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CHAPTER 1

Introduction

1.1. Motivation

The Finite Element Method (FEM) has its motivation from solving partial
di�erential equations (PDEs) with large accuracy. We often have the necessity to
solve PDEs which can't be solved analytically, i.e. when its domain (the space on
which the PDE is solved) is of irregular shape . The FEM o�ers a discretization
technique that is analytically appealing, and at the same time it is time e�cient
and carries good precition estimates. The wonder of the FEM is that it generates
a computer-solvable problem which is analogous in formulation to its theoretical
counterpart.

Its generality can be described amongst other examples by the program pack
FeNICS1 or the calculation tool Fluent. These libraries contain tools for dividing
domains into polyhedral meshes and constructing the relevant equations for cal-
culating approximate solutions to PDEs over the domains. In this thesis we will
only focus on the use of simplicial meshes because of their friendliness towards
our formulation, even though hypercubical meshes might seem more intuitive and
esthetically appealing to some. This thesis will not argue against them, but we will
see that simplices are quite su�cient to develop our theory.

Necessary for understanding the FEM is a limited knowledge of partial di�er-
ential equations, functional analysis (and consequently linear algebra), because the
method's grounding in theory, some of which we will repeat here.

The reason that the Finite Element Exterior Calculus (FEEC) is so interesting
is because it generalizes the notion of a�ne equivalence so it's not only valid for
H1-spaces, but also for H(div)- and H(curl)-spaces. A�ne equivalence is an im-
portant tool in most �nite element computations, as it increases the e�ciency of
the calculations by a huge factor.

The reason for developing the FEEC is that the FEM is considered slow but
precise, so many people doing simulations with limited computing methods often
use FEM only on parts of their domain Ω. They then leave the rest of the domain
to some time-e�cient method with more constraints or assumptions, for instance a
Finite Di�erence Method. The view of FEM as time-consuming is supported by its
slow calculation time (especially when working on H(div)- and H(curl)-spaces).

The FEEC was �rst summarised in the survey article by Arnold et.al. [2],
drawing upon many works to give a complete framework for treating PDE of dif-
ferential forms. Some articles [3] have been published on this subject, but so far
this is a fairly new area.

1www.fenics.org
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1.2. WHAT'S IN THIS THESIS? 11

1.2. What's in this thesis?

In Chapter 2 we introduce the FEM and what kind of problems we focus on.
We develop a framework for approximating solutions to certain types of variational
problems over the function space V . In our case V = H1(Ω) of functions over
Ω whose derivatives are square integrable. We then limit the space V to a �nite
subspace Vh which in our case is the space CPr(T ) of piecewise polynomial and
continuous functions over the simplicial meshing T of Ω. In Chapter 3 we try
to �nd which basis which gives the highest level of accuracy when solving the
limited variational problem. The goal is numerical stability and accuracy when
approximating the variational problems with an element in Vh.

In Chapter 4 we introduce the FEEC (from [2]), a generalisation from our scalar
variational problems in Chapter 2, using di�erential (k-)forms. We thus de�ne a
new version of V , HΛk(Ω) containing the k-forms whose exterior derivative has
only components in L2(Ω). We expand our study of variational problems to this
space. The motivation behind these is again an e�cient and numerically accurate
and stable framework for PDEs formulated with antisymmetric tensors.

In Chapter 5 we compare di�erent bases for our two new versions of Vh. One
of them is HPrΛk(T ), the space of piecewise polynomial di�erential k-forms up to
degree r which are in HΛk(Ω). The other is HP−r Λk(T ) (originally introduced in
[1]), a subspace of the former where some of the homogeneous rth-degree polynomi-
als are removed, to ensure that we cover all kinds of PDE whose solutions exist in
HΛk(Ω). We compare bases for these and see which provides us with the greatest
numerical accuracy when approximating variational problems on Vh.

This thesis' main focus is the conditioning of the obtained discrete systems
from Chapters 2 and 4, in other words we will consider the conditioning of the
sti�ness matrix relative to di�erent bases for Vh. However, we don't approach it
directly, but prove that it can be limited by the condition number of the Gram
matrix of each individual basis (sometimes called the weight matrix). In Chapters
3 and 5 we study how to calculate the elements in each Gram matrix, so that we
might estimate its condition numbers by computer calculations. These results for
the space HΛk(Ω) are the main goal of this thesis, and for the impatient they can
be found in Tables 1 on page 52 to 10 on page 54.



CHAPTER 2

The Finite Element Method

In this section we describe the Finite Element Method (FEM).1 The FEM is
a Galerkin method (explained in 2.3) for approximating solutions to Partial Dif-
ferential Equations (PDE) and integral equations with the aid of piecewise smooth
functions on polyhedral meshes, using the tools of functional analysis.2 This thesis
focuses on the PDE side of the FEM, and every time we say �FEM� there is no
intended reference to solving integral equations.

In Section 2.1 we detail what spaces we are working with, and in Section 2.2
what kind of problem we want to solve and how we formulate it. In Section 2.3
we give a quick overview of Galerkin's method (a class of methods for solving our
problem) and what motivates us in using it. Section 2.4 explains which of these
problems we choose and introduces the bases which are the object of study in this
thesis.

2.1. Weak derivatives, function spaces

Before we can consider our method, we need to de�ne the concepts of weak
derivatives and Sobolev spaces. (We will assume some knowledge about topology,
measure theory and functional analysis � [14, 15, 5] are good sources.) In our case,
we will be working in a subspace of the L2(Ω) Hilbert space, the space of square
integrable functions over Ω ⊂⊂ Rn,3

L2(Ω) :=
{
f : Ω→ R

∣∣∣∣ˆ
Ω

f2dx <∞
}
.

This is a normed vector space of functions with the norm and inner product

‖u‖L2(Ω) :=
(ˆ

Ω

(u)2 dx
) 1

2

, (u, v) :=
ˆ

Ω

uvdx.

When the integral is over another domain Γ ⊆ Ω will write

(u, v)L2(Γ) :=
ˆ

Γ

uvdx.

Since we will be working with PDE, we must also be able to di�erentiate our
functions, and we must restrict the space L2(Ω) of integrable functions to the
subspace H1(Ω) which has weak (i.e. integrable) derivatives:

1Main sources Finite Element Method: [6, 7]
2Main source for Partial Di�erential Equations: [10]; Main sources for functional analysis: [15,
9, 12]
3⊂⊂ means that Ω is compactly embedded in Rn
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2.1. WEAK DERIVATIVES, FUNCTION SPACES 13

Definition 2.1. Taking C1
0 (Ω) to be the set of all once-di�erentiable continu-

ous functions v over Ω with v|∂Ω = 0, A weak partial derivative of u is a function
ξi ∈ L2(Ω) such that

(2.1.1) ∀v ∈ C1
0 (Ω) : (ξi, v) = −

(
u,

∂v

∂xi

)
or written in integral form,

∀v ∈ C1
0 (Ω) :

ˆ
Ω

ξivdx = −
ˆ

Ω

u
∂v

∂xi
dx.

In other words, we require that integration by parts will work on u ∂v
∂xi

and

give ξiv and vice-versa. We will write ξi as
∂u
∂xi

or ∂
∂xi

(u), but be aware that this

function is only unique almost everywhere (also written a.e., this means outside a
set of measure 0). The space of once-di�erentiable functions is

H1(Ω) :=
{
f ∈ L2(Ω)

∣∣∣∣∀i ≤ n, ∃ ∂f∂xi ∈ L2(Ω)
}
,

which is an example of a Sobolev space. More general Sobolev spaces are H l(Ω) of l
times-di�erentiable functions. Since the FEM uses piecewise continuous functions
inside this space, we will see what restrictions being in H1(Ω) imposes on such
functions. But �rst we will de�ne piecewise continuous functions:

Definition 2.2. Assume we have a domain Ω =
⋃
i Ωi which is a union of

disjoint (compact) sets. Then, a piecewise continuous function u has the properties
that u|Ω1 = u1 and u|Ω2 = u2 are continuous functions, ui ∈ C(Ωi).

Note that C(Ωi) ⊂ H1(Ωi) since Ωi is compact.
We are going to work with piecewise continuous functions in this space, and

since they are in H1(Ω) they have this property:

Theorem 2.3. Let Ω be a domain that can be partitioned into the disjoint do-
mains Ω1 and Ω2 whose boundaries are C1 a.e.. Any piecewise continuous function
in H1(Ω) is continuous.

Proof. Let u ∈ H1(Ω) be continuous on Ω1 and Ω2. Assuming v ∈ C1
0 (Ω)

(C1-functions that are 0 on ∂Ω):ˆ
Ω

u
∂v

∂xi
dx =

ˆ
Ω1

u
∂v

∂xi
dx+

ˆ
Ω2

u
∂v

∂xi
dx.

Here we do an integration by parts (where TrΩ(v)(x) = v(x) on ∂Ω1 ∪∂Ω2 because
it is continuous) and get

= −
ˆ

Ω1

∂u

∂xi
vdx+

ˆ
∂Ω1

TrΩ1(u)vnΩ1
i dx−

ˆ
Ω2

∂u

∂xi
vdx+

ˆ
∂Ω2

TrΩ2(u)vnΩ2
i dx

where nΩ1
i is the ith component of the unit normal on ∂Ω1. The TrΓu (Trace)

function shows the limit towards ∂Γ (see [10]). Let B = ∂Ω1 ∩ ∂Ω2. Since v = 0
on ∂Ω and nΩ1

i = −nΩ2
i on B,ˆ

Ω

u
∂v

∂xi
dx = −

ˆ
Ω

∂u

∂xi
vdx+

ˆ
B

vnΩ1
i (TrΩ1(u)− TrΩ2(u)) dx.

This does not coincide with our de�nition of the weak derivative in (2.1.1) unless
TrΩ1(u) − TrΩ2(u) = 0. Since u ∈ H1(Ω) was chosen arbitrarily, we can draw
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the conclusion that a piecewise continuous function in H1(Ω) must be continuous
everywhere on Ω. �

2.2. Variational problems

Variational problems are an abstract way of interpreting possible measurements
or states of a system as vectors. A variational problem (sometimes referred to as
�weak� or �integral� formulation in certain applications) is usually formulated like
this: Find u ∈ V that satis�es

(2.2.1) ∀v ∈ V : a(u, v) = l(v)

for scalar functions a : V ×V → R and l : V → R. In our case this is a formulation
where V is a Hilbert space with norm ‖ · ‖V , a : V × V → R is a symmetric

(∀u, v : a(u, v) = a(v, u)), bounded (∀u, v : |a(u, v)| ≤ Ĉ‖u‖V ‖v‖V ) and bilinear
(linear in both arguments) form, and l is a linear bounded functional. In the case
that ∀v ∈ V : a(v, v) ≥ C‖v‖2V , a is also called coercive and according to The
Lax-Milgram Lemma in [12, p. 57] (2.2.1) is has a unique solution. We will persist
in using such a and l because of the certainty of a unique solution.

Example 2.4. A Weak formulation of a PDE
We let V = H1

0 (Ω) (functions that are 0 on ∂Ω, integrable, once-di�erentiable),
l(v) :=

´
Ω
fvdx and a(u, v) :=

´
Ω

(∑n
i,j=1 aij(x) ∂u∂xi

∂v
∂xj

+ c(x)uv
)

dx where ∀x :
aij(x) is symmetric and positive de�nite and ∀x : c(x) ≥ 0. (2.2.1) becomes

(2.2.2) ∀v ∈ H1
0 (Ω)

ˆ
Ω

 n∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
+ c(x)uv

dx =
ˆ

Ω

fvdx.

If we add the condition that u is twice di�erentiable (and v = 0 on ∂Ω), this may
be (through integration by parts)

∀v ∈ H1
0 (Ω)

ˆ
Ω

− n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
+ c(x)u

 vdx =
ˆ

Ω

fvdx

which corresponds to a strong formulation of the PDE (where one tries to �nd
u ∈ C2(Ω))

−
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+ c(x)u = f on Ω(2.2.3)

u = 0 on ∂Ω.

This equation is classi�ed as an elliptic in [6] (i.e.∀x : aij(x) is symmetric and
positive de�nite). A more general case can be seen in [6, 10].

The weak formulation has the added bene�t of looking at u, v and f (and some
of their derivatives) as integrable instead of having to be continuous functions of
x on Ω. The variational formulation clearly shows the possible application of the
Lax-Milgram lemma [12, p. 57] which proves existence of a unique solution for
certain elliptic PDE (including the example here). To prove this claim, we have to
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show that a is linear, bounded, and coercive. The bilinear form a is clearly linear.
It is bounded by the Cauchy-Schwartz inequality,

(2.2.4)

ˆ
Ω

 n∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj

 dx ≤ max
i,j

(|aij(x)|)
n∑

i,j=1

ˆ
Ω

(∣∣∣∣ ∂u∂xi
∣∣∣∣ ∣∣∣∣ ∂v∂xj

∣∣∣∣)dx

C−S
≤ max

i,j
(|aij(x)|)

√ˆ
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx

√ˆ
Ω

∣∣∣∣ ∂v∂xj
∣∣∣∣2 dx. = Cn2 ‖Dv‖ ‖Du‖

According to the Poincaré inequality this is bounded by

≤ Cn2 ‖v‖ ‖u‖ .

As for its coercivity, using the fact of aij 's positive de�niteness (∀ξ ∈ Rn :∑
ij ξiaijξj ≥ Ĉ‖ξ‖2, for some Ĉ > 0) we have the following inequalities:

a(v, v) =
ˆ

Ω

 n∑
i,j=1

aij(x)
∂v

∂xi

∂v

∂xj
+ c(x)v2

 dx ≥
ˆ

Ω

(
Ĉ |Dv|2 + c(x)v2

)
dx

≥ Ĉ
ˆ

Ω

(
|Dv|2

)
dx

whose square root is a norm on H1
0 (Ω) as a consequence of the Poincaré inequality.

This proves the coercivity of a, and hence (2.2.2) has a unique solution according
to the Lax-Milgram Lemma.

2.3. Galerkin's method for variational problems

Galerkin's method for approximating solutions to variational problems is used
both for proofs and numerical approximation, the latter of which is our focus. The
basics of (the generalised) Galerkin's method as used in this thesis are:

(1) Start out with a variational problem: Find u ∈ V (V is a vector space)

(2.3.1) �nd u ∈ V s.t. ∀v ∈ V : a(u, v) = l(v),

for example (2.2.1) (V Hilbert space; a linear, bounded, coercive; l linear,
bounded).

(2) Choose a �nite-dimensional subspace Vh of the Hilbert space V .
(3) Restrict the problem in (1) to the subspace Vh,

(2.3.2) �nd u ∈ Vh s.t. ∀v ∈ Vh : a(u, v) = l(v)

and
(4) solve (2.3.2) (if possible). This might be done (as was Galerkin's proposal

in [11]) by choosing a basis F = {φi}Ni=1 for Vh, thus converting (2.3.2)
to an equation system that turns it into

(2.3.3) �nd U ∈ RN s.t. ∀j ≤ N :
N∑
i=1

Uia(φi, φj) = l(φj).

A := {Aij}Ni,j=1 := {a(φi, φj)}Ni,j=1 is called the sti�ness matrix of a over

the basis {φi}Ni=1.
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It should be noted that Galerkin's method in its most general form (a nonlinear
and asymmetric) doesn't necessarily converge to any solution of the variational
problem, but in the following case it does: According to Céa's Lemma [6, p. 55],
if a is linear, bounded and coercive and l is bounded and linear, u is the (unique)
solution of (2.3.1) and uh is the approximated solution in Vh, then Céa's inequality

(2.3.4) ‖u− uh‖V ≤ C inf
v∈Vh

‖u− v‖V

tells us that

(1) uh is the element of Vh closest to u, and
(2) As Vh approaches V , uh will approach u in V .

Theorem 2.5. A well-known fact is that the variational problem (2.3.1) is
equivalent to the minimisation problem

(2.3.5) u := min
v∈V

M(v) where M(v) :=
1
2
a(v, v)− l(v).

Proof. The function u solves (2.3.1). ⇒ The function u gives the
minimum of (2.3.5): Take a u ∈ V that solves (2.3.1) . Then ∀v ∈ V

M(u+ v) =
1
2

(a(u, u) + a(v, v)) + a(u, v)− l(v)− l(u).

Since a is positive de�nite/coercive and a(u, v) = l(v),

M(u+ v) =
1
2

(a(u, u) + a(v, v))− l(u) ≥ 1
2
a(u, u)− l(u) = M(u).

The function u gives a minimum of (2.3.5). ⇒ The function u solves
(2.3.1): Let u be the minimum of (2.3.5), and let ε ∈ R. Take any v ∈ V , and
de�ne

µ(ε) := M(u+ εv)
which by the linearity of a and l is

µ(ε) =
1
2
(
a(u, u) + ε2a(v, v)

)
+ εa(u, v)− εl(v)− l(u).

Since µ is a real, continuous function (because of the linearity and boundedness of
M), µ has at least a weak derivative

µ′(ε) = εa(v, v) + a(u, v)− l(v)

µ(0) ≤ µ(ε)∀ε ∈ R, µ′(0) = 0 and thus

a(u, v)=l(v) = 0.

Since v ∈ V was arbitrary, this holds for all v ∈ V . �

2.4. Constructing Vh

Our goal is to solve a variational problem of the type in (2.2.1). Now we want
to construct a numerical method that approximates the solution of Example 2.4.
Our solutions will be in H1(Ω), and we have to choose our subspace within it, and
consequently the functions in the subspace will be continuous (by Theorem 2.3).
Since our subspace is not uniquely de�ned yet we can add useful restrictions to have
more control of its contents. What motivates further choice of subspace is that it

• Converges towards our solution when re�ning the parameters,
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Figure 2.4.1. Our domain the unit square Ω = [0, 1]2

• Generates a sparse sti�ness matrix, and
• Uses a minimal amount of operations to do so.

In short we want to create a version of the problem that is well adapted to quick
and precise solving on a computer. The rest of this section describes how the choice
of subspace and its basis satis�es these motivations.

2.4.1. The Mesh.
Having some sort of re�nement of the domain to include more data points is

a usual method of increasing precision in computational science. We're going to
divide our domain into mesh of subdomains with a piecewise C1 border and a
maximum diameter of 2h. To begin with, we have something to assume about the
regularity of the domain Ω: It has to have a piecewise C1 border, meaning that its
border can be covered by a γ : [0, 1] → Rn for t ∈ [0, 1], where γ(0) = γ(1), and
dγ
dt (t) exists almost everywhere. We will then proceed to partition Ω into disjoint
subdomains Ωi,

⋃
i Ωi = Ω with the same regularity property.

Example 2.6. For instance we have the unit square which can be divided into
triangles. In three dimensions we can have the unit cube divided into tetrahedra.

Since the domain Ω is a subset of Rn, we do not only work in two or three
dimensions. To help this, we can generalise these two- and three-dimensional tri-
angles and tetrahedra to the n-dimensional notion of simplices (using increasing
indices):

Definition 2.7. Increasing indices
An increasing index is a σ : {i, . . . , k} → {j, . . . , n} which adheres to the

following rule:

l < m⇒ σ(l) < σ(m).
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We will write it with the notation σ ∈ Σ[i : k, j : n]. The collection of all such
increasing indices is written as Σ. The image of an increasing multiindex is written
JσK.

Definition 2.8. Simplices and simplicial meshes
A simplex T in n dimensions (an n-simplex ) is the convex hull between n + 1

di�erent points {pi ∈ Rn}ni=0. Notation: T = [p0, . . . , pn]. T0 = [0, e1, . . . , en] is
called the reference simplex.

A k-subsimplex f of T = [p0, . . . , pn] is the convex hull of
{
pσ(i) ∈ Rn

}k
j=0

for

some σ ∈ Σ(0 : k; 0 : n), denoted fσ :=
[
pσ(0), . . . , pσ(k)

]
. The collection of k-

subsimplices of T is denoted ∆k(T ), and the collection of all subsimplices of T is
denoted ∆(T ) =

⋃n
k=0 ∆k(T ).

A simplical mesh T of a domain Ω is a collection of disjoint simplices Ti such
that

(1)
⋃
i Ti = Ω, and

(2) All intersections of two simplices fij = Ti ∩ Tj must be either fij = ∅ or
f ∈ ∆(T1),∆(T2).

The collection of all the k-subsimplices of T is denoted ∆k(T ). The set of all
simplices T ∈ T that share the subsimplex f ∈ ∆k(T ) (T ∩ f 6= 0) is denoted
ωf (T ).

It can also be noted that these meshes can be re�ned with respect to the

parameter h. For a simplex T we have the parameter hT := diam(T )
2 , and for the

mesh, h := maxT∈T hT . This is a measure of the coarseness of the mesh T . For
simplicial meshes, we can divide the mesh into more simplices by bisecting them
thus decreasing the coarseness h, and this is what is meant when writing Vh for the
subspace.

2.4.2. Shape functions (polynomials).
Shape functions are piecewise functions over our mesh T , continuous on each

T ∈ T . Among these are the functions that make up our subspace Vh of H1(Ω).
The natural choices for a basis on T are a trigonometric basis (e.g. Fourier series)
or a polynomial basis (e.g. Taylor series), since these are easy to di�erentiate
and integrate. Building upon work done in [2, 3, 8, 16], the objects of study
in this thesis are polynomials, therefore we abandon trigonometric series at this
point. Before we go on with polynomials, a short de�nition of multiindex notation
is necessary:

Definition 2.9. Multiindex notation
A multi-index j is an (n + 1 −m)-tuple (jm, . . . , jn), ji ∈ N0 which describes

the respective degrees of a monomial over Rn:

xj := xj11 · · ·xjnn
|j| :=

∑
i ji is the degree of j, JjK := { i ∈ N0| ji 6= 0} is the support of j, and the

set of multi-indices is written Nm:n
0 .

Definition 2.10. Polynomial function spaces
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Given a domain T ⊂ Rn, the space of rth degree polynomials over T is denoted

Pr(T ) :=

p : T → R

∣∣∣∣∣∣∀i ∈ N1:n
0 , |i| ≤ r : ∃ai ∈ R : ∀x ∈ T : p(x) =

∑
|i|≤r

aix
i


where N1:n

0 is the space of natural number-valued n-tuples. More compactly written:

Pr(T ) :=

∑
|i|≤r

aix
i

∣∣∣∣∣∣ ai ∈ R


The direct sum of these spaces (assuming p ∈ Pr(T ) is zero for x /∈ T )

(2.4.1)
⊕
T∈T
Pr(T )

will give a space of discontinuous functions. This does not satisfy Theorem 2.3, and
we must therefore restrict this space a bit more.

2.4.3. Continuity.
We still need to restrict the space from (2.4.1) to a proper subspace of H1(Ω).

Theorem 2.3 implies that if u ∈
⊕

T∈T Pr(T ) and u ∈ H1(Ω), then u ∈ C(Ω) (i.e. u
is continuous). Hence we need to ensure that our subspace contains only continuous
functions. The name for such a space is a conforming �nite element space, where
conforming implies that Vh is a subspace ofH

1(Ω). We let Vh := HPr(T ) as de�ned
here:

Definition 2.11. Continuous piecewise polynomial function spaces

The continuous piecewise polynomial functions are

HPr(T ) := {u ∈ C(Ω) |u|T ∈ Pr(T )} ,
meaning piecewise polynomials that are continuous on the edges between the sim-
plices, required by Theorem 2.3.

According to [2, p. 60-61] this space is well-de�ned and at any f ∈ ∆k(T ) the
trace Trf (p) for p ∈ Pr(T ) is single-valued. Thus we are certain that Pr(T ) is a
nondegenerate subspace of H1(Ω), i.e. dim(Pr(T )) > 0.

2.4.4. Basis of local support.

We want to generate a basis {φi}dimHPr(T )
i=1 for HPr(T ) that has local support,

i.e. that supp(φi) is covered by a small subset $i(T ) of T , not overlapping with
supp(φj) for too many j 6= i.4 The reason for this is that we are working with
evaluating integrals over Ω of the form

Iij =
ˆ

Ω

f(x)der1(φi)der2(φj)dx

where each derm can be either the identity or ∂
∂xi

and f(x) ∈ C(Ω) is an arbitrary
function. We can then restrict the integral toˆ

supp(φi)∩supp(φj)

f(x)der1(φi)der2(φj)dx =
∑

T∈($i(T )∩$j(T ))

ˆ
T

f(x)der1(φi)der2(φj),

4supp(u) := {x ∈ Ω |u(x) 6= 0}
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which is zero when $i(T ) ∩$j(T ) = ∅ regardless of the choice of the derm. This
makes the matrix {Iij}i,j sparse when the supp(φi) are many and far apart in

Ω, and our sti�ness matrix Aij = a(φi, φj) which is based on a weighted sum of
Iij-matrices, will have the same sparseness property.

2.4.5. Degrees of Freedom.
To de�ne a basis in HPr(T ) which has local support, we have to take a detour

through the dual space HPr(T )∗. In this subsection we de�ne and give a few
examples of di�erent spaces of the degrees of freedom of HPr(T ). First we need to
establish what exactly the dual space is:

Definition 2.12. Given a vector space X, the dual space X∗ is the space of
bounded linear functionals over X.

Fact 2.13. By [15, Th. 5.1] if X is �nite dimensional with basis {xi}i, then
X∗ has a basis {fi}i such that fi(xj) = δij. In particular dimX∗ = dimX.

Since dimHPr(T ) < ∞, then dimHPr(T ) = dimHPr(T )∗ by Fact 2.13
HPr(T ) andHPr(T )∗ are isomorphic as vector spaces. We can also reverse the pro-
cess of Fact 2.13 by choosing a basis for HPr(T )∗ that induces a basis on HPr(T )
with desirable properties such as local support. We call this basis the degrees of
freedom or nodes:

Definition 2.14. The degrees of freedom (also called nodes)NT = {ni}dimHPr(T )
i=1

of T are linearly independent elements of HPr(T )∗ that uniquely determine any
function in HPr(T ) (u = v ∈ HPr(T ) if ∀ϕ ∈ HPr(T )∗φ(u−w) = 0). The degrees
of freedom associated with a simplex T are denoted NT =

{
nTi
}dimPr(T )

i=1
. They

are linearly independent elements of Pr(T )∗ that together can be used to uniquely
determine any u ∈ Pr(T ).

The degrees of freedom need to be constructed as integral evaluations, a certain
number restricted to certain subsimplices of T . This is because when elements T1, T2

are linked together on the subsimplex f = T1 ∩ T2 we need Pr(T1)|f = Pr(T2)|f .
This can be done by choosing Pr(T1)∗ and Pr(T2)∗ such that Pr(T1)∗|f = Pr(T2)∗|f .

Given a domain Ω = [0, 1]2 (as in Figure 2.4.1 on page 17) with a triangular
mesh T , examples of such conformity-enforcing degrees of freedom on an element
5 are:

Example 2.15. Linear elements (see Figure 2.4.2 on page 21)
In the case of a linear element where P1(T ) is the function space, we know that

dimP1(T ) = dimT + 1, which equals the number of vertices of T . Hence it makes
sense to let NT consist of evaluations at the ith vertex point, i.e. N 3 ni(u) :=´
{xi} udx = u(xi). The vertices of all T ∈ T are what connects them, and we have

continuity of HP(T ) at the subsimplices. The linear element is usually the starting
point for all conforming families of elements over H1(Ω), and it is a simple version
of the two in Examples 2.16 and 2.17.

Example 2.16. Point evaluation in a triangle (see Figure 2.4.3 on page 22 and
2.4.4) This is a basis for Pr(T )∗, where the nodes are point evaluations uniformly

5a collection (T,F,N) of T , and shape functions F and a basis N for the dual space of spanF
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INF5680 – Introduction to Finite Element Methods

2� Finite element approximation in � dimensions

Topics

This week, we move from one space dimension to n space dimensions, in particular n = 2� 3.

Topics include the n-dimensional Poisson’s equation, strong formulation, weak �variational)
formulation, finite element formulation, how to obtain the discrete system, continuous piece-
wise linear approximation in n dimensions, the Galerkin orthogonality, and an energy norm
� posteriori error estimate for Poisson’s equation.

Reading

• CDE chapter 13, in particular 13.3.5

• CDE chapter 14

• CDE chapter 15

• Brenner–Scott chapter 5 �optional)

Assignments

Exercises

E� Number the mesh entities on the following mesh of the unit square �as tuples �d� i)). �1p)

INF5680 – Introduction to Finite Element Methods Anders Logg �logg@simula.no)
Figure 2.4.2. On the left a single linear element in two dimen-
sions, with point evaluation. When several simplices are connected
together their degrees of freedom are shared as in the right �gure.

distributed throughout the triangle in the fashion of triangular numbers, which in
fact are

(
2+r

2

)
= dimPr(T ).

These elements are constructed so that an appropriate number of their nodes
will coincide with (be linearly dependent of) the nodes of neighboring elements
on the edges and in the vertices. Observe that the evaluations on the edges (in-
cluding vertices) are enough to determine the polynomial degree uniquely for that
edge. Three evaluations for second degree polynomials, and four for third degree
polynomials. In other words, ⋃

T∈T
NT = NT .

In fact, dimPr(Rn) =
(
n+r
n

)
which are the n-simplicial numbers in Pascal's

triangle. This makes it easy to place the elements of NT uniformly throughout any
T and its subsimplices.

Example 2.17. Weighted integrals on the subsimplices

We can replace each node from Example 2.16 (evaluation at {xi ∈ T}dimPr(T )
i=1 )

with (linearly independent) integrals on the smallest subsimplex containing xi,⋂
f∈∆(T ),xi∈f

f.

This we do to preserve the number of nodes on the edges of T , so that the linking
to neighbouring T (similar to the linking in Figure 2.4.4 on the following page) is
preserved.

Letting ψif for i ≤ dimPr(f) =
(

dim f+r
dim f

)
be a basis for Pr(f) for all f ∈ ∆(T )

, we can construct a basis for the dual space:

(2.4.2) Dr(T ) =
{ˆ

f

Tr(u)ψifdx
∣∣∣∣ f ∈ ∆(T ), 1 ≤ i ≤

(
r − 1
dim f

)}
.
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Figure 2.4.3. Point evaluation on a triangle: A quadratic element
(left) and a qubic element (right).

Figure 2.4.4. A quadratic mesh.

For the entire mesh this is

(2.4.3) Dr(T ) =
{ˆ

f

Tr(u)ψifdx
∣∣∣∣ f ∈ ∆(T ), 1 ≤ i ≤

(
r − 1
dim f

)}
.

The reader should note that, as in Example 2.16 the number of degrees of freedom
associated to each subsimplex (including its subsimplices) is

(
dim f+r

dim f

)
.

These examples show us that there are several possible ways of constructing
a basis for Pr(T )∗. For our purpose of obtaining a basis for HPr(T ) with local
support we now have the appropriate tools.
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2.4.6. Construction of a basis. We want a basis {φi}i for HPr(T ), which
has local support, i.e. that it has support on few T ∈ T . To construct this basis,
we will use the a basis for any degrees of freedom from the last example, called NT .
We will then generate a nodal basis {φi}i de�ned by ∀i, j : ni(φj) = δij . Let us
explore what this means:

In the case of linear elements, the ni ∈ N (T ) represents point evaluations in
the vertices of T . We will then have {φi}i that are piecewise linear, and since they
are 0 in all but one vertex {ti} ∈ ∆0(T ), each φi will have support only on the
simplices surrounding ti, ω{ti}(T ). Hence we have local support. The nodal basis
for these vertices are the barycentric coordinates:

Definition 2.18. Barycentric coordinates
The barycentric coordinates λTi (x) of a simplex T are here interpreted as a

function of x ∈ Rn where the λTi (x) are de�ned to be s.t.

x =
n∑
i=0

λTi (x)pi

where {pi}ni=0 are the vertices of T .

The barycentric coordinates of the reference simplex, λT0
i (x) are written without

T0:

λi(x) := λT0
i (x) =

{
xi when i ≥ 1
1−

∑n
j=1 xj when i = 0

.

It is worth noting that
∑n
i=0 λ

T
i = 1.

For the two other examples of degrees of freedom, it will su�ce to say that
there exists a nodal basis {φi}i where ∀i, j : ni(φj) = δij . In the case of the point
evaluation nodes on T , let ni(φi) = φi(xi) = 1, and

f =
⋂

g∈∆(T ), xi∈f

g.

We see that for all T /∈ ωf (T ), ∀j : nTj (φi) = 0, and thus suppφi = ωf (T ). The
case of integral evaluations along subsimplices produces nodal basis functions with
suppφi = ωf (T ) along a similar argument.

Example 2.19. Now we can describe the nodes of Example 2.16 in more detail,
because they are distributed as follows: Let λ = (λ0, λ1, λ2) be the barycentric
coordinates of T ⊂ Rn. Then the nodes ni are point evaluation at barycentric
coordinates {(

i0
r
,
i1
r
,
i2
r

)∣∣∣∣ i ∈ N0:2
0 , |i| = r

}
The barycentric basis, which will be in our focus in this thesis, has the same

property as these nodal bases that it has suppφi = ωf (T ) for some f ∈ ∆(T ):

Definition 2.20. Barycentric (monomial) basis function
The polynomial bases of Pr(T ) can also be represented by monomials of barycen-

tric coordinates
(
λT
)i =

∏n
j=0

(
λTj
)ij

:{(
λT
)i∣∣∣ |i| = r

}
where r = |i| =

∑
j ij i ∈ N0:n

r .
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It is often common to substitute the barycentric basis with the Bernstein basis:

Definition 2.21. Bernstein basis
The Bernstein basis BTj is based upon the barycentric basis

(
λT
)j

such that

BTj =
(
r

j

)(
λT
)j

where r = |j| and
(
r
j

)
:= r!

j0!···jn!(r−|j|)! is the multinomial coe�cient.

This basis is also called the normalised barycentric basis because every
´
T0
BT0
j dx =

1 (proved in [8, p. 140].) It is then a scaling of the barycentric basis, and we will
see in Chapter 3 that The Bernstein basis is very well conditioned compared to the
barycentric basis.

2.4.7. Convergence of solution. In essence, we have convergence of solution
from the fact that P(T ) :=

∑∞
r=1 Pr(T ) is dense in H1(Ω) and that P(T ) is dense

in H1(T ). But knowing the rate at which it converges can be much harder, and can
only be obtained for solutions of variational problems in certain subsets of H1(Ω),
namely Ht(Ω) for t ≥ 2.

Fact 2.22. [6, Th. 6.4] Assuming T is shape-regular6 the convergence of the
solution is certain with the rate

‖u−Πhu‖L2(Ω) ≤ ch
t

∑
|i|≤t

∥∥Diu
∥∥2

L2(Ω)

 1
2

.

This requires that u ∈ Ht(Ω), that h is half the largest diameter of all T ∈ T and
that Πh is interpolation by a piecewise polynomial of degree r = t− 1 ≥ 1.

Actually the theorem is stated for polynomial interpolation, but according to
Cea's Lemma, ‖u−uh‖ ≤ ‖u−Πhu‖, so we can be sure that our numerical solution
u of our variational problem converges just as well.

This makes h a very good parameter for ensuring convergence of the solu-
tion. Technically, we can also re�ne the polynomial degree of HPr(T ), and because
polynomials are dense in C(Ω), which is dense in H1(Ω), this will also create con-
vergence. But this is the subject of another method, the hp-FEM, so here we have
no estimate for the error depending on r.

2.4.8. Time-e�cient calculations. Our evaluating of Aij = a(φi, φj) on
a computer requires a process of di�erentiation and integration with a symbolic
engine (e.g. maple). In general, this kind of calculation is very cumbersome for a
computer compared to regular numerical operations, and motivates us to try to cut
down on the use of these symbolic integrations. Our tool for this is called a�ne
equivalence, which tells us that we only need to perform one standardised symbolic
calculation per sti�ness matrix, instead of doing one per T ∈ T .

Definition 2.23. A�ne equivalence
Two elements (T1,F1,N1) and (T2,F2,N2) are a�ne equivalent if there exists

an a�ne injective transformation F : Rn → Rn such that the images of F, F ∗ and
F∗ are

6[6, p. 61]: ∃κ > 0 :∀T ∈ T : the inscribed circle of has a radius ≥ hT /κ where hT is the length
of the longest line of T .
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(1) F (T1) = T2

(2) F ∗(F2) = F1

(3) F∗(N1) = N2

where F ∗, F ∗(f) := f◦F for f ∈ F2, is called the pullback function and F∗, F∗(N) :=
N ◦ F ∗ for N ∈ N1, is called the push-forward function.

A�ne equivalence is really vital to e�ciency when doing calculations with the
FEM, since the number of symbolic calculations when doing the calculation of the
Sti�ness matrix shrinks by a factor of |T |. The reason is simply that the chain rule
for derivation acts on scalar functions such that

Dx(u ◦ F (x)) = Dxu(F (x)) = det (DxF (x))DF (x)u(F (x)).

The sti�ness matrix Aij = a(φi, φj) for the basis {φi}Ni=1 of HPr(T ) has to be
calculated for every simplex T ∈ T , with a local matrix ATij = a(φTi , φ

T
j )T (the

integral restricted to T ) from the local bases
{
φTi
}M
i=1
⊂ {φi}Ni (those that have

support on T ).

Example 2.24. Let's take a simpli�ed version of the equation component (from
Subsection 2.4.4)

IT1
ij =

ˆ
T1

der1
(
φT2
i ◦ F

)
der2

(
φT2
j ◦ F

)
dx

=
ˆ
T1

(
der1(F ) ·DF (x)

(
φT2
i ◦ F

))(
der2 (F ) ·DF (x)

(
φT2
j ◦ F

))
dx.

Changing the domain of the integral gives us

=
ˆ
T2

(
der1(F ) ·DφT2

i

)(
der2 (F ) ·DφT2

j

)
dx.

Switching to component notation, we get

=
∑
m,l

ˆ
T2

(der1(F ))m
(
DφT2

i

)
m

(der2 (F ))l
(
DφT2

j

)
l
dx

=
∑
m,l

(der1(F ))m (der2 (F ))l

ˆ
T2

(
DφT2

i

)
m

(
DφT2

j

)
l
dx =

∑
m,l

FmlDT2
ml.

so we need only calculate DφT2
i for one T2 ∈ T in order to evaluate the integral

ITij for all other T ∈ T . This calculation requires only that we compute integrals

for one element to �nd ATi for one i, and the rest can be calculated with simple
linear algebra operations. Since analytically computing integrals is much more
time-consuming than computing the determinant of an a�ne transformation, the
computing time is decreased signi�cantly.

2.4.9. In conclusion. We have now chosen HPr(T ) as our subspace Vh. It
has basis functions with local support which generates a sparse sti�ness matrix, its
functions are continuous, a solution in Vh converges towards the exact solution in V ,
and we don't require many symbolic calculations in the process. In later chapters
(3, 5) we will only consider the bases on a single T , because the calculations we are
trying to optimize (sti�ness matrix calculation) is done element by element.



CHAPTER 3

Condition numbers

In this chapter we will describe the importance of condition numbers, how
we calculate them, and their relevance to FEM solutions of PDE. [18] explains
condition numbers quite adequately:

In the numerical analysis, the condition number associated with
a problem is a measure of that problem's amenability to digi-
tal computation, that is, how numerically well-conditioned the
problem is. A problem with a low condition number is said to be
well-conditioned, while a problem with a high condition number
is said to be ill-conditioned.

In other words, a condition number is an abstract measure of how well a computer-
based solution method for any problem performs.

In our case we're dealing with linear algebra equation systems of the kind
Ax = b like (2.3.3). We want to �nd out what consequences truncation errors on
b have on the solution x. The following result from [13, p. 155-159] gives us a
condition number of a matrix to work with:

Fact 3.1. Suppose A ∈ Cn,n is nonsingular,1 b, e ∈ Cn, b 6= 0 and Ax =
b, Ay = b+ e. Then

(3.0.4)
1

cond(A)
‖e‖
‖b‖
≤ ‖y − x‖

‖x‖
≤ cond(A)

‖e‖
‖b‖

, cond(A) := ‖A‖ ·
∥∥A−1

∥∥ .
What this means is that by having a low condition number, we can limit the

relative error of the solution of Ax = b by a factor of cond(A).
Condition numbers are quite a useful tool, so let us investigate a bit further

what this expression ‖A‖ ·
∥∥A−1

∥∥ actually means in our case when A is symmetric:

‖A‖ is the norm of A , de�ned as supx∈Cn
|xtAx|
|x|2 , which is the magnitude of the

largest eigenvalue
∣∣µAmax

∣∣ of the matrix A. Its smallest eigenvalue satis�es
∣∣µAmin

∣∣ =
1

|µA−1
max |

where µA
−1

max is the largest (in magnitude) eigenvalue of A−1. Since
∣∣µAmax

∣∣ ≥∣∣µAmin

∣∣, the expression from (3.0.4) then becomes

‖A‖ ·
∥∥A−1

∥∥ =

∣∣µAmax

∣∣∣∣µAmin

∣∣ ≥ 1.

Then we know that the lowest possible condition number we can obtain is 1, which
is equivalent to A being a unitary matrix.

1Cn,n denotes all complex-valued n× n matrices.

26
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3.1. Relation to variational forms' condition numbers

In this section we will describe the relation between the condition numbers of
the sti�ness matrix A = {a (φi, φj)}ij , the bilinear (and bounded, coercive, and

symmetric) form restricted to the subspace Vh, ah : Vh × Vh → R, (u, v) 7→ a(u, v)
(the same as a|Vh×Vh , thus we will write only a where they are interchangeable)
and the basis {φi}i.

Now, the equation system we're regarding is based on the sti�ness matrix which

in itself consists of a basis {φi}Ni=1 and a bilinear form a. We now expand the concept
of condition number to these two mathematical objects.

Definition 3.2. Condition numbers of bases
If we have a basis {φi}Ni=1 for a N -dimensional Hilbert space within L2(Ω) (with

same norm and inner product) where N <∞, then

(3.1.1) cond
(
{φi}Ni=1

)
:=

supc∈RN
‖P

i ciφi‖L2(Ω)

|c|l2

infc∈RN
‖P

i ciφi‖L2(Ω)

|c|l2

where |c|l2 is the Euclidean norm of c. We see that the expression∥∥∥∥∥∑
i

ciφi

∥∥∥∥∥
L2(Ω)

=

∑
i

ciφi,
∑
j

cjφj

 1
2

L2(Ω)

=
(
ctGc

) 1
2

where G is the Gram matrix (We will write only G when only it is obvious which
basis is used.)

G
(
{φi}Ni=1

)
:=
{

(φi, φj)V
}N
i,j=1

.

We then get that supc∈RN
‖P

i ciφi‖L2(Ω)

|c|l2
= supc∈RN

(ctGc)
1
2

|c|l2
is the square root of

highest eigenvalue ofG by magnitude. Similarly, infc∈RN
‖P

i ciφi‖L2(Ω)

|c|l2
is the square

root of the lowest, and as a consequence (3.1.1)=
√

µGmax
µGmin

. From now on we will

work on the Gram matrix G, since has some nice properties, such as linearity and
relation to the following condition number (see Theorem 3.4):

Definition 3.3. Condition number of a bilinear form
Suppose a : V ×V → V is a symmetric, bounded, coercive bilinear form on the

Hilbert space V , then

cond(a) := λamax/λ
a
min

is the condition number of a where λamax := supx∈Vh
a(x,x)
‖x‖2 , λ

a
min := infx∈Vh

a(x,x)
‖x‖2

are respectively the absolute of the highest and lowest eigenvalues of a.2

Having de�ned these two condition numbers, we can state that the most im-
portant part of the following theorem is the inequality

cond (A) ≤ cond (ah) cond
(
G
(
{φi}dimVh

i=1

))
.

2Being the highest and lowest values of λ for which the eigenvalue problem ∀v ∈ V : a(u, v) =
λ(u, v) has a solution.
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As we will see, A := a (φi, φj) here is dependent both on choice of problem (a),
subspace Vh and a basis φi. The restricted bilinear form ah is only dependent on

choice of a and Vh, while G on the other hand only depends on {φi}dimVh
i=1 . We can't

do much about our bilinear form a, because it represents the problem we want to

solve, but the choice of bases {φi}dimVh
i=1 are quite many!

In that way we may condition A through improvement of G, and this will work
for any problem a which can be restriced to Vh. This is our main motivation for
exploring the condition numbers of di�erent polynomial bases, comparing them to
each other to see what bene�ts us the most.

Theorem 3.4. Given the variational problem

∀v ∈ Vh : a(u, v) = (f, v)

as in (2.3.2) and a �nite basis F = {φi}dimVh
i=1 for Vh, de�ne the sti�ness matrix A

by Aij := a(φi, φj). Then
(1) cond (A) ≤ cond (ah) cond (G), and
(2) If the φi are orthonormal, then cond (ah) = cond (A), and
(3) There exists a basis φi such that cond (A) = 1.

Proof. To prove Item 1, we must show that AU ≤ λahmaxλ
G
maxU and AU ≥

λahminλ
G
minU . Suppose that u ∈ Vh satisi�es

∀v ∈ Vh : a(u, v) = λ(u, v), λ ∈ R

i.e. solves the eigenvalue problem for the eigenvalue λ of ah in Vh. Using the basis
F for Vh, we get

∀j ∈ N1:dimVh
0 : a

(∑
i

Uiφi, φj

)
= λ

(∑
i

Uiφi, φj

)

(3.1.2) ∀j ∈ N1:dimVh :
∑
i

Uia (φi, φj) = λ
∑
i

Ui (φi, φj)

We can write this as

AU = λGU

where Aij = a(φi, φj) and Gij = (φi, φj). Suppose that λahmax is the maximal and
λahmin is the minimal eigenvalue of a, and that λGmax is the maximal and λGmin is the
minimal eigenvalue of G. We conclude from the spectral theorem and a's property
as coercive (only positive eigenvalues) that

‖AU‖ ≤ λahmax ‖GU‖ ≤ λahmaxλ
G
max ‖U‖ , and

‖AU‖ ≥ λahmin ‖GU‖ ≥ λ
ah
minλ

G
min ‖U‖ .

Consequently

(3.1.3) cond (A) =
λA

max

λA
min

≤ λahmaxλ
G
max

λahminλ
G
min

= cond (a) cond (G) .

For Item 2 we know that a is a bilinear form on Vh. Since Vh is �nite it has an
orthonormal basis {ei}i, thus we can de�ne the matrix

Âij := a (ei, ej)

which we will show has the same condition number as ah. De�ne
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W (ah) :=
{
a (x, x)
‖x‖2

}
x∈Vh

= {a (x, x)}‖x‖=1

and since ‖x‖2 = 1⇔
∑
i c

2
i = 1, 3

=

a
∑

i

ciei,
∑
j

cjej

P
i c

2
i=1

=

∑
i,j

cicja (ei, ej)

P
i c

2
i=1

=

∑
i,j

cicjÂij

P
i c

2
i=1

=
{
cÂct

}
‖c‖=1

which is the numerical range of both a and Â over the unit circle ‖x‖ = 1, so
sup(W (ah))/ inf(W (ah)) is both the condition number of Ah and Â.

Proving Item 3 we assume the orthonormal basis {ei}Ni=1 of the previous item,

and we will show that there exists a basis {φi}Ni=1 with φi =
∑
l dilel such that

cond(A) = 1 where Aij := a(φi, φj). We know that Â = a(ei, ej) is symmetric and
positive de�nite since a is symmetric and coercive. This in turn implies a singular
value decomposition Â = BΣBt for a unitary matrix B and diagonal matrix Σ.
Having a look at

A = {a(φi, φj)}i,j =

∑
l,m

dila(el, em)Vhdjm


i,j

= dÂdt

we realise that f we choose the φi such that d = Σ−
1
2B−1, we get that A = I,

and thus cond(A) = 1. Thus there is no limit to how well-conditioned a basis can
be. �

Having proved this, we go on to observe speci�c condition numbers for the
Gram matrix of di�erent bases.

3.2. The condition number of the Bernstein basis

In this section we consider , the Bernstein basis for Pr(T0), i.e. r-th degree
polynomials on the reference simplex T0, as de�ned in De�nition 2.21. Because
its condition number has already been examined and exactly de�ned in [16], we
need not prove anything about it, but we will illustrate and validate our approach

towards calculating the Gram matrix
{

(φi, φj)L2(T0)

}
i,j

for certain given bases

{φi}i of Vh. Since this basis is normal (
´
T0
BT0
j dx = 1), it will hopefully have a

very evenly valued Gram matrix with a low condition number.

Theorem 3.5. The Bernstein basis Gram matrix has the form

(3.2.1)

ˆ
T

BiBjdx =
|i|!|j|!
i0!j

0
!
lsum(i, j, n)

3‖x‖2 = 1⇔
“P

i ciei,
P

j cjej

”
= 1⇔

P
i,j cicj (ei, ej) = 1⇔

P
i,j cicj ⇔

P
i c

2
i = 1
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where i, j ∈ N0:n
0 , |i| = |j| = r and

lsum(i, j, n) :=
∑
|l|≤i0

(−1)|l|
(
i0 + l + j

0

)
!

(i0 − |l|)!l!(|i0 + l|+ |j|+ n)!
.

Proof. We know from [16, Lem. 1,(3)] that

(3.2.2)

ˆ
T

xiBjdx =
(i+ j

0
)!

j
0

|j|!
(|i|+ |j|+ n)!

.

We can then compute the Gram matrix of the basis {Bi}|i|=r as follows:
ˆ
T

BiBjdx =
ˆ
T

(
|i|
i

)(
1−

∑
i

xi

)i0
xi0Bjdx =

∑
|l|≤i0

(
i0
l

)
(−1)|l|

(
|i|
i

)ˆ
xi0+lBjdx

=
(
|i|
i

) ∑
|l|≤i0

(−1)l
(
i0
l

)ˆ
xi0+lBjdx.

We then apply (3.2.2) and get

=
|i|!
i!

∑
|l|≤i0

(−1)|l|
i0!

l!(i0 − |l|)!
(i0 + l + j

0
)!

j
0
!

|j|!
(|i0 + l|+ |j|+ n)!

.

Moving all factors independent of l out of the sum, we get

ˆ
T

BiBjdx =
|i|!|j|!
i0!j

0
!

∑
|l|≤i0

(−1)|l|

(
i0 + l + j

0

)
!

l!(i0 − |l|)!(|i0 + l|+ |j|+ n)!
.

�

We can use this information to calculate the condition number of the matrix{
(Bi, Bj)L2(Ω)

}
|i|,|j|=r for i, j ∈ N0:n

0 . For later, we'll use the term lsum to express

the factor

lsum(i, j, n) :=
∑
|l|≤i0

(−1)|l|

(
i0 + l + j

0

)
!

l!(i0 − |l|)!(|i0 + l|+ |j|+ n)!
.

This very well illustrates our method for obtaining the values of the di�erent
Gram matrices, and we've made a control program BernsteinCondsControl.m

which checks out that we get same result as the following consequence of [16, Th.
3]:

Fact 3.6. The Condition number of the matrix
{

(Bi, Bj)L2(Ω)

}
|i|,|j|=r where

|i| = |j| = r is (
2r + n

r

)
.

The lower and upper bounds for this expression are

exp
[
−n(n− 1)

8r

]
2r+

n
2((

r + n+ 1
2

)
π
) 1

4
≤

√(
2r + n

r

)
≤ exp

[
−n(n− 1)
8(r + n)

]
2r+

n
2

((r + n)π)
1
4
.

The condition numbers for n, r ≤ 7 are shown in Table 1 on page 33.
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The upper and lower bounds imply that
√(

2r+n
r

)
increases exponentially in r,

but not exponentially in n. As we can see in the table, the expression increases
linearly in n for r = 1, along triangle numbers 10, 15, 21, 28, . . . when r = 2, and
polynomially after that.

3.3. The barycentric basis

We will proceed to consider the barycentric basis de�ned in Subsection 2.4.6,
and how to calculate its condition number, to compare it with the condition num-
bers of the Bernstein basis. As opposed to the Bernstein basis, this basis is not
normalised, leaving

´
T0
λidx = 1

(|i|i ) , which will cause a great deal more variation

in the magnitude of the elements of the Gram matrix
´
λiλjdx

Corollary 3.7. Barycentric Gram matrix
Let

{
λi
}
|i|=r be the barycentric basis of Pr(T0) as de�ned in De�nition De�ni-

tion 2.20. We then know that the Gram matrix for this basis has the form

(3.3.1)

ˆ
λiλjdx = i0!j0!lsum(i, j, n)

with lsum de�ned as in Theorem 3.5.

Proof. We know from De�nition De�nition 2.21 that

BiBj =
(
|i|
i

)
λi
(
|j|
j

)
λj .

Thus ˆ
λiλjdx =

1(|i|
i

)(|j|
j

) ˆ
T

BiBjdx

which together with Theorem 3.5 proves the corollary. �

To �nd approximate solutions of the condition numbers of the barycentric basis,
we have written a few programs, which can be found in Section A.2. The results
of these calculations can be seen in Table 2 on page 33. We can there draw the
conclusion that the barycentric basis is (for n, r ≤ 7) worse conditioned than the

Bernstein basis. Thus we can conclude that the normalisation coe�cient
(|i|
i

)
in

front of λi is well justi�ed for all the barycentric polynomials.

3.4. The Subsimplex nodal bases

In this section we will look at the condition number for the nodal bases of the
subsimplex nodes de�ned in [2, 3]:

(3.4.1) Dbar
r (T0) =

{ˆ
f

Tr(u)
(
λf
)i

dx
∣∣∣∣ f ∈ ∆(T ), i ∈ N0:n

0 , |i| = r − dim f − 1
}

(3.4.2)

Dber
r (T0) =

{ˆ
f

Tr(u)
(
|i|
i

)(
λf
)i

dx
∣∣∣∣ f ∈ ∆(T ), i ∈ N0:n

0 , |i| = r − dim f − 1
}

These bases for degrees of freedom for general simplices T coincide when they
are joined

Both these sets have the same property: Let's take two adjacent simplices
in a mesh, T1, T2 ∈ T , adjacent meaning that ∂T1 ∩ ∂T2 6= ∅. According to the
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de�nition of the mesh (De�nition 2.8), their intersection ∂T1∩∂T2 will be a common
subsimplex f ∈ ∆(T1) ∩ ∆(T2). On this subsimplex, the elements of D(T1) and
D(T2) restricted to f will coincide,ˆ

f

Tr(u)
(
|i|
i

)(
λf
)i
, |i| = r − dim f − 1

and thus be identical. If f = fσ it also uniquely determines any λj where |j| = r
and JjK = JσK, because

λj = λmλ
P
l∈JσK el

where |m| = r − (dim f + 1).
We will explain how to calculate the condition numbers of the Gram matrices

of these subsimplex bases. We will do this numerically based on the Gram matrix

Gφ of a general basis {φi}Ni=1 for Pr(T ).
Given a basis {φi}Ni=1 where N := dimPr(T0), we will calculate the nodal basis

{ψi}Ni=1 by �nding the matrix C in ∀i : ψi =
∑N
j=1 Cijφj . Knowing that we wish

the statement ∀i, j : δij = ni(ψj) to be true, we see that

ni(ψj) = ni(
∑
l

Cjlφl) =
∑
l

Cjlni(φl) = δij .

This implies that our matrix c satisi�es CJ = I where Jji = ni(ψj), and conse-
quently C = J−1. Using this knowledge, we set out to determineGψ := {(ψi, ψj)}i,j
and its condition number. Assuming that Gφ := {(φi, φj)}i,j , we see that

Gψ = (ψi, ψj) =

(∑
l

cilφl,
∑
m

cjmφm

)
=
∑
l,m

cil (φl, φm) cjm = CGφC
t.

This way, letting {φi}Ni=1 be the barycentric basis, we have written our programs
so that they calculate CGφC

t and subsequently its condition number. The results
of the programs (seen in Section A.3) are shown in Table 3 and 4 on the next page.
As we can clearly see, these bases are signi�cantly worse conditioned compared to
the Bernstein and barycentric basis.

3.5. Conclusion

The optimal basis out of these four bases is by far the Bernstein basis, although
we have been unable to prove any general estimate of how their condition numbers
develop for n > 7 or r > 7. We can safely say that the Bernstein basis is the
optimal basis (out of these) to use for lower-dimensional PDE.

It is apparent that the to nodal bases di�er very little in their condition num-
bers, and are both ill-conditioned. This migh have to do with their coe�cients, and
in the future, one might try to scale these nodal bases di�erently to achieve better
condition numbers.
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n ↓, r → 1 2 3 4 5 6 7

1 3.0000 10.0000 35.0000 1.26 · 102 4.62 · 102 1.72 · 103 6.43 · 103

2 4.0000 15.0000 56.0000 2.10 · 102 7.92 · 102 3.00 · 103 1.14 · 104

3 5.0000 21.0000 84.0000 3.30 · 102 1.29 · 103 5.00 · 103 1.94 · 104

4 6.0000 28.0000 1.20 · 102 4.95 · 102 2.00 · 103 8.01 · 103 3.18 · 104

5 7.0000 36.0000 1.65 · 102 7.15 · 102 3.00 · 103 1.24 · 104 5.04 · 104

6 8.0000 45.0000 2.20 · 102 1.00 · 103 4.37 · 103 1.86 · 104 7.75 · 104

7 9.0000 55.0000 2.86 · 102 1.36 · 103 6.19 · 103 2.71 · 104 1.16 · 105

Table 1. The condition numbers of the Bernstein bases for n ≤
7, r ≤ 7.

n ↓, r → 1 2 3 4 5 6 7

1 3.0000 23.5576 1.82 · 102 1.89 · 103 2.16 · 104 2.67 · 105 3.42 · 106

2 4.0000 33.3921 6.80 · 102 9.28 · 103 1.80 · 105 5.03 · 106 1.11 · 108

3 5.0000 47.2211 8.32 · 102 3.53 · 104 7.99 · 105 2.77 · 107 1.05 · 109

4 6.0000 57.0363 1.01 · 103 3.94 · 104 3.04 · 106 1.03 · 108 4.88 · 109

5 7.0000 67.8786 1.22 · 103 4.39 · 104 3.27 · 106 3.94 · 108 1.85 · 1010

6 8.0000 79.7427 1.37 · 103 4.88 · 104 3.50 · 106 4.16 · 108 7.11 · 1010

7 9.0000 92.6248 1.53 · 103 5.42 · 104 3.74 · 106 4.38 · 108 7.44 · 1010

Table 2. The condition numbers of the barycentric bases for n ≤
7, r ≤ 7.

n ↓, r → 1 2 3 4 5 6 7

1 3.0000 1.08 · 103 1.58 · 105 1.75 · 107 1.13 · 109 5.81 · 1010 2.49 · 1012

2 4.0000 5.25 · 103 1.49 · 106 7.74 · 108 2.05 · 1011 3.91 · 1013 6.46 · 1015

3 5.0000 1.18 · 104 1.40 · 107 1.45 · 1010 1.19 · 1013 6.14 · 1015 3.05 · 1018

4 6.0000 2.03 · 104 5.27 · 107 1.18 · 1011 2.65 · 1014 2.25 · 1017 6.75 · 1020

5 7.0000 3.04 · 104 1.31 · 108 5.54 · 1011 3.03 · 1015 3.54 · 1018 7.08 · 1021

6 8.0000 4.22 · 104 2.62 · 108 1.79 · 1012 1.78 · 1016 1.40 · 1020 2.18 · 1022

7 9.0000 5.55 · 104 4.56 · 108 4.55 · 1012 4.14 · 1016 3.14 · 1020 1.31 · 1023

Table 3. The condition numbers of the subsimplex barycentric-
weighted nodal bases for n ≤ 7, r ≤ 7.

n ↓, r → 1 2 3 4 5 6 7

1 3.0000 1.08 · 103 1.58 · 105 2.60 · 107 2.79 · 109 2.34 · 1011 1.57 · 1013

2 4.0000 5.25 · 103 1.52 · 106 8.36 · 108 4.20 · 1011 1.48 · 1014 4.79 · 1016

3 5.0000 1.18 · 104 1.45 · 107 1.50 · 1010 1.39 · 1013 1.38 · 1016 1.27 · 1019

4 6.0000 2.03 · 104 5.42 · 107 1.25 · 1011 2.76 · 1014 3.88 · 1017 1.56 · 1021

5 7.0000 3.04 · 104 1.34 · 108 5.90 · 1011 3.02 · 1015 5.13 · 1018 1.10 · 1022

6 8.0000 4.22 · 104 2.67 · 108 1.91 · 1012 1.15 · 1016 3.83 · 1019 2.96 · 1022

7 9.0000 5.55 · 104 4.65 · 108 4.84 · 1012 2.83 · 1016 6.84 · 1020 4.91 · 1023

Table 4. The condition numbers of the subsimplex Bernstein-
weighted nodal bases for n ≤ 7, r ≤ 7.



CHAPTER 4

FEM with Di�erential forms
(Finite Element Exterior Calculus)

Di�erential forms are a useful, unifying tool for formulating curl- or div-based
PDE and higher-dimensional antisymmetric tensor �eld PDE, like electromagnetic
particle systems. In this chapter we will explain what alternating forms and dif-
ferential forms are, and give some useful examples of spaces of these. We'll also
explain how to apply the FEM to PDE in spaces of di�erential forms, using the
Finite Element Exterior Calculus as presented in [2]. The notation in this chapter
aspires to be parallell to [2, 3], but tries to correct some possible perceived ambi-
guity of the symbol P by furthering the use of HP from Chapter 2 when re�ering
to a piecewise polynomial space over a mesh.

More accurately: In Section 4.1 we describe alternating forms, so that we can
describe our function spaces in Section 4.2. In Section 4.3 we see what new kind
of problem we want to solve and how we formulate it, and Section 4.4 details the
framework of approximation.

4.1. Alternating forms

Alternating forms are one of the two building blocks (the other being L2-
functions) of di�erential forms. Thus we need to know what alternating forms
are before we can embark on a voyage through di�erential forms into the FEM and
FEEC.

Definition 4.1. Alternating forms
Given a n-dimensional vector space W over R,1 0 ≤ k ≤ n, an alternating

k-form is a multilinear2 function ω : W k → R that alternates when exchanging two
arguments:

ω(v1, . . . , vi
↑
, . . . , vj

↑
, . . . , vk) = −ω(v1, . . . , vj

↑
, . . . , vi

↑
, . . . , vk)

Generalized, this means that for all permutations σ ∈ Sk,3

ω(v1, . . . , vk) = (signσ)ω(vσ(1), . . . , vσ(k))

We de�ne the space Altk(W ) to be the space of such alternating k-forms (k-aric

alternating forms) over the space W . We write Alt(W ) for
⋃n
k=0 Altk(W ).

1In our case (for the following sections), W = Rn.
2Linear in each argument.
3Sk is the group of all permutations on k elements, and every σ ∈ Sk is thus a unique injective
function σ : {1, . . . , k} → {1, . . . , k}. signσ := (−1)m where m is the number of transpositions
(swapping of two positions) that σ can be split up into.

34
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These alternating forms are a generalisation of

k times︷ ︸︸ ︷
n× · · · × n antisymmetric ten-

sors (k-dimensional matrices), where the arguments v1, . . . , vk symbolise the in-
dices of the matrix. Observe that any underlying coordinate system for W is not
mentioned in this abstraction, therefore di�erential forms are often referred to as
�independent of coordinates� or something similar. We will de�ne our alternating
forms with the aid of bases (and thus coordinates) for Altk(W ). It is important to
remember that we don't always need to use speci�c bases. This is an important
tool when working with proofs on an abstract level (which will not be done here).

The space Altk(W ) also has an inner product

Definition 4.2. Inner product of alternating k-forms

(4.1.1) (ω, η)Altk(W ) :=
∑

σ∈Σ[1:k;1:n]

ω(bσ(1), . . . , bσ(k))η(bσ(1), . . . , bσ(k))

where ω, η ∈ Altk (W ), and {bi}ni=1 is any orthonormal basis for W .

Accompanying the alternating forms is the wedge product, a generalisation of
the cross, dot and scalar product of vectors to general alternating forms. Applying
it to two alternating forms will produce a third one:

Definition 4.3. Wedge product
Given ω ∈ Altk(W ) and ν ∈ Altl(W ), the wedge product or exterior product

∧ : Altk(W )×Altl(W )→ Altk+l(W ) is de�ned as

ω ∧ ν (v1, . . . , vk+l) :=
∑
σ∈Sk,l

sign (σ)ω
(
vσ(1), . . . , vσ(k)

)
ν
(
vσ(k+1), . . . , vσ(k+l)

)
.

Here Sk,l is the space of permutations σ ∈ Sk+l that are (k, l)-increasing, mean-
ing that ∀i, j ≥ k + 1 and ∀i, j ≤ k : i < j ⇒ σ(i) < σ(j).

In fact, according to [4, Prop. 4.1.2] we have a basis for every Altk(W ):

Fact 4.4. Basis for Altk(W )
Given a vector space W over R with dimension n <∞, there exists a basis dyi

for W ∗ such that {
dyσ(1) ∧ · · · ∧ dyσ(k)

}
σ∈Σ(1:k,1:n)

is a basis for Altk(W ).

This results in an algebra of forms with such calculations as dx ∧ dy(v1, v2) =
dx(v1)dy(v2)− dy(v1)dx(v2).

Definition 4.5. An orthonormal basis for Altk(W )
Supposing that W has an orthonormal basis {ei}ni=1, then {dxi}

n
i=1 is a basis

for the dual space of W , i.e. Alt0(W ). Similarly, the wedgings of such forms form

a basis (an orthonormal one) for Altk(W ):

span
{

dxσ(1) ∧ · · · ∧ dxσ(k)|σ ∈ Σ(1 : k; 1 : n)
}

= Altk(W ).
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We will use this basis as a way to express an alternating form by components,

ω =
∑

σ∈Σ(1:k,1:n)

ωσdxσ(1) ∧ · · · ∧ dxσ(k)

where ωσ ∈ R to better show the parallell to antisymmetric matrices. There is a
reason for the notation dx which will become apparent in De�nition 4.8. We also
want to be able to write expressions as above in a more concise way, hence we
introduce:

Definition 4.6. Increasing multi-indices
With increasing multi-indices we apply the brevity of multiindices to increasing

indices. Letting σ ∈ Σ(j : k,m : n), a series of (comma-separated) vectors in Rn is
written

vσ := (vσ(j), . . . , vσ(k)).

If σ is the identity (∀i : σ(i) = i), we just write v. A subset of an orthonormal basis
{ei}i∈JσK ⊆ {ei}

n
i=1 for Rn is thus written eσ := (eσ(j), . . . , eσ(k)).

When we have an alternating form generated from a dual basis dyi of Rn we
will write

dyσ := dyσ(j) ∧ · · · ∧ dyσ(k).

Consequently, we get the notation

dyσ(v) = dyσ(j) ∧ · · · ∧ dyσ(k)(vj , . . . , vk).

Lastly, we have the notation σi which is used to denote

dyσi := dyσ(j) ∧ · · · ∧ d̂yσ(i) ∧ · · · ∧ dyσ(k)

i.e. the ν ∈ Σ(j : k − 1,m : n) where JνK = JσK \{σ(i)}
This is all used for brevity of notation, and we will try not to over-use it to

avoid causing unintended di�culties to the reader.

It is important to remember that an alternating form is originally expressed
without reference to a speci�c set of coordinates, so they might be expressed with
any basis, such as the one below, which we will use later on:

Definition 4.7. Barycentric alternating forms
The alternating forms dλTi related to a particular simplex T = [t0, . . . , tn] in

W are de�ned as the dual of the gradients of the barycentric coordinates. Given
v ∈W ,

dλTi (v) :=
n∑
i=1

∂λTi
∂xi

vi = DλTi · v

so dλTi is the dual of the vector DλTi = ti − t0.
Similarly to barycentric coordinates in De�nition 2.18, dλi are the barycentric

di�erential forms corresponding to the reference simplex (i.e. dλT0
i ).

Henceforth, we will dispense withW and write Rn whereverW would otherwise
appear.
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4.2. Di�erential forms, function spaces

4.2.1. Di�erential forms. Di�erential k-forms are functions u : Ω→ Altk(Rn),
where Ω ⊆ Rn.4 This is parallell to tensor �elds of antisymmetric tensors, and the
space of di�erential k-forms on Ω is written Λk(Ω). We write Λ(Ω) for the collection
of all di�erential forms over Ω,

⋃n
k=0 Λk(Ω).

In this section we want to expand the notions in Section 2.1 from scalar func-
tion spaces to function spaces of di�erential forms. First, we need to simplify our
notation: According to Fact 4.4 we can then write the complete evaluation of u as
a sum of components uσ

u(x)(v1, . . . , vk) =
∑

σ∈Σ(1:k,1:n)

uσ(x)dxσ(1) ∧ · · · ∧ dxσ(k)(v1, . . . , vk).

With shorter notation, as in De�nition 4.6, this becomes

u(x)(v) =
∑

σ∈Σ(1:k,1:n)

uσ(x)dxσ(v)

for all v1, . . . , vk ∈ Rn, v = (v1, . . . , vk) and x ∈ Ω.

4.2.2. L2-spaces of di�erential forms. We now want to establish an L2-
space of di�erential k-forms on Ω, called L2Λk(Ω). Now, integrals of k-forms are
a rather complex matter, involving integration over a k-dimensional subset of Ω,
as you will see in the next subsection. We will �rst de�ne the inner product of
L2Λk(Ω) as

(u, v)L2Λk(Ω) :=
∑

σ,ν∈Σ(1:k,1:n)

(uσ, vν) (dxσ,dxν)Altk(Rn).

Originally de�ned as
∑
σ,κ∈Σ(1:k,1:n)

(´
Ω
u(x)(eσ)v(x)(eσ)dx

)
, in the formulation

above one can clearly see that this is an analogue to the inner product of vectors,´
u ·vdx. The inner product of u by itself is then the square sum of its components.

We can then de�ne the space of square integrable functions as

L2Λk(Ω) =
{
u ∈ Λk(Ω)

∣∣ (u, u)L2Λk(Ω) <∞
}
.

Let L2Λ(Ω) =
⋃n
k=0 L

2Λk(Ω).

4.2.3. Integration of di�erential forms. The integral of a k-form u =∑
σ∈Σ(1:k,1:n) uσdxσ over Ω is de�ned w.r.t. a k-dimensional subset of Ω:ˆ

f

u

It is usually determined by a mapping to the reference simplex, including the Ja-
cobian and such, as in [4, 4.4]. If the dxi are orthogonal, we're in Rn and f ⊂ Rn
is a k-simplex, the de�nition of will su�ce to say thatˆ

f

(
uσdxσ(1) ∧ · · · ∧ dxσ(k)

)
:=
ˆ
f

uσdxσ(1) · · · dxσ(k).

I.e. the integral of uσ over f as seen from the σ-subplane of Rn.
This way, integration of a di�erential form is quite simply and elegantly per-

formed.

4 In our case, Ω ⊂⊂ Rn is a domain with polyhedral boundary, so that it can be deconstructed
into a mesh.
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4.2.4. Derivation on Λ(Ω). First of all, we further the use of the weak de-
rivative, as de�ned in Section 2.1. Letting u ∈ L2Λk(Ω), its weak derivative with
respect to xi ∈ Rn is just the weak derivatives of its components uσ,

∂u

∂xi
=
∑
σ∈Sk

∂uσ
∂xi

dxσ.

Our intention for using di�erential forms is to de�ne operators that di�erentiate
only certain components of di�erential k-forms and produce new di�erential (k+1)-
forms, for example div = D· or curl = D× in three dimensions. For this use, we
have the exterior derivative:

Definition 4.8. Exterior derivative
Given a di�erential form u ∈ L2Λk(Ω), we have

(4.2.1) du :=
n∑
i=1

∂

∂xi
u ∧ dxi

which is a k + 1-form.
The space of d-di�erentiable di�erential k-forms is

HΛk(Ω) :=
{
u ∈ L2Λk(Ω)

∣∣du ∈ L2Λk+1(Ω)
}
.

We will write HΛ(Ω) for
⋃n
k=0HΛk(Ω).

After this de�nition, the reason for writing of the basis for Alt1(Ω) as dxi
becomes apparent by letting u = xi ∈ Rn in (4.2.1), making dxi(v) = ei · v for
v ∈ Rn. We see

One can also see that d|Λ0 has all the same properties as D, and also d|Λn−1 is
similar to (D·) = div. In two and three dimensions, d|Λ1 is similar to curl. Thus,
when di�erentiating with d, we are only concerned that the components can be
di�erentiated,

∂uσ
∂xi
∈ L2Λk(Ω),

where i /∈ JσK for u =
∑
σ uσdxσ. As a consequence of this and Theorem 2.3, every

component uσ must be continuous along the ith axis for all i /∈ JσK.

4.3. Variational problems formulated with di�erential forms

We already have the basic idea of variational formulations from Section 2.2:

We have a Hilbert space V , the bilinear form a and the functional
l, all with the same properties as before. Find u such that

(4.3.1) ∀v ∈ V : a(u, v) = l(v).

Assuming that V ⊆ Λk is a normed vector space of di�erential forms, for example
L2Λk(Ω), we can easily apply Galerkin's method from Section 2.3 since the vari-
ational problem has the same form. There is perhaps a need to give an example
showing that di�erential forms also can be used to formulate variational problems:

Example 4.9. Example of PDE formulated with di�erential forms
Letting u, v ∈ H1

0 Λk(Ω) (u, v are 0 on ∂Ω), we can de�ne the bilinear form

a(u, v) := (du,dv)L2Λk+1(Ω) + (u, v)L2Λk−1(Ω)
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and the linear functional

l(v) := (f, v)L2Λk(Ω)

where f ∈ HΛk(Ω). Given these de�nitions we have a weakly formulated PDE,

(4.3.2) ∀v ∈ H1Λk(Ω) : (du,dv)L2Λk+1(Ω) + (u, v)L2Λk(Ω) = (f, v)L2Λk(Ω) .

Showing that this is a parallell to a PDE requires that we do an integration by
parts, which works on di�erential forms according to [2, p. 16]. We will then get

∀v ∈ Λk(Ω) : (δdu, v)L2Λk(Ω) + (u, v)L2Λk(Ω) = (f, v)L2Λk(Ω)

where δ is the formal adjoint to d in the inner product of L2Λ(Ω).5 We of course have
to assume that δdu ∈ L2Λk(Ω) to make this integration by parts work. Dispersing
with the inner products, we can see that this is a weak formulation of the PDE:

Given f ∈ Λk(Ω), �nd u ∈ Λk(Ω) such that

(δd + I)u = f.

where I is the identity.

Since a is bilinear, symmetric, coercive ((du,du) + (u, u) ≥ (u, u)) we need to
show that it is bounded:

(du,du)L2Λk+1(Ω) ≤ C ‖du‖L2Λk+1(Ω) ‖dv‖L2Λk+1(Ω)

which is ≤ CĈ ‖u‖L2Λk(Ω) ‖v‖L2Λk(Ω) by the Poincaré inequality. Because of this,

we can apply Theorem 3.4 to conclude that we also in this case can focus on
improving the condition number of the bases of Vh ⊂ L2Λk(Ω). This goes for all
problems with the same properties for the bilinear form a.

4.4. Constructing a new Vh

In this section, we will construct a subspace Vh of V = HΛk(Ω) so that we
can come up with an approximate solution for solvable versions of (4.3.1) on spaces
of di�erential forms. We will construct it so that when V = HΛ0(Ω) it will co-
incide with the case for scalar equations in Section 2.4. We still have the same
requirements, that the subspace Vh

• Converges towards our solution when re�ning the parameters,
• Generates a sparse sti�ness matrix, and
• Uses a minimal amount of operations to do so.

Since our domain Ω has not changed any since the scalar case, the mesh de�nition
of T will remain the same as De�nition 2.8.

4.4.1. Shape functions and continuity. Due to our change in function
spaces, from H1(Ω) to HΛ(Ω), we must de�ne our shape functions slightly dif-
ferently. They will still be piecewise functions over our mesh T , and they will be
continuous just on �orthogonal� components (HΛ(Ω)). Again we choose polynomi-
als as our shape functions.

5See more on the coderivative operator δ in [2, p. 18].
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Definition 4.10. Polynomial di�erential forms
Let r ≥ 1, 0 ≤ k ≤ n be integers, then the �rst space of polynomial di�erential

k-forms over the domain T ⊂⊂ Rn is de�ned as

PrΛk(T ) :=

{
u ∈ L2Λk(T )

∣∣∣∣∣u =
∑
σ

uσdxσ, ∀σ ∈ Σ(1 : k, 1 : n) : uσ ∈ Pr(T )

}
.

Note that dimPrΛk(T ) = dimPr(T ) dim Λk(Rn) =
(
n+r
n

)(
n
k

)
=
(
r+k
r

)(
n+r
n−k
)
ac-

cording to [2, (3.1)].

As in Subsection 2.4.2 we cannot really take the direct sum
⊕

T∈T PrΛk(T )
to get a subspace of HΛk(Ω) , as this would violate the continuity condition of
Theorem 2.3. Hence we need to restrict this space properly so that we get continuity
of the right components. Letting T be a mesh over Ω, we de�ne

HPrΛk(T ) :=
{
u ∈ HΛk(Ω)

∣∣∀T ∈ T : u|T ∈ PrΛk(T )
}
.

Unfortunately, according to [1] such spaces aren't su�cent to produce numeri-
cally stable methods. For instance, when u ∈ H(div,Ω; R3) a polynomial structure
which is entirely in H1(Ω) will according to [1, 3] produce an unstable solution
with oscillations. The article instead introduces a space of intermediate polynomi-
als which allows for the same kind of discontinuity as exists in H(div,Ω; R3), which
gives numerical stability, and gives a general space, P−r Λk(T ) of these polynomials.
This space is constructed with the aid of the following operator:

Definition 4.11. The Koszul operator
The Koszul operator κ : Λk(Ω)→ Λk−1(Ω) is de�ned by

κ(ω)(x)(v1, . . . , vk) := ω(x)(x, v1, . . . , vk−1).

What this will do with a given basis dyσ ∈ Altk(Rn) is

κ(dyσ) =
k∑
i=1

(−1)iyσ(i)dyσi .

We can see that as a consequence, when applying the Koszul operator to a di�er-
ential form u, it adds a polynomial degree in orthogonal directions. Thus if we
apply it to the space of homogeneous polynomial k-forms , HrΛk(Rn) we get a set
of r + 1-degree homogeneous polynomial k-forms where the degree of orthogonal
polynomials is at least 1. When we add this together with PrΛk(Rn) we get the
following space:

Definition 4.12. The intermediary polynomials P−r
We must also de�ne a second polynomial space that will �t in the HΛ(Ω) space.

We therefore de�ne the space of intermediary polynomials over T ⊂⊂ Rn as

P−r Λk(T ) :=
{
u ∈ PrΛk(T )

∣∣κu ∈ PrΛk−1(T )
}
.

We can also express it as the direct sum

P−r Λk(Ω) = Pr−1Λk(Ω) + κHr−1Λk(Ω).

where HrΛk(Ω) is the space of all homogeneous polynomial k-forms like xidxσ
where |i| = r and σ ∈ Σ(1 : k, 1 : n).
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According to[2, (3.15)] dimP−r Λk(Ω) =
(
r+k−1
k

)(
n+r
n−k
)
. We may also de�ne the

space of piecewise intermediary polynomials over the mesh T as

HP−r Λk(T ) :=
{
u ∈ HΛk(Ω)

∣∣ ∀T ∈ T : u|T ∈ P−r Λk(T )
}
.

[2, p. 60-61] proves that this space is well-de�ned, and at any subsimplex
f ∈ ∆j(T ), the trace Trf (p) for is single-valued for k ≤ j ≤ n−1 for p ∈ HPrΛk(T )
or p ∈ HP−r Λk(T ) . We need this result when introducing the degrees of freedom
in the next subsection.

4.4.2. Degrees of Freedom. Within these spacesHP−r Λk(T ) andHPrΛk(T )
we want to create bases that have local support in the sense presented in Subsection
2.4.4. This can be done with great success through the use of Degrees of Freedom
based upon local evaluations, i.e. integrals over only part of the domain Ω. This can
be a tool to let us construct very local nodal bases, giving us a very sparse sti�ness
matrix. In [2, (5.1) p. 59] the dual space of PrΛk(T ) is de�ned by functionals of
the form ˆ

f

Trfu ∧ vdx, v ∈ P−r−j+kΛj−k(f), f ∈ ∆j(T )

The dual space of P−r Λk(T ) in turn may be spanned by the functionalsˆ
f

Trfu ∧ vdx, v ∈ Pr−j+k−1Λj−k(f), f ∈ ∆j(T ).

Using these sets, [2, 5.1] tells us that they uniquely respectively determine any u
in HPrΛk(T ) or HP−r Λk(T ). For a more practical approach, one needs to de�ne
the bases of these spaces. The basis for HPrΛk(T )∗ we de�ne as

(4.4.1) DrΛk(T ) =
{ˆ

f

Tr(u)ψfi dx
∣∣∣∣ f ∈ ∆(T ), i ≤ dimP−r−j+kΛj−k(f)

}
where

{
ψfi

}
i
is a basis for P−r−j+kΛj−k(f) and j = dim f . We extend this to the

entire mesh to get the basis

(4.4.2) DrΛk(T ) =
{ˆ

f

Tr(u)ψfi dx
∣∣∣∣ f ∈ ∆(T ), i ≤ dimP−r−j+kΛj−k(f)

}
.

We can construct a similar basis D−r Λk(T ) for HP−r Λk(T )∗:

(4.4.3) D−r Λk(T ) =
{ˆ

f

Tr(u)ξfi dx
∣∣∣∣ f ∈ ∆(T ), i ≤ dimPr−j+k−1Λj−k(f)

}
where

{
ξfi

}
i
is a basis for Pr−j+k−1Λj−k(f). We extend this to the entire mesh to

get the basis

(4.4.4) D−r Λk(T ) =
{ˆ

f

Tr(u)ξfi dx
∣∣∣∣ f ∈ ∆(T ), i ≤ dimPr−j+k−1Λj−k(f)

}
.

4.4.3. Constructing a basis. First of all, we have the nodal bases ofDrΛk(T )
and D−r Λk(T ) which are both based on integrals along certain f ∈ ∆(T ). We then
have a basis φi where ∀ni ∈ DrΛk(T ) : ni(φj) = δij . This again causes the support
of φi to be suppφi =

⋃
ωf (T ) for the single f ∈ ∆(T ) to which ni is associated.

Thus we are able to produce local support, which in turn will generate a sparse
matrix as long as the bilinear form a is based on integrals over Ω.
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We will now proceed to de�ne a basis which has a similar property (that
suppφi =

⋃
ωf (T ) for some f). This will be a generalisation of the barycentric

monomial basis (see De�nition 2.20).

Definition 4.13. Barycentric basis for di�erential forms
Let λT =

(
λT0 , . . . , λ

T
n

)
be the barycentric coordinate function for the n-simplex

T , and let {dxσ}σ∈Σ(1:k,1:n) be a basis for Altk(T ) then

(4.4.5)
{(
λT
)i

dλσ
∣∣∣ i ∈ N0:n

r , |i| = r, σ ∈ Σ(1 : k, 1 : n)
}

which on the reference simplex T0 is λidxσ. This is a basis for PrΛk(T ).

For the space P−r Λk(T ) we need to be more careful in our approach. Actually,
we need the help of a basis for P−1 Λk(T ), the Whitney forms (named after Hassler
Whitney who introduced them in [17, p. 228-229]):

Definition 4.14. Whitney forms

On the same assumptions as the previous De�nition, we establish that the
Whitney k-forms are de�ned as

(4.4.6)

{
φσ :=

k∑
i=0

λσ(i)dλTσ(0) ∧ · · · ∧ d̂λTσ(i) ∧ · · · ∧ dλTσ(k)

∣∣∣∣∣ σ ∈ Σ(0 : k, 0 : n)

}
.

We can immediately see that this is the same as{
κdλTσ

∣∣ σ ∈ Σ(0 : k, 0 : n)
}
,

and that it in that way spans P−1 Λk(T ) = κP0Λk+1(T ) because {dλσ}σ∈Σ(1:k+1,1:n)

spans Altk+1(Rn) = P0Λk+1(T ).

Definition 4.15. Reduced barycentric polynomial forms
On the same assumptions as before,

(4.4.7)
{(
λT
)i
φσ

∣∣∣ i ∈ N0:n
r , |i| = r, σ ∈ Σ(1 : k, 1 : n)

}
This spans P−r Λk(T ) according to [2].

Theorem 4.16. Any u ∈ P−1 Λk(T ) is uniquely determined by D−1 Λk(T ).

Proof. Since each of φσ can be asssociated with a simplex fσ. Since every

φσ =
k∑
i=0

λσ(i)dλTσ(0) ∧ · · · ∧ d̂λTσ(i) ∧ · · · ∧ dλTσ(k)

is non-zero on any k-subsimplex fν because λTσ(i) > 0 on the interior of fσ, we can

conclude that φσ|fσ > 0 and thus thatˆ
fσ

φσ.

We can then assume that if u ∈ P−1 Λk(T ) and ∀n ∈ D−1 Λk(T ) : n(u) = 0, u = 0
becauseD−1 Λk(T ) spans P−1 Λk(T )∗. �

The Whitney forms together with the D−1 Λk(T ) form a class of a�ne equivalent
elements, which is proved in [2, p. 57].
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4.4.4. Convergence of the method. In essence, we have convergence of
solution from the fact that PΛk(T ) :=

∑∞
r=1 PrΛk(T ) =

∑∞
r=1 P−r Λk(T ) is dense

in HΛk(T ) and thus HPΛk(T ) is dense in HΛk(Ω). The result from 2.4.7 can be
applied here: Getting an estimate for the rate of convergence supposes a higher
degree of di�erentiability of our u ∈ HΛk(Ω). Thus, we must suppose that the
components of u, uσ are in Ht(Ω), then the following general convergence estimate
applies:

Fact 4.17. [6, Th. 6.4] Assuming T is shape-regular6 the convergence of the
solution is certain with the rate

(‖u− uh| ≤) ‖u−Πhu‖L2(Ω) ≤ ch
t

∑
|i|≤t

∥∥Diu
∥∥2

L2(Ω)

 1
2

.

This requires that u ∈ Ht(Ω) and h is half the largest diameter of all T ∈ T and
Πh is interpolation by a piecewise polynomial of degree r = t− 1 ≥ 1.

Thus for a uh ∈ HPr(T ), we must suppose that it is weakly di�erentiable r+ 1
times, which cannot always be the case, but this is the best convergence estimate
that we have for general polynomial interpolation. h is then the re�ning parameter
for ensuring convergence, even though one might also be able to infer convergence
by increasing the polynomial degree.

4.4.5. A�ne equivalence. As previously mentioned, a�ne equivalence is
our tool for reducing the number of symbolic integrations needed to be done by a
factor of |T |. Because we only need to calculate the sti�ness matrix symbolically
for basis functions associated to one T ∈ T , we can apply this calculation to the
rest of the basis functions using properties of a�ne transformation. More details
can be found in [7, p. 82 etc.]. In this subsection we use the term �nite element
to denote a triple (T,F,N) consisting of a simplex T , a set of basis functions F
spanning Vh|

T
, and a basis N for

(
Vh|

T

)∗
. We now recount the requirements for

a�ne equivalence.

Definition 4.18. A�ne equivalence
Two elements (T1,F1,N1) and (T2,F2,N2) are a�ne equivalent if there exists

an a�ne injective transformation L : Rn → Rn such that the images of L, L∗ and
L∗ are

(1) L(T1) = T2

(2) L∗(F2) = F1

(3) L∗(N1) = N2

where L∗, L∗(f) := f ◦ L for f ∈ F2, is called the pullback of L and L∗, L∗(N) :=
N ◦ L∗ for N ∈ N1, is called the push-forward of L.

Now, the problem with a�ne equivalence in many �nite elements over vector
(and tensor) �elds has been that their pullback operator only a�ected the functions
in spanF directly, while these were relying on an underlying coordinate system. We
will describe how this problem is solved with the change from general asymmetric
tensor �elds to di�erential forms with this �parable� on vector �elds:

6[6, p. 61]: ∃κ > 0 :∀T ∈ T : the inscribed circle of has a radius ≥ hT /κ where hT is the length
of the longest line of T .
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Assuming u : T → RM for some simplex T , the degrees of freedom N ∈ NT
have the property

N(u) =
ˆ
f

u · pdx

on u ∈ spanF for some normal or tangential vector p. According to De�nition 4.18
one usually de�nes the push-forward function L∗ as

L∗(N)(u) = N (L∗(u)) =
ˆ
f

L∗(u) · pdx.

The problem with this de�nition is that it ignores the vector p, which then causes
elements to be a�ne inequivalent because the corresponding degree of freedom for
another element might look like ˆ

g

v · qdx

where q does not have to be equal to p, and therefore a�ne equivalence is not the
case in most cases when v = L∗(u) and L(g) = fˆ

f

L∗(u) · pdx =
ˆ
g

v · pdx 6=
ˆ
g

v · qdx.

This is solved in formulations with di�erential forms, because they are inextricably
linked to their integrands and relative directions, and [2, pp. 10,16] de�nes the
pullback function L∗ as

L∗(u(x)(v)) := u(L(x)) (DL (v1) , . . . , DL (vn))

where the DL is the Jacobian for L. Let one of our NT ∈ NT be de�ned as

NT (u) :=
ˆ
fTσ

u ∧ ν, νT ∈ P−r−dim f+kΛdim f−k(T )

for any simplex T ⊂ Rn. For u in spanFS (assuming the pullback from De�nition
4.18, Item 2 works) we then have

L∗
(
NT
)

(u) =
ˆ
fTσ

L∗ (u) ∧ νT =
ˆ
fSσ

u (x) (v) ∧ νS = NS(u)

where DL(v) := DL (v1) , . . . , DL (vn). we get the corresponding degree of freedom
NS for the simplex S, which provides us with a�ne equivalence.

This sketch of a general proof of a�ne equivalence is not su�cient to prove
that the classes of bases for PrΛk(T ) and P−r Λk(T ) coupled with their degrees of
freedom DrΛk(T ) and D−r Λk(T ). We will therefore prove the a�ne equivalence of
the Whitney forms under the degrees of freedom D−1 Λk(T )

Theorem 4.19. The Whitney forms for two simplices T and S are a�ne equiv-
alent w.r.t. the degrees of freedom D−1 Λk(T ).

Proof. To prove a�ne equivalence we need to establish the following facts
from De�nition 4.18:

(1) L(T ) = L(S)
(2) L∗(FS) = FT
(3) L∗(D−1 Λk(T )) = D−1 Λk(S)
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Item 1 de�nes the a�ne map L : Rn → Rn, and proving it is thus trivial.
Proving Item 2, we take a Whitney k-form φSσ ∈ FS . We then take its pullback,

L∗
(
φSσ
)

= L∗

(
k∑
i=0

(−1)iλSσ(i)dλ
S
σ(1) ∧ · · · ∧ d̂λSσ(i) ∧ · · · ∧ dλSσ(k)(v)

)

=
k∑
i=0

(−1)iL
(
λSσ(i)

)
dλSσ(1) ∧ · · · ∧ d̂λSσ(i) ∧ · · · ∧ dλSσ(k)(DL(v))

=
k∑
i=0

(−1)iL∗
(
λSσ(i)

)(
dλSσ(1) ◦DL

)
∧· · ·∧

̂(
dλSσ(i) ◦DL

)
∧· · ·∧

(
dλSσ(k) ◦DL

)
(v).

To prove that this equals φTσ we only require L∗
(
λSσ(i)

)
= λSσ(i) (L(x)) = λTσ(i) (x)

and dλSσ(j) ◦DL = dλTσ(j) which can be easily checked.

Proving Item 3 is fortunately then quite simple: Let NT
σ ∈ D−1 (T ) and NS

σ ∈
D−1 (S) be corresponding degrees of freedom. Then,

NT
σ (u) :=

ˆ
fTσ

Tr(u ∧ 1) =
ˆ
fTσ

u.

We need not take the trace, since u is polynomial and therefore continuous. Ap-
plying the push-forward operator to NT

σ gives us the following:

L∗
(
NT
σ

)
(u) =

ˆ
fTσ

L∗ (u) =
ˆ
fSσ

u (x) ,

the last equality according to [2, p. 16]. This proves that L∗(D−1 (T )) = D−1 (S) �

4.4.6. Conclusion. We now have to possible choices of �nite element spaces,
HPr(T ) and HP−r (T ) with their associated degrees of freedom. They are still
able to converge towards a theoretical solution of our variational problem, under
the same conditions as in Chapter 2. They also have a set of local bases based
on barycentric coordinates of T ∈ T , which create a sti�ness matrix which is quite
sparse. Since we have a�ne equivalence for our spaces (of course with respect to the
degrees of freedom), |T | symbolic calculations can be skipped per sti�ness matrix
calculation, and thus our algorithm is time-e�cient.

We will now repeat the process of exploring the condition numbers for our new
bases for HPr(T ) and HP−r (T ), but restricting ourselves to calculations on the
reference simplex because of their a�ne equivalence.

We have now chosen HPr(T ) as our subspace Vh. It has basis functions with
local support which generates a sparse sti�ness matrix, its functions are continuous,
a solution in Vh converges towards the exact solution in V , and we don't require
many symbolic calculations in the process. In later chapters (3, 5) we will only
consider the bases on a single T , because the calculations we are trying to optimize
(sti�ness matrix calculation) is done element by element.



CHAPTER 5

Condition numbers of bases in PrΛk(T0) and
P−r Λk(T0)

Earlier on, in Chapter 3 we calculated the condition numbers of di�erent bases
for polynomial scalar functions on the reference simplex, Pr (T0). Most of them
were not analytical results as in [16], but approximations made on computer. It is
not necessarily easy (maybe not even possible) to calculate them analytically, but
doing so provides us with exact knowledge of the condition numbers for higher-
dimensional PDE with any polynomial degree. For instance one might easily create
system with higher dimensions than what's been calculated here in electromagnet-
ics.

Nevertheless, the results we have found are useful, and tells us what the nu-
merical stability of the sti�ness matrix is in many cases of variational formulations
of PDE. In the last chapter we described a generalisation of vector �elds called
di�erential forms. We also de�ned two spaces of polynomial di�erential forms and
two sets of bases for these. Here we will calculate the Gram matrices of these bases
analytically, then proceed to calculate the condition numbers of these matrices by
computer.

The reader will probably observe that the tables now are now more numerous
and have a triangular appearance. This is because our spaces no longer rely only on
the two integers (n, r) as Pr(T0), but on the three integers (n, r, k), where k varies
between 0 and n giving spaces PrΛk(T0).

5.1. Some calculations of alternating forms

Before we dive into the bases, we notice that the bases from Subsection 4.4.3
look like this:

(5.1.1) λidλσ, λiφσ = λi
k∑
l=0

(−1)λσ(l)dλσl .

Seeing that for either set of basis functions u, v, their Gram matrices will look like((
λT
)α

dλTσ ,
(
λT
)β

dλTπ
)
L2Λk(T )

=
((
λT
)α
,
(
λT
)β)

L2(T )

(
dλTσ ,dλ

T
π

)
Altk(Rn)

and(
λsφTα , λ

tφTβ
)
L2Λk(T )

=
k∑

i,j=0

(−1)i+j
((
λT
)s+eα(i)

,
(
λT
)t+eβ(j)

)
L2(T )

(
dλTαi ,dλ

T
β
j

)
Altk(Rn)

.

We immediately notice that there is an unknown factor
(
dλTσ ,dλ

T
π

)
Altk

in both
of these expressions. In order to calculate them, we must �rst �nd out what(
dλTσ ,dλ

T
π

)
Altk

means, which will be done in this section for T = T0, i.e. the
reference simplex.

46
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The inner product of Altk(Rn) is de�ned in De�nition 4.2 as

(dλµ,dλπ)Altk(Rn) =
∑

σ∈Σ[1:k;1:n]

dλµ(bσ)dλπ(bσ)

where {bi}ni=1 is any orthonormal basis for Rn. We choose bi = ei (the unit vectors
in Rn). The unknown term here then looks like dλµ(eσ)dλπ(eσ) (calculated in
Corollary 5.5), with factors

dλπ(eσ) =
∑
ν∈Sk

(sign ν)
k∏
i=1

dλµ(i)(eσ◦ν(i))

(calculated in Lemma 5.4) that have factors dλi(ej) (calculated in Lemma 5.1), and
this is where we begin.

Lemma 5.1. Evaluating a barycentric alternating form

Let {ei}ni=1 be the standard orthonormal basis for Rn, and dλi be the barycen-
tric alternating 1-forms of the reference simplex de�ned in De�nition 4.7. Then

dλi(ej) =


1 if i = j

0 if 0 6= i 6= j

−1 if i = 0
.

Proof. We know from De�nition 4.7 that dλi(ej) = Dλi · ej . Since Dλ0 =
D(1−

∑
i xi) = −

∑
i ei and Dλi = ei for 1 ≤ i ≤ n we have the result. �

Definition 5.2. The sets of separate indices
Given µ, ρ ∈ Σ[0 : k; 0 : n], we de�ne the set of separate indices for ρ with

respect to µ as

(5.1.2) siρν := ρ−1 (JρK \ JµK)

The set gives the indices i of all the ρ(i) which are not in JµK.

Corollary 5.3. For all µ, ρ ∈ Σ[0 : k; 0 : n], |siρν | =
∣∣siνρ∣∣.

Lemma 5.4. Evaluating the alternating form part of Whitney forms on the
reference simplex

dλµ(eσ) =


1 if µ = σ

(−1)m if |siσµ| = 1, µ(1) = 0 where m ∈ siσµ
0 if siσµ := σ−1 (JσK \ JµK) has more than δ0µ(1) elements

where µ ∈ Σ[1 : k; 0 : n] describes a barycentric alternating form, and σ ∈ Σ[1 :
k; 1 : n] describes a selection of k orthonormal coordinates

{
eσ(i)

}k
i=1
⊆ {ei}ni=1 as

in De�nition 4.2.

Proof. We have to calculate dλµ(1) ∧ · · · ∧ dλµ(k)(eσ(1), . . . , eσ(k)). We know

that 0 ∈ JµK µ∈Σ⇔ µ(1) = 0 for all increasing µ, so we will write the latter equivalent
instead of the former.
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Case 1. Suppose that µ(1) = 0, then

dλµ(eσ) =
∑
ν∈Sk

(sign ν)
k∏
i=1

dλµ(i)(eσ◦ν(i))

and by Lemma 5.1

=
∑
ν∈Sk

(sign ν)
k∏
i=1

δµ(i)ν◦σ(i) =
∑
ν∈Sk

(sign ν) δµ,σ◦ν

and since µ and σ are both increasing indices,

=
∑
ν∈Sk

(sign ν) δµσδid,ν = δµσ.

Case 2. Let 0 ∈ JµK,

dλµ(eσ) =
∑
ν∈Sk

(sign ν)
k∏
i=1

dλµ(i)(eσ◦ν(i))

we have a factor including dλ0 = dλµ(1) (since µ is increasing). Thus,

dλµ(eσ) =
∑
ν∈Sk

(sign ν) dλ0(eσ◦ν(1))
k∏
i=2

dλµ(i)(eσ◦ν(i))

= −
∑
ν∈Sk

(sign ν)
k∏
i=2

dλµ(i)(eσ◦ν(i)) = −
∑
ν∈Sk

(sign ν)
k∏
i=2

δµ(i)σ◦ν(i)

(5.1.3) = −
∑
ν∈Sk

(sign ν) δµ
1
σ◦ν1

where µ
j

: {1, . . . , k}\{j} → {1, . . . , n} means µ as an increasing sequence, but

truncating/overlooking the jth argument. For this to be nonzero, JµK ∩ JσK can
have no more than one element, or that the si-set

siσµ = σ−1 (JµK ∩ JσK)

must contain only one element. Since µ
1
is increasing, σ ◦ ν1 must also be increasing

for the terms in (5.1.3) to be nonzero, which makes all but one term vanish:

(5.1.4) = − (sign ν) δµ
1
σ◦ν1

That way, this term, which yields nonzero results is the one where ν shifts one
argument to the �rst position. Thus we can utilize the element m ∈ siσµ which tells
us how many transpositions ν must contain. This must be (m− 1) for σ ◦ ν1to be
increasing and equal to µ

1
, and thus

− (sign ν) δµ
1
σ◦ν1

= −(−1)m−1 = (−1)m,

concluding the second case.

Case 3. Assume
∣∣siσµ∣∣ > δ0µ(1). In either case, ∀ν ∈ Sn : ∃m ∈ siσµ : ∃i :

m = ν(i) making dλµ(i)(eσ◦ν(i)) = 0 for some i, ⇒
∏k
i=1 dλµ(i)(eσ◦ν(i)) = 0 for all

ν ∈ Sk.
�
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We build upon this lemma to �nd the product of two such terms:

Corollary 5.5. A product of two dλµ(eσ)-terms,

dλµ(eσ)dλπ(eσ) =



1 if µ = π = σ

0 if either
∣∣siσµ∣∣ > δ0µ(0) or |siσπ| > δ0π(0)

(−1)m if µ(1) = 0, π = σ, |siσµ| = 1 and ∃!m ∈ siσµ
(−1)p if π(1) = 0, µ = σ, |siσπ| = 1 and ∃!p ∈ siσπ
(−1)m+p if µ(1) = π(1) = 0, |siσµ| = |siσπ| = 1 and ∃!m ∈ siσµ, p ∈ siσπ

We may then �nally conclude on the inner product of two barycentric alternat-
ing forms.

Lemma 5.6. The inner product of two barycentric alternating forms in the
reference simplex

(5.1.5) (dλµ,dλπ)Altk =
∑

σ∈Σ[1:k;1:n]

dλµ(eσ)dλπ(eσ) =

=



n− k + 1 if µ(1) = 0 = π(1) and µ = π

1 if µ = π and both µ(1), π(1) 6= 0
0 if either δ0µ(0), δ0π(0) <

∣∣siπµ∣∣
(−1)m if µ(1) = 0 6= π(1) and

∣∣siπµ∣∣ = 1 where m ∈ siπµ
(−1)p if µ(1) 6= 0 = π(1) and |siµπ| = 1 where p ∈ siµπ
(−1)m+p if µ(1) = 0 = π(1) and

∣∣siπµ∣∣ = |siµπ| = 1 where m ∈ siπµ and p ∈ siµπ

Proof. We will prove each case above separately. The details of increasing
sequences are usually skipped. When referring to �the Corollary�, we refer to the
Corollary Corollary 5.5.

Case 1. If µ = π and µ(1) = 0 = π(1), then∑
σ∈Σ[1:k;1:n]

dλµ(eσ)dλπ(eσ) =
∑
σ∈X

dλµ(eσ)dλπ(eσ)

where X = {σ ∈ Σ(1 : k; 1 : n) : JµK \ {0} ⊂ JσK} is the collection of all σ with
|siσµ| = 1. Thus, for some constants i(σ),∑
σ∈X

dλµ(eσ)dλπ(eσ) =
∑
σ∈X

(dλµ(eσ))2 =
∑
σ∈X

(−1)2i(σ) =
∑
σ∈X

1 = |X| = n− k + 1

Case 2. If dλµ(eσ)dλπ(eσ) will in the case µ = π and both µ(0), π(0) 6= 0 be
nonzero except when σ = µ = π thus by the Corollary

∑
σ∈Σ[1:k;1:n] dλµ(eσ)dλπ(eσ) =

1.

Case 3. If either δ0µ(0), δ0π(0) <
∣∣siπµ∣∣, then for all σ either

∣∣siσµ∣∣ > δ0µ(0) or
|siσπ| > δ0π(0), thus by the Corollary

∑
σ∈Σ[1:k;1:n] dλµ(eσ)dλπ(eσ) = 0.

Case 4. For dλµ(eσ)dλπ(eσ) to be nonzero (by the �rst case of the Corollary
the term is zero if either

∣∣siσµ∣∣ > δ0µ(0) or |siσπ| > δ0π(0)) it is necessary that σ = π
by the Corollary. This is only one term, and thus∑

σ∈Σ[1:k;1:n]

dλµ(eσ)dλπ(eσ) = dλµ(eπ)dλπ(eπ)
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which equals (−1)m where m ∈ siπµ according to the third case of the Corollary.

Case 5. This case is similar to the last one, switching π and µ.

Case 6. By the Corollary, the only nonzero dλµ(eσ)dλπ(eσ) is yielded by a σ
satisfying JσK = JπK ∪ JµK \{0} or

∣∣siσµ∣∣ = |siσπ| = 1. Then the content of these

separate index sets de�ne m ∈ siσµ and p ∈ siσπ in the �nal term (−1)m+p, and these
are the same as m ∈ siπµ and p ∈ siµπ .

�

We have now proven how (dλµ,dλπ)Altk(Rn) can be calculated, all factors of the

inner products of our polynomial bases in (5.1.1) have now been identi�ed. Thus
we can proceed to calculate their Gram matrices

5.2. Condition numbers for the basis of PrΛk(T0)

In this section we show that the condition number of our bases for PrΛk(T0),
is independent of k because dλT0

σ = dxσ. The bases for a general PrΛk(T ) are

(5.2.1)
{(
λT
)α

dλTσ
∣∣α ∈ N0:n

0 , |α| = r, σ ∈ Σ(1 : k; 1 : n)
}

and the Bernstein-weighted basis

(5.2.2)

{(
|α|
α

)(
λT
)α

dλTσ
∣∣α ∈ N0:n

0 , |α| = r, σ ∈ Σ(1 : k; 1 : n)
}
.

We will now consider how to calculate their condition numbers for T0:

Theorem 5.7. The condition number for the basis of HPrΛk(T0)

(5.2.3) condG
({

(λ)α dλTσ
}
α,σ

)
= condG ({(λ)α}α) cond

(
{(dλσ,dλπ)Altk}σ,π

)
where α ∈ N0:n

0 , |α| = r and σ ∈ Σ(1 : k; 1 : n).

Proof. The Gram matrix for these is simply described as(
(λ)α dλσ, (λ)β dλπ

)
L2Λk

which can be written as

=
(

(λ)α , (λ)β
)

(dλσ,dλπ)Altk .

This is the Kronecker product of two matrices{(
(λ)α , (λ)β

)
L2Λk

(dλσ,dλπ)Altk

}
α,β,σ,π

= {LαβRσπ}α,β,σ,π = L⊗R

which according to [19] has eigenvalues {yizj}i,j given eigenvalues {yi}i of L and

{zj}j of R. �

Proving this for the Bernstein-weighted basis in (5.2.2) is done by adding coef-
�cients, and will not change the proof or conclusion.

Seeing that the condition number of the bases is directly reliant on their scalar
counterparts and the Gram matrix of the alternating forms, we will get the following
result.

Corollary 5.8. The Bernstein and barycentric basis of HPrΛk(T0) have the
same condition numbers as their scalar counterparts in Chapter 3.
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Proof. Since
(
dλT0

σ ,dλ
T0
π

)
Altk

= δσπ (Kronecker delta) for σ, π ∈ Σ(1 : k; 1 :
n) (proven in Lemma 5.6 in Section 5.1), {(dλσ,dλπ)Altk}σ,π = I. We then see

that according to Theorem 5.7,

condG
(
{λαdλσ}|α|=r,σ∈Σ

)
= condG

(
{λα}|α|=r

)
cond

(
{(dλσ,dλπ)Altk}σ,π

)
.

Since and condI = 1, the corollary is proved. �

We then only need to refer to Table 1 and 2 on page 33 to see the condition
numbers of our bases for PrΛk(T0), drawing the conclusion that the Bernstein
coe�cients still improve the condition number quite a lot.

5.3. Condition numbers for the basis of P−r Λk(T0)

In this section we will calculate the condition numbers for the bases of the form
λiφσ or

(|i|
i

)
λiφσ for P−r Λk(T0): The standard barycentric basis{(

λT
)i
φσ

∣∣∣ i ∈ N0:n
r , |i| = r, σ ∈ Σ(1 : k, 1 : n)

}
and the Bernstein-weighted basis{(

|i|
i

)(
λT
)i
φσ

∣∣∣∣ i ∈ N0:n
r , |i| = r, σ ∈ Σ(1 : k, 1 : n)

}
.

Since it was easy to do, we've also calculated the condition number of the set of
functions of the form

(5.3.1)

k∑
l=0

(
|i+ eσ(l)|
i+ eσ(l)

)(
λT
)i+eσ(l) dλσl .

We have not proved that they are a basis of the space P−r Λk(T ) nor that they
have any similar, but the comparison with the two bases' condition numbers might
justify further investigation. Programs for calculating their tables are found in A.5.

Theorem 5.9. The inner product of two P−r -forms from D−r Λk(T0) on the
reference simplex is

(5.3.2)(
λsφTα , λ

tφTβ
)
L2Λk

=
k∑

i,j=0

(−1)i+j
(
s0 + δ0α(i)

)
!
(
t0 + δ0β(j)

)
!lsum(s+eα(i), j+eβ(j), n)

(
dλαi ,dλβj

)
Altk

Proof. We have the basis(
λsφTα , λ

tφTβ
)
HΛk

=
k∑

i,j=0

(−1)i+j
(
λsλα(i)dλαi , λ

tλβ(j)dλβ
j

)
HΛ

=
k∑

i,j=0

(−1)i+j
(
λs+eα(i) , λt+eβ(j)

)
H

(
dλαi ,dλβj

)
Alt

According to Corollary 3.7 we know that(
λs+eα(i) , λt+eβ(j)

)
L2 = (s0 + δ0α(i))!(t0 + δ0β(j))!lsum(s+ eα(i), j + eβ(j), n)

= (s0+δ0α(i))!(t0+δ0β(j))!
∑

|l|≤s0+δ0α(i)

(−1)|l|

(
s+ eα(i)

0
+ l + j + eβ(j)

0

)
!

l!(s0 + δ0α(i) − |l|)!
(∣∣∣s+ eα(i)

0

∣∣∣+ |l|+
∣∣j + eβ(j)

∣∣+ n
)

!
.
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�

Again the proof is similar for the Bernstein-weighted basis.
To compute the condition numbers of the gram matrix from (5.3.2), we've

written the programs in Section A.4. The results of the programs can be seen in
the Tables 1 through 10. As can be clearly seen from these results, the Bernstein-
weighted basis has in general lower condition numbers than the barycentric basis,
except for the (n, r, k)- values

(4, 2, 0), (5, 2, 0), (1, 2, 1), (2, 2, 2), (3, 2, 3), (4, 2, 4), (5, 2, 5)

which are all highlighted in Table 2.
We can also see from Table 1 and Table 6 on page 53 that the Whitney k-

forms for k > 0 all have lower condition numbers than those for k = 0. For general
r ≥ 0, we can the condition numbers reach a peak when k is far from 0 and n, and
decreases when going to 0 or n. There is not enough data to pinpoint the exact
position of this peak for either set of bases.

We include the results of the potential basis from (5.3.1) in Chapter B, just to
illustrate that this potential basis would be worse conditioned than the Bernstein-
weighted basis, and therefore not a good candidate to replace it.

Considering normalising coe�cients for the basis functions would probably pro-
duce good candidates for replacing the Bernstein-weighted basis as the best condi-
tioned basis for HP−r (T ), and is therefore a good place to start future work.

n ↓, k → 0 1 2 3 4 5

1 3.0000 1.0000 � � � �
2 4.0000 2.5000 1.0000 � � �
3 5.0000 3.0000 2.3333 1.0000 � �
4 6.0000 3.5000 2.6667 2.2500 1.0000 �
5 7.0000 4.0000 3.0000 2.5000 2.2000 1.0000

Table 1. Condition numbers of the barycentric basis for n, k ≤ 5,
r = 1.

n ↓, k → 0 1 2 3 4 5

1 23.5576 2.5000 � � � �
2 33.3921 38.5591 3.3333 � � �
3 47.2211 59.2133 53.5537 4.2000 � �
4 57.0363 83.8786 83.1270 70.6842 5.0909 �
5 67.8786 1.03 · 102 1.13 · 102 1.11 · 102 89.9042 6.0000

Table 2. Condition numbers of the barycentric basis for n, k ≤ 5,
r = 2. Highlighted numbers indicate where the barycentric basis
has a lower condition number than the corresponding Bernstein-
weighted basis Gram matrix.
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n ↓, k → 0 1 2 3 4 5

1 1.82 · 102 24.8505 � � � �
2 6.80 · 102 3.30 · 102 33.8306 � � �
3 8.32 · 102 9.95 · 102 4.40 · 102 46.3571 � �
4 1.01 · 103 1.30 · 103 1.28 · 103 5.81 · 102 54.5223 �
5 1.22 · 103 1.64 · 103 1.69 · 103 1.63 · 103 7.69 · 102 63.6753

Table 3. Condition numbers of the barycentric basis for n, k ≤ 5,
r = 3.

n ↓, k → 0 1 2 3 4 5

1 1.89 · 103 1.97 · 102 � � � �
2 9.28 · 103 7.05 · 103 9.05 · 102 � � �
3 3.53 · 104 2.07 · 104 9.35 · 103 1.06 · 103 � �
4 3.94 · 104 4.37 · 104 2.90 · 104 1.21 · 104 1.24 · 103 �
5 4.39 · 104 5.07 · 104 5.02 · 104 3.54 · 104 1.52 · 104 1.45 · 103

Table 4. Condition numbers of the barycentric basis for n, k ≤ 5,
r = 4.

n ↓, k → 0 1 2 3 4 5

1 2.16 · 104 2.18 · 103 � � � �
2 1.80 · 105 1.46 · 105 1.29 · 104 � � �
3 7.99 · 105 8.23 · 105 4.72 · 105 5.79 · 104 � �
4 3.04 · 106 1.93 · 106 1.30 · 106 5.88 · 105 6.30 · 104 �
5 3.27 · 106 3.44 · 106 2.37 · 106 1.71 · 106 7.17 · 105 6.84 · 104

Table 5. Condition numbers of the barycentric basis for n, k ≤ 5,
r = 5.

n ↓, k → 0 1 2 3 4 5

1 3.0000 1.0000 � � � �
2 4.0000 2.5000 1.0000 � � �
3 5.0000 3.0000 2.3333 1.0000 � �
4 6.0000 3.5000 2.6667 2.2500 1.0000 �
5 7.0000 4.0000 3.0000 2.5000 2.2000 1.0000

Table 6. Condition numbers of the Bernstein-weighted basis for
n, k ≤ 5, r = 1.

n ↓, k → 0 1 2 3 4 5

1 11.1352 3.4000 � � � �
2 24.6261 13.8667 4.3333 � � �
3 42.2740 28.7752 16.9266 5.3077 � �
4 64.0201 43.5169 42.1325 24.6175 6.2941 �
5 89.8291 58.8286 63.2408 60.5373 34.8626 7.2857
Table 7. Condition numbers of the Bernstein-weighted basis for
n, k ≤ 5, r = 2.
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n ↓, k → 0 1 2 3 4 5

1 49.1979 18.6722 � � � �
2 1.17 · 102 96.3658 19.3228 � � �
3 2.24 · 102 3.11 · 102 1.67 · 102 25.3280 � �
4 3.82 · 102 5.68 · 102 5.49 · 102 3.00 · 102 32.0291 �
5 6.00 · 102 9.17 · 102 9.10 · 102 9.10 · 102 4.96 · 102 39.9775

Table 8. Condition numbers of the Bernstein-weighted basis for
n, k ≤ 5, r = 3.

n ↓, k → 0 1 2 3 4 5

1 2.44 · 102 94.9730 � � � �
2 6.10 · 102 5.58 · 102 1.21 · 102 � � �
3 1.25 · 103 2.10 · 103 1.11 · 103 1.23 · 102 � �
4 2.26 · 103 4.16 · 103 4.10 · 103 2.20 · 103 1.56 · 102 �
5 3.77 · 103 7.32 · 103 7.35 · 103 7.43 · 103 3.99 · 103 2.02 · 102

Table 9. Condition numbers of the Bernstein-weighted basis for
n, k ≤ 5, r = 4.

n ↓, k → 0 1 2 3 4 5

1 1.23 · 103 4.78 · 102 � � � �
2 3.12 · 103 3.08 · 103 5.50 · 102 � � �
3 6.53 · 103 1.22 · 104 6.34 · 103 7.63 · 102 � �
4 1.22 · 104 2.60 · 104 2.51 · 104 1.33 · 104 7.92 · 102 �
5 2.12 · 104 4.90 · 104 4.83 · 104 4.82 · 104 2.56 · 104 9.95 · 102

Table 10. Condition numbers of the Bernstein-weighted basis for
n, k ≤ 5, r = 5
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APPENDIX A

Source code

A.1. General programs

Listing A.1

%% MULTINOMIAL FUNCTION mnom(x , y )

% g i v e s you x ! / ( y !* ( x−|y | ) ! ) , which i s the mult inomial c o e f f i c i e n t ,

% binomia l i f y i s 1x1 .

%

% I f g iven a vec tor in x and matrix in y , i t w i l l take the mult inomial o f

% the columns and return a vec tor .

function B = mnom(x , y )

%try

B=round( f a c t o r i a l ( x ) . / (prod ( f a c t o r i a l ( y ) , 1 ) . * f a c t o r i a l (x−sum(y , 1 ) ) ) ) ;

%catch

% B=0;

%end

end

Listing A.2

function a = f a c t (b)

a = prod ( f a c t o r i a l (b ) , 1 ) ;

endfunct ion

Listing A.3

function X=gene r a t e I nd i c e s ( s , n ) %s i s s p a t i a l dimention , n polynomial degree

X = zeros ( s ,mnom( s+n , n ) ) ;

csum = zeros (1 ,mnom( s+n , n ) ) ;

for row = 1 : s

for degsum = 0 : n

b = csum==degsum ;

i f sum(b)

d = 0 : n−degsum ;

num = mnom( s−row+n−d−degsum , s−row ) ;

cnum = [0 , cumsum(num ) ] ;

p = zeros (1 ,max(cnum ) ) ;

r e p e t i t i o n s = sum(b)/max(cnum ) ;

for deg = 0 : n−degsum
p( cnum( deg+1) + 1 : cnum( deg+2) ) = deg ;

end

p_orig = p ;

for i = 2 : r e p e t i t i o n s

p = [ p p_orig ] ;

end
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X(row , b)=p ;

end ;

end

csum = csum + X( row , : ) ;

end

end

Listing A.4

%% homogeneousIndices (n , r )

% genera te s the i nd i c e s o f ba rycen t r i c homogenous po lynomia ls o f degree r

% in R^n − meaning t ha t there are n+1 ind i c e s .

function I=homogeneousIndices (n , r ) %n er romdimensjon , r er polynomgrad

J=gene r a t e I nd i c e s (n , r ) ;

Io=r−sum(J , 1 ) ;

I=[J ; Io ] ;

end

Listing A.5

function S = lsum ( i , j )

s=length ( i ) ;

%e s t a b l i s h i n g arguments f o r the vec to r space P^r (R^n ) :

r=sum( i ) ;

n=s−1;

% separa t ing the power o f the ba rycen t r i c coord inate r e l a t i n g to or i go

i_=i ( 1 : n ) ;

i 0=i ( s ) ;

j_=j ( 1 : n ) ;

j 0=j ( s ) ;

%genera t ing summation indexes

l = gene r a t e I nd i c e s (n , i 0 ) ;

%alpha0 = i0−sum( l , 1 ) ;

%pre−genera t ing sum

l_i_j = l ;

for k=1:n

l_i_j (k , : ) = l_i_j (k , : ) +i_ (k ) + j_(k ) ;

end ;

%crea t ing the terms depending on l

numerator = f a c t ( l_i_j ) .* ( ( −1) .^ (sum( l , 1 ) ) ) ;

denominator = f a c t ( l ) .* f a c t o r i a l ( i0−sum( l , 1 ) ) . * f a c t ( r+n+sum( l ,1)+sum( i_ , 1 ) ) ;

S = sum( numerator . / denominator ) ;

end

A.2. Barycentric basis programs

Listing A.6

%% barycentr ic InnerProduct ( i , j )

% has the p e cu l i a r a b i l i t y to re turn the a n a l y t i c a l r e s u l t o f the inner
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% product ( lambda^i , lambda^ j ) , where i and j are mu l t i i nd i c e s o f at l e a s t

% dimension 2 .

%

% Proper t i e s :

% −symmetric

% usage :

% <not f i n a l yet>

function R=barycent r i c InnerProduct ( i , j )

l=length ( j ) ;

i f l~=length ( i )

error ( 'The l enght s  o f  i  and j  are  d i f f e r e n t ! ' )

end

i f l==1

R = 1 ;

else

% summing up and c a l c u l a t i n g f i n a l inner product

R=f a c t o r i a l ( i ( length ( i ) ) )* f a c t o r i a l ( j ( length ( j ) ) )* lsum ( i , j ) ;

end

end

Listing A.7

%% GramBarycentric (n , r )

% Generates the gram matrix f o r the r−th degree polynomial b a s i s over an

% n−s implex .

function G = GramBarycentric (n , r )

I = homogeneousIndices (n , r ) ;

I s i z e = s ize ( I ) ;

S=I s i z e ( 2 ) ;

G=zeros (S ) ;

for i =1:S ;

for j =1:S ;

%T( i , j )=sum( I ( : , i ) .* I ( : , j ) ) ;

G( i , j )=barycent r i c InnerProduct ( I ( : , i ) , I ( : , j ) ) ;

end

end

%cond (T) ;

end

Listing A.8

function g=Barycentr icConds (N,R)

sprintf ( ' i n i t i a l i s i n g . . . \ n ' )

t ry

load ( ' matr i ce s /baryc_conds_matrix . mat ' , ' g ' )

catch

g=zeros (N,R) ;

end

for n=1:N

for r=1:R

[ n , r ]

g (n , r ) = cond( GramBarycentric (n , r ) ) ;
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end

end

save ( ' matr i ce s /baryc_conds_matrix . mat ' , ' g ' )

end

Listing A.9

%% BernsteinInnerProduct ( i , j )

% has the p e cu l i a r a b i l i t y to re turn the a n a l y t i c a l r e s u l t o f the inner

% product ( lambda^i , lambda^ j ) , where i and j are mu l t i i nd i c e s o f at l e a s t

% dimension 2 .

%

% Proper t i e s :

% −symmetric

% usage :

% R=

function R=Bernste inInnerProduct ( i , j )

s=length ( j ) ;

i f s~=length ( i )

error ( 'The l enght s  o f  i  and j  are  d i f f e r e n t ! ' )

e l s e i f s==1

R = 1 ;

else

% summing up and c a l c u l a t i n g f i n a l inner product

R=f a c t o r i a l (sum( i ) )* f a c t o r i a l (sum( j ) )/ f a c t ( i ( 1 : s−1))/ f a c t ( j ( 1 : s−1))* lsum ( i , j ) ;

end

end

Listing A.10

%% Gram(n , r )

% Generates the gram matrix f o r the r−th degree polynomial b a s i s over an

% n−s implex .

function G = GramBernstein (n , r )

I = homogeneousIndices (n , r ) ;

I s i z e = s ize ( I ) ;

S=I s i z e ( 2 ) ;

G=zeros (S ) ;

for i =1:S ;

for j =1:S ;

%T( i , j )=sum( I ( : , i ) .* I ( : , j ) ) ;

G( i , j )=Bernste inInnerProduct ( I ( : , i ) , I ( : , j ) ) ;

end

end

%cond (T) ;

end

Listing A.11

function g=Bernste inCondsControl (N,R)

sprintf ( ' i n i t i a l i s i n g . . . \ n ' )

t ry

load ( ' matr i ce s /berns_conds_control_matrix . mat ' , ' g ' )
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catch

g=zeros (N,R) ;

end

for n=1:N

for r=1:R

[ n , r ]

g (n , r ) = cond( GramBernstein (n , r ) ) ;

end

end

save ( ' matr i ce s /berns_conds_control_matrix . mat ' , ' g ' )

end

Listing A.12

function g=BernsteinConds (N,R)

try

load ( ' matr i ce s /berns_conds_matrix . mat ' , ' g ' )

catch

g=zeros (N,R) ;

end

for n=1:N

for r=1:R

% [n , r ]

g (n , r ) = (mnom(2* r+n , r ) ) ;

end

end

save ( ' matr i ce s /berns_conds_matrix ' , ' g ' )

end

A.3. Nodal scalar bases

Listing A.13

%% barycent r i cSubs imp lexFunc t iona l ( i , j )

% re turns the va lue o f the inner product o f lambda^i−reduced ( see

% d e f i n i t i o n s ) with lambda^ j on the subs implex where lambda^ i i s s t r i c t l y

% p o s i t i v e . sum( i ) must be equa l to sum( j ) .

%

% Does the

function R=barycentr i cSubs implexFunct iona l ( i , j )

i_corners = ( i ~=0);

i_complementCorners = ( i ==0);

i_red = i−i_corners ;

n = sum( i_corners ) ;

i f sum( i_complementCorners .* j ) ~= 0

R = 0 ;

else

jnew = i_corners .* j ;

R =barycent r i c InnerProduct ( i_red ( i_corners ) , jnew ( i_corners ) ) ;
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i f ( i ( length ( i ))==0)

R=sqrt (n)*R;

end

%sq r t (n) i s the determinant o f the jacob ian to the l i n e a r

%trans format ion to an outer s implex .

end

end

Listing A.14

%% barycentr icSSmatr ix (n , r )

% Generates the matrix o f standard K−nodes o f

% fo r the r−th degree polynomial b a s i s over an

% n−s implex .

function G = barycentr i cSSmatr ix (n , r )

I = homogeneousIndices (n , r ) ;

I s i z e = s ize ( I ) ;

S=I s i z e ( 2 ) ;

G=zeros (S ) ;

for i =1:S ;

for j =1:S ;

%T( i , j )=sum( I ( : , i ) .* I ( : , j ) ) ;

G( i , j )=barycentr i cSubs implexFunct iona l ( I ( : , i ) , I ( : , j ) ) ;

end

end

%cond (T) ;

end

Listing A.15

%% GramNodal (n , r )

% Generates the gram matrix f o r the r−th degree _sub−nodal_ polynomial b a s i s

% over an n−s implex .

function G = GramNodal (n , r )

C=inv ( standardSSmatrix (n , r ) ) ;

D=GramBarycentric (n , r ) ;

G=C*D*C' ;

end

Listing A.16

%% GramsNodalConds (n , r )

% Generates the cond i t i on numbers f o r the gram matr ices o f the nodal b a s i s

% of Aof degree r in an n−s implex

function g = NodalConds (n , r )

sprintf ( ' i n i t i a l i s i n g . . . \ n ' )

t ry

load ( ' matr i ce s /nodal_conds_matrix . mat ' , ' g ' )

catch

g=zeros (n , r ) ;

end

for N=1:n ;

for R=1: r ;

[N R]

g (N,R)=cond(GramNodal (N,R) ) ;
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end

end

save ( ' matr i ce s /nodal_conds_matrix . mat ' , ' g ' )

end

Listing A.17

%% Bernste inSubs implexFunct iona l ( i , j )

% re turns the va lue o f the inner product o f B_{i_red} on the subs implex f

% ( | i_red | = r−dim( f )−1) with B_j . This i s done on the subs implex where i

% ( the o r i g i n a l ) i s s t r i c t l y p o s i t i v e , then i i s manipulated to an i_red , which

%

function R = Bernste inSubs implexFunct iona l ( i , j )

%de f i n in g the reduced index i_red out o f i

i_corners = ( i ~=0);

i_complementCorners = ( i ==0);

i_reduced = i−i_corners ;

i_red = i_reduced ( i_corners ) ;

n = sum( i_corners ) ; %dimension o f f

% B_j vanishes on f i f i t has a f a c t o r lambda_m where m i s not an index o f a corner in f , i t .

i f sum( i_complementCorners .* j ) ~= 0

R = 0 ;

else

jnew = i_corners .* j ;

R =mnom(sum( i_red ) , i_red )* barycent r i c InnerProduct ( i_red , jnew ( i_corners ) ) ;

i f ( i ( length ( i ))==0)

R=sqrt (n)*R;

end

%sq r t (n) i s the determinant o f the jacob ian to the l i n e a r

%trans format ion to an outer subs implex .

end

end

Listing A.18

%% standardSSmatrix (n , r )

% Generates the matrix o f standard K−nodes o f

% fo r the r−th degree polynomial b a s i s over an

% n−s implex .

function G = Bernste inSSmatr ix (n , r )

I = homogeneousIndices (n , r ) ;

I s i z e = s ize ( I ) ;

S=I s i z e ( 2 ) ;

G=zeros (S ) ;

for i =1:S ;

for j =1:S ;

%T( i , j )=sum( I ( : , i ) .* I ( : , j ) ) ;

G( i , j )=Bernste inSubs implexFunct iona l ( I ( : , i ) , I ( : , j ) ) ;

end

end

%cond (T) ;

end
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Listing A.19

%% GramNodal (n , r )

% Generates the gram matrix f o r the r−th degree _sub−nodal_ polynomial b a s i s

% over an n−s implex .

function G = GramBernsteinNodal (n , r )

C=inv ( Bernste inSSmatr ix (n , r ) ) ;

D=GramBarycentric (n , r ) ;

G=C*D*C' ;

end

Listing A.20

%% GramsNodalConds (n , r )

% Generates the cond i t i on numbers f o r the gram matr ices o f the nodal b a s i s

% of Aof degree r in an n−s implex

function g = BernsteinNodalConds (n , r )

sprintf ( ' i n i t i a l i s i n g . . . \ n ' )

t ry

load ( ' matr i ce s /berns_nodal_conds_matrix . mat ' , ' g ' )

catch

g=zeros (n , r ) ;

end

for N=1:n ;

for R=1: r ;

[N R]

g (N,R)=cond( GramBernsteinNodal (N,R) ) ;

end

end

save ( ' matr i ce s /berns_nodal_conds_matrix . mat ' , ' g ' )

end

A.4. Bases for P−r Λk(T0)

Listing A.21

function P = AltInner ( a , b , n , k )

P=0; %3

i f k==0

P=1;

e l s e i f and ( a(1)==0,b(1)==0)

i f a==b

P = n − k + 1 ;%1

else

m = indicesOfUniques ( a , b ) ;

p = ind icesOfUniques ( b , a ) ;

i f length (m)==1

P =(−1)^(m+p) ;%6

end

end

e l s e i f or ( a(1)==0,b(1)==0) ,

s = [ ] ;

i f a(1)==0

s = indicesOfUniques ( b , a ) ;
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else

s = ind icesOfUniques ( a , b ) ;

end

i f length ( s)==1

P = (−1)^ s ( 1 ) ; %4+5

end

e l s e i f a==b

P = 1 ; %2

end

end

function s = ind icesOfUniques ( a , b )

s = [ ] ;

for i =1: length ( a )

i f prod ( a ( i )~=b)

s = [ s , i ] ;

end

end

end

Listing A.22

function p = P_innerProduct ( i , a , j , b , n , k )

kplus = k+1;

p=0;

for l =1: kplus

for m=1: kplus

%[ l ,m]

%a ( [ 1 : l −1, l +1: kp lu s ] )
%b ( [ 1 :m−1,m+1: kp lu s ] )

s = Alt Inner ( a ( [ 1 : l −1, l +1: kplus ] ) , b ( [ 1 :m−1,m+1: kplus ] ) , n , k ) ;

i f s ~= 0

i_ = i ;

i_ ( a ( l ) ) = i_ ( a ( l ) ) + 1 ;

j_ = j ;

j_ (b(m) ) = j_(b(m) ) + 1 ;

s = s * ((−1)^( l+m) ) * barycent r i c InnerProduct ( i_ , j_ ) ;

p = p + s ;

end

%p=p+s ;

end

end

end

Listing A.23

function G = Gram_P(n , r , k )

I = homogeneousIndices (n , r−1);
I s i z e = s ize ( I ) ;

S=I s i z e ( 2 ) ;

i n d i c e s = combnk( 1 : n+1 , k+1 ) ;

S s i z e=s ize ( i n d i c e s ) ;

SI=S s i z e ( 1 ) ;
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G=zeros (mnom( r+k−1,k )*mnom(n+r , n−k ) ) ;

c=1;

d=1;

for i =1:S

for a = 1 : SI

i f sum( I ( 1 :min( i n d i c e s ( a , : ) ) −1 , i ) ) == 0

for j =1:S

for b = 1 : SI

i f sum( I ( 1 :min( i n d i c e s (b , : ) ) −1 , j ) ) == 0

% [ I ( : , i ) , I ( : , j ) ]

% [ i nd i c e s (a , : ) ; i nd i c e s ( b , : ) ]

G( c , d) = . . .

P_innerProduct ( I ( : , i ) , i n d i c e s ( a , : ) , I ( : , j ) , i n d i c e s (b , : ) , n , k ) ;

d = d+1;

end

end

end

c = c+1;

d = 1 ;

end

end

end

%cond (T) ;

end

Listing A.24

function G = PConds (N,R,K)

for n=N

for r=R

for k=K(K<=n)

[ n , r , k ]

G(n , r , k+1) = cond(Gram_P(n , r , k ) ) ;

t ry

load ( ' P_conds_matrix . mat ' , ' g ' ) ;

end

g (n , r , k+1) = G(n , r , k+1);

t ry

save ( ' P_conds_matrix . mat ' , ' g ' ) ;

end

end

end

end

end

Listing A.25

function p = P_Bernstein_2_InnerProduct ( i , a , j , b , n , k )

kplus = k+1;

p=0;

for l =1: kplus

for m=1: kplus

s = Alt Inner ( a ( [ 1 : l −1, l +1: kplus ] ) , b ( [ 1 :m−1,m+1: kplus ] ) , n , k ) ;
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i f s ~= 0

i_ = i ;

i_ ( a ( l ) ) = i_ ( a ( l ) ) + 1 ;

j_ = j ;

j_ (b(m) ) = j_(b(m) ) + 1 ;

s = s * ((−1)^( l+m) ) *(sum( i_ )*sum( j_ )/( i_ ( a ( l ) )* j_ (b(m) ) ) ) * Bernste inInnerProduct ( i_ , j_ ) ;

p = p + s ;

end

end

end

end

Listing A.26

function G = Gram_PBernstein_2 (n , r , k )

I = homogeneousIndices (n , r−1);
I s i z e = s ize ( I ) ;

S=I s i z e ( 2 ) ;

i n d i c e s = combnk( 1 : n+1 , k+1 ) ;

S s i z e=s ize ( i n d i c e s ) ;

SI=S s i z e ( 1 ) ;

G=zeros (mnom( r+k−1,k )*mnom(n+r , n−k ) ) ;

c=1;

d=1;

for i =1:S

for a = 1 : SI

i f sum( I ( 1 :min( i n d i c e s ( a , : ) ) −1 , i ) ) == 0

for j =1:S

for b = 1 : SI

i f sum( I ( 1 :min( i n d i c e s (b , : ) ) −1 , j ) ) == 0

% [ I ( : , i ) , I ( : , j ) ]

% [ i nd i c e s (a , : ) ; i nd i c e s ( b , : ) ]

G( c , d) = . . .

P_Bernstein_2_InnerProduct ( I ( : , i ) , i n d i c e s ( a , : ) , I ( : , j ) , i n d i c e s (b , : ) , n , k ) ;

d = d+1;

end

end

end

c = c+1;

d = 1 ;

end

end

end

end

Listing A.27

function G = PBernstein_2_Conds (N,R,K)

for n=N

for r=R

for k=K(K<=n)

[ n , r , k ]
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G(n , r , k+1) = cond(Gram_PBernstein_2 (n , r , k ) ) ;

t ry

load ( ' P_Bernstein_2_conds_matrix . mat ' , ' g ' ) ;

end

g (n , r , k+1) = G(n , r , k+1);

t ry

save ( ' P_Bernstein_2_conds_matrix . mat ' , ' g ' ) ;

end

end

end

end

end

A.5. Experimental programs

Listing A.28

function p = P_BernsteinInnerProduct ( i , a , j , b , n , k )

kplus = k+1;

p=0;

for l =1: kplus

for m=1: kplus

s = Alt Inner ( a ( [ 1 : l −1, l +1: kplus ] ) , b ( [ 1 :m−1,m+1: kplus ] ) , n , k ) ;

i f s ~= 0

i_ = i ;

i_ ( a ( l ) ) = i_ ( a ( l ) ) + 1 ;

j_ = j ;

j_ (b(m) ) = j_(b(m) ) + 1 ;

s = s * ((−1)^( l+m) ) * Bernste inInnerProduct ( i_ , j_ ) ;

p = p + s ;

end

end

end

end

Listing A.29

function G = Gram_PBernstein (n , r , k )

I = homogeneousIndices (n , r−1);
I s i z e = s ize ( I ) ;

S=I s i z e ( 2 ) ;

G=zeros (S ) ;

i n d i c e s = combnk( 1 : n+1 , k+1 ) ;

S s i z e=s ize ( i n d i c e s ) ;

SI=S s i z e ( 1 ) ;

G=zeros (mnom( r+k−1,k )*mnom(n+r , n−k ) ) ;

c=1;

d=1;

for i =1:S

for a = 1 : SI

i f sum( I ( 1 :min( i n d i c e s ( a , : ) ) −1 , i ) ) == 0

for j =1:S

for b = 1 : SI
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i f sum( I ( 1 :min( i n d i c e s (b , : ) ) −1 , j ) ) == 0

% [ I ( : , i ) , I ( : , j ) ]

% [ i nd i c e s (a , : ) ; i nd i c e s ( b , : ) ]

G( c , d) = . . .

P_BernsteinInnerProduct ( I ( : , i ) , i n d i c e s ( a , : ) , I ( : , j ) , i n d i c e s (b , : ) , n , k ) ;

d = d+1;

end

end

end

c = c+1;

d = 1 ;

end

end

end

% for i =1:S ;

% for j =1:S ;

% fo r a = 1: SI

% for b = 1: SI

% P_BernsteinInnerProduct ( I ( : , i ) , i nd i c e s (a , : ) , I ( : , j ) , i nd i c e s ( b , : ) , n , k ) ;

% end

% end

% end

% end

% %cond (T) ;

end

Listing A.30

function G = PBernsteinConds (N,R,K)

for n=N

for r=R

for k=K(K<=n)

[ n , r , k ]

G(n , r , k+1) = cond(Gram_PBernstein (n , r , k ) ) ;

t ry

load ( ' P_Bernstein_conds_matrix . mat ' , ' g ' ) ;

end

g (n , r , k+1) = G(n , r , k+1);

t ry

save ( ' P_Bernstein_conds_matrix . mat ' , ' g ' ) ;

end

end

end

end

end



APPENDIX B

Results of the programs from A.5

n ↓, k → 0 1 2 3 4 5

1 3.0000 1.0000 � � � �
2 4.0000 2.5000 1.0000 � � �
3 5.0000 3.0000 2.3333 1.0000 � �
4 6.0000 3.5000 2.6667 2.2500 1.0000 �
5 7.0000 4.0000 3.0000 2.5000 2.2000 1.0000

Table 1. Results for the experimental basis candidate (5.3.1) for
n, k ≤ 5, r = 1.

n ↓, k → 0 1 2 3 4 5

1 10.0000 4.0000 � � � �
2 15.0000 19.8015 5.0000 � � �
3 21.0000 35.2737 27.7186 6.0000 � �
4 28.0000 52.6050 52.8141 37.7591 7.0000 �
5 36.0000 68.6702 75.5037 74.5922 49.9311 8.0000
Table 2. Results for the experimental basis candidate (5.3.1) for
n, k ≤ 5, r = 2.

n ↓, k → 0 1 2 3 4 5

1 35.0000 15.1441 � � � �
2 56.0000 97.0139 21.1229 � � �
3 84.0000 1.85 · 102 1.52 · 102 28.1290 � �
4 1.20 · 102 2.84 · 102 3.03 · 102 2.24 · 102 36.1377 �
5 1.65 · 102 4.07 · 102 4.40 · 102 4.65 · 102 3.19 · 102 45.1409

Table 3. Results for the experimental basis candidate (5.3.1)for
n, k ≤ 5, r = 3.

69
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n ↓, k → 0 1 2 3 4 5

1 2.44 · 102 94.9730 � � � �
2 6.10 · 102 5.58 · 102 1.21 · 102 � � �
3 1.25 · 103 2.10 · 103 1.11 · 103 1.23 · 102 � �
4 2.26 · 103 4.16 · 103 4.10 · 103 2.20 · 103 1.56 · 102 �
5 3.77 · 103 7.32 · 103 7.35 · 103 7.43 · 103 3.99 · 103 2.02 · 102

Table 4. Results for the experimental basis candidate (5.3.1)for
n, k ≤ 5, r = 4.

n ↓, k → 0 1 2 3 4 5

1 4.62 · 102 2.12 · 102 � � � �
2 7.92 · 102 1.73 · 103 3.37 · 102 � � �
3 1.29 · 103 3.51 · 103 3.09 · 103 5.06 · 102 � �
4 2.00 · 103 6.02 · 103 6.39 · 103 5.07 · 103 7.30 · 102 �
5 3.00 · 103 9.69 · 103 1.03 · 104 1.08 · 104 7.94 · 103 1.02 · 103

Table 5. Results for the experimental basis candidate (5.3.1)for
n, k ≤ 5, r = 5
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