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ABSTRACT

This paper presents an updated review of model-dependent regionalization methods in hydrology since the PUB decade, incorporating new

regions and methodological advancements. Two categories of regionalization methods are discussed: distance-based and regression-based,

with various modification approaches. Several factors affecting the accuracy of regionalization performance are identified, including hydro-

logical models, climate characteristics, data availability, and regionalization techniques. The review concludes that distance-based

regionalization methods with an output averaging option from multiple donor catchments are the most statistically reliable, and a threshold

of 0.5–0.8 for donor selection is optimal for performance. The parsimonious hydrological model is also recommended, particularly in data-

limited contexts. Other insights include the effectiveness of the ensemble concept and limited impact of prior classification. Additionally, it is

found that the general performance difference between climatic classes is larger than between methods, and regression-based methods

may have large uncertainties in tropical regions. Overall, this study provides practical guidance for improving regionalization studies and

advancing the field of hydrology.
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HIGHLIGHTS

• A deep analysis based on last decade’s regionalization studies over the world.

• The parsimonious hydrological model seems more robust with limited prior knowledge of regionalization.

• Too high threshold (larger than 0.8) to donor selection results in performance deterioration.

• Ensemble concept could help to modify the performance, rather better than the prior classification.

• Climate plays an important role in regionalization.
1. INTRODUCTION

Streamflow is a fundamental component of the water cycle, and achieving reliable and continuous streamflow simulation is
considered an essential objective within the hydrological community (Boughton & Droop 2003; Brocca et al. 2011; Cislaghi
et al. 2020). The scientific and practical importance of reliable and continuous streamflow simulation cannot be overstated as

it helps solve various engineering and water resource problems, such as reservoir design and management, predicting climatic
and anthropogenic impacts on water resources, and risk assessment for extreme hydrological events (Parajka et al. 2013).
Over decades of development and improvement, hydrological models, particularly rainfall-runoff models, have become the

most common and useful tools for streamflow/runoff prediction and the estimation of water balance (Beven 2012). These
models provide a visual representation of water systems using a set of equations that estimate the amount of runoff from rain-
fall based on various parameters (Devi et al. 2015). For practical applications, these models are calibrated to achieve optimal

parameter values through the comparison of observations and simulations.
However, many catchments around the world are ungauged or poorly gauged, which presents a significant challenge

(Sivapalan et al. 2003; Gorgoglione et al. 2019; Narbondo et al. 2020), especially in developing countries (Mulligan 2012).
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Even more concerning is that global efforts to collect streamflow data are decreasing, particularly in headwater basins (Kirch-

ner 2006; Davids et al. 2019). Without the necessary information to drive hydrological models, the calibration process cannot
be performed (Oudin et al. 2008; He et al. 2011). As a result, simulating runoff in ungauged or poorly gauged basins becomes
exceedingly difficult. To address this fundamental challenge in hydrological science that has persisted for decades, the Inter-

national Association of Hydrological Sciences (IAHS) launched the ‘Decade on Predictions in Ungauged Basins (PUB):
2003–2012’ (Cislaghi et al. 2020). The PUB decade aimed to improve the capacity for reliable predictions in basins lacking
observations (Sivapalan et al. 2003).

Regionalization is the most commonly used method for predicting ungauged streams in PUB studies (Hrachowitz et al.
2013; Arsenault et al. 2021). Blöschl & Sivapalan (1995) define regionalization as the process of transferring model par-
ameters (MP) from similar catchments to the ungauged one of interest. Egbuniwe & Todd (1976) tested the transferability
of MP between neighboring Kontagora and Malendo watersheds even before this definition was established. In recent

years, with increased attention on PUB studies, the definition of regionalization has expanded. Tarek et al. (2021) describe
how regionalization can be used to estimate MP for generating continuous streamflow in ungauged basins. Xu (1999)
estimates MP in ungauged basins by relating them to catchment descriptors (CDs). In PUB research, various approaches

have been proposed to estimate MP in ungauged basins, which fall into two categories: distance-based methods and
regression-based methods (e.g., He et al. 2011; Pool et al. 2021). Distance-based methods transfer information, including
MP, from hydrologically similar catchments using a similarity metric based on spatial location or catchment attributes

(e.g., Parajka et al. 2005; Oudin et al. 2008; Yang et al. 2018). Regression-based methods relate individual MP to selected
catchment properties (e.g., Skaugen et al. 2015; Yang et al. 2018) and use this relationship to estimate the MP in ungauged
basins.

In order to determine the most suitable regionalization method for PUB research applications, a regional evaluation of var-

ious methods has been conducted. Arsenault et al. (2019) evaluated both physical catchment descriptor-based and spatial-
proximity (distance-based) regionalization methods on 30 catchments in Mexico’s semi-arid and humid regions. They con-
cluded that the distance-based method provides more robust results compared to methods relying on physical CDs. Yang

et al. (2020) compared both types of regionalization methods using four hydrological models on 86 basins in different climate
sub-regions in Norway. They found that the physical similarity (distance-based) method consistently outperformed other
methods across all models and sub-regions. A study conducted on 264 catchments in Canada by Arsenault & Brissette

(2016) revealed that the preference for distance-based regionalization method depends on the number of donor catchments
applied. The regression-based method was found to be more effective than the distance-based method with only one similar
donor, but the distance-based method with multiple donors performed better.

The PUB decade has seen significant progress in improving regionalization methods while also identifying their limitations.

For example, McIntyre et al. (2005) suggested using the entire model parameter set for distance-based regionalization
methods, which preserves the integrity of the parameters as a set (e.g., Oudin et al. 2010; He et al. 2011). Livneh &
Lettenmaier (2013) proposed replacing local parameters with zonal parameters when building a regression model with

local CDs. Their approach was validated in experiments over 220 catchments in the United States.
In studies conducted in regions with high diversity and heterogeneity, there are significant differences in performance

among different regionalization methods. Petheram et al. (2012) investigated the performance of regionalization methods

in tropical and arid regions in Australia and found that the regionalization methods performed better in the tropical
region than in the arid region. Bao et al. (2012) evaluated the performance of regionalization methods in three different
types of hydro-climatic regions (i.e., humid, semi-humid, and arid regions). The results showed that the accuracy of the

regression-based method decreased more significantly than the similarity-based method from humid to arid regions. Yang
et al. (2020) assessed the performance of regionalization methods using 86 catchments over three climatic regions in
Norway and found that regionalization performance declined from oceanic to continental and polar tundra regions. Qi
et al. (2021) explored the performance dependence of different regionalization methods on climatic regions by using thou-

sands of catchments under varying hydro-climatic conditions in North America. The results displayed that the
regionalization performance was worst in the arid region, and the performance differences among methods were larger in
the arid region than in others. Additionally, some studies investigated the relationship between the regionalization perform-

ance and the aridity index (i.e., an index that presents the degree of dryness of the climate of a site) and concluded that the
regionalization performance decreases as the aridity index increases for all regionalization methods (Viglione et al. 2013;
Guo et al. 2020).
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Parajka et al. (2013) carried out an excellent comparative assessment of 3,874 catchments from 34 previous studies during

the PUB decade (2003–2012) to summarize and explore the differences between various studies. They proposed a two-level
comparison assessment and presented the first global perspective, which provides valuable reference and guidance for regio-
nalization studies. It was observed that there has been an increasing number of regionalization studies since the PUB decade

(2003–2012) (see Figure 1), with many of them being conducted in new regions (e.g., Althoff et al. 2022). Moreover, recent
studies have included more catchments on average, located in relatively heterogeneous regions. From a global and statistical
viewpoint, it is helpful to establish a more robust consensus from recent studies. Furthermore, many improvements have been
made recently (e.g., Xu et al. 2022), making it timely to review the current state of knowledge and discuss the challenges that

we are currently facing. Therefore, the objective of this study is to summarize what we have learned from recent studies and
provide conclusions that can guide our future endeavors both in research and practical application. It is hoped that new
research will be based systematically on previous research and fill gaps rather than merely reaffirming the consensus

formed by prior work in the field (Xu 2021). To assess the new achievements of regionalization studies during the post-
PUB decade (2013–2022) compared to those reviewed by Parajka et al. (2013), this study employs the same comparison
Figure 1 | The information of regionalization studies after PUB decade. (a) The region information where the first regionalization study was
conducted after PUB decade (Note: The studies are searched from the Institute for Scientific Information (ISI) Web of Knowledge and Google
Scholar including the terms ‘hydrology’, ‘regionalization’, and ‘prediction in ungauged basins’. All the studies are then stratified at the country
level based on their region(s)); (b) the annual number of regionalization studies over different Köppen–Geiger climate classes (Note: If there is
more than one Köppen–Geiger climate class in a study, the number is increased to all these classes).
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assessment method proposed by Parajka et al. (2013). The list of studies used for the statistical analysis is provided in the

appendix table.
2. REGIONALIZATION METHODS

As mentioned previously, regionalization involves deriving model parameters in ungauged catchments from hydrological MP
calibrated in gauged catchments. There are several regionalization methods, which can be broadly categorized into two
classes: (1) distance-based methods (including both spatial-proximity and physical similarity (PS) methods); and (2)

regression-based methods (which involve two steps). A more detailed description of each regionalization method is provided
below.

2.1. Distance-based methods

The concept of catchment similarity forms the basis for applying distance-based regionalization methods in PUB (He et al.
2011). Distance-based regionalization methods can be classified into two categories based on the catchment properties
used in catchment similarity evaluation: (a) spatial-proximity methods (SP); and (b) PS methods. The SP method utilizes geo-
graphical location information in catchment similarity evaluation, with the assumption that neighboring catchments exhibit

similar behavior (e.g., Vandewiele et al. 1991). On the other hand, the PS method uses catchment attribute information to
assess catchment similarity, such as mean elevation, forest cover types, and soil types (e.g., Kokkonen et al. 2003; Parajka
et al. 2005; Samuel et al. 2011, 2012). The PS method assumes that catchments with similar physical characteristics exhibit

similar hydrological responses (e.g., Kokkonen et al. 2003; McIntyre et al. 2005). In PUB research, both methods follow the
same process, as depicted in Figure 2.

The first step in the regionalization process is to determine the ‘donor catchment(s).’ These are assessed based on hydro-
logical MP that can be achieved through the calibration process and then transferred to ungauged basins for regionalization

applications (Blöschl &Merz 2005). Different catchment attributes are considered in this step using both SP and PS methods.
Geographical location information of catchments is used for the SP method, which is consistent across all studies, but the
measure of distance can vary depending on whether the centroid or outlet location is used (Cislaghi et al. 2020). For the

PS method, more catchment attributes are included, but these can differ between studies due to data availability and subjec-
tive experience (He et al. 2011). Land cover, area, mean annual precipitation, and mean elevation are the four most
frequently applied catchment attributes identified through reviewed studies. However, similarity indices used to assess the
Figure 2 | The flow chart of distance-based regionalization methods.
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similarity between gauged and ungauged basins, like Euclidean distance, can be the same for both SP and PS methods. Catch-

ment similarity is crucial for distance-based regionalization methods, with smaller distances indicating higher similarity.
Various similarity indicators for PS methods are presented by Guo et al. (2020). Based on similarity evaluation, gauged catch-
ments with higher similarity are preferred as donor catchments, but the number of donor catchments selected is highly

dependent on researchers’ experience, which plays an essential role in performance during PUB regionalization (Guo
et al. 2020; Qi et al. 2021). For instance, Yang et al. (2020) observed that the NSE (Nash–Sutcliffe Efficiency) difference
between different numbers of donor catchments could be larger than 0.1.

The second step in the regionalization process involves transferring information from gauged basins to ungauged basins

(see Figure 2). Based on previous studies and Figure 2, using multiple donor catchments is preferred for achieving good per-
formance in PUB. When there are multiple donor catchments, two averaging options can be used to obtain final simulations
for the target catchment (McIntyre et al. 2005). The first option is to average parameter values from the donor catchments,

referred to as the parameter option (par). The second option is to average discharges simulated using an individual parameter
set from each donor catchment, called the output option (out). Thus, four approaches are obtained by combining distance-
based regionalization methods (SP and PS) with the two averaging options. After completing these two steps, streamflow

simulation can be performed for ungauged basins.
2.2. Regression-based methods

The regression-based method is one of the most commonly used regionalization methods in hydrology (Beck et al. 2016; Guo
et al. 2020), particularly two-step regression. This study focuses on discussing only two-step regression methods that utilize the
established relationship between CDs and MP to derive parameter values for ungauged basins (Xu 1999, 2003; Timilsena &

Piechota 2007; Beck et al. 2016). Many hydrological models have been found to be suitable for application across various
climatic and physiographic conditions (Strömqvist et al. 2012; Hrachowitz et al. 2013) and have been widely used in PUB
studies.

The regression-based regionalization method assumes that (1) a well-defined relationship exists between observable CDs
and MP, and (2) the CDs used in regression provide information relevant to hydrological behavior at ungauged sites
(Merz et al. 2006; Yang et al. 2018). Figure 3 illustrates the process of applying the regression-based method in PUB. The
Figure 3 | The flow chart of regression-based regionalization methods.
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first step involves constructing a regression relationship (function) for each model parameter using gauged catchments. Both

linear and non-linear functions are possible and may differ depending on the regression method used and the CDs included in
the function. Additionally, the types of CDs utilized in the regression function may vary among MP. The second step involves
obtaining and applying CDs from ungauged catchments to the regression function to predict model parameter values. The

final step is to repeat these processes for other MP until the entire set of MP for the ungauged catchment is obtained. Hydro-
logical models can then be applied to simulate and predict streamflow.

2.3. Recent developments

To maximize the benefits and reduce the drawbacks of traditional methods in regionalization, researchers have proposed the
concept of ensemble prediction as an alternative option for ungauged basins. For example, Waseem et al. (2015) introduced
ensemble hydrological prediction (EHP) as an improved regionalization method to predict hydrological variables in
ungauged basins. The basic idea of EHP is to give weights to traditional regionalization simulations based on their perform-
ance, which has been proven to be more robust in certain Pakistan catchments. Similarly, Razavi & Coulibaly (2016)
proposed a multi-modelling approach to improve streamflow estimation in ungauged basins. Based on evaluations conducted

on 90 Canadian watersheds, ensemble regionalization was found to perform better.
In regionalization research, similar hydrological responses are assumed within homogeneous groups (e.g., Hailegeorgis

et al. 2015; Swain & Patra 2019). Recently, some studies have pre-classified catchments into groups to assess the impact.

For example, Yang et al. (2018) grouped 118 Norwegian catchments, which were widely distributed, into five groups
based on climatic indices but found no distinct effect. In contrast, Swain & Patra (2019) observed an improvement in regio-
nalization performance in India when catchments were pre-classified, and they recommended this practice for future PUB

studies. However, Pool et al. (2021) found that prior classification led to lower performance based on estimations across
671 U.S. catchments. This difference may be due to differences in classification methods or factors used in prior classification,
and further exploration is needed to determine the reason behind this discrepancy.

Hydrological signatures, which describe the statistical or dynamical properties of hydrologic characteristics of catchments
on different time scales, have recently received increased attention for regionalizing these signatures from donor catchments
to ungauged basins. Atieh et al. (2017) proposed gene expression programming (GEP) and artificial neural networks (ANN)
models to predict flow duration curves (FDCs) at ungauged basins across North America. Choubin et al. (2019) applied a

comprehensive set of signatures to estimate streamflow in ungauged basins, which proved to be an efficient method.
To investigate whether poorly calibrated donor catchments could impair the performance of PUB simulations or not, some

studies introduced threshold values of model efficiency during the calibration stage to filter donor selection (e.g., Arsenault &

Brissette 2014; Qi et al. 2021). Arsenault & Brissette (2014) used a threshold of calibrated NSE values larger than 0.7 for
donor selection over 268 Canadian catchments and found that well-calibrated donors would not guarantee good performance
in PUB. Garambois et al. (2015) observed that poorly modeled catchments could also produce good performances when

transferred to the ungauged catchment. Tarek et al. (2021) compared two thresholds (KGE (Kling Gupta Efficiency)
values above 0.6 and 0.8 in the calibration, KGE is a widely used metric for evaluating the goodness of-fit of model simu-
lations and corresponding observations proposed by Gupta et al. (2009)) as the threshold for donor catchments over 314
catchments in Africa. They detected decreased regionalization performance when applying the threshold 0.8, but no clear

change when applying the threshold 0.6. Qi et al. (2021) set five thresholds for KGE (all, 0.6, 0.7, 0.8, 0.9) when evaluating
the influence on the regionalization performance over 3,444 catchments in Canada and the US. The result showed deterio-
rated regionalization performance for higher thresholds (0.8 and 0.9) and no clear difference in regionalization performance

for lower thresholds (0.6 and 0.7). In summary, setting too high a threshold value results in the use of too few donor catch-
ments, which in turn causes a clear deterioration in regionalization performance.
3. THE COMPARISON ASSESSMENT

3.1. The donor influences

The main concept behind regionalization involves utilizing information from donor catchments, which are selected from a

‘donor pool’. Thus, the analysis of donor influence is conducted from two perspectives: (1) the size of the ‘donor pool’
(which equals the total number of basins included minus one), defined as data availability by Parajka et al. (2013), and (2)
the quantity and quality aspects of the applied donor basins.
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3.1.1. Results of the distance-based method

Figure 4 displays the performance of distance-based regionalization with respect to the size of the donor pool and the number
of applied donor catchments. The performance is measured by the mean NSE value from globally distributed studies. Subplot

(a) presents the NSE values from the reviewed studies, indicating that the use of multiple donor catchments reduces random
errors compared to using a single donor (e.g., Arsenault et al. 2015; Guo et al. 2020). This is evident from the spread-out NSE
values observed for the single donor case. The other subplots show the averaged result over the studies. The results indicate
that employing multiple donors tends to yield higher accuracy than using a single donor for streamflow predictions in

ungauged basins (see subplot (b)), consistent with many regional studies (e.g., Livneh & Lettenmaier 2013; Ergen &
Kentel 2016; Li & Zhang 2017; Yang et al. 2018, 2020). Regarding the influence of the ‘donor pool’ size (see subplot (c)),
the best and worst performances occur in the smallest and moderate groups, with mean NSE values of 0.66 and 0.53, respect-

ively. The reasons for the best performance in the smallest group could be the close distance between catchments or the
subjective selection of donors (e.g., Parajka et al. 2013). Relatively better performance for groups larger than 100 could be
attributed to high streamflow network density (e.g., Oudin et al. 2008; Lebecherel et al. 2016). Regarding donor influences

in both aspects (see subplot (d)), using two to three donors is generally suggested, since the NSE value is higher than 0.6
Figure 4 | The influence from the numbers of applied donor catchments (No. of donors) and the size of ‘donor pool’ (No. of basins) on the
performance of distance-based regionalization methods. The scatter plot (a) shows the median NSE values from the studies; the bar chart
and bubble plot (b–d) presents the averaged NSE values over the studies.
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regardless of the number of basins included. This may be because a large number of donors imply that the used catchments

are less and less similar to the target catchment, leading to a deterioration in performance (Neri et al. 2020). On the other
hand, using a single donor catchment does not seem to be a good option if the donor pool size is larger than 20.

When regionalizing with multiple donors, there are four approaches that can be chosen. Figure 5 compares the mean

NSE values from the reviewed studies and the following conclusions can be drawn. Firstly, the output option outperforms
the parameter option with higher average NSE values, which is consistent with findings from many regionalization studies
(e.g., Heng & Suetsugi 2014; Yang et al. 2018; Arsenault et al. 2019; Qi et al. 2021). Secondly, the performance difference
between the SP and PS methods is marginal, supporting Xu’s statement (2021), but the difference between studies in each

group is significant, as found by Parajka et al. (2013). When considering the impact of MP, hydrological models with fewer
parameters have higher median and mean NSE values, suggesting that parsimonious models are recommended to estimate
streamflow in ungauged basins (e.g., Xu 1999; Oudin et al. 2008; Skaugen et al. 2015). The group of hydrological models

with more than 12 parameters has a significantly larger performance difference. Therefore, greater uncertainty may arise if
limited prior knowledge is available, which supports Arsenault et al.’s claim (2019). It should be noted that these findings
are not conclusive due to the limited number of studies included in each group, particularly for the small parameter option

groups.
In addition to the number of donor catchments, regionalization performance is also influenced by the ‘quality’ of these

donors. Qi et al. (2022) investigated this relationship by setting seven different thresholds for donor selection and analyzing

the impact on over 2,277 global catchments. They included four hydrological models and suggested five donor basins. Figure 6
illustrates how distance-based regionalization performance changes with the thresholds, using the average value across all
hydrological models. The results show that regionalization performance (assessed by KGE, which is free of the influence
of unhelpful interactions among components) deteriorated for higher thresholds (0.8 and 0.9), while no clear difference

was observed for lower thresholds. This is primarily because a high threshold value results in a small ‘donor pool’ and
low streamflow network density, as previously noted by Tarek et al. (2021) and Xu (2021). To further explore the influence
of streamflow network density on regionalization performance, Lebecherel et al. (2016) conducted a study in France and

observed that the SP method’s performance decreased as the size of the ‘donor pool’ decreased. This finding was confirmed
by Neri et al. (2020) in their study conducted in Austria.
Figure 5 | The regionalization performance comparison between distance-based methods, with the influence from the number of hydro-
logical MP. The solid and dash line in the box presents the median and mean value, respectively.
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3.1.2. The regression-based method results

For regression-based regionalization methods, the regression function is built on gauged basins, and the correlation between
MP is ignored. The number of included catchments, or the size of the ‘donor pool,’ and the number of MP are considered as

two important factors affecting regionalization performance. Figure 7 compares the performance of three groups with differ-
ent numbers of MP and varied sizes of ‘donor pool.’

Based on the scatter plot, it appears that many studies apply hydrological models with fewer parameters for regression

methods, and most of them perform relatively well (with NSE values higher than 0.5). Along with the subplot (b), this
result suggests that models with fewer parameters provide better performance based on the higher mean NSE value. This
finding is in line with the distance-based method and some previous studies (e.g., Xu 2003; Clark et al. 2017). However,
there are still 7 studies that yield NSE values higher than 0.6 using models with more than 12 parameters. Thus, we must
Figure 7 | The regression-based regionalization performance comparison between groups with different numbers of MP, with the
consideration of the ‘donor pool’ size effect.
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accept the notion that there is no inherent incentive to prefer a parsimonious hydrological model over a model with adequate

complexity for regionalization studies (Arsenault et al. 2015, 2019; Poissant et al. 2017). Concerning the difference between
studies, hydrological models with more than 12 parameters yield the largest statistically significant uncertainty. This result is
consistent with the finding of Arsenault et al. (2019), which suggests that using a more complicated model may result in larger

uncertainty. Therefore, simple hydrological models are suggested for application when there is a lack of pre-knowledge. How-
ever, models with adequate complexity are encouraged for application to improve regionalization performance in PUB.

The x-axis of the scatter plot displays the size of the ‘donor pool.’ There is no clear pattern observed in general, indicating that
the performance is not dependent on the number of catchments, which is consistent with the findings of Yang et al. (2018)
and Parajka et al. (2013). However, slightly higher NSE values appear when the ‘donor pool’ size is greater than 30 and par-
ameters are less than 7. This improved performance with a larger ‘donor pool’ is related to a stronger regression relationship.

3.1.3. Comparison of distance-based and regression-based methods

Generally, most distance-based methods borrow information from less than 6 donors, while regression-based methods stat-
istically require more than 20 donors to build the function. Therefore, only the size of the ‘donor pool’ is considered for

comparison between the two methods (see Figure 8). At first glance, a clear performance difference occurs between the
two regionalization methods over all three groups. For the group of total catchments less than 20, the distance-based
method outperforms the regression-based method to a relatively large extent, with a median NSE value of about 0.65 and

0.52, respectively. However, the reverse finding is true for the middle group, where the median value of the distance-based
method is only about 0.51, 0.08 lower than the regression-based method. Two factors are involved: one is that a clear
lower performance was detected for the distance-based method with a larger dataset (Parajka et al. 2013); another is that

many recent studies applied the regression-argument method or a non-linear regression approach to improve the stability
of the relationship (e.g., Zhang et al. 2018). When considering the performance difference between studies, both regionaliza-
tion methods display an increasing trend with the increased size of the donor pool.

3.2. Which method performs best?

This question has motivated numerous hydrology studies, and Figure 9 displays the statistical comparison between two regio-

nalization methods: using one versus multiple donor catchments via distance-based methods. We are considering these
methods separately here due to their large differences. In the distance-based method, almost 70% of the reviewed studies
have mean NSE values lower than 0.6 when applying one donor catchment. In contrast, approximately 60% of the reviewed

studies obtained high mean NSE values (greater than 0.6) when utilizing multiple donor catchments. For the regression-based
method, about 46% of studies reviewed had a mean NSE value larger than 0.6, with generally moderate performance.
Figure 8 | The performance comparison between two methods with different ‘donor pool’ sizes. The solid and dash lines display the median
and mean values, respectively.

om http://iwaponline.com/hr/article-pdf/54/7/885/1262841/nh0540885.pdf
Y OF OSLO user
 2024



Figure 9 | The performance assessment between kinds of regionalization methods.

Hydrology Research Vol 54 No 7, 895

Downloaded from http
by UNIVERSITY OF O
on 13 February 2024
Therefore, we recommend using the distance-based method with multiple donor catchments, which is consistent with many

regionalization studies (e.g., Qi et al. 2021; Tarek et al. 2021). The regression-based method may perform better than the dis-
tance-based method using one donor catchment due to recent modifications in regression-based methods (e.g., Livneh &
Lettenmaier 2013; Hamel et al. 2017; Zhang et al. 2018).

With the advancement of PUB science and methodology, certain modifications have been proposed, classified mainly into
three categories. Figure 10 presents the corresponding performance changes. Generally, the ensemble methods have shown a
substantial improvement in performance. Including hydrological signatures showed relatively minor differences. Pre-classifi-

cation, on the other hand, presented limited influence. Two notices should be taken into consideration: Firstly, pre-
classification might result in worse performance as the 25% quantile value is lower than 0. Secondly, the considerable per-
formance increase was mainly due to the very low performance before the modification made by Razavi & Coulibaly (2016).
Thus, it is recommended to include hydrological signatures and use ensemble methods to enhance general regionalization

performance for future PUB applications.
Figure 10 | The performance assessment between modified regionalization methods.
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3.3. How does the climate affect the performance?

We conducted an assessment over different Köppen–Geiger climate classes to explore climatic influences, which are increas-
ingly applied in PUB studies since the climate plays a significant role in hydrological response characteristics (Gao et al. 2016;
Shrestha et al. 2021). Figure 11 shows the comparison results between climate classes from various aspects.

Regarding subplot (a), models with parameters higher than 12 for climatic classes A, B, and C yielded all the low NSE
values, whereas averaged NSE values were visibly higher for the group of models with parameters less than 7 in classes D
and E. This result tends to suggest using parsimonious models for relatively humid regions. When hydrological models

include 7–12 parameters, the performance in class A is generally better than in other classes, whose NSE values are
mostly higher than 0.5. Connecting the Köppen–Geiger climate classification with the map of FAO (Food and Agriculture
Organization of the United Nations) aridity index (Spinoni et al. 2014) suggests using models with adequate complexity in

relatively arid regions. In subplot (b), there are only five values for the regression-based method in Class A and E, which
are statistically meaningless, and these results are excluded from the following comparison. According to the general perform-
ance assessed by mean NSE values (the dashed lines), the distance-based method is considered to outperform the regression-

based method across all climate groups, especially for class C. This is consistent with global results and many regional evalu-
ation studies (Yang et al. 2018; Zhu et al. 2021) but to a more pronounced extent. Comparing the difference in general
performance between climate classes and between two regionalization methods, the former is larger, which confirms the
statement that climatic influence is stronger than regionalization methods for PUB performance (Parajka et al. 2013; Yang
et al. 2020). When assessing the distributions of NSE values over studies across all climate classes, the regression-based
method displays a relatively larger spread. This means that the performance is more unpredictable or the prediction is in
larger uncertainty if applying the regression-based method in these regions. Taking the interquartile range as the uncertainty

measure, distinct differences exist between climate groups for both methods. Therefore, climatic impact is not ignorable in
regionalization performance (Haaf et al. 2020; Qi et al. 2021; Xu 2021).
Figure 11 | The performance comparison over different Köppen–Geiger climate classes. (a) The original NSE values from reviewed studies;
(b) boxplots for different regionalization methods, the solid and dashed lines present the median and mean values, respectively; (c,d) present
the averaged NSE value over corresponding studies for distance-based method and regression-based method, respectively.
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The subplots (c) and (d) present a comparison of mean NSE values with the corresponding number of MP used to represent

model complexity (e.g., Parajka et al. 2013; Jehn et al. 2019). For distance-based methods, the performance decreases from
class E to class A, with a corresponding decrease in aridity. This supports the finding that higher accuracy is generally
achieved in humid rather than arid regions (e.g., Guo et al. 2020; Xu 2021), and that hydrological model capacity is con-

sidered a negative factor (e.g., Parajka et al. 2013; Gao et al. 2016). Regarding performance differences between studies
across climatic classes, class C displays the largest difference, and very low performance appears for models with more
than 15 parameters. Taking this difference as uncertainty, it means that randomly selecting a hydrological model for
runoff simulation might produce a larger difference in runoff simulation for class C than for other classes. For regression-

based methods, classes A and E are excluded from the discussion due to the few values, while more studies are encouraged
in these classes. For the remaining classes, there is no distinct dependence between climatic classes and MP, but the chance of
low accuracy for models with more than seven parameters is greater. However, several studies have obtained high NSE values

(possibly over 0.83) when applyingmodels with 16 parameters, whichmay be due to stronger physically relevant applied hydro-
logicalmodels that are clearly identifiable (Xu2021). In comparing the performance betweenmethods,model complexity seems
to affect regression-based methods more than distance-based methods. This is considered mainly due to the influence of model

parameter interaction on regression-based methods (e.g., Zhang & Chiew 2009; Yang et al. 2018).
4. CONCLUSIONS AND CHALLENGES

This paper compares the performance of two classes of regionalization methods in predicting runoff hydrographs in
ungauged basins using the assessment method proposed by Parajka et al. (2013). However, the study is based on a completely

different set of regionalization studies published after 2013. The review revealed that the accuracy of the regionalized PUB
performance is affected by various factors, including hydrological models, climate characteristics, data availability, and regio-
nalization approaches (e.g., Pool et al. 2021; Xu 2021). Nevertheless, based on comparative assessments and previous

regionalization studies, some meaningful, consensus knowledge has been obtained.

• The distance-based regionalization method, with an output averaging option frommultiple donor catchments, is statistically

the most effective method. If the donor pool is larger than 20, it is not recommended to use one donor catchment.

• If prior knowledge is limited, the parsimonious hydrological model is a robust choice for future regionalization studies.

• The ensemble concept is the most attractive modification, and prior classification does not necessarily improve the perform-
ance of the study.

• Adding a low threshold (less than 0.5) to the donor selection has a limited impact, but using a threshold that is too high
(larger than 0.8) results in performance deterioration.

• The total number of included catchments could affect the ranking of the two regionalization methods, and a larger perform-

ance difference may be observed with an increased number of total basins.

• The general performance difference between climatic classes is larger than between the two methods. Large uncertainties
might exist if applying the regression-based method in tropical climatic regions.

Despite over two decades of development and numerous regionalization studies in public urban basin (PUB) research,
there remain several challenges that must be addressed for future studies of regionalization in PUB:

(1) There are too few studies on the impact of station density on regionalization methods to summarize its global pattern.
Until now, this objective has only been explored in some European regions located in relatively humid areas. As such,

it is imperative to conduct studies in different regions to provide new insights and assess the differences among varying
climatic and geographic regions.

(2) A comprehensive understanding of hydrological processes and regionalization methods is essential, especially in rela-
tively arid areas. Many studies have found worse performance and high uncertainties in these regions. However, not

enough research has been conducted to identify the factors that influence the final result. Answering this question is cen-
tral to further improving regionalization methods, and it should be considered a meaningful future direction of research.

(3) Techniques that widen the availability of data for PUB science should be prioritized. The development of remote sensing

has led to the emergence of various new data sets, and understanding how to apply these data to improve regionalization
performance is an area that needs further research. Additionally, as big data and machine learning science continue to
grow, it becomes more attractive to explore how to extract better value from limited observation data.
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(4) Climate change has made it essential to predict streamflow in ungauged basins under non-stationary climates, and this

requires more investigation. In recent years, a large number of hydrologic variable products, such as evaporation, soil
moisture, and terrestrial water storage change, have been generated. These products provide diverse hydrologic data
sets at finer spatial and temporal resolutions. Therefore, exploring how to use these data sets to carry out real-time correc-

tion on hydrological process variables to overcome the shortcomings of traditional regionalization methods under
changing environmental conditions needs further investigation.
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