time plots of the mean Joule heating in the 5 selected regions for each model. Left column shows the mean
Joule heating in region 1, middle column in region 2, 3 and 4, right column in region 5. Each row corresponds to a specified
model. The first part of these plots is on figure 3.21.
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4

DISCUSSION AND CONCLUSIONS

4.1 Summary

In the introduction of this thesis, we first went briefly through the mechanics describing how a star
works. Then we reviewed our current knowledge on one specificstar, namely the Sun. We described
how energy is released inside the core through nuclear fusion and transported through diffusion of
electromagnetic radiation and convective motion until it leaves the Sun through the almost transparent
atmosphere in the form of photons. Furthermore we went deeper into the structure of the solar atmo-
sphere, from the quiet-Sun granulation and supergranulation to sunspots, prominences and spicules
and how the density, pressure and temperature varies from the photosphere through the chromosphere
and TR to the very hot corona. The fact that the corona lies from 1.5-2.5 Mm above the photosphere
and outwards but is more than 200 times hotter than the photosphere led us right into the more than
60 year old problem which is dealt with in this thesis: Why does the solar corona have a temperature
of more than 1 MK when the surface temperature is about only 6000 K?

A few plausible theories have been developed in attempt to answer that question, all agreeing about
one thing: the heating of the corona is connected to the topology of the magnetic fields in the photo-
sphere and the chromosphere. Therefore, the more specific problem that this thesis deals with is the
following: What is the connection between the magnetic fieldconfiguration in the photosphere and
the heating of the corona?

In attempt to answer this question, the numerical code Bifrost has been used to solve the MHD equa-
tions on a three-dimensional cutout of the solar atmosphere. This cutout is a box which reaches from
below the photosphere and up into the corona (14.4 Mm above the photosphere). Five models have
been evolved, all with the same initial condition for the hydrodynamic variables, but with different
magnetic field configurations:

1) A magnetic monopole configuration i.e. a vertical homogeneous magnetic field

2) A magnetic bipole configuration

3) A magnetic quadrupole configuration

4) A magnetic 8-pole configuration
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5) A magnetic 12-pole configuration (which, however, does not remain a 12-pole configuration
throughout the simulation)

During the simulations, the resulting temperature structure and Joule heating have been analyzed
in each model. This has been done by looking at three-dimensional plots at specific times in the
simulations and at the time evolution of the interesting quantities in selected regions of the modeled
atmospheres.

Having gone through the theoretical background, simulateddifferent numerical models of the solar
atmosphere and analyzed the results, it is now time to use what we have seen to draw some conclusions
regarding the main problem of this thesis.

4.2 Finding a Correlation between Coronal Heating and the Photospheric
Magnetic Field Configuration

By comparing all of the five models evolved in this thesis (thestandard model will be brought into
discussion later), one will immediately see that the coronal heating and temperature tends todecrease
with the initial density of magnetic poles in the photosphere, except for the magnetic monopole model
(C1x1), which has a density of magnetic poles equal to zero and has the lowest amount of coronal
Joule heating and the lowest coronal temperature. The bipole model (C2x1) has the largest amount of
coronal Joule heating, more than 100 times that of the monopole model. The three models of higher
magnetic complexity (C2x2, C4x2 and C4x3) ends up with coronal Joule heating of about one order
of magnitude lower than the bipole model (and one order of magnitude higher than the monopole
model). Amongst those three, the quadrupole model (C2x2) gets the largest amount of coronal Joule
heating, while model C4x3 gets lowest amount. Amongst thesefive models, there is a 1-1 correlation
between the resulting coronal Joule heating and coronal temperature, i.e. the models which obtain
higher coronal Joule heating obtain also higher temperature.

In the TR and upper chromosphere, the Joule heating tends toincreasemore or less with the effective
density of magnetic poles, except for the bipole model, where the Joule heating increases more rapidly
than in the other models. Model C4x3 has an effective densityof magnetic poles which is lower than
in the 8-pole model but higher than in the quadrupole model, but has a lower amount of Joule heating
in these regions than both of the other two. This is probably due to the fact that the average magnetic
field in the photosphere in this model is, during the second half of the simulation, significantly lower
than in the other two models. In the lower chromosphere, the Joule heating tends to increase with the
effective density of magnetic poles in the photosphere for all five models evolved in this thesis.

The standard model breaks with the above-mentioned (almost1-1) correlations between the complex-
ity in the photospheric magnetic field, the coronal Joule heating and temperature. Having a magnetic
complexity in the photosphere somewhere between that of thequadrupole model and that of the 8-pole
model, it has a coronal heating almost comparable to that of the bipole model, but still a temperature
lower than in the 8-pole model. But in the chromosphere, the model fits well into the above-mentioned
correlations between magnetic complexity and Joule heating (and it is approximately the same case
with the TR).

In order to interpret the results summarized above, it is important to point out the fact that we deal with
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three different kinds of models here. The magnetic quadrupole model, the 8-pole model and model
C4x3 have magnetic field configurations which contains “grids” of magnetic poles in the photosphere.
The bipole model represents aline of several magnetic poles (when considering the horizontalperiod-
icity of the model). Finally, the standard model representsa “salt-pepper” pattern (a term introduced
in section 1.3.1) of magnetic poles similar to the “magneticgrid”- models, but where the poles are
more chaotically organized.

In each of the “magnetic grid”-models, the grid of magnetic poles gives rise to a corresponding grid
of relatively strong vertical current sheets which heat up the corona. These current sheets are most
probably regions where topologically separate parts of themagnetic configuration are pushed together,
resulting in large gradients (in the magnetic field components), as mentioned briefly in chapter 1. The
magnetic field on both sides of such a current sheet is more or less vertical but tilted slightly in
different directions due to different topologies on each side of the current sheet, as seen in figure 3.9.
The slight difference in the tilting of the magnetic field gives rise to the strong currents in the current
sheet.

Amongst the three “magnetic grid”-models, the quadrupole model has the “current sheet grid” with
the largest grid size, i.e. the longest distance between thestrong current sheets, due to the lowest
magnetic complexity of those three models. The 8-pole has the tightest grid of current sheets, which
is probably the cause of the highest heating of the TR and chromosphere. Model C4x3 has a current
sheet grid size in-between those of the quadrupole and the 8-pole model, but the current sheets in this
model tends to be weaker, and that causes this model to get thelowest chromospheric heating of those
three models.

Near the strong vertical current sheets which are arranged in grids in the magnetic grid-models, a
hierarchy of weaker current sheets arise in the coronal regions. Thoseweaker current sheets lie
parallel to the stronger grid current sheets. The hierarchyof current sheets tends to be more complex
in the quadrupole model than in the 8-pole model, i.e. the number of weaker current sheets which lies
nearby each of the strong “main current sheets” (those whichlies diagonally between two magnetic
poles) is larger, as seen figure 3.14. This may explain why thequadrupole model results in more
coronal heating than the 8-pole model. Model C4x3 also has a relatively complex hierarchy of weaker
current sheets, but the currents in this model tends to be weaker than in the other two models, which
may explain why this model gets the smallest amount of coronal heating.

It is also possible that the stressing of magnetic field lines(due to the convective motions) which
collapse into tiny current sheets (with a width of∼100 km in the models, though only∼10 m on the
real Sun) and eventually burst out innanoflares, is a significant contributor to the coronal heating in
those magnetic grid-models. As discussed earlier, an atmosphere with a higher canopy height is likely
to get more heat input from nanoflares, as demonstrated in figure 4.1. In the quadrupole and 8-pole
models, the canopy is slightly above the TR, while it seems tobe slightly below the TR in model
C4x3. That might be another reason this model has less coronal heating than the two other magnetic
grid-models.

For models with grids of magnetic poles in the photosphere, we can thus conclude that the coronal
heatingincreaseswith the initial separation distance between magnetic poles in the photosphere (or
decreases with the initial complexity) for typical separation distances shorter than 6-7 Mm (which is
the case for the quadrupole model). If we simulate similar models with a higher separation distance
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(a) Atmosphere with high separation distance between photospheric magnetic poles.

(b) Atmosphere with low separation distance between photospheric magnetic poles.

Figure 4.1: Sketches of two models of the QS atmosphere with different magnetic topology, demonstrating the dissipation
of energy through nanoflares. Region borders are given by dashed lines. Magnetic fields are given by solid black lines. The
loose (twisted) magnetic field lines sketched in sub-canopyregions and in regions above canopy are only to demonstrate the
generation of nanoflares.
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than that (which requires a larger computational box), an even higher amount of coronal heating
may result. However, increasing the magnetic pole separation distance towards infinity should result
in a model similar to the monopole model i.e. a coronal heating which goes almost towards zero.
Therefore, amongst such magnetic grid-models, there is probably a typical pole separation distance,
larger than 6-7 Mm which gives a maximum coronal heat input.

The bipole model has a very different magnetic structure than the magnetic grid-models. The magnetic
topology of this model, representing a line of several poles, causes the presence of a magnetic neutral
line, going in the horizontal direction perpendicular to the line of poles, above each second pole,
similar to what is demonstrated in figure 1.17. The region around the magnetic neutral line generates
current sheets which are much stronger than those generatedin the magnetic grid-models, going out
in all directions in the corona. Additionally, the high location of the magnetic canopy might allow
nanoflares to more easily dissipate energy into the corona than in the magnetic grid-models. Thus, it
is no surprise that this model gets a higher chromospheric heating than the magnetic grid models and
a coronal heating which is one order of magnitude higher.

Since the main heat generator in the bipole model is the magnetic neutral line, a similar bipole model
with longer distance between the poles (requiring a larger computational box to simulate) will prob-
ably obtain lower coronal temperatures, because the distance between several magnetic lines (consid-
ering the model to represent a longer line of poles) will be longer, or in other words, the energy from
the current sheets generated near the magnetic neutral linewill have a larger volume to dissipate into.
However, this remains only speculation until it is numerically tested.

The photospheric magnetic field configuration in the standard model represents a salt-pepper pattern
of magnetic poles, partially similar to the three magnetic grid-models evolved in this thesis, but more
chaotically organized. Having a magnetic complexity in thephotosphere which lies between that of
the quadrupole and 8-pole models, the corona obtains still three times as high amount of Joule heating
after 50-60 min than the quadrupole model does at the same time (and 1/3 of what the bipole model
seems to end up with). The relatively high coronal Joule heating is likely to be caused by the fact that
the chaotically organized pattern of magnetic poles gives rise to a very large and chaotically organized
hierarchy of current sheets (and therefore most of the current sheets are impossible to see separately
in the three-dimensional current-plot in figure 3.2(b)). Additionally, the fact that a large part of the
magnetic loops reach deep into the corona probably allows nanoflares to dissipate more easily into
the corona. Thus, the model obtains a coronal Joule heating almost comparable to that of the bipole
model. Still, this model ends up with a lower coronal temperatures than in the quadrupole and 8-pole
models. This could be caused by coronal loops which transport cooler matter from the chromosphere
(or maybe lower TR) up to the corona which cools down the surrounding gas before it eventually falls
back to the chromosphere. It could also just be the magnetic field configuration in this model which
possibly allows more heat conduction from the corona to cooler zones than in the models evolved in
this thesis, or possibly radiative cooling (needs further analysis).

Summarizing the Conclusions

For a region in the QS atmosphere with a strict square grid of magnetic poles in the photosphere,
the corona receives an amount of Joule heating and a temperature which increases with the typical
separation distance between magnetic poles (or decreases with the magnetic pole density), for separ-
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ation distances shorter than 6-7 Mm (i.e. the longest possible separation distance possible for such
magnetic grid-models in the computational boxes used here), as long as the average magnetic field
strength in the photosphere is the same. This increase is mainly due to the corresponding increase in
distances between the strong vertical current sheets located diagonally between magnetic poles, which
gives more space for a series of weaker current sheets – parallel to the stronger current sheets – to be
generated (i.e. a more complexhierarchyof current sheets). Another possible factor which affects
the coronal heating is the amount of nanoflares dissipated into the corona, which also may increase
with the pole separation due to a corresponding increase in the canopy height. If we keep increasing
the pole separation distance, the coronal Joule heating will at some point reach a maximum value and
decrease to a relatively small value as the pole separation distances goes towards infinity.

Having a more chaotically organized pattern results in higher amounts of coronal Joule heating due
to more complex and dynamic hierarchy of large-scale current sheets and possibly more dissipation
of energy from nanoflares. However, according to the numerical results, a more chaotic magnetic
field will also allow some cooling events (due to coronal loops, heat conduction or radiative cooling)
to occur in the corona and cause the resulting temperature tobe slightly below the coronal temper-
ature of a magnetic grid-model with the same pole mean separation distance. This kind of model is
of course more likely to represent the QS atmosphere than themodels which contain strict grids of
magnetic poles. However, the coronal heating due to generation of current sheets will probably still
increase with the typical separation distance between magnetic poles in a similar way. In other words,
the coronal Joule heating in a salt-pepper pattern of magnetic poles increases both with the typical
separation distance between magnetic poles and with a “chaos factor”. That chaos factor can be qual-
itatively defined as a number which tells how much the patternof magnetic poles deviates from a strict
square grid (a quantitative definition is not necessary here, since only the standard model has magnetic
poles which deviates from a strict square pattern). The temperature will also increase with the pole
separation distance, but probably decrease with the chaos factor, according to the numerical models
that were studied (we have, however, only studied one model with a chaotic pattern of magnetic poles,
so the latter conclusion needs more simulations to be confirmed).

A region in the QS atmosphere which contains a line of severalmagnetic poles (as represented by the
bipole model) will be heated more efficiently than a region ina salt-pepper pattern, and the heating
will also increase with the density of poles along the line, as long as the pole distance does not get too
short.

4.3 Possible Coronal Heating Mechanism

It is probable that the QS corona is heated by a hierarchy of current sheets, as described by Galsgaard
& Nordlund (1996), generated above a salt-pepper pattern ofmagnetic poles in the photospheric
internetwork. The current sheets may be regions where topologically separate parts of a magnetic
configuration are pushed together, as seen in some of the three-dimensional current plots from the
previous chapter. It can also be caused by the convective shuffling of magnetic field lines which
generates nanoflares, as described by Parker (1988). The coronal heating dissipated by the current
sheets in the former case increases with the typical separation distance between magnetic poles, at
least for a typical pole separation distance shorter than 6-7 Mm. The heating dissipated by nanoflares
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is likely to increase with the height of the magnetic canopy,which is because nanoflares are more
likely to be produced in the sub-canopy region than above thecanopy (since the magnetic field in
the sub-canopy region is both stronger and more closely connected to the convective motions in the
photosphere than the field above the canopy), and the height of the canopy also increase, more or
less, with the typical pole separation distance. Thus, the total heating of the corona above a salt-
pepper pattern of magnetic poles in the photosphere will increase when increasing the typical magnetic
pole separation distance up to a certain value (longer than 6-7 Mm) before it starts decreasing as the
separation distance goes towards infinity.

It might be possible to find lines with poles (as in the bipole model) of stronger magnetic fields in
the magnetic network along the supergranular borders, since these regions are observed to contain
relatively strong magnetic fields. If so, that might cause the existence of magnetic neutral lines which
generate very strong current sheets. However, the resulting coronal temperature in the nearby region
will not be as high as seen in the bipole model (>3.0 MK), because the energy dissipated in the strong
current sheets will diffuse into the surrounding internetwork.

4.4 Final Thoughts

Because of limited time and computer resources, we have onlybeen able to simulate five models of
the QS atmosphere with different initial conditions for themagnetic field, and some of the models
have run for a shorter time interval (of solar time) than ideally wanted. Therefore, it is limited how
precise conclusions we can derive from our results with respect to the problem of this thesis. However,
we have not failed to answer the problem dealt with in this thesis. We have managed to obtain an idea
about how the coronal heating and temperature depends on thecomplexity of the magnetic field in the
photosphere, and thus we are one (small) step closer to solving the coronal heating problem.

What could have been done better?

• Some of the models should have been run for a longer time in order to ensure stabilization of
Joule heating and temperature. That would have made the results easier to analyse and compare.

• We could have included models with different magnetic pole distributions in the photosphere to
get a broader set of results.

Thoughts for Future Research

There is definitely a need for more research on this problem. Asuitable next step would be to start
systematically analyzing more models with different densities of magnetic poles in the photosphere
systematically. It would also be interesting to study models with roughly equal magnetic pole densities
but with a more chaotically organized pattern of poles. Withlarger computational boxes, one should
also study models with even smaller magnetic pole densitiesthan in the models simulated in this thesis
in order to see what magnetic pole density which yields the maximum coronal heating.
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It might also be interesting to study bipole models with longer distances between the poles (requires
a larger computational box) to see if the resulting coronal heat input decreases, as expected, or if the
opposite happens.
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