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Abstract

The standard model of cosmology has proven to be a great success. Through measure-
ments of the Cosmic Microwave Background radiation, cosmologists have been able to
constrain parameters such as the age and geometry of the universe, or the amounts of
different types of energy, to high accuracy. The inflationary theory of the model states
that the anisotropies in the background radiation should be distributed so that they
follow statistical isotropy and homogeneity. However, the CMB maps detected by the
WMAP satellite have shown to reveal possible deviations from this assumption. There
have been claims of a hemispherical power asymmetry between two parts of the sky,
where one part exhibits stronger fluctuations and the other weaker. This feature has
been investigated since the first-year maps were released, and a number of independent
studies have found consistent results, in particular regarding the preferred direction of
the asymmetry. However, the methods have traditionally been limited computationally
to only including the largest scales in the analysis. In a recent paper, Hanson & Lewis
(2009) developed a Quadratic Maximum Likelihood estimator for analyzing the dipolar
asymmetry, and found consistent results with previous studies but noted that the effect
diminished with including higher [ in the analysis.

We present the Quadratic Maximum Likelihood estimator introduced by Hanson &
Lewis, and re-implement it for our own analyses. We investigate the claims made by the
WMAP team, in Bennett et al. (2011), that the reported dipolar asymmetry effect is
a statistical fluke and that the previous claims found in the literature are insignificant.
The WMAP team’s claims are based on the QML estimator.

The results we obtain are found to be consistent with previous studies, H&L and
with Bennett et al., and the significance of the asymmetry is found to vary with the
assumed modulation multipole l,,,q. However, we find the claims by the WMAP team
to be premature as they have not taken into account the consistency of the estimated
direction. Comparing with 1000 isotropic simulations we find that less than 1% of them
exhibit a similar consistency with estimated direction across lyoq.
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Chapter 1

Introduction

For thousands of years people have gazed into the heavens, trying to figure out what
they see. In that sense, astronomy is one of the oldest sciences around. But it is also
one of the youngest: Only recently have we had the technology and the physical insights
available to allow us to make more than mere guesses, especially when it comes to the
field of cosmology. It is probably safe to say that few scientific disciplines have made
greater progress in the past 15-20 years than cosmology.

Much of the material in this chapter is based on Dodelson (2003) [1] and Liddle
(2003) [2]. The former is highly recommended for a thorough mathematical description
of cosmology and structure formation in the universe, while the latter serves as a more
accessible introduction to the field.

1.1 Overview of Cosmology

Cosmology is the study of the entire universe. During the 20th century, the discipline
went through quite a transition: At the onset, cosmology was much speculation, but
with the advent of general relativity, quantum physics and more and more sophisticated
observations, it has moved to becoming largely precision science. Today astronomers
can proclaim to knowing the age of the universe to within 1% accuracy, as well as its
composition and evolutionary history.

One of the first important observations was that of Edwin Hubble in 1929, who
showed that galaxies were more and more redshifted the further away their distance
from us. This was interpreted as that the universe was expanding, and laid the ground-
work for an acceptance of the Big Bang theory over the static Steady-State universe,
though that still had many followers. Of note is that before Hubble’s discovery, Al-
bert Einstein, the creator of the general theory of relativity, was a strong believer in
the Steady-State-model, so much so that he modified his equations when they seemed
to suggest an evolving universe. This modification was the addition of a constant A,
named the cosmological constant, and by tweaking its value the models could support a
stationary universe. After Hubble’s discovery, however, he famously deemed the intro-
duction of this constant the “greatest blunder” of his life. However, with the discovery
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of dark energy and an accelerating universe in 1998, the cosmological constant again
became relevant as a means of describing this new phenomenon. The constant is per-
fectly valid in the theory (it’s really just a constant of integration), and there is no real
reason it should just equal 0.

The discovery of the cosmic microwave background in 1965 strongly favoured the Big
Bang theory. Not only was it the only theory that could readily explain this radiation;
it had also predicted it. After this observational milestone, nearly all cosmologists
accepted the Big Bang model as the basis for explaining the evolution of the universe.

The initial discovery of the microwave background was in many respects a fluke:
Two radio astronomers, Penzias and Wilson [3], found that their telescope produced
some noise they hadn’t accounted for. After carefully removing dust and accounting for
all the noise they could think of, this background noise still persisted, and they realized
it had to be the proposed cosmic microwave background radiation. In the years since,
several instruments have been built explicitly for measuring the CMB radiation, and
particularly the anisotropies in the smooth background. The most prominent ones have
been the COBE! satellite mission, which mapped the whole sky, the BOOMERanG?
balloon experiment, which had higher resolution but only scanned part of the sky,
and the WMAP? satellite, that mapped the whole sky to sub-degree resolution. The
WMAP satellite has given us the greatest observations yet, but the new spacecraft
Planck?, launched in 2009, offers even higher resolution and will soon release its first
data for scientific study. Results from the various observations have provided us with
a large degree of information about the universe, and they have allowed us to form a
standard model of cosmology. COBE showed the CMB to have a virtually perfect black-
body spectrum, and also gave the first detections of the anisotropies in the background
radiation. BOOMERanG determined the geometry of the universe, and WMAP has
improved on these earlier results in addition to providing numerous other constraints
on the model. The Planck spacecraft will in particular give us much better data of the
polarization of the CMB, which will further enhance our knowledge of the cosmos.

1.1.1 The standard model of cosmology (ACDM)

In the generally accepted, standard Big Bang model, there are two basic, underlying
assumptions which need to be fulfilled (on large scales):

e The universe must be homogeneous
e The universe must be isotropic

These assumptions stem from the notion of the Cosmological principle, which states that
the properties of the universe look the same for all observers, i.e. no observer occupies

1COsmic Background Explorer, http://lambda.gsfc.nasa.gov/product/cobe/

2Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics, http://www.
astro.caltech.edu/"1gg/boomerang/boomerang_front.htm.

3Wilkinson Microwave Anisotropy Probe, http://wmap.gsfc.nasa.gov.

4Named after German scientist Max Planck, http://www.rssd.esa.int/index.php?project=
Planck.
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a special place. This principle has been a cornerstone of cosmology for many years, and
means that even though two observers placed at different points in the cosmos observe
different samples of the universe, the statistical properties inferred should be the same.

The framework in which we describe the universe is the general theory of relativity,
published by Einstein in 1916. With it came a fundamental shift in how we viewed
gravity: No longer was it to be considered a force, but rather a consequence of curved
spacetime. For an introduction to general relativity with emphasis on the underly-
ing mathematics see, e.g., Gron (2009) [4], which was an occasional reference for this
chapter. The Einstein field equation, which relates the energy content to the geometry
of the universe, is given in compact form by the tensor equation

G;u/ = 87TT;,LV7 (11)

where we have set the constants ¢ = G = 1. The T},, is the energy-momentum tensor,
and G, is the Einstein tensor, which represents the geometry. A slightly more expan-
ded version, also including the cosmological constant, is

1
R, — ig“,,R + Agu = 811, (1.2)

where R, is the Ricci tensor, R the Ricci scalar and g, the metric tensor, which
details the geometry of spacetime. By requiring that the universe is homogeneous and
isotropic the metric tensor becomes the Friedmann-Robertson-Walker (FRW) metric,

-1 0 0 0

10 @@ o 0
Iw =10 0 @) o |’ (13)
0 0 0 a*(t)

where the first item on the diagonal is the time component and the rest are the spatial
ones, with a(t) being the scale factor, which details the expansion of the universe.
One commonly sets a(tioday) = 1. By solving the Einstein equation for this metric,
along with requiring the energy content to consist of so-called perfect fluids (having
no viscosity or heat flow, with 7, = diag(—p,p,p,p)), one obtains the Friedmann
equations, from which we can calculate the evolution of the universe for a number of
different cases. These equations can be written as

N 2 2
a 8rG ke Ac
a\”® _ _ - 1.4
<a> 3772 T3 (14)
a AnG 3p Ac?
s D)= 1.
-+ B) 4 (15)

where p is the energy density® and p the pressure of the fluids, and k is the curvature
constant. The dots denote derivation with respect to cosmic time. In the fluid descrip-

tion of the cosmological constant, its density is set to pp = é\ﬂcé,

which is also constant.

5T use the term energy density loosely here; strictly speaking p is the matter density and pc? the
energy density. Often c is set to 1 and then they are equal.
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An expression for the evolution of the densities can be calculated, and is given by

. a0 P
p+ 32 (p+ c—2> —0, (1.6)

which describes the expansion of the universe to be adiabatic. The density and pressure
for the cosmic fluids are commonly related through the simple equation of state p =
wpc?, where w is a unique constant for each type of fluid. For matter (both ordinary
and dark) it is 0 and for radiation %, while for the dark energy fluid it is -1. From
equation 1.6 it is thus quite easy to calculate the a-dependence of these different types
of fluid. We find the relations

Pr = Pro at
Pm = PmO a? (1'7)
PA = PAO,

where p, is the density of radiation and p,, for matter, while the pg’s indicate the
respective values today.

Armed with all these equations, we can calculate the evolution of the scale factor
and the evolution of the energy content in a variety of possible universes. The currently
accepted model is known as ACDM, and its evolution is outlined below. As a reference
it’s useful to consider how the scale factor evolves with time in universes consisting of
only one type of fluid, and with flat curvature (kK = 0). This is found from equation
1.4, and the relations are

ar(t) o t'/?
am (t) o t2/3 (1.8)

ap(t) oc e,

where the subscripts denote which fluid the universe consists of, and the « is a constant
A
(equal to \/;c)

The evolution of the universe

Observations today indicate that the universe is expanding, and extrapolating this
backwards in time, we eventually come to a point where the universe is extremely
hot and dense. The Big Bang models start at a time 0, but they don’t really come
into play until slightly after, at ¢ = 10~*3s, corresponding to the Planck time. Before
this time, known physics break down, so the model only concerns the evolution of
the universe from this point, not how it came into being (to be able to explain what
happened between ¢ = 0 and the Planck time, we need to merge general relativity with
quantum physics, which for instance the superstring theory tries to accomplish). The
Big Bang is also not to be viewed as an explosion of matter, but rather as the universe
expanding equally much at all locations (note also that there is no discrepancy between
an infinitely large universe which is also expanding in this sense, since the expansion
means that e.g. the space between two galaxy clusters is getting larger and larger). In
any case, the universe was early on a very hot and dense plasma of free particles, with
radiation being the dominant constituent. As the universe expanded, it also cooled, and
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eventually became matter dominated. It continued to be matter dominated for most of
its lifetime so far, but recently a type of dark energy has taken over. Dark energy was
not “part of the equation”, so to speak, before 1998, when it was discovered that the
expansion was accelerating. Had the universe only consisted of radiation and matter,
this should not be happening, as the gravitational attraction should cause the universe
to decelerate its expansion. Instead, observations show it to have begun accelerating
quite recently, indicating some other source of energy that exerts a repulsive gravitation.
If this energy is of the form of a cosmological constant, the future of the universe is
looking quite grim: The expansion will become exponential, and we may end up in
a so-called “Big Rip”, leaving the universe as a dark and empty place with only the
scarce particle here and there.

Inflation

The picture outlined so far does not mention inflation. This is believed to be a physical
process that serves to solve several problems regarding what we see from observations,
among others the flatness problem and the horizon problem. In addition it also created
the small perturbations from the smooth CMB background. Inflation is thought to
have happened exceptionally early on in the lifetime of the universe, at about 10~2%s
after the Big Bang. The process made the universe expand extremely rapidly, about a
factor 10%°, over the course of just 1073%s. The mechanism behind inflation may have
been of the same sort that today drives the accelerated expansion.

The flatness problem is the notion that, without inflation, for the universe to appear
flat today it must have been extremely fine-tuned towards being flat from the begin-
ning (deviation from flatness increases with time in matter- or radiation-dominated
universes, unless the universe is precisely flat, in which case it will remain flat forever).
Physicists don’t like their models to necessitate fine-tuned initial conditions; we rather
want a pure physical basis for the observations we make. Inflation solves this problem
since it would make the universe appear flat regardless of the initial geometry (much
like a sphere would appear flat on smaller scales if it were blown up).

The horizon problem comes from the fact that observations show the CMB, and
thus the universe at the time of its formation, to have close to uniform temperature
across the whole sky. This would indicate that the matter on one part of the universe
must have been in thermal contact and in thermal equilibrium with the other. However,
when calculating the horizon (the size of the observable universe, i.e. the size on which
information can have travelled) at the time of the formation of the CMB, we see that it
was much smaller than the length from one side to the other. There would then be no
reason why these two parts of the universe should have the same temperature. Inflation
fixes this problem since small scales that were in thermal contact before, get blown up
to much larger scales afterwards. Thus, two parts of the universe outside each others’
horizon after inflation will still have the same temperature, since they used to be inside
each others’ horizon before inflation.

As mentioned there are also some other problems inflation helps to solve (such as the
magnetic monopole problem), as well as it being responsible for preparing the universe
for structure formation, through creating perturbations in the smooth background by
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blowing up initial quantum fluctuations in the extremely dense early universe. These
initial fluctuations would happen because of the statistical nature of quantum mechan-
ics, where particles follow the Heisenberg uncertainty relation. The inflationary theory
was first postulated by Guth (1981) [5].

The energy content of the universe

In the ACDM model, there are four main constituents to the energy density of the
universe: Radiation (photons and neutrinos), baryons (a collective term for ordinary
matter), dark matter (the CDM stands for Cold Dark Matter, which is thought to be
the most abundant kind) and dark energy (represented by the A). The latter two make
up about 95% of the energy density in this model, but unfortunately, as their names
suggest, we don’t have much of a clue what they actually are. Ongoing experiments at
CERNS are hoped to give at least some answers with regards to dark matter. Never-
theless, this model matches well with several different types of observations, both CMB
observations (including WMAP) and others. In section 1.2.3 the current best-fit values
of the energy content are shown.

1.1.2 Perturbations in the smooth universe

The evolution of the universe described by the simple equations in the above section
only concerns the large-scale behaviour of the smooth background universe. This is not
a very good description of the universe as a whole, however, as we all can see each day
that the universe is far from smooth. We therefore need to introduce perturbations in
the smooth background, and see how these perturbations evolve with time to grow into
larger structures. Doing this involves dealing with highly complicated equations, and
is outside the scope of this text. The framework for calculating the evolution of the
perturbations is the Einstein-Boltzmann equations, where one looks at the first-order
perturbations (i.e. the perturbations are assumed small). We mentioned earlier that
the origin of the anisotropies are quantum mechanical and come from the inflationary
epoch. When calculating the evolution of the perturbation parameters we don’t concern
ourselves with that, but rather solve for initial perturbations set up after inflation.

In the simplest case where we only consider scalar perturbations’ to the FRW metric
the perturbed metric can be written as

—1—2¥(x,t) ifu=v=20
Guv =

) _ (1.9)
dija”(t)(1 +2®(x,t)) otherwise,

where W is the perturbation to the Newtonian gravitational potential and ® the perturb-
ation to the spatial curvature, and the vector x denotes the spatial coordinates. The
E-B equations have to be solved for these perturbations, as well as perturbations in the
densities of the different constituents and their velocities relative to the background.
The Boltzmann equations relate the distribution of a particle to its interactions, or
collisions, with other particles. From these we find the evolution of the perturbation

SCERN is the European Organization for Nuclear Research, www.cern. ch.
"There could also be vector and tensor perturbations. See [1] for details.
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parameters of the particles, and to get the evolution of the gravitational perturbations
U and ® we need to combine with the Einstein equations. Putting it together we
get a dense set of coupled equations, which are transformed into the Fourier regime
for easier calculations. For cold dark matter, for instance, the equations governing its
perturbation parameters are

0 +ikv = —3d

: (1.10)
o+ Lo = —ikw,
a

where § is the density perturbation and v the velocity, and k is the Fourier mode, or
wave number. The dots indicate derivation with respect to conformal time n, which is
equal to the horizon apart from a division by c¢. The parameters as written here are
then functions of k£ and 7. The equations are solved independently for each k, which
allows us to follow the evolution of structure formation on different size scales.

These early perturbations give rise to the anisotropies in the cosmic microwave back-
ground radiation, and studying them is crucial to our understanding of the universe.
With the standard inflationary ACDM model these anisotropies follow the cosmological
principle, and should therefore be statistically isotropic and homogeneous.

1.2 The Cosmic Microwave Background and its properties

The cosmic microwave background (the CMB) is a relic from when the universe was
only about 380,000 years old. Before this time, the universe was opaque; that is to say,
light could not escape. This was because of the extremely hot temperatures in the early
universe, which made sure free particles did not form into atoms. Thomson scattering
of photons off electrons, then, was the reason light could only go so far before being
scattered off again. However, as the universe expanded, the temperatures dropped,
eventually so that atoms could indeed form without being instantly ionized. The period
where this happens is known as recombination, and is the epoch from where the CMB
originates. After recombination, the universe was almost completely transparent, so
the photons have been able to travel virtually without interference all the way to being
picked up by our observational detectors today. In other words, the CMB radiation is
the absolutely earliest photonic radiation® we can ever hope to observe, and looking at
it we are effectively looking backwards in time, billions of years, to an age when the
universe was very young,.

The CMB is shown to have a virtually perfect black-body spectrum (figure 1.2),
with a mean temperature of about 2.7K. Again, this agrees with the predictions of the
Big Bang model, as the photon-baryon plasma was in perfect thermal equilibrium. The
low temperature is due to the photons having lost energy as the universe has expanded
(the wavelength is then “stretched”, and the energy, and thus the temperature, is
related to wavelength: Longer wavelength means lower energy).

8Tt is possible to observe other types of radiation from even further back, from neutrinos and
gravitational waves.
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Figure 1.1: Full-sky map of the CMB produced using the Internal Linear Combination
technique on 7-year WMAP data. Image courtesy of the WMAP Science Team.

Observations (from WMAP and other experiments) show the CMB to be remarkably
uniform, with deviations from the mean temperature only on the order of 107°. These
small deviations, however, are the reasons we exist today: They laid the groundwork
for gravitational collapse of matter, which in turn created galaxies, stars, planets and,
in the end, us. A full-sky map of the CMB fluctuations as measured by WMAP is
shown in figure 1.1. The different colors correspond to different temperatures, where
red is hotter and blue is colder. The difference between the hottest and coldest spots
on the map are a couple hundred kK.

1.2.1 The physics of the CMB

In this section we will review shortly the different physical processes that made the
CMB “what it is”. They are a combination of processes occurring before the radiation
was sent out towards us, and processes affecting the photons afterwards, on the way to
being detected. In addition to Dodelson and Liddle, Tegmark (1996) [6] was a useful
reference.

Primordial fluctuations set up by inflation

At the time before inflation is thought to have happened, the universe was so dense
that it was governed by quantum mechanics. Random quantum mechanical fluctu-
ations then appeared in the otherwise smooth primordial “soup”. With the extremely
rapid expansion of the inflationary era, these tiny fluctuations were blown up, thereby
creating a basis for gravitational attractions to further enhance the fluctuations. These
fluctuations are the main reason we see the anisotropies in the CMB, and inflation is
also the reason we see the CMB to be as uniform as it is.

Acoustic oscillations
The primordial fluctuations/perturbations set up during inflation affected the photons
as well as matter. Photons and matter were also tightly coupled through Thomson
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Figure 1.2: The blackbody spectrum of the CMB as measured by COBE. The theoret-
ical curve obscures the error bars in the data points. Image courtesy of NASA.

scattering in the photon-baryon fluid. Due to the relativistic pressure of the photons,
in opposition to the gravitational attraction of matter (baryons exert some pressure
as well as setting up gravity, dark matter only interacts through gravity), oscillations
happen. Since the photons have such a strong pressure, after they’re decoupled from
the matter they will travel unperturbed so the fluctuations at the time of the CMB are
preserved when we observe them.

Different modes of oscillation entered the horizon at different times. For modes with
wavelengths larger than the horizon at recombination, they have not been able to un-
dergo any oscillations (since causal physics couldn’t have affected the perturbations),
so the perturbations observed at these modes will be close to those set up initially
after inflation. Modes on somewhat smaller scales have entered the horizon some time
before recombination, so the perturbations have begun to grow. This mode will then
have stronger perturbations than the previous, super-horizon one. Even smaller modes
have entered the horizon even earlier, so their perturbations could have experienced full
oscillations, making the perturbations less powerful. This picture will continue, so the
anisotropy spectrum will have peaks (where the perturbations have undergone oscilla-
tions so that they now are at a maximum) and troughs (where they have undergone
oscillations so that they now are at minimum amplitude).

Recombination and decoupling
As touched upon already, after the universe had expanded and cooled sufficiently, the
energy of the photons were low enough to no longer be able to prevent atoms from form-
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ing. Electrons and photons first forming into atoms is called recombination. Even after
recombination, the photons still interacted somewhat with the matter, but eventually
the photons were completely decoupled from matter, and this is called decoupling. The
two eras closely follow each other. The CMB radiation we observe is that from decoup-
ling, or the surface of last scattering. Obviously this process was not instantaneous, but
it was quite close to, so all the CMB photons we see originates from more or less the
same surface (at a redshift of about z = 1100). However, there is a certain thickness
to the last-scattering surface, and this serves to wash out the acoustic oscillations on
scales corresponding to this size.

Curvature

Curvature would affect the CMB signal since light follows different paths in a curved
than a flat universe. We call the universe flat if it follows euclidean curvature, closed
if two parallel light trajectories converge (like on a spherical surface), and open if they
diverge. In an open universe the structure we observe on the CMB would be projected
onto a smaller angle than in a flat universe, and vice versa for the closed case. Thus,
different geometries would shift the position of the peaks in the anisotropy spectrum
(to the right, towards smaller scales in the open case, and to the left in the closed case).
Observations tell us that the position of the first peak is nearly exactly where it would
be in the flat case. However, it is highly unlikely for the universe to actually have
exactly flat geometry, since that is just one particular possible case out of an infinite
number of possibilities. But at least we can say the it is very, very close to being flat.
Note also that flat and open universes would be infinitely large, while a closed universe
would be finite in size.

The Integrated Sachs-Wolfe effect

This effect is not part of the true CMB signal, but the signal we receive has been affected
by it. It comes into play recently, when the universe has become dominated by dark
energy. On its journey from the origin of the CMB to us today, the photon has had to
travel through gravitational potentials set up by matter. Going into this well the photon
is blue-shifted, and going out again it gets redshifted. In the matter-dominated era,
however, these effects cancel each other out since the gravitational potential remains
constant. When the universe has become dominated by dark energy this causes a shift
in the gravitational potentials the photons have to travel through to get to us, and the
net effect makes the photons redshifted. There was also a Sachs-Wolfe effect early on,
shortly after the surface of last scattering, when there were still enough radiation left
to affect the photons gravitationally, so the potential wells were not constant. The late
effect makes a good probe for measuring dark energy, since it affects the anisotropy
spectrum on the largest scales in a distinct way.

Reionization

Between the origin of the CMB and today, it’s possible that the photons pass through
regions that have once again become ionized. Particularly a global reionization could
strongly affect the spectrum. Then a fraction of the CMB photons would again be
scattered off electrons, causing them to have a new last-scattering surface. This effect
would also serve to wash out the smallest scales: The newly scattered photon coming
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from a certain direction in space, could in actuality have come from a number of
directions at the true CMB surface. Thus, the measured temperature in this direction
becomes a weighted average of the temperatures at a certain part of the original CMB
surface. An additional effect of strong reionization would be the emergence of new
acoustic oscillations, serving to strengthening the anisotropies on the largest scales.

Contaminations from other sources of microwave radiation
The true cosmic microwave background radiation is not the only microwave radiation
we receive from the universe. Our own galaxy, the Milky Way, emits a good amount
of this radiation (through, for instance, dust, synchrotron and free-free emissions), and
so do other galaxies and point-sources. This unwanted radiation is called foregrounds,
since the sources of it are in front of, or closer to us, than the CMB radiation.

In addition, we also get contaminations from processes that are not due to any
radiation: The movement of the satellite across the sky introduces a doppler effect,
and each pixel has intrinsic random noise.

1.2.2 The power spectrum

The power spectrum, (}, is defined as the expectation value of the square of the spher-
ical harmonics coefficients from the CMB map (see section 2.1), or alternatively, the
variance of these coefficients. It gives the power of the fluctuations on different angular
scales [, where increasing [ corresponds to smaller angular scales, and is given by

l
N 1
G = <|alm|2> = <almalm> = 20 +1 Z |alm|2’ (111)
m=—I

where the a;,,,’s are the spherical harmonic coefficients. This is precisely the anisotropy
spectrum mentioned in the previous section, complete with the peaks and troughs of
the acoustic oscillations.

Using the power spectrum we can constrain a great many parameters in the ACDM
model, as well as ruling out several possibilities. As mentioned the position of the
first peak determines the curvature of space (and we saw earlier that it points to the
universe having euclidean geometry), and the height difference of the peaks points to
how large the baryon density is. Figure 1.3 shows the striking agreement between the
power spectrum as measured by WMAP and that predicted by the current ACDM
model. Only six basic parameters are required in the model to fit the data.

Computing the power spectrum for a given cosmological model

The computation of a theoretical power spectrum involves solving the perturbation
equations and taking into account the different physical processes described in the above
section. Specifically we need to obtain the perturbations to the photon temperature,
©;(k), where we can follow how the perturbations change over different multipoles and
different Fourier mode size scales. How such a computation can be performed with
relative ease is excellently described in Callin (2006) [7]. Specifically, for a so-called
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Figure 1.3: The CMB power spectrum as predicted by the ACDM model and observed
by WMAP. The shaded band indicates cosmic variance (see section 2.1). Image cour-
tesy of the WMAP Science Team.

Harrison-Zel’dovich spectrum (which is predicted by many inflationary models), we

would get
o /ek\! dk
C) = — 02 (k)— 1.12

where Hj is the Hubble parameter and ns the spectral index, both described in the
next section.

1.2.3 Cosmological parameters and their current best-fit values

The newest WMAP analyses, from Larson et al. (2011) [8], give these values for some of
the main parameters of the ACDM universe we are believed to inhabit (the ¢ subscript
indicate that these are the values today):

Qo = 0.0449 + 0.0028
Qe = 0.222 4 0.026
Qa0 = 0.734 + 0.029
to = 13.75 & 0.13 Gyr
Hy=71.0+25km s Mpc™*
ns = 0.963 £ 0.014
7 = 0.088 £ 0.015
A% = (2.4340.11) - 1077

Here € is the baryon density, 2. the density of cold dark matter, 25 the dark energy
density, to the age of the universe, Hy the Hubble parameter (which is a measure of the
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expansion of the universe, H = %), ns the spectral index, 7 the reionization parameter
and A the curvature perturbation amplitude. The 2’s represent the energy density
of the parameters given in terms of the critical density,

0, =2 (1.13)
Perit

where peit is the density the universe would have had if it were completely flat. This
density is given by

3H?
rit = 5 - 1.14
Perit 837G ( )
Inserting the proper values, we find that the current value of the critical density is
k
perito & 9.596 - 10727 ==
m

This is an extraordinarily low value, equivalent to about 5 hydrogen atoms per cubic
metre. Since the universe is measured to be very close to flat, we can interpret the
values of the density parameters as being the percentage of that type of energy content
in the universe.

It is also possible to construct a curvature density parameter, given by

kc?

U=z

(1.15)

Using the density parameters we can write the first Friedmann equation (eq. 1.4) as

H? = Hf (Qroa™" 4+ Qmoa™® + Quoa™ + Qo) , (1.16)
where Q,,0 = Qo + Qpo, and Qpg = —kH—C;. At all times there is a requirement that the
0

sum of all density parameters, §2, equals 1. This also explains the flatness problem:
If £ = 0, the sum of the ordinary density parameters should be 1, which would make
) — 1 = 0; however, if the universe only appears flat we would have (still considering
only the ordinary densities in §2)

-1 x ——5

o (1.17)

1 t radiation domination
t2/3  matter domination,

making clear the increasing deviation from flatness with time. Under dark energy, or
cosmological constant, domination the deviation | — 1| instead goes as e~2%!, which
gets smaller with time.

The spectral index of density perturbations, ng, is a measure of the so-called tilt
of the power spectrum, which serves to decrease the spectrum on the small scales and
increase it on the largest scales, when ng is less than 1. A spectral index equal to one
details a scale-invariant spectrum of primordial perturbations, while inflationary models
generally predict slight deviations from scale-invariance. The curvature perturbation
amplitude A quantifies the magnitude of the primordial perturbations.
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Figure 1.4: An example of a dipole with amplitude 0.5, in the direction (6,¢) =
(90°, 270°).

The reionization parameter 7 measures how many photons where scattered again
after the surface of last scattering, due to passing through a reionized region. The
fraction of photons escaping through the ionized region is given by e~ 7, and also a
fraction 1 — e~ 7 is scattered towards us from another direction. The 7 itself is the
optical depth of the reionized region.

T

1.3 The dipole model

As we have seen in section 1.1.1, standard Big Bang cosmology requires the universe
to be homogeneous and isotropic. However, when subjected to statistical analyses, the
WMAP data have shown to reveal a power anisotropy between two parts of the sky.
This anisotropy can be approximated as a simple dipole modulation of an inherent,
statistically isotropic Gaussian signal:

d(i) = (1 + A(A - p))s(d) + n(d). (1.18)

Here, s is the inherent, isotropic signal, A is the dipole amplitude, n is instrumental
noise and d is the observed data. The direction on the sky is given by the unit vector 0,
and P is the unit vector of the dipole asymmetry direction. This model doesn’t really
have a physical motivation, it’s just a means of describing the asymmetry.

In figure 1.4 there is shown an example of a dipole field. The effect this modulation
has on a CMB map is shown in figure 1.5. We see that it suppresses the fluctuations on
one half of the map, while strengthening them on the other. Note that this particular
modulation is strongly exaggerated, in reality the modulation we see has an amplitude
of less than 0.1.

The first to make claims of a dipolar asymmetry were Eriksen et al. (2004) [9], who,
by computing the power spectrum locally for different patches of the sky, showed signs
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(a) Simulated, statistically isotropic CMB map.

(b) The same map as above, modulated with a dipole of 0.5 amp-
litude.

Figure 1.5: Isotropic and modulated maps.
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of one hemisphere having significantly higher and the other lower power than what
was expected from isotropic simulations, looking at the first-year WMAP data. They
also found a similar asymmetry in the COBE-DMR, data. The analysis reported the
asymmetry up to an [ = 40. Hansen et al. (2009) [10] did a similar analysis for much
larger multipole ranges using the 5-year WMAP data, and found that the asymmetry
extended to | = 600. The reported asymmetry direction was (§ = 107° + 11°,¢ =
216° + 10°).

Eriksen et al. (2007) [11] used a Bayesian maximum-likelihood analysis of the dipole
modulation model of equation 1.18 on downgraded, low-resolution maps of the 3-year
WMAP data, and found amplitudes of about A ~ 0.12, at a direction consistent with
those reported by the other methods. This analysis was later repeated and expanded
by Hoftuft et al. (2009) [12] with consistent results, arguing that the significance of the
detection increased with including more scales in the analysis. This analysis was done
up to a maximum modulation multipole [;,0q = 80. An amplitude A ~ 0.07 was stated
to be consistent with all the different /,,,q and datasets in their analyses. Specifically,
for the ILC 5-year map and l,,,q = 64 they give an amplitude of A = 0.072+0.022 and
direction (6, ¢) = (112°,224°) £ 24°.

In addition to the above papers, several other authors have reported a similar power
anisotropy using a variety of methods, see for instance [13], [14], [15] and [16].

The WMAP team, in Bennett et al. (2011) [17], argue that there is no significant
evidence of a dipolar asymmetry in the data, and that the purported claims turn out to
be just statistical flukes. They base this on results obtained with the QML estimator of
Hanson & Lewis (2009) [18]. In fact, they go as far as to compare these claims with the
notion that, if you search for something odd, you will inevitably find it. This estimator
is approximate, while that used by Eriksen et al. (2007) and Hoftuft et al. (2009) is
an optimal maximum-likelihood estimator. However, the QML approach is much more
computationally effective so the analysis can be performed on much smaller scales, and
there is no need to downgrade the maps. Our goal in this thesis is to re-implement
the quadratic estimator and repeat the analyses done by Hanson & Lewis and Bennett
et al., and see if the latter’s claim of there being no significant evidence of a dipolar
modulation is valid.

If there indeed turns out to be a dipole anomaly present, and it is not the cause of
some hitherto unknown systematics, it will have profound consequences for the current
cosmological models. They would need to be modified to be able to convincingly
account for such a feature.

In addition to the dipolar asymmetry described above, several other anomalies
have been reported in the WMAP data. These include the existence of a large cold
spot (the strong blue region seen in the center of figure 1.1), the alignment of the
quadrupole/octopole and the lack in quadrupolar power. A quick overview of these
possibly anomalous effects can be found in [17].
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1.3.1 Possible physical explanations for the asymmetry

The model for estimating the dipole modulation is, as said, strictly phenomenological,
but with the increased attention to the asymmetry in recent years people have tried to
come up with possible physical explanations. Going in-depth into such physical models
and discussing their viability is not the focus of this work, but we will briefly present
some published possibilities below.

Anisotropic inflation

Standard inflationary theory give rise to Gaussian, statistically isotropic fluctuations.
Ackerman et al. (2007) [19] proposes a possible small violation of rotational invariance
during the inflationary era, which could cause a quadrupolar power asymmetry in a
specific direction. This is thus not directly related to the dipole case, but is an example
of a physical model yielding an anisotropic directional effect in the CMB. The effect is
also shown, for a simple model, to be approximately scale-invariant.

Erickcek et al. (2008) [20] proposes an alternative inflationary theory where a su-
perhorizon perturbation to the curvaton field could generate a hemispherical power
asymmetry, where the simplest model again predicts a scale-invariant modulation. In a
more recent paper, Erickcek et al. (2009) [21] presents a modified version of this theory
which will produce a scale-dependent asymmetry where the amplitude decays with [.

Anisotropic dark energy

Koivisto and Mota (2008) [22] suggest an anisotropic equation of state for dark energy,
which would cause a direction-dependent expansion of the universe at late times. This
could be a cause of large-angle anomalies in the observed CMB.
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Chapter 2

Mathematical description of the
CMB

The CMB is, in essence, just a temperature field. On each point in the sky, observations
give a certain temperature. What we are usually interested in when studying the CMB,
are not the actual temperatures though, but rather deviations from the mean. Let’s call
this field AT(0, ¢). Measuring these deviations allow us to quantify the anisotropies to
test cosmological models. In order to make such tests, we need to be able to describe
the observed field mathematically.

2.1 Decomposing into spherical harmonics

Observations of the CMB are taken in real space on the sphere surrounding us. When
doing analyses, however, it is often more convenient to look at the field in a Fourier-
type space. On the sphere this space is that of the spherical harmonics®, and the
temperature field is there decomposed as follows:

00 l

=0 m=—1

Here, Y}, are of course the spherical harmonics, and

o = [ AT(0,0)7,(6.0) 49 (2.2)
Q

are the components of the transform. They are complex numbers, with a;_,, =
(—=1)™ay,, since the temperature field is real. Having done this transformation, all
the information present in the temperature field is also present in the a;;,’s. Just as
the different modes k of an ordinary Fourier decomposition correspond to different size
scales, the different modes [ of the spherical harmonics decomposition correspond to

1See the appendix, section A.3.
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different angular scales. A rough estimate of the angle is § ~ 180°/l. The first few
modes are known as the monopole (I = 0), the dipole (I = 1), the quadrupole (I = 2)
and the octopole (I = 3). This dipole mode must not be confused with the dipole
modulation mentioned earlier, however, as that is a modulation extending to all scales.

From the decomposition we can calculate the power spectrum, which gives the power
of the CMB fluctuations on the different angular scales. This spectrum is one of the
most important quantities in modern cosmology. From analysing it, we can constrain
many of the parameters in the ACDM model, such as the dark matter density €. and
the spectral index ng, because the different parameters have different effects on the
shape of the spectrum. The power spectrum is given by, as shown in equation (1.11):

l
1
C=s—3 2,
l 2z+1m_7l‘alm‘

There is a fundamental uncertainty in how good a knowledge we can have about the
Cy’s, called cosmic variance?
drawn from a distribution with variance C;. So each q;,, has the same variance C
for any given [, regardless of the value of m. There are 2] + 1 ay,,’s for each [, so for
higher [, we get much more information on the underlying variance than for low [. This
uncertainty on the information is the cosmic variance, and it is given by

A \/T
“Naar1 2.
( Cl >cosmic variance 21 + 1 ( 3)

In figure 1.3, of the power spectrum as measured by WMAP, we see the cosmic variance
represented by the shaded band around the curve.

To get a feel for how the map is decomposed into different multipoles, I have ex-
tracted the first 6 multipoles from a simulation and shown how these combine into a
map in figure 2.1. Comparing the outcome with the full simulated map of figure 2.2(a)
we see that already some of the main structures are present using only these low I.

. This stems from the fact that the a;,’s are essentially

2.2 Observations into pixelized map

The data taken by observations can in the simplest form be written in the following
way (see equation 1.18)
d(i) = s(i) + n(i). (2.4)

Here, s is the actual CMB signal and n is instrumental noise, while d is the data
output. The unit vector fi denotes direction on the sky. The picture isn’t quite as
simple, however, as there are plenty of noise sources that aren’t merely instrumental.
These include the doppler-induced dipole caused by the satellite’s movement around the
sky, the signal contamination by our own galaxy, as well as that by other galaxies and
foreground emissions. These contaminations need to be painstakingly removed from

2See Dodelson [1].
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Figure 2.1: Different multipoles extracted from a simulated map and their combined
map. I have left out the monopole since it is just a uniform field.

(a) Smoothed with a 0.35 degree beam, (b) Smoothed with a 7.0 degree beam,
equivalent to WMAP. equivalent to COBE.

Figure 2.2: Simulated maps with different beam smoothing widths.
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the data before we start analyzing, in order not to get false results. Also, the satellite
itself does not have infinite resolution, so the signal gets smoothed by the instrumental
beam. Scales smaller than what the beam is able to pick up will not be discerned in
the data output (see figure 2.2). A more thorough picture of the data is therefore

d(f) = B(s(n) + f(A)) + n(n), (2.5)

where B represents the smoothing by the instrumental beam, and f the foreground,
galaxy and doppler dipole noise contaminations. In pixel space the beam smoothing is
a convolution operation, while in harmonic space it is a simple multiplication. This is
one of the reasons why we often wish to work in harmonic space; it makes life easier!

2.2.1 Galaxy and foreground removal

By measuring the signal at several different frequencies, and looking at other observa-
tions of galaxies, one is able to distinguish the actual CMB signal from the foregrounds.
The frequency region where we measure the CMB is also one where the foreground
emissions are quite low, see figure 2.3. Note that the figure only shows the level of the
CMB anisotropies; the full signal is much stronger than any foregrounds. However,
the anisotropies are what we are interested in. The WMAP satellite is also designed so
as to only measure the temperature difference between two parts of the sky, thereby
minimizing concerns over the 2.7K averaged full signal (monopole) of the CMB. De-
tails on the design of the instrument are given in Bennett et al. (2003) [23]. For more
information on the foreground contaminations in the WMAP observations see Gold et
al. (2011) [24].

In the analysis we will use the foreground-reduced maps provided by the WMAP
team, and the galaxy, point sources and other contaminations will be dealt with by
applying a mask/sky-cut, effectively setting the signal at the pixels in question to
0. The kinematic dipole has been removed also from the raw maps. There are two
commonly used masks that are provided, named KQ75 and KQ85 (because they retain
approximately 75% and 85% of the sky, respectively), of which we will mostly use the
latter. It is shown in figure 2.4. Note the thick band in the center, which masks out
the galaxy. Each pixel to be masked out is set to 0, and the rest are set to 1. The way
we apply this mask in our analysis is to multiply it with our inverse noise model, so
that pixels that are masked out are effectively said to have infinite noise. Additionaly,
we also project out template maps corresponding to the monopole and dipole modes,
details are given in chapter 6.

The noise model for the intrinsic instrumental pixel noise is calculated from inform-
ation given in the sky-maps, where the number of observations per pixel is given. The
different number of observations makes the noise rms differ with each pixel, and thus
across the sky. More information on this is given in section 6.2.1. The noise is con-
sidered to be uncorrelated between pixels, thus making the noise covariance diagonal
in pixel space.
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Figure 2.3: This picture compares the radiation from the CMB with those of three
sources of foreground emission: Synchrotron, free-free and thermal dust emission. Also
shown is the galactic emission using two common sky-cuts. Image courtesy of the
WMAP Science Team.

Figure 2.4: The KQ85 mask, retaining 78.3% of the sky [24].
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2.2.2 Dealing with the instrumental beam

In harmonic space the beam smoothing function b; is given by

2
1 m 1
= S 1)o2 h 2= (FWHM  —  ——— | . 2.
by exp( 2l(l+ Yo ), where o < M 150 81n(2)> (2.6)

This expression is valid for a Gaussian beam, which is a good approximation to the
beams of the detectors on WMAP and other experiments. FWHM is the size (full
width at half maximum) of the beam used, for WMAP it equals 0.51 degrees in the
Q-band, 0.35 degrees in the V-band and 0.22 in the W-band3. We see here that this
function falls off rapidly with increasing {. What happens when the instrument maps
the sky is, in effect, that the “true” (disregarding contaminations) a;,’s get multiplied
by this beam function in equation 2.1. So at large [ (small angular scales), it’s obvious
that the signal quickly gets diminished. Example graphs are shown in figure 2.5.

In addition we also get a smoothing effect by virtue of the map being stored as a
set of pixels. Each pixel has a certain size, which again serves to smooth out the signal.
This pizel window function, p;, is provided in the HEALPix* package for different map
resolutions. We deal with both of these features simultaneously, simply by multiplying
the two functions together.

How the beam function is incorporated into the estimation procedure will be shown
in coming chapters. Specifically, simulated maps smoothed with the same beam as the
data are used to normalize the estimated parameters.

2.2.3 Representing the decomposed map

As mentioned we like to work in harmonic space since it simplifies many of our cal-
culations. However the map we receive is the pixelized version. When we wish to
decompose this into harmonic components a;,,, how to we choose how many multipoles
to include in order to sufficiently represent the map? Choosing too few multipoles Iy ax
will be akin to smoothing the map further, which we do not want, and choosing too
many multipoles will cause other problems due to oversampling, such as aliasing. There
is at least no reason to choose an [ ,x corresponding to scales smaller than what can
be discerned from the pixel window. HEALPix stores the maps using Npix = 12 - Ns21de
number of pixels, where Ngqe 1S a measure of the resolution. The resolution of each
pixel in terms of solid angles is lpix = %.
Imax 18 2 - Ngge, and this is what we utilize throughout this work. We can convince
ourselves that this value is reasonable if we observe that the angular resolution 6y of

The default and recommended size of

one pixel is Opix = /pix = 2Ni’ and remember that the angular scale represented

pix

3The FWHM values are taken from the WMAP: Seven-Year Explanatory Supplement [25]. See
chapter 6 for more on the different bands.
1See appendix A.1
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Figure 2.5: The beam smoothing function b; for different beam widths. The line labeled
WMAP corresponds to a beam of 0.35°, the one labeled COBE to 7.0°, and the dashed
line to a beam of 1.0°. The dotted line represents no beam.

by [ is roughly 7. Calculating [ for our smallest scale in terms of Ngqe gives

l . Npix . 2\/§Nside _~

T 2ym 2w e

= | =~ mNgide-

2.2.4 Downgrading maps

When we downgrade higher-resolution maps to a lower resolution we must smooth, or
convolve, the new map with a beam corresponding to the new resolution. How to we
choose the size of this beam, its FWHM? We have the beam function given by equation
2.6, and from this we can get an expression for the FWHM of a beam corresponding

pwin = 280 [ 162 b)) (2.7)
™ lmax(lmax + 1)

If we set by, = 0.1, for instance, we get a FWHM of 4.5° for an l,,x of 64. When
downgrading we also need to apply the pixel window of the new resolution. However,
before applying the new beams, we must deconvolve with the original beam and pixel
window, and this is just a division in harmonic space.

to a certain lpax:

When applying a sky-cut to downgraded maps we need to downgrade the mask as
well. One way of doing this is to go through the original-size mask, and for each pixel
in the new resolution set this to 1 if more than half of the corresponding pixels in the
original mask is 1. Downgrading is not particularly important in this work, since the
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quadratic estimator performs quickly also on full-size maps extending to more than 1000
multipoles. However, since previous analyses have often relied heavily on downgrading
it is in our interest to be aware of how the process is performed.

2.3 The signal covariance matrix

For a vector of random variables X = [Xo X; ... X,]7, the covariance matriz C has
components given by [26]
Cyj = Cov(X;, X;) = ((Xi — ) (X — 15)), (2.8)
where p; = (X;). An alternative form of the equation is
Cij = (XiXj) — pipty- (2.9)
For our data model, equation 2.5, we get
Cij = (d(f;)d(ny)), (2.10)
or alternatively,
C = (ddT). (2.11)
Written out in full this becomes (disregarding the beam)
C:<(s+f+n)(s+f+n)T> (2.12)
= <SST + ff7 + nnT> (2.13)
=S+F+N, (2.14)

since the cross-correlation terms vanish. The covariances for each contribution is shown
as S = (ss”) (the signal covariance), F = (ffT) (the covariance of the foregrounds) and
N = (nn”) (the noise covariance).

Including the beam this would only affect the terms with the signal and the fore-
grounds. For the signal term we would get

(Bs(Bs)") = (Bss"B") = B (ss" ) B" = BSB”, (2.15)

since the beam function is not affected by the averaging operation.

2.3.1 Including the dipole model

When including the dipole model the part of the data related to the signal gets trans-
formed, from simply s(i1) to (1 + A(fx- p))s(ii), where A here is the dipole modulation
amplitude and p the direction. The covariance for the signal thus becomes, in direc-
tional components

S(i, 1) = (s()s()) = ([(1+ AR p))s()] [(1 + A(h - p))s(rn)]) (2.16)
= ((1+A(a - p))s(d)s(m)(1 + A(h - p))) (2.17)
= (1+ A% - D))Siso(0, )(1 + At - ), (2.18)
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where Sig, is the covariance in the non-modulated case, equal to C; in harmonic space.
In pixel space it can be calculated through (the field is real so taking the complex
conjugate has no effect, but it makes the calculations somewhat easier)

Siso(01, ) = (s(fi)s(h)* <<Z Ay Yo (02 ) (Z Aty Y7y (102 >>
~ (5 i Vi@ ) (2:20

—~

2.19)

Im U'm’
= {tmr ) Yim (2)Y7,, (1) (2.21)
Im U'm/
=3 Ciduw S Yim (0) Y, (1), (2.22)
Im U'm/

since the averaging operation does not affect the spherical harmonics. Continuing, we
get

1so ﬁ ﬁl ZCZ Z Yim ﬁ lm ﬁl) (223)

m=—I

The sum over m invokes a relationship between the spherical harmonics and the Le-
gendre polynomials P;, where

l

D Yin(0)Yy, ().

m—=—

47

ha-m) =57

To close, then, we get

1
Sio(f,10) = = > (20 + 1)CiFi(f - 1h). (2.24)
l
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Chapter 3

Statistical estimators for the
dipole model

The dipole modulation model has been tested in the literature using various estimators.
We will in detail present and derive the optimal quadratic estimator of [18], which is a
fast, approximate method that allows analysis of the full-resolution data sets. We also
give a short overview of the exact maximum-likelihood method used in [12].

3.1 Quadratic estimator (Hanson & Lewis)

The basic concept behind the quadratic estimator is to approximate the likelihood
(strictly speaking the log-likelihood) as a quadratic function near its maximum. This
is often a reasonable approximation, especially if the underlying likelihood is close
to Gaussian (for a truly Gaussian likelihood it would be exact). This approach will
allow us to estimate the parameters much more rapidly than if one were to explore the
whole parameter space as in an exact, maximum-likelihood approach. What we do is
to Taylor-expand (the derivative of) the log-likelihood with respect to our parameter
vector, and then use the Newton-Raphson method to approximate the parameters.

In this thesis the estimator is occasionally abbreviated as QML (Quadratic Max-
imum Likelihood).

3.1.1 Derivation of the estimator

Follows Dodelson (2003), pp. 362, and Hanson & Lewis (2009). We begin by construct-
ing a general quadratic estimator for an arbitrary parameter A\, and then apply it to
the dipole model.

The CMB likelihood function is given by!

1 1
_ —ot—1
L= (27T)Npix/2|0|1/2 eXp |:_2® C ®:| 5 (31)

!See Dodelson (2003), equation 11.20 (page 341).
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where © is the observed CMB and C' is the covariance. What we want is to mazimize
the likelihood, i.e. find the point where the derivative of the likelihood with respect to
the parameter(s) is 0:

oL

— =0. 3.2

= (3:2)
Here, )\ is the desired value of the parameter we are interested in, and thus the value
we wish to estimate. What we do next is to Taylor expand the derivative around some
point Ag. In the following we will use the simplified notation of derivatives, denoted by
commas:

oL 0’L
Lry=—, Ln=—. 3.3
AT o UM T N (33
The Taylor expansion is then:

L) = LA0) + L)X = o) + ... (3.4)

The left-hand side equals 0, and discarding the higher-order terms we get

L )\()\0)

A N — 3.5
O Lan(No) (3:5)

In order for this solution to be viable, the approximation of discarding higher-order
terms must be a good one. That is the case for functions that are close to quadratic.
However, the likelihood function £ is not close to being quadratic, in fact, it is usually
approximated as a Gaussian. That is what we will do also, and exploit the fact that
the logarithm of a Gaussian function is quadratic. Repeating the derivation for In £
in place of £ above, we get (the derivation is exactly similar, since the logarithm is
maximized at the same place as the actual function)

- (InL) (o)

This, then, becomes our estimator \ for the value of . It is really an iterative scheme,
the Newton-Raphson method, where the n’th iteration would yield

N N (hl ‘C) )\(S‘n)
Al = App — ———25———,
o (10 L) (An)

If the starting trial value Ao is chosen sufficiently close to the true value, however, the
estimator should yield good results with only one iteration?.

The next step is to calculate the derivatives in equation 3.6. We have our likelihood
function given by equation 3.1, and its logarithm is

Nix
Ing— —%@Tcﬂ@ — 2P In(2m) - %m . (3.8)

(3.7)

2This is what Hanson & Lewis (and also us) choose to do, assuming that the dipole anisotropy is
weak and using the trial value of no anisotropy. For a discussion of using more iterations, see section
6.2.3.
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Taking the derivative the constant term vanishes:

o ([ 1 1
(In L) m( selce 21nyC\>. (3.9)

Only the covariance C' depends on A, so we get
| 1
(lnﬁ),)\:—§® i ®—§(In|C’|)’)\. (3.10)

Utilizing the following two identities,

In|C|=Tr(InC) and C,'=-C"'C C7, (3.11)
we get:

1 1
(InL) ) = 5@Tc—lc,Ac*@ - 5T (C7IC). (3.12)

This is similar to equation 3 in Hanson & Lewis, except that they write the log-
likelihood as £. There are also some other differences (disregarding the difference
in notation). First off, they take the derivative with respect to a vector of parameters
A. This is just a generalization, and our equation would become

1 1
(InL)x = §®TC*107>\C’1@ - 5T (C71Cy). (3.13)
But they also have some complex transposes and different signs. Their equation reads
1 1
(L) 5 = =501 C 070 + 5Tr (0710 ). (3.14)

This does not mean there is a discrepancy: The complex transpose in the derivative
is just the difference between considering column- or row-vectors, and sign difference
suggests a different convention. We can look at their In £ as actually being —In £. In
that case the maximization becomes a minimization, but the value at this point remains
the same. In the following we will use the expression of H&L for easy comparison.

Hanson & Lewis now use the identity Tr(A) = (xTAC~'x), where x is a vector of
Gaussian random variables with covariance C' (this is precisely what © in the above
equation is), to write equation 3.14 as

(In ﬁ))\f =(H) —H, (3.15)
where

H = %(C“@)TCN(C*@). (3.16)

The second derivative (In L) y is related to the Fisher information, which can be

written as 2l s
In
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From these facts and equation 3.7 (replacing the second derivative with its average) we
get the iterative estimator

~

Ant1 = Ao+ F [Ho = (H)a, (3.18)

where the + sign occurs because we're really working with —In £. We suppose a small
modulation so we only use one iteration, with Ag = 0. The zeroth part of the quadratic
estimator, Hyp, can then be written as

15t9C &

S (3.19)

T =359\

where © = C~!x—© is the inverse-variance weighted signal®>. Component-wise the
equation can be written as the following, where Im denotes rows and I’m’ columns:

1 8Clm,l’m’ Ak A
Ho == 5 Z [T} @lmgl/m/' (320)

Im,l’m’
This is equation 9 in Hanson & Lewis. Our estimator, then, becomes

A= F L Ho — (Ho)]. (3.21)

3.1.2 The estimator applied to the dipole anisotropy case

Here we will follow the notation in Hanson & Lewis (2009). The dipole modulation
described in section 1.3 can be written as

Of(h) = [1+ f(R)] O} (h), (3.22)

where O is the observed CMB temperature field, @ZJ} is the intrinsic statistically iso-
tropic CMB, and f is the dipole modulation field. The subscript ; denotes restriction
to a range of angular scales [ < l.x. Recall that the modulation field is of the form
f(h) = A(p - 1), where A is the amplitude and p the dipole direction. There are thus
three parameters to determine the dipole: The amplitude and the direction (6, ¢). Al-
ternatively, the dipole can be given as a harmonic field, with three parameters having
[l =1and m = —1,0,1. We expand each side in the equation in terms of spherical

harmonics?:

Z Glevlm = <1 =+ Z fl”m”Yl”m”> Z @%,m,}/l/m/ (323)
Im U'm!

lllm//

= Z ®§/m/}ﬁ/m/ + Z Z fl”m”@%’m/}/l/m/}/l”m”' (324)
U'm/

l//m// l/m/

3The inverse-variance weighted signal is computed using the conjugate gradients algorithm, see
section 4.1
4See equation A.11 in the appendix, section A.3.
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Rewriting the dummy indices in the sum on the left-hand side from Im — I'm/ and
multiplying each side with Y;’ we get:

m m m m* :
S O Yo Vi, Z@l/ Y Y, +ZZ Ol Frm Yirms Yo Y. (3.25)
U'm/

/ / l/l

Next we integrate each term over all angles 2 (remember that the spherical harmonics
coefficients Oy, and f,,, are just numbers, with no angular dependence):

l/}ﬁ;@l,m, /Q Vi i, dQ:Z@l,m, / Vi Yi, dQ
DIPIL | Yem Yo .

/ l//

(3.26)

Now we use the orthonormality relation of the spherical harmonics (equation A.10) to
get

Z@w 1011 Oy —Z@y OO+ Z Oyt firm "/ Yo Yy Y, d€2.(3.27)

/ /lll
This gives
O = O+ Y. Ol frrmy / Yy it Y dQQ. (3.28)
Q

l l l// 1

From this expression we can calculate the covariance Cy s jrpy = <@l’m’@7"m">- We do
this to first order in fi,,, since we assume the modulation to be small. The covariance
is then given by

<[@§,m,+ SOl frrm /Q ...dQH o D O, Fgn /Q ...dQD.

lm’llllmlll lm7l///mlll
(3.29)

Writing this out in full we get

Cl/ / lll "~ <®l/ /@l// " + @ll ’ Z @lmfl/// " / Y// ll }/vl;k//m/// dQ

lm llll 111

|: Z @lmfllll " / Yl IYEm}/Vl/// m dQ:| @l// " >
lm l///

111

(3.30)

_< %/m/@%;’;m// + Z @Zlml %;Lf;;”m’”/ }/l”m”}/l::ﬂ}/l;k”m”’ dQ
Q

lm7l///m///

Z Q! O i / Vi Y Yo dQ2 Y .
lm l/// " Q

(3.31)
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Since ( fm f/*m/> = 01Oy C (where Cj is the isotropic covariance), and the integrals
over the spherical harmonics as well as the f;,;,,’s are not affected by the averaging, we

get

CllmlJ//m// = 6lllll5m/mllcll + Z 6lll6mm/ Cllf;;//m/// / YllmllYE:n}/vl;k//m/// dQ
Q

lm’llllmlll

(3.32)
+ Z 81 St C S / Yy Vi Yo dQQ.
lm7l///m/// Q
Truncating the sums give
Cl’m’,l"m” = Oy Ot Cy + Z Cl/fﬁumm/QY//m//Yle/ l;k//m/// dQ
Hm (3.33)
+ Z Cl”fl”’m’”/ Y;km, l//m//}/l///m/// dQ
Q

l///m///

Now we change the dummy variable in the sums from I"’m’’ — Im, and observe that
the sums run over the same indices:

Crram e = Sy S Cr + ) <Cl/fz*m/ Yo Yt Yo, dS2
Q
im (3.34)

+ Cl”flm/ Y;km/ 1'm Yim, dQ) :
Q

Using that f, = (=1)"fi_p and Y} = (—=1)"Y,_,, applied to the first term in the
sum we obtain (since m is both positive and negative the two sums Zf%:fl fim and

S fiom are equal)

Cl/m/JNm// = 6l/l//6m/m//Cl/ —|— Z flm [Cl/ —|— Cl//] /{'Z}/vlm}/vl;km/}/vl//m// dQ, (3.35)
m

This expression for the anisotropy covariance should next be combined with the quad-
ratic estimator, with the quadratic part h given by

~ 1 aclm,l’m’ Ak A
h=2 > [T] 0}, O, (3.36)

Im,l’m’

where © is the inverse-variance filtered sky signal. For the dipole, h is the vector with
fim as components ([fi1—1, fi0, f11]). Component-wise we thus get for h:

jng 1 aCl/m/,l//m// = % —
hlm — 5 Z [W] @l’m’ @l”m”- (337)

llm/7l//m//
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The derivative becomes (remember that C; is the isotropic covariance and so does not
depend on the anisotropy)

8Cl’m’,l”m” _ Z a (fl///m/// [Cl’ + Cl”] fY///m/// l;km/}/l”m” dQ) (3 38)
afltn ! afltn
- afl///m/// «
= [Cl’ + C//] Z 8f* }/l///m/// V! Y1 m?! ds). (339)
7 m!" lm
Again using that f; = (=1)" fi_,, we get
acl/m’ 'm! afl/”m”’
7; — (_1)m[0l/ +Cl”] /}/l/// " l;k 1 Y1 d
afl?”rL l’%” afl—m " " "
— (—1)m[Cl/ +Cl”] Z 511”’6—mm’”/y”’m’" l;km’ "' dQ
l///m///
= (_1)m[cl/ + Cl”] /}/l—m}/l;km’}/l”m” dQ
— [Cl/ =+ Cl”] / }/l:(n}/l;km/}/l//m” dQ
Inserting the final expression into equation 3.37, we get
T 1 * * A\ * A
him = 5 > <[Cz/ + Cp] / Y Yo Y dQ> O} Ot (3.40)
Q

llml7l//m//

Taking the integral outside the sum we obtain

~ 1 _ _
= | i (Z > [Cv+Cu] @;mm/@z//m/%fm~> i) (3.41)

llml l//mll

Using that ©}, , = (=1)"™ Op_p, Vi, = (=1)™Y; , , and noting that
Yo OV Yy = Ovpy Yy, the equation can be written as

~ 1 N _ _
hlm = 5 /S;}/lm< E E |:Cl’ =+ Cl//:| Gl’m’}/}’m’@l”m"Yl"m"> dQ. (342)
Um! ' m!

We note that this differs from the expression found in Hanson & Lewis (equation 17);
first and foremost they are missing the Cy. The integral

/ Yy Vi Y A2 (3.43)
Q

is a form of the Gaunt integral, and the solution is

(_1)m\/(2z+1)(21'+1)(2z~+1) (é lo/ z(f)f)( [ z">, (3.44)

47T —-m m/ m//
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where the latter two symbols are the so-called Wigner 3-j symbols®. Putting everything
together we get for hypy,:

By, = (_1)ml Z 20+ 1)(2 + 1)(20" + 1) <l I l//>

2, 4 An 00 0 -
m/l"m

l l/ l/l _ _ ( ' )
X <_m m/ m”) [Cl/ =+ Cl”:| @l/m/el//m//.

This is seemingly different from the expression found in H&L, but if we play around a
bit with the indices we will see that they are, in fact, equal. To see this, observe the
following: Changing Or,,» — (—1)m”®7//_m//7 we also get

O D O N e N

using a selection rule of the second 3-j symbol. In the sum over m” we now have

lll

l ll ll/ ~ . l ll l/l -
Z (_m m' m//) O = Z (_m m' _m//> O

m!=—1" m!=—1"

&
1 U 7"\ - .
= Z <m —ml m//> @l”m”’

m!=—1"

lll

where the final equality holds because of symmetry relations®: Changing the signs of
all the m’s should introduce a phase factor (—1)”1/“//, but because we also have the
3-j symbol (} L") present, we know that [ + I’ + I” must be even. All of this makes
our equation 3.45 equal to the one found in H&L, which is given by

N 1 o JRUEDRUFDR 1) (111
hlm:§ Z (_1) \/ A7 (0 0 0>

l/m/l//m// (3.46)
l I " _ _

This is the expression for the quadratic estimator we used in the computer code. Since
we look at the dipole [ must be 1; the sums over I’ and [” go up to some l;,,q, which
must be smaller than, or equal to, the entire range of multipoles .« in the data set
(usually chosen as 2 - Ngqe). The choice of l;,0q corresponds to considering how many
multipoles the dipole modulation extends to.

3.1.3 The Fisher matrix for the dipole case

The Fisher matrix can be thought of as the normalization of the estimated values .-
It gives the covariance of the values, and component-wise is given by

ﬂm,l’m’ = COV(iLlrm Bl’m’)- (347)

5See the appendix, section A.2
5See the appendix, equation A.7 combined with equation A.8.
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Our estimator for Ay, becomes

ile = Z ‘?.l;nl,l’m’ (iLl/m/ - <Bl’m/>)- (348)
U'm/

Since we have three parameters ﬁl,l, ﬁlo and 511 our covariance matrix becomes a 3 x 3
matrix. A covariance matrix for real variables is symmetric, but since we operate with
complex variables the matrix F will instead be hermitian, i.e. F = FI. Still, it will
only be necessary to calculate the elements on one half since the other is equal except
for the conjugation.

The averaging (hi,,) and the computation of the Fisher matrix is done over isotropic
realizations of the CMB for an ensemble of Monte Carlo simulations with the same noise
model and beam as the data to be analyzed. Some more details on the estimation of
these quantities is shown in section 5.4.

Hanson & Lewis show an analytical expression for F in the isotropic case, given by

[}-iso]lm,l/m/ — 5ll/6mm’ §
l1lo

(20 4+ 1)(2l2 + 1) (l h l2>2 (Ciy + Cip)? (3.49)

8T 0 0 O C’ltlotCthOt ’
where C’ltot =C;+ N;. For C; — bIQCl this agrees well with simulations.

3.1.4 Calculating the dipole amplitude and direction from the har-
monic modulation

From the estimator we get the dipole modulation in terms of a harmonic field ile, with
three values Bl,l, Blo and BH. How do we calculate the amplitude and the direction
from these parameters? The easiest way is perhaps to simply construct a map from
the hym's using HEALPix, and then find the point where it is the strongest. This is
somewhat time-consuming, so we rather want to calculate it directly from our estimated
harmonic modulation coefficients. We have the following relations between a spherical
and a cartesian coordinate system:

x = sinf cos ¢
y = sinfsin ¢ (3.50)
z = cosf.
In the convention we work with, on the sky map 6 goes from 0 on the north pole to
7 on the south pole, and ¢ goes from 0 on the center and increases towards the left,

becoming 27 after one rotation.
The spherical harmonics are related to the cartesian coordinates through

(3.51)
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when we assume a unit sphere. Our modulation field is decomposed in the usual way,

1
f(07¢) - Z hlmylm(67¢)7 (352)

m=—1

and writing out the sum, applying 3.51, we obtain

f(CU, Y, Z) = —\/%Re[ﬁu]u’ﬂ + \/glm[ﬁn]y + %\/%Re[ﬁlo]z. (3.53)

From this we see that we have

= \/%Im[ﬁu] (3.54)

However, since we don’t necessarily get these normalized after applying the estimator,
they will need to be normalized (since the direction vector p is a unit vector) through

ZLold
2 2 2
\/ Toa t Youa T Zoua

and so on. The angles can thus be readily calculated using equation 3.50. The amplitude
A of the dipole is found by taking the norm of the un-normalized vector,

T =

(3.55)

A= \/xc%ld +Yaa + 2ol (356)

3.2 Optimal maximum-likelihood (Eriksen, Hoftuft)

The exact methods of finding the parameters which maximizes the likelihood is based
on Metropolis-Hastings Monte Carlo methods, which explores the whole parameter
space and eventually settles around the true values. They involve explicitly calculating
the full likelihood in pixel space, which entails the factorization of the full covariance
matrix for each Monte Carlo cycle.

With the parameters denoted by )\, the Bayesian analysis framework is to find
the posterior probability distribution of the parameters P(j\]d), where d is the data,
through Bayes’ theorem ) )

. P(d|AN)P(N)
P(Ald) = P (3.57)

where P()) is the prior distribution of the parameters (often chosen to be uniform,
when assuming no prior knowledge of the parameters) and P(d|A) is the likelihood
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L(A). The probability P(d) is a normalization factor, which can be ignored when the
focus is to simply maximize the likelihood. The posterior distribution is then mapped
out by maximizing £ using a Markov Chain Monte Carlo method. This is done using
the Metropolis algorithm scheme: The next step in the random walk of parameter
exploration is always accepted if the new, proposal, likelihood has a larger value than
the previous one, and if it is smaller there is a certain probability that it may yet be
accepted. After a burn-in period the parameters can be estimated from the Markov
Chain, with the best-fit value being the mean and with variance corresponding to the
confidence of the estimation.

These methods have traditionally been strongly limited by computing power. Hoftuft
et al. (2009) [12] stated a time usage of ~ 50000 CPU hours at a resolution of Ngge = 32,
and the O(Ngde) scaling thus makes it virtually impossible to go much higher with
today’s resources (even with a cluster of 10,000 CPU’s available you would need two
weeks to complete the analysis for Ngqe = 64).
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Chapter 4

Implementation

In the previous chapter we outlined the mathematical formulas for estimating the dipole
modulation. Here we will present some of the more computational aspects of the
estimation procedure. Even though the QML approach is a lightweight method, there
are still concerns to be addressed, mainly with regards to how we solve the inversion
of the covariance matrix. This will be accomplished using the conjugate gradients
algorithm. We will also investigate the computational expense of our program.

4.1 The conjugate gradients algorithm

In the estimator we need the inverse-variance filtered signal, but in order to calculate
it we would need the inverse of the full covariance. This would be nearly impossible to
compute, as the matrix to be inverted would be huge. Instead, we use the conjugate
gradients algorithm, for which you can find a great introduction in Shewchuk (1994)
[27], on which this section is based. It is an algorithm for solving a linear matrix-vector
equation Az = b iteratively, and we will briefly outline the concept below. What we
wish to solve and obtain is the inverse-variance weighted signal in equation 3.46. It is
given by

0 = (chh~lg, (4.1)

where Cf ig the full covariance of the observed data. We can write this as

Cfull(:) —0
=[C+N©=06
=N"'c+116=N"'O
=[C7'+N7Yce=N"1e,

ignoring for the moment beams and mappings between harmonic and pixel space. C'is
here the isotropic covariance, diagonal and equal to Cj in harmonic space, and N is the
noise (including both instrumental noise, a sky-cut and removal of the monopole/dipole
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modes'), diagonal in pixel space. The CG method requires that the matrix A on the
left-hand side of Az = b is symmetric and positive-definite. That’s not necessarily the
case the way the equation is written here, with © as our z, so we need to modify it.
Only letting the expression in brackets be our A would solve the problem, but that
expression might not be numerically well-conditioned for the search. We modify the
equation through

:>[C_1/2 +N—1cl/2]cl/2(:) _ N—l@

:>[I + 01/2N7101/2]Cl/2(:) _ Cl/2N71(_).

The A in our equation is here the expression inside brackets, and our = C'/20. The
beams and conversion between harmonic and pixel space is incorporated as

1+ CY2p YNty yC?)0V26 = V2 yINTLe, (4.2)

where b; is the beam function in harmonic space and Y denotes mapping from harmonic
to pixel space, with YT being the opposite operation. These operations are done using
the HEALPix functions alm2map and map2alm, respectively. We thus solve for © in
harmonic space, which is what we need in the estimator as well. Of note is that the
equation is solved for real-valued spherical harmonics®, before we convert © to the
complex domain for inclusion in the estimator. The vectors are stored so that each
[ takes up 2l + 1 components, with the first of those components corresponding to
harmonic indices [, m=—I[, the next [, m=—I[41, and so on.

The basic concept of the algorithm is to minimize the quadratic form

1
flx) = §XTAX —blx +e, (4.3)
whose derivative is 1 .
(%) = §ATX + §Ax —b. (4.4)

For symmetric A, f'(x) = 0 yields the solution Ax = b. In order for the solution
to be a minimum of f(x), and not just a critical point, the matrix A needs to be
positive-definite. The CG algorithm is an improvement over the Method of Steepest
Descent, which seeks to find the minimum by always going in the opposite direction
of the gradient vector of f (which points toward where the function increases most
rapidly). The step length « is chosen so that we reach the point which minimizes f
along the line of the gradient. Depending on where we start and how the function
looks, the number of steps needed to converge could vary enormously. The Conjugate
Gradients method improves upon this by ensuring, through various techniques (mainly
by Gram-Schmidt conjugation and concepts such as A-orthogonality), that each new
search direction is orthogonal to all the previous ones, so that we never go in the same
direction twice. This means that if the dimension of the problem at hand is n, the

1See section 6.1
2See the appendix, section A.3.1
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search will be complete after at most n iterations (in practice there are roundoff errors
which complicates matters). However we do need a criterion for when to stop the search
and be satisfied, since the n in our case is (Imax + 1)2, which can be more than 1 million
and therefore the search would take a vast amount of time. How quickly the search
converges depends in large part on the condition number k of the matrix A, which is the
ratio of its largest to smallest eigenvalue. The closer this number is to 1, the better (in
the 2-dimensional case a small x makes the quadratic form appear like a spherical pit
with a well-defined minimum point, a large x could instead make the function resemble
a long trough or valley). This is also why preconditioning the system is so important
when the dimensions are large: The technique is to multiply the equation by another
matrix M ! on each side, so that we get

M~YAz = M~ 1. (4.5)

The preconditioner matrix M should resemble A, so that the product M ~!A becomes
close to the identity matrix (which has a condition number of precisely 1). A perfect
preconditioner would equal A, but then again, this wouldn’t help us at all since our
problem to solve would remain the same and we would need to invert A, which is what
we seek to avoid. So M should be chosen so that it is easily invertible but still resemble
A, by and large.

Note that the dimensionality of the problem, n = (Iax + 1)2, makes it impossible to
store the full matrices A and M explicitly. However, the act of multiplying with these
matrices are preserved, by storing the components making up the matrix or exploiting
its sparsity.

4.1.1 The algorithm

The following is the (non-preconditioned) algorithm for solving Az = b iteratively using
the CG approach, as outlined in Shewchuk:
Initial conditions:
ro = b— Axg
do =10
Iterative scheme:
rlr;
~ dT Ad; (4.6)

Tiv1 = T; + a;d;

&7}

rit1 =1 — a;Ad;
S 7}‘21”—1—1
Bit1 = W
dit1 = riy1 + Biv1d;.
The solution vector is x;11, and the iterations are run until the norm of the residual
vector 741 (which tells how far we are from the true solution) is smaller than some
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convergence criterion,

[T
rT
L (4.7
I — )
070

where e is chosen as a small number (in this work we set ¢ = 1.0 - 107%). The vector
d; gives the direction for the next step, and [; is a constant which makes sure it is
orthogonal to the previous directions. The preconditioned scheme is

Initial conditions:
ro =0b— Axg
do = M'rg
Iterative scheme:
o r;-rM_lri
“ o dl Ad (4.8)
Tip1 = T + ad;
Tig1 = 1 — o Ad;
7"@'7;1M717”z‘+1
rfM—1r;

dit1 = M i1 + B ds.

Bit1 =

4.1.2 Preconditioner

We will utilize the block preconditioner of Eriksen et al. (2004) [28] in this work. It is
not the fastest method out there, there is for instance the multigrid preconditioner of
Smith, Zahn and Dore (2007) [29]. The block preconditioner is an improvement over
the simple diagonal one. There, we approximate M ~ A as merely the diagonal of
A. This works quite well when A has very low values on the off-diagonal, but in other
cases we need improvements. The block preconditioner does this by approximating M
as a dense block equal to A, My, for a certain number of I’s, and as a diagonal,
Mygiag, for the rest. If the block is too large, the time needed to compute, invert and
apply it would outweigh the gain in number of iterations needed to reach our goal, so
it is important to find a good balance here. In addition a large block demands a lot of
computer memory. Our preconditioner matrix M would schematically look like

M = ([M%ock] Mgiag> _ (4.9)

The size of Ipiock is chosen between 50 and 70 in this work, with the time usage shown
in the coming section. The inversion of M is done by separately inverting the block and
the diagonal, and then putting them together again. The program uses either Cholesky
or LU factorization in the inversion of the block, and the size is not large enough so that
it makes much of a difference which one is used. The expression for the preconditioner
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Imod | Time (s)
40 0.001
64 0.004

100 0.015
128 0.027

256 0.18

512 1.3

1024 10.1

Table 4.1: The CPU time for the estimator on different [,,oq.

in harmonic space is
M iy = L irmy + v/ Cl(Nl;n{l/m/)Rv Ciby, (4.10)

where the expression for Nl;nl vy 18 shown below in equation 4.11 and the B denotes
conversion to real spherical harmonics. The Ijy, 11y = 0170y is the identity matrix.
Note that this preconditioner does resemble the A in our equation, as is our wish.

4.2 Computational expense

4.2.1 The estimator

The computational time of the estimator in equation 3.46 varies mainly with the size
of lmoq used. I have listed the CPU times® in table 4.1, for estimation of a single him
(the Fisher matrix of equation 3.49 was also calculated at the same time, to negligible
additional cost). The way the program is written the estimator should scale roughly
as O(I3 . 4), and this is reflected in the recorded times. The most important factor
in the calculation when it comes to computational expense is the calculation of the
second Wigner 3-j symbol. Regardless, the time usage is really rather insubstantial,
with only 10 seconds on our highest [,,,q. Compared to the time it takes to run the

entire program, this is really a mere drop in the sea.

4.2.2 The CG search

The time usage of the CG search varies strongly with the input data and with the
size of the block preconditioner. The construction of the dense Nl:n{l,m, part of the
block scales roughly as O(lf‘)lock), so a small increase in lyoc can cause a huge boost
in computational time. The size of the block also has the same scaling, so it eats up

memory rather quickly. The expression for the noise covariance in harmonic space is

3The program was run on an Intel® Core™ 2 Quad Q9400 2.66 GHz processor, clocked at 2 GHz
and utilizing only 1 core. The language was Fortran 95, compiled using the Intel® Fortran Compiler.
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Iblock | Time (s)
10 0.05
20 0.7
30 3.6
40 12
50 30
60 65
70 127
80 225

Table 4.2: The CPU times for the creation of the dense harmonic N~! block on different
sizes lblock-

given by, as shown in Hivon et al. (2002) [30] and Eriksen et al. (2004) [28],

) N @+ D@+ D@+ 1)
1 - X
Nlm,l/m/ ~ 41;)_; (_1)m an”m”\/ .

l//m// (4.11)

l l/ ll/ l ll ll/
X(O 0 0> (—m m’ m”)’

where the sum over I” goes up to lyax and np,,» are the “a;y,’s” of the inverse noise
model map. The CPU times for the calculations of this entire block up to different sizes
Iplock are shown in table 4.2, where the (’)(l4) scaling is apparent. In table 4.3 is shown
the time and number of iterations it takes to complete the CG search for different lpjoc-
Note that these figures are for a lower convergence criterion than what is used when
obtaining the analysis data, so the differences shown are smaller than what they would
be for a more strict criterion (for comparison, running the search with a convergence
criterion of € = 1079 in the case of Ik = 80 takes 202 iterations and 31min 20s to
complete). A plot of the convergence as a function of CG step is shown in figure 4.1.
The CPU cost to invert the block part of the preconditioner is shown in table 4.4, for
both LU and Cholesky decomposition (where LAPACK has been used to perform the
decompositions). Both methods scale as O(If,, ., ), with Cholesky being about a factor
2 faster than LU. Both these properties are reflected in the times shown.

-1

Calculating the diagonal part, IV, of the harmonic-space inverse noise covari-

ance for all [ up to lyax also takes some time, though it only scales as roughly O(I3,..)
and therefore is not very important in the bigger picture. These times are shown in
table 4.5.

The most important functions when it comes to the time usage of a single CG step
are those for conversion between pixel space and harmonic space; map2alm and alm2map
in HEALPix. With each step there are two of these, occurring when multiplying with
N~1, and they take roughly 8.5s combined for Nyge = 512, lnax = 1024. Both functions

are found to scale roughly as I3 .

m,lm>?
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Table 4.3: Number of iterations and CPU time to perform the full CG search on different
lplock- The data used is the foreground-reduced 7-year W band data (See section 6.2) from
WMAP on Ngge = 512 masked with the KQ85 mask, and the convergence criterion is

e=1.0-10"%

Table 4.4: CPU time spent to invert the block part of the preconditioner using either

Iblock | Time (min) | Iterations
No block | 16min 17s 105
50 | 8min 6s 51
70 | 7min 36s 46
80 | 6min 31s 41

Iblock | Time LU | Time Cholesky
No block | Os 0Os
50 | Omin 20s | Omin 10s
70 | 2min 36s | 1min 20s
80 | 6min Os 2min 53s

LU or Cholesky decomposition.

Note also that when we are running the program on an ensemble of simulations,

it is enough to compute the preconditioner only once, since it will be equal for all

simulations. In practice it is precomputed beforehand.

Imax | Time (s)
128 0.1
256 0.7
512 4.8

1024 35.7

Table 4.5: The CPU times for the construction of the diagonal harmonic lel on

different sizes [ax-

m,lm
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—— CG convergence

I I I I
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CG step

T,
Figure 4.1: Plot of the CG convergence :iT:; as a function of step i, for the 7-year
0

foreground-reduced V-band on Ngqe. = 512 with the KQ85 mask, using an o of 70.



Chapter 5

Analysis of simulations

In order to trust our code and algorithms it is pivotal that we test them on realistic
simulated maps, and see if the analysis turns out as expected. In addition, simulations
will need to be performed in order to calculate the mean estimator noise and to construct
the Fisher normalization matrix, to be used with further analysis.

5.1 Creating simulated maps

Recall that the CMB temperature field map is decomposed into spherical harmonics
through (equation 2.1)

o) l
AT(0,0) =0(0,6) = > > aimYim(0,9).

1=0 m=-1

In an isotropic model, we assume our a;,;,’s to be drawn from a Gaussian distribution
with variance ;. Since the modulated map is constructed from an inherent isotropic
signal the first part of the simulation procedure is the same. Our simulated CMB map
will be created from a;,;,’s calculated using a Gaussian random number generator, and
we use the WMAP best-fit for the standard ACDM model as our C;’s. We only need
to calculate a;y,’s for positive m, since a;—,, = (—1)™aj,,. We draw two real numbers
x and y and construct the complex ajy,:

if m > 0 then
x = gauss(0,1), y = gauss(0,1)

1C)
Al = é(ac—i—zy)

else if m = 0 then (5.1)
x = gauss(0,1)
Al — Cl.%'

end if,
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where gauss(0, 1) describes a random normal Gaussian number with mean 0 and vari-
ance 1. We used the HEALPix function rand_gauss as the random number generator.
Having these a;,,, we can construct the map with HEALPix using alm2map. Our range
for [ is lmax = 2 - Ngige throughout the thesis, Ngqe being the resolution parameter
for the map. A dipole modulation is created simply by choosing an amplitude A and
direction P, and then modifying the isotropic map ©° in pixel space through

O(h) = (1 + Ap - h)O™°(n). (5.2)

Next we need to include beam smoothing and pixel window, which is done by moving
back into harmonic space (using the HEALPix function map2alm) and multiplying,

A, = Qi - biprs (5.3)

with b; being the instrumental beam (see equation 2.6), and the pixel window p; is
provided by the function pixel_window for different resolutions Nggqe. Finally, we need
to add random Gaussian pixel noise of a certain strength,

O(n) = O(n) + o, (n) - gauss(0, 1), (5.4)

where o, is the noise rms (100 pK or less in our usage), usually homogeneous for
simulations unless we use the exact noise model from the data maps. Example simu-
lations (without noise) were shown in figure 2.2 on page 21. All our simulations use
an instrumental beam of 0.35 degrees, equivalent to the WMAP V-band, unless noted
otherwise.

5.2 Verification of unbiasedness

We construct a number of simulations and create histograms of the distribution in
analyzed values of the dipole parameters A, 6 and ¢. Ideally the difference between
estimated and true values, A— Atrue, should have mean 0 and be normally distributed
about the mean with standard deviation resembling the uncertainty of the estimator
and the data. We will also look at how the estimator behaves with the number of
modes we use in the estimation. Unless noted otherwise, we use o4 = lmax = 2 Nside-

In the first two sections, simulating full-sky maps, we have used the analytical Fisher
matrix of equation 3.49 and not subtracted the estimator noise (ile> The analytical
expression is found to match well those obtained from simulations, and the estimator
noise should be negligible for purely isotropic full-sky maps.

We then construct simulations with a sky-cut present, where the Fisher matrix and
the estimator noise are created from the h;,, obtained from the estimator.
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Parameter | Estimated value | Relative error | Standard deviation
A 0.100005 5.0-107° 3.25-1073
0 1.90148 7.8-107* 3.19 - 1072
) 4.05126 3.1-107% 3.33- 102

Table 5.1: The mean estimated values of A, # and ¢ for 1000 simulations and Ngge =
512. The lyoq in the estimator is 2 - Nggo = 1024. Input is (4,6, ¢) = (0.1,1.9,4.05).

5.2.1 Simulations with a dipole modulation

Here we have constructed simulations with a dipole of amplitude 0.1, and direction®
(0,¢) = (1.90,4.05) ~ (109°,232°) (which is to the south-east on the projected sky-
maps), having Ngge = 512 and an instrumental beam of 0.35 degrees. Table 5.1 shows
the mean estimated values for 1000 simulations using the isotropic Fisher normaliza-
tion. The noise model used is the average noise rms of the W band?, equal to 67.2 uK
per pixel. We see that the input values are very well estimated indeed. The standard
deviation was calculated from Var(z) = 1 3 (2; — p,)?. Calculating the 68% confid-
ence intervals directly from the simulations by taking the 16% and 84% highest values
estimated the results are

A = (0.09686,0.10316)

0 = (1.86853,1.93384) (5.5)

¢ = (4.01990, 4.08151).

Histograms from the simulations are shown in figure 5.1. These simulations indicate
that the estimator is unbiased as it should be. In figure 5.5 histograms for 10000
similar simulations on Ngq. = 32 are shown, and again we see that the estimator seems
to be unbiased. The 68% confidence intervals match fairly well the standard deviation,
indicating that the estimator yields a Gaussian distribution of estimates.

5.2.2 Simulations without a modulation

Without a modulation present, the estimator still yields a non-zero value for the amp-
litude A. This is to be expected, since the amplitude by design is chosen to be non-
negative; we are in effect looking at the absolute value. The distribution of the estim-
ated amplitudes in this case resembles more the Rayleigh distribution3. We ran 1000
simulations with Ngge = 512 and again using the average noise rms of the W band,
and employing the analytical Fisher normalization. The mean estimated value of A
was A = 5.0322 - 1073, and the 68% confidence interval (calculated as for the dipole

!The directions are given in the HEALPix convention, where 6 is the co-latitude (0° at the north
pole of the map, 180° at the south), and ¢ the longitude (being 0° at the center and moving leftwards
on the map, reaching the center again at 360° after one rotation).

2See section 6.2.1

3The Rayleigh distribution goes as the normal distribution multiplied by z, f(z;0) = %6712/027
for non-negative z. It thus rises rapidly from 0 (depending on o), and exhibits a drawn-out tail.
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0
0.09 0.092 0.094 0.096 0.098 0.1 0.102 0.104 0.106 0.108 0.11
Estimated A

0
1.75 1.8 1.85 1.9 1.95 2 2.05
Estimated 6

3.9 3.95 4 4.05 4.1 4.15 4.2
Estimated ¢

Figure 5.1: Histograms of 1000 simulations on Ngge = 512 with input modulation

(A,0,¢) = (0.1,1.9,4.05).
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lmoda | (A) 68% 95%
10 | 0.186 0.22 0.34
40 | 0.0484 0.056 0.085
64 | 0.0304 0.036 0.053
100 | 0.0179 0.023 0.035
128 | 0.0153 0.018 0.026
256 | 7.58-1073 | 8.8-1073 | 0.014
512 [ 5.29-1073 [ 6.2-1073 | 9.3-1073
1024 | 5.03-1073 [ 6.0-1072 | 9.0- 1073

Table 5.2: Expectation value of A for isotropic simulations on different l,0q4, using
average W-band noise rms. Also shown are the 68% and 95% highest A measured.

simulations above)

A= (2766 -1073,7.210 - 1073). (5.6)

The standard deviation was 2.181 - 1073, A histogram of the estimated A is shown
in figure 5.2, and we can see, as expected, that there is somewhat of a bias in the
reported amplitude for no modulation. The estimated direction, however, is more or
less random in the case of no modulation. To show this I have repeated the estimation
on a much smaller Ngqe of 32 and done 10000 simulations with pixel noise a hundredth
of the full case (to get similar signal-to-noise, since the harmonic-space noise model
is N = O'S - 47 /Npix, where o is the pixel noise rms. This gives a scaling by Npix.).
A map of the distribution of estimated dipole directions is shown in figure 5.3, and it
pretty much resembles random noise. Compare this to the case when we do have an
input modulation, shown in figure 5.4. Note that the variance of the estimates on this
resolution is a lot higher than in the Ngqo = 512 case (as evidenced from the histograms
of figure 5.5 vs figure 5.1), so a similar distribution for that size would be even more
focused around the true values than here. What seems to be clear is that if we estimate
an amplitude substantially larger than 0.01 on an Nggq. = 512 map using all available
[ in the estimation, this should indicate evidence of a true dipole modulation being
present, and we should also have some trust in the estimated direction. For lower
Imod, the uncertainty is higher, so a higher value of A is expected for isotropic signals.
Running 10000 simulations on the Ngg4e = 32 map with no modulation, we get a mean
A = 3.04 1072, which is quite a bit higher than in the l,0,q = 1024 case (using an
Ngige = 32 instead of an Ngqe = 512 map gives similar results for the same [,,q as long
as the noise is similar, evidenced by comparing with 500 simulations of the full case,
see figure 5.6). Table 5.2 shows the expectation value for A for isotropic simulations
on different l,,0q.
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250 T T

] -

0
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
Estimated A

Figure 5.2: Histogram of 1000 simulations on Ngqe = 512 with input A = 0.

Figure 5.3: Map of estimated dipole directions for Ngqe. = 32 and input A = 0.

o.o0 I - +56. ¢

Figure 5.4: Map of estimated dipole directions for Ngge = 32 and input (A,60,¢) =
(0.1,1.9,4.05).
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Figure 5.5: Histograms of 10000 simulations on Ngge = 32 with (A,0,¢) =
(0.1,1.9,4.05).
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Figure 5.6: Histogram of 10000 simulations on Ngge = 32 (upper) and 500 simulations
on Ngige = 512 (lower) with input A = 0.

5.2.3 Simulations with a sky-cut

Here we perform simulations using the same sky-cut as we will employ for analyzing
the real data, the KQ85 mask (figure 2.4). Earlier we only looked at full-sky simu-
lations, but since the data will need to be analyzed with a mask we should take this
into consideration when comparing with simulations. These simulations, for no dipole
modulation, will in turn be used to construct the Fisher matrix and estimator noise to
use in the analysis. For 1280 isotropic simulations using complete 7-year W-band rms
noise and a beam of 0.22 degrees, the mean estimated values of A as well as the 68%
confidence intervals (calculated from the 16% and 84% highest estimated values) are
shown in table 5.3. Similar results were obtained on the V- and Q-bands. Histograms
of the W-band simulations for a variety of l,,q are shown in figure 5.7.

For simulations with a modulation and a sky-cut results are shown in table 5.4
with histograms in figure 5.8. Here, we have constructed 1000 simulations using V-
band noise and beam, and employing an input modulation of 0.05 amplitude. The
estimator is largely unbiased also with the sky-cut present, though the estimates are
shifted to slightly larger values for higher {. These higher [ are also where the noise
becomes dominant over the signal. The significances of the estimates compared with
the pure isotropic case increase with [ however, also when looking at the low end of the
confidence interval. Also, as expected, the confidence increases with [.

Similarly to the simulations with no sky-cut, I have created maps of the estimated
dipole directions for modulated and unmodulated signals. For clarity the directions
have been projected onto a low-resolution Nggqe = 32 map (since the sample size of
1000 simulations is not very large compared to the number of pixels at full resolution).
These maps are shown in figure 5.9.
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lmod | (A) 68% confidence

10 | 0.197 0.115, 0.277)
25 | 0.0858 | (0.0488, 0.1205
40 | 0.0547 | (0.0310, 0.0784

200 | 0.0112 | (0.0067, 0.0161
0.0031, 0.0076
0.0026, 0.0067

500 | 0.0054
1000 | 0.0046

(
( )
( )
64 | 0.0343 | (0.0197, 0.0481)
100 | 0.0216 | (0.0124, 0.0308)
( )
( )
( )

Table 5.3: Expectation value of A for isotropic simulations with the KQ85 sky-cut on
different l,,0q4, using W-band noise rms. Also shown is the 68% confidence intervals.
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Figure 5.7: Histograms of 1280 isotropic simulations equivalent to the 7-year W-band.
The lnoq are, from left to right starting at the top: 10, 25, 40, 64, 70, 80, 100, 200,
300, 400, 500 and 1000.
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lmod | (A) 68% confidence || (d) | Confidence || (¢) | Confidence

10 | 0210 | (0.122, 0.294) || 1.69 | (0.88, 2.45) | 3.46 | (1.62, 5.23)
25 [ 0.100 | (0.0562, 0.1432) || 1.74 | (1.16, 2.31) || 3.77 | (2.74, 4.89)
40 [ 0.0778 | (0.0470, 0.1075) || 1.82 | (1.34, 2.28) || 3.98 | (3.35, 4.69)
64 | 0.0656 | (0.0437, 0.0878) || 1.91 | (1.60, 2.22) || 4.08 | (3.66, 4.51)
100 | 0.0566 | (0.0424, 0.0704) || 1.91 | (1.71, 2.11) || 4.07 | (3.78, 4.36)
200 | 0.0495 | (0.0427, 0.0564) || 1.89 | (1.78, 2.01) || 4.10 | (3.95, 4.25)
500 | 0.0587 | (0.0546, 0.0631) || 1.83 | (1.77, 1.89) || 4.11 | (4.07, 4.15)
1000 | 0.0557 | (0.0515, 0.0597) || 1.88 | (1.81, 1.93) || 3.77 | (3.74, 3.79)

Table 5.4: Expectation value of A, 6 and (5 for modulated simulations with the KQ85
sky-cut on different I,,,q4, using V-band noise rms. Also shown is the 68% confidence
intervals. The input modulation was A = 0.05, 6 = 1.9, ¢ = 4.05.
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Figure 5.8: Histograms of 1000 modulated simulations with 7-year V-band noise. The
lmod are, from left to right starting at the top: 10, 25, 40, 64, 70, 80, 100, 200, 300, 400,
500 and 1000. The input modulation is A;, = 0.05, and the histograms are of A — Aj,.
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(a) Imoa = 64, no modulation. (b) lmoa = 64, A = 0.05.

(¢) Imoa = 100, no modulation. (d) lmoa = 100, A = 0.05.

(e) lmoa = 200, no modulation. (f) Imoa = 200, A = 0.05.

(g) lmoa = 500, no modulation. (h) lmoa = 500, A = 0.05.

Figure 5.9: Maps of the estimated dipole directions for simulations using V-band noise,
at different l,0q.
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5.3 Estimating confidence and statistical significance

For isotropic simulations, we will look at the 68% and 95% levels of estimated values
of A, to later compare with what we find in the real data. The significances of possible
detections of dipolar assymetries in the data will be calculated in the pure frequentist
manner of calculating the probability of a simulation to yield the same amplitude,
simply by adding up the number of simulations giving higher or equal amplitude and
dividing by the total number of simulations. This method requires a large sample of
simulations in order to obtain reliable results, and for the most part we have constructed
1000 simulations corresponding to each dataset.

5.4 Determining the full Fisher matrix

We determine the full Fisher matrix for use with analyzing data by calculating it
from isotropic simulations with a sky-cut and noise similar to the data and with the
appropriate [,0q in the estimator. The Fisher matrix is given as the covariance matrix
of the variables. The covariance of two complex random variables x and y is given by

Cov(z,y) = E[(x — pz)(y — 1ty)7]

. (5.7)
= Elzy*] — papy,
where (1, = E[z]. We estimate the covariances through
1 n
Covly) = 5= 2 (i = )i = i)’ (5.8)
1=
where the mean has been estimated by p, = %Z?:l xz;. Our 2’s and y’s are the

harmonic modulation parameters hq,,, ordered in vector form as

Our full Fisher matrix then becomes
COV(E~1—1,~B1—1) COV(iL}—hfllo) COV(iL}—l,flu)
F =\ Cov(hio,h1-1)  Cov(hio,h10)  Cov(hio,h11)
Cov(hi1,hi—1)  Cov(hii,hig)  Cov(hi, hi1)

We invert this matrix of complex numbers using the LAPACK utilities ZGETRF and
ZGETRI.
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Analysis of WMAPT data

The WMAP team has argued, using their version of the quadratic estimator outlined
in this work, that there is no significant evidence of a dipolar asymmetry in the CMB
data. In this chapter we will do our own analyses and see if the WMAP team is correct,
or if the claims from using other methods are still significant.

6.1 Template cleaning

In chapter 4 we described the conjugate gradients method for finding the inverse-
variance weighted signal. The noise model for our CG search includes, in addition
to the uncorrelated pixel noise, a template cleaning scheme. This serves to remove the
monopole and dipole modes from the map, which are contaminated by the kinematic
movement across the sky. The noise data model can then be written as

ot =1+ T a, (6.1)

where n is the pixel noise, 7" is a matrix of template maps (monopole and dipole) of
size 4 X Npix, with a being a coefficient vector denoting the strength of the templates.
Taking the covariance of this we get

Niot = (ntotng;t> = <(7”L + TTa)(n + TTa)T> = <nnT> +77 <aaT> T. (6.2)

Here <nnT> = N is the ordinary covariance of the pixel noise. The covariance of the
template coefficients, <aaT> = (%, is taken do be ~ co. Thus we have

Nt = N +TTC,T, (6.3)
with the inverse given by

Not= (N+TTCT) " =N = NI (G 4 TN ITT) T TN (6.4)
~ N - N (TN T TN (6.5)
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(a) Monopole. (b) Dipole in z-direction.

| — 100

~t.00

(c) Dipole in y-direction. (d) Dipole in z-direction.

Figure 6.1: Template maps.

where the decomposition of the inverse in the second equality has been done using the
Sherman-Morrison- Woodbury formula [31]. The four templates are shown in figure 6.1.
By adding a quite large monopole and dipoles to isotropic simulations, we find that
this scheme works as it should. Note that this only removes the kinematic dipole; the
(possibly primordial) dipole modulation we are interested in analyzing should extend
to all scales. The ordinary pixel noise covariance IN also incorporates the mask, setting
N~ to zero for masked pixels.

6.2 Analyzing the full data set

The QML estimator allows us to analyze the full data set, without having to downgrade
and smooth the data. Since the original data is strongly contaminated by foregrounds,
we mainly use the foreground-reduced data sets provided by the WMAP team on
LAMBDA!. We will use the KQ85 mask and 7-year data unless otherwise noted. To
more directly compare with the results obtained by Hanson & Lewis (2009) and Hoftuft
et al. (2009), the 5-year data will also be analyzed.

'LAMBDA is NASA’s web page for WMAP and other CMB projects, http://lambda.gsfc.nasa.
gov/.
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Frequency | Q-band | V-band | W-band
oo | 2197 uK | 3137 uK | 6549 uK

Table 6.1: The values of ¢ for each frequency band.

6.2.1 Creating the noise rms maps

When analyzing the full data set, we need to use the real noise data. The WMAP
sky maps are released every two years, and so far the 3-year, 5-year and 7-year data
are available. There is a certain inherent electronic noise to each pixel, but with each
release the impact of this noise is lowered, since there are more observations of each
point on the sky. The relationship between pixel noise and number of observations is

g0
)
Nobs

o =

(6.6)

where o is the final noise rms, oy the inherent noise rms of each pixel, and Nps the
number of observations. The values of ¢ are provided on LAMBDA, and are shown in
table 6.1. The value of Ngps is given in the sky maps, and calculated 7-year noise rms
maps for the three frequencies Q (41 GHz), V (61 GHz) and W (94 GHz) are shown
in figure 6.2. The complicated structure is due to how the WMAP satellite scans the
sky, so some pixels get more observations than others. For instance, the ecliptic poles
get the highest number of observations as they are scanned with each hourly spacecraft
precession, and this is reflected in the blue regions on the noise maps. For details on
the scanning strategy see [23].

6.2.2 Analysis results

The full data is analyzed by creating the Fisher matrix from an ensemble of isotropic
Monte Carlo simulations, where the simulations employ the same mask and noise model
as the data in question. We have performed 1000 simulations unless noted otherwise,
and the CG search for both the data and the simulations has been done to a precision
of € = 1.0 - 1075, We first compare our results at low l0q with those obtained by
Hoftuft et al. [12], and then extend our analysis to include all possible I, to compare
with Hanson & Lewis [18] and Bennett et al. [17].

Results from a low-[ analysis

The reported results from Hoftuft et al. are shown in table 6.2, for the data sets directly
comparable to those in our analysis. It should be kept in mind that their analysis is
for the 5-year data, however.

Running our estimator on the W-band up to an l,,q = 64 we get an amplitude
A = 0.0696 and direction (0,$) = (111°,223°), which is very consistent with their
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(c) W-band.

Figure 6.2: Noise rms maps for 7-year WMAP data, in units of uK.
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Data lmod A (0,9)
V-band 40 | 0.119 £0.034 (112° 2240) + 24°
V-band 64 | 0.080 £ 0.021 (112° 2320) + 23°
( )
( )

V-band 80 | 0.070 £0.019 | (107°,235°) £ 22°
W-band 64 | 0.074 £0.021 | (112°,232°) £ 24°

Table 6.2: The reported results from Hoftuft et al. (2009) [12], using maps downgraded
to Ngde = 32. The downgraded mask was created as outlined in section 2.2.4, and is
based on the KQ85 mask. The confidence regions are 68%.

results. On the V-band we get, where the subscript denotes l;04,

Ago = 0.0918, (B, )ao = (104°,209°)
Ags = 0.0705, (B, $)gs = (113°,222°)

Aso = 0.0423, (0, d)so = (102°,228°).

These results are for the most part consistent with their given confidence regions, except
for the amplitude value at l,,,,q = 80, which is off by 0.009, or roughly 18%. They also
performed analyses using an extended mask? based on KQ85, and comparing with those
we again get consistent results across all bands. For the Q-band on l,,q = 64 they
reported an amplitude A = 0.088 + 0.022 with direction (6, ¢) = (111°,245°) + 23°,
while we get

A=0.075, (0,¢)=(113°,224°).

Our results for the amplitudes are well outside the 68% confidence regions calculated
from our isotropic simulations. For l,,,q = 64 they are also outside the 95% region for
all bands (the upper limit is 0.0656, 0.0650 and 0.0656 for the V-, W- and Q-bands,
respectively).

For a more direct comparison we have also analyzed the 5-year data on the V-band,
using the 5-year KQ85 mask. The results are

ARYT = 01090, (6, ¢)35 = (100°,214°)

A2 = 0.0711, (0, )5} = (109°,219°)

AR = 0.0454, (B, )5 = (98°,227°),
which is also consistent with their analyses, again apart from ly,,q = 80. Also here the
reported amplitudes are well outside the 68% confidence levels, and for the two lowest
Imogq they are also outside the 95% level.

There is an indication, however, that the amplitude tends to decay with ,,,4, which
is what will be explored further in the full analysis below. This behaviour was only

2Their extended mask was constructed by smoothing with the same beam as the data, and setting
all resulting pixels having a value less than 0.99 to 0, and the rest to 1. Compared to the other approach
this resulted in maps that masked out an additional 10% of the sky.
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hinted at by Hoftuft et al., while both Hansen et al. and Hanson & Lewis clearly showed
signs of such a trend being present.

The fact that our results deviate from those of Hoftuft et al. when the [,q is
as high as 80, could possibly point to that the approximation of one iteration in the
quadratic estimator is not valid for higher [,,,,4. The likelihood gets more focused with
including more data, so the iterative method might perform worse on the resulting,
steeper function.

Results from a full analysis

Here we perform the full analysis for several different l,,,q4, extending all the way up
to the maximum [ available. We add that for the low-/ analysis above our values also
seemed to be consistent with those shown in the graph of FIG. 3 in Hanson & Lewis.
Of special note in that graph is the big drop in amplitude from [,;,o,q = 64 to l;0q = 100.
For the 7-year W-band the values we obtain are

Aq00 = 0.0262
190 = 1.72 = 99°
bro0 = 4.38 = 251°,

where the amplitude seems to be in close agreement with the results of H& L. With the
Fisher matrix given from 1280 simulations with the KQ85 mask and W-band rms noise,
the results for a number of /,,,q are given in table 6.3. These results seem to confirm
the indication that the reported amplitude drops considerably the more I’s we include
in the analysis, though we note that the direction seems to be relatively stable across all
13 different values of l,,04 in this analysis (in fact, only 0.16% of the simulations show an
equally compact clustering® of directions with different l,,,q. For the Q- and V-bands
the result is similar; 0.2% and 0.4% respectively.). The estimated amplitude together
with that expected from simulations is shown in figure 6.3, along with the corresponding
68% confidence intervals of the simulations. Maps of the dipole directions are shown in
figure 6.4. The amplitude “hovers” around the edge of the confidence interval, except
in a few places where it is notably higher. Based on the simulations we have also
calculated the probability for a simulation to have higher reported dipole modulation
amplitude than the data (simply by adding up how many give a higher amplitude
and dividing by the total number of simulations), and the result is shown as the red
curve in figure 6.5(b). This matches somewhat the trend shown in Bennett et al. and
the significance plots in H& L. We do however get some weird results for higher l,4q,

3How clustered the different estimated directions are have been found by calculating the highest
angular separation on the spherical surface between two directions. The maximum separation is 180°,
so this simple method does not serve to finding out if the directions extend over the entire sphere. It
also does not distinguish between cases where only a few outliers make the separation much larger than
for most of the estimated directions, or cases where the directions are completely randomly spread.
However, remedying this by e.g. throwing away the 20% highest separations in each case does not give
particularly different results.
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namely the steep increase in amplitude / decrease in probability towards the end. This
could possibly be related to there being some residual signal power above our chosen
Imax = 2+ Ngide = 1024 for this band, which could be tested by repeating the analysis for
e.g. lmax = 1400. Regardless, the probability is highly dependent on the choice of l;,0q
in the estimator. Interpreting such a probability as statistical significance, this seems
to support Bennett et al.’s notion that the a posteriori choice of [,,,q could inflate the
statistical significance of the asymmetry.

When analyzing the V-band data this increase towards the end is not seen, and our
results seem to be in good agreement with H&L throughout. Plots of the estimated
amplitude as function of [,,q and the probability of a simulation to report higher
amplitude for all three bands are shown in figure 6.5, and confidence regions are included
in figure 6.6. The lowest probabilities we see are for l,,0q = 40 and l,,,q = 64, though
the grid in [y,0q is quite coarse. Bennett et al. did a similar calculation for a finer grid
and found the probability to be lowest at [,04 = 67. The lowest probabilities we find
are 0.007 (Q-band), 0.01 (V-band) and 0.014 (W-band) using our coarse grid.

Repeating the analysis for a fine grid in the V-band, to compare with Bennett et
al., we find like them the probability to be lowest at l,,q = 67, with only 1% of the
simulations showing as high amplitude. A plot of this is shown in figure 6.7, which
matches very well their result up to at least l,q = 200 (the differences at higher
multipoles could be due to the fact that their plot is for the coadded V+W band
while we have analyzed the V-band only). The other low spikes occur at I, = 15 and
lmod = 37, with probabilities of 0.013 and 0.016, respectively. Comparing the estimated
directions on this fine grid, only 0.2% of our 1000 simulations show a comparably
clustered set of estimated directions at different [,,q. The data shows as little as
75° separation, and throwing away the 20% largest separations for the data and each
simulation, to minimize the effect of outliers, results in the probability only staying at
0.2%. For the Q-band the behaviours are similar, however, none of the 1000 simulations
have as clustered estimates of the direction as the data. This increases to 0.1% when
discarding the 20% largest separations. For the W-band as well, none of the simulations
show as clustered directions as the data.

The same trends are seen when applying the KQ75 mask, where we have restricted
ourselves to the V-band. The lowest probabilities are at | = 40 and [ = 64 (for
the coarse grid of 13 different [,,0q) and there is a decreasing amplitude. Also here
the reported direction stays more or less constant, with only 0.1% of the simulations
showing a similarly dense clustering on the coarse grid and 0.5% on the fine grid. The
direction is consistent with the other results, with (é, (5) being (109°,203°) at ly0q = 64,
and (109°,227°) at lyneq = 100. The maximum separation between two directions is
79°. Plots of the amplitude and significance compared with the KQ85 case are shown
in figure 6.8.

The 5-year data, where we also have restricted ourselves to the V-band, show the
same trends with regards to the clustering of directions, with only 0.1% of the simu-
lations being as clustered for the fine grid. The estimated directions are also similar
to the other cases. The p-values for the amplitudes are generally somewhat lower, but
follow the same pattern, specifically they are 0.4% at l0q = 37 and 0.1% at 04 = 68.
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Figure 6.3: Amplitude vs l0q for 7-year W-band data (solid black) compared to the
expectation from simulations (dashed black) and their 68% confidence intervals (dashed
grey) on Ngge = 512.

In general the differences are much smaller between the year-sets than for these two
spikes.

These results suggest that something is indeed going on with regards to an asym-
metry in a certain direction on the sky, but that it should be described as something
else than the simple dipole modulation extending to all scales, as that model does not
yield particularly strong significances on the amplitude when [,,,q4 is increased above
~ 80. It can be noted that the amplitude is consistently estimated as higher than the
expectation value, however (apart from a few drops below in some of the data sets).

Results for raw maps

To investigate if the foreground-subtraction has an effect on the observed asymmetry
we should also analyse the raw data maps. This has been done in detail for the V-band,
and the data again give similar results (somewhat higher amplitude), and consistent
directions across all [,,,,q, with none of the simulations being as clustered for the coarse
grid, and 0.1% for the fine grid. The significances are consistently higher than for
the foreground-reduced case, confirming the results of H&L, and plots of both the
amplitude and the significance are shown in figure 6.9. Although the results are shown
explicitly only for the V-band the trends are the same also for the other bands.

Using the KQ75 mask the behaviour is similar, but we see from the plot that the dif-
ferences in significance between the foreground-reduced and the raw maps are smaller.
The difference in amplitude is also smaller. For this mask 0.3% of the simulations have
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~

lmod A 0 d)
10 | 0.290 | 139° | 256°
25 | 0.0974 | 143° | 237°
40 | 0.0888 | 107° | 208°
50 | 0.0628 | 96° | 219°
64 | 0.0696 | 111° | 223°
100 | 0.0262 | 99° | 251°
200 | 0.0161 | 105° | 240°
500 | 0.0090 | 91° | 263°
1000 | 0.0112 | 97° 242°

Table 6.3: Estimated dipole values for W-band 7yr data on different l0q.

(a) lmoa = 10 (b) lmoa = 25. (C) lmoa = 40.

(d) lnoa = 64. (€) lmoa = 100. (£) Lmoa = 200.

() lmoa = 500. (h) lnoa = 1000.

Figure 6.4: Maps of the dipole directions on 7-yr W-band data estimated for different
Imod- For convenience the maps are greyed out where p - > 0.25.
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(a) Estimated amplitude as function of lyeq. The dashed lines give the expected
value for isotropic simulations.
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(b) Probability of a simulation reporting higher amplitude than the data, as a
function of lmoq.

Figure 6.5: Comparisons of the estimated amplitude for simulations vs 7-year data. In
both figures the Q-band is green, V-band blue and W-band red.
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(a) T-year Q-band.

(b) 7-year V-band.

(c) 7-year W-band.

Figure 6.6: The estimated amplitude (black) versus the expectation from simulations
(dashed black) and the respective 68% confidence regions (grey-shaded).
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Figure 6.7: Probability of a simulation to yield as high estimates of A as the 7-year
V-band data, for different l,,,,q using a fine grid.

V-band W-band Q-band
lmod A 0 b A [ b A 0 b
40 || 0.0918 | 104° | 209° || 0.0888 | 107° | 208° || 0.0987 | 105° | 209°
64 || 0.0705 | 113° | 222° || 0.0696 | 111° | 223° || 0.0748 | 113° | 224°
100 || 0.0263 | 111° | 243° || 0.0262 | 99° | 251° || 0.0292 | 106° | 238°
200 || 0.0123 | 113° | 237° || 0.0161 | 105° | 240° || 0.0143 | 105° | 224°
500 || 0.0084 | 94° | 234° || 0.0090 | 91° | 263° || 0.0078 | 114° | 226°
1000 || 0.0081 | 91° | 204° || 0.0112 | 97° | 242° || 0.0077 | 114° | 227°

Table 6.4: Estimated dipole values and directions for various 7-year data using the
KQ85 mask, on different l;,,4.
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(c) Plot of significance (fine grid, different simulations).

Figure 6.8: Comparison of results on the 7-year V-band using KQ85 (solid) or KQ75

(dashed) masking.
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(a) Plot of amplitude (KQ85). (b) Plot of significance (KQ85).

(c) Plot of significance (KQ75).

Figure 6.9: Comparison of results on the 7-year V-band for foreground-reduced (solid)
or raw (dashed) maps. The thin line in (a) is the expected value.

an equally compact set of estimated directions. This analysis has only been performed
on the V-band.

As a way to summarize, figure 6.10 shows all the different estimated directions
across all [,0q for the different bands, projected onto an Ngg. = 16 map, and table 6.5
gives an overview of the clustering compared to simulations.

6.2.3 Using more than one iteration in the estimator

The assumption that we should get good results using only one iteration ought to be
tested. We won’t be doing that in this thesis, but leave it as a problem for future
work, and we will present the basic concept here. The iterative estimator for the dipole
modulation is

h,41 =h, + 7, '[h, — (h,)], (6.7)

where we have ended it after one iteration assuming no initial modulation hy.
In equation 3.20 we said that the inverse-variance weighted signal was

0 = C Y00,
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Figure 6.10: All the different estimated directions across 222 values of [0,q. The
data included are the 7-year V-, Q- and W-bands, both foreground-reduced and raw,
employing the KQ85 mask, as well as the raw and reduced 7-year V-band using the
KQ75 mask, and the 5-year reduced V-band using the KQ85yr5 mask.

Frequency V-band W-band Q-band
Data set || 85red | 85raw | 7Dred 853;3 85red | 89raw || SPred | 8Oraw
ydata 75° 72° 79° 80° 75° 73° T1° 51°
P(osim < gdatay 1 0.2% | 0.1% | 0.5% | 0.1% 0 0 0 0

max — max

Table 6.5: Clustering of estimated directions across 222 different values of [;,0q4, where 9
is the highest angular separation between two directions. The number details the mask
used, and the subscript if the data is raw or foreground-reduced. Unless specified the
data is 7-year. A probability of 0 means it could not be inferred since no simulations
were as clustered as the data.
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assuming no modulation. This is correct for the first iteration. For the second iteration,
we need to assume the modulation we got from the first iteration, thereby repeating the
CG search with the intrinsic covariance not being quite equal to the isotropic C;. The
new Fisher matrix and mean must then be computed from an ensemble of simulations
using the results from their second iterations. Thus, the hard part is computing the
inverse-variance weighted signal from a non-isotropic intrinsic signal covariance. We
have already computed an expression for this new power spectrum, to first order in
the modulation, in chapter 3 (equation 3.35), if we set [ = 1. Computing the Gaunt
integral we get

2004 1)(20" 4+ 1)
47

o 2-1+1
Cl/m/,l”m” :5l/l”5m/m”cl’ —+ (—1) [Cl’ + Cl”] \/( )(

(0 0 0) Zflm(mrlr; Tlr;/>

m=—1

(6.8)

For the fi,, we then insert our first estimate of the dipole modulation coefficients. On
the diagonal this new covariance turns out to be the isotropic Cj, since the 3-j symbol
(§55) ends up being 0 when I = I”, by virtue of A.8. For I’ # I” the first term
vanishes and we are left with

m’' 2.1+ 1)U+ +1) /1 U 1"
Cl/m/,l”m” :(_1) [Cl/ + Cl//] \/( )( )( ) ( >

47 0 0 0
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From the last selection rule in A.4 we have that

(6.9)

‘l/_l//‘ S 1 S ’l,+l,/’,

which means that the only non-vanishing off-diagonal elements are those where I’ and
1" differ by just 1. So the matrix will be sparse, but still pretty huge and not quite easy
to work with.
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In this thesis we have explored the possibility of there being a hemispherical power
asymmetry in the WMAP data, using a Quadratic Maximum-Likelihood estimator.
The power asymmetry has been approximated as a simple dipolar modulation of an
intrinsic statistically isotropic signal, a model that has been recently studied in the lit-
erature. The QML estimator was developed for this model in Hanson & Lewis (2009),
and in chapter 3 we performed our own derivation. We have reimplemented this es-
timator for our own analyses, with the results from analyzing the 7-year WMAP data
shown in chapter 6.

7.1 Is there evidence of a dipolar asymmetry in the
WMAP data?

The WMAP team, in Bennett et al. (2011), argue that there is no significant evidence
for an anomalous dipolar power asymmetry in the WMAP data, and that the previously
reported claims have un-naturally high significance values due to an a posteriori bias
in the choice of l,,4. Based on our results using the QML estimator outlined in
this work the reported amplitude of the dipole modulation does not yield very high
significances across a large range of [,,,q, however, we note that the reported direction
stays remarkably constant. If there was no modulation, we would expect the reported
directions to be more scattered, and indeed, that is what we see when comparing with
simulations. The estimated direction is consistent with those of previous works using
other methods, and it is consistent with different data (our own analyses show this to
be the case for the different bands of WMAP, different sky-cuts and raw /reduced maps,
and previous studies have given similar directions for different year-sets, and also partly
the COBE data). The reported amplitude is diminishing with the choice of l;;,0q in the
estimators however (though it lies above the expected value at nearly all multipoles),
and the significance is found to be highly unstable, so the simple hemispherical dipolar
asymmetry model is seemingly not good enough for describing the phenomenon. The
amplitudes we get are close to the results of Hanson & Lewis. Hansen et al. (2009), who
analyzed differences between local power spectra, also noted the diminishing effect, but
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again, the reported direction across various ly,0q stayed more or less constant.

Based on our simulations we find the probability of an isotropic map to report as
clustered directions of dipolar asymmetry to lie between 0.1% and 1.0%. Indeed, using
a fine grid of 222 different values for [,,,q the statistical significance can in some cases
not be inferred since none of our 1000 simulations show an equally compact clustering.

For the l,,04 reporting the highest significance of a dipole modulation the probability
of isotropic maps to report as high an amplitude is close to 1%, while for higher [,,,0q
this number gets closer to 30%. We find that the effect persists, and that both the
amplitude and the direction do not vary too much, with regards to either frequency
band, sky-cut or raw/reduced maps.

The WMAP team’s claim of there being no significant evidence for an anomalous
dipolar power anisotropy in the WMAP data seems to be premature. More work still
needs to be done. If there is an anomaly, it still might not be of cosmological origin,
though systematics are an unlikely explanation since the effect was also observed on the
COBE data, and the methods for foreground-subtraction have changed with different
year-releases. According to Gold et al. (2011), they find no evidence for foreground
contamination outside the current KQ85yr7 analysis mask.

Bennett et al. make the argument that searching specifically for a dipolar or hemi-
spherical power asymmetry is in itself an a posteriori choice, and that oddities are
bound to occur in any data set. Even though none of our simulated maps may exhibit
this particular oddity to equal effect, many of them would have other highly unlikely
oddities. We would however be ill-advised not to keep investigating such possible an-
omalies; if new physical models can be found that give better fits to the entire data set
science will have progressed further.

7.2 Future projects

There still seems to be an effect going on, but the simple model of a scale-invariant
dipole modulation should be replaced with something else to make a better fit of the
data. Testing models where the modulation amplitude decreases with [ would be the
next step forward. When it comes to the QML estimator the assumption of one it-
eration being a sufficiently good approximation is still not tested, and this should be
done as well. Comparisons with the results obtained from other methods suggest the
approximation is valid up to about [,,,q4 = 80, for higher [,,,q4 we need new results from
exact analyses to compare with. The MCMC analysis methods could be repeated for
an lpeq of 50 to confirm the pattern of the significance values.

The WMAP experiment is now over, with the final nine-year data sets to be released
later this year or early 2012. This will gives us an additional two years of data to lessen
the impact of instrumental noise and obtain better foreground models. It is the first
publically released data of Planck, however, that is most interesting in the coming
years. If the hemispherical power asymmetry is observed to similar confidence also in
those data sets, the explanation would almost certainly be physical. The important
questions then would be if the anomaly is relevant and if we can find better fits to the
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data than the standard ACDM-model.

Comparisons with an optimal maximum-likelihood estimator

The traditional methods of performing the full ML-analysis have had poor computa-
tional scaling, going as (’)(Ng’ix). To make a complete comparison with the quadratic
estimator improved methods must be derived. Dag Sverre Seljebotn, who published his
Master’s Thesis [32] at the University of Oslo last year, developed a Gibbs sampling al-
gorithm for testing the hemispherical asymmetry. This new method scales as O(N, 3/ 2),

pix
and should be well suited for performing analyses on full-resolution maps.

Further tests of the quadratic estimator

The QML estimator should be tested with more iterations to confirm the assumption of
one iteration being sufficient. We saw that we got results which were consistent with the
optimal maximum-likelihood approach of Hoftuft et al. (2009) for the lower values of
Imod, however, at l;,04 = 80 we were a little outside the lower bound of their confidence
region in amplitude. A possible reason for this could be that the approximation fails
when the likelihood function gets more steep and focused, so that the estimated value
falls somewhat short of the true maximum. We emphasize, though, that the deviation
from their reported confidence region was only slight.

We should also increase the number of simulations we compare with, especially
when it comes to comparing the clustering of directions, to more accurately assess the
significance.

Possible alternative models for describing the asymmetry

One modification to our simple model of a scale-invariant dipole modulation would of
course be extending it to include a scale-dependent amplitude A(l). Without adopting
a new model explicitly one way of testing this could be to compute the estimator in
bands of certain regions of [, and observe how the reported amplitudes vary.

Another possibility would be to consider other modulation patterns than the simple
dipole. The quadratic estimator derived in this text, as written in equation 3.46, should
be applicable for any field f which modulates the isotropic signal through

O(h) = [1 4 f(1)]Ois(1).

However, most other fields would not have such an elegant representation in harmonic
space as the dipole, where only a few parameters are enough to describe the entire field.
So the quadratic estimator should rather be re-derived using a different approach.

Physical models to be given particular attention

We gave a short overview of a few proposed physical models in chapter 1, and several
other possibilities have also been found in the literature. Based on our results it seems
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that models allowing a scale-dependent amplitude are those which should be most
purposefully investigated, of those that concern a type of dipolar modulation pattern.

Improved methods for foreground-subtraction

We see the asymmetric effect when analyzing raw maps, and it is there stronger than
in the foreground-reduced case. Applying the KQ85 mask and using the foreground-
reduced maps the impact of foreground contaminations should be negligible, but this
may not be the case. Perhaps there is some residual foreground contaminations left in
the preferred direction. Using the KQ75 mask we see less of a difference between the
foreground-reduced and the raw case. This could indicate that the KQ85 mask lets
some foreground contamination through which helps to increase the asymmetry effect,
and the KQ75 mask effectively blocks this contamination.
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A.1 The HEALPix software

HEALPix! (Hierarchical, Equal Area, and iso-Latitude Pixelization) is a software de-
signed for a convenient pixelization scheme on the sphere. The HEALPix format is that
used by NASA for their CMB maps taken by the WMAP satellite, and the software has
become widely used in cosmology for work regarding the CMB. As its name suggests,
the format is based on a few basic principles:

Hierarchical The base-pixels are divided into more pixels at higher resolution in a
hierarchical structure in the data base. This ensures faster performance.

Equal Area The pixelization is designed so that each pixel takes up the same area on
the surface of the sphere, thereby ensuring the sampling to have minimal regional
dependence.

iso-Latitude The pixel centers are positioned on a certain number of rings of constant
latitude around the sphere. This is advantageous for computations involving
spherical harmonics operations.

The map, or sphere, is divided into 12 base-pixels. These base-pixels can again
be divided further into several other pixels, and this is represented by the parameter
Ngige- It details how many new pixel sides the side of the base-pixel is divided into.
This makes the total number of pixels in the map equal to

Npix = 12- N2 ...
The largest maps we use have an Ngqe of 512, or 3145 728 number of pixels (3 Mega-
pixels). With such a large number of data points the ability to perform spherical har-
monics transforms and the like in an efficient and fast manner is crucial. The upcoming
Planck datasets will have ~ 50 Megapixels, so this importance can not be overstated.
Examples of the pixelization is shown in figure A.1, where the grey areas represent two
base-pixels and conveniently shows how they are divided into higher-resolution pixels.

We rely heavily on the use of HEALPix, not only because it is the format the WMAP
sky-maps are released in, but also because the software contains lots of useful routines
used in our program. Perhaps the most important ones are those for conversion between
pixel space and harmonic space; map2alm and alm2map. Also frequently used are the
functions for conversion from the RING pixelization scheme to the NEST scheme, and
of course its map plotting routine. The raw FITS maps are then converted to images
using map2gif, which is a separate program in the HEALPix software which can be
run directly from the command line.

'See Cérski et al., [33] and [34], for documentation. The website is http://healpix.jpl.nasa.gov/.
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Figure A.1: Examples of the HEALPix pixelization, with (in clockwise order from the
upper left) Ngqe = 1,2,4,8. The dots represent pixel centers. Image reprinted from
the HEALPix Primer [33].
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A.2 The 3-j symbols
The Wigner 3-j symbols come into play in this thesis as a cause of the integral of

the products of three spherical harmonics functions, called the Gaunt integral. This
integral is given as follows:

/ Yiun (0, )iy (0, 6)Yigony (0, 6) O

Al
B \/(2[ + 1)(211 + 1)(2[2 + 1) Il s l Iy lo ( )
- 47 0 0 O m mi; meo)
The actual 3-j symbols are those given on the form
< ‘h b > . (A.2)
m o mi Mo
The symbol arises in quantum mechanics and can be expressed as
Lol b\ _ ()
=-———(ml ly — A3
<m my m2> 205 +1 Umbyma iz = ma), (4.3)

where the expression in brackets are the Clebsch-Gordan coefficients. The symbols can
be calculated analytically but are more commonly found using recursive relations.

There are a number of selection rules which need to be satisfied in order for this
symbol to not equal 0:
m+mi+mo =20
[+ 11 + I is an integer
Imy| <1
= lo| < U<l + o]

(A4)

In addition there are also a number of symmetry relations, and the ones most
relevant for this thesis are:

1. A 3-j symbol is invariant under an even permutation of its columns:
L1 l l l l l I 1
< 1 2>:<1 2 >:<2 1)_ (A5)
momip Mo mi1 Mo M mo M Mmq
2. An odd permutation of its columns gives a phase factor:

Ll _ (1)l L 1
m m; ma) mp m ma

_ (_1)l+ll+l2 <l l2 ll > )

m mo My
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3. Changing the signs of the m’s also give a phase factor:

l ll l2 _ (_1)l+ll+l2 l ll l2 (A 7)
m o mi Mo -m —mi; —ma) ’

The final symmetry relation given here also ensures that for a 3-j symbol with m =
m1 = meo = 0, the following selection rule holds:

if m =my; =mo =0, then [ + 11 + 5 must be even. (A.8)

Also of note is that, in the Gaunt integral of equation A.1, if the spherical harmonics
function Y}, is complex conjugated, then that introduces a phase factor (—1)™ and a
change of the sign of the appropriate m in the second 3-j symbol.

Calculation of the 3-j symbols in the program are done using the DRC3JJ subroutine
provided by SLATEC?. For further information on the symbols see, e.g., Varshalovich
et al. (1988) [35].

’http://www.netlib.org/slatec/.
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A.3 Spherical harmonics

The spherical harmonics are functions which come in as solution eigenfunctions to
the Laplace equation, V2W¥ = 0, in spherical coordinates. See for instance [35] for an
overview. The definition is

[2l+1 (1 —m)! im
Yim(0,0) = pp Ele;le(cos 0)e™® 1> 0, |m| <1, (A.9)

where the P}, are the associated Legendre functions. For negative m we have the
relation

Vi = (~1)"Y

The following are a number of properties relevant for this thesis:

The spherical harmonics are orthonormal,
/ Yim Yy A = 01 Sy - (A.10)
Q

“Any” field on the sphere can be expanded in terms of the spherical harmonics, just
like “any” function in flat space can be expanded in terms of Fourier series:

[e's) l
f(ea QS) = Z Z alm}/lm(a’ ¢)’ (A'll)

1=0 m=-1

where the spherical harmonics coefficients are given by
on = [ 1(60.0)V7(6.0) . (A.12)

For real fields f(0, ¢), these coefficients satisfy the relation
a—m = (—1)"ay,,. (A.13)

There is a relationship between the spherical harmonics and the Legendre polynomials

Py, given by
!

> ViRV (), (A.14)

m=—

47
20+ 1

P(x-9)=
where X and y are unit vectors.

A.3.1 Real-valued version

We also utilize the real-valued versions of the spherical harmonics in this work. For a
complex harmonic function a® we have that

Ilm
aﬁn ifm=20
all =< V2- Re(al ) ifm >0 (A.15)

V2-Im(a{ ) if m<O0.
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These a;,,,’s are stored in vectors of length 2[41 for each [, so that element 1 corresponds
to m = —I[, element 2 is m = —l+ 1, element 3 is m = —] + 2, and so on. The mapping
from complex to real space can be written as a transformation by a unitary matrix U,
which for the [ = 2 case is given by

i1 0 0 0 —2

1 0O — 0 —2 0
U=—|0 0 1 0 0 ]. (A.16)

V2 0O -1 0 1 O

1 0 0 0 1

Transforming an entire matrix A of complex spherical harmonics to the real realm we
compute

A =UAU". (A.17)

For any given [, the matrix A has dimension (2{+1) x (2[4 1) with the elements ordered
analogously to the scheme outlined earlier.



88

Resource




Bibliography

1]
[2]

[3]

[4]

S. Dodelson. Modern cosmology. Academic Press, 2003.
A. R. Liddle. An Introduction to Modern Cosmology. Wiley, 2003.

A. A. Penzias and R. W. Wilson. A measurement of excess antenna temperature
at 4080 mc/s. ApJ, 142:419P, 1965.

Oyvind Greon. Lecture Notes on the General Theory of Relativity. Springer Sci-
ence+Business Media, 2009.

A. H. Guth. Inflationary universe: A possible solution to the horizon and flatness
problems. Phys. Rev. D, 23:347-356, January 1981.

M. Tegmark. Doppler Peaks and all that: CMB Anisotropies and what they can
tell us. In S. Bonometto, J. R. Primack, & A. Provenzale, editor, Dark Matter in
the Universe, pages 379—, 1996.

P. Callin. How to calculate the CMB spectrum. ArXiv Astrophysics e-prints, June
2006.

D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M. R. Nolta, C. L. Bennett,
B. Gold, M. Halpern, R. S. Hill, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer,
N. Odegard, L. Page, K. M. Smith, D. N. Spergel, G. S. Tucker, J. L. Weiland,
E. Wollack, and E. L. Wright. Seven-year Wilkinson Microwave Anisotropy Probe
(WMAP) Observations: Power Spectra and WMAP-derived Parameters. The
Astrophysical Journal Supplement Series, 192:16—, February 2011.

H. K. Eriksen, F. K. Hansen, A. J. Banday, K. M. Gérski, and P. B. Lilje. Asym-
metries in the Cosmic Microwave Background Anisotropy Field. Astrophysical
Journal, 605:14-20, April 2004.

F. K. Hansen, A. J. Banday, K. M. Gérski, H. K. Eriksen, and P. B. Lilje. Power
Asymmetry in Cosmic Microwave Background Fluctuations from Full Sky to Sub-
Degree Scales: Is the Universe Isotropic? Astrophysical Journal, 704:1448-1458,
October 20009.



90

BIBLIOGRAPHY

[11]

H. K. Eriksen, A. J. Banday, K. M. Gérski, F. K. Hansen, and P. B. Lilje. Hemi-
spherical Power Asymmetry in the Third-Year Wilkinson Microwave Anisotropy
Probe Sky Maps. The Astrophysical Journal Letters, 660:L81-L84, May 2007.

J. Hoftuft, H. K. Eriksen, A. J. Banday, K. M. Gérski, F. K. Hansen, and P. B.
Lilje. Increasing Evidence for Hemispherical Power Asymmetry in the Five-Year
WMAP Data. Astrophysical Journal, 699:985-989, July 2009.

N. E. Groeneboom, M. Axelsson, D. F. Mota, and T. Koivisto. Imprints of
a hemispherical power asymmetry in the seven-year WMAP data due to non-
commutativity of space-time. ArXiv e-prints, November 2010.

F. Paci, A. Gruppuso, F. Finelli, P. Cabella, A. de Rosa, N. Mandolesi, and
P. Natoli. Power asymmetries in the cosmic microwave background temperature

and polarization patterns. Monthly Notices of the Royal Astronomical Society,
407:399-404, September 2010.

A. Bernui. Anomalous CMB north-south asymmetry. Phys. Rev. D, 78(6):063531—
+, September 2008.

D. Pietrobon, A. Amblard, A. Balbi, P. Cabella, A. Cooray, and D. Marinucci.
Needlet detection of features in the WMAP CMB sky and the impact on aniso-
tropies and hemispherical asymmetries. Phys. Rev. D, 78(10):103504—, November
2008.

C. L. Bennett, R. S. Hill, G. Hinshaw, D. Larson, K. M. Smith, J. Dunkley,
B. Gold, M. Halpern, N. Jarosik, A. Kogut, E. Komatsu, M. Limon, S. S. Meyer,
M. R. Nolta, N. Odegard, L. Page, D. N. Spergel, G. S. Tucker, J. L. Weiland,
E. Wollack, and E. L. Wright. Seven-year Wilkinson Microwave Anisotropy Probe
(WMAP) Observations: Are There Cosmic Microwave Background Anomalies?
The Astrophysical Journal Supplement Series, 192:17—, February 2011.

D. Hanson and A. Lewis. Estimators for CMB statistical anisotropy. Phys. Rev.
D, 80(6):063004, Sep 2009.

L. Ackerman, S. M. Carroll, and M. B. Wise. Imprints of a primordial preferred
direction on the microwave background. Phys. Rev. D, 75(8):083502—, April 2007.

A. L. Erickcek, M. Kamionkowski, and S. M. Carroll. A hemispherical power
asymmetry from inflation. Phys. Rev. D, 78(12):123520—+, December 2008.

A. L. Erickcek, C. M. Hirata, and M. Kamionkowski. A scale-dependent power
asymmetry from isocurvature perturbations. Phys. Rev. D, 80(8):083507—, Oc-
tober 2009.

T. Koivisto and D. F. Mota. Accelerating Cosmologies with an Anisotropic Equa-
tion of State. Astrophysical Journal, 679:1-5, May 2008.



BIBLIOGRAPHY

[23]

[24]

C. L. Bennett, M. Bay, M. Halpern, G. Hinshaw, C. Jackson, N. Jarosik, A. Kogut,
M. Limon, S. S. Meyer, L. Page, D. N. Spergel, G. S. Tucker, D. T. Wilkinson,
E. Wollack, and E. L. Wright. The Microwave Anisotropy Probe Mission. Astro-
physical Journal, 583:1-23, January 2003.

B. Gold, N. Odegard, J. L. Weiland, R. S. Hill, A. Kogut, C. L. Bennett, G. Hin-
shaw, X. Chen, J. Dunkley, M. Halpern, N. Jarosik, E. Komatsu, D. Larson,
M. Limon, S. S. Meyer, M. R. Nolta, L. Page, K. M. Smith, D. N. Spergel, G. S.
Tucker, E. Wollack, and E. L. Wright. Seven-year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Galactic Foreground Emission. The Astrophysical
Journal Supplement Series, 192:15—+, February 2011.

M. Limon et al. Wilkonson Microwave Anisotropy Probe (WMAP): Seven-Year
Explanatory Supplement, April 2010.

Jay L. Devore and Kenneth N. Berk. Modern Mathematical Statistics with Applic-
ations. Thomson Brooks/Cole, 2007.

Jonathan R. Shewchuk. An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain. Technical report, Carnegie Mellon University, Pitt-
sburgh, PA, USA, 1994.

H. K. Eriksen, 1. J. O’Dwyer, J. B. Jewell, B. D. Wandelt, D. L. Larson, K. M.
Gorski, S. Levin, A. J. Banday, and P. B. Lilje. Power Spectrum Estimation from
High-Resolution Maps by Gibbs Sampling. The Astrophysical Journal Supplement
Series, 155:227-241, December 2004.

K. M. Smith, O. Zahn, and O. Doré. Detection of gravitational lensing in the
cosmic microwave background. Phys. Rev. D, 76(4):043510—, August 2007.

E. Hivon, K. M. Gorski, C. B. Netterfield, B. P. Crill, S. Prunet, and F. Hansen.
MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A
Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave
Background Data Sets. Astrophysical Journal, 567:2-17, March 2002.

David A. Harville. Matrixz Algebra From a Statistician’s Perspective. Springer,
1997.

Dag Sverre Seljebotn. Hemispherical Power Asymmetry in the Cosmic Microwave
Background by Gibbs Sampling. Master’s thesis, the University of Oslo, 2010.

K. M. Goérski et al. The HEALPix primer. astro-ph/9905275, 2000.

K. M. Gérski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke,
and M. Bartelmann. HEALPix: A Framework for High-Resolution Discretiza-
tion and Fast Analysis of Data Distributed on the Sphere. Astrophysical Journal,
622:759-771, April 2005.



92

BIBLIOGRAPHY

[35] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii. Quantum theory of an-
gular momentum: irreducible tensors, spherical harmonics, vector coupling coeffi-
cients, 3nj symbols. World Scientific Pub., 1988.



