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CHAPTER 1

Introduction

1.1. Motivation

The Finite Element Method (FEM) has its motivation from solving partial
differential equations (PDEs) with large accuracy. We often have the necessity to
solve PDEs which can’t be solved analytically, i.e. when its domain (the space on
which the PDE is solved) is of irregular shape . The FEM offers a discretization
technique that is analytically appealing, and at the same time it is time efficient
and carries good precition estimates. The wonder of the FEM is that it generates
a computer-solvable problem which is analogous in formulation to its theoretical
counterpart.

Its generality can be described amongst other examples by the program pack
FeNICY'| or the calculation tool Fluent. These libraries contain tools for dividing
domains into polyhedral meshes and constructing the relevant equations for cal-
culating approximate solutions to PDEs over the domains. In this thesis we will
only focus on the use of simplicial meshes because of their friendliness towards
our formulation, even though hypercubical meshes might seem more intuitive and
esthetically appealing to some. This thesis will not argue against them, but we will
see that simplices are quite sufficient to develop our theory.

Necessary for understanding the FEM is a limited knowledge of partial differ-
ential equations, functional analysis (and consequently linear algebra), because the
method’s grounding in theory, some of which we will repeat here.

The reason that the Finite Element Exterior Calculus (FEEC) is so interesting
is because it generalizes the notion of affine equivalence so it’s not only valid for
H'-spaces, but also for H(div)- and H(curl)-spaces. Affine equivalence is an im-
portant tool in most finite element computations, as it increases the efficiency of
the calculations by a huge factor.

The reason for developing the FEEC is that the FEM is considered slow but
precise, so many people doing simulations with limited computing methods often
use FEM only on parts of their domain 2. They then leave the rest of the domain
to some time-efficient method with more constraints or assumptions, for instance a
Finite Difference Method. The view of FEM as time-consuming is supported by its
slow calculation time (especially when working on H (div)- and H (curl)-spaces).

The FEEC was first summarised in the survey article by Arnold et.al. [2],
drawing upon many works to give a complete framework for treating PDE of dif-
ferential forms. Some articles [3] have been published on this subject, but so far
this is a fairly new area.

1Www.fenics.org

10
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1.2. What’s in this thesis?

In Chapter [2] we introduce the FEM and what kind of problems we focus on.
We develop a framework for approximating solutions to certain types of variational
problems over the function space V. In our case V = H(Q) of functions over
Q whose derivatives are square integrable. We then limit the space V to a finite
subspace Vj, which in our case is the space CP.(7) of piecewise polynomial and
continuous functions over the simplicial meshing 7 of Q. In Chapter 3] we try
to find which basis which gives the highest level of accuracy when solving the
limited variational problem. The goal is numerical stability and accuracy when
approximating the variational problems with an element in V},.

In Chapter f we introduce the FEEC (from [2]), a generalisation from our scalar
variational problems in Chapter [2| using differential (k-)forms. We thus define a
new version of V, HA*(Q) containing the k-forms whose exterior derivative has
only components in L?(Q2). We expand our study of variational problems to this
space. The motivation behind these is again an efficient and numerically accurate
and stable framework for PDEs formulated with antisymmetric tensors.

In Chapter [5] we compare different bases for our two new versions of Vj,. One
of them is HP,A*(T), the space of piecewise polynomial differential k-forms up to
degree r which are in HA*(Q). The other is HP; A¥(7) (originally introduced in
[1]), a subspace of the former where some of the homogeneous rth-degree polynomi-
als are removed, to ensure that we cover all kinds of PDE whose solutions exist in
HA¥(2). We compare bases for these and see which provides us with the greatest
numerical accuracy when approximating variational problems on Vj.

This thesis’ main focus is the conditioning of the obtained discrete systems
from Chapters [2] and [4} in other words we will consider the conditioning of the
stiffness matrix relative to different bases for V. However, we don’t approach it
directly, but prove that it can be limited by the condition number of the Gram
matrix of each individual basis (sometimes called the weight matrix). In Chapters
B] and [5] we study how to calculate the elements in each Gram matrix, so that we
might estimate its condition numbers by computer calculations. These results for
the space HA*(Q) are the main goal of this thesis, and for the impatient they can

be found in Tables [I] on page [52] to [I0] on page



CHAPTER 2

The Finite Element Method

In this section we describe the Finite Element Method (FEM)H The FEM is
a Galerkin method (explained in for approximating solutions to Partial Dif-
ferential Equations (PDE) and integral equations with the aid of piecewise smooth
functions on polyhedral meshes, using the tools of functional analysisﬂ This thesis
focuses on the PDE side of the FEM, and every time we say “FEM” there is no
intended reference to solving integral equations.

In Section [2.1] we detail what spaces we are working with, and in Section
what kind of problem we want to solve and how we formulate it. In Section [2:3]
we give a quick overview of Galerkin’s method (a class of methods for solving our
problem) and what motivates us in using it. Section explains which of these
problems we choose and introduces the bases which are the object of study in this
thesis.

2.1. Weak derivatives, function spaces

Before we can consider our method, we need to define the concepts of weak
derivatives and Sobolev spaces. (We will assume some knowledge about topology,
measure theory and functional analysis — [14], 5], [5] are good sources.) In our case,
we will be working in a subspace of the Ly(€2) Hilbert space, the space of square
integrable functions over Q cc R™[]

LQ(Q):{f:QHR‘/szdx<oo}.

This is a normed vector space of functions with the norm and inner product

el = (/Q (u)2dx)2, (u, ) ::/qudx.

When the integral is over another domain I' C 2 will write

(u, 0) L2y ::/Fuvdx.

Since we will be working with PDE, we must also be able to differentiate our
functions, and we must restrict the space L2(€2) of integrable functions to the
subspace H'()) which has weak (i.e. integrable) derivatives:

I'Main sources Finite Element Method: [6}, [7]

2Main source for Partial Differential Equations: [10]; Main sources for functional analysis: [L5}
9, [12]

3CC means that Q is compactly embedded in R™

12



2.1. WEAK DERIVATIVES, FUNCTION SPACES 13

DEFINITION 2.1. Taking C3(£2) to be the set of all once-differentiable continu-
ous functions v over  with v|gq = 0, A weak partial derivative of u is a function
& € L2(Q) such that

0
(2.1.1) Yo e C(Q) : (&,v) = — (u, U>
3xi
or written in integral form,
0
Yo e Ci(Q) : / &vdr = —/ U= dz.
Q o Oz
In other words, we require that integration by parts will work on u-2% and

ox;
give &v and vice-versa. We will write &; as g—; or a%i(u), but be aware that this
function is only unique almost everywhere (also written a.e., this means outside a
set of measure 0). The space of once-differentiable functions is

0
HY Q) := {f € Ly(Q) ‘Vi < n,ﬂa—f € Ly(0) } ,
L4
which is an example of a Sobolev space. More general Sobolev spaces are H'(€2) of [
times-differentiable functions. Since the FEM uses piecewise continuous functions
inside this space, we will see what restrictions being in H'(2) imposes on such
functions. But first we will define piecewise continuous functions:

DEFINITION 2.2. Assume we have a domain Q = (J; €; which is a union of
disjoint (compact) sets. Then, a piecewise continuous function u has the properties
that ulg, = u; and u|g, = us are continuous functions, u; € C(£2;).

Note that C(2;) C H'(€;) since Q; is compact.

We are going to work with piecewise continuous functions in this space, and
since they are in H'(Q) they have this property:

THEOREM 2.3. Let Q be a domain that can be partitioned into the disjoint do-
mains Q1 and Qo whose boundaries are C' a.e.. Any piecewise continuous function
in HY(Q) is continuous.

PROOF. Let u € H(2) be continuous on Q; and Q. Assuming v € C3(Q)
(C'-functions that are 0 on 99):

0 0 0
u—dz = u de—I—/u Y dz.
Q 8961 oN 8%1 Qs 8:51
Here we do an integration by parts (where Trq(v)(z) = v(z) on 99 U I because
it is continuous) and get

0 0
= Y vdz + / Tro, (uw)onit de — “
Gio

0, O;

vdz + Tro, (u)vni2dz
o, 9z, o 2(1)

where n?l is the ith component of the unit normal on 9€Q;. The Trru (Trace)
function shows the limit towards OT" (see [10]). Let B = 93 N 9. Since v =0
on 9Q and n{"* = —n$* on B,

K2

/ u v dr = —/ Ou vdx + / vn$t (Trg, (u) — Tra, (u)) dz.
o 0z a0 B

L
This does not coincide with our definition of the weak derivative in ([2.1.1) unless
Trg, (u) — Tro,(u) = 0. Since u € H'() was chosen arbitrarily, we can draw
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the conclusion that a piecewise continuous function in H*(£2) must be continuous
everywhere on (). ([

2.2. Variational problems

Variational problems are an abstract way of interpreting possible measurements
or states of a system as vectors. A variational problem (sometimes referred to as
“weak” or “integral” formulation in certain applications) is usually formulated like
this: Find u € V that satisfies

(2.2.1) Vo eV :a(u,v) =1(v)

for scalar functions a: V xV — Rand [ : V — R. In our case this is a formulation
where V' is a Hilbert space with norm || - ||y, a : V x V — R is a symmetric
(Vu,v : a(u,v) = a(v,u)), bounded (Vu,v : |a(u,v)| < Cllully||v]y) and bilinear
(linear in both arguments) form, and [ is a linear bounded functional. In the case
that Yo € V : a(v,v) > C|lv||?, a is also called coercive and according to The
Lax-Milgram Lemma in [12] p. 57] is has a unique solution. We will persist
in using such a and [ because of the certainty of a unique solution.

ExaMPLE 2.4. A Weak formulation of a PDE
We let V = H}(Q) (functions that are 0 on 09, integrable, once-differentiable),

I(v) == [ fvdz and a(u,v) == [, ( i1 @ig (T )g;‘l 53;’ Jrc( )uv) dz where Vz :

a;;j(z) is symmetric and positive definite and Vz : c¢(z) > 0. (2.2.I) becomes

n
Ou Ov
2.2.2 Yo € Hy (9 dz = dz.
( ) v e Hy( )/Q ijzzzla i(x )3x,3xj+c(x)uv x va x
If we add the condition that u is twice differentiable (and v = 0 on 99), this may
be (through integration by parts)

Yo € Hé(Q)/Q — Z aij(x)T(; +c(x)u | vde = /vadx
i,5=1 bt

which corresponds to a strong formulation of the PDE (where one tries to find
u e C?(Q))

(2.2.3) - Z a;j(z 83318% +e(x)u = fonQ

v = 0 on 9.

This equation is classified as an elliptic in [6] (i.e.Vx : a;;(z) is symmetric and
positive definite). A more general case can be seen in [6], [10].

The weak formulation has the added benefit of looking at u,v and f (and some
of their derivatives) as integrable instead of having to be continuous functions of
x on ). The variational formulation clearly shows the possible application of the
Lax-Milgram lemma [12], p. 57] which proves existence of a unique solution for
certain elliptic PDE (including the example here). To prove this claim, we have to
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show that a is linear, bounded, and coercive. The bilinear form « is clearly linear.
It is bounded by the Cauchy-Schwartz inequality,
) dx

“ ou Ov
2. (7)o — <
(2.2.4) /Q Z a;j(x) 92: 9 dx max (lai;(z Z /Q (‘ oz,

i,7=1 1,9=1
c-s
< max (las;(z \// D dm\//Q 8871)

i J

According to the Poincaré inequality this is bounded by

< Cn? v full -

8%

2
dz. = Cn? || Dv|| || Dul|

As for its coercivity, using the fact of a;;’s positive definiteness (V§ € R™ :
> &iaiéy > C||€]|?, for some C > 0) we have the following inequalities:

a(v,v) = /Q Z aij(x)g::i 5‘8;? +c(x)v? | do > /Q (é | D) + c(x)vQ) dz

i,j=1
> CAV/Q (|Dv|2> dx

whose square root is a norm on Hg(£2) as a consequence of the Poincaré inequality.
This proves the coercivity of a, and hence (2.2.2) has a unique solution according
to the Lax-Milgram Lemma.

2.3. Galerkin’s method for variational problems

Galerkin’s method for approximating solutions to variational problems is used
both for proofs and numerical approximation, the latter of which is our focus. The
basics of (the generalised) Galerkin’s method as used in this thesis are:

(1) Start out with a variational problem: Find v € V' (V is a vector space)
(2.3.1) find uw € Vst. Yo € V : a(u,v) =1(v),

for example ([2.2.1)) (V Hilbert space; a linear, bounded, coercive; [ linear,
bounded).

(2) Choose a finite-dimensional subspace V3, of the Hilbert space V.

(3) Restrict the problem in to the subspace Vj,

(2.3.2) find u € Vj, s.t. Yo € V3 @ alu,v) =1(v)

and

(4) solve (2.3.2)) (if possible). This might be done (as was Galerkin’s proposal
in [T1]) by choosing a basis F = {¢;}\_, for Vj, thus converting (2.3.2)
to an equation system that turns it into

N
(2.3.3) find U € RV sit. Vj < N : > Usa(i, ¢5) = 1(¢;).
i=1
A= {Aij}ivjzl = {a(¢y, qu)}szl is called the stiffness matriz of a over
the basis {gf)l}f\;l
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It should be noted that Galerkin’s method in its most general form (a nonlinear
and asymmetric) doesn’t necessarily converge to any solution of the variational
problem, but in the following case it does: According to Céa’s Lemma [6], p. 55],
if a is linear, bounded and coercive and [ is bounded and linear, « is the (unique)
solution of and uy, is the approximated solution in V},, then Céa’s inequality

(2.3.4) lu —uplly, <C inf [u—ovl,
veEVh

tells us that
(1) wy, is the element of V}, closest to u, and
(2) As V}, approaches V, uy, will approach u in V.

THEOREM 2.5. A well-known fact is that the variational problem (2.3.1) is
equivalent to the minimisation problem

(2.3.5) w := min M (v) where M(v) := %a(v, v) —l(v).

veV
PrOOF. The function u solves (2.3.1)). = The function u gives the
minimum of (2.3.5)): Take a w € V that solves (2.3.1) . Then Vv € V

Mu+v) = % (a(u,u) + a(v,v)) + a(u,v) — l(v) — l(u).

Since a is positive definite/coercive and a(u,v) = I(v),
Mu+v)= % (a(u,uw) + a(v,v)) — l(u) > %a(u,u) —l(u) = M(u).

The function u gives a minimum of (2.3.5). = The function u solves

(2.3.1)): Let u be the minimum of (2.3.5)), and let ¢ € R. Take any v € V, and
define

wu(e) == M(u + ev)
which by the linearity of a and [ is

ule) = % (a(u,u) + €2a(v,v)) + ealu,v) — el(v) — I(u).

Since p is a real, continuous function (because of the linearity and boundedness of
M), u has at least a weak derivative

W (€) = ea(v,v) + a(u,v) — I(v)
1(0) < u(e)Ve € R, p/(0) = 0 and thus
a(u,v)—I(v) = 0.
Since v € V was arbitrary, this holds for all v € V. ([

2.4. Constructing Vj,

Our goal is to solve a variational problem of the type in (2.2.1). Now we want
to construct a numerical method that approximates the solution of Example
Our solutions will be in H*(£2), and we have to choose our subspace within it, and
consequently the functions in the subspace will be continuous (by Theorem [2.3]).
Since our subspace is not uniquely defined yet we can add useful restrictions to have
more control of its contents. What motivates further choice of subspace is that it

e Converges towards our solution when refining the parameters,
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Y
 J

FIGURE 2.4.1. Our domain the unit square = [0,1]2

e Generates a sparse stiffness matrix, and
e Uses a minimal amount of operations to do so.

In short we want to create a version of the problem that is well adapted to quick
and precise solving on a computer. The rest of this section describes how the choice
of subspace and its basis satisfies these motivations.

2.4.1. The Mesh.

Having some sort of refinement of the domain to include more data points is
a usual method of increasing precision in computational science. We’re going to
divide our domain into mesh of subdomains with a piecewise C' border and a
maximum diameter of 2h. To begin with, we have something to assume about the
regularity of the domain : It has to have a piecewise C'! border, meaning that its
border can be covered by a 7 : [0,1] — R™ for ¢t € [0,1], where v(0) = (1), and
47 (4 exists almost, everywhere. We will then proceed to partition € into disjoint

dt
subdomains €;, |J, Q; = Q with the same regularity property.

ExaMPLE 2.6. For instance we have the unit square which can be divided into
triangles. In three dimensions we can have the unit cube divided into tetrahedra.

Since the domain € is a subset of R, we do not only work in two or three
dimensions. To help this, we can generalise these two- and three-dimensional tri-
angles and tetrahedra to the n-dimensional notion of simplices (using increasing
indices):

DEFINITION 2.7. Increasing indices
An increasing index is a o : {i,...,k} — {j,...,n} which adheres to the
following rule:

l<m=0o() <o(m).
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We will write it with the notation o € X[i : k,j : n]. The collection of all such
increasing indices is written as .. The image of an increasing multiindex is written

[o].

DEFINITION 2.8. Simplices and simplicial meshes

A simplez T in n dimensions (an n-simplez) is the convex hull between n + 1
different points {p; € R"},_ . Notation: T' = [po,...,pn]. To = [0,€1,...,€5] is
called the reference simplex.

A k-subsimplex f of T = [po,...,pn] is the convex hull of {pg(i) € ]R”}k

§=0
some o € (0 : k;0 : n), denoted f, := [pg(o),...,pg(k)]. The collection of k-
subsimplices of T is denoted Ag(T), and the collection of all subsimplices of T is
denoted A(T) = Uy_o Ar(T).
A simplical mesh T of a domain  is a collection of disjoint simplices T; such

that

(1) U, T; = ©, and

(2) All intersections of two simplices f;; = T; N T; must be either f;; = 0 or

feA(T),A(Ty).

The collection of all the k-subsimplices of 7 is denoted Ag(7). The set of all
simplices T' € 7 that share the subsimplex f € A(7) (T N f # 0) is denoted
wy(T).

for

It can also be noted that these meshes can be refined with respect to the
parameter h. For a simplex T we have the parameter hp := dia%m, and for the
mesh, h := maxpc7 hp. This is a measure of the coarseness of the mesh 7. For
simplicial meshes, we can divide the mesh into more simplices by bisecting them
thus decreasing the coarseness &, and this is what is meant when writing V}, for the

subspace.

2.4.2. Shape functions (polynomials).

Shape functions are piecewise functions over our mesh 7, continuous on each
T € T. Among these are the functions that make up our subspace Vj, of H(Q).
The natural choices for a basis on T are a trigonometric basis (e.g. Fourier series)
or a polynomial basis (e.g. Taylor series), since these are easy to differentiate
and integrate. Building upon work done in [2, [3], [8, [16], the objects of study
in this thesis are polynomials, therefore we abandon trigonometric series at this
point. Before we go on with polynomials, a short definition of multiindex notation
is necessary:

DEFINITION 2.9. Multiindex notation
A multi-indez j is an (n + 1 — m)-tuple (jm,...,Jn), ji € Ng which describes
the respective degrees of a monomial over R™:

Jo._ J1
=)

7] :== >, ji is the degree of j, [j] := {i € No| j; # 0} is the support of j, and the
set of multi-indices is written Ng*".

o
)

DEFINITION 2.10. Polynomial function spaces
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Given a domain 7' C R", the space of rth degree polynomials over T is denoted

Po(T):=p:T—R|VieN"|i| <r:3Ja; eR:Vz €T :p(z) = Zaﬂ:i
li|<r

where N} is the space of natural number-valued n-tuples. More compactly written:

PT(T) = Z ai.ﬁi a; € R

li|<r

The direct sum of these spaces (assuming p € P,.(T) is zero for ¢ T

(2.4.1) & P.(1)

TeT
will give a space of discontinuous functions. This does not satisfy Theorem [2.3] and
we must therefore restrict this space a bit more.

2.4.3. Continuity.

We still need to restrict the space from to a proper subspace of H*(2).
Theorem [2.3|implies that if u € @7 Pr(T) and u € H'(Q), then v € C(Q) (i.e. u
is continuous). Hence we need to ensure that our subspace contains only continuous
functions. The name for such a space is a conforming finite element space, where
conforming implies that V;, is a subspace of H(Q2). We let Vj, := HP,.(T) as defined
here:

DEFINITION 2.11. Continuous piecewise polynomial function spaces

The continuous piecewise polynomial functions are
HP.(T) :={ueC)|ulr € P.(T)},

meaning piecewise polynomials that are continuous on the edges between the sim-
plices, required by Theorem

According to |2, p. 60-61] this space is well-defined and at any f € Ag(7) the
trace Try(p) for p € P.(T) is single-valued. Thus we are certain that P,.(7) is a
nondegenerate subspace of H'(), i.e. dim(P,(7)) > 0.

2.4.4. Basis of local support.

We want to generate a basis {qbz}?;nil HP(T) for HP,(T) that has local support,
i.e. that supp(¢;) is covered by a small subset w;(7) of 7, not overlapping with
supp(¢;) for too many j # ZE| The reason for this is that we are working with

evaluating integrals over €2 of the form

I, = /Q f(x)dery (6;)ders (6;)dz

where each der,,, can be either the identity or % and f(x) € C() is an arbitrary

function. We can then restrict the integral to

f@)der(p)dera(dy)dz = 3 / F(@)der (1) dera (@),
NI

/supp(@)ﬂsupp(dy) Te(wi(T)Nw; (T

Asupp(u) := {x € Q| u(x) # 0}



2.4. CONSTRUCTING V3, 20

which is zero when w;(7) Nw;(7) = 0 regardless of the choice of the der,,. This
makes the matrix {Iij}i,j sparse when the supp(¢;) are many and far apart in
2, and our stiffness matrix A;; = a(¢;, ¢;) which is based on a weighted sum of
I;;-matrices, will have the same sparseness property.

2.4.5. Degrees of Freedom.

To define a basis in HP,.(7) which has local support, we have to take a detour
through the dual space HP,(7)*. In this subsection we define and give a few
examples of different spaces of the degrees of freedom of HP,.(7). First we need to
establish what exactly the dual space is:

DEFINITION 2.12. Given a vector space X, the dual space X* is the space of
bounded linear functionals over X.

Fact 2.13. By [15, Th. 5.1] if X is finite dimensional with basis {x;};, then
X* has a basis {f;}i such that fi(x;) = 6;5. In particular dim X* = dim X .

Since dim HP,(7T) < oo, then dim HP,(7) = dim HP,(7)* by Fact
HP,(T) and HP,(T)* are isomorphic as vector spaces. We can also reverse the pro-
cess of Fact by choosing a basis for HP,.(7)* that induces a basis on HP,.(7T)
with desirable properties such as local support. We call this basis the degrees of
freedom or nodes:

DEFINITION 2.14. The degrees of freedom (also called nodes) Ny = {n; }> #7-(7)

of 7 are linearly independent elements of HP,.(7)* that uniquely determine any
function in HP,.(7) (u =v € HP.(T) it Vo € HP,.(T)*¢(u—w) = 0). The degrees
of freedom associated with a simplex T are denoted Ny = {n?}f:l P They
are linearly independent elements of P,.(T)* that together can be used to uniquely
determine any u € P,.(T).

The degrees of freedom need to be constructed as integral evaluations, a certain
number restricted to certain subsimplices of T'. This is because when elements 77, T5
are linked together on the subsimplex f = T1 N Ty we need P,(T1)|f = Pr(T2)]s.
This can be done by choosing P, (T1)* and P, (T)* such that P.(T1)*|f = Pr(T2)*|s.

Given a domain Q = [0,1]? (as in Figure on page with a triangular
mesh 7, examples of such conformity-enforcing degrees of freedom on an element

E are:

EXAMPLE 2.15. Linear elements (see Figure on page

In the case of a linear element where P (T') is the function space, we know that
dim Py (T) = dim T + 1, which equals the number of vertices of T. Hence it makes
sense to let N consist of evaluations at the ith vertex point, i.e. N 3 n;(u) :=
f{wi} udx = u(z;). The vertices of all T' € 7 are what connects them, and we have
continuity of HP(7) at the subsimplices. The linear element is usually the starting
point for all conforming families of elements over H*(f2), and it is a simple version

of the two in Examples and

EXAMPLE 2.16. Point evaluation in a triangle (see Figure on page 22| and
2.4.4) This is a basis for P.(T')*, where the nodes are point evaluations uniformly

53 collection (T, F,N) of T, and shape functions F and a basis N for the dual space of spanF
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FIGURE 2.4.2. On the left a single linear element in two dimen-
sions, with point evaluation. When several simplices are connected
together their degrees of freedom are shared as in the right figure.

distributed throughout the triangle in the fashion of triangular numbers, which in
fact are (*17) = dimP,(7).

These elements are constructed so that an appropriate number of their nodes
will coincide with (be linearly dependent of) the nodes of neighboring elements
on the edges and in the vertices. Observe that the evaluations on the edges (in-
cluding vertices) are enough to determine the polynomial degree uniquely for that
edge. Three evaluations for second degree polynomials, and four for third degree
polynomials. In other words,

U NT = NT.
TeT

In fact, dimP,(R") = ("!") which are the n-simplicial numbers in Pascal’s

triangle. This makes it easy to place the elements of N7 uniformly throughout any

T and its subsimplices.

EXAMPLE 2.17. Weighted integrals on the subsimplices .
We can replace each node from Example (evaluation at {z; € T}?:ll PT(T))
with (linearly independent) integrals on the smallest subsimplex containing z;,

n r
FEA(T),zi€f

This we do to preserve the number of nodes on the edges of T, so that the linking
to neighbouring 7' (similar to the linking in Figure on the following page) is
preserved.

Letting ¢ for i < dimP,(f) = (“2/%") be a basis for P,.(f) for all f € A(T)
, we can construct a basis for the dual space:

(2.4.2) D.(T) = {/fTr(u)w}dz FeEAT),1<i< <£im}> }




2.4. CONSTRUCTING Vj, 22

FI1GURE 2.4.3. Point evaluation on a triangle: A quadratic element
(left) and a qubic element (right).

FIGURE 2.4.4. A quadratic mesh.

For the entire mesh this is

i r—1
2.4. D.(T) = T 4 A(T),1<:1< .
(2:43) @) ={ [ s ream i<z (100}

The reader should note that, as in Example the number of degrees of freedom

associated to each subsimplex (including its subsimplices) is (dg?n{}”)

These examples show us that there are several possible ways of constructing
a basis for P,.(T)*. For our purpose of obtaining a basis for HP,(7) with local
support we now have the appropriate tools.
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2.4.6. Construction of a basis. We want a basis {¢;}, for HP,.(T), which
has local support, i.e. that it has support on few T' € 7. To construct this basis,
we will use the a basis for any degrees of freedom from the last example, called N7 .
We will then generate a nodal basis {¢;}, defined by Vi, j : n;(¢;) = 0;;. Let us
explore what this means:

In the case of linear elements, the n; € N(T) represents point evaluations in
the vertices of 7. We will then have {¢;}, that are piecewise linear, and since they
are 0 in all but one vertex {t;} € A¢(7), each ¢; will have support only on the
simplices surrounding t;, wy,3(7). Hence we have local support. The nodal basis
for these vertices are the barycentric coordinates:

DEFINITION 2.18. Barycentric coordinates
The barycentric coordinates AT (x) of a simplex T are here interpreted as a
function of z € R™ where the A\Y(z) are defined to be s.t.

T = i )‘iT(x)Pi
i=0

where {p;}_, are the vertices of 7.
The barycentric coordinates of the reference simplex, )\iTO (z) are written without
To:
xT; when ¢ > 1
1-3"  2; wheni=0"

Ai(z) == AP (x) = {

It is worth noting that Y. AT = 1.

For the two other examples of degrees of freedom, it will suffice to say that
there exists a nodal basis {¢;}, where Vi, j : n;(¢;) = d;;. In the case of the point
evaluation nodes on T, let n;(¢;) = ¢;(x;) = 1, and

f= N @
geAN(T), z;€f

We see that for all T' ¢ wy(7T), Vj : nJT(ngZ) = 0, and thus supp¢; = w;(7). The
case of integral evaluations along subsimplices produces nodal basis functions with
supp¢; = wy(7) along a similar argument.

ExAMPLE 2.19. Now we can describe the nodes of Example in more detail,
because they are distributed as follows: Let A = (Ag, A1, A2) be the barycentric
coordinates of " C R™. Then the nodes n; are point evaluation at barycentric

coordinates o
0 %21 12 . . .
Ty Ty T 16N8.2)|7’|:7a
roror

The barycentric basis, which will be in our focus in this thesis, has the same
property as these nodal bases that it has supp¢; = ws(7') for some f € A(T):

DEFINITION 2.20. Barycentric (monomial) basis function
The polynomial bases of P,.(T) can also be represented by monomials of barycen-

tric coordinates ()\T)i =11 ()\]T)ij:

o=}

where r = |i| = 37, 4; i € N)™,
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It is often common to substitute the barycentric basis with the Bernstein basis:

DEFINITION 2.21. Bernstein basis )
The Bernstein basis BjT is based upon the barycentric basis ()\T)j such that

- ()

where r = |j| and (;) = m is the multinomial coefficient.

This basis is also called the normalised barycentric basis because every fTo B;TFO dz =
1 (proved in [8) p. 140].) It is then a scaling of the barycentric basis, and we will
see in Chapter [3] that The Bernstein basis is very well conditioned compared to the
barycentric basis.

2.4.7. Convergence of solution. In essence, we have convergence of solution
from the fact that P(T) := > o2, P.(T) is dense in H'(2) and that P(T') is dense
in H'(T). But knowing the rate at which it converges can be much harder, and can
only be obtained for solutions of variational problems in certain subsets of H'(2),
namely H'(Q2) for ¢ > 2.

Fact 2.22. [6, Th. 6.4] Assuming T is shape—regulaﬁ the convergence of the
solution is certain with the rate

N

f[u— Hhu”Lz(Q) < ch! Z ||D u||L2(Q)
li|<t
This requires that w € H'(Q), that h is half the largest diameter of all T € T and
that I1j, is interpolation by a piecewise polynomial of degree r =t —1 > 1.

Actually the theorem is stated for polynomial interpolation, but according to
Cea’s Lemma, ||u—up|| < |ju — IIul|, so we can be sure that our numerical solution
u of our variational problem converges just as well.

This makes h a very good parameter for ensuring convergence of the solu-
tion. Technically, we can also refine the polynomial degree of HP,.(7), and because
polynomials are dense in C(£2), which is dense in H'(£2), this will also create con-
vergence. But this is the subject of another method, the hp-FEM, so here we have
no estimate for the error depending on r.

2.4.8. Time-efficient calculations. Our evaluating of A;; = a(¢;,¢;) on
a computer requires a process of differentiation and integration with a symbolic
engine (e.g. maple). In general, this kind of calculation is very cumbersome for a
computer compared to regular numerical operations, and motivates us to try to cut
down on the use of these symbolic integrations. Our tool for this is called affine
equivalence, which tells us that we only need to perform one standardised symbolic
calculation per stiffness matrix, instead of doing one per T' € 7.

DEFINITION 2.23. Affine equivalence

Two elements (T3, F1,N7) and (T, Fo, N2) are affine equivalent if there exists
an affine injective transformation F' : R™ — R"™ such that the images of F, F’* and
F, are

6[6, p. 61]: 3k > 0:VT € T : the inscribed circle of has a radius > hp/k where hp is the length
of the longest line of T'.
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(1) F(Th) =
(2) F*(F2) = 5’:1
(3) Fi(N1) = N2
where F*, F*(f) := foF for f € Fa, is called the pullback function and F,, F.(N) :=

N o F* for N € NV, is called the push-forward function.

Affine equivalence is really vital to efficiency when doing calculations with the
FEM, since the number of symbolic calculations when doing the calculation of the
Stiffness matrix shrinks by a factor of |7|. The reason is simply that the chain rule
for derivation acts on scalar functions such that

Dy(uo F(x)) = Dyu(F(x)) = det (D F(x)) Dpgyu(F(x)).
The stiffness matrix A;; = a(¢;, ¢;) for the basis {gbi}fv:l of HP,(T) has to be
calculated for every simplex T' € T, with a local matrix AT, = a(¢],¢])r (the
integral restricted to T') from the local bases {(;SZT}i\il C {(bz}l (those that have
support on T).

EXAMPLE 2.24. Let’s take a simplified version of the equation component (from

Subsection
= /T 1 dery (¢ 2 o F) ders (¢T2 F) dz

= /T 1 (ders(F) - Dray (672 0 F) ) (derz (F) - Drgey (672 0 F ) ) da

Changing the domain of the integral gives us

_ /T2 (derl(F) .D(b;rz) (der2 (F) - Dd);&) dz

Switching to component notation, we get

= Z . (dery (F D¢T2) (dery (F)), (D%Tz)ldx

_ Z (dery(F)),, (ders (F)), /T (D@Tz)m (DquT?)l dz =3 F,D%
2 ml

SO we need only calculate DqS;TFz for one Ty € 7 in order to evaluate the integral
Iij;» for all other T' € 7. This calculation requires only that we compute integrals
for one element to find A”¢ for one i, and the rest can be calculated with simple
linear algebra operations. Since analytically computing integrals is much more
time-consuming than computing the determinant of an affine transformation, the
computing time is decreased significantly.

2.4.9. In conclusion. We have now chosen HP,.(T) as our subspace V3. It
has basis functions with local support which generates a sparse stiffness matrix, its
functions are continuous, a solution in V}, converges towards the exact solution in V',
and we don’t require many symbolic calculations in the process. In later chapters
we will only consider the bases on a single 7', because the calculations we are
trying to optimize (stiffness matrix calculation) is done element by element.



CHAPTER 3

Condition numbers

In this chapter we will describe the importance of condition numbers, how
we calculate them, and their relevance to FEM solutions of PDE. [18] explains
condition numbers quite adequately:

In the numerical analysis, the condition number associated with
a problem is a measure of that problem’s amenability to digi-
tal computation, that is, how numerically well-conditioned the
problem is. A problem with a low condition number is said to be
well-conditioned, while a problem with a high condition number
is said to be ill-conditioned.

In other words, a condition number is an abstract measure of how well a computer-
based solution method for any problem performs.

In our case we're dealing with linear algebra equation systems of the kind
Az = b like (2.333). We want to find out what consequences truncation errors on
b have on the solution z. The following result from [I3] p. 155-159] gives us a
condition number of a matriz to work with:

Fact 3.1. Suppose A € C™" is nonsingularﬂ b,e € C", b # 0 and Az =
b, Ay=b+e. Then
L el _ lly —=

B04) @ ol = el

llell

< cond(A) ol

ond(A) := [|A]| - |[A7Y.

What this means is that by having a low condition number, we can limit the
relative error of the solution of Ax = b by a factor of cond(A).

Condition numbers are quite a useful tool, so let us investigate a bit further
what this expression [|A||-||A~|| actually means in our case when A is symmetric:
‘artAac|

|[?

largest eigenvalue | ,uﬁax’ of the matrix A. Its smallest eigenvalue satisfies | i

||A|| is the norm of A , defined as sup,ccn , which is the magnitude of the

‘A%l where i/l is the largest (in magnitude) eigenvalue of A~1. Since |[ud,. | >

max

| Néin’: the expression from (3.0.4) then becomes

A
All - A71 _ |:u’1nax| > 1.
1Al [[A=H] i | =

Then we know that the lowest possible condition number we can obtain is 1, which
is equivalent to A being a unitary matrix.

Ignim denotes all complex-valued n X n matrices.

26
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3.1. Relation to variational forms’ condition numbers

In this section we will describe the relation between the condition numbers of
the stiffness matrix A = {a (¢i7¢j)}ij7 the bilinear (and bounded, coercive, and
symmetric) form restricted to the subspace V3, ap : Vi, X Vi, = R, (u,v) — a(u,v)
(the same as aly, xv;, thus we will write only a where they are interchangeable)
and the basis {¢;},.

Now, the equation system we’re regarding is based on the stiffness matrix which
in itself consists of a basis {‘f’i};\; and a bilinear form a. We now expand the concept
of condition number to these two mathematical objects.

DEFINITION 3.2. Condition numbers of bases
If we have a basis {d)i}ﬁil for a N-dimensional Hilbert space within L?(Q) (with
same norm and inner product) where N < oo, then

Hzic“bi”ﬂ(m
SUP.erN — a1
N ce ||
(3.1.1) cond ({¢i}i=1> = |\Z.c,¢,’|2|
inf LlEni s 221(r))
1mn: cERN |C‘l2

where [c|;» is the Euclidean norm of ¢. We see that the expression

‘ Zcifbi

where G is the Gram matriz (We will write only G when only it is obvious which
basis is used.)

1
2

= Zci@,ch(bj = (cth)%
i J

L2(©)

L2(Q)

G (t0s) = {00y )y

1

Do cidi tGe)?
We then get that sup.cgw ch'% = SUP cpN % is the square root of
1 1
Hzi Ciqsi”ﬁ(n) .

highest eigenvalue of G by magnitude. Similarly, inf, cpn~ is the square

‘C|l2

c .
root of the lowest, and as a consequence (3.1.1)= \/ £max - From now on we will
min

work on the Gram matrix G, since has some nice properties, such as linearity and
relation to the following condition number (see Theorem :

DEFINITION 3.3. Condition number of a bilinear form
Suppose a : V x V — V is a symmetric, bounded, coercive bilinear form on the
Hilbert space V' , then

cond(a) := Anax/Amin
H 1o Pp— a(l.Vz) .
is the condition number of a where A\fyax := sup,cy, el Anin
are respectively the absolute of the highest and lowest eigenvalues of a

. a(e.z)
= infoev;, Tz

Having defined these two condition numbers, we can state that the most im-
portant part of the following theorem is the inequality

cond (A) < cond (ay,) cond (G ({(bz}?;nf Vh)) :

?Being the highest and lowest values of A for which the eigenvalue problem Vv € V : a(u,v) =
A(u,v) has a solution.
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As we will see, A := a(¢;, ¢;) here is dependent both on choice of problem (a),
subspace V}, and a basis ¢;. The restricted bilinear form a; is only dependent on
choice of @ and V},, while G on the other hand only depends on {¢1}dlm Vi We can’t
do much about our bilinear form a, because it represents the problem we want to
solve, but the choice of bases {@}dlm Vi are quite many!

In that way we may condition A through improvement of G, and this will work
for any problem a which can be restriced to V3. This is our main motivation for
exploring the condition numbers of different polynomial bases, comparing them to
each other to see what benefits us the most.

THEOREM 3.4. Given the variational problem
Yo € Vit a(u,v) = (f,v)

as in and a finite basis F = {qi)z}dlm Vi for Vi, define the stiffness matriz A
by A;; = a(qﬁl, ®;j). Then

(1) cond (A) < cond (ap) cond (G), and

(2) If the ¢; are orthonormal, then cond (ap) = cond (A), and

(3) There ezists a basis ¢; such that cond (A) = 1.

ProOOF. To prove Item l we must show that AU < \n \C U and AU >
A NG 7. Suppose that u € V}, satisifies

Yo € Vi, : a(u,v) = A(u, v), AeR

i.e. solves the eigenvalue problem for the eigenvalue A of a in V3. Using the basis
F for V,, we get

Vj e N(l):dith ‘a <Z Ui¢i7¢j> = (Z Uigbi,qﬁj)

(3.1.2) Vj € NUImVe o N " ia (g5, ¢;) = XD _ Ui (¢4, 65)

We can write this as

AU = \GU
where A;; = a(¢i, ¢;) and G,; = (¢, ¢;). Suppose that A% is the maximal and
A% s the minimal eigenvalue of a, and that \S,, is the maximal and \S, is the

min mn

minimal eigenvalue of G. We conclude from the spectral theorem and a’s property
as coercive (only positive eigenvalues) that

IAU]| < Atk IGU| < MM 1U]], and
IAU| = S, IGU| = A A U1
Consequently
)\A pY )\G
(3.1.3) cond (A) = )\X’ax < )\Ifl‘:x)\g“ = cond (a) cond (G) .

For Item [2| we know that a is a bilinear form on V},. Since V}, is finite it has an
orthonormal basis {e;},, thus we can define the matrix

Aij = a(ei,e))

which we will show has the same condition number as a;. Define
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and since ||z =1 Y, ¢ = 1,[}

=<a E ciei,g cj€;j = E cicia (e, e;)
i J

>, =1 i >, c?=1
= ZCiCinj = {CACt}
T llell=1
7 =1
which is the numerical range of both @ and A over the unit circle ||z| = 1, so

sup(W (az))/ inf(W (az)) is both the condition number of A; and A.

Proving Item |3| we assume the orthonormal basis {ei}il of the previous item,
and we will show that there exists a basis {gzﬁi}?[:l with ¢; = >, dje; such that
cond(A) = 1 where A;; := a(¢;, $;). We know that A = a(e,, e;) is symmetric and
positive definite since a is symmetric and coercive. This in turn implies a singular
value decomposition A = BX.B? for a unitary matrix B and diagonal matrix .
Having a look at

A={a(¢i,6))};; = D daaler,em)vidjm o = dAd'

lm ij
we realise that f we choose the ¢; such that d = E_%B_l, we get that A = 1,
and thus cond(A) = 1. Thus there is no limit to how well-conditioned a basis can
be. O

Having proved this, we go on to observe specific condition numbers for the
Gram matrix of different bases.

3.2. The condition number of the Bernstein basis

In this section we consider , the Bernstein basis for P,.(Tp), i.e. r-th degree
polynomials on the reference simplex Ty, as defined in Definition [2.21] Because
its condition number has already been examined and exactly defined in [16], we
need not prove anything about it, but we will illustrate and validate our approach

towards calculating the Gram matrix {(¢i,¢j) L2(TO)} ~for certain given bases
j

(2
{¢i},; of Vi. Since this basis is normal ([, BjT"dx = 1), it will hopefully have a
very evenly valued Gram matrix with a low condition number.

THEOREM 3.5. The Bernstein basis Gram matriz has the form

1K

(3.2.1) /BiBjdm = |.Z|'|‘.7|'Isum(i,j,n)
T il7 !
20

Nz2 =1« (ZZ Ci€i g Cj&j) =1le3, cclee) =13 cicj &3, c2=1
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where i,j € N9, |i| = |j| = r and

- DM i+ 1+ 4,)!
lsum(i, j,n) = ) (io — [N (Jig + 1] + [j] +n)!”

[1|<io

Proor. We know from [16, Lem. 1,(3)] that
(3.2.2) /xiBjdx = Gt dy)! !
T

Jo (il + il +mn)t
We can then compute the Gram matrix of the basis {B;};_, as follows:

/TBiBjdm:/T<|2|> <1—Zx> roBjdr = Y <i;>(—1)|l<|z>/xi°+13jdx

[1|<io

- <|§|) 3 (1)l<il°> /xio“Bjdx.

[l|<io
We then apply (3.2.2) and get

i 3 (o il (G + 147! Hil
i1 I(ig — |I|)! 7, (lig + 1 + 7] + n)!

" U<io

Moving all factors independent of I out of the sum, we get

1[40 o+l +7 !
/BiBjdx:M 3 (- ( : ’0> : :
T iglj,! (o — 1) (Jig + I + |j] + n)!

[1|<io

O

We can use this information to calculate the condition number of the matrix
{(Bi, Bj) 1,0 }Ii\,lj\:r for i,7 € NJ™. For later, we’ll use the term lsum to express
the factor

(Zo +1+ lo>'
io — [INNlip + 1 + i1+ )t

1sum(s, j,n) := Z (—l)l”u(

1] <io

This very well illustrates our method for obtaining the values of the different
Gram matrices, and we’ve made a control program BERNSTEINCONDSCONTROL.M
which checks out that we get same result as the following consequence of [16, Th.
3]:

Fact 3.6. The Condition number of the matriz {(Bi,Bj)[Q(Q)}‘il lil=r where

il = [j| =7 is
2r+n
- .

The lower and upper bounds for this expression are

op [_n(;‘_ 1)} ((r+::2)ﬂ)4 - (QT: n) =P [;Tin!n;)} ((r i;)w)

The condition numbers for n,r <7 are shown in Table[]] on page[33

-
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The upper and lower bounds imply that (QT:”) increases exponentially in r,

but not exponentially in n. As we can see in the table, the expression increases
linearly in n for » = 1, along triangle numbers 10,15,21,28,... when r = 2, and
polynomially after that.

3.3. The barycentric basis

We will proceed to consider the barycentric basis defined in Subsection [2.4.6]
and how to calculate its condition number, to compare it with the condition num-

bers of the Bernstein basis. As opposed to the Bernstein basis, this basis is not

normalised, leaving fTo MNdx = (Tl'l)v which will cause a great deal more variation

in the magnitude of the elements of the Gram matrix [ AN dz

COROLLARY 3.7. Barycentric Gram matriz
Let {Ai}‘ilzr be the barycentric basis of P.(Ty) as defined in Definition Defini-
tion[2.20. We then know that the Gram matriz for this basis has the form

(3.3.1) /)\i)\jdx = ig!j0!Isum(i, 5, n)
with Isum defined as in Theorem [3.5]
PROOF. We know from Definition Definition 2.21] that

? J

(‘i‘)(lé‘) T

which together with Theorem [.5] proves the corollary. O

Thus

To find approximate solutions of the condition numbers of the barycentric basis,
we have written a few programs, which can be found in Section [A:2] The results
of these calculations can be seen in Table [2] on page We can there draw the
conclusion that the barycentric basis is (for n,r < 7) worse conditioned than the
Bernstein basis. Thus we can conclude that the normalisation coefficient (E‘) in
front of \? is well justified for all the barycentric polynomials.

3.4. The Subsimplex nodal bases

In this section we will look at the condition number for the nodal bases of the
subsimplex nodes defined in [2}, [3]:

3.4.1) DX (Ty) =4 [ Tr(w) (M) de
(3.4.1) DY (Ty) {/f (w) ()

(3.4.2)

oty = { [ (1) 0" as

These bases for degrees of freedom for general simplices T' coincide when they
are joined

Both these sets have the same property: Let’s take two adjacent simplices
in a mesh, T}, Ty € T, adjacent meaning that 071 N 01> # 0. According to the

feA(T),ieNy" |il —r—dimf—l}

feA(T),iecNy™ |il _rdimfl}
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definition of the mesh (Definition[2.8)), their intersection 9T} NIT% will be a common
subsimplex f € A(T1) N A(Tz). On this subsimplex, the elements of D(T1) and
D(T3) restricted to f will coincide,

/fTr(u)<|z|) (M) Jil = r —dim f — 1

and thus be identical. If f = f, it also uniquely determines any \/ where |j| =
and [j] = [o], because

N = Am)\Zielo] @
where |m| =r — (dim f + 1).

We will explain how to calculate the condition numbers of the Gram matrices
of these subsimplex bases. We will do this numerically based on the Gram matrix
Gy of a general basis {qbi}i]il for P,.(T).

Given a basis {zj)i}f\;l where N := dim P, (Tp), we will calculate the nodal basis
{41};L, by finding the matrix C'in Vi : ¢; = 3__; Cy;¢;. Knowing that we wish
the statement Vi, j : §;; = n;(1;) to be true, we see that

ni(P;) = ni(z Ci) = chlni(¢l) = ;5.
1 ]

This implies that our matrix c satisifies C'.J = I where J;; = n;(1;), and conse-
quently C' = J~!. Using this knowledge, we set out to determine Gy, := {(v;,%;)}, i

and its condition number. Assuming that Gy := {(¢i,#;)}, ; , we see that
Gy = (¥i, ¥)) = (Z cadr, Z%’m%n) = ci (61, 6m) cjm = CGyC".
l m lm

This way, letting {gbi}fvzl be the barycentric basis, we have written our programs
so that they calculate CG,C" and subsequently its condition number. The results
of the programs (seen in Section are shown in Table |3/ and 4| on the next page.
As we can clearly see, these bases are significantly worse conditioned compared to
the Bernstein and barycentric basis.

3.5. Conclusion

The optimal basis out of these four bases is by far the Bernstein basis, although
we have been unable to prove any general estimate of how their condition numbers
develop for n > 7 or r > 7. We can safely say that the Bernstein basis is the
optimal basis (out of these) to use for lower-dimensional PDE.

It is apparent that the to nodal bases differ very little in their condition num-
bers, and are both ill-conditioned. This migh have to do with their coefficients, and
in the future, one might try to scale these nodal bases differently to achieve better
condition numbers.
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TABLE 1. The condition numbers of the Bernstein bases for n <

7,r <T7.
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TABLE 2. The condition numbers of the barycentric bases for n <

7,r <T7.
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TABLE 3. The condition numbers of the subsimplex barycentric-
weighted nodal bases for n < 7,r < 7.
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TABLE 4. The condition numbers of the subsimplex Bernstein-
weighted nodal bases for n < 7,r < 7.




CHAPTER 4

FEM with Differential forms
(Finite Element Exterior Calculus)

Differential forms are a useful, unifying tool for formulating curl- or div-based
PDE and higher-dimensional antisymmetric tensor field PDE, like electromagnetic
particle systems. In this chapter we will explain what alternating forms and dif-
ferential forms are, and give some useful examples of spaces of these. We'll also
explain how to apply the FEM to PDE in spaces of differential forms, using the
Finite Element Exterior Calculus as presented in [2]. The notation in this chapter
aspires to be parallell to [2] [3], but tries to correct some possible perceived ambi-
guity of the symbol P by furthering the use of HP from Chapter [2] when reffering
to a piecewise polynomial space over a mesh.

More accurately: In Section we describe alternating forms, so that we can
describe our function spaces in Section In Section [£.3] we see what new kind
of problem we want to solve and how we formulate it, and Section [I.4] details the
framework of approximation.

4.1. Alternating forms

Alternating forms are one of the two building blocks (the other being LZ2-
functions) of differential forms. Thus we need to know what alternating forms
are before we can embark on a voyage through differential forms into the FEM and
FEEC.

DEFINITION 4.1. Alternating forms

Given a n-dimensional vector space W over RE 0 < k < n, an dlternating
k-form is a multilineaxﬂ function w : W* — R that alternates when exchanging two
arguments:

W(V1, ey Vig ey Vgy e O) = —w(V1, 0o, Uy e, Vg e e, Uk)
T i f i

Generalized, this means that for all permutations o € Skﬁ
w(’Ul, sy Uk) = (Sign O')UJ(’UU(]_), cee avo'(k))

We define the space Alt"(W) to be the space of such alternating k-forms (k-aric
alternating forms) over the space W. We write Alt(W) for |J;_, Alt"(W).

Mn our case (for the following sections), W = R™.

2Linear in each argument.

3Sk is the group of all permutations on k elements, and every o € Sy is thus a unique injective
function o : {1,...,k} — {1,...,k}. signo := (—1)™ where m is the number of transpositions
(swapping of two positions) that o can be split up into.

34
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‘ . ‘ k times . ‘

These alternating forms are a generalisation of n x --- X n antisymmetric ten-
sors (k-dimensional matrices), where the arguments vy,...,v; symbolise the in-
dices of the matrix. Observe that any underlying coordinate system for W is not
mentioned in this abstraction, therefore differential forms are often referred to as
“independent of coordinates” or something similar. We will define our alternating
forms with the aid of bases (and thus coordinates) for Alt*(W). Tt is important to
remember that we don’t always need to use specific bases. This is an important
tool when working with proofs on an abstract level (which will not be done here).
The space Alt"(W) also has an inner product

DEFINITION 4.2. Inner product of alternating k-forms

(411) (w, n)Altk‘(W) = Z w(bo(l), ey bU(k)))n(bo’(l)a ey ba(k))
o€X[1:k;1:n]

where w,n € Alt" (W), and {b;};, is any orthonormal basis for W.

Accompanying the alternating forms is the wedge product, a generalisation of
the cross, dot and scalar product of vectors to general alternating forms. Applying
it to two alternating forms will produce a third one:

DEFINITION 4.3. Wedge product
Given w € Altk(W) and v € Altl(W), the wedge product or exterior product
A AR (W) x AltH (W) — ALtPT(W) is defined as

w AV (’Ul, cee 7Uk+l) = Z sign (o’)w (UU(l), .o 7U0(k)) v (/Uo—(k+1)7 SN 7/Uo—(k+l)) .
0ESK,1

Here S is the space of permutations o € Sy, that are (k,[)-increasing, mean-
ing that Vi,j > k+1and Vi,j <k: i<j=o0(i) <oa(y).
In fact, according to [4, Prop. 4.1.2] we have a basis for every Alt"(W):

FACT 4.4. Basis for Alt" (W)
Given a vector space W over R with dimension n < oo, there exists a basis dy;
for W* such that

{dyg(l) A A dy”(k)}JGZ(lzk,ltn)
is a basis for AIt"(W).
This results in an algebra of forms with such calculations as dz A dy(vi,ve) =
dz(v1)dy(ve) — dy(vy)dx(ve).

DEFINITION 4.5. An orthonormal basis for Alt (1)

Supposing that W has an orthonormal basis {e;};_,, then {dz;},_, is a basis
for the dual space of W, i.e. Alt°(W). Similarly, the wedgings of such forms form
a basis (an orthonormal one) for Alt"(1):

span {dz,(1) A+ Adz,gylo € E(1: k;1:n)} = AltF(W).
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We will use this basis as a way to express an alternating form by components,

w = Z wgdwg(l) VANKIERIVAN d.’L‘U(k)
oceX(1:k,1:n)

where w, € R to better show the parallell to antisymmetric matrices. There is a
reason for the notation dz which will become apparent in Definition We also
want to be able to write expressions as above in a more concise way, hence we
introduce:

DEFINITION 4.6. Increasing multi-indices

With increasing multi-indices we apply the brevity of multiindices to increasing
indices. Letting o € X(j : k,m : n), a series of (comma-separated) vectors in R™ is
written

Vg ' = (UU(]*), cee 7Uo(k))-
If o is the identity (Vi : o(i) = 1), we just write v. A subset of an orthonormal basis
{eiticro) € {ei};, for R™ is thus written e := (ey(jys-- -, €o(k))-
When we have an alternating form generated from a dual basis dy; of R™ we
will write
dyo = dysy N+ A dYory)-

Consequently, we get the notation

dys (v) = dyo(jy A - A Yo (i) (Vj5 - - -5 V).

Lastly, we have the notation ¢g; which is used to denote
dygi = dyo(j) VANEERIVAN dyg(i) VANREIRIVAN dyg(k)

ie. thev € B(j: k—1,m:n) where [v] = [o] \{c(?)}
This is all used for brevity of notation, and we will try not to over-use it to
avoid causing unintended difficulties to the reader.

It is important to remember that an alternating form is originally expressed
without reference to a specific set of coordinates, so they might be expressed with
any basis, such as the one below, which we will use later on:

DEFINITION 4.7. Barycentric alternating forms

The alternating forms d\! related to a particular simplex T = [to,...,t,] in
W are defined as the dual of the gradients of the barycentric coordinates. Given
veWw,

v;i = DX v

" ON
AN (v) = o
i=1 v

so dAT is the dual of the vector DAT = t; — t.
Similarly to barycentric coordinates in Definition [2.18] dA; are the barycentric
differential forms corresponding to the reference simplex (i.e. dA7°).

Henceforth, we will dispense with W and write R™ wherever W would otherwise
appear.
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4.2. Differential forms, function spaces

4.2.1. Differential forms. Differential k-forms are functions u : 2 — Altk(R"),
where ) C R”ﬁ This is parallell to tensor fields of antisymmetric tensors, and the
space of differential k-forms on €2 is written A*(Q2). We write A(2) for the collection
of all differential forms over Q, |J;_, A*().

In this section we want to expand the notions in Section from scalar func-
tion spaces to function spaces of differential forms. First, we need to simplify our
notation: According to Fact [£.4] we can then write the complete evaluation of u as
a sum of components u,

w(z)(vy, ..., v5) = Z U (2)dT o1y A - A dTg ey (V1,5 Vk)-
c€X(1:k,1:n)
With shorter notation, as in Definition (.6} this becomes
u@(v) = Y ug(x)de,(v)
oc€X(1:k,1:n)

for all vq,...,vp € R", v = (vq,...,v;) and z € Q.

4.2.2. L*-spaces of differential forms. We now want to establish an L?2-
space of differential k-forms on Q, called L2A*(2). Now, integrals of k-forms are
a rather complex matter, involving integration over a k-dimensional subset of €,

as you will see in the next subsection. We will first define the inner product of
L2Ak(Q) as
(u,v) L2k () = Z (Ug,vy) (dTo, ATy ) ALgk (mm)-
o,veX(1:k,1:n)
Originally defined as }_,  cs(1.4.1.0) (fqu(z)(es)v(x)(es)dx), in the formulation
above one can clearly see that this is an analogue to the inner product of vectors,
J w-vdz. The inner product of u by itself is then the square sum of its components.
We can then define the space of square integrable functions as
L2AF(Q) = {u e AF(Q) | (u,u) p2pnq) < o0}

Let L2A(Q) = Up_, L2A*(Q).

4.2.3. Integration of differential forms. The integral of a k-form u =
Zaez(lzk,lm) usdz, over € is defined w.r.t. a k-dimensional subset of 2:

/fu

It is usually determined by a mapping to the reference simplex, including the Ja-
cobian and such, as in [4], 4.4]. If the dx; are orthogonal, we’re in R™ and f C R"
is a k-simplex, the definition of will suffice to say that

/ (uﬂdxa(l) JANREIWAN dIU(k)) = / uadxa(l) e dl‘o(k).
f !

Le. the integral of u, over f as seen from the o-subplane of R™.
This way, integration of a differential form is quite simply and elegantly per-
formed.

4 1In our case, 2 CC R"” is a domain with polyhedral boundary, so that it can be deconstructed
into a mesh.



4.3. VARIATIONAL PROBLEMS FORMULATED WITH DIFFERENTIAL FORMS 38

4.2.4. Derivation on A(Q). First of all, we further the use of the weak de-
rivative, as defined in Section Letting u € L2AF(Q), its weak derivative with
respect to z; € R™ is just the weak derivatives of its components u,,

ou Z 3ua

= dz,.
8.%1' 05, 81‘1

Our intention for using differential forms is to define operators that differentiate
only certain components of differential k-forms and produce new differential (k+1)-

forms, for example div = D- or curl = Dx in three dimensions. For this use, we
have the exterior derivative:

DEFINITION 4.8. Exterior derivative
Given a differential form v € L2A* (), we have

n

(4.2.1) du := Z 88

.
i=1 v

u A dz;

which is a k£ + 1-form.
The space of d-differentiable differential k-forms is

HA*(Q) := {u € L*A¥(Q) | du € LA (Q) }.
We will write HA(Q) for (J;_, HA®(2).

After this definition, the reason for writing of the basis for Alt'(Q) as da;
becomes apparent by letting u = z; € R™ in , making dz;(v) = e; - v for
v € R™. We see

One can also see that d|jo has all the same properties as D, and also d|yn-1 is
similar to (D-) = div. In two and three dimensions, d|a: is similar to curl. Thus,
when differentiating with d, we are only concerned that the components can be
differentiated,

Ou,

89@-
where i ¢ [o] for u =Y usdz,. As a consequence of this and Theorem [2.3] every
component u, must be continuous along the ith axis for all ¢ ¢ [o].

€ L*AF(Q),

4.3. Variational problems formulated with differential forms

We already have the basic idea of variational formulations from Section [2.2
We have a Hilbert space V, the bilinear form a and the functional
[, all with the same properties as before. Find u such that
(4.3.1) Yo eV :a(u,v) =1(v).

Assuming that V' C A* is a normed vector space of differential forms, for example
L?A*(Q), we can easily apply Galerkin’s method from Section since the vari-
ational problem has the same form. There is perhaps a need to give an example
showing that differential forms also can be used to formulate variational problems:

ExampPLE 4.9. Example of PDE formulated with differential forms
Letting u,v € H3A*(Q) (u,v are 0 on 99), we can define the bilinear form

a(u, U) = (d'LL7 dv)LQAkJrl(Q) + (U, ’U)LzAk—l(Q)
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and the linear functional

( ) (f7 )LQAk (22)
where f € HA¥(Q). Given these definitions we have a weakly formulated PDE,
(4.3.2) Vo e H'AMQ) : (du, d”)L2Ak+1(Q) + (u, U)L?Ak(Q) = (fvv)LQAk(Q) :

Showing that this is a parallell to a PDE requires that we do an integration by
parts, which works on differential forms according to [2] p. 16]. We will then get

Yo € Ak( ) (5du ’U)LQAR(Q) + (U U)LZA’“(Q (f, )L2Ak Q)

where § is the formal adjoint to d in the inner product of L2A(Q E| We of course have
to assume that édu € L2A¥(Q) to make this integration by parts work. Dispersing
with the inner products, we can see that this is a weak formulation of the PDE:

Given f € A*(Q), find u € A*(Q) such that
(dd+1Du=f.
where I is the identity.

Since a is bilinear, symmetric, coercive ((du,du) + (u,u) > (u,u)) we need to
show that it is bounded:

(dU,dU)pAkH(Q) <C ||d“||L2Ak+1(Q) ||d”HL2Ak+1(Q)
we can apply Theorem to conclude that we also in this case can focus on

improving the condition number of the bases of V;, ¢ L2A*(Q). This goes for all
problems with the same properties for the bilinear form a.

which is < CC lu”LzAk((ﬂvleAk(Q) by the Poincaré inequality. Because of this,

4.4. Constructing a new Vj

In this section, we will construct a subspace Vj, of V. = HA*(Q) so that we
can come up with an approximate solution for solvable versions of on spaces
of differential forms. We will construct it so that when V = HA®(Q) it will co-
incide with the case for scalar equations in Section We still have the same
requirements, that the subspace V},

e Converges towards our solution when refining the parameters,
e Generates a sparse stiffness matrix, and
e Uses a minimal amount of operations to do so.

Since our domain €2 has not changed any since the scalar case, the mesh definition
of 7 will remain the same as Definition 2.8

4.4.1. Shape functions and continuity. Due to our change in function
spaces, from H'(Q2) to HA(S2), we must define our shape functions slightly dif-
ferently. They will still be piecewise functions over our mesh 7, and they will be
continuous just on “orthogonal” components (HA(£2)). Again we choose polynomi-
als as our shape functions.

5See more on the coderivative operator § in |2, p. 18].
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DEFINITION 4.10. Polynomial differential forms

Let » > 1, 0 < k < n be integers, then the first space of polynomial differential
k-forms over the domain T" CC R"™ is defined as

PAR(T) = {u € L>A¥(T)

U:Zuadxg,VUeE(lzk,l:n):ug GPT(T)}.

Note that dimP,A*(T) = dimP,(T)dim A*(R") = ("/")(}) = ("I (1)) ac-
cording to |2, (3.1)].

As in Subsection we cannot really take the direct sum @ o, PrA¥(T)
to get a subspace of HA¥(Q) , as this would violate the continuity condition of
Theorem[2.3] Hence we need to restrict this space properly so that we get continuity
of the right components. Letting 7 be a mesh over 2, we define

HPAMT) == {ue HA*(Q) VT € T : u|ly € P,A*(T) }.

Unfortunately, according to [1] such spaces aren’t sufficent to produce numeri-
cally stable methods. For instance, when u € H(div, {; R?) a polynomial structure
which is entirely in H!(Q) will according to [I, 3] produce an unstable solution
with oscillations. The article instead introduces a space of intermediate polynomi-
als which allows for the same kind of discontinuity as exists in H(div, ; R?), which
gives numerical stability, and gives a general space, P~ A*(T') of these polynomials.
This space is constructed with the aid of the following operator:

DEFINITION 4.11. The Koszul operator
The Koszul operator r : AF(Q) — AF¥~1(Q) is defined by

k(w)(@)(v1,...,05) = w(@)(x,v1,. .., Vp—1)-

What this will do with a given basis dy, € Alt"(R") is

k
k(dys) = Z(*I)Zya(i)dygi-

i=1
We can see that as a consequence, when applying the Koszul operator to a differ-
ential form w, it adds a polynomial degree in orthogonal directions. Thus if we
apply it to the space of homogeneous polynomial k-forms , H,A*(R™) we get a set
of r 4+ 1-degree homogeneous polynomial k-forms where the degree of orthogonal
polynomials is at least 1. When we add this together with P, A¥(R") we get the
following space:

DEFINITION 4.12. The intermediary polynomials P,~
We must also define a second polynomial space that will fit in the HA () space.
We therefore define the space of intermediary polynomials over T' CC R"™ as

PrANT) == {u e PANT) | ku e PAFHT) }.
We can also express it as the direct sum
PrAR(Q) = P AR(Q) + kH, 1 AR (Q).

where H,A¥(Q) is the space of all homogeneous polynomial k-forms like x'dz,
where |i| =r and 0 € £(1: k,1:n).
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According to[2}, (3.15)] dim P, A#(Q) = ("TF 1) (7F7). We may also define the

space of piecewise intermediary polynomials over the mesh 7 as
HP;AMT) == {ue HA*(Q) |VT € T 1 uly € P ANT) }.
[2, p. 60-61] proves that this space is well-defined, and at any subsimplex
f € A;(T), the trace Tr(p) for is single-valued for k < j < n—1forp € HP,.A*(T)

or p € HP,A¥(T) . We need this result when introducing the degrees of freedom
in the next subsection.

4.4.2. Degrees of Freedom. Within these spaces HP, A*(T) and HP,. A*(T)
we want to create bases that have local support in the sense presented in Subsection
[2:44] This can be done with great success through the use of Degrees of Freedom
based upon local evaluations, i.e. integrals over only part of the domain 2. This can
be a tool to let us construct very local nodal bases, giving us a very sparse stiffness
matrix. In [2 (5.1) p. 59] the dual space of P,A*(T) is defined by functionals of
the form

/Trfu/\vdx, vE ;_j_s_kAj*k(f), feA;(T)
f

The dual space of P,” A¥(T) in turn may be spanned by the functionals
/Trfu Avde, v € Pr_jrrk1 M 7TE(f), f € A(T).
!
Using these sets, [2], 5.1] tells us that they uniquely respectively determine any u

in HP.A*(T) or HP; A*¥(T). For a more practical approach, one needs to define
the bases of these spaces. The basis for HP, A*(7)* we define as

(441)  DAR(T) = { / Tr(u)! de
f

feA),i< dimPTMAJ‘—k(f)}

where {wzf}i is a basis for P;fHkAj’k(f) and j = dim f. We extend this to the

entire mesh to get the basis

(44.2)  D.ART) = { / Tr(u)! da
f

We can construct a similar basis D7 A*(7) for HP,~ A*(T)*:

(4.4.3)  DIA¥T) = { / Tr(u)é! da
f

feA(T),i<dimP. Aj"“(f)} .

r—j+k

feAT), i< dimPr_jJrk_lAjk(f)}

where {ﬁlf} is a basis for ’PT,jJrk,lAj_k(f). We extend this to the entire mesh to

K3

get the basis

(4.4.4) D ANT) = { / Tr(u)e! da
f

FeAT), i< dimp,._j+k_1AM(f)} .

4.4.3. Constructing a basis. First of all, we have the nodal bases of D, A*(7)
and D; A¥(T) which are both based on integrals along certain f € A(7). We then
have a basis ¢; where Vn; € D, A*(T) : n;(¢;) = d;;. This again causes the support
of ¢; to be suppp; = [Jws(7T) for the single f € A(T) to which n; is associated.
Thus we are able to produce local support, which in turn will generate a sparse
matrix as long as the bilinear form a is based on integrals over 2.
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We will now proceed to define a basis which has a similar property (that
suppg; = Jwy(7T) for some f). This will be a generalisation of the barycentric
monomial basis (see Definition [2.20)).

DEFINITION 4.13. Barycentric basis for differential forms
Let AT = (A}, ..., AL) be the barycentric coordinate function for the n-simplex

T, and let {dzo},cx(1.5,1.0) De a basis for Alt®(T) then

(4.4.5) {0 ax,

i €N Ji| =10 e (1 k1 n)}
which on the reference simplex Tj is A'dx,. This is a basis for P, A*(T).

For the space P,- A*(T) we need to be more careful in our approach. Actually,
we need the help of a basis for P;” A¥(T), the Whitney forms (named after Hassler
Whitney who introduced them in [I7], p. 228-229]):

DEFINITION 4.14. Whitney forms

On the same assumptions as the previous Definition, we establish that the
Whitney k-forms are defined as

—

k
o T T
(4.4.6) {¢U = E )‘U(i)d)‘a(o) A A d)‘g(i) A A d)‘a(k)
=0

aGE(O:/ﬁO:n)}.

We can immediately see that this is the same as

{kd\l] 0 €2(0:k,0:n)},
and that it in that way spans P; A¥(T) = kPoA*+1(T) because {dAotsestibtt,1m)
spans Alt*TH(R") = PyAF+1(T).

DEFINITION 4.15. Reduced barycentric polynomial forms
On the same assumptions as before,

(4.4.7) {07 6

This spans P~ A*(T) according to [2].

i€ Nom | :r,aez(1:k,1:n)}

THEOREM 4.16. Any u € Py A¥(T) is uniquely determined by Dy A*(T).

PROOF. Since each of ¢, can be asssociated with a simplex f,. Since every
k
— T T T
Go =D Ao(y iy Ao AAAT A AN
=0

is non-zero on any k-subsimplex f, because Af(i) > (0 on the interior of f,, we can
conclude that ¢,|, >0 and thus that

Do
fo

We can then assume that if u € P, A¥(T) and Vn € Dy A¥(T) : n(u) =0, u =0
becauseD; A*(T') spans P; AF(T)*. O

The Whitney forms together with the D; A¥(T) form a class of affine equivalent
elements, which is proved in [2] p. 57].
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4.4.4. Convergence of the method. In essence, we have convergence of
solution from the fact that PA*(T) := Y02 P.AM(T) = 302, P A¥(T) is dense
in HA®(T) and thus HPA*(T) is dense in HAF(Q). The result from can be
applied here: Getting an estimate for the rate of convergence supposes a higher
degree of differentiability of our v € HA*(Q). Thus, we must suppose that the
components of u, u, are in H*(2), then the following general convergence estimate
applies:

Fact 4.17. [6, Th. 6.4] Assuming T is shape—regulaﬁ the convergence of the
solution is certain with the rate

(lu=unl <) =Tl ) < eh [ S |D"ll}, g

[i]<t

This requires that uw € H'(Q) and h is half the largest diameter of all T € T and
11, is interpolation by a piecewise polynomial of degree r =t —1 > 1.

Thus for a u, € HP,.(7), we must suppose that it is weakly differentiable r+ 1
times, which cannot always be the case, but this is the best convergence estimate
that we have for general polynomial interpolation. h is then the refining parameter
for ensuring convergence, even though one might also be able to infer convergence
by increasing the polynomial degree.

4.4.5. Affine equivalence. As previously mentioned, affine equivalence is
our tool for reducing the number of symbolic integrations needed to be done by a
factor of |7|. Because we only need to calculate the stiffness matrix symbolically
for basis functions associated to one T' € 7, we can apply this calculation to the
rest of the basis functions using properties of affine transformation. More details
can be found in [7), p. 82 etc.]. In this subsection we use the term finite element
to denote a triple (T, F,N) consisting of a simplex T, a set of basis functions F
spanning Vj,| , and a basis N for(Vh|T)*. We now recount the requirements for
affine equivalence.

DEFINITION 4.18. Affine equivalence

Two elements (71, F1,N7) and (T, Fa, N3) are affine equivalent if there exists
an affine injective transformation L : R™ — R™ such that the images of L, L* and
L, are

(1) L(Ty) =
(2) L*(B 7:1
(3) Li(N1) = N>

where L*, L*(f) := fo L for f € Fy, is called the pullback of L and L, L.(N) :=
No L* for N € N, is called the push-forward of L.

Now, the problem with affine equivalence in many finite elements over vector
(and tensor) fields has been that their pullback operator only affected the functions
in spanF directly, while these were relying on an underlying coordinate system. We
will describe how this problem is solved with the change from general asymmetric
tensor fields to differential forms with this “parable” on vector fields:

6[6, p. 61]: 3k > 0:VT € T : the inscribed circle of has a radius > hp/k where hp is the length
of the longest line of T'.
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Assuming u : T — RM for some simplex T, the degrees of freedom N € N
have the property

N(u):/fu~pdx

on u € span¥ for some normal or tangential vector p. According to Definition [.1§]
one usually defines the push-forward function L, as

L.(N)(u) = N (L*(u)) = /f L*(u) - pda.
The problem with this definition is that it ignores the vector p, which then causes
elements to be affine inequivalent because the corresponding degree of freedom for
another element might look like
/ v - qdx
g

where ¢ does not have to be equal to p, and therefore affine equivalence is not the
case in most cases when v = L*(u) and L(g) = f

/fL*(u)~pdx:/gv-pdx;é/gv-qu.

This is solved in formulations with differential forms, because they are inextricably
linked to their integrands and relative directions, and [2] pp. 10,16] defines the
pullback function L* as

L*(u(z)(v)) = u(L(z)) (DL (v1) ..., DL (vy))
where the DL is the Jacobian for L. Let one of our NT € N be defined as

NT(u) ::/ unv, vlhe P;fdimf+kAdimf*k(T)
fF

for any simplex T' C R™. For u in spanFg (assuming the pullback from Definition
4.18) Item 2 works) we then have

L. (NT) (u) = / L* (u) AvT = / u(z) (v) AvS = N9(u)
1 3
where DL(v) := DL (v1),..., DL (v,). we get the corresponding degree of freedom
N¥ for the simplex S, which provides us with affine equivalence.

This sketch of a general proof of affine equivalence is not sufficient to prove
that the classes of bases for P.A*(T) and P,”A*(T) coupled with their degrees of
freedom D, A*(T) and D;” A*(T'). We will therefore prove the affine equivalence of
the Whitney forms under the degrees of freedom D; A¥(T)

THEOREM 4.19. The Whitney forms for two simplices T and S are affine equiv-
alent w.r.t. the degrees of freedom Dy A*(T).

Proor. To prove affine equivalence we need to establish the following facts
from Definition
(1) L(T) = L(S)
(2) L*(Fs) = Fr
(3) L(Dy A*(T)) = Dy A*(S)
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Item [1] defines the affine map L : R™ — R™, and proving it is thus trivial.
Proving Item we take a Whitney k-form ¢S € Fs. We then take its pullback,

k
L* (¢3) =L <Z(1)Z/\§(¢)d)‘§(1) Ao NAAS G A A dAi(k)(”))
=0

k
_ i s s NS s
=Y (1L (Ao(i)) ANy A AdAS ) A A dAS g (DL())

1=0
= g(—l)iL* (X)) (25 o D) A--n (dAf(/i): DL A A (NS 0 DL) ()

To prove that this equals ¢ we only require L* (Ag(i)) = A (L(x)) = AL, (@)
and dAJ ;) o DL = dA[ ;) which can be easily checked.

Proving Item [3|is fortunately then quite simple: Let NI € Dy (T) and N2 €
D; (S) be corresponding degrees of freedom. Then,

N (u) :/ngr(u/\l)/ngu.

We need not take the trace, since u is polynomial and therefore continuous. Ap-
plying the push-forward operator to NI gives us the following:

L*(ND(u):/fZL*w):/ffu(x),

the last equality according to |2} p. 16]. This proves that L.(D; (T)) =D; (S) O

4.4.6. Conclusion. We now have to possible choices of finite element spaces,
HP,.(T) and HP, (7T) with their associated degrees of freedom. They are still
able to converge towards a theoretical solution of our variational problem, under
the same conditions as in Chapter 2] They also have a set of local bases based
on barycentric coordinates of T' € 7, which create a stiffness matrix which is quite
sparse. Since we have affine equivalence for our spaces (of course with respect to the
degrees of freedom), | 7| symbolic calculations can be skipped per stiffness matrix
calculation, and thus our algorithm is time-efficient.

We will now repeat the process of exploring the condition numbers for our new
bases for HP,(7T) and HP, (T), but restricting ourselves to calculations on the
reference simplex because of their affine equivalence.

We have now chosen HP,(7) as our subspace Vj,. It has basis functions with
local support which generates a sparse stiffness matrix, its functions are continuous,
a solution in V}, converges towards the exact solution in V', and we don’t require
many symbolic calculations in the process. In later chapters we will only
consider the bases on a single T, because the calculations we are trying to optimize
(stiffness matrix calculation) is done element by element.



CHAPTER 5

Condition numbers of bases in P,A*(T;) and

P-AF(Ty)

Earlier on, in Chapter [3| we calculated the condition numbers of different bases
for polynomial scalar functions on the reference simplex, P, (Tp). Most of them
were not analytical results as in [16], but approximations made on computer. It is
not necessarily easy (maybe not even possible) to calculate them analytically, but
doing so provides us with exact knowledge of the condition numbers for higher-
dimensional PDE with any polynomial degree. For instance one might easily create
system with higher dimensions than what’s been calculated here in electromagnet-
ics.

Nevertheless, the results we have found are useful, and tells us what the nu-
merical stability of the stiffness matrix is in many cases of variational formulations
of PDE. In the last chapter we described a generalisation of vector fields called
differential forms. We also defined two spaces of polynomial differential forms and
two sets of bases for these. Here we will calculate the Gram matrices of these bases
analytically, then proceed to calculate the condition numbers of these matrices by
computer.

The reader will probably observe that the tables now are now more numerous
and have a triangular appearance. This is because our spaces no longer rely only on
the two integers (n,r) as P.(Tp), but on the three integers (n,r, k), where k varies
between 0 and n giving spaces P,.A*(Tp).

5.1. Some calculations of alternating forms

Before we dive into the bases, we notice that the bases from Subsection
look like this:

k
(5.1.1) Ndg, Moo =X (—1)AspdAg,.

1=0
Seeing that for either set of basis functions u, v, their Gram matrices will look like

T\ \T (\T\B \T _ ™G (\T\P T \T
<()\ ) d)\a’()\ ) d)\”)m/\k(T) o (()\ ) 7()\ ) )L2(T) (d)\a’d)\”)Altk(R”)
and
i + t+
s T T _ i+j T\Steas) (\T\t+es() T T

(NOENGT) oy = Do (1 ()70 ()00 (4] L dxg )
i,j=0
We immediately notice that there is an unknown factor (dAZ,dAT), . in both
of these expressions. In order to calculate them, we must first find out what
(d)\z,d)\f)Altk means, which will be done in this section for T" = Tp, i.e. the

reference simplex.

L2(T) Altk(R)

46
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The inner product of Alt"(R") is defined in Definition as
(A, dAx) pyer ey = > dNu(be)dAr(bo)
oc€X[l:k;1:n]

where {b;},_, is any orthonormal basis for R™. We choose b; = ¢; (the unit vectors
in R™). The unknown term here then looks like dA,(es)dAr(es) (calculated in
Corollary , with factors

k

dAr(es) = Y (signv) [T dMugi) (eoonisy)

veSy =1

(calculated in Lemma that have factors d;(e;) (calculated in Lemma, and
this is where we begin.

LEMMA 5.1. Ewvaluating a barycentric alternating form

Let {e;};, be the standard orthonormal basis for R”, and d\; be the barycen-
tric alternating 1-forms of the reference simplex defined in Definition [£.7] Then

1 ifi=j
dhi(e)) =40  if0£i#].
~1 ifi=0

Proor. We know from Definition that dX;(e;) = DA; - ej. Since DXy =
D1 -5, x)=—>,€e and DX\; =e; for 1 <i <n we have the result. O

DEFINITION 5.2. The sets of separate indices
Given p,p € X[0 : k;0 : n], we define the set of separate indices for p with
respect to p as

(5.1.2) sit = o (o] [4])
The set gives the indices 7 of all the p(#) which are not in [u].
COROLLARY 5.3. For all p,p € £[0: k;0 : n], |sif| = |si’;|.

LEMMA 5.4. Ewvaluating the alternating form part of Whitney forms on the
reference simplex

1 ifu=o
dAu(es) = (=)™ if [sif| = 1, (1) = 0 where m € sif,
0 if sif, := o' ([o] \ [u]) has more than &¢,1y elements
where p € X[1 : k; 0 : n| describes a barycentric alternating form, and o € X[1 :
k;1: n] describes a selection of k orthonormal coordinates {eﬂ(i)}le C {ei}, as
in Definition [[.3
PROOF. We have to calculate d, 1) A--- AdAy)(€s(1), -+ -5 €o(r)). We know

that 0 € [u] F=3 (1) = 0 for all increasing p, so we will write the latter equivalent
instead of the former.
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Case 1. Suppose that p(1) =0, then

k
dA\.(es) = Z (signv) H dA ) (Eoov(s))

veSk i=1

and by Lemma [5.1]

k
= Z (Sign V) H 5/1(1')1/00(1') = Z (Sign V) 6;},,0'01/

vES) i=1 veESE

and since p and o are both increasing indices,

= Z (signv) 8u00id,y = Opo-

vESK
Case 2. Let 0 € [u],
k
dAu(es) = Z (signv) H dA ) (€oov(s))
veSy i=1

we have a factor including d\g = dA,(1y (since p is increasing). Thus,

k
dAu(es) = Z (signv) dAo(€sou(1)) Hd)\u(i)(egoy(i))

vESK 1=2

k k

=— Z (signv) Hd)\#(i)(egou(i)) = — Z (signv) H§H(i)goy(i)

VES) =2 veSy =2

(5.1.3) == (signv) 0y gov,
veSy
where I {1,...,kI\{s} — {1,...,n} means p as an increasing sequence, but

truncating/overlooking the jth argument. For this to be nonzero, [u] N [o] can
have no more than one element, or that the si-set

: -1
sig =0~ ([u] N']o])

must contain only one element. Since y is increasing, g o v, must also be increasing

for the terms in (5.1.3)) to be nonzero, which makes all but one term vanish:

(5.1.4) = — (signv) O, oov,

That way, this term, which yields nonzero results is the one where v shifts one
argument to the first position. Thus we can utilize the element m € sij, which tells
us how many transpositions v must contain. This must be (m — 1) for g o v;to be

increasing and equal to Ky and thus
— (signv) 6ﬁlﬂ1 = _(_1)m_1 = (=",
concluding the second case.

Case 3. Assume |siZ| > 0ou(1)- In either case, Vv € S, : Im € sij @ Ji :

m = v(i) making d\,;)(€sop(iy) = 0 for some i, = Hle d (i) (€gov(sy) = 0 for all
v ES.

O
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We build upon this lemma, to find the product of two such terms:

COROLLARY 5.5. A product of two d\,(ey)-terms,
1 ifpu=mr=o
0 if either ’sim > Oou(0) o7 [sig| > dor(0)
dA,(es)dAr(es) = < (=)™ if p(1) = 0,7 = o, [sif| =1 and 3'm € sij,
(=1)P ifm(1)=0,up=o0,si| =1 and Ip € sig
(=)™ if (1) = w(1) =0, |sif| = [sig| = 1 and 3'm € sif,p € siy

We may then finally conclude on the inner product of two barycentric alternat-
ing forms.

LEMMA 5.6. The inner product of two barycentric alternating forms in the
reference simplex

(5.1.5) (@A dAe) e = D dAuler)dAr(es) =
oc€X[1:k;1:n]

n—k+1 ifpu(l)=0=7(1) andp=m

1 if w =m and both p(1),7(1) #0

0 Zf either 50#(0)7607‘-(0) < |SIZ‘

(=™ if 1(1) =0# 7(1) and ‘si,’” =1 where m € sij,

(_

(—

~— —

)P if w(1) #0=m(1) and |si%| = 1 where p € sitt

1
D™ gf u(1) =0=mn(1) and |siZ| = [sift| = 1 where m € si}, and p € sif

Proor. We will prove each case above separately. The details of increasing
sequences are usually skipped. When referring to “the Corollary”, we refer to the
Corollary Corollary [5.5]

Case 1. If p=m and p(1) = 0 = w(1), then
> ddulen)dAn(es) = D dMu(eq)dAx(es)
oc€X[1:k;1:n] ceX

where X = {oc€X(1:k;1:n):[u]\{0} C [o]} is the collection of all o with
|sif;| = 1. Thus, for some constants i(c),

2 i(o

D> duler)dAnles) = D (dAu(eo))® = Y (D) =3 1= [X|=n—k+1
ceX ceX ceX ceX

Case 2. 1If d)\,(e;)dAx(e,) will in the case ¢ = 7 and both (0),7(0) # 0 be
nonzero except when o = y = 7 thus by the Corollary 3 cs(;..1., dAu(€0)dAz(e5) =
1.

Case 3. If either dy, (0, Sor(0) < ’sim, then for all o either ’blZ’ > dopu(0) OF
[siz| > dor(0), thus by the Corollary > cs1.1.1.n) dAu(€s)dAr(€5) = 0.

Case 4. For d\,(es)dA:(es) to be nonzero (by the first case of the Corollary
the term is zero if either ’siZ’ > Oou(0) OF [siy| > dor(0)) it is necessary that o = 7
by the Corollary. This is only one term, and thus

> dAules)dAr(es) = dAu(en)dAq(ex)
oc€X[1:k;1:n]
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which equals (—1)™ where m € sij, according to the third case of the Corollary.
Case 5. This case is similar to the last one, switching 7 and pu.

Case 6. By the Corollary, the only nonzero d\,(e,)dA:(es) is yielded by a o
satisfying [o] = [x] U [u] \{0} or |sim = |siZ| = 1. Then the content of these
separate index sets define m € sif, and p € si7 in the final term (—1)"*?, and these
are the same as m € sij, and p € siff .

O
We have now proven how (dA,, dAr) sk gny can be calculated, all factors of the
&

inner products of our polynomial bases in (5.1.1) have now been identified. Thus
we can proceed to calculate their Gram matrices

5.2. Condition numbers for the basis of P,A*(T})

In this section we show that the condition number of our bases for P,A*(Ty),
is independent of k because d\1> = dz,,. The bases for a general P, A*(T) are

(5.2.1) {(AT)“dA§ o € NO™, Ja| =7, 0 € S(1: ;1 n)}
and the Bernstein-weighted basis
(5.2.2) {(|z|> (/\T)a d/\f ’oz eNY" la|=r, 0 € X(1:k;1:n) } .

We will now consider how to calculate their condition numbers for Ty:

THEOREM 5.7. The condition number for the basis of HP,A*(Tp)

(5.2.3) condG ({(A)“ A’} U) = condG ({(\)"},) cond ({(d)x,,, dAe) i}, ﬂ)
where o € NJ™ | |a| =7 and 0 € £(1: k;1: n).
PRrROOF. The Gram matrix for these is simply described as
a 8
() e are)
which can be written as

= (V")) (@A, ) -
This is the Kronecker product of two matrices
a B
{(V™ ) L (@ drn) }WW = {LagRon}o o =LOR
which according to [19] has eigenvalues {y;z;}, ; given eigenvalues {y;}; of L and
{Zj}j Of R |:|

Proving this for the Bernstein-weighted basis in is done by adding coef-
ficients, and will not change the proof or conclusion.

Seeing that the condition number of the bases is directly reliant on their scalar
counterparts and the Gram matrix of the alternating forms, we will get the following
result.

COROLLARY 5.8. The Bernstein and barycentric basis of HP,.A*(Ty) have the
same condition numbers as their scalar counterparts in Chapter[3
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Proor. Since (dAZ,dN[), . = 6, (Kronecker delta) for o,m € (1 : k;1 :
n) (proven in Lemma in Section , {(dAs,dAx) ppr }, . = I. We then see
that according to Theorem [5.7]
condG <{)\ad)‘0}\a|zr,ae2) = condG ({/\a}m\:r) cond ({(d)\a, d)\ﬂ)Altk}g’J .
Since and cond! = 1, the corollary is proved. O

We then only need to refer to Table [[] and [2] on page [33] to see the condition
numbers of our bases for P,.A*(Tp), drawing the conclusion that the Bernstein
coefficients still improve the condition number quite a lot.

5.3. Condition numbers for the basis of P A*(T})

In this section we will calculate the condition numbers for the bases of the form
Ny or (‘;l))\i(bg for P~ A*(Ty): The standard barycentric basis
{7 6,

and the Bernstein-weighted basis

(1) e,

Since it was easy to do, we’'ve also calculated the condition number of the set of
functions of the form

k .
|Z + 6a(l)|) T\ iteq (1)
5.3.1 E . A d\, .
. = (’ +eon) &) -

We have not proved that they are a basis of the space P A¥(T) nor that they
have any similar, but the comparison with the two bases’ condition numbers might
justify further investigation. Programs for calculating their tables are found in

i€ No™ |j] :r,aeE(l:k,lzn)}

i€ NO™ i :r,oez(1:k,1:n)}.

THEOREM 5.9. The inner product of two P, -forms from D, A*(Ty) on the
reference simplezx is

(5.3.2)
k

(VL XOF) g = D2~ (s0+ oa)! (fo + dos(y) Leum(steaqy, +epy,m) (dhadha )
i,5=0
PrROOF. We have the basis
k

(AOT N GE) e = D (-1 (ASM(i)dAgN Wﬂmd@)m
i,j=0
k
_ (_1)i+j ()\5+5a(i)7>\t+eﬁ<j)) d)\gi’ d)\g
i;() H ( ﬂ)Alt

According to Corollary [3.7] we know that
()\s+6a(i) , /\t+6ﬁ(j))L2 = (30 —+ 5Oa(i))!(t0 + 506(j))!1sum(5 + ea(i)vj —+ €5(5)s n)

s+ eqq). Tl+7+es; ) )
= (50+6Oa(i))!(to+(5olg(j))! Z (_1)|l| ( ( )0 J B(J)O>' .
ooty 00+ Boat) = D! ([3 4 coti | + 15 + eagy |+ )}
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d

Again the proof is similar for the Bernstein-weighted basis.

To compute the condition numbers of the gram matrix from , we’ve
written the programs in Section [A74] The results of the programs can be seen in
the Tables [1] through As can be clearly seen from these results, the Bernstein-
weighted basis has in general lower condition numbers than the barycentric basis,
except for the (n,r, k)- values

(4,2,0), (5,2,0), (1,2,1), (2,2,2), (3,2,3), (4,2,4), (5,2,5)

which are all highlighted in Table

We can also see from Table [I] and Table [6] on page [53] that the Whitney k-
forms for k£ > 0 all have lower condition numbers than those for £k = 0. For general
r > 0, we can the condition numbers reach a peak when £ is far from 0 and n, and
decreases when going to 0 or n. There is not enough data to pinpoint the exact
position of this peak for either set of bases.

We include the results of the potential basis from in Chapter [B] just to
illustrate that this potential basis would be worse conditioned than the Bernstein-
weighted basis, and therefore not a good candidate to replace it.

Considering normalising coefficients for the basis functions would probably pro-
duce good candidates for replacing the Bernstein-weighted basis as the best condi-
tioned basis for HP, (7), and is therefore a good place to start future work.

(nbk—] 0 [ 1T [ 2 | 3 [ 4 [ 5 |

1 3.0000 | 1.0000 - - - -

2 4.0000 | 2.5000 | 1.0000 - - -

3 5.0000 | 3.0000 | 2.3333 | 1.0000 - -

4 6.0000 | 3.5000 | 2.6667 | 2.2500 | 1.0000 -

5 7.0000 | 4.0000 | 3.0000 | 2.5000 | 2.2000 | 1.0000
TABLE 1. Condition numbers of the barycentric basis for n, k <5,
r=1.

(n k=] 0 \ 1 2 \ 3 | 4 5
1 23.5576 | 2.5000 - - - -
2 33.3921 | 38.5591 3.3333 - - -
3 47.2211 | 59.2133 | 53.5537 | 4.2000 - -
4 57.0363 | 83.8786 | 83.1270 | 70.6842 | 5.0909 -
5 67.8786 | 1.03-10% | 1.13-10% | 1.11- 107 | 89.9042 | 6.0000

TABLE 2. Condition numbers of the barycentric basis for n, k < 5,
r = 2. Highlighted numbers indicate where the barycentric basis
has a lower condition number than the corresponding Bernstein-

weighted basis Gram matrix.
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(n k=] 0 \ 1 \ 2 \ 3 \ 4 5
1 1.82-10% | 24.8505 - - - -
2 6.80-10° | 3.30 - 102 | 33.8306 - - -
3 8.32-10% [ 9.95-10% | 4.40 - 107 | 46.3571 - -
4 1.01-10° [ 1.30- 103 | 1.28 - 10 | 5.81 - 10% | 54.5223 -
5 1.22-10% [ 1.64-10% | 1.69 - 10% | 1.63 - 10% | 7.69 - 102 | 63.6753

TABLE 3. Condition numbers of the barycentric basis for n, k <5,
r=3.

(nl,k—] 0 \ 1 \ 2 3 4 5
1 1.89-10° | 1.97 - 102 — — — —
2 9.28 - 10 | 7.05 - 10 | 9.05 - 102 — — -
3 3.53-10% [ 2.07-10* [ 9.35-10% | 1.06 - 10° - -
4 3.94-10% [ 4.37-10% [ 2.90-10* [ 1.21-10% | 1.24 - 103 -
5 4.39-10% [ 5.07-10% | 5.02-10% | 3.54-10% | 1.52-10% | 1.45 - 10?

TABLE 4. Condition numbers of the barycentric basis for n, k < 5,
r=4.

(nl k=] 0o | 1 ] 2 3 4 5
1 2.16-10% [ 2.18 - 103 — - — -
2 1.80-10° | 1.46 - 10° | 1.29 - 10* - - -
3 7.99-10° [ 8.23-10° | 4.72-10° | 5.79 - 10% - -
4 3.04-10°]1.93-10° | 1.30-10° | 5.88-10° | 6.30 - 10% -
5 3.27-10% | 3.44-10° [ 2.37-10° | 1.71-10°% | 7.17 - 10° | 6.84 - 10*

TABLE 5. Condition numbers of the barycentric basis for n, k < 5,
r=2>5.
(nlk—] o0 | 1 [ 2 [ 3 | 4 [ 5 |

1 3.0000 | 1.0000 - - - -

2 4.0000 | 2.5000 | 1.0000 - - -

3 5.0000 | 3.0000 | 2.3333 | 1.0000 - -

4 6.0000 | 3.5000 | 2.6667 | 2.2500 | 1.0000 -

5 7.0000 | 4.0000 | 3.0000 | 2.5000 | 2.2000 | 1.0000
TABLE 6. Condition numbers of the Bernstein-weighted basis for
n,k <5 r=1.

(nl,k—] o | 1 | 2 | 3 4 [ 5 ]
1 11.1352 | 3.4000 - - - -
2 24.6261 | 13.8667 | 4.3333 - - -
3 42.2740 | 28.7752 | 16.9266 | 5.3077 - -
4 64.0201 | 43.5169 | 42.1325 | 24.6175 | 6.2941 -
5 89.8291 | 58.8286 | 63.2408 | 60.5373 | 34.8626 | 7.2857
TABLE 7. Condition numbers of the Bernstein-weighted basis for

n,k <5 r=2.



5.3. CONDITION NUMBERS FOR THE BASIS OF P:Ak(To)

54

(nlk—=] o [ 1 [ 2 [ 3 | 4 5
1 49.1979 | 18.6722 - - - -
2 1.17-10% | 96.3658 | 19.3228 - - -
3 2.24-10%]3.11-10% | 1.67-10% | 25.3280 - -
4 3.82-10% [ 5.68-10% | 5.49-10% | 3.00- 10% | 32.0291 -
5 6.00-10%9.17-10%2 [ 9.10-10% [ 9.10- 107 | 4.96 - 102 | 39.9775
TABLE 8. Condition numbers of the Bernstein-weighted basis for
n,k <5 r=3.
(nlk—=] 0 1 [ 2 3 4 5
1 2.44-10% | 94.9730 - - - -
2 6.10-107 | 5.58 - 102 | 1.21 - 102 - - -
3 1.25-10% [ 2.10-10% | 1.11-10% | 1.23 - 10? - -
4 2.26-10% [ 4.16-10% | 4.10-10% [ 2.20- 103 | 1.56 - 10> -
5 3.77-103 [ 7.32-10° | 7.35-10% | 7.43-10% | 3.99-10% | 2.02 - 10?
TABLE 9. Condition numbers of the Bernstein-weighted basis for
n k<5 r=4.
(n[ k=] 0 1] 2 3 4 5 ]
1 1.23-10% [ 4.78 - 107 - - - -
2 3.12-103 | 3.08-10% | 5.50 - 107 - - —
3 6.53-10% | 1.22-10* | 6.34-10% | 7.63 - 102 - -
4 1.22-10%12.60-10% | 2.51-10% | 1.33-10% [ 7.92 - 10 -
5 2.12-10* | 4.90-10* | 4.83-10* | 4.82-10* | 2.56 - 10* | 9.95 - 102

TABLE 10. Condition num

n k<5 r=5

bers of the Bernstein-weighted basis for
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APPENDIX A

Source code

A.1. General programs

LisTiNG A1

%% MULTINOMIAL FUNCTION mnom(z,y)
% gives you z!/(y!*(x—]yl)!), which is the multinomial coefficient,
% binomial if y is I1z1.
%
% If given a wector in z and matriz in y, it will take the multinomial of
% the columns and return a vector.
function B = mnom(x,y)
Gtry

B=round(factorial (x)./(prod(factorial(y),1).xfactorial (x—sum(y,1))));
%catch
% B=0;
Jend

end

LisTING A.2
function a = fact(b)
a = prod(factorial(b),1);
endfunction

LisTiING A.3
function X=generatelndices(s,n) %s is spatial dimention, n polynomial degree
X = zeros (s ,mnom(s+n,n));

csum = zeros (1l ,mnom(s+n,n));
for row = 1:s
for degsum = 0:n

b = csum==degsum;
if sum(b)
d = 0:n—degsum;
num = mnom(s—row+n—d—degsum ,s—row );
cnum = [0, cumsum(num ) |;
p = zeros (1 ,max(cnum));
repetitions = sum(b)/max(cnum);
for deg = 0:n—degsum
p( cnum(deg+1) + 1 : cnum(deg+2) ) = deg;

end
p_orig = p;
for i = 2:repetitions
p = [p p_orig];
end

56
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X(row,b)=p;
end;
end
csum = csum + X(row,:);
end
end

LisTING A 4
%% homogeneousIndices(n,r)
% generates the indices of barycentric homogenous polynomials of degree r
% in R"n — meaning that there are n+1 indices.
function I=homogeneousIndices(n,r) %n er romdimensjon, r er polynomgrad
J=generateIndices(n,r);
lo=r—sum(J,1);
I1=[J;Io];
end

LisTING A.5
function S = lsum(i,j)
s=length (i);

%establishing arguments for the vector space P r(R°n):
r=sum(i);
n=s —1;

% separating the power of the barycentric coordinate relating to origo
i =i(l:n);
i0=i(s);

j_=i(1:n);
jo=ji(s);

%generating summation indezes
1 = generatelndices(n,i0);
%alpha0 = i0—sum(l,1);

%pre—generating sum
1ij=1;
for k=1:n

i j(k,:) =10 j(k,:) H_(k) + j_(k);
end;
%creating the terms depending on 1
numerator = fact (1 i j).*((—1)."(sum(1,1)));
denominator = fact(l) .x factorial (i0—sum(l,1)).*fact (r+ntsum(l,1)+sum(i_,1));
S = sum(numerator./denominator );
end

A.2. Barycentric basis programs
LisTING A.6

%% barycentricInnerProduct(i,j)
% has the peculiar ability to return the analytical result of the inner
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% product (lambda~i,lambda"j), where i and j are multiindices of at least
% dimension 2.

%

% Properties:

% —symmeiric

% usage:

% <not final yet>

function R=barycentricInnerProduct(i,j)
l1=length(j);
if 17=length(i)

error (’The_lenghts_of_i_and_j_are_different!’)
end
if 1=

R = 1;
else
% summing up and calculating final inner product
R=factorial (i(length(i)))«factorial(j(length(j)))*Ilsum(i,j);
end

end

LisTING A.7
%% GramBarycentric(n,r)
% Generates the gram matriz for the r—th degree polynomial basis over an
% n—simplex.
function G = GramBarycentric(n,r)
I = homogeneousIndices(n,r);
Isize = size(1);
S=Isize (2);
G=zeros(S);
for i=1:S;
for j=1:S;
BT (i, j)=sum(I(:,4).%1(:,5));
G(i,j)=barycentricInnerProduct (I(:,i),I(:,j));
end
end
%cond (T);
end

LisTiING A.8
function g—BarycentricConds(N,R)
sprintf(’initialising ...\n’)
try

load( ’matrices/baryc conds matrix.mat’,’g’)
catch

g=zeros{N,R);
end

for n=1:N
for r=1:R
[0,
g(n,r) = cond(GramBarycentric(n,r));
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end
end
)

save( ’matrices/baryc conds matrix.mat’,’g’)

end

LisTiNG A.9
%% BernsteinInnerProduct(i,j)
% has the peculiar ability to return the analytical result of the inner
% product (lambda~i,lambda”j), where i and j are multiindices of at least
% dimension 2.
%
% Properties:
% —symmetric
% usage:
% RB=

function R=BernsteinInnerProduct(i,j)
s=length (j);
if sT=length(i)
error (’The_lenghts_of_i_and_j_are_different!’)
elseif s==1
R = 1;
else
% summing up and calculating final inner product
R=factorial (sum(i))*factorial (sum(j))/fact(i(1l:s—1))/fact(j(l:s—1))*lsum(i,j);
end

end

LisTING A.10
%% Gram(n,r)
% Generates the gram matriz for the r—th degree polynomial basis over an
% n—simplezx.
function G = GramBernstein(n,r)
I = homogeneousIndices{n,r);
Isize = size(I);
S=Isize (2);
G=zeros(S);
for i=1:S;
for j=1:S;
BT(i,5)=sum(I(:,0).x1(:,5));
G(i,j)=BernsteinInnerProduct (I(:,i),I(:,]));
end
end
%cond (T);

end

LisTiNG A.11
function g=BernsteinCondsControl (N,R)
sprintf(’initialising ...\ n’)
try

load(’matrices/berns conds control matrix.mat’,’g’)



A.3. NODAL SCALAR BASES

catch
g=zeros{N,R);
end

for n=1:N
for r=1:R
[n,r]
g(n,r) = cond(GramBernstein(n,r));
end
end

’

save( 'matrices/berns conds control matrix.mat’,’g’)

end

LisTING A.12
function g=BernsteinConds(N,R)
try

load( ’matrices/berns conds matrix.mat’,’g’)
catch
g=zeros{N,R);

end

for n=1:N
for r=1:R
% [n,r]
g(n,r) = (mnom(2xr4n,r));
end
end

save( 'matrices/berns conds matrix’,’g’)

end

A.3. Nodal scalar bases

LisTING A.13
%% barycentricSubsimplezFunctional(i,j)
% returns the wvalue of the inner product of lambda ~i—reduced (see
% definitions) with lambda~j on the subsimplex where lambda~i is
% positive. sum(i) must be equal to sum(j).

%

% Does the

function R=barycentricSubsimplexFunctional(i,j)

i corners = (i~=0);

i complementCorners = (i==0);

i_red = i—i_corners;

n = sum(i corners);

if sum(i complementCorners.xj) "= 0
R = 0;

else
jnew = i corners.x];

R =barycentricInnerProduct (i _red(i_ corners),jnew(i_corners));

60
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if (i(length(i))==0)
R=sqrt(n)*R;
end
%sqrt(n) is the determinant of the jacobian to the linear
%transformation to an outer simplex.
end
end

LisTING A.14
%% barycentricSSmatriz(n,r)
% Generates the matriz of standard K-nodes of
% for the r—th degree polynomial basis over an
% n—simplex.
function G = barycentricSSmatrix(n,r)
I = homogeneousIndices(n,r);
Isize = size(1);
S=Isize (2);
G=zeros(S);
for i=1:S;
for j=1:S;
BT (i, j)=sum(I(:,4).%1(:,7));
G(i,j)=barycentricSubsimplexFunctional (I(:,i),I(:,]));
end
end
%cond (T);
end

LisTING A.15
%% GramNodal(n,r)
% Generates the gram matriz for the r—th degree _sub—nodal polynomial basis
% over an n—simplex.
function G = GramNodal(n,
C=inv (standardSSmatrix (n
D=GramBarycentric(n,r);
G=Cx«D=C’;
end

r)
sT))5

LisTING A.16
%% GramsNodalConds(n,r)
% Generates the condition numbers for the gram matrices of the nodal basis
% of Aof degree r in an n—simplez
function g = NodalConds(n,r)
sprintf(’initialising ...\n’)

try
load (’matrices /nodal conds matrix.mat’,’g’)
catch
g=zeros{n,r);
end
for N=1:n;
for R=1:r;
[N R]

g (N,R)=cond (GramNodal (N,R));



A.3. NODAL SCALAR BASES 62

end
end
)

save( ’matrices /nodal conds matrix.mat’,’g’)

end

LisTING A.17
%% BernsteinSubsimplezFunctional (i,5)
% returns the value of the inner product of B {i red} on the subsimplez f
% (/i _red] = r—dim(f)—1) with B _j. This is done on the subsimpler where i
% (the original) is strictly positive, then i is manipulated to an i_red, which
%
function R = BernsteinSubsimplexFunctional (i, j)
%defining the reduced index i red out of i

i corners = (i7=0);

i complementCorners = (i==0);
i reduced = i—i corners;

i red =1 reduced(i_ corners);

n = sum(i_ corners); %dimension of f
% B_j vanishes on f if it has a factor lambda_m where m is not an index of a corner in f, it

if sum(i_ complementCorners.xj) "= 0
R = 0;

else
jnew = i_corners.xj;

R =mnom(sum(i red),i red)sbarycentricInnerProduct (i red,jnew(i corners));
if (i(length(i))==0)
R=sqrt(n)*R;
end
%sqrt(n) is the determinant of the jacobian to the linear
%transformation to an outer subsimplez.
end
end

LisTING A.18
%% standardSSmatriz(n,r)
% Generates the matriz of standard K-nodes of
% for the r—th degree polynomial basis over an
% n—simplex.
function G = BernsteinSSmatrix (n,r)
I = homogeneousIndices{(n,r);
Isize = size(1);
S=Isize (2);
G=zeros(S);
for i=1:S;
for j=1:5;
BT (i,5)=sum(I(:,0).x1(:,7));
G(i,j)=BernsteinSubsimplexFunctional (I(:,1),I(:,j));
end
end
Jcond (T);
end
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LisTiNG A.19
%% GramNodal(n,r)
% Generates the gram matriz for the r—th degree sub—nodal polynomial basis
% over an n—simplex.
function G = GramBernsteinNodal (n,r)
C=inv(BernsteinSSmatrix(n,r));
D=GramBarycentric{n,r);
G=CxDxC’;
end

LisTING A.20
%% GramsNodalConds(n,r)
% Generates the condition numbers for the gram matrices of the nodal basis
% of Aof degree r in an n—simplex
function g = BernsteinNodalConds(n,r)
sprintf(’initialising ...\ n’)

try

load(’matrices/berns nodal conds matrix.mat’,’g’)
catch

g=zeros(n,r);
end
for N=1:n;

for R=1:r;

[N R]

g(N,R)=cond (GramBernsteinNodal (N,R) );

end
end
save(’matrices /berns nodal conds matrix.mat’,’g’)
end

A.4. Bases for P A*(Tp)

LisTiNG A.21
function P = AltInner(a, b, n, k)
P=0; %3
if k=
P=1;
elseif and(a(l)==0,b(1)==0)
if a=—b
P=n—k + 1;%1
else
m = indicesOfUniques( a , b );
p = indicesOfUniques( b , a );
if length(m)==1
P —(—1)"(mtp) ;%0

end
end
elseif or(a(l)==0,b(1)==0) ,
s = [];
if a(l)==0
s = indicesOfUniques( b , a );
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else
s = indicesOfUniques( a , b );
end
if length(s)==
P=(=-1)"s(1); %4+5
end
elseif a—b
P=1; %2
end
end

function s = indicesOfUniques( a , b )
s = [1;
for i=1l:length(a)

if prod(a(i)™=b)

s = [s,i];

end
end
end

LisTING A.22
function p = P _innerProduct(i,a,j,b,n,k)
kplus = k+1;
p=0;
for l=1:kplus

for m=1:kplus
%[1,m]
%a ([1:1—1,1+1:kplus])
%b ([1:m—1,m+1:kplus])
s = AltInner( a([1:1—-1,141:kplus]),b([1:m—1m+1:kplus]),n , k);
if s =0

bl
i_ )) = i_(b(m)) + 1;
s =s x ((=1)"(l4m)) * barycentricInnerProduct(i_ ,j );
p p + s
end
Jop=p+s ;
end
end
end

LisTING A.23
function G = Gram P(n,r k)
I = homogeneousIndices(n,r—1);
Isize = size(I);
S=Isize (2);
indices = combnk{ 1 : n+1 , k41 );
Ssize=size (indices);
SI=Ssize (1);
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G=zeros (mnom(r+k—1,k)*mnom(n+r ,n—k));

c=1;
d=1;
for i=1:S
for a = 1:81
if sum( [(1:min(indices(a,:))—1 , i)) =0
for j=1:5
for b = 1:81
if sum( I(l:min(indices(b,:))—1 , j)) = 0
% [1(:i),1(:7)]
% [indices(a,:);indices(b,:)]
G(c,d) =
P _innerProduct(I(:,i), indices(a,:),I(:,]j),indices(b,:),n,k);
d = d+1;
end
end
end
c = c+1;
d = 1;
end
end
end
%cond (T);
end

LisTING A.24
function G = PConds(N,R,K)

for n=N
for r=R
for k=K(K<=n)
[n,r,k]
G(n,r,k+1) = cond(Gram P(n,r,k));
try
load (’P_conds matrix.mat’,’g’);
end
g(n,r,k+1) = G(n,r,k+1);
try
save(’P conds matrix.mat’,’g’);
end
end
end
end
end
LisTING A.25
function p = P_Bernstein 2 InnerProduct(i,a,j,b,n,k)
kplus = k+1;
p=0;

for 1=1:kplus
for m=1:kplus
s = AltInner( a([1:1-1,141:kplus]),b([1:m—1m+1:kplus]),n , k);
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if s =0
i_(a(l)) =i_(a(l)) + 1;
ji - j7
i_(b(m)) = j_(b(m)) + 1;
s =s % ((—=1)~(1
p p + 83
end
end
end
end

LisTING A.26
function G = Gram_ PBernstein 2(n,r,k)
I = homogeneousIndices(n,r—1);
Isize = size(I);
S=Isize (2);
indices = combnk( 1 : n+1 , k+1 );
Ssize=size (indices);
SI=Ssize (1);

G=zeros (mnom(r+k—1,k)*mmom(n+r ,n-k));

c=1;
d=1;
for i=1:S
for a = 1:81
if sum( I(l:min(indices(a,:))—1 , 1)) ==
for j=1:5
for b = 1:81
if sum( I(l:min(indices(b,:))—1
% [1(:i),1(:,3)]
% [indices(a,:);indices(b,:)]
G(c,d) =
P _Bernstein 2 InnerProduct(I(:,i),
d = d+1;
end
end
end
c = c+1;
d = 1;
end
end
end
end

LisTING A.27
function G = PBernstein 2 Conds(N,R,K)
for n=N

for r=R
for k=K(K<=n)
[n,r,k]

66

x* BernsteinInnerProduct |

indices(a,:),I(:,]j),indices(b,:),n,k



A.5. EXPERIMENTAL PROGRAMS

G(n,r,k+1) = cond(Gram PBernstein 2(n,r,k));

try
load (’P_Bernstein 2 conds matrix.mat’,
end
g(n,r,k+1) = G(n,r,k+1);
try
save(’P Bernstein 2 conds matrix.mat’,
end
end
end
end
end
A.5. Experimental programs
LisTING A.28
function p = P_BernsteinInnerProduct(i,a,j,b,n,k)

kplus = k+1;

p=0;

for l=1:kplus
for m=1:kplus

s = AltInner( a([1:1-1,14+1:kplus]),b([1:m—1,m+1:kplus]),n

if s 7= 0
i_(a(l)) =i_(a(l)) + 1
i =1
i_(b(m)) — j_(b(m)) + 1;
s =s x ((=1)~(1
p=p+ s;
end
end
end
end

LisTING A.29

function G = Gram_PBernstein(n,r ,k)

I = homogeneousIndices(n,r—1);

Isize = size(1);

S=Isize (2);

G=zeros(S);

indices = combnk{ 1 : n+1 , k41 );
Ssize=size (indices);

SI=Ssize (1);

G=zeros (mnom( r+k—1,k)*«mnom(n+r ,n—k));

c=1;
d=1;
for i=1:S
for a = 1:S1I
if sum( I(l:min(indices(a,:))—1 , i)) == 0
for j=1:S

for b = 1:8S1I

g’);

g’ );
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if sum( I(l:min(indices(b,:))—1 , j)) = 0
% [T(:0i),1(:7)]
% [indices (a,:);indices(b,:)]
G(c,d) =
P BernsteinInnerProduct(I(:,i), indices(a,:),I(:,j),indices(b,:),n,k);
d = d+1;
end
end
end
¢ = c+1;
d = 1;
end
end
end
% for i=1:5;
% for j=1:5;
% for a = 1:SI
% for b = 1:ST
% P_BernsteinInnerProduct (I(:,1), indices(a,:),I1(:,j),indices(b,:),n,k);
% end
% end
% end
% end
% %cond(T);
end

LisTING A.30
function G = PBernsteinConds(N,R,K)

for n=N
for r=R
for k=K(K<=n)
[n,r,k]
G(n,r,k+1) = cond(Gram_ PBernstein(n,r ,k));
try
load (’P_Bernstein conds_matrix.mat’,’g’);
end
g(n,r,k+1) = G(n,r,k+1);
try
save(’P Bernstein conds matrix.mat’,’g’);
end
end
end
end

end



APPENDIX B

Results of the programs from

(nlk—] 0 [ 1 [ 2 3 4 5

1 3.0000 | 1.0000 - - - -

2 4.0000 | 2.5000 | 1.0000 - - -

3 5.0000 | 3.0000 | 2.3333 | 1.0000 - —

4 6.0000 | 3.5000 | 2.6667 | 2.2500 | 1.0000 —

5 7.0000 | 4.0000 | 3.0000 | 2.5000 | 2.2000 | 1.0000
TABLE 1. Results for the experimental basis candidate (5.3.1) for
n,k <5 r=1.

(nlk—=] 0 | 1 [ 2 3 | 4 [ 5 |

1 10.0000 | 4.0000 - - - -

2 15.0000 | 19.8015 | 5.0000 - - -

3 21.0000 | 35.2737 | 27.7186 | 6.0000 - -

4 28.0000 | 52.6050 | 52.8141 | 37.7591 | 7.0000 —

5 36.0000 | 68.6702 | 75.5037 | 74.5922 | 49.9311 | 8.0000

TABLE 2. Results for the experimental basis candidate (5.3.1]) for

n,k <5 r=2.
(nl k=] 0 1 2 3 | 4 ] 5
1 35.0000 | 15.1441 - - — -
2 56.0000 | 97.0139 | 21.1229 - - -
3 84.0000 | 1.85-10% | 1.52-10% | 28.1290 — -
4 1.20-10% [ 2.84-10%7 [ 3.03-10% | 2.24 - 10% | 36.1377 -
5 1.65-10% | 4.07-10% | 4.40 - 10% | 4.65-10% | 3.19 - 10? | 45.1409

TABLE 3. Results for the experimental basis candidate (5.3.1))for
n,k <5, r=3.
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(nl k=] o | 1 [ 2 [ 3 [ 4 5

1 2.44-10% | 94.9730 - - - -

2 6.10-10% | 5.58-10% | 1.21 - 10? - - -

3 1.25-10% [ 2.10-10% [ 1.11-10% | 1.23 - 102 - -

4 2.26-10°% [ 4.16- 103 | 4.10-10° | 2.20-10% | 1.56 - 102 -

5 3.77-10°]7.32-10% [ 7.35-10% [ 7.43-10% | 3.99-10% | 2.02 - 102
TABLE 4. Results for the experimental basis candidate ([5.3.1))for
n k<5 r=4.

(nlk—=] o | 1 [ 2 [ 3 [ 4 5

1 4.62-10% [ 2.12- 102 - - - -

2 7.92-10% | 1.73-10% | 3.37 - 107 — — -

3 1.29-10% [ 3.51-10% [ 3.09 - 103 | 5.06 - 102 - -

4 2.00-10%16.02-10% [ 6.39-10% | 5.07-10° | 7.30 - 102 -

5 3.00-10°]9.69-10% [ 1.03-10* [ 1.08 - 10* | 7.94 - 10% | 1.02- 103

TABLE 5. Results for the experimental basis candidate ([5.3.1))for
nk<5r=5
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