
Solid State Ionics 398 (2023) 116269

Available online 2 June 2023
0167-2738/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A brick layer model for surface conduction in porous ceramics 

Truls Norby a,*, Xinwei Sun a, Einar Vøllestad b 

a Department of Chemistry, University of Oslo, Centre for Materials Science and Nanotechnology (SMN), Gaustadalléen 21, NO-0349 Oslo, Norway 
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A B S T R A C T   

We provide herein a review and in-depth derivation and discussion of a surface brick layer model (SBLM) that 
scales the conductance of a surface layer – such as protonic conductance in adsorbed water – and the macroscopic 
conductivity for the porous material. The model is derived on basis of grains and pores of similar sizes and will be 
most realistic for porous compacts or loosely sintered ceramics of isotropic grains, although it still provides 
order-of-magnitude guidance also for textured or less porous materials. Brief comparison is made with other 
relevant models and literature. The model is illustrated and evaluated with data primarily from measurements of 
surface protonic conduction in porous nanoscopic ceramic oxides.   

1. Introduction 

The surfaces of solids tend to exhibit enhanced transport due to 
weaker and fewer bonds, more defects, segregation of impurities and 
dopants, and adsorption and dissociation of gases. Adsorption of water is 
particularly important as it gives rise to surface protonic conduction that 
limits the resistance of ceramic insulators. Recently, there is interest in 
the diffusion and migration of protons in chemisorbed and physisorbed 
water layers because of implications for heterogeneous catalysis [1–3] 
and role in mass transport on electrodes for solid-state photo-
electrochemical applications [4,5] and proton ceramic fuel cells and 
electrolysers. [6,7] Based on their surface protonic conductivity, porous 
ceramics may also be considered as electrolytes in low-drain single 
chamber or implantable fuel cells, [8–11] electrochemical pumps, hu-
midity sensors, [12,13] and memristive switching. [14] 

For many types of surface conduction, such as protonic conduction in 
chemisorbed or physisorbed water, and for conduction in surface or 
subsurface layers of the solid, we may theoretically assess concentra-
tions and charge mobilities of charge carriers and hence calculate the 
conductivity in the layer, or via its effective thickness calculate the in- 
plane conductance of the layer. This surface conductance can in prin-
ciple be measured in model systems with well-defined geometries, such 
as interdigitated electrode arrays on single crystal or ceramic substrates. 
Our interest now is however to use such theoretical predictions or model 
measurements of surface conductance to predict the conductivity of a 
porous material where the geometries are less well-defined or even ill- 

defined like in a porous sintered ceramic. And, vice versa, from mea-
surement of the conductivity of a porous material with predominant 
surface conduction to assess the in-plane surface conductance. 

Stub et al. [15,16] treated surface protonic conduction based on own 
measurements and standard models for adsorption and transport terms 
for Y2O3-doped ZrO2 developed by Raz et al. [17] but did not attempt to 
couple it quantitatively to the conductivity of porous samples via the 
microstructure. Gregori et al. [18] introduced a simple model to evaluate 
surface protonic conduction in ceramics with small amounts of open 
porosity, and to our knowledge that is the work with the closest rele-
vance to our recent models that we review here, and we shall return to it 
later. 

We here present a surface brick layer model (SBLM) to deduct geo-
metric and mathematical relations that may be used for order-of- 
magnitude conversions between surface conductance and the 
measured macroscopic sample conductivity of a porous material. They 
first appeared in our publication on surface protonic conduction in 
porous ZrO2 [19] (see especially its Supplementary Information, SI) and 
was subsequently expanded and used for interpretation of surface pro-
tonics in porous CeO2. [20] In our present review, the models are 
derived and discussed in more depth. 

There is earlier literature with treatises of conducting interfaces 
between grains, [21,22] as well as grains covered with a second phase 
that offers parallel admittance and series impedance [23], both with 
some geometrical relevance to our present models. However, our 
approach bears more resemblance to and is inspired by, but still distinct 
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from a brick layer model (BLM) for analysis of grain boundary imped-
ance in ceramics. [24] We therefore named it as such originally in the 
works on ZrO2 [19] and CeO2 [20], but are coming to the conclusion that 
the derivation, results, and uses are sufficiently different that it is better 
to take a distinctive term (SBLM) into use. 

2. Surface conduction and other contributions 

The purpose of this paper is not a full treatment of all conductivities 
and impedances that may contribute in addition to surface conduction, 
but we provide next a brief consideration of some of them and how they 
are different and may be separated from the surface conduction we focus 
on here. 

The conduction over the outer surface of a dense or porous material 
and the conduction on internal surfaces of a porous material is for our 
purpose the same thing. Surface conduction along closed porosity may 
contribute to measured conduction by partially short-circuiting the 
material’s bulk conductivity. Here we choose to neglect this, making our 
treatment most relevant for openly porous materials. 

The surface conduction comes in parallel with bulk conduction and 
parallel grain boundary conduction. Traditionally, they cannot be 
delineated by impedance spectroscopy, but through variations in 
microstructure (grain size and porosity) and distinct dependencies on 
temperature and atmosphere (e.g., wet vs dry when it comes to con-
duction in adsorbed water). 

It has recently been realized that surface conduction in porous ce-
ramics often exhibits two time constants in the regime of geometric 
capacitances, and this has been assigned to conduction over the convex 
belly of grains (with higher parallel capacitance from the dielectric 
material) in series with conduction over the concave neck (with lower 
parallel capacitance from the gas phase). [19] This is suggested to be a 
fingerprint of surface conduction, which may have contributions from 
protonic or other ionic as well as electronic charge carriers. [19,20] In 
our context here, the surface conduction is obtained from the sum of the 
resistances of the transport over the lower-frequency convex grain belly 
part and the higher-frequency concave grain neck part. For the SBLM we 
are about to derive here, it has no immediate further consequence. 

Bulk conduction in the grain interior of a polycrystalline material can 
have a series resistance from grain boundaries, separable by impedance 
spectroscopy. It has been discovered that also surface conduction in 
some materials exhibits a response with capacitances and time constants 
typical of grain boundary resistance, and Stub et al. [15,16] assigned this 
to what they termed inter-grain surface conductance over the grain 
boundary, in series with the intra-grain conductance over the surface of 
the grain itself. They attributed the inter-grain resistance in the surface 
conduction to the depletion of protonic charge carriers in the adsorbed 
water layer at the intersection of the positive space charge of the grain 
boundary with the negative space charge of surface. [16] 

Measurements of surface conductance – like any other conductance – 
may involve impedances from electrodes. They can be delineated by 
impedance spectroscopy on two-electrode samples, or they can be 
eliminated by 4-electrode measurements, given certain requirements 
that we will not detail here. 

3. Simple geometrical aspects of surface conductance 

3.1. Surface layer: charge mobility, concentration, conduction 

The surface layer with the enhanced conduction can be a subsurface 
layer, the very solid-gas interface itself, or one or more layers of 
adsorbed species. In reality, it will often be a combination. In our 
treatment, we need not differentiate between these cases. The surfaces 
that contribute to the measured conductivity may be considered to have 
effectively one surface layer with one in-plane conductance. 

The in-plane conductance of the surface layers may be related to 
their volume conductivity. However, we normally don’t know the 

volume concentration of charge carriers in the layer, and we will not 
need the volume conductivity per se. We will, on the other hand, come to 
know the surface concentration (e.g., in terms of coverage or number per 
unit area) and that is eventually what we need to know in order to obtain 
the in-plane conductance of the surface layer. Now, we still start off with 
the volume conductivity of the layer in order to stay with familiar terms. 
The conductivity for a charge carrier i in the volume of a surface layer 
follows the general expression 

σi = ziFuici (1)  

where σi is the conductivity with SI units S/m, zi is the number of 
charges, ui is the charge mobility with units of m2/Vs, and the volume 
concentration ci has units of mol/m3. The in-plane conductance in S of a 
square sheet of a surface of thickness ts in m, and width = length = w is 

Gs,i = σi
w
w

ts = σits = ziFuicits = ziFuiγi (2)  

where we in the rightmost expression have replaced the volume con-
centration ci with surface concentration γi (in mol/m2) and layer thick-
ness ts in ci = γi/ts. For protons, as an example, the surface protonic 
conductance of a layer becomes 

Gs,H+ = FuH+γH+ (3)  

3.2. Conductivity of porous materials 

The surface conductance Gs can be connected to the macroscopic 
conductivity σM for the porous material via a geometry factor that we 
shall denote ψ (psi) and which has units of 1/m: 

σM = ψGs (4)  

ψ will depend on the geometry and percolation of surface pathways, 
related to the density, grain and pore sizes, and texture. 

3.2.1. Materials with columnar or structural pores 
Before we dive into porous ceramic materials with randomly 

organised grains and pores as in compacts and sinters, let us first 
consider ideally columnar (“c”) materials, in which pores are parallel 
and infinitely open. These may then be one-dimensional (1D) like in 
anodically grown nano-tubular TiO2 or in porous layers grown colum-
narly in pulsed laser deposition (PLD) or in membranes with unidirec-
tional pores, or they may be three-dimensional (3D) possibly including 
so-called microporous materials with structural porosity, notably zeo-
lites and metal-organic frameworks (MOFs), if a surface conductance 
can be defined in those structural pores. 

3.2.1.1. 1D columnar porosity. For conduction on surfaces in the di-
rection of the columnar pores, simple geometric considerations 
regardless of the cross-sectional shape of the pore shows that the 
macroscopic surface conductivity σM of the porous material is directly 
proportional to the volume-specific surface area Av of the columnar 
pores, with units of, e.g., m2/m3: 

σM,c = ψcGs = AvGs (5)  

As an example, consider a cubic sample of unit dimensions, divided into 
(1/dg)3 cubic grains with grain size dg (Fig. 1). In the direction of 
measuring the conductivity, each grain corner is penetrated by square or 
circular pore columns of width or diameter wc (Fig. 1). 

For square pore columns, each has a circumference of 4wc and depth 
dg through the layer and hence conductance 4wcGs/dg. Each grain con-
tributes one such corner column and the total conductance through an 
entire layer is proportional to the number of grains (1/dg)2 and hence 
(4wcGs/dg)(1/dg)2 = 4wcGs/dg

3. The conductivity through the unit cube 
and hence macroscopic conductivity is then σM,c = (4wcGs/dg

3)/(1/dg) =
4wcGs/dg

2 = ψcGs. The volume specific surface area (of the cube) is Av =
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4wc/dg
2 = ψc. The volume of pores in the unit volume – hence the relative 

porosity – is pr = wc
2/dg

2. We then see that ψc = 4wc/dg
2 = 4pr/wc = 4(1- 

ρr)/wc, where ρr is the relative density. 
In a similar treatment for circular pore columns of width (diameter) 

wc, the circumference is πwc and the conductance of one column through 
one layer hence πwcGs/dg. The conductance through a unit cube and 
hence macroscopic conductivity will be σM,c = πwcGs/dg

2 = ψcGs and the 
volume specific surface area Av = πwc/dg

2. The relative porosity is pr =

πwc
2/4dg

2 and we then see that ψc = πwc/dg
2 = 4pr/wc = 4(1-ρr)/wc. 

All in all, we may express the macroscopic materials conductivity in 
the direction of the columnar pores by the surface conductance and 
various parameters, including a unit-less geometry factor Ψc = ψcwc =

4pr = 4(1-ρr) for columnar porosity: 

σM,c =
4pr

wc
Gs =

4(1 − ρr)

wc
Gs =

Ψ c

wc
Gs = ψcGs = AvGs (6)  

where ψc = 4pr/wc = 4wc/dg
2 for square columns and ψc = 4pr/wc = πwc/ 

dg
2 for circular columns. 

3.2.1.2. 3D structural porosity. Now, we add the volume of similarly 
penetrating pore columns in the two orthogonal directions. For small 
pores they will to a first approximation don’t contribute to or obstruct 
conduction in the pores in the conducting direction. Similarly, the 
porosity is to a first approximation 3 times that of the 1D case, i.e., pr =

3wc
2/dg

2. Hence, the relationship between conductivity and porosity is 
affected with the same factor, and we get ψc = 4wc/dg

2 = (4/3)pr/wc =

(4/3)(1-ρr)/wc, and for this case Ψc = (4/3)(1-ρr). In summary, the 
macroscopic materials conductivity for a case of open columnar porosity 
in the dimensions is 

σM,c =
4wc

d2
g

Gs =
4pr

3wc
Gs =

4(1 − ρr)

3wc
Gs =

Ψ c

wc
Gs = ψcGs (7)  

If the material is isotropic (cubic) and has open columnar porosity in all 
three directions, it does not matter in which direction the conductivity is 
measured due to the contributions from columns as they come into the 
driving electrical field. 

This model may be appropriate for microporous materials such as 
zeolites and MOFs if the pores are large enough that a surface conduc-
tance can be defined in their structural pores. In reality, such materials 
are difficult to prepare as dense films or bulk samples, and may normally 
comprise inter-grain porosity like we will treat next in addition to the 
intra-grain structural porosity. 

3.2.2. Materials with randomly connected pores 
For more or less sintered powder compacts and porous ceramics, we 

may apply geometric models of varying sophistication to emulate and 

predict the macroscopic conductivity from the grain size, porosity, and 
surface conductivity. Here, we first present Gregori et al.’s brick layer 
model and show that it in essence is identical to the 1D columnar 
porosity model above, and then we present our own more generally 
applicable brick layer model and compare the different ones. 

3.2.2.1. Gregori et al.’s brick layer model. Gregori et al. [18] studied 
protonic conductivity of a modestly porous binary oxide and proposed a 
brick layer model with proton transport in bulk, along grain boundaries, 
and in adsorbed layers and subsurface region of pores, see Fig. 2. They 
proposed that within certain realistic limits, a dominating pore surface 
conductivity gives rise to a macroscopic conductivity 

σM = βφpΩaσ∞,L =
4
d

φpaσ∞,L =
4
d

φpGs (8)  

where β = 2/3 in the brick layer model, φp is the open porosity volume 
fraction, Ω = 6/d is the surface-to-volume fraction of a pore of size d, and 
a and σ∞,L are the thickness and volume conductivity of the water layer, 
respectively. The rightmost expression inserts our surface layer 

Fig. 1. Schematic representations of 1D columnar porosity in the plane perpendicular to the direction of conduction. The thick blue lines represent the conducting 
layer, e.g., adsorbed water. The grain size is dg, and the width (or diameter in the case of pores) is wc. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 2. Schematic 2D representation of the microstructure of four proton 
transport pathways in porous materials: 1 transport in the bulk, 2 along the 
GBs, 3 on the open pores surfaces in the adsorbed water layer, and 4 in a proton 
enriched subsurface layer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. 
KGaA, Weinheim. Reproduced from ref. [18] with permission. 
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conductance Gs = aσ∞,L, and inspection shows that it thereby has 
become equivalent to our 1D columnar model in Eq. 6. While it applies 
properly to truly 1D columnar porosity, the model comprises a simple 
proportionality to open porosity and is unsuited for larger porosities in 
materials with randomly organised porosity like compacted or sintered 
ceramics. This was also emphasised by Gregori et al. who applied it 
qualitatively to account for measured surface protonic conductivity in 
relatively dense sinters with low porosities, assuming that the protonic 
mobility in the adsorbed water was similar to that of the self-diffusion of 
H3O+ in water (~ 8•10− 3 cm2/Vs at 200 ◦C). 

3.2.2.2. A more general surface brick layer model (SBLM). Now, we 
derive a new surface brick layer model (SBLM) that is more generally 
applicable especially for highly porous compacted and sintered bodies. 
The geometry applied is the simplest possible, but for the benefit of the 
reader, we still provide and expand on the mathematics from the two 
articles where it first appeared. [19,20] 

Let us divide the volume of a porous material with equal size dg of 
grains and pores into cubic bricks of the same size dg so that there are 1/ 
dg bricks in each unit length direction and 1/dg

2 per cross-sectional unit 
area, and 1/dg

3 bricks per unit volume. The bricks are statistically grains 
or pores, see Fig. 3 for schematic illustrations of cross-sectional planes 
with different porosities. The chance that a brick is a grain is propor-
tional to the relative density ρr and hence related also to the relative 
porosity pr of the material: ρr = 1-pr. 

In the direction of conduction, 4 of the 6 sides of a grain can 
contribute a conducting surface, and only if the neighbouring brick is a 
pore. The number of grain side surfaces in the conducting direction 
through unit area of a single layer of bricks is thus 

ncsl = 4ρrpr
1
d2

g
=

4ρrpr

d2
g

=
4ρr(1 − ρr)

d2
g

(9)  

This is a simple function that goes through a maximum value at 50% 
relative density for which each brick contributes on average one con-
ducting surface, i.e., 2 per grain. We may insert dg = 1/6 and calculate 
that microstructures with relative densities of 5/6, 1/2, and 1/3 like in 
Fig. 3, statistically should have, respectively, 20, 36, and 32 conducting 
sides. 

The conductance through one layer is obtained by multiplying with 
the surface conductance of side sheets: 

Gsl = Gsncsl = Gs
4ρrpr

d2
g

= Gs
4ρr(1 − ρr)

d2
g

(10) 

Now, we apply the simplest possible consideration of percolation, i. 
e., the probability that a surface through one layer coincides directly 
with another surface in the next layer, as illustrated schematically in 
Fig. 4. We take this probability to be the probability that an interface is a 
surface, namely, as before, ρrpr = ρr(1 − ρr). Hence, the area specific 
number of connected conducting surfaces through one layer that per-
colates to the 1st next layer is reduced to 

ncsl-p1 =
4ρrpr

d2
g

ρrpr =
4ρ2

r p2
r

d2
g

=
4ρ2

r (1 − ρr)
2

d2
g

(11)  

and the conductance through this one layer is then correspondingly 

GsL-p1 = Gsncsl-p1 = Gs
4ρ2

r p2
r

d2
g

= Gs
4ρ2

r (1 − ρr)
2

d2
g

(12) 

This is still a simple function with maximum at a relative density of 
50%, but now down at 0.25 conducting surfaces per brick, 0.5 per grain. 

We might continue like this, making the straight percolating con-
duction path ever rarer, but orthogonal surfaces will immediately start 
to connect the ones we consider, and increase the conducting pathways. 
A numerical simulation of this could be useful, but the brick layer model 
is anyway crude. Generally, the power that the porosity and density are 
raised to, can be a variable ξ (xi) which we may call a percolation 
coefficient: 

Gsl-pξ = Gsnsl-pξ = Gs
4(ρrpr)

ξ

d2
g

= Gs
4(ρr(1 − ρr) )

ξ

d2
g

(13)  

In reality, an isotropic microstructure of high porosity such as for 
powder compacts or poorly sintered ceramics will have well-connected 
pores and ξ probably close to 1 and certainly below 2, while low po-
rosities and certain non-isotropic pore structures may have ξ above 2. 

A unit volume will have a conductance divided by the number of 
layers of grains, i.e., 1/dg, so that we get a macroscopic specific con-
ductivity σM of the porous material of 

σM =
Gsl-pξ

1
dg

= Gsl-pξdg = Gs
4ρξ

r pξ
r

dg
= Gs

4ρξ
r (1 − ρr)

ξ

dg
=

Ψ
dg

Gs = ψGs (14)  

In this formula we recognise that the essential parameters for the con-
ductivity of a randomly and highly porous material with surface 
conductance are the conductance Gs of the surface layer, the relative 
density ρr (or porosity pr) and the grain (and pore) size dg, while the 
percolation coefficient ξ expectedly in the range 1–2 plays an additional, 
but modest role. The unit-less factor Ψ is given as Ψ = 4ρξ

r pξ
r =

4ρξ
r (1 − ρr)

ξ in this simplified case of randomly porous materials. 
The surface protonic conductivity of a simple porous material ac-

cording to this model is inversely proportional to the grain size and has a 
maximum at 50% relative density of σM = Gs/dg for ξ = 1 and 0.25Gs/dg 
for ξ = 2. 

Fig. 5 shows a master plot of the unit-less factor Ψ as a function of 
relative density for the SBLM with ξ = 1, 1.5, and 2, compared with 
values for (1D) regular columnar and 3D columnar porosity. The SBLM 
handles in principle any relative density between 0 and 1, although too 
porous materials can hardly have mechanical integrity. The columnar 
models, however, are limited mathematically and realistically to high 
relative densities. 

The SBLM handles to some extent closed porosity if ξ > 1, as can be 
realised from the concave shape of the conductivity curve near full 
density for ξ = 1.5 and 2. In considering square bricks, this however 
underestimates conductivity for less dense microstructures by not 
allowing conduction along facets connecting otherwise unconnected 

Fig. 3. Schematic single layers of 6 × 6 brick “random” porous microstructures 
viewed from above, into the direction of conduction through the plane of the 
image. Coloured bricks are grains and grain boundaries are the thin lines be-
tween them. Surfaces, e.g., with adsorbed water, are thick blue lines. Surfaces 
are drawn at the outer boundaries only where they would appear by expanding 
the same pattern in all four directions of the plane (in this way drawn differ-
ently than in the figure in the supplementary information of our paper on ZrO2, 
[19] which it is adapted from). Densities are 5/6 (≈ 83%, left), 1/2 (50%, 
middle), and 1/3 (≈ 33%, right). Statistical numbers of conducting through- 
plane surfaces of the 6 × 6 brick layer according to the model we develop 
(Eq. 9, with dg = 1/6) are 20, 36, and 32, while the actual numbers in a 
repeating matrix of the depicted “random” microstructures can be counted as, 
respectively, 24, 47, and 40. The difference to the model is assigned to the 
human rather than statistical selection of the example microstructures. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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grain sides. 

3.2.2.3. Estimating specific surface areas with the SBLM. In the regular 
(1D) columnar case we treated first, the proportionality ψ between 
materials conductivity and surface conductance was simply the volume- 
specific surface area Av, as one can see from Eq. 6. For 3D randomly 
porous materials, the SBLM provides a simple efficient method of esti-
mating the volume specific surface area from microstructural parame-
ters, as derived in Ref. [19] (SI): 

Av =
6ρr(1 − ρr)

dg
(15)  

Inserting this, we obtain for the geometry factor ψ 

ψ =
4ρξ

r (1 − ρr)
ξ

dg
= ρξ− 1

r (1 − ρr)
ξ− 14ρr(1 − ρr)

dg
= ρξ− 1

r (1 − ρr)
ξ− 12

3
Av (16)  

and in the assumption of ξ = 1, we obtain simply: 

ψ =
2
3
Av (17)  

We may at need convert between volume specific surface area Av and 
gravimetric specific surface area Ag by 

Ag =
Av

ρp
=

Av

ρrρs
(18)  

where ρp and ρr are, respectively, the density and relative density of the 
porous material, and ρs is the theoretical density of the dense material. 

All in all, the above expressions allow us to make first approximation 
estimates of volumetric and, in turn, gravimetric specific surface areas 
from the surface brick layer model. Conversely, we may use measure-
ments of specific surface area by, e.g., BET analysis to estimate the ge-
ometry factor to convert between measured sample conductivity and 
surface conductance. Fig. 6 shows the order-of-magnitude correlation 
between gravimetric specific surface areas measured by BET and 

Fig. 4. Schematic side views of the vertical direction of conduction through 2-layer (left) and 3-layer (right) brick structures both with 10 vertical columns of bricks 
and 50% density by “random” population. The 2-layer example shows that out of the 10 surface sides in the top layer, only 7 surface sides percolate directly to 
another surface side in the next layer, marked with arrows. In the 3-layer example only 4 of these percolate in a straight manner further into the third layer. However, 
many paths circumvent this by use of orthogonal (horizontal) surfaces to another vertical path, which limits the exponential ξ of the probability in Eq. 13. Only one 
combination of grains (column 5, surfaces 5 and 6) leads to dead ends in our 3-layer example. The 3-layer example contains what appears in the 2D depiction to be a 
closed pore (column 9) that still contributes a percolating conducting surface, illustrating the mere statistical nature of the surface brick layer model. 

Fig. 5. Unit-less geometry factor Ψ for the SBLM for porous materials and Ψc 
for columnar porosity models as a function of relative density. The values of Ψ 
for the SBLM are calculated with percolation powers of ξ = 1, 1.5, and 2. The 
regular 1D columnar model coincides with that of Gregori et al. in ref. [18]. 

Fig. 6. Correlation between specific gravimetric surface areas from BET mea-
surements and those calculated from the SBLM using Eq. 15 and Eq. 18 for 
powder and ceramic samples of ZrO2, [19] CeO2, [20] and TiO2. [25] For the 
powder samples, a relative density of 50% was assumed, and for the plate-like 
and elongated crystallites in TiO2 powders, the grain size was taken as the 
average between the long and short dimension. 
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calculated by the SBLM using Eq. 15 and Eq. 18 with data for oxide 
powders and ceramic samples from recent reports on surface protonic 
conduction. 

3.2.2.4. Common features and general comments. Simple models like the 
ones presented here, including the SBLM, are crude, but serve to show a 
few general trends: The macroscopic conductivity is for all models 
directly proportional to the surface layer conductance, in turn given by 
the specific surface layer conductivity and its thickness. Moreover, it is 
inversely proportional to the grain and pore size. Finally, it is a function 
of the relative density. From the geometry of porous ceramics, we may 
expect macroscopic materials conductivities to have shallow peaks 
around 50% density at values corresponding to order of magnitude of 
σM = Gs/dg, i.e., the surface layer conductance in Siemens (S) divided by 
the grain and pore size. 

There are to our knowledge no systematic experimental studies of 
surface conduction for a material over a large range of density and/or 
grain or pore size that would be able to test the validity of the proposed 
SBLM. Such studies would be much welcomed, and for now we must use 
the models with precaution. In the following, we will nevertheless re-
view a few examples of their applicability for surface protonic conduc-
tion in porous ceramics, showing that they appear to apply within small 
variations of density and grain size for the same material, but more 
importantly, they allow order-of-magnitude distinction between types of 
adsorption and dissociation and proton migration. 

3.2.3. Application to experimental surface protonic conductivities 

3.2.3.1. Conduction in chemisorbed and physisorbed water. Water ad-
sorbs on ionic solids in three distinguishable layers, chemisorbed (c), 1st 

solid-like physisorbed (p), and 2nd liquid-like physisorbed (p2). They 
come on with increasing coverage one by one, with increasing relative 
humidity (RH), i.e., increasing partial pressure of water vapour pH2O, or 
decreasing temperature T, see Fig. 7. The adsorbed water dissociates to 
protonic charge carriers with different mobilities in the different layers, 
giving rise to surface protonic conduction. Each layer L has an in-plane 
surface conductance GL given by its volume conductivity σL and the 
thickness tL, 

GL = σLtL (19) 

All three layers – to the extent that they are present – may be 
considered to contribute to the total surface conductance Gs: 

Gs = Gc +Gp +Gp2 (20)  

We consider next that the water layers make up a total thickness ts and a 
total conductance Gs, for which we assign an effective (average) volume 
conductivity σs of protons: 

σs =
Gs

ts
=

Gc + Gp + Gp2

tc + tp + tp2
(21)  

Experimentally, we cannot delineate the three contributions directly, 
but variations in measured conductivity vs. for instance temperature can 
be fitted to Eq. 20 to obtain separate functions for the three, as applied 
by Kang et al. for TiO2 nanomaterials. [25] 

Alternatively, one may – in different regions of T and pH2O (different 
RH) – consider the outermost layer that is present completely domi-
nating because it has proton mobility superior to the layer(s) under-
neath. Sun et al. [19,20] adopted this approach and were the first to 
develop it into quantitative models for proton migration mechanisms in 
the chemisorbed and 1st physisorbed layers. Within simplified assump-
tions of dominating adsorption and dissociation behaviours, low or full 
coverage, and predominant migration mechanisms, a surface conduc-
tance Gs,H+ could be expressed generally with a predictable standard 
preexponential G0

s,H+0, a given pn
H2O dependency, and a single activation 

enthalpy of conductance ΔHc = ΔH0 + ΔHm,H+ being a sum of standard 
enthalpies of adsorption and dissociation ΔH0 and a migration activa-
tion enthalpy term ΔHm,H+ : 

Gs,H+ = G0
s,H+0

(
pH2O

p0

)n 1
T

exp
(
− ΔHc

RT

)

(22)  

Table 1 shows values of G0
s,H+0 and n for the models evaluated. The 

thermodynamic cases for chemisorbed water are classified as molecular 
chemisorption with proton dissociation to surface oxide ions (cms-), 
dissociative chemisorption with proton dissociation to surface oxide 
ions (cds-), and molecular chemisorption with proton dissociation 
within the adsorbed layer (cma-). The transport mechanisms involve 
proton jumps between the surface oxide ions (− s), between surface 
oxide ions and adsorbed species (− sa), and between adsorbed species 
(− a). For the 1st physisorbed layer we consider protons from the 
chemisorbed layer underneath dissociated to and jumping in the phys-
isorbed layer (cmp-p) and protons both dissociated and jumping within 
the 1st physisorbed layer (p-p). The papers by Sun et al. [19,20] provide 
more detailed descriptions and assumptions as well as schematics of the 
different mechanisms, while the abbreviations for the physisorbed layer 
here have been modified towards more consistency. 

Sun et al. [19] parameterised conductivity data for porous ceramic 
samples of monoclinic ZrO2 via the SBLM reviewed here. The grain sizes 
and relative densities yielded ψ values that were used to convert 
measured conductivities to surface conductances. Regression of Arrhe-
nius plots in turn yielded preexponentials of protonic surface conduc-
tance that could be compared with predicted ones. For the surface 
protonic conductivity at relatively high temperatures, decreasing with 
temperature (positive activation enthalpies), there was good match with 
conduction in the chemisorbed layer (cms-s model). After use of the 
SBLM to remove the effect of different microstructures (grain size and 
porosity), the differences in surface conductance between samples sin-
tered at different temperatures could be related to a tendency of stronger 
and more dissociative chemisorption (cds-s model) and with higher 
activation energy of proton migration for samples with more facetted 
surfaces (sintered at higher T). At lower measurement temperatures, the 
conductivity increased with decreasing temperature (apparent negative 

Fig. 7. Left: The three schematic layers of adsorbed water with typical classi-
fications of RH. Right: Schematic example of an acidic oxide terminated pref-
erentially by OH− charge compensated by protons (H3O+) in the physisorbed 
layers and how the adsorbed layers in this case can be represented by a single 
total thickness layer with a conductivity given by the total concentration of 
protons and an averaged effective charge mobility. Adapted from ref. [25]. 
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activation enthalpy). The thermodynamic model of adsorption and 
dissociation and the corresponding mechanisms of migration within the 
adsorbed layer could for the first time rationalise such enthalpies, and 
predicted preexponentials many orders of magnitude lower for con-
duction in the physisorbed than in the chemisorbed layer. This was 
shown again to fit well to the experimental ones via the SBLM and was 
attributed to physisorbed water and what we here abbreviate the cmp-p 
and p-p protonic transport mechanisms. 

In a subsequent study of nanoscopic porous CeO2, Sun et al. [20] built 
on the model from the ZrO2 paper, but the hydrophobic nature of CeO2 
(attributed to a hydrogenated CeOOH-like surface region) showed – via 
a range of sorption and thermogravimetry measurements – that an 
extended set of migration models for the chemisorbed layer was needed, 
abbreviated cds-sa and cms-a models. The surface conductances in wet 
atmosphere for two samples sintered at 550 and 750 ◦C are shown in 
Fig. 8. As seen, the sample surface conductivity that was considerably 
higher for the finer more porous sample sintered at 550 ◦C (ρr = 50%) 
becomes roughly equal to the coarser 750 ◦C sample (ρr = 62%) in terms 
of the surface conductance via the SBLM. 

It should be noted that in the work on ZrO2 the extraction of pre-
exponentials and enthalpies was done by normal regression of Arrhenius 
plots and then compared with model values. [19] As a different 
approach, Fig. 8 for CeO2 has trend lines drawn by fixing the pre-
exponentials to the predicted model values and then the slope and hence 
empirical enthalpies are obtained by rotating the line to fit the relevant 
range of surface conductances. [20]. 

4. Summarising conclusions 

We have for compacts and sinters with high open porosity derived a 
surface brick layer model (SBLM) to mathematically connect the surface 
conductance Gs in Siemens (S) and the macroscopic surface conductivity 
σM,s of the porous material by use of a choice of parameters expressing 
the material’s microstructure: 

σM,s =
4ρξ

r pξ
r

dg
Gs =

4ρξ
r (1 − ρr)

ξ

dg
Gs =

Ψ
dg

Gs = ψGs = ρξ− 1
r (1 − ρr)

ξ− 12
3

AvGs

(23)  

Here, ρr and pr are relative density and porosity, respectively, dg is the 
size of the grains and pores, and Ψ is a unit-less geometry factor and ψ is 
the same factor divided by the grain size. The volume-specific surface 
area Av can replace porosity and density and grain size. The exponent ξ 
expresses the obstacle of percolation and can in our opinion be left at 1 
for simplicity, or increased to e.g., 1.5 or maximum 2 for less porous and 
more anisotropic microstructures, without affecting the order-of- 
magnitude limitation the crude model anyway represents. 

For 1D columnar porosity, a more accurate version applies, 

σM,c =
4pr

wc
Gs =

4(1 − ρr)

wc
Gs =

Ψ c

wc
Gs = ψcGs = AvGs (24)  

where wc is the width of a square pore, and similar expressions for other 
1D pore cross-sections can be derived in a straightforwardly manner. An 
approximate model for materials with 3D orthogonal columnar pores is 
suggested for surface conduction in the structural porosity of so-called 
microporous materials like zeolites and MOFs. 

Table 1 
Derived pH2O dependences and predicted preexponentials (G0

s,H+0 and Gs,H+0) and activation enthalpies of surface protonic conductance (ΔHc) within the chemisorbed 
water layer at pH2O = 1 bar (standard conditions) and 0.025 bar according to different models of dissociation and transport in cases of low coverage, for which 
molecular or dissociated chemisorption have the same parameters. Also included are predictions for full coverage, where there are no pH2O dependences, but dif-
ferences between molecular or dissociated dominance. Note that models with transport between adsorbed species in the chemisorbed and physisorbed layers come out 
with the same preexponentials and have been tabulated together. Lines in Fig. 8 are based on the predicted preexponentials and empirical enthalpies in parenthesis. 
Adapted from ref. [20].  

Model cms-s 
cds-s 

cms-sa 
cds-sa 

cms-a 
cds-a 
cmp-p 

cma-a 
p-p 

cms-s cds-s cms-sa cds-sa cms-a 
cmp-p 

cds-a cma-a 
p-p 

Parameter 

n in Gs,H+0∝pn
H2O 1/2 1 3/2 2 0 (Full coverage) 

G0
s,H+0 (SK), 

pH2 O= 1 bar 
2•10− 6 3•10− 9 3•10− 12 6•10− 15 1•10− 3 4•10− 4 1.5•10− 3 8•10− 4 1•10− 3 8•10− 4 1.5•10− 3 

Gs,H+0 (SK), 
pH2O= 0.025 bar 

2•10− 7 8•10− 11 1•10− 14 4•10− 18 1•10− 3 4•10− 4 1.5•10− 3 8•10− 4 1•10− 3 8•10− 4 1.5•10− 3 

ΔHc (kJ/mol) 
(plotted in Fig. 8) 

+30 
(+29) 

0 
(− 10) 

− 60 
(− 45) 

− 70 +60  
+50 +60 +40 +30 

(+25) 
0 +40  

Fig. 8. Surface protonic conductance of two CeO2 samples sintered at 550 (ρr 
= 50%) and 750 ◦C (ρr = 62%) vs 1/T in wet (pH2O = 0.025 bar) N2, obtained 
from the sample conductivities via the SBLM. The lines are drawn using pre-
exponentials derived for models cds-s, cds-ca, and cms-a in the cases of low 
coverage, the latter with an extension also to full coverage, see Table 1. 
Reproduced from ref. [20] under Creative Commons CC-BY. © 2022 The Author 
(s). Published by Elsevier B.V. 
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We have exemplified how different models for chemisorption and 
physisorption of water, dissociation, and migration of protons lead to 
expressions for surface proton conduction Gs,H+ with quantifiable pre-
exponentials, and we have reviewed results from recent literature on 
nanoporous ZrO2 and CeO2 showing that credible models fit experi-
mental preexponentials within order-of-magnitude via the SBLM. 
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