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Chapter 1

Introduction

1.1 Motivation

Acoustic methods are used for many purposes in fisheries and marine research
today. They can detect small or large objects in water, such as schools of fish,
mines, submarines and plankton. Echosounders may remotely discriminate
between different species of fish, and may be used to study their behaviour
without invading their habitat. Using echosounders for abundance estimation
is very common, and most fishing vessels carry such equipment and uses it
actively in their everyday occupation.

Sound travelling through water was traditionally thought to be a linear or
close to linear process. As echosounders and their accompanying equipment
have improved over the recent years, one has become aware of the fact
that nonlinear effects may induce excess sound attenuation. These effects
are induced by the water medium because of a varying sound speed, which
distorts the waveform. As a result, the energy carried by the wave is lessened
compared to that resulted by linear propagation. Echosounders used today
do not correct for nonlinear effects, but disregarding them altogether may
very well lead to erroneous results when deciphering the signals returned to
the echosounder.

The size of the excess absorption due to nonlinear effects is dependent
on several factors, the transmitted frequency being a major one. Nonlinear
effects may be a problem for frequencies of and above 120 kHz (Pedersen
2006), which are operating frequencies commonly used in fisheries research.
Operating frequencies are chosen for the best trade-off between range and
accuracy for the problem at hand.

The initial peak intensity and the propagation distance are also important
factors. Tichy et al. (2003) simulated and performed measurements on the
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2 CHAPTER 1. INTRODUCTION

beam axis of the field from a 200 kHz echosounder. They found the excess
attenuation to be dependent of both range and transmitted power, and in
some cases the nonlinear loss reached several decibels. This indicates that
nonlinear effects should be compensated for, to attain correct estimates.

1.2 Objective of this thesis

The objective of this thesis is in essence twofold.
The first focus lies on the development of a simulator for linear and

nonlinear propagation of acoustic fields. Techniques reported in literature
for such simulations form a basis for the development of the simulator.
Calculating diffraction is based on the angular spectrum approach (ASA),
and nonlinear effects are added according to a frequency domain solution of
Burger’s equation (FDSBE).

The simulator should calculate the field accurately, and be applicable to
transducers of arbitrary shapes. This is an extension to the case of circular
symmetric sources, implemented by Synnevåg in his thesis (1998). Fjellestad
(2000) implemented such an extension using as a starting point a program
he received from Kai Thomenius. The use of many loops due to memory
issues made his code slow. Matrix operations are used to a larger extent
in this thesis to improve computation time. The algorithm is also extended
to the use of a second order operator-splitting technique. The possibility of
enlarging the stepsize as a result of this will be investigated.

The results obtained by Fjellestad and Synnevåg showed some differences
compared to measurements reported in literature. A priority in this thesis has
been to unveil and correct this problem. Effort has been made to implement
the algorithm accurately and verify its credibility. The problems considered
in this thesis involves the propagation of fields from sonars and echosounders.
The simulator is however applicable to general ultrasonic fields, and may be
applied to problems involving medical ultrasound as well.

The second objective is to investigate the nonlinear loss and the field of
the second harmonic for a source commonly used in fisheries research. The
axial field of a 200 kHz transducer is simulated, both linearly and nonlinearly,
to investigate the size of the nonlinear effects. It is possible that neglecting
these effects leads to an erroneous estimate of target strength, and that they
should be accounted for.

It might also be possible to utilize the second harmonic in imaging
situations in fisheries acoustics, or in target strength measurements. This
is common in medical ultrasound today through a technique called Tissue
Harmonic Imaging. The range and quality of the beam of the second
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harmonic will determine if an analogous technique is applicable in sonars.
The thesis aims to briefly introduce the subjects of fisheries acoustics and

target strength to the reader unfamiliar with these topics.

1.3 Synopsis

The present chapter gives a short introduction to the topics discussed in this
thesis and a layout of the work herein.

The basic theory of waves and their propagation is summarized in Chap-
ter 2. The general idea of diffraction is presented.

Chapter 3 describes the basics of echosounding and other relevant con-
cepts in the field of fisheries acoustics.

The linear propagation of sound is the subject of Chapter 4. The angular
spectrum approach is presented as a means for calculating diffraction. Also
introduced in the same chapter is the algorithm for linear field propagation,
along with some pertinent issues concerning its implementation.

The algorithm is further extended to nonlinear field propagation in Chap-
ter 5, which deals with the nonlinear propagation of sound waves. The cause
of nonlinear effects and their implications are given. After presenting a sub-
step for calculating nonlinear effects, some issues regarding the implementa-
tion is discussed.

Chapter 6 is devoted to verifying the performance of the simulator. It
will be tested on linear and nonlinear field propagation, for circular sym-
metric and non-symmetric sources, and the results are compared with those
reported in literature. Also the choice of stepsize is discussed.

In Chapter 7, simulations for a 200 kHz transducer is performed, and the
results are presented and discussed in view of the objective of this thesis.

Chapter 8 summarizes the results obtained throughout this thesis, and
suggests some points for future investigation.

The bibliography follows Chapter 8, alphabetized by the surname of the
first author.
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Appendix A lists the nomenclature, Appendix B contains some useful
definitions and derivations and Appendix C lists parts of the source code for
the simulator. Finally, Appendix D includes some additional figures.

1.4 Approach

At the commencement of the work on this thesis, the very field of signal
processing was unfamiliar to the author. To be able to write this thesis, a
vast amount of theory and literature needed to become acquaint posthaste.

To quickly get an overview of the problem, a series of colloquia was held
at the center for Digital Signal Processing and Image Analysis (DSB) from
January to mid March 2008.

Involved in the colloquia were myself, my supervisors, PHD student Ann
Blomberg, and master student Thoril Kristiansen. Thoril’s thesis dealt with
a subject similar to mine, and articles of fundamental importance to both
theses were presented and discussed. After the completion of the colloquia,
the work on the theses has been carried out individually.

A course on signal processing was taken by the author parallell to the
work on this thesis.



Chapter 2

Theory of acoustic propagation

This chapter is devoted to the underlying physical laws of wave propagation,
and will form a necessary basis for understanding the different topics in this
thesis. Elements in this chapter can be found in elementary books on physics
and wave propagation, such as that by Young and Freedman (2004).

The basics of sound waves and their propagation are given in Section 2.1.
Section 2.2 deals with the wave equation and its solutions. Section 2.3
describes diffraction; a phenomena that leads to the definition of the
Rayleigh-Sommerfeld diffraction formula, which will be used in later chapters.

2.1 Sound waves

Whenever a system is disturbed from equilibrium and the disturbance can
propagate, we have a wave. Waves are excellent carriers of energy, which we
take advantage of in signal processing, trying to extract as much information
about our surroundings as possible. One type of waves are the mechanical
waves, waves that propagate through a medium. The mechanical waves most
experienced by humans in everyday life are sound waves.

Sound waves are longitudinal disturbances of a medium, often a
disturbance of density. Something sets the particles of a compressible fluid
or solid in motion. Trying to return to the state of equilibrium, the particles
thus undergo oscillatory motion. This in turn affects the neighboring particles
and transfers the energy to them. This is what makes the waves propagate
through the medium. It is also the reason why sound waves cannot exist
outside a medium, as opposed to electromagnetic waves which propagate
easily through vacuum.

As it propagates, the sound wave alternately compresses and decom-
presses the medium. This makes the density, and thereby the pressure,

5



6 CHAPTER 2. THEORY OF ACOUSTIC PROPAGATION

fluctuate about their equilibrium values. Regions of increased density are
called compressions, while regions of reduced density are rarefactions. The
oscillatory motion is parallel to the direction of propagation, thereby the
term longitudinal. Waves can also be transversal, wich means that the parti-
cle motion is normal to the direction of propagation. Electromagnetic waves
are examples of transversal waves.

Compressions make up wavefronts of an acoustic wave, as illustrated in
Fig. 2.1. Wavefronts are loci of points having the same phase, traveling in
space with the propagation speed c. The value of c is generally dependant
on the characteristics of the medium. The distance between two successive
compressions is called a wavelength, denoted λ. During the time it takes to
travel this distance, the wave completes a cycle. This time is known as the
period T of the wave, given by T = λ/c and measured in seconds.

Fig. 2.1: Compressions of a traveling sound wave make up the wavefronts of the
wave, separated by one wavelength λ.

The reciprocal of T is the frequency of the wave. It tells us how many
cycles that are completed per unit time, measured in hertz (1 Hz = 1 s−1).
Frequency thus is given by

f =
1

T
=

c

λ
.
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The shorter the wavelength, the more compressions per second, and we have
a higher frequency.

Audible sound is the range of frequencies to which the human ear is
sensitive, from about 20 Hz to 20 MHz. Sound waves with frequencies below
this region are termed infrasonic, and the ones above are termed ultrasonic.
The ultrasonic frequencies are the ones used in medical ultrasound and most
sonars.

Scattering of sound waves

The medium that carries the wave is called a transmission medium. All waves
are influenced by the physical properties of their transmission medium. When
the wave encounters a density difference, parameters of the wave changes
as well, and part of the energy might be reflected as an echo. This could
happen at the boundary between two different media. The amount of energy
reflected is determined by the material properties of the new medium. The
rest of the energy is either transmitted through the new medium or absorbed,
for example by being converted to heat.

With sonars we send acoustic waves through water, as will be elaborated
in Chapter 3. When the sound wave hits a new medium or an object, for
example the bottom, an echo will propagate outward from that point. Echoes
that return to the source are termed backscattered sound, and echoes that
proceed further to some other receiver are termed forward-scattered sound.
We can then analyze the information carried by back-scattered sound waved
to gain insight into the cause of their reflections. The same principle is used
in medical ultrasound; ultrasonic sound waves are sent through the body,
and the transducer converts the reflected energy to electric voltages, which
are used to obtain an image.

2.2 The wave equation and the equation of

state

The governing equation for any wave propagation is the wave equation. This
will be defined in the following, along with some of its solutions.

When the transmission medium is in its equilibrium state (i.e. no sound
present), it is described by the variables v0, ρ0 and p0. These are initial
velocity, ambient density and ambient pressure, respectively. When sound is
present, these attributes fluctuate about their ambient states, and we have

v = v0 + v
′, p = p0 + p′ and ρ = ρ0 + ρ′. (2.1)
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The prime values here denote the perturbations from the ambient state. Here,
p is a function of density, as formulated by the equation of state; p = p(ρ).
A Taylor series expansion of the equation of state about 0 gives

p′ = (
∂p

∂ρ
)0 ρ′ +

1

2!
(
∂2p

∂ρ2
)0 (ρ′)2 + · · · , (2.2)

or more concisely (Hamilton and Blackstock 1998)

p′ = A(
ρ′

ρ0

) +
B

2!
(
ρ′

ρ0

)2 +
C

3!
(
ρ′

ρ0

)3 + · · · , (2.3)

where

A = ρ0 (
∂p

∂ρ
)0 ≡ ρ0c

2
0,

B = ρ2
0 (

∂2p

∂ρ2
)0, (2.4)

C = ρ3
0 (

∂3p

∂ρ3
)0.

Note that the expansion must be carried out under adiabatic conditions.
If the perturbations are small, so that p′/p0 << 1, we keep only the
first term of Eq.(2.3), giving us a linear relationship between pressure and
density. We may then consider the propagation as linear, as described by the
homogeneous wave equation:

∇2s =
1

c2

∂2s

∂t2
(2.5)

where ∇2 represents the Laplacian operator (often denoted △)

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

and s represents some general field, for example pressure or velocity.
In Chapter 5, we will consider nonlinear propagation, where we keep more

than one term from Eq.(2.3). We will define the parameter B/A, and see
how it affects the waveform as the wave propagates.

Solutions of the wave equation

Being a partial differential equation, Eq.(2.5) can be solved by assuming a
separable solution of the form

s(x, y, z, t) = f1(x)f2(y)f3(z)f4(t).
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Let us now make an initial guess that s(x, t) has a complex exponential form

s(x, y, z, t) = a e j(ωt−kxx−kyy−kzz), (2.6)

where a is a complex constant and ω, kx, ky and kz are real constants. The
reason for this particular guess will be made clear later. Substituting this
expression for s(x, t) into Eq.(2.5), we arrive at

k2
xs(x, y, z, t) + k2

ys(x, y, z, t) + k2
zs(x, y, z, t) =

ω2s(x, y, z, t)

c2
⇒

k2
x + k2

y + k2
z =

ω2

c2
.

So we see that, if Eq.(2.6) is to be a solution of the wave equation, this
constraint needs to be met. Letting k = kxîx + ky îy + kz îz, this becomes
c2 = ω2/k2. We can now rewrite Eq.(2.6) to

s(x, t) = a ej(ωt − k·x) (2.7)

the equation of a monochromatic plane wave with amplitude a and angular
frequency ω. This might be easier to see by means of the familiar Eulers’
formula

s(0, t) = a e jωt = a cos ωt + ja sin ωt.

At some time t, the value of s will be the same at all points in planes where
kx + ky + kz = constant. This is why we call the wave a plane wave.
The term ‘monochromatic’ means ‘one color’, referring to the fact that ω
is a constant. The wave travels in the direction of k, which is called the
wavenumber vector, and its magnitude has the unit of radians per meter. It
can therefore be interpreted as a spatial frequency variable, analogous to the
temporal frequency variable ω.

A spherically symmetric solution

The wave equation can be restated in the spherical coordinates (r, θ, φ), where
φ = arctan(y/x) and θ = arccos(z/r). For spherically symmetric problems,
the wave equation will only be dependant on r, and becomes

1

r2

∂

∂r
(r2 ∂s

∂r
) =

1

c2

∂2s

∂t2
. (2.8)
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A solution to this equation is the monochromatic one:

s(r, t) =
a

r
ej(ωt − kr), (2.9)

a spherical wave propagating outward from the origin. For spherical waves,
the radii r of the wavefronts increase as the wave propagates, and the energy
inherently spreads out over a larger area.

2.3 Diffraction

Generally, sound spreads spherically with intensity I from a source of finite
extent, and the sound intensity decreases inversely with the square of r,
I ∝ 1/r2. Sufficiently far from the source, however, in the far-field region,
the waves can be regarded as plane. For a plane wave, the wavefronts are
parallel planes of constant phase, as shown in the previous section.

Huygens’ principle

Consider a plane wave impinging on a wall of such material properties so
that it completely reflects the wave. Now assume there is a hole in the
wall of finite extent that lets parts of the wave through. After passing
the wall, the wavefronts are no longer plane, but have instead assumed a
spherical form, much as if they were radiated from an aperture of finite size.
This phenomenon is an example of diffraction; bending of wavefronts due to
obstacles in their path.

Diffraction occurs whenever the wave encounters an obstacle, but the term
is mostly used for situations where the size of the obstacle is of the order of
a wavelength. This is because the amount of diffraction is dependant on the
size of the hole or aperture measured in wavelengths. A large hole compared
to the wavelength gives less spreading of the waves, and the wavefronts are
more plane in the middle, see Fig. 2.2(a).

A theory on the diffraction phenomenon was postulated in 1678 by the
Dutch physicist Christian Huygens (1629-1695). Consider each point on a
traveling wavefront at a time t as a point source of secondary, spherical
wavelets. The propagation of the wave can then be realized as the envelope
of these wavelets at time t + δt. Hence, the addition of all the wavelets
forms the new wavefront. This is known as the Huygens’ principle, and is
illustrated in Fig. 2.2.

Huygens’ principle also explains why we can hear around corners. If a
sound is generated anywhere inside a room with an open door, a person in
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(a) Diffraction (b) Refraction

Fig. 2.2: Huygens’ principle: Points on a traveling wavefront are sources of
secondary wavelets. The sum of these wavelets forms the new wavefront
at some later time.

the adjacent room will hear the sound as if it originated at the doorway.
To that person it seems as though the source of the sound is the air within
the doorway. Diffraction does however not help us to see around corners; the
doorway is too large with respect to the short wavelengths of visible light. An
extremely narrow slit would be needed to bend lightwaves to a large extent.
However, the effect is visible through the unsharp edges of shadows.

The Rayleigh-Sommerfeld diffraction formula

Many physicists would later refine the idea of Huygens’ principle, and effort
was made to give it a mathematical foundation. One of the results is the
Rayleigh-Sommerfeld diffraction (RSD) formula, given by

p(x, y, z) = −jωρ

∫∫

S

v(x′, y′, 0)
ejkr

2πr
dx′dy′, (2.10)

where S is the size of the aperture, dx′dy′ is an infinitesimal patch of area
located at (x′, y′, 0) and k is the wavenumber magnitude, k = 2π/λ. Here, r
is the distance to the point (x, y, z)

r =
√

(x − x′)2 + (y − y′)2 + (z)2.
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The RSD formula determines the field distribution in a certain point,
either given as pressure or velocity. Basically, the formula states that at some
point x, the wavefield p(x) or v(x) can be represented as a superposition of
fields originating in the hole S. Each field is weighted by a spherical spreading
function, in which we recognize the factor 1/r from the spherically symmetric
solution above. The sum will be determined by the relative phases and the
amplitudes of the individual fields.

The RSD formula will be explained further in Chapter 4 when it is used
to define a method for calulating field propagation: The angular spectrum
approach.



Chapter 3

Underwater acoustics

This chapter deals with sound propagating under water, known as underwater
acoustics or hydroacoustics. It will introduce concepts that will be important
in later chapters of this thesis.

A general introduction to sonars and their use in water is given first in
Sections 3.1 and 3.2. Section 3.3 introduces the field of fisheries acoustics,
which is hydroacoustics applied to areas which concern fishing or research
on fish. Parameters that are important in this field, as well as in this thesis,
will be defined in the same section.

3.1 Introduction

The sea, and the life existing within it, has fascinated mankind throughout
all of history. Its vast extent and great depth, seemingly unattainable, have
given rise to many myths over the years.

Aquatic, living organisms have been an important source of food since
the development of tools, and in modern times they have become of great
economic importance as well. The acts of catching, breeding and selling fish
support many livelihoods to this day.

But fishing and the very presence of man has had a huge impact on ocean
environment. Overfishing has lead to the extinction of many species. Damage
to the animals’ habitats and the accidental killing of non-target populations
continues to be of great concern.

The authorities introduced fish quotas as an attempt to avoid over-
exploiting the fish stock. To be able to set such quotas accurately, one needs
to estimate the abundance, the current size of a population of fish. As we
shall see, underwater acoustics can be used for this purpose.

The fact that sound travels through water easily has been known since

13
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the medieval times. In 1490, Leonardo da Vinci wrote in one of his notebooks
(Urick 1983) that ‘If you cause your ship to stop, and place the head of a
long tube in the water and place the outer extremity to your ear, you will
hear ships at great distances from you’. The idea of the air-filled tube was
still used in World War I, only they used in addition a second tube to the
other ear, to determine directions to the enemy’s submarines.

Sound travels through water better than any other known form of
radiation. Light waves are attenuated to a large degree, and penetrates a
few meters at the most. This fact led to the development of the echosounder
and other acoustic instruments used to explore the sea.

3.2 Basic principles of sonars

Fig. 3.1: Illustration of echosounding and sonar used for fishing. Most fishing
vessels today have some form of this equipment installed. (Illustration
based on Fig 1 given by Misund (1997).

Sonar (sound navigation and ranging) is a technique that uses the
propagation of sound, mainly underwater, to locate objects and to
communicate with other vessels. Today this technique is used extensively
for ship navigation, as well as in fisheries and marine research. The term
’sonar’ is used for the equipment that receives and/or transmits sound, as
well as the associated software.

Sonars can be either active or passive. Passive sonars listen without
transmitting, like da Vinci’s air-filled tube could be an example of. A
hydrophone is the aquatic equivalent to the microphone in air, and can be
used to listen to underwater sound. The active sonar sends out single or



3.2. BASIC PRINCIPLES OF SONARS 15

repetitive short (e.g. 0.2 - 1 ms) sound pulses and then listens for echoes of
them. These echoes will then be the backscattered sound, as described in
Chapter 2.

Scatterers

The object reflecting the wave is termed a scatterer. If the target is small
compared to the wavelength, it will be subjected to the same amount of
pressure throughout its volume. It will then contract and expand according
to the oscillations, and act as a point source, spherically spreading scattered
waves. This is illustrated in Fig. 3.2(a). If, on the other hand, the scatterer is
very large compared to the wavelength and of a smooth surface, the scattered
waves will emanate in one direction, as shown in Fig. 3.2(b)

(a) Scattering by a small target. The
scatterer acts as a point source and
the scattered wave is spherical.

(b) A large scatterer reflects the
waves in a single direction if the
surface is smooth.

Fig. 3.2: Scattering of sound by objects of different sizes.

Transducers

The device that converts energy from one form to another is called a
transducer. It is made from a piezoelectric ceramic material which generates
electric potentials as a result of being deformed. The effects is reversible, so
directly applying an electric field will cause mechanical stress in the material.
This makes the transducer transmit and receive sound. In transmit mode, it
converts electric energy into an acoustic pulse, which is transferred to water.
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In receiving mode, the echo is converted to an electric signal that can be
processed. Transducers come in different sizes and shapes, and may consist
of several individual elements or be one continuous structure (a piston).

The performance of transducers has improved greatly over the last
decades, as a result of developing materials of better converting capabilities
and otherwise improving their design.

A vast amount of research has been spent on meliorating the beampattern
of transducers, to reduce the beamwidth or lower the sidelobe levels. This
may in part be accomplished through shading or weighting of the transducers
elements.

Echosounders

Echosounders are active sonars used to transmit sound vertically into water
(Simmonds and MacLennan 2005), as shown in Fig. 3.1. The echosounder
is connected to a transmitter, which produces electrical energy bursts at the
desired frequency. This is converted to acoustical energy by the transducer,
and the result is a directional beam aimed downwards. For single-beam
(one frequency) echosounders, the beamwidth is proportional to the size of
the transducer divided by the frequency used. It is typically between 5
and 15 degrees, but not necessarily equal in the along-ship and athwart-ship
directions.

The first to file a patent application for echo ranging was L. F. Richardson
in 1912 (Urick 1983). The Titanic had sunk five days past, and he was
motivated to discover a way to detect icebergs remotely. Richardson’s idea
was to use airborne sound to do this. He also applied for a patent for echo
ranging under water, a month later. However, he made no attempt to build
a device for this purpose, and so the first patent for an echosounder was
obtained in 1913 by Alexander Behm.

Although not very suitable for finding icebergs1, the echosounder turned
out to be an excellent device for measuring the depth of the sea. The research
on echosounding was sped up when the need to detect submarines emerged
during World War I.

1Reginald Fessenden made a similar construction with his ’Fessenden oscillators’,
installed in United States submarines during World War I. He was able to detect an
iceberg at a distance of two miles using this device (Urick 1983). Fessenden oscillators
operated at frequencies of 500 and 1000 Hz.



3.3. FISHERIES ACOUSTICS 17

3.3 Fisheries acoustics

With the aid of echosounders, acoustics can be utilized to study aquatic
environments and the organisms therein. Marine animals may be located,
mapped and counted by means of propagating sound. This is of particular
interest to e.g. marine researchers and fishers. Using sound saves time and
money, as one need not set traps and catch animals that are not of interest.
It works in turbid waters, large volumes of water may be searched quickly,
and it is also noninvasive.

This does not necessarily mean that animal life is not affected by the
presence of sound. In addition to intentional use of underwater acoustics,
man’s general activities in and on water all contribute to noise pollution.
These include amongst others the search for oil and gas, constructing oil
rigs, drilling, shipping and laying pipelines.

Animals of the sea, particularly mammals, use sound naturally as a means
of navigation, communication and hunting. Though not necessarily harmful,
man made sound might disturb these animals to some extent. The impact
of underwater sound on marine environments will not be considered further
in this thesis, but has been studied by Heathershaw et al. (2001).

The first to use echosounders in the field of fisheries acoustics was R. Balls
(Pedersen 2006), who conducted a series of experiments in the North Sea in
1933. Underwater acoustics has since been used for locating and counting
aquatic organisms, so-called acoustic abundance estimates. Commercial
fishers used this new technology combined with their prior knowledge of
fishing sites and species’ habits to locate schools of fish and to identify
different species.

Locating fish with the aid of underwater acoustics has become increasingly
important over the last years, and most fish caught by trawlers today have
first been located by echosounders or sonars.

Underwater acoustics may also be used for behavioural studies, using
subcutaneous acoustic tags. It is used to study more than fish. Large
mammals such as whales often produce acoustic signals of their own, which
may be recorded with the aid of a passive sonar. On the other end of the
scale, we have the plankton, which often carry with them small bubbles of
air.

Abundance estimation

As an echo returns to the source, two types of information are readily
extracted; the time elapsed since the pulse was transmitted, and the sound
pressure, or echo amplitude. The elapsed time tells us the distance to the
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target, as the speed of sound in water is known for all temperatures, pressure
states and salinities.

The sound pressure at the receiver is measured as intensity (unit W/m2),
energy flux per unit time. Instantaneous intensity is equal to the product of
pressure and velocity

Iinst = pv =
p2

ρc
. (3.1)

The intensity is then proportional to the density of organisms (Horne 2000),
which can be estimated by using echo integration.

Echo integration means converting the sound pressures to volts and
integrating over units of time. Multiplying the estimated density by the
volume of water in the region of interest, gives an abundance estimate of
that region.

If the packing density of fish is not too high, it is also possible to
count echoes from individual animals, a procedure known as echo counting.
Counting targets and dividing by the sample volume will then give an
estimate of the density of targets.

Echo counting and echo integration is often combined with direct
sampling, measurements made on tethered animals and prior knowledge to
obtain better estimates.

Target strength and target identification

Knowing the existence and abundance of fish in an area is not enough.
For this information to be useful, one needs to determine what species is
responsible for the backscattered sound. Remote target identification has
long been a goal of researchers and fishers. To experienced fishers, the
location and depth of a school will give an indication of the species, but
echosounding reveals more information than that.

The amount of sound that returns after hitting a target is dependant on a
variety of factors. The size of the target is important, as previously discussed.
The transducer used, how it is configured, the transmitted frequency and the
location and behaviour of the target all affect the amount of back-scattered
sound. The composition of the animal also matters, like the presence of
a swimbladder, the stomach contents and the animals reproductive and
maturation stage.

For fish with swimbladders, most of the backscattered sound (> 90%)
is due to the swimbladder (Simmonds and MacLennan 2005). The bladder
contains gas, which reflects the waves almost totally. Some bladders also
contain oil or fat. As the bladder is generally not spherical, the orientation
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of the animal is not irrelevant. The axis of the bladder deviates slightly from
the fish body axis, and so, maximum backscatter is achieved when the fish
swims with its head down 5-10o.

Fig. 3.3: The backscattered sound intensity from a single small target. (Illustra-
tion: Pedersen (2006))

A measure of the amount of sound reflected by any one target at a
certain frequency is the backscattering cross-section, measured in m2. At
any distance R from the source, it is given by:

σbs = R2(
Ibs

Ii
), (3.2)

where Ibs is the intensity of the backscattered sound as shown in Fig. 3.3,
and Ii is the incident intensity of the pulse, usually measured at unit
distance. The backscattering cross-section will depend on the frequency
response of the echosounder. In practice, the quantity measured is the
effective backscattering cross-section, σbs,eff , which is the weighted average
of σbs over the bandwidth of the sonar

σbs,eff =

∞
∫

0

σbs(ω)Pr0(ω)dω
/

∞
∫

0

Pr0(ω)dω. (3.3)

Here, Pr0(ω) is the power frequency response for the echo sounder.
If the density of organisms is too high for echo counting, one usually

measures the volume backscattering coefficient sv instead. This is the
reflected intensity from a volume of scatterers. If we assume that all
backscattered energy in a volume V comes from targets of interest, and that
they are homogeneously distributed

sv =
1

V

∑

i

σbs,i ≈
∂σbs

∂V
, (3.4)
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where σbs,i is the backscattering cross-section for the i-th scatterer. Fish of
the same kind generally aggregate into schools that almost move as a whole,
where all fish are oriented the same way. Hence, assuming that all σbs,i are
equal to σbs would not result in too much error in the density estimate.

The backscattering cross-section is used in defining target strength (TS)

TS = 10 log10(σbs). (3.5)

Target strength is an important parameter in fisheries acoustics, measuring
the echo returned by a single scatterer. Echo amplitudes are commonly
expressed as target strengths, given in decibels. The larger the value of the
TS is, the stronger the echo is compared to the transmitted pulse. For fish,
TS is usually in the range -60 to -20, where -20 refers to stronger echoes.

The value of TS varies quite a lot between fish, even if they are of the
same species and size. Even for the same fish the value of TS might not
be constant for different measurements, because the fish’s orientation may
change. TS for a species must therefore be considered a stochastic variable,
and its mean value is the average of many measurements. Note that this
is the average of σbs values and not TS values themselves, because TS is a
logarithmic measure of σbs.

TS of different types of fish has been measured in situ and on caged or
even unconscious fish. Caged fish may be filmed while measurements are
performed, to provide information about their tilt angles and behaviour. On
the other hand, it is possible that the stress of being caught and caged affects
the behaviour of the fish, so that they do not move in a way typical for their
species.

The measurement of target strength is a main topic in this thesis.
Nonlinear propagation of sound, as described throughout Chapter 5 might
influence these measurements. This must then be accounted for before using
them in abundance estimations. It might also be possible to obtain better
measurements by exploiting nonlinear effects. This will be investigated
further in later chapters. Fisheries acoustics and target strength will be
revisited in Section 5.4, after introducing some important aspects of linear
and nonlinear propagation of sound in the next two chapters.



Chapter 4

Linear propagation of acoustic

fields and the ASA

In this chapter, a method for calculating linear diffraction will be presented.
This method is called the angular spectrum approach (ASA). The ASA
is often used to numerically simulate acoustic propagation, and has been
exploited for this purpose in this thesis. The ASA has been widely
implemented because it takes advantage of the powerful fast Fourier
Transform (FFT), which reduces computation time.

The definition of the angular spectrum is given in Section 4.1, and in
Section 4.2, the angular spectrum approach is presented. The resulting
algorithm for linear field propagation is given in Section 4.3. This algorithm
will be modified in Chapter 5 by including a nonlinear substep. Some known
errors of the ASA and their remedies are presented in Section 4.4, before
moving on to multistep propagation in Section 4.5.

For a more thorough derivation of some of the equations in this chapter,
see Appendix B.

4.1 Definition of the angular spectrum

We will consider a sound wave traveling in space in the positive z-direction.
The source of the wave is a plane transducer placed in the plane z = 0,
which is thereby known as the source plane. The transducer vibrates with
frequency f and the field in the source plane is denoted by v(x, y, 0).

The wave can be viewed as a collection of waves, each with its own
wavenumber vector k and weight. The waves whose wavenumber vector
points in or close to the direction of propagation carry the most weight. Had
the source been a point source, however, the field would have been spherically

21
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(a) Source plane and two successive
planes.

(b) Propagation angles of a plane
wave.

Fig. 4.1: Geometry and coordinate system for the RSD formula.

symmetric, and all waves would have been weighted equally. Following
Huygens’ principle as described in Chapter 2, we may choose to view the
transducer as a collection of such point sources. We then obtain a spatial
frequency spectrum of the source field as the linear sum of their contributions.
From theory (Johnson and Dudgeon 1993), we know that this is equal to the
two-dimensional Fourier transform (given in Appendix B) of the aperture

V (kx, ky; 0) = F {v(x, y, 0)} =

∞
∫∫

−∞

v(x, y, 0)e−j(kxx+kyy)dxdy, (4.1)

wherein we recognize the expression for plane waves from Eq. (2.7).
Taking the two-dimensional Fourier transform of the field is equivalent
to decomposing the field into a sum of plane waves (Christopher and
Parker 1991b). Realizing this, Eq. (4.1) tells us that the plane wave
with wavenumber vector k = (kx, ky, kz) has weighting V (kx, ky). Here,
kx = k cos(θx) = k nx and ky = k cos(θy) = k ny. Only the (kx, ky)
components are needed because of the relation

kz =
√

k2 − k2
x − k2

y = k
√

1 − n2
x − n2

y.

We may rewrite the spatial frequency spectrum in Eq. (4.1) to obtain

V (nx, ny; 0) =

∞
∫∫

−∞

v(x, y, 0)e−jk(nxx+nyy)dxdy. (4.2)
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The direction cosines nx and ny will form the orientation of k with respect
to the coordinate axes, for each wave component. The concept is illustrated
in Fig. 4.1(b). This makes the plane waves travel over a spectrum of angles,
and Eq. (4.2) is thereby referred to as the angular spectrum. In literature,
this term is also often used for Eq. (4.1), although this is not technically
correct, as it is not expressed through its direction cosines.

4.2 The angular spectrum approach (ASA)

In Section 2.3, Rayleigh’s integral (the RSD formula) was defined as a
mathematical realization of Huygens’ principle. As this is the starting point
for our derivation of the angular spectrum approach (ASA), we will now
consider this formula in more detail. Therefore, the RSD formula (Eq. (2.10))
is restated here

p(x, y, z) = −jωρ

∫∫

S

v(x′, y′, 0)
e jkr

2πr
dx′dy′, (4.3)

where r = [(x − x′)2 + (y − y′)2 + (z)2]1/2.

The idea of the ASA is that a known field in a plane z0 can be used to
model the field in a parallel plane z1 some distance ∆z away. At each point
on z1, the field will be a sum of field contributions from all the points across
the source plane, as is stated by the RSD formula. The field v(x, y, z1) at z1

could be calculated by taking the inverse transform of the angular spectrum
V (nx, ny; z1). But diffractive propagation will cause the angular spectrum at
z1 to be different from that at z0, so V (nx, ny; z1) is not known.

Luckily there is a linear relation between the two field profiles.
This relation can be described by a two-dimensional transfer function
H(kx, ky; ∆z) in the spatial frequency domain, or a point spread function
h(x, y; ∆z) in the spatial domain. By defining (Zemp 2000)

h(x, y, ∆z) = −jωρg(x, y, ∆z) = −jωρ
e jkR

2πR
, (4.4)

where R = (x2 + y2 + ∆z2)1/2 and g(x, y, ∆z) is the point source Greens
function, we may rewrite Eq. (4.3) in condensed form. Through the definition
of the Rayleigh integral, we may then view the field propagation as a
convolution at z = ∆z

p(x, y, ∆z) = v(x, y) ∗ ∗ h(x, y; ∆z), (4.5)
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where ∗∗ denotes two-dimensional convolution. It might be helpful to think
of h as the impulse response of the system, relating diffractive propagation
to the familiar case of linear, time-invariant filters.

It is a well known fact that convolution of two functions in the time
or spatial domain is equivalent to inverse transforming the product of their
Fourier transforms. Applying the convolution theorem to Eq. (4.3), and
noting that (Williams 1983)

F
{

e jkR

2πR

}

= j
e j∆zkz

kz

,

we obtain a formula for the pressure field at ∆z

p(x, y, ∆z) =
ωρ

2π

∞
∫∫

−∞

V (kx, ky)
e j(kxx+kyy+∆zkz)

kz
dkxdky. (4.6)

Instead of pressure, one may choose to compute normal particle velocity.
This is assumed to lead to less ripple in the results (Wu, Kazys, and Stepinski
1996b). Pressure and velocity is related to one another by the impedance
relation (Williams 1983)

v =
kz

kρc
F−1 {P} , (4.7)

which leads to the expression for the velocity field

v(x, y, z) =
1

2π

∞
∫∫

−∞

V (kx, ky) e j(xkx+yky+∆zkz) dkxdky (4.8)

=
k

2π

∞
∫∫

−∞

V (nx, ny) e jk(xnx+yny+∆znz) dnxdny for z ≥ 0,

where V (nx, ny) is the angular spectrum as given in the previous section.

4.3 Implementing linear propagation

Eq.(4.8) is an exact expression for the diffraction of a linear velocity field.
However, for most fields, an analytical solution to this formula cannot be
found, and we need to find a numerical approximation. This is achieved by
a numerical implementation of the ASA.
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The angular spectrum approach is based on transforming and inverse
transforming acoustical fields. This fact makes it possible to make use of
the FFT in the calculations. Williams and Maynard (1982) computed a
field using 4096 complex data points, and in this case the FFT increased
the computation speed by a factor of 400 compared to a two-dimensional
numerical integration. However, the use of a discrete Fourier transform can
also seriously distort the results with bias errors. This is discussed in Section
4.4.

There are two different approaches to implementing linear diffraction.
One samples h in the spatial domain, the other its transform H directly. In
the articles by Christopher and Parker (1991a and 1991b), these methods
are referred to as the spatially sampled convolution (SSC) algorithm and
the frequency sampled convolution (FSC) algorithm, respectively. They
applied the ASA to the case of circular symmetric sources, allowing them
to replace the FFT with a quicker discrete Hankel transform. The following
implementation is an extension to non-symmetric sources, a version akin to
that of Wu et al. (1996a).

The linear algorithm

The algorithm is here presented for the 2-D case, but extension to the case
of 3-D fields is straightforward.

1. Select a source plane of width D, being larger that the extent of the
source, in the middle of which the source is located.

2. Determine a spatial sampling frequency Fs for properly sampling the
source plane. The sampling interval will be given by ∆d = 1/Fs,
making the number of samples along the plane width N = D/∆d.
Let the extent of the source be 2A, so that the number of samples
for the source is Lx = 2A/∆d. If Lx is odd, we need to correct for a
half-sample length phase shift error, which will be shown in Section 4.4.

3. Using N and Fs as determined above, compute the samples of v(x, 0)
to obtain the discrete form vD(ix∆d, 0), where ix =−(N/2)+1,··· , N/2.
Perform the DFT of vD(ix∆d, 0) and obtain the angular spectrum
VD(mx∆f), where mx =−(N/2)+1,··· , N/2 and ∆f = 1/D = 1/N∆d is
the sampling interval in the frequency domain.

4. Compute the specified samples of h(x, ∆z), and find the DFT of them,
H(mx∆f). Alternatively, sample H(mx∆f) directly.
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5. At each point on z1, obtain the acoustical field vD by making a complex
summation of the N plane waves. These waves travel in the directions
(nx, nz) = (λmx∆f,

√

1 − (λmx∆f)2 ) with amplitudes VD(mx∆f).
The summation is made by taking the inverse DFT of the complex
product VD(mx∆f) · H(mx∆f).

The ix are discrete spatial indices of the source plane, as illustrated in Fig. 4.2.
When implementing the algorithm, the spatial indices need to be positive
integers, and we therefore introduce a shift by adding (N

2
−1) to the ix -indices,

creating a new set of spatial indices i′x = 0, 1, · · · , N −1. Now ix = (i′x−N
2

+1)

and x = (i′x −N
2

+1)∆d.

The mx are discrete spatial frequency indices. Having mx range from
−(N/2)+1 to N/2 means that all spatial frequencies larger than the Nyquist
frequency are interpreted as negative spatial frequencies by subtracting N
from them (Orofino and Pedersen 1993a). The DFT is however defined as a
sum over spatial frequencies ranging from 0 to N − 1 (see Appendix), so mx

needs to be shifted as well.

Fig. 4.2: Discretization of the source plane and source.

In the plane located at ∆z, we can now calculate the field at each point
by first obtaining the angular spectrum

VD((m′

x −N
2

+1)∆f) = ∆d
N−1
∑

i′x=0

v((i′x −N
2

+1)∆d) e−j 2π
N

(i′x(−N
2

+1)), (4.9)
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and then inserting it into

vD((i′x −N
2

+1)∆d) = N∆f e j 2π
N

(i′x(−N
2

+1))

×
N−1
∑

m′

x=0

VD((m′

x −N
2

+1)∆f) e j∆zkze j 2π
N

i′xm′

x .
(4.10)

These equations are the numerical implementation of Eq. (4.8), and their
derivations are given in Appendix B.

4.4 Errors in the angular spectrum

Wu et al. made a thorough investigation of the numerically implemented
ASA in their papers (Wu, Kazys, and Stepinski 1996a, 1996b and 1997b).
Following their argumentation, three problems arise when implementing the
algorithm as is. Two aliasing errors are made, one in each domain, as a result
of discretizing. Also, discretizing the source into an even number of samples
makes the source center at x = −∆d/2, which creates a half-sample length
phase shift. This shift error is easily removed by shifting the phase in the
spectrum by the same negative amount – in other words, by multiplying VD

by e−j2πmxφ/N . Here, φ = 1/2 when L is even, otherwise φ = 0.

Spatial frequency aliasing and the DSFT

The first aliasing error is made in the spatial frequency domain, and is a
result of performing the DFT on a source of finite size. This will not equal
the exact angular spectrum, as is pointed out in the first article by Wu et

al. (1996a). For a planar source with normal velocity distribution u(x) = 1,
the analytical Fourier transform in discrete form is

VD(mx∆f) = L∆d sinc
(πLmx

N

)

, mx = −(N/2) + 1, . . . , N/2 ,

but the phase corrected DFT for the same source is

VD(mx∆f) = L∆d
sin(πLmx/N)

L sin(πmx/N)
) , mx = −(N/2) + 1, . . . , N/2 .

The difference between the two is their denominators, and will grow with
increasing mx. Hence the difference is bigger for larger spatial frequencies
fx = mx∆F = nx/λ. This will ultimately overestimate the calculated near
field.
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A high sampling frequency will generally help reduce this aliasing error.
From theory (Johnson and Dudgeon 1993) we know that the spatial sampling
frequency must be larger than or equal to the Nyquist rate, which is 2 times
the bandwidth of the signal. But, seeing as a finite source produces a band-
infinite spectrum, the aliasing cannot be avoided.

In their article, Wu et al. propose a method called the discrete sinc-Fourier
transform (DSFT) which eliminates the frequency aliasing error for planar
sources. It is claimed that the analytical Fourier transform is obtained in a
discrete form simply by multiplying the angular spectrum given by Eq. (4.9)
with a sinc function. So, we obtain an exact angular spectrum given by

VD((m′

x −N
2

+1)∆f) = sinc(
πmx

N
) e−j2πmxφ/N

× ∆d

N−1
∑

i′x=0

v((i′x −N
2

+1)∆d) e−j 2π
N

(i′x(−N
2

+1)) .

(4.11)

As the sum multiplied by ∆d is simply the DFT of v(x, 0), the FFT is still
applicable.

Spatial aliasing – sampling and windowing

The other aliasing problem is the well known spatial aliasing error due to the
intrinsic periodicity of the DFT’s spectrum and undersampling of H .

One reason for this error is that the linear convolution in Eq. (4.3)
becomes a circular convolution when using the discrete form of the Fourier
transform (Oppenheim and Schafer 1999).

Whether or not these operations give the same result, is dependant on
the length of the DFTs compared to the length of the sequences which are
to be convolved. If the sequences are of lengths L and P , respectively, the
operations are equal if the DFT is of length L + P − 1. This means that the
sequences need to be zero-padded if this is not the case.

The circular convolution may be interpreted as having false replicated
sources in the source plane, which may contribute in the far field and seriously
distort the results there. Replicated sources vibrate in phase with the actual
one, having the same velocity distribution. The sources are located along
the source plane a distance D apart. Zeropadding the source plane will
push them further apart, because this corresponds to a larger D. Hence the
effect of the spatial aliasing will be moved further into the far field. Fig. 4.4
illustrates the idea of the zero-padding.
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Spatial aliasing is also related to the undersampling of the transfer
function H , which is the DFT of h. Inside the radiation circle

k2
x + k2

y = (
2πf

c
)2 ,

H(kx, ky) has magnitude 1, and tapers off exponentially to zero beyond the
circle. Waves with wavenumber vectors outside this region correspond to
evanescent waves. The evanescent tail of H will be aliased back into the
spectrum, but is typically of a negligible order if the steps ∆z are of the order
of a wavelength or smaller (Zemp, Tavakkoli, and Cobbold 2003). Zemp et

al. found that, if large steps were to be used, aliasing became more of a
problem.

On and about the radiation circle, H is subject to dense oscillations, and
may become undersampled if waves of such propagation angles are allowed to
contribute. Wu et al. discretized and plotted the magnitude and phase of H
for a planar source using ∆f = 1/512λ. The results show how the oscillations
become denser for larger direction cosines nx. For nx beyond some critical
value, H is undersampled. As ∆f = 1/D, enlarging D implies a denser
sampling in the spatial frequency domain. This will make the critical value
of nx larger. However, Zemp et al. claim that if the spatial frequency extent
kmax = 2π/∆d contains a part of or all of the radiation circle, H cannot be
sampled properly even if ∆f is small. They then propose the sampling of h
instead.

As Zemp et al. prioritized the use of large steps, they put much effort into
finding an appropriate sampling scheme. They did not base their approach
on choosing between the SSC or the FSC algorithm initially. Their algorithm
samples h or H based on whether the angular range includes the radiation
circle or not. How much of the circle that is included in the spatial frequency
extent will determine whether to sample h or H, and the sampling interval
needed in each step. This sampling interval may be different from the
sampling scheme of the source plane. As might be clear from Chapter 5, this
scheme may also be different for each harmonic in nonlinear propagation.

The use of a very large ∆z has not been the top priority in this thesis,
and the choice has been to apply the FSC algorithm. The affect this choice
has on the stepsize is investigated further in Chapter 6.

To reduce the problems associated with the undersampling of H , a
window is applied to the data, which forces the edges to be zero. The DFT
will then repeat itself with a set of windowed data. The Tukey window is
chosen, because it consists of a large plateau equal to one, which results in
a large area of unaffected data. An example of a Tukey window is shown
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in Fig. 4.3. The edges of the window are cosine-tapered, and outside the
windowed region, the source plane is zeropadded, as shown in Fig. 4.4.

Applying a Tukey window in the spatial domain corresponds to a lowpass
filter in the spatial frequency domain. This helps reducing the spatial
aliasing problems, because waves of large direction cosines are not allowed to
contribute. In effect, this reduces the angular range.

0 20 40 60 80 100 120 140
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1

Fig. 4.3: Example of a Tukey window. This window is of length 128 and has a
ratio of taper equal to 0.2.

If the angular range is truncated, it will lead to a great reduction of the
spatial aliasing error (Orofino and Pedersen 1993a). Christopher and Parker
used ray truncation to reduce the angular range in their papers (1991b and
1991a). Zemp et al. (2003) found that this was not appropriate for non-
axisymmetric sources, because that would put a radially symmetric bound
on a rectangular spatial frequency domain.

The angular range is also dependent on the choice of sampling frequency.
The sampling frequency Fs should be chosen larger than the Nyquist rate in
order to reduce spatial frequency aliasing. This will determine the maximal
spatial frequency fxmax

, and thereby the angular range nxmax through the
relations

|fx| ≤
Fs

2
, |nx| ≤

λFs

2
and nx = λfx . (4.12)

As D = N/Fs, the spatial aliasing error is sensitive to the angular range for
a fixed D. Choosing Fs wisely thus might help reduce spatial aliasing.



4.5. MULTISTEP PROPAGATION 31

Fig. 4.4: Zero-padding and windowing of the source field. The source field is
applied a Tukey window, and outside this windowed region, the source
plane is zeropadded. This extends the length of the DFT so it becomes
equal to N . The size of the zeropadded and windowed region is equal to
D.

If Fs = 2/λ the angular range is nx = cos(θx) = [−1, 1]. In this case,
all the plane waves are allowed to contribute to the field, and we cannot
avoid the spatial aliasing. Increasing Fs above this will include evanescent
waves, which only contribute to the extreme near field (Wu, Kazys, and
Stepinski 1996a). A small angular range will however make the ASA less
convergent, because some information is lost in the process. Most of the
energy is contained in waves of small direction cosines, though.

Combination a large discretization size D and a high sampling frequency
will result in a high computational burden, because the size of the DFT
grows. Especially in the case of 3-D fields, this may cause problems with
both memory and computation time. It suffices to say that there will always
be a trade-off between the speed and the accuracy of the algorithm. The
parameters used throughout this thesis will be presented in each case.

4.5 Multistep propagation

As mentioned previously, the intention in this thesis is to use the algorithm
above to simulate nonlinear acoustic fields. To do so, a nonlinear substep will
be added between adjacent planes. So far, we have implemented Eq. (4.10)
by inserting z’s directly into the transfer function. So, at each step the source
plane has been the plane in which the source is actually located. The new
field was calculated at ever growing distances z based on the DSFT spectrum
of the actual source, given by Eq. (4.11). This method will from here on be
referred to as single-step propagation.
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To prepare for nonlinear propagation, we introduce a multistep version of
the algorithm. In this version, the source field is updated to be the field in
the plane just visited. Hence, the angular spectrum needs to be recalculated
at each step. This is done by performing the DFT on the field recently output
from the algorithm. The DSFT can no longer be used, as it is only valid for
planar-like sources of finite extent. The multistep algorithm is investigated
further in Chapter 6.



Chapter 5

Nonlinear wave propagation

The preceding chapters have dealt with the linear propagation of sound.
In this chapter, the theory for nonlinear wave propagation is presented. A
nonlinear version of the wave equation will arise in Section 5.2, and we will see
how nonlinearity effects the waveform. An important application of nonlinear
propagation, tissue harmonic imaging, is described in Section 5.3. Section
5.4 briefly discusses the effects of nonlinearity in fisheries acoustics. The
chapter culminates in the algorithm for nonlinear propagation of acoustic
fields, presented in Section 5.5. Here a nonlinear substep has been added
to the linear algorithm. Some issues concerning the implementation of this
algorithm is further discussed in Section 5.6.

Verification of the algorithm is done in the Chapter 6, for both linear and
nonlinear examples.

5.1 Motivation

In 1686, Newton obtained the first formula for sound speed (Hamilton and
Blackstock 1998)

b =

√

P0

ρ0

, (5.1)

based on an assumption that the relationship between pressure and density
was linear

P

P0
=

ρ

ρ0
.

This was known as Boyle’s law at the time. Eq. (5.1) would later be
known as the speed of sound in an isothermal gas, thereby the symbol
b. However, Newton’s calculations were around 16% lower than the

33
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corresponding measurements. This fact remained a mystery for over a
century until Laplace finally gave the explanation in 1816. The presence
of sound will in fact change the local temperature of the gas, due to the
compressions and rarefactions described in Chapter 2. So heat does not
flow along with the wave propagation. For an adiabatic gas (Hamilton and
Blackstock 1998)

P

P0
= (

ρ

ρ0
)γ ,

where γ is the ratio of specific heats. So, we see that the pressure-density
relationship is actually not linear, and this affects the sound speed in the
medium. The adiabatic sound speed given by Laplace is

c0 =

√

γP

ρ
.

The field of nonlinear acoustics is in itself about as old as the linear one.
The nonlinear wave equation, which will be presented below, was developed
in the late 1750’s (Hamilton and Blackstock 1998). In spite of this, it was still
assumed that sound propagated in a linear fashion. There were a couple of
reasons for this assumption. Most acoustical motions were considered small
enough so that the nonlinear effects would be small compared to the linear
ones. This would mean that sufficient results were obtained through linear
modeling, and nonlinear effects could safely be neglected. Also, to solve
the nonlinear equations would be mathematically difficult, if not impossible,
without the aid of powerful computers.

The progress in the field has for these reasons been very slow, but for the
last five decades or so, interest and activity in the field of nonlinear acoustics
have increased. The improvements of computers have lead to relatively quick
algorithms which allow us to solve problems that would have been impossible
to solve a few years ago. The development of such an algorithm is one of the
main goals in this thesis.

5.2 The nonlinear wave equation

In Chapter 2, we defined the linear wave equation. By making a small signal
approximation, we kept only the first term from the Taylor expansion in
Eq. (2.3). This gave us a linear relation between pressure and density, which
led to the description of linear propagation.

However, neglecting higher power terms in the equations of motion will
result in an approximation, only valid in the small signal limit. Many
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applications use high amplitude ultrasonic fields, such as medical ultrasound
and many sonars. In these cases, the initial pressure is larger than what is
governed by the small signal limit, and the nonlinear effects are typically
non-negligible. As we will see in Section 5.3, nonlinear effects may also work
to our advantage in some situations. For these reasons, we need to be able
to model finite acoustics as well. We begin by considering anew the equation
of state.

A nonlinear and more accurate pressure-density relationship is obtained
by retaining the first two terms of Eq. (2.2). (We assume constant entropy,
and drop the third term.) In this case, Eq. (2.3) becomes

p′ = A(
ρ′

ρ0

) +
B

2!
(
ρ′

ρ0

)2, (5.2)

where ρ′ = ρ − ρ0 and p′ = p − p0. Remembering from Eq. (2.4) that

A = ρ0c
2
0 and B = ρ2

0 (
∂2p

∂ρ2
)0, (5.3)

we can rewrite Eq. (5.2) to

p = c2
0ρ +

c2
0

ρ0

(

B

2A

)

ρ2.

A measure of the nonlinear effects are commonly expressed through the
coefficient of nonlinearity

β = 1 +
B

2A
, (5.4)

where the first term is due to convection, and the latter (B/A) is the nonlinear
parameter. For a linear medium, B/A = −2 and β = 0. Typical values for
β is 3.5 in freshwater and 4.6 for a dog’s kidney.

The nonlinear wave equation arises from these new expressions as

∂2φ

∂t2
− c2

0△φ =
∂

∂t

[

(∇φ)2 +
B

2Ac2
0

(
∂φ

∂t
)2 +

b

ρ0
△φ

]

, (5.5)

where φ is the velocity potential, v = −∇φ. The absorption coefficient b
is a constant determining the effects of viscosity and heat conduction. The
derivation of Eq. (5.5) is beyond the scope of this thesis, but can be found
in the book by Enflo and Hedberg (2002).
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Fig. 5.1: Distortion of a transmitted sinusoid. Waveform shown at different
stages. (a) Transmitted pure sinusoid of fundamental frequency. (b)
Distortion becoming noticeable. Higher harmonics are generated and the
fundamental loses energy to them. (c) Fully developed sawtooth wave.
(d) Decaying sawtooth wave. The higher harmonics are attenuated. (e)
Old age region. Only an attenuated version of the fundamental remains.

Nonlinear effects on the waveform

Nonlinear effects will contribute to the wave speed, which will be given by
the Eularian speed of sound (Hamilton and Blackstock 1998)

c = c0 + βv(x),

where v(x) is the particle velocity at point x. This means that the wave speed
is no longer determined entirely by the physical properties of the medium,
but also depends on local particle velocities. The higher the value of β, the
larger the nonlinear effect on the propagation speed will be.

The wave speed will generally be higher in compressed regions, causing the
wave to travel faster through the medium during its compression phase. This
is because the pressure and temperature is increased in this area. During a
rarefaction, the opposite happens, and the wave will slow down as the water
particles are drawn apart. This varying sound speed will in turn cause a
distortion of the waveform. The distortion is accumulative, and will be more
severe for higher amplitude waves, when v(x) is larger.

Fig. 5.1 illustrates a transmitted pure sinusoid of frequency f0. This
initial frequency is known as the fundamental frequency of the wave. As it
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propagates, the steepness of the wave will rise, and the sinusoid will gradually
approach a shock wave if the attenuation in the medium is not too large. If
the transmitted wave is a pulse, it might transform into a wave of triangular
shape.

Distortion of the waveform in the time domain will generate higher
components in the frequency domain. These are harmoniously related to
the fundamental, i.e. their frequencies are multiples of the fundamental’s
frequency. Energy is transferred from the fundamental into the higher
harmonics as the wave propagates, and more harmonics are generated as we
go along. The higher harmonics will be dampened after propagating some
distance, and only an attenuated version of the fundamental might exist in
the far field. This is sometimes referred to as the old age region (Shooter,
Muir, and Blackstock 1974). From here, small-signal attenuation is more
important than the nonlinear effects.

There exists a number of formulas, valid for different regions and waves,
to predict the distances to shock formation and old age region. Shooter et

al. made an analysis of these distances for a source of radius 0.9144 meters and
gave predictions for several peak source levels and fundamental frequencies.
They focused their attention to the state of acoustic saturation. In this
state, increasing the amplitude of the source additionally will not increase
the amplitude at the receiver. This may happen if the nonlinear effects are
large enough. All the excess energy from the source will then leak to higher
harmonics and be attenuated.

Predictions of nonlinear effects and shock distances at different param-
eters are useful when performing measurements or simulations. If, for in-
stance, the old age distance is shorter than the shock distance, no shocks
will be formed. The wave will simply attenuate and the nonlinear effects are
negligible.

Attenuation

Attenuation of the nth spectral component can be described by

vn = (vn)0 e−α(n)z ,

or
∂vn

∂z
= −α(n)vn,

where α(n) is an attenuation coefficient which depends on frequency. This
is usually given by α(n) = α0(nf0)

2, where α0 is a constant, which gives a
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quadratic dependency on frequency. By rewriting it to α(n) = α0(nf0)
b, we

get a more general dependency, defined by b.
From these equations, it is obvious that waves with higher frequencies

will be attenuated more. Hence, the penetration of higher harmonics is more
shallow compared to the fundamental. This contributes to dampen the build-
up of higher harmonics at large axial distances.

5.3 Harmonic imaging

The nonlinear propagation of ultrasound may be utilized to substantial
advantage in imaging situations. A well-known example is the technique
of harmonic imaging, described in the current section.

Ultrasound has been used in medical imaging for years, for example in
diagnostics imaging, cardiology and fetal imaging. This is because it is
relatively cheap and easy to use, and the apparatuses are portable compared
to those used in magnetic resonance imaging (MRI) or computer tomography
(CT). But the main advantage of using ultrasound is that it is non-invasive
and safe for the patient. The disadvantages are that the images are not always
of the best resolution, and the penetration is relatively shallow because tissue
is a highly attenuating medium.

The lateral resolution is given by ∆l = λF/A, where F is the focal depth
and A is the size of the probe. A larger probe would therefore help improve
image quality. However, the size of the probe is often limited. For instance,
for cardiac imaging, the probe can be no larger than the gap between the
ribs. A larger probe would also be more expensive to manufacture.

A higher frequency would also generally improve the resolution. But
higher frequencies are also attenuated more, as shown in the previous section,
so there is a trade-off between resolution and range. Frequencies used in
medical ultrasound range from 2 to 10 MHz, in rare cases up to 30 MHz.
As this determines the range for the given transducer (up to about 20 cm
for 2 Mhz) it also determines what may be imaged with this frequency. For
instance, 30 MHz may be used for intravascular imaging, as it penetrates a
couple of cm at the most. As shock waves could cause damage to tissue, this
also limits the applicable frequencies.

Upon reception, the resolution will be determined by the width of the
mainlobe, as is stated by the Rayleigh criterion1. A narrower mainlobe will

1The Rayleigh criterion is a classical definition of resolution, saying that two plane
waves are resolved if the mainlobe peak of one aperture smoothing function replica falls
on the first zero of the other. In other words, the resolution equals half of the mainlobe
width.
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give better resolution. The second harmonic generally has a narrower beam
profile and lower sidelobe levels than the fundamental. The relative sidelobe
levels are important because they give rise to clutter, or noise, in the images.
Hence, if the receiver is set to receive at the frequency of the second harmonic,
better resolution would be obtained. An additional benefit is that the second
harmonic is easy to filter out from the transmitted fundamental.

Forming images based on the reception of the second harmonic is known
as harmonic imaging. The narrower beam profile might of course be obtained
simply by transmitting the frequency of the second harmonic. However, as
attenuation increases with frequency, this leads to a shallower penetration,
which is not desirable.

The benefits of harmonic imaging in medical ultrasound were discovered
in the 1980’s. Initially, tissue was assumed to be a linear medium, and gas-
filled microbubbles called contrast agents were injected into the bloodstream
to provoke nonlinear effects.

Tissue Harmonic Imaging (THI) became more common in the late 1990’s
(Averkiou, Roundhill, and Powers 1997). It was discovered that tissue is
in fact a nonlinear medium, and no microbubbles are needed for harmonic
generation. In THI, nonlinear effects are a result of nonlinear propagation
and not nonlinear scattering, as in the case with contrast agents.

5.4 Nonlinearity in fisheries acoustics

As the accuracy and range of modern echosounders have increased, the excess
attenuation due to nonlinear effects in water has become apparent. Some of
the transmitted frequencies and power levels often used in fisheries research
may generate nonlinear losses. If neglected, they will result in inexact
estimates of the calculated field or target strength.

The frequencies used in fishery acoustics range from 200 Hz for small fish
in shallow waters to 10 MHz for plankton (Horne 2000). For frequencies of
120 kHz and above, nonlinear losses are a potential problem (Pedersen 2006).
This also depends on the acoustic level and the depth of the transducer.

Echo integration of echoes from transducers that operate at a single
frequency is often used for abundance estimation of fish, as described in
Chapter 3. Remember from Section 3.2 that the beamwidth is inversely
proportional to the frequency. The chosen frequency then determines how
well we can make measurements on small animals, because this determines
the beamwidth for the chosen transducer. But there is a trade-off between
this accuracy and the range of the beam, due to frequency-dependent
attenuation. The choice of frequency therefore depends on the depth and
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size of the targets of interest.
To increase the information we are able to obtain, several frequencies are

often used simultaneously in modern echosounder systems. This might lead
to more accurate results in discriminating different species.

Up to six different frequencies are used in multi-frequency systems. Most
common are the dual-beam echosounders that use two frequencies. Nonlinear
effects will then create waves with energy at the sum and at the difference
of the two original frequencies. If the original waves are close in frequency,
the sum frequency will be very high and the difference frequency will be
low. The sum frequency signal will then be highly attenuated, but the
difference frequency wave will have a much higher range than the fundamental
frequency signals, though with a poorer resolution.

THI is today the default mode for medical imaging, and it is well known
that this leads to improved resolution and clutter suppression in the images.
The idea of using the principle of harmonic imaging in sonars arises quite
naturally. By receiving at twice the fundamental frequency, it might be
possible to exploit the nonlinear effects even with a single-beam transducer.
This is generally not done today, because the bandwidths of typical sonars
are too small to receive the second harmonic. Disregarding this particular
problem, it is of interest to know if the second harmonic could be used for
measuring target strength, or possibly in imaging situations. In view of this
question, the development of the second harmonic of an appropriate source
will be investigated in Chapter 7.

5.5 Implementing nonlinear propagation

Modeling finite amplitude sound beam propagation includes the effects of
diffraction, attenuation and nonlinearity on each harmonic. This will be done
in an incremental propagation where the fundamental v1 and the harmonics
vn are propagated together in steps of length ∆z. This is analogous to the
multistep, linear algorithm, which was thoroughly described in Chapter 4.

An operator-splitting approach

We adopt the phenomenological method implemented by Christopher and
Parker (1991a), and calculate the effects of diffraction, attenuation and
nonlinearity separately. This operator-splitting technique is valid for small
steps ∆z, where these effects may be considered independent.

Diffraction is accounted for by means of the linear algorithm, and
nonlinear effects are added to the result in a separate substep. The nonlinear



5.5. IMPLEMENTING NONLINEAR PROPAGATION 41

effects are calculated in the frequency domain via a Fourier series solution to
Burgers equation, introduced below, which includes attenuation.

The operator-splitting technique may be written

∂v

∂z
= LA,N,D · v ≈ LA · v + LN · v + LD · v,

where LA, LN and LD are operators which represent attenuation, nonlinearity
and diffraction, respectively. We can obtain a diffraction sub-equation by
considering only

∂v

∂z
= LD · v,

to which a solution at z + ∆z is the propagation operator ΓD,∆z. Similarly,
we obtain the operators ΓA,∆z and ΓN,∆z as solutions to the attenuation and
nonlinearity sub-equations.

The model used by Christopher and Parker is equivalent to a first-order
operator splitting scheme

v(x, y, z + ∆z; t) = ΓD+A,∆zΓN,∆zv(x, y, z; t) + O(∆z2).

So the effects of diffraction and attenuation are combined in their algorithm,
whereas nonlinear effects are added in a separate nonlinear substep.

Zemp et al. (2003) use a similar approach in their model, but they gain
considerable computational efficiency by using their second order operator-
splitting scheme

v(x, y, z + ∆z; t) = ΓD,∆z/2ΓN+A,∆zΓD,∆z/2v(x, y, z; t) + O(∆z3).

The idea of the substeps in the operator-splitting method is illustrated in
Fig. 5.2. The diffraction substep is divided into two smaller substeps ∆z/2,
and the nonlinear effects are added to the intermediate result. This approach
allows for larger ∆z, which implies that fewer steps are needed in order to
reach the desired propagation distance. In the referred article, Zemp et

al. claim to need only 23 fractional steps for a case where the algorithm
of Christopher and Parker would require hundreds or thousands. For this
reason, the second order operator-splitting approach has been chosen in this
thesis.

However, Zemp et al.’s ability to use large stepsizes were not only a result
of the second order operator-splitting approach. An important contributory
effect was their adaptive sampling scheme, described in Section 4.4. As the



42 CHAPTER 5. NONLINEAR WAVE PROPAGATION

FSC algorithm is implemented in this thesis, we might expect to be forced
to use a stepsize larger than Zemp et al.’s, but still larger than Christopher
and Parker’s. Different stepsizes are tested out in Chapter 6.

Fig. 5.2: Schematic of the second order splitting approach between two planes a
distance ∆z apart. The effects of diffraction, attenuation and nonlinearity
are approximated to the second order.

Burgers’ equation and the FDSBE

Solving the nonlinear wave equation, Eq. (5.5), might be impossible to do
numerically, and so we use model equations to numerically calculate nonlinear
propagation. If ∆z is small, the incremental change of particle velocity v due
to nonlinear effects and attenuation can be written

v(z + ∆z, t) = v(z, t) +
∂v

∂z
∆z. (5.6)

This is a truncated power series where higher order terms are neglected. To
calculate ∂v/∂z, a number of different models are available, each valid under
different simplifying conditions. An excellent review of several approaches is
given in the book by Hamilton and Blackstock (1998).

A widely used model equation is the nonlinear parabolic equation by
Khoklov, Zabolotskaya and Kuznetsov, known as the KZK-equation. The
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KZK-equation has a few drawbacks. It uses a parabolic approximation to
calculate the field, which will not be valid in the near field region, or far off-
axis in the direction of propagation. It is also only valid for thermoviscous
fluids.

Another highly invoked equation is the Burgers’ equation, given by (1983)

∂v

∂z
=

βω0

2c2
0

v
∂v

∂τ
+ Γ

∂2v

∂τ 2
, (5.7)

which will also be used in this thesis. In this equation, ∂v/∂z is the
differential change of particle velocity and τ = ω0t − kz. The constant Γ is
related to thermoviscous dissipation, not to be confused with the propagation
operator ΓD,∆z above.

In the nonlinear algorithm, we are interested in the differential change of
the n-th harmonic separately. This can be written as

∂vn

∂z
= j

βω0

2c2
0

∞
∑

k=−∞

(n − k)vn−kvk − α0(nf0)
bvn, (5.8)

where the last term on the right hand side represents viscous losses
(attenuation). The derivation of this equation can be found in the article
by Haran and Cook, but there is an inconsistency in their notation which
results in an error in the constant term. Their version should be divided by
a factor 2 to give Eq. 5.8. The details of the reason for this error will not
be described here, but are given in a comment by Trivett and Van Buren
(1984).

To calculate Eq. (5.8) numerically, the series must be truncated to a finite
number of harmonics. Calling this number M , and changing the summation
term, the equation can be rewritten to

∂vn

∂z
= j

βω0

2c2
0

(

n−1
∑

k=1

kvkvn−k +
M
∑

k=n+1

nvkv
∗

k−n

)

− α0(nf0)
bvn, (5.9)

where ∗ denotes complex conjugation.

The first sum represents the sum frequency generation. In other words,
this is the accretion of the n-th harmonic by combining other harmonics
whose frequencies sum to nf0. Likewise, the second summation represents
depletion of the n-th harmonic to other harmonics with a difference frequency
of nf0. Eq. (5.9) can be referred to as the FDSBE, a frequency domain
solution of Burgers’ equation.
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The nonlinear substep

The nonlinear substep consists of applying the FDSBE to the multi-harmonic
field recently output by the linear substep. This field is the intermediate
result at z + ∆z/2, and will hereafter be denoted v′, with the subscript n for
the n-th harmonic.

Inserting Eq. (5.9) into Eq. (5.6), the ixiy-th iteration of the nonlinear
substep may be written

vn(ix, iy, z + ∆z/2) = v′

n(ix, iy, z + ∆z/2)

+
jβπf∆z

c2
0

(

n−1
∑

k=1

kv′

kv
′

n−k +

M
∑

k=n+1

nv′

kv
′
∗

k−n

)

− α0(nf0)
bv′

n∆z, n = 1, 2, . . . , N.

(5.10)

Note that the (ix, iy, z + ∆z)-terms have been dropped in the summations,
to make the equation more readable.

Recall that ix and iy denotes lateral samples of the source plane. and the
computation thus must be performed for all ix and iy for each harmonic. The
FDSBE assumes that the solution can be represented by a finite number of
harmonics, again denoted by M .

The nonlinear algorithm

The complete algorithm for nonlinear wave propagation can now be
presented.

1. Choose the extent of the source plane D, the sampling rate Fs and
the stepsize ∆z, as described in the linear algorithm. Also choose the
number of harmonics to be used during the calculations.

2. Sample the source function spatially, to obtain the samples v1. Initially,
all other harmonics vn will be zero.

3. Sample the normal velocity point spread function for all harmonics, hn,
and perform the DFT to obtain the samples Hn. Alternatively, sample
the analytical Fourier transform Hn directly. For either option, Hn will
be the transfer function for a step of length ∆z/2.

4. Perform the DFT of the source function vn and window it. Multiply
the result of each harmonic with its transfer function Hn and then take
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the inverse DFT. This will propagate the field a distance ∆z/2, and
result in the intermediate v′

n.

5. Add nonlinear effects to v′

n by inserting it into Eq. (5.10).

6. Repeat step 4 for v′

n to propagate one more ∆z/2 step. This is the
resultant field vn in the step ∆z.

7. Repeat step 4 trough 6 until the desired propagation distance is
obtained.

5.6 Implementation issues

There are still a few problems related to implementing a nonlinear
propagation algorithm. These are discussed here before moving on to
verification in the next chapter.

Memory usage

One large challenge in implementing nonlinear propagation is the memory
usage. A matrix of double precision is needed to hold the velocity field of
every harmonic at each step. The size of the matrix is M × N × N , where
N = D/∆d and M is the number of harmonics included in the calculations.
So, dependent on the choice of sampling scheme, as discussed in Chapter 4,
and the number of harmonics included, the size of the matrix needed varies.

Each harmonic has its own propagation function Hn, so a matrix of equal
size is needed to hold H . As H is determined by the steplength, H can be
calculated once and stored at the beginning of the simulation if all planes
are equidistant from one another. It could also be stored on disk and Hn

could be read into memory each time it is needed. This would be very time-
consuming, but allows for larger matrices to be used.

The size of the matrices determine if they can be held in virtual memory
at all. This limits our possible choices of parameters, especially in the 3-D
case. It also determines the size of the DFT, which affects computation time
to a great deal.

To limit the virtual memory needed in the simulation, in-place calculation
is used. At each step ∆z, the matrix v contains the velocity field for that
step. This field may be stored on disk if needed at some later time.
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Low attenuation

For water, the value of b in the attenuation term in Eq. (5.9) is equal to 2.
This low value leads to a small attenuation of even the highest harmonics,
and in literature, attenuation is often neglected for propagation problems
in water. With a small or non-existing damping, more harmonics need
to be modeled, and this might lead to problems with both memory and
computation time.

Christopher and Parker mention in their article (1991a) that if no shocks
are anticipated, five to ten harmonics are adequate to describe a continuous
wave field. However, to compute propagation with shocks would require 30
to 50 harmonics. They estimate the size of the nonlinear effects by using the
maximum amplitude of the linear field as input to the FDSBE.

To limit the number of harmonics necessary for the field calculation, they
propose to artificially ramp up the attenuation. This is done by replacing
the exponential coefficient b by b(n) = b + [(n − 1)q/N ]. This version of
the attenuation function has been included in the program. It should still
allow for accurate modeling because very little energy is contained in the
highest harmonics. It is, however, not valid for sinusoidal sources of very
high amplitude involving near-field shocks. Setting q equal to zero will lead
to b(n) = b for all harmonics.

Phase front curvature

The source has an initial normal velocity that is input to the algorithm. At
some subsequent propagation plane, the velocity is then calculated by the
proposed algorithm. However, these are actual, not normal, velocities, and
have some wave or phase front curvature. To correct for this, Christopher
and Parker (1991a) added correction terms to their nonlinear substep by
dividing ∆z and vn(z, i) by cos θ[u1(z, i)]. Here,

θ[u1(z, i)] =
d

dr

[

arctan

(

Im[u1(z, i)]

Re[u1(z, i)]

)]

r=ri

is the angle the phase front of the fundamental makes with the z-axis at
the point (z, i). Their algorithm assumes radial symmetry, so to implement
this, r would have to be replaced by x and y. This would lead to a rather
challenging derivative. Fjellestad (2000) tried to estimate the derivative by a
bilinear interpolation, but found that artificial sources were introduced which
needed to be accounted for. He also gained good results by neglecting this
correction term, and so it has not been included in the model of this thesis
either.
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A note on Burgers’ equation and the FDSBE

During the work on this thesis, the author came across many versions of the
FDSBE in literature. As this was both confusing and time-consuming, the
differences between them are discussed here.

The version given by Haran and Cook has already been mentioned. The
results seem tolerable at first, but tend to infinity for high initial pressure or
for larger propagation distances, as the result is multiplied by 2 for each ∆z
step.

Christopher and Parker (1991b) gave a version equal to Eq. (5.10) but
divided by a factor 2. This version was initially implemented in the nonlinear
simulations in Section 6.4, but resulted in too little energy leaking to the
higher harmonics compared to measurements. Two theses have previously
been concluded on the topic of nonlinear propagation at the University of
Oslo by Synnevåg (1998) and Fjellestad (2000), which are frequently referred
to in this work. Both implemented the FDSBE given by Christopher and
Parker, and in the same simulation obtained the same erroneous results,
with lower value of the higher harmonics. This is not due to the velocity
not being phase corrected, as correct results were achieved in Chapter 6 by
using Eq. (5.10) without phase correcting. As Christopher and Parker also
achieved correct results in the same simulation, the extra 2 is assumed to be
a typo.

In addition Zemp et al. (2003) gave a version of the FDSBE similar to
Eq. (5.10), which had the same constant term. But in their version the
second summation was equal to

N
∑

k=n

nv′

kv
′
∗

n−k instead of
N
∑

k=n

nv′

kv
′
∗

k−n,

with the subscript of the velocity field reversed. This was however not
consistent with the FDSBE given in the thesis by Zemp (2000)

vn(ix, iy, z + ∆z) = v′

n(ix, iy, z + ∆z)

+
jnβπf∆z

2c2
0

(

n−1
∑

k=1

v′

kv
′

n−k + 2
M
∑

k=n+1

v′

kv
′
∗

k+n

)

− α0(nf0)
bv′

n∆z, n = 1, 2, . . . , N,

where both summations as well as the constant term were different. However,
as k ranges to M , the subscript k+n of v′ will range to M +N , which exceeds
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the maximum dimensions of the matrix v′. This plus sign might just be a
typo.

All the different versions were tested in the algorithm, but Eq. (5.10) un-
deniably gave the best results, and is regarded as the correct implementation
of the FDSBE in this thesis.



Chapter 6

Verification

Before we may trust the implemented algorithm to produce correct results,
it must be verified. This will be done in the following chapter by testing it on
various examples from literature. The linear algorithm is tested in Sections
6.1 and 6.2, and on circular sources in Section 6.3. The nonlinear algorithm
is tested in Section 6.4 and finally the choice of step length is discussed in
Section 6.5.

6.1 Verification of the linear propagator

To verify the linear algorithm, it is tested on several examples used by Wu et

al. As in one of their articles (1996a), we consider a linear transducer of width
2A = 32λ operating in water with density ρ = 103 kg/m3. The sound speed is
c = 1500 m/s. Throughout all of the referred article, the sampling frequency
is chosen to be Fs = 2/λ and N = 8192. This gives a discretization size
D = 4096λ, which is chosen so large to minimize the spatial aliasing error.
The main consideration in this chapter is to see if the simulator produces
correct results, and the impact of different parameters will therefore not be
discussed here.

The angular spectra achieved by means of the discrete Fourier transform
(DFT) and the discrete sinc-Fourier transform (DSFT) are presented in
Figs. 6.1(a) and 6.1(b), respectively. Note that the DFT version has been
phase corrected, as L = 64 and thereby even. The difference between these
two spectra will then be dominated by the frequency aliasing. It is displayed
in Fig. 6.1(c). Here we can clearly see that the DFT’s results deviates more
as nx grows, implying larger propagation angles. Fig. 6.1 is indistinguishable
from Fig. 2 in the article by Wu et al.

Utilizing the DFT’s and DSFT’s spectra, the pressure field for z ranging

49
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(a) Magnitude of DFT’s angular spectrum.
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(b) Magnitude of the DSFT’s exact spectrum.
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(c) Difference of the spectra given in (a) and (b).
Note that the vertical axis is blown up by 100.

Fig. 6.1: The DFT angular spectrum compared with the exact spectrum obtained
by using the DSFT, for the transducer with 2A = 32λ. N = 8192,
Fs = 2/λ.
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from 2λ to 400λ is calculated and presented in Figs. 6.2 and 6.3, respectively.
The field is calculated both on the z-axis, giving x = 0, and off-axis, at
x = 2A. Fig. 6.2 is practically identical to the dotted curves in Fig. 3 in the
referred article, showing the DFT results. Wu et al. also implemented the
analytical results (showed with solid lines in the same plots) and the DFT
result deviates from this one in the near field. There is also a small ripple in
the far field, reproduced with our algorithm in Fig. 6.2(a). This ripple is the
remains of the spatial aliasing.

The DSFT-based spectrum gives a better result both on and off the z-
axis, as is shown in Fig. 6.3. Again our algorithm completely reproduces the
results presented by Wu et al., wherein the agreement between the DSFT’s
results and the analytical one is excellent. All that remains is some minor
ripple in the far field, but this is slightly diminished compared to the DFT’s
results.

Other parameters

In search for an optimal choice of parameters, Wu et al. (1996b) tested a
variety of options for the 2-D case. An important test of our algorithm is
to reproduce Fig. 3 in their article, which shows the calculated fields from
the linear transducer for a selection of parameters. They also showed the
analytical solution with solid lines in the same plots.

The predicted results from our model are shown in Fig. 6.4. All plots are
in excellent agreement with the corresponding dotted curves in the article by
Wu et al. These results demonstrate not only the credibility of our model, but
also the importance of choosing parameters wisely. The influence of different
parameters on the results were discussed in Chapter 4.

Note that in all of the figures above, the incremental step ∆z between
planes is 2λ, which gives 200 planes out to the maximum lateral distance of
400λ.

Linear plots in three dimensions

All plots given so far were produced by means of the two-dimensional linear
algorithm. Wu et al. also implemented a three-dimensional version (1997b),
and their results will now be used to verify the three-dimensional algorithm
implemented in this thesis. The source is a rectangular one, of width
2A = 32λ and height 2B = 24λ. In this simulation, Fs = 2/λ and N = 512,
which is an optimal selection of parameters for this simulation, in the region
of interest.
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(a) On the z-axis; x = 0.
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(b) The zooming in of (a).
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(c) Off the z-axis, at x = 2A.
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(d) The zooming in of (c).

Fig. 6.2: Results obtained by using the DFT-spectra for N = 8192, Fs = 2/λ.
Normalized pressure field |P (x, z)|/ρc for the transducer of width 2A =
32λ.
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(a) On the z-axis; x = 0.
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(b) The zooming in of (a).
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(c) Off the z-axis, at x = 2A.
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(d) The zooming in of (c).

Fig. 6.3: Results obtained by using the DSFT-spectra for N = 8192, Fs = 2/λ.
Normalized pressure field |P (x, z)|/ρc for the transducer of width 2A =
32λ. (Figs. (b) and (d) are not given by Wu et al.)
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(a) N = 512, F s = 1/λ.
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(b) N = 1024, F s = 2/λ.
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(c) N = 512, F s = 2/λ.
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(d) N = 1024, F s = 3/λ.

Fig. 6.4: The ASA’s pressure magnitude, calculated on the z-axis for the transducer
of width 2A = 32λ for various choices of N and sampling frequency Fs.
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Fig. 6.5 shows the result from our implementation, which does not deviate
from Wu et al.’s results in their Fig. 5. The ASA’s solution is in this case in
very good agreement with the analytical solution, also implemented by Wu
et al. and shown in their figure.
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(a) x/A = 0 and y/B = 0
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(b) x/A = 2 and y/B = 0

Fig. 6.5: Acoustic field from the transducer of width 2A = 32λ and height
2B = 24λ, as calculated by the 3-D algorithm.

6.2 The multistep algorithm

In Chapter 4, the idea of the multistep algorithm was introduced as
a replacement for the single-step version when nonlinearity is to be
implemented. Some difference might be expected between the two methods,
as the DSFT is only applicable in the first step of the multistep algorithm. In
all other steps, the DFT must be used to calculate the angular spectrum of
the result from the previous step. On the z-axis, however, the difference
between the two spectra is close to zero, as previously demonstrated in
Fig. 6.1(c). Hence, the field on or close to the z-axis should not be affected
much by our switching to multistep propagation. This has been verified by
running the multistep version with the same parameters as above, for the
same transducer.

As a demonstration, the velocity field from the linear transducer for
N = 512, Fs = 1/λ is propagated out to the distance z = 1024λ, which
is the near field/far field crossover for this particular source. In this case, ∆z
is set equal to λ to have more points of comparison.

Fig. 6.6(a) depicts an overlay of the onaxis velocity field results for both
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(a) Velocity field on the z-axis. Overlay of the
multistep and the single-step algorithm’s computed
results. Note how the spatial aliasing comes into play
at about 800λ.
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(b) Field off-axis, at x = 2A. Overlay of the
multistep and the single-step algorithm’s computed
results. Spatial aliasing is more severe in off-axis
positions.

Fig. 6.6: To investigate the error in the multistep algorithm, the velocity field
for the linear transducer is propagated to the near field/far field limit,
z = 1024λ. In this simulation, N = 512 and Fs = 1/λ. (These plots are
not given by Wu et al.)
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Fig. 6.7: Difference in velocity magnitude on the z-axis between the multistep and
the single-step method. Maximum difference was 1.8 · 10−13 m/s.

the multistep and the single-step version. Note how the spatial aliasing comes
into play at about 800 λ, pushed towards the far field by choosing optimal
parameters for this simulation. The curves are as good as indistinguishable.
The difference between the two is practically zero, as shown in Fig. 6.7. The
maximum error was found at 886 λ where it was equal to 1.8 · 10−13 m/s.

The computed velocity field at x = 2A is shown in Fig. 6.6(b). The error
offaxis (not shown) has a maximum of 2.4 · 10−13 m/s. For the multistep
algorithm, the accuracy of the result is based on how correct the field was
calculated in the previous step. This is not the case for the single-step
algorithm, and so we might expect the error to accumulate as the propagation
distance grows. The small values of Fig. 6.7 makes this hard to see.

If the pressure field is of interest, the impedance relation p = ρcv may be
used. For this medium, this blows up the error by a factor 106, but its size
relative to the field stays the same. This makes the error easier to analyze
when expressed in pascals. The difference in pressure magnitude at x = 0
and x = 2A is displayed in Figs. 6.8(a) and 6.8(b), respectively. The error is
clearly accumulative, and larger offaxis than onaxis (maximum 3.6 · 10−7 Pa
and 2.7 · 10−7 Pa, respectively).

As the error accumulates at each step, the field was recalculated with
a steplength equal to 4λ to see if this made the error grow slower. The
difference in pressure magnitude for this simulation is shown in Fig. 6.9. It
does appear smaller than for ∆z = λ, and the maximum error is now 1.9·10−7

Pa onaxis and 2.6 · 10−7 Pa offaxis. The number of steps should therefore be
reduced if possible, when the propagation distances are large.

A common way to implement the ASA is to calculate diffraction of the
pressure field, instead of the velocity field. As a test, the pressure field was
also computed directly, but this gave the same results.
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(a) Difference in pressure magnitude on the z-axis.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−7

AXIAL DISTANCE [z/λ]

D
IF

FE
R

E
N

C
E

 IN
 P

R
E

S
S

U
R

E
 M

A
G

N
IT

U
D

E

(b) Difference in pressure magnitude at x = 2A.

Fig. 6.8: Difference in pressure magnitude when using multistep as opposed to
single-step (inserting z’s directly). Stepsize ∆z = λ.
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(a) Difference in pressure magnitude on the z-axis.
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(b) Difference in pressure magnitude at x = 2A.

Fig. 6.9: Difference in pressure magnitude when using a steplength ∆z equal to 4λ.
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As the error is a factor 10−13 smaller than the field, the multistep
algorithm is assumed to produce satisfying results. It is therefore used to
calculate the field from here on out.

6.3 Application to circular sources

The algorithm is also applicable to circular sources, which will be
demonstrated next. We consider an example given by Christopher and Parker
(1991b) in which a 3-MHz unfocused piston of radius 1 cm is operating in
water. Attenuation is in this case neglected.

The sampling rate is given to be 80 samples per centimeter. This implies
that ∆d = 0.25λ or, equivalently, Fs = 4/λ. The transform extent, which is
half our source plane, is given to be 4 cm. Hence we end up with the number
of lateral samples N equal to 640.

The initial acoustic peak intensity is 0.1 W/cm2. To convert to initial
normal velocity as required by the algorithm, the following version of the
impedance relation was used (Young and Freedman 2004)

v0 =

√

I

ρ · c =

√

0.1 W
cm2 · 104

103 kg
m3 · 1500m

s

,

which gives the initial uniform amplitude of approximately 0.026 m/s.
First, the field is propagated out to z = 0.5 mm. The result is depicted in

Fig. 6.10(a). There is a slight disturbance at lateral distances greater than a
centimeter, not present in Christopher and Parker’s result. Their algorithm
is valid for circular sources only, and takes advantage of circular symmetry
in using the discrete Hankel transform (DHT). There are differences between
the DHT and the DFT which Fjellestad discussed for this case in his thesis
(Fjellestad 2000). He showed that the DFT’s deviation from the DHT
is especially evident for spatial frequencies of 10 cycles per centimeter or
greater. This might explain the disturbance in our results. Furthermore,
our source is discretized on a rectangular grid and will never be completely
circular, although a denser sampling scheme will help.

The field calculated at z = 200 mm is shown in Fig. 6.10(b). The only
difference from Christopher and Parker’s result is the zero amplitude at
lateral distances greater than about three centimeters. This is due to our
window tapering.

As a second example of application to circular sources, we consider a
case in the thesis by Zemp (2000). This transducer has a radius A of 1.9
cm and operates at 1 MHz. The initial pressure is 50 kPa, and the field is
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(a) z = 0.5 mm
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(b) z = 200 mm

Fig. 6.10: Velocity field from an unfocused circular piston transducer of radius 1
cm. The lateral field is circular symmetric, and shown along the positive
x-axis.

propagated out to the near field/far field crossover, A2/λ, or 0.25 m. The
result is presented in Fig. 6.11, and is in excellent agreement with what Zemp
obtained.

All the plots given so far have been in very good agreement with their
correspondents in literature, and we may conclude that the linear algorithm
produces satisfying results for both linear, rectangular and circular sources.

6.4 Verification of the nonlinear substep

To verify the nonlinear algorithm, it is tested on the case of a plane circular
piston source with frequency 2.25 MHz and initial pressure amplitude 100
kPa. The source has a radius of 19 mm, and the field is propagated 750
mm in the axial direction. The example is from an article by Baker et

al. (Baker, Anastasiadis, and Humphrey 1988), who performed measurements
in a water tank as well as performing simulations. To produce the predicted
results, the parabolic approximation model was used. As mentioned in the
previous chapter, this is not valid in the near field, and we would expect
some differences there, compared to our results.

Christopher and Parker implemented the same problem using the angular
spectrum approach combined with the FDSBE (Eq. (5.9)). The same
approach has been used in this thesis, with the exception that the second-
order operator splitting technique is implemented. This was described in
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Fig. 6.11: Velocity profile of the plane piston transducer of radius 1.9 cm with
initial pressure 50 kPa. N = 512, Fs = 2/λ.

Chapter 5.

The measured amplitudes of Baker et al. for the first three harmonics are
shown in Fig. 6.12(a). The corresponding predictions using our model are
presented in Fig. 6.12(b), where the velocity amplitudes have been converted
to pressure amplitudes using the impedance relation p = ρcv. The results are
in good agreement with the measurements Baker et al. obtained. There are
some differences in the near field, before 100λ, where the measurements of
Baker et al. show diffraction loss. They mention that this is a limitation of the
hydrophone used to measure the field. Close to the transducer, the pressure
as seen by the hydrophone tends towards the average. This is because
the field contains rapid variations which are smaller than the hydrophone
diameter. The predictions of our model do however correspond very well to
what Christopher and Parker obtained.

We see that the last maximum of the fundamental is lower than the
previous maximum at 200 mm. This clearly demonstrates the transfer of
energy from the fundamental into higher harmonics, whose levels grow during
the same period. At the maximum axial distance of 750 mm, the levels of the
higher harmonics are relatively high compared to the fundamental. Recalling
the discussion in Chapter 5, this would indicate that the waveform is seriously
distorted compared to the transmitted wave.

Baker et al.’s log scaled measured and predicted amplitudes of the second
and third harmonics are shown in Figs. 6.13(a) and 6.13(b), respectively.
Note the deviations in the near field, which demonstrates the limitations
of the parabolic approximation. Figs. 6.13(c) and 6.13(d) depict the
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(a) The measured amplitudes of the first three harmonics.
(Ill: Baker et al. (1988))
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(b) Computed axial amplitudes for the first three harmonics,
shown for z > 50λ.

Fig. 6.12: Comparison of the predicted results for an unfocused 2.25 MHz
transducer with the measured values of Baker et al..
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corresponding results of our model. The ASA’s solution is in much better
agreement with the measured results in the near field. Some differences
still remain in the nodal depths compared to the measured values of the
second harmonic. This is believed to be because of the previously mentioned
diffraction loss. Christopher and Parker also got this discrepancy.

Finally, the log scaled lateral field profile at z = 275 mm is displayed for
the first three harmonics in Fig. 6.14. This propagation distance corresponds
to the last axial minimum of the fundamental. This figure shows that the
higher harmonics have narrower field profiles than the fundamental. The
computed results of our model shown in Fig. 6.14(b) are identical to the
computed results of Baker et al., except for the values of the fundamental
far off the z-axis. The parabolic approximation might not be valid in this
region. Also, the fundamental center value is not exactly zero. Again our
results are equal to those obtained by Christopher and Parker.

Parameter Symbol Value

Fundamental frequency f0 2.25 MHz
Density ρ 1000 kg/m3

Sound speed c 1500 m/s
Harmonics used in simulation M 10

Lateral samples N 512
Sampling frequency Fs 1/λ

Radius A 0.0345 m
Nonlinear coefficient β 3.5

Table 6.1: Parameters used in the simulation of this section.

6.5 Test of different stepsizes ∆z

Figs. 6.12 through 6.14 were produced with a step length ∆z equal to λ.
Though Christopher and Parker make no mention of the step length used in
their simulation, they claim that a ∆z small enough to display axial variations
of the fundamental is acceptable. This is valid if the initial amplitude is not
excessively high. Otherwise, the attenuation for the highest harmonic should
be no smaller than 0.7 across ∆z, and this would determine the appropriate
stepsize in the far-field region.

In their companion linear article (1991b), they perform a simulation in
a layered medium using 600 ∆z’s out to an axial distance of 12 cm. The
frequency of the source was 3 MHz, giving a step size of about 0.4λ. The
simulation was repeated with the nonlinear algorithm, presumably with the
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(a) The measured and computed
(dotted lines) second harmonic, as
obtained by Baker et al.(Ill: Baker
et al. (1988))

(b) The measured and computed
(dotted lines) third harmonic, as
obtained by Baker et al.(Ill: Baker
et al. (1988))
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(c) Predicted results for the second
harmonic.
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(d) Predicted results for the third
harmonic.

Fig. 6.13: Log scaled axial amplitudes of the second and third harmonics.
Comparison of the results obtained by Baker et al. and our model. Note
the difference in the near field between the two computed results.
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(a) Baker et al.’s computed (dotted lines) and
measured results. (Ill: Baker et al. (1988))
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(b) Corresponding computed results of our model.

Fig. 6.14: Log scaled lateral amplitudes of the first three harmonics. Axial distance
is 275 mm, corresponding to the last axial minimum.
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same stepsize. In the same article, they investigated a 3 MHz circular source
operating in water, using the single-step approach. They gained good results
for the FSC algorithm when ∆z was equal to λ, but convolution wraparound
error was severe for ∆z = 20 cm = 400λ.

To reduce computation time, we would like to enlarge the stepsize and
still obtain good results. Implementing the second order operator-splitting
approach as described in Section 5.5 might allow this. However, large
stepsizes might make H undersampled in the frequency domain, as stated
by Zemp et al. (2003) and discussed in Section 4.4. To see how the stepsize
affects the results, the field for the lateral distance of 750 mm was recalculated
with a consecutive doubling of the stepsize. As shown in Figs. 6.15 and 6.16,
the results are still very good. Even with a stepsize of 32λ, correct results
in the grid points are obtained, although the axial variations may not be
displayed very well on such a coarse grid. Judging from the log scaled plots
in Fig. 6.16, ∆z equal to 8 λ gives very good results, and such a grid still
displays the axial variations quite well.

The results obtained by the algorithm are generally in good agreement
with measurements and simulated results reported in literature. The
nonlinear algorithm based on the ASA may in some cases give better results
than the parabolic approximation, and we may conclude that the simulator
produces correct results for the propagation distances considered so far. In
Chapter 7, the simulator’s performance on larger distances will be examined.
The simulator will also be utilized to investigate the nonlinear field of a
200KHz circular transducer.
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(a) Axial field, ∆z = 2λ
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(b) Lateral field at 750 mm,
∆z = 2λ
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(c) Axial field, ∆z = 4λ
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(d) Lateral field at 750 mm,
∆z = 4λ

Fig. 6.15: The field of the transducer used by Baker et al. for the axial distance of
275 mm, calculated using different stepsizes ∆z.
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(e) Axial field, ∆z = 8λ
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(f) Lateral field at 750 mm,
∆z = 8λ
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(g) Axial field, ∆z = 16λ
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(h) Lateral field at 750 mm,
∆z = 16λ
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(i) Axial field, ∆z = 32λ
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(j) Lateral field at 750 mm,
∆z = 32λ

Fig. 6.15: The field of the transducer used by Baker et al. for the axial distance of
275 mm, calculated using different stepsizes ∆z. (Cont.)
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(a) ∆z = 2λ
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(b) ∆z = 4λ
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(c) ∆z = 8λ
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(d) ∆z = 16λ
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(e) ∆z = 32λ

Fig. 6.16: The log scaled field of the second harmonic, calculated using different
stepsizes ∆z.



Chapter 7

Simulations and discussion

As new acoustic equipment is expensive to develop, a simulator which
calculates the nonlinear field correctly for large distances would be of great
value to fishery researchers and others dependent on wide-range sonars. The
simulator must work for a wide variety of sources and initial states to be of
much use.

An attempt on such a simulator has been developed in this thesis. In this
chapter, it will be used to calculate the field of a transducer used in fisheries
research.

Some issues regarding the simulation of large propagation distances is
discussed first in Section 7.1. We will revisit a familiar source to determine
what parameters to use in the main simulations. Section 7.2 resumes the
topic of target strength, and explains how nonlinear effects may influence
these measurements. This offers a motivation for the main simulations in
Section 7.3, where the size of the nonlinear effects are investigated for an
appropriate source. The field of the second harmonic is also investigated.

7.1 Calculating the far field

The field from a variety of transducers was calculated in Chapter 6. In the
current section, we will reconsider the source used by Baker et al. (1988)
in their calculations, the 2.25 MHz circular transducer. The computed field
for this transducer was presented in Section 6.4. Attenuation was neglected,
as was also done by Christopher and Parker in their simulation of the same
problem (1991a), and the simulator gave excellent results out to the axial
distance of 750 mm.

The main consideration in this thesis are transducers used in fisheries
acoustics. Needless to say, the axial ranges of interest of such applications go

71
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far beyond the distance of 750 mm. Fish swim at a wide range of depths, and
finding them at several hundred meters is not uncommon. One might also
want to use sonars to find fish at large horizontal distances. It is therefore
of great interest to see how the simulator copes with larger propagation
distances. The reports of such simulations in literature are few, because the
emphasis of nonlinear simulations has been on problems involving medical
ultrasound or sonar fields of short ranges.

To the author’s knowledge, the field of the transducer described in Section
6.4 has not yet been simulated further than 750 mm. At this point, we
would like to investigate this field to see how well it may be simulated by
the program. The interest also lies on how different parameters influence the
results. To this end, the field is simulated thrice as far, out to 2.25 meters.

There are several issues to consider in such calculations. What initially
springs to mind are the number of harmonics included in the simulation,
which was set to ten in all the simulations so far. Christopher and Parker
state that five to ten harmonics are adequate if no shocks are likely to
occur, otherwise 30 to 50 harmonics might be necessary to simulate the field.
Recall from the discussion of Fig. 6.12(b) that a highly distorted waveform
is expected at 750 mm. This indicates that ten harmonics might not be
adequate for larger propagation distances. For this reason, the field was
simulated with 30 harmonics included.
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Fig. 7.1: Axial field of the 2.25 MHz circular transducer, simulated out to 2.25
meters without attenuation. Fs = 1, N = 512.

From Fig. 7.1, it is readily evident that the result does not make physical
sense; The higher harmonics actually start growing after reaching their
maximum at about 0.6 meters, and finally reach beyond the level of the
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fundamental. As nothing but the source is feeding the system with energy,
it is unreasonable that the higher harmonics should contain more energy
than the fundamental. Obviously, attenuation cannot be neglected for these
propagation distances. The simulation is repeated for several step-sizes with
attenuation included, with the attenuation coefficient α0 equal to 25 · 10−15

Np/m/Hz2.
The exponential attenuation constant b was initially set to 1.1. This is

incorrect, as b = 1.1 is a typical value for tissue-like media. For water, b is
actually equal to 2. What became clear after several erroneous simulations of
this field, setting the correct value of b is very important. The low attenuation
in water combined with this incorrect b led to a field that tended to infinity
for large steps. The result from some of these simulations is given in Figs. D.3
through D.6 in Appendix D.

An interesting point is that attenuation is negligible up to the propagation
distance of 750 mm. This was seen in Section 6.4, where corrects values
were obtained even though attenuation was not included in the simulations.
Therefore, the effect of an incorrect value of b is not visible at all unless larger
propagation distances are considered.

The field was calculated again using the correct value b = 2 and a step-
length of 8 λ. Christopher and Parker mention that if attenuation is small,
an upramping of the attenuation might be necessary, in addition to involving
many harmonics. This implies setting a nonzero upramping constant q.
(The effect of a nonzero q on the attenuation was described in Section 5.6.)
Christopher and Parker found it necessary to use q = 0.35 for a similar
propagation problem in water in their article (1991a). Therefore, q was set
equal to 0.35 in the following simulations.

Fig. 7.2 displays the result. In this simulation, Fs was set to 1, and
N to 512. This result is much more reliable than that of Fig. 7.1, as the
values of the harmonics decrease with increasing distance after reaching their
maximum. This is consistent with the 1/r-factor in the spherically symmetric
solution of the wave equation (Eq. (2.9)). In the lateral field profile at 2.25
meters, displayed in Fig. 7.2(b), some minor ripple due to spatial aliasing is
visible in lateral distances greater than 60 mm. With sonars, we are mainly
interested in the on-axis field, so this may not be of great importance.

To see how the sampling frequency influenced the result, the simulation
was repeated for FS = 2/λ and FS = 4/λ without changing N . As
D = N∆d = N/Fs, this decreases the size D of the zero-padded source
plane. From the discussion in Section 4.4, we know that this could lead to
spatial aliasing of the field.

The axial and lateral fields computed with Fs = 2 and N = 512 are
shown in Fig. 7.3(a) and (b), respectively. The spatial aliasing is evident in



74 CHAPTER 7. SIMULATIONS AND DISCUSSION

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

AXIAL DISTANCE [m]

P
R

E
S

S
U

R
E

 M
A

G
N

IT
U

D
E

 [M
P

a]

 

 

fundamental
2. harm
3. harm
4. harm
5. harm

(a) Axial field
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(b) Lateral field at 2.25 m

Fig. 7.2: Field from the 2.25 MHz circular transducer, computed with attenuation.
Fs = 1, N = 512.

the first two harmonics for axial distances greater than about 1 meter. The
lateral field is cut off at around 60 mm due to the decreased D. To view the
whole lateral field, N would have to be enlarged. The aliasing is also visible
in Fig. 7.4(a), which displays the field of the fundamental in the xz-plane.

Spatial aliasing occurs at smaller axial distances for Fs = 4, whose
axial and lateral fields are displayed in Figs. 7.3(c) and (d), respectively.
The aliasing seriously distorts the result in this case. To use this sampling
frequency, N would have to be a lot larger. The size of D has now gotten so
small that the lateral field is cut off at about 30 mm. Figs. 7.4(c) and (d)
show the field of the first two harmonics in the xz-plane. The spatial aliasing
and the diminished field are especially evident in these figures.

The best results were obtained when setting Fs = 2/λ and N = 1536. The
axial and lateral fields are shown in Fig. 7.3(e) and (f), respectively. With
this value of FS, the angular range spans the entire half-space, and hence
includes all real wavenumbers. Apparently N is sufficiently large, because
no spatial aliasing is noticeable in this case. The corresponding fields in the
xz-plane are shown in Figs. 7.4(e) and (f). They display a clear and credible
structure.

A potential cause of problems in nonlinear simulations is the undersam-
pling of higher harmonics. As the spatial sampling interval ∆d is fixed for
a fixed Fs, the second harmonic will have twice as many oscillations in one
interval as the fundamental. If the spatial sampling frequency Fs is set ac-
cording to the rules that are valid for the fundamental frequency, it may be
too low when the frequency is doubled, tripled and so on. So the higher
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harmonics may be aliased even if the fundamental is not.
For some reason, no spatial aliasing is not visible in the higher harmonics

in Fig. 7.2, even though the fundamental is not completely well-sampled for
Fs = 1/λ. Christopher and Parker do however claim (1991a, pp. 492, second
column) to obtain good results with a radial sampling rate of one to two
times the Nyquist rate for unfocused fields.

In Section 7.3, the field from a 200 kHz circular transducer was simulated
several times with Fs = 1/λ. In some of the results, (e.g. Fig. 7.16) the effect
of the undersampling is visible for the fourth and fifth harmonic. A likely
reason for why the aliasing is avoided in Fig. 7.2, is the 57 λ diameter of
the 2.25 MHz circular transducer. This makes it a lot larger measured in
wavelengths than the source used in Section 7.3, whose diameter is 9.2 λ.
This might cause the beam of the higher harmonics to be too narrow for the
aliasing to have an effect. Additional simulations could be run to determine if
this is the case, but for the time being we may conclude that the fundamental
should well-sampled to avoid aliasing in the higher harmonics. In some cases,
oversampling the fundamental might be necessary, which makes a larger N
a requisite.

From the above, we deduce that a large number of lateral samples
combined with a high sampling frequency will give better results. For the
propagation distance considered in this section, Fs = 2/λ and N = 1536
gave very good results. The spatial aliasing might still turn out to be a
problem for very large propagation distances, but these are the parameters
of choice in the main simulation in Section 7.3. For the field considered in
the current section, including 30 harmonics in the simulations seems to be
adequate when setting q = 0.35. This will also be used in Section 7.3.

Simulations involving many harmonics and/or many lateral and axial
samples are fairly time consuming. A simulation involving 50 harmonics
with N = 512, Fs = 1/λ and ∆z = λ took approximately 28 hours to run
on a computer with 16GB ram and a 2.2 GHz Dual Core AMD Opteron
Processor 275. Tripling N would nine-double the size of the DFT, which is
responsible for a large part of the computation time. Setting N = 1536 thus
leads to a substantial increase in computation time.

At the finishing stage of this thesis, the days were too limited to run all of
the desired simulations in Section 7.3 with these selected parameters. Faced
with a need to prioritize, the decision has been to run one simulation with
these parameters out to 26 meters, and several shorter ones with N = 768
and Fs = 1/λ. As stated previously, this lead to undersampling of some of
the higher harmonics. Only the first two harmonics are considered in this
thesis, so as long as they are well-sampled, the results are still acceptable.
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(a) Axial field, Fs = 2, N = 512.
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(b) Lateral field at 2.25 m, Fs = 2,
N = 512.
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(c) Axial field, Fs = 4, N = 512.
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(d) Lateral field at 2.25 mm, Fs = 4,
N = 512.
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(e) Axial field, Fs = 2, N = 1536.
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(f) Lateral field at 2.25 mm, Fs = 2,
N = 1536.

Fig. 7.3: Field from the 2.25 MHz circular transducer, computed with attenuation.
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(a) First harmonic, Fs = 2, N = 512.
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(b) Second harmonic, Fs = 2, N =
512.
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(c) First harmonic, Fs = 4, N = 512.
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(d) Second harmonic, Fs = 4, N =
512.
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(e) First harmonic, Fs = 2, N =
1536.
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(f) Second harmonic, Fs = 2, N =
1536.

Fig. 7.4: Log scaled field in the xz-plane of the transducer used by Baker et al..
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7.2 Nonlinear effects on target strength

measurements

We now return to the topic of target strength (TS), defined in Chapter 3 as

TS = 10 log10(σbs), (7.1)

where

σbs = R2 Ibs

Ii
, (7.2)

is the backscattering cross-section.
To be able use a returned signal to deduce anything about insonified

targets, the target strength of different targets needs to be known. Measuring
target strength accurately is important, because the TS of a single scatterer
is often used to calibrate echosounders. Calculating TS of fish based on
acoustical theory and knowledge of the fish’s composition is only accurate to
a certain extent, because of all the factors contributing to target strength,
discussed in Section 3.3.

Measuring the backscattered intensity of a single target is described by
the active sonar equation (Urick 1983)

EL = SL + TS − 2TL, (7.3)

where the echo level EL is the sound pressure level of the backscattered sound
at the location of the transducer. The source level SL is defined as the on-
axis sound pressure level at some distance r0, usually unity. When assuming
linearity, the only energy loss included is the transmission loss TL due to
diffraction and attenuation. In Eq. (7.3), TL is counted twice to account for
both directions of propagation.

As previously seen in Chapter 5, nonlinear effects may lead to excess
attenuation of the wave. Neglecting these effects would cause TS to be
measured as lower than it really is. If the nonlinear loss is large, the acquired
information about the target might be misleading.

Nonlinear effects are not accounted for in the echosounders used today,
but it is likely that they influence the measurements, especially those done
with high-frequency sources.

Tichy et al. (2003) measured and simulated target strength along the
beam axis for a 200 kHz echosounder operating in fresh water. They found
the nonlinear losses in this case to be of such dimensions that they need to
be accounted for in the TS measurements. How to perform this adjustment
might not be well known in all cases, as their results indicate that the
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nonlinear attenuation is dependant on both target range and the power
level of the transducer. Tichy et al. propose that the lowest practical power
level should be used to minimize nonlinear losses. In view of an ongoing
discussion in this thesis - whether harmonic imaging is applicable in sonars
- one might propose the opposite. This would increase the nonlinear losses,
and thus the level of the second harmonic would be higher. However, this
is not always practical. High power levels heat up the transducer, and very
high voltages applied over time may also cause mechanical fatigue to the
piezoelectric material the transducer consists of.

Large power levels may in some cases also induce cavitations (Simmonds
and MacLennan 2005). Close to the surface, the ambient density is 1 atm.
It grows with depth, as the temperature drops. If the transducer is not that
deeply immersed, and operates with a high initial pressure, it is possible that
the minimum resultant pressure approaches zero. This means that a vacuum
has been generated. As the transducer vibrates, the vacuum collapses, and
this results in explosive sounds known as cavitations. The chance of this
happening is smaller for greater depths of the source, and for smaller initial
pressures. As the resultant pressure cannot be negative, this limits the
maximum waves that may exist in the water medium. Cavitations form
more quickly in bubbly water.

The presence of bubbles in the water produces excess nonlinear effects,
much like the contrast agents acquainted in Section 5.3. Small air bubbles
are quite common right below the surface of the ocean, caused for instance
by breaking waves or the wakes of ships. Larger bubbles rise quickly to the
surface, while small bubbles may persist for hours or even days. Microbubbles
of air may also be trapped as acoustical equipment is lowered into water.
To reduce this possibility, the equipment is often covered with soap before
immersed in water.

7.3 The field from the ES200-7C transducer

Echosounders are used in fisheries research in rivers, lakes and seas, and
therefore encounter waters of very different temperatures, salinities and
densities. Fresh water at room temperature is a special case, rarely found in
nature, yet measurements are often performed here. The measurements made
by Tichy et al. (2003) were performed in a freshwater tank, and the water
temperature was approximately 18oC. The source used in the measurements
was a ES200-7C transducer, shown in Fig. 7.5. The transducer has a radius
A of 34.5 mm, a center frequency of 200 kHz and a bandwidth of almost 100
kHz.
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Fig. 7.5: The 200 kHz ES200-7C echo sounder transducer.

The simulated results of Tichy et al. were calculated by means of the
KZK-equation. As noted in Chapter 4 and shown in Section 6.4, this may
fail in the near field. The near field/far field crossover of this source is located
at approximately 63.5 cm.

Tichy et al. performed measurements at different ranges for different
power settings, and both were found to influence the amount of nonlinear loss.
The nonlinear loss can be calculated by finding the difference between the
linear and the nonlinear results for the fundamental for that power setting.

In the main simulations in this thesis, presented in the current section, we
will consider the same source as the one used by Tichy et al., the ES200-7C
transducer. We would like to investigate the field of this source, to assess the
size of the nonlinear effects. Another objective of this section is to investigate
the possibility for utilizing the field of the second harmonic. It could perhaps
be used in imaging situations or for TS measurements, if the quality and
range of the beam is appropriate for such purposes.

Several power settings, given in Table 7.1, will be considered. They
coincide with some of those considered by Tichy et al., and we would like
to see if the same results are output by our model. The normal maximum
power setting for this particular transducer is 1000 W when used in fisheries
research (Pedersen 2006).

As power equals intensity times area (Young and Freedman 2004), the
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Power setting RMS velocity vRMS Peak velocity v0 =
√

2 · vRMS

56 W 0.0986 m/s 0.1349 m/s
330 W 0.2393 m/s 0.3384 m/s
560 W 0.3118 m/s 0.4410 m/s
1000 W 0.4167 m/s 0.5893 m/s
1100 W 0.4370 m/s 0.6180 m/s

Table 7.1: Conversion from power to peak velocity.

initial velocity may be calculated using the following formula

vRMS =

√

P

ρcπA2
, (7.4)

which gives the initial velocities displayed in Table 7.1. The transmitted-
power levels used by Tichy et al. were calculated by measurements of electric
potential over the transducers terminals. They are averaged values, and so
the velocity values given by Eq. (7.4) are root mean square values of velocity.
To obtain initial peak velocity, they must be multiplied by

√
2. These final

values are also given in Table 7.1.
The beampattern of the ES200-7C transducer is displayed in Fig. 7.6(a).

This particular transducer has a beamwidth of 7o. Tichy et al. mention
that the transducer signals are weighted to reduce the sidelobe levels. This
changes the beampattern, and will cause the field to be different from that
achieved with uniform weighting.

The details of the weighting applied is not elaborated in the article (2003),
but a common weighting in such cases is one correspondent to a Hamming
window. Assuming this is done by Tichy et al. we may try to apply the same
weighting by multiplying the discretized source with such a window. The
Hamming window is similar to the Tukey window previously mentioned, but
does not have a large uniform plateau of value 1, or value zero at the edges.
The difference between the two windows is illustrated in Fig. 7.7.

The choice has been to apply an Lx × Ly hamming window which is
multiplied by 2. This will lead to a peak velocity that is greater than v0

in the middle of the transducer, and smaller at the edges. The sum of the
weighting remains the same as if uniform weighting is applied.

The beampattern of the transducer after applying the Hamming window
is shown in Fig. 7.6(b). Compared to Fig. 7.6(a), the level of the sidelobes
has been reduced by approximately 18 dB. Lower sidelobe levels generally
lead to a better clutter suppression, but come at the cost of a wider mainlobe,
which reduces resolution.
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(a) Beampattern with uniform weighting of the transducer.
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(b) Beampattern after applying the Hamming window.
Weighting the transducer lowers the sidelobe levels at the
cost of a wider mainlobe.

Fig. 7.6: Beampattern of the 200 kHz ES200-7C transducer. The transducer has a
beamwidth of 7o.
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Fig. 7.7: Comparison of the 128 point Hamming window and the Tukey window.

Main simulation: The field for the power setting 1000 W

In the main simulation we will consider the power setting of 1000 W. The field
will be propagated out to 3500 λ = 26.25 meters using Fs = 2 and N = 1536,
consistent with the discussion in Section 7.1. All other parameters for the
simulations presented throughout this section are summarized in Table 7.2.

The axial field from the transducer as calculated by the simulator is
shown in Fig. 7.8. The fundamental reaches its maximum almost instantly.
The maxima of the higher harmonics follow shortly thereafter, whereupon
the values drop rather quickly. The fundamental drops to one tenth of its
maximum value in less than two meters.

The log scaled field in the xz-plane is displayed for the first two harmonics
in Fig. 7.9. The sidelobes are not visible because their values have been
lowered trough applying the Hamming window.

Tichy et al. display the waveform of the pulse at 0.25 m, 1m and 7 m
together with the corresponding FFTs in their Figure 3. The FFT values were
provided by the Agilent 54621A oscilloscope used to sample the hydrophone
signal. The FFT values show how the energy of the higher harmonics relative
to the fundamental increases with propagation distance. From Chapter 5,
we know that this indicates a highly distorted waveform. This is supported
by the waveforms in Tichy et al.’s Figure 3.
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(a) Nonlinear field computed with 30 harmonics.
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(b) The zooming in of (a).

Fig. 7.8: Axial field of the weighted transducer, for the power setting 1000 W.
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(a) Fundamental.
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(b) Second harmonic.

Fig. 7.9: Log scaled field from the weighted transducer in the xz-plane.
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The FFT values output by our model are shown in Fig. 7.10 for several
ranges. They differ somewhat from those obtained by Tichy et al.. The
simulator generally finds less energy in the second and third harmonic, and
more energy in fourth and fifth harmonic than what is apparent from Tichy
et al.’s Figure 3. For the ranges 1 m and 7 m, the levels of the second and
third harmonic are about 5 dB lower than the measured values, while the
fourth harmonic is about 2 dB higher. Altogether, the energy in the higher
harmonics is calculated to be lower than the corresponding measurements
for all ranges.

The values in Fig. 7.10 are computed directly in the axial points of
interest. Remembering from Section 6.4 that the hydrophone has a certain
spatial extent, this implies that it will average its measurements to some
degree. This motivates us to try to average the FFT values with the values
in the eight neighboring grid points. Hopefully, the averaged results will
more closely resemble Tichy et al.’s Figure 3.

The averaged FFT values are displayed in Fig. 7.11. The relative levels of
the higher harmonics are a lot larger now. However, they still do not agree
with the values given by Tichy et al.. The level of the second harmonic is in
much better agreement with the measured value, but the third and higher
harmonics are much too high.

The averaging had a huge effect on the level of the FFTs, and it is
possible that it should be performed differently. As the lateral grid points
are ∆d = 1/Fs = λ/2 apart, and the axial grid points are ∆z = 8λ apart, the
averaging points may not have been spread out evenly enough. The averaged
values were recalculated by considering surrounding points equidistant (∆z)
from the points of interest. However, the result (displayed in Fig. D.7) was
not much of an improvement. Several other averaging points were tested
without much luck in attaining the desired values.

There are many possible reasons for why the simulator does not
completely reproduce the values given by Tichy et al..

As ∆z = 8λ = 6 cm, the grid points do not completely coincide with the
announced axial distances. Still, being within 2 cm of them, it is unlikely
that this is responsible for the differences.

The neighboring points used in the averaging may be too far apart, and
possibly the result for the FFTs would have been better if the field had been
calculated using a smaller ∆z.

Due to an error discovered too late in the process to correct, the Hamming
window applied is not completely circular symmetric. Better results could
perhaps be attained if this had been the case. The difference on the beam
axis should not be large, but as we average with off-axis points, it could cause
some deviation from a source applied a circular symmetric window. It is also
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possible that the weighting applied by Tichy et al. is not consistent with a
Hamming window, and that a different window altogether should be applied.

The difference in FFT values may arise simply because the applied
power level is not completely equal to what is applied by Tichy et al. The
article (2003) states that the acoustic power was around 1000 W. This was
interpreted to be the averaged value, but this should possibly have been
confirmed with Tichy et al..

Simmonds and MacLennan comment on the article by Tichy et al. in their
book (2005, page 38). They refer to the article by Shooter et al. (1974) which
deals with the theoretical shock distance and acoustic saturation. The work
of Shooter et al. was previously mentioned in Section 5.2.

More attenuation is apparently present in Tichy et al.’s short range results
than what is predicted by Shooter et al.’s calculations and measurements.
Simmonds and MacLennan also point out that the waveforms shown by Tichy
et al. are asymmetrical, and that this is an indication of their results being
influenced by other unknown factors. For ranges greater than 5 m, the two
results agree with each other.

This implies that the FFT values displayed in Tichy et al.’s Figure 3
for 0.25 m and 1 m might not be completely accurate. Our only basis for
comparison will then be the FFT values at 7 m.

As time was too limited to repeat the simulation with the suggested
improvements, we have little choice but to accept the presented results. The
averaged value for 7 m is not that far off for the second and third harmonic,
but is too high for the fourth harmonic.

Having discussed the differences, there are also some obvious similarities
between Fig. 7.11 and Tichy et al.’s Figure 3.

Energy has been transferred to higher harmonics due to nonlinear effects,
which will lead to a nonlinear loss of the field. The energy contained in the
higher harmonics relative to the fundamental is larger at 1 m than it was at
0.25 m, and larger still at 7 m.

At 12 m, the levels appear to be unchanged from those at 7 m. This
means that the values of the higher harmonics relative to the fundamental
have been constant for 5 meters of propagation, implying that the fields have
been attenuated equally. FFT values at 12 m are not displayed by Tichy et

al., so whether they obtained a similar result or not is unknown.
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Parameter Symbol Value

Fundamental frequency f0 200 kHz
Density ρ 1027 kg/m3

Sound speed c 1500 m/s
Harmonics used in simulation M 30

Lateral samples N 768 (1536)
Steplength ∆z 8λ

Sampling frequency Fs 1/λ (2/λ)
Radius A 0.0345 m

Nonlinear coefficient β 3.5
Attenuation coefficient α0 25 · 10−15 Np/m/Hz2

Frequency dependency b 2
Upramping constant q 0.35

Table 7.2: Parameters used in main simulations.
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(a) 0.25 m.
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(b) 1 m.
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(c) 7 m.
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(d) 12 m.

Fig. 7.10: FFT of field at different ranges, for the power setting 1000 W.
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(a) 0.25 m.
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(b) 1 m.
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(c) 7 m.
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(d) 12 m.

Fig. 7.11: Averaged FFT of field at different ranges, for the power setting 1000 W.
Value in point of interest is averaged with the 8 neighboring points.
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Investigating the field of the second harmonic

We would like to see how the second harmonic develops with increasing
propagation distance. From the conclusions just made from the FFT values
in Figs. 7.10 and 7.11, we expect its level relative to the fundamental to grow
initially, and then stabilize after 7 meters.

The log scaled axial field, displayed in Fig. 7.12(a) supports this
prediction. The levels of both the fundamental and the higher harmonics
seem to behave as linearly decaying functions after some propagation distance
has been reached. This means that the relative levels stay approximately
constant, which is also understood from Fig. 7.12(b). Apparently the levels
stabilize before 7 m is reached, possibly as early as 3 meters, and the second
harmonic seems to stabilize at a level 7 dB below the fundamental.

To investigate the development of the second harmonic, we consider the
lateral field profile for different ranges. In the following, we only consider the
second harmonic, but the third harmonic is shown for illustrative purposes.
The lateral velocity field at several ranges is shown in Fig. 7.13, and Fig. 7.14
shows the normalized log scaled lateral fields. What is evident from these
plots, is that the second harmonic generally has a narrower field profile than
the fundamental. Also, the sidelobes of the fundamental are visible for the
ranges of 1 m and 7 m, but this is not the case for the second harmonic.
This indicates that the second harmonic has a lower sidelobe structure. The
lateral field is cut off at 4 meters, which is visible in Figs. 7.14(e) and (f).

These results are promising, as this would lead to images of both higher
resolution and less noise, compared to images produced by the fundamental.
This means that the second harmonic can be utilized to a great advantage
in imaging situations, if it contains so much energy that it can be detected.
However, as the beam is narrower than the fundamental’s, beams must be
sent in a few more directions to cover the same area.

In target strength measurements, the second harmonic might contain
additional information which could be combined with what is output from
the fundamental. As a result, more accurate measurements can be obtained.

From Fig. 7.12(a), we can see that the fundamental has dropped to -42
dB of its initial value at 15 m. Assuming the transducer is able to detect
this signal, it will also be able to detect the signal of the second harmonic at
approximately 7.5 m, because the second harmonic contains the same energy
here. The lateral field profile at 7 m, displayed in Fig. 7.14(d), demonstrates
that imaging using the second harmonic is a better choice at this range, even
though the fundamental’s signal is 7 dB stronger.

Today’s sonars are not generally able to receive at the second harmonic
because the bandwidth is too small. These results indicate that it could
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be a good idea to develope a sonar of a wider bandwidth. Developing new
transducers with various desired qualities is a costly process. It might not
be easily accomplished, but transducers who receive at the second harmonic
are operative in medical ultrasound.
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(a) Field of harmonics relative to the fundamental’s maximum.
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(b) Field of harmonics relative to the fundamental.

Fig. 7.12: Log scaled axial field of the weighted transducer, for the power setting
1000 W.
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(b) 0.25 m, field in m/s
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(c) 1 m, field in m/s
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(e) 12 m, field in m/s
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Fig. 7.13: Lateral velocity field from the weighted transducer.
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(b) 0.25 m.
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(d) 7 m.
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(e) 12 m.
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(f) 15 m.

Fig. 7.14: Log scaled lateral velocity field from the weighted transducer.
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Nonlinear loss as a function of range and power setting

The nonlinear loss is a measure of the excess attenuation due to nonlinear
effects on the field. This can be found by simulating the field both
linearly and linearly, and taking the difference between the two calculated
fundamentals. For the power setting 1000 W, the simulated nonlinear loss
is displayed in Fig. 7.15. The nonlinear loss reaches several decibels in this
case. According to this result, the sound pressure level at 12 meters is halved
compared to what it would have been, had the propagation been a linear
process. This means that it is very likely that target strength measurements
performed with this source will be erroneous at this power setting.

Tichy et al. display the nonlinear loss as a function of range for several
power settings in their Figure 4. Their simulated result for the power setting
927 W agrees with Fig. 7.15 up to the axial distance of 2 meters. After that,
it shows a loss between half a dB and one dB greater than what is output
from our model. This is consistent with our FFT values showing less energy
in the higher harmonics. At 7 meters, Tichy et al. simulated a nonlinear
loss of 3.25 dB, while Fig. 7.15 shows a loss of 2.5 dB at this location. The
shapes of the curves are however similar, and show a great nonlinear loss in
the beginning of the field. The loss continues to grow, but at a gradually
decreasing rate. This is also consistent with what the FFT values showed,
and the log scaled axial field displayed in Fig. 7.12.

The time was unfortunately too limited to run a simulation of this power
setting out to larger axial distances. Tichy et al. performed such a simulation
for the power setting of 330 W out to 260 meters. The result displayed an
additional 2 dB nonlinear loss beyond the 2 dB loss present at 10 m. The loss
displayed in Fig. 7.15 also seems to continue to grow after the propagation
distance of 26 meters.

To investigate the nonlinear loss further, the field from the ES200-7C
echosounder transducer was recalculated for the different power settings
shown in Table 7.1. As previously mentioned, these simulations were
performed with Fs = 1/λ and N equal to 768 to save computation time.
We anticipate that the higher harmonics may be undersampled as a result.
Additionally, they have only been simulated out to the propagation distance
of 12 m. This range was chosen to have time to run the simulation for all
the power settings. As the levels seem to start stabilizing before this range,
we should very well be able to discuss the properties of the different curves.
The results reported by Tichy et al. also cut off at 12 m.

The log scaled axial velocity fields are displayed in Fig. 7.16. The spatial
aliasing is readily visible for the fourth and fifth harmonic, especially in
Fig. 7.16(d). The second and third harmonic do however seem well-sampled.
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Fig. 7.15: Nonlinear loss as a function of range for the power setting 1000 W.

As was the case for the power setting 1000 W, the rate with which the
fundamental loses energy to the higher harmonics decays with increasing
range. After propagating some distance, the levels stay almost constant
relative to each other.

The nonlinear loss for all the power settings in Table 7.1 is shown in
Fig. 7.17. The result does show some similarities to Tichy et al.’s Figure
4. The nonlinear loss clearly is larger for larger initial power settings, and
increases with range. None of the curves seem to have stopped decaying at
the range of 12 m, so additional losses are expected with larger propagation
distance.

These results allow us to agree with Tichy et al. in that transmitted power
is an important factor for the amount of nonlinear effects. For the largest
considered power levels, the nonlinear loss reaches up to more than 3 dB, and
still shows sign of increasing further. This could have a drastic impact on
target strength measurements and other measurements performed at these
power levels, for the source considered.

One interesting result is that the simulated loss for 1100 W is actually
slightly lower than the loss displayed for 1000 W. Figure 4 in the article
agrees with this fact for the most part, but this has not been commented on
by Tichy et al.. It could be interesting to run simulations for more power
settings around and above this level, to see where those curves lie.
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(b) 330 W.

Fig. 7.16: Log scaled axial field of the weighted transducer, for different power
settings.
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(c) 560 W.
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(d) 1100 W.

Fig. 7.16: Log scaled axial field of the weighted transducer, for different power
settings (Cont.).
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Fig. 7.17: Nonlinear loss as a function of range for several power settings.



Chapter 8

Conclusion

The present chapter concludes this thesis. A summary of the work and
results presented is given in Section 8.1, and section 8.2 suggests some further
investigations that may be done.

8.1 Summary

A simulator has been developed which calculates the linear and nonlinear
propagation of acoustic fields. The effects of diffraction, attenuation and
nonlinearity are calculated in a step-by-step fashion, based on the known
field at some source plane.

The calculation of diffraction was based on the angular spectrum method
(ASA). Potential aliasing errors in the ASA and their remedies have been
presented. Attenuation and nonlinear effects are added in a separate substep
through a frequency domain solution of Burger’s equation (FDSBE).

The simulator is applicable to transducers of arbitrary shapes. Its
implementation was made with fields from sonars and echosounders in mind,
but it could just as well be used to calculate general ultrasonic fields.

A few obstacles were met during the development of the simulator.
Many versions of the FDSBE were encountered in literature, which made
the implementation of the nonlinear substep a surprisingly time-consuming
task. All encountered versions were tested in the simulation of a field for
which measured results were available. Several simulations and error-seeking
dismissed some of the candidates to likely be typographical errors. Eq. (5.10)
stood out by giving results which were in excellent agreement with measured
results reported in literature.

An initially erroneous value of the frequency dependence parameter b
caused a lot of trouble. The field from a 2.25 MHz transducer was calculated
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several times with highly unreasonable results. The fact that correct results
were obtained out to a certain axial extent with attenuation neglected,
led it to be ruled out prematurely as the cause of the problem. Several
simulations were performed with different combinations of step-sizes, up-
ramping coefficients q, the number of harmonics included, N and FS to locate
the problem. Attenuation is sometimes neglected altogether in literature
when simulating ultrasonic fields in water. Apparently, this is not always
recommendable when considering such fields at larger propagation distances.

Much effort was put into verifying the simulator. Simulations were
performed for a variety of transducers operating in water, and the field on
and off the beam axis was found to be in good agreement with reported
results.

Certain parameters in the simulations affect the results a great deal. An
investigation was performed to decide on the best choice of sampling scheme
for the main simulation.

The thesis has considered the effects of nonlinear sound propagation on
target strength (TS) measurements. The field for a transducer applicable
to fishery research was simulated for several power levels to investigate the
nonlinear losses. The results show slightly less nonlinear loss than what
was reported by Tichy et al. for this source. Otherwise, the results are
quite reasonable, and possibly the differences are simply due to incorrect
parameters.

Judging from the obtained results, the amount of nonlinear loss is clearly
dependent on both range and power level. For some power levels, the losses
reach several decibels. In these cases, target strength measurements may be
incorrect, and some form of compensation must be made.

TS measurements may benefit from considering the back-scattered second
harmonic in addition to the fundamental. The field of the second harmonic
on short ranges shows much promise of being used in imaging situations. Its
lateral field profile is generally narrower than the fundamental’s, which leads
to a higher resolution. Information obtained from the second harmonic may
successfully be combined with the fundamental’s information, when both
fields are detectable.

8.2 Suggestions for further work

The calculated field for the source used by Tichy et al. did not completely
correspond with reported measurements. To find the cause of the differences,
one could check if the parameters used in the simulations were correct. The
weighting should be confirmed to see if it corresponds to a Hamming window,
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and it should in any case be made circular symmetric before it is applied to
the transducer.

The propagation distances considered in this thesis have been limited to
26 m or shorter. The main reason for this has been the time limitation,
and the fact that the simulations were very time-consuming. It would be of
interest to study the nonlinear losses and the field of the second harmonic for
greater propagation distances. The simulator is ready to perform such large
scale simulations.

To validate the simulator for larger propagation distances, measurements
must be made for these propagation distances as well. As the size of pools
and tanks is generally limited, such measurements probably must be made
at sea. Making measurements in bubbly water may also be of interest, as
microbubbles generally add to nonlinear effects. Modeling bubbly water
would be a bit more challenging.

With increasing depth, the temperature of the sea generally decreases,
and the ambient density increases. As the small-signal limit sound speed
depends on these factors, it will vary as a function of depth. Such functions
are called sound-speed profiles. If such a profile is determined through
measurements, it would be straightforward to include it in the program.

An adaptive sampling scheme as described by Zemp et al. in their article
(2003) may be used to modify the simulator. According to Zemp et al.,
this could lead to the possibility of enlarging ∆z significantly, which saves
computation time.

In this thesis, only unfocused single-beam transducers have been
considered. Focusing or steering could easily be applied to the transducer,
but the resulting field should not come out that different.

In the study of nonlinear loss, a single frequency was considered in this
thesis. A further study could be done to chart the nonlinear losses for
several transducers, power levels and frequencies. To be able to correct
for nonlinear losses, their approximate sizes must be known in each case.
Perhaps such a study could unveil some sort of general rule or guideline on
how the nonlinear losses depend on different factors. Such a study would be
a major undertaking, but knowing how to correct for nonlinear effects when
using sonars would be valuable information.
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Appendix A

Nomenclature

j imaginary unit,
√
−1

A half the width of linear/planar source or source radius
B half the height of planar source
c0 small signal sound speed
λ wavelength
f frequency
T period of wave
k wavenumber vector
k wave number/radius of radiation circle k = 2πf/c0

ω angular frequency
M number of harmonics in nonlinear propagation
N number of lateral samples of source plane
Lx, Ly number of lateral samples of source
Fs spatial sampling frequency
∆d spatial sampling interval
D size of source plane
∆f sampling frequency in spatial frequency domain
∆z steplength in multistep algorithm
v = (vx, vy, vz) velocity vector
v velocity magnitude
v0 initial peak particle velocity, piston source
p sound pressure amplitude (complex)
p0 ambient pressure
ρ density
ρ0 ambient density
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r, R distance from source
σbs backscattering cross-section
σbs,eff effective backscattering cross-section
sv volume backscattering coefficient
TS target strength
P power
I intensity
Iinst instantaneous intensity
Ibs intensity of backscattered sound
Ii incident intensity
V, VD angular spectrum, F{v}
ix, mx indices
i′x, m′

x shifted indices
n index – harmonic number
θx, θy, θz direction cosines of plane waves
n = (nx, ny, nz) normal vector of plane wavefronts
h point spread function
H transfer function, F{h}
β nonlinear coefficient
B/A nonlinear parameter
α attenuation coefficient
α0 attenuation coefficient α0 = α(nf0)

b

b frequency dependency in attenuation
q attenuation upramping parameter
∇2 Laplacian operator
F {·} Fourier transform



Appendix B

Derivations

This chapter includes some useful definitions and derivations used in this
thesis.

B.1 The Fourier transform

Throughout this thesis, F {·} denotes the Fourier transform, given by

F (ε) = F {f(x)} =

∞
∫

−∞

f(x)e−j2πxε dx, (B.1)

and its inverse

f(x) = F−1 {F (ε)} =
1

2π

∞
∫

−∞

F (ε)e j2πxε dε. (B.2)

Capitalized letters here denote a Fourier transformed variable. The discrete
Fourier transform (DFT) is given by

Xk =

N−1
∑

n=0

xn e−j 2π
N

kn, k = 0, 1, . . . N − 1, (B.3)

where e−j 2π
N is the N-th root of unity. Also, we have the inverse DFT

xn =
1

N

N−1
∑

k=0

Xk e j 2π
N

kn, n = 0, 1, . . . N − 1. (B.4)
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B.2 Discrete velocity field

From Eq. (4.8), we may derive the expressions used in the angular spectrum
algorithm, Eqs. (4.9) and (4.10). First, we need to obtain the discrete version
of Eq. (4.8), which calculates the velocity field in the point (x, z). We consider
the two-dimensional case

v(x, z) =
k

2π

∞
∫

−∞

V (nx) e jk(xnx+∆znz)dnx.

Now, nx = λmx∆f , so dnx = λ∆fdmx, and since nz = [1 − (λmx∆f)2]1/2

v(x, z) = ∆f
λk

2π

∞
∫

−∞

v(λmx∆f) e jk[xλmx∆f+∆z
√

1−(λmx∆f)2 ]dmx

v(x, z) = ∆f

∞
∫

−∞

v(λmx∆f) e j2π[xmx∆f+∆z
√

1/λ2−(mx∆f)2 ]dmx

We obtain the discrete form by letting the integral go to a Riemann sum over
mx, which ranges from −N/2 + 1 to N/2. The discrete spatial indices are ix
so that x = ix∆d, which gives

vD(ix∆d, z) = ∆f

N/2
∑

mx=−N/2+1

VD(mx∆f) e j2π[ ixmx
N

+∆z
√

1/λ2
−(mx∆f)2 ], (B.5)

for ix = −N/2 + 1, . . . , N/2. Here, we have applied the fact that ∆d∆f =
1/N . VD is simply the discrete Fourier transform of v(ix∆d, 0)

VD(mx∆f) = ∆d

N/2
∑

ix=−N/2+1

v(ix∆d, 0) e−j 2π
N

mxix . (B.6)

Shifted angular spectrum

In this section the derivation of Eqs. (4.9) and (4.10) is given. As mentioned
in Section 4.3, we need to shift the spatial and spatial frequency indices, so
they range from 0 to N − 1. This is because of the definition of the DFT.
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We begin with Eq. (B.6) and introduce the shifted variable i′x = ix +N
2
−1

VD(mx∆f) = ∆d

N−1
∑

i′x=0

v((i′x −N
2

+1)∆d, 0) e−j 2π
N

mx(i′x−
N
2

+1),

for mx = −N
2

+ 1, . . . , N
2
. Similarly we shift mx to m′

x = mx +N
2
− 1 and

obtain

VD((m′

x −N
2

+1)∆f) = ∆d

N−1
∑

i′x=0

v((ix′ −N
2

+1)∆d, 0) e−j 2π
N

(m′

x−
N
2

+1)(i′x −N
2

+1),

where m′

x = 0 . . . N − 1. Now, since (m′

x −N
2

+1)(i′x −N
2

+1) =
m′

xi
′

x + i′x(−N
2

+ 1) + (m′

x −N
2

+1)(−N
2

+ 1)

VD((m′

x −N
2

+1)∆f) = ∆d e−j 2π
N

(m′

x−
N
2

+1)(−N
2

+ 1)

×
N−1
∑

i′x=0

v((i′x −N
2

+1)∆d, 0) e−j 2π
N

(i′x(−N
2

+1))e−j 2π
N

m′

xi′x ,

= ∆d e−j 2π
N

(m′

x−
N
2

+1)(−N
2

+ 1)

× DFT
{

v((i′x −N
2

+1)∆d, 0) e−j 2π
N

(i′x(−N
2

+1))
}

.

(B.7)

This is precisely Eq. (4.9), multiplied with e−j 2π
N

(m′

x−
N
2

+1)(−N
2

+ 1). This
term will be abbreviatet later when inserted into vD.

Formula for updated velocity field

Using the shifted variables m′

x and i′x, we obtain from Eq. (B.5)

vD((i′x −N
2

+1)∆d, z) = ∆f

N−1
∑

m′

x=0

VD((m′

x −N
2

+1)∆f)

× e j 2π
N

(i′x−
N
2

+1)(m′

x −N
2

+1)

× e j2π∆z

q

1/λ2
−((m′

x−
N
2

+1)∆f)2

= ∆f

N−1
∑

m′

x=0

VD((m′

x −N
2

+1)∆f)

× e j 2π
N

(i′x−
N
2

+1)(m′

x −N
2

+1)e j∆zkz ,
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where kz = 2π[1/λ2 − ((m′

x −N
2

+1)∆f)2]1/2. Now, since (i′x −N
2

+1)(m′

x −N
2

+1)

may be written as m′

xi
′

x + m′

x(−N
2

+ 1) + (i′x −N
2

+1)(−N
2

+ 1)

vD((i′x −N
2

+1)∆d, z) = ∆f e j 2π
N

(i′x−
N
2

+1)(−N
2

+ 1)

×
N−1
∑

m′

x=0

VD((m′

x −N
2

+1)∆f) e j 2π
N

(m′

x(−N
2

+1))

× e j∆zkze j 2π
N

i′xm′

x

(B.8)

To complete the derivation, we insert the expression for VD, Eq. (B.7), and
obtain

vD((i′x −N
2

+1)∆d, z) = ∆f∆d e j 2π
N

(i′x−
N
2

+1)(−N
2

+ 1)e j 2π
N

(m′

x−
N
2

+1)(−N
2

+ 1)

×
N−1
∑

m′

x=0

DFT
{

v((i′x −N
2

+1)∆d, 0) e−j 2π
N

(i′x(−N
2

+1))
}

× e j 2π
N

(m′

x(−N
2

+1))e j∆zkze j 2π
N

i′xm′

x

= ∆f∆d e j 2π
N

(i′x(−N
2

+1))

×
N−1
∑

m′

x=0

DFT
{

v((i′x −N
2

+1)∆d, 0) e−j 2π
N

(i′x(−N
2

+1))
}

× e j∆zkze j 2π
N

i′xm′

x

= ∆f e j 2π
N

(i′x(−N
2

+1))

× ∆d

N−1
∑

m′

x=0

DFT
{

v((i′x −N
2

+1)∆d, 0) e−j 2π
N

(i′x(−N
2

+1))
}

× e j∆zkze j 2π
N

i′xm′

x

= ∆fN IDFT
[

∆d DFT
{

v((i′x −N
2

+1)∆d, 0) e−j 2π
N

(i′x(−N
2

+1))
}

e j∆zkz

]

which is Eq. (4.10).
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The Matlab code

The simulator that produces the results in this thesis has been written in
Matlab version 7.5.0. Parts of the code is included in the following.

C.1 Initializing

function P = ASAParam3D(f0, c, maxHarm, varargin)

% Create struct containing parameters for ASAlinear or ASAnonlinear,

% to calculate linear or nonlinear field propagation.

%

% Usage P = ASAParam3D(f0, c, maxHarm, A, B, u, N, Zmax, Zincr, FsFact)

%

% All arguments can be omitted, or replaced by []

% Optional input arguments:

%

% f0 : Frequency of fundamental.

% c : Sound speed.

% maxHarm : Number of harmonics in calculation.

% A, B : Size of source in x and y-direction.

% u : Velocity distribution at source. Integer or Lx*Ly matrix.

% N : Number of samples along source plane.

% Zmax : Maximum lateral distance, in units of lambda.

% Zincr : Distance between adjacent planes, given in units of lambda.

% FsFact : Factor for determining sampling frequency.

% Fs = FsFact/lambda.

%

P.date = date;

%% Parameters concerning the system and medium

if nargin<1 | isempty(f0), P.freq = 3e6; else P.freq = f0; end

if nargin<2 | isempty(c), P.c = 1500; else P.c = c; end
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P.lambda = P.c/P.freq;

P.lambdaSQ = (P.c-1e-4)/P.freq; % Speed of propagation subtracted a tiny

% number to avoid pole in Eq. (8).

P.rho = 10^3; % Density in medium in kg/m^3

%% Parameters controlling the ASA.

if nargin<3 | isempty(maxHarm),

P.maxHarm = 10;

else

P.maxHarm = maxHarm;

end

if nargin<4 | isempty(varargin{1}) , % Either not given or given as ’[]’

P.A = 16*P.lambda; % Extent of source in x-direction

else

P.A = varargin{1};

end

etc...........

P.Fs = P.FsFact/P.lambda; % Spatial sampling frequency.

P.deltaD = 1/P.Fs; % Sampling interval in the spatial domain

P.D = P.deltaD*P.N; % Size of source plane

P.deltaF = 1/P.D; % Samp. interval in spatial frequency domain

%% Parameters concerning the source

P.Lx = round((2*P.A)/P.deltaD); % # of samples along source

P.Ly = round((2*P.B)/P.deltaD);

P.v = zeros(P.N, P.N); % Normal velocity at source plane (z=0)

% Source is to be located in the middle of the source plane.

elemx = round(P.N/2 - P.Lx/2); % First matrix element that contains

% source, in the x-direction.

elemy = round(P.N/2 - P.Ly/2); % likewise in the y-direction

% Insert initial velocity distribution:

P.v(elemx:elemx + P.Lx-1, elemy:elemy + P.Ly-1) = u;

if (mod(P.Lx, 2) == 0)

P.phiX = 1/2; % Lx is even, correct phase shift error

else

P.phiX = 0;

end

if (mod(P.Ly, 2) == 0)

P.phiY = 1/2;

else
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P.phiY = 0;

end

%% Parameters controlling what to calculate

P.noOfSteps = fix(P.Zmax/P.Zincr);

P.z = (1:P.noOfSteps) * P.Zincr;

% Ix, Iy, Mx and My are identical matrices, and so

% Ix is used because of memory issues.

P.Ix = linspace(-P.N/2.0+1, P.N/2.0, P.N); % Lateral samples

P.IxPrime = 0:P.N-1; % Shifted version

P.textinfo = ’’;

C.2 Linear wave propagation

function ASAlinear3D(P, saveFigs, saveField)

% Calculate linear propagation of acoustical 3-D field.

% Usage: ASAlinear3D([P], [saveField])

% P is a struct containing parameters for the angular spectrum approach.

% To define it use P = ASAParam(args), otherwise default values are used.

% saveFields = 1 saves three harmonics for later plotting.

changeColorMap;

if nargin<1 | isempty(P)

% Struct P is not given. Call ASAParam with default values:

% P = ASAParam(f0, c, maxHarms, N, Zmax, Zincr, FsFact)

disp(strcat(10,10,’NOTE: Struct P not given! ’, 10,...

’DEFAULT VALUES WILL BE USED.’, 10,...

’For help on defining your own parameters, type’,...

10, ’"help ASAParam"’))

P = ASAParam(3e6, 1500, 10, 256, 400, 2, 2);

end

if nargin<2 || isempty(saveFigs), saveFigs = 0; end

if nargin <3, saveField = 0; end

P.maxHarm = 1; % linear field

%% Directories

mydir = pwd;

fieldsdir = ’/ifi/midgard/p17/highres/krispe/FELT’;

newdir = sprintf(’F%0.5g_c%d_N%d_Fs%d_Harm%d’, ...

P.freq, P.c, P.N, P.FsFact, P.maxHarm);

fieldsdir = strcat(fieldsdir,’/’,newdir)

% Where to put the figures:

figdir = ...;
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if saveField

[s,mess,messid] = mkdir(fieldsdir);

name = strcat(fieldsdir,’/P.mat’);

save(name, ’P’)

end

%% Window

N = P.N;

Padding = floor(N/5);

Win1D = [zeros(1,floor(Padding/2)), tukeywin(N-Padding,.2).’, ...

zeros(1,ceil(Padding/2))];

Win = Win1D.’ * Win1D;

clear Win1D

% These are used often and defined here for easy reading..

expInDft = exp( -j*2*pi/N * (-N/2+1)*P.IxPrime ).’*...

exp( -j*2*pi/N * (-N/2+1)*P.IxPrime );

expTerm = exp(j*2*pi/N * (-N/2+1)*P.IxPrime ).’ * ...

exp(j*2*pi/N * (-N/2+1)*P.IxPrime );

%% Calculating transfer function

H = exp(j*P.Zincr * 2 * pi * sqrt(1.0/P.lambdaSQ^2 - ...

(repmat(P.Ix.’, 1, P.N)*P.deltaF).^2 - ...

(repmat(P.Ix, P.N, 1)*P.deltaF).^2)).* Win;

%% Initial angular spectrum (first step) -------------------------------

sizeIx = numel(P.Ix);

% Save these values for plotting:

xzPlaneLin = zeros(sizeIx, P.noOfSteps);

onaxis = zeros(numel(P.z),1);

offaxis = zeros(numel(P.z),1);

phaseshift = exp( (-j*2*pi/N)*(P.Ix*P.phiX) ).’ * ...

exp( (-j*2*pi/N)*(P.Ix*P.phiY) );

V = sinc(P.Ix/N).’ * sinc(P.Ix/N) .* ...

(phaseshift .* (P.deltaD^2 * fft2( P.v .* expInDft)));

clear phaseshift P.v

v = zeros(sizeIx, sizeIx); % To contain linear field at each step
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v(:,:)= P.deltaF^2 * P.N^2 * expTerm .* ifft2(V.* H);

if saveField

v1 = v;

fname = ’/v1_z1.mat’;

name = strcat(fieldsdir, fname);

save(name, ’v1’)

end

xzPlaneLin(:,1) = v(:, P.N/2);

onaxis(1) = v(P.N/2, P.N/2);

offaxis(1) = v(P.N/2 + P.Lx, P.N/2);

%% Loop over z-values to calculate field -----------------------

for step = 2:P.noOfSteps

disp(strcat(num2str(P.noOfSteps-step),’ steps to go...’))

% Angular spectrum in the current source plane

V = P.deltaD^2 * fft2(squeeze(v(:,:)).* Win .* expInDft);

% Calc new v at Zincr:

v(:,:) = P.deltaF^2 * P.N^2 * (expTerm .* ifft2(V.* H));

onaxis(step) = v(P.N/2, P.N/2);

offaxis(step) = v(P.N/2 + P.Lx, P.N/2);

xzPlaneLin(:,step) = v(:, P.N/2);

if saveField

v1 = v;

fname = sprintf(’/v1_z%d.mat’, step);

name = strcat(fieldsdir, fname);

save(name, ’v1’)

end

end

name = strcat(fieldsdir,’/xzPlaneLin.mat’);

save(name, ’xzPlaneLin’)

......
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C.3 Nonlinear wave propagation

function ASAnonlinear3D(P, saveFigs, saveFields)

% Calculate nonlinear propagation of acoustical 3-D field.

% Usage: ASAnonlinear3D([P], [saveFigs], [saveFields])

% P is a struct containing parameters for the angular spectrum approach.

% To define it use P = ASAParam(args), otherwise default values are used.

changeColorMap;

if nargin<1 | isempty(P)

% ..... As before

end

if nargin<2 || isempty(saveFigs), saveFigs = 0; end

if nargin <3, saveFields = 0; end

beta = 3.5; % nonlin param, = 1+B/2A

alpha0 = 25e-15;

b = 2;

q = 0.35;

harms2save = 3;

N = P.N;

maxHarm = P.maxHarm;

%% Directories

mydir = pwd;

etc .....

%% Window

Padding = floor(N/5);

Win1D = [zeros(1,floor(Padding/2)), tukeywin(N-Padding,.2).’, ...

zeros(1,ceil(Padding/2))];

Win = Win1D.’ * Win1D;

clear Win1D

%(...)

%% Calculating transfer functions ---------------------------------------

sizeIx = numel(P.Ix);

H = zeros(maxHarm, sizeIx, sizeIx); % Matrix containing transferfuncs

for harm = 1:maxHarm

% H(n, :, :) is transferfunc for n-th harmonic:

H(harm,:,:) = exp(j*(P.Zincr/2) * ...

2*pi*sqrt(1.0/(P.lambdaSQ/harm)^2 - ...

(repmat(P.Ix.’, 1, P.N)*P.deltaF).^2 - ...
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(repmat(P.Ix, P.N, 1)*P.deltaF).^2)).* Win;

end

% Save these values for plotting:

xzPlane = zeros(sizeIx, P.noOfSteps);

%etc...

disp(’Calculating pressure field...’)

%v(n,:) is v_n, velocity field for the n-th harm.

v = zeros(maxHarm, sizeIx, sizeIx);

v_ = zeros(maxHarm, sizeIx, sizeIx); % Temporary mid-step fields

%% First step ----------------------------------------------------------

V = sinc(P.Ix/N).’ * sinc(P.Ix/N) .* ...

(phaseshift .* (P.deltaD^2 * fft2( P.v .* expInDft)));

v_(1,:,:)= P.deltaF^2 * P.N^2 * expTerm .* ifft2(V.* squeeze(H(1,:,:)));

v_ = nonlinstep3D(v_, P.Zincr, beta, alpha0, b,q,N, maxHarm,P.freq,P.c);

for harm = 1:maxHarm

V = P.deltaD^2 * fft2( squeeze(v_(harm,:,:)).* Win .* expInDft);

onaxisAll(harm,1) = V(P.N/2, P.N/2);

v(harm,:,:) = P.deltaF^2 * P.N^2 * ...

expTerm .* ifft2(V.* squeeze(H(harm,:,:)));

end

if saveFields

for harm = 1:harms2save

varname = strcat(’v’,num2str(harm));

evalc(sprintf(’v%d = v(%d,:, :)’, harm, harm));

fname = sprintf(’/v%d_z1.mat’, harm);

name = strcat(fieldsdir, fname);

save(name, varname)

end

end

xzPlane(:,1) = v(1, :, P.N/2); % Fundamental

%etc

%% Loop over z-values to calculate field --------------------------

for step = 2:P.noOfSteps

disp(strcat(num2str(P.noOfSteps-step),’ steps to go...’))

% Diffraction substep Zincr/2
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for harm = 1:maxHarm

% Angular spectrum in the current source plane

V = P.deltaD^2 * fft2(squeeze(v(harm,:,:)).* Win .* expInDft);

% Calc new v at Zincr/2:

v_(harm,:,:) = P.deltaF^2 * P.N^2 * ...

(expTerm .* ifft2(V.* squeeze(H(harm,:,:))));

end

v_ = nonlinstep3D(v_,P.Zincr,beta,alpha0,b,q,N,maxHarm,P.freq, P.c);

for harm = 1:maxHarm

V = P.deltaD^2 * fft2( squeeze(v_(harm,:,:)).* Win .* expInDft);

onaxisAll(harm,step) = V(P.N/2, P.N/2);

% Final field at Zincr:

v(harm,:,:) = P.deltaF^2 * P.N^2 * ...

(expTerm .* ifft2(V.* squeeze(H(harm,:,:))));

end

if saveFields

.....

end

% Save for plotting

xzPlane(:,step) = v(1, :, P.N/2);

% etc.....

end % of main loop

clear v v_ H

name = strcat(fieldsdir,’/xzPlane.mat’); save(name, ’xzPlane’)

% etc

C.4 The nonlinear substep

function u = nonlinstep3D(v, Zincr, beta, ...

alpha0, b, q, N, maxHarm, f0, c)

% Nonlinear step of the ASA propagation.

% Adds nonlinear effects to the calculated field after diffraction.

% Is called during every step Zincr, and is based on the FDSBE.

% Also includes attenuation.

%

% v - field calculated at Zincr/2.

% v(n,:, :) is the n-th harmonic.

% Zincr - length of the nonlinear substep

% beta - nonlinear coefficient

% b - frequency dependency in attenuation
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% q - for upramping of attenuation

% N - number of spatial samples

% maxHarm - maximum number of harmonics

% f0 - fundamental frequency

% c - sound speed

u = zeros(maxHarm, N,N); % To contain the new fields

for n = 1:maxHarm

bn = b + ((n-1)/maxHarm)*q;

accr = zeros(1,N, N); % Accretion of n-th harmonic

depl = zeros(1,N, N); % Depletion of n-th harm to other harms.

for k = 1:n-1

accr = accr + ( k*v(k,:, :) .* v(n-k,:, :) );

end

for k = n+1:maxHarm

depl = depl + ( n*v(k,:, :) .* conj(v(k-n,:, :)) );

end

u(n,:, :) = v(n,:, :) + ...

( (j*beta*pi*f0/(c^2) * (accr+depl)) - ...

alpha0 * (n*f0)^bn * v(n,:, :) ) * Zincr;

end

C.5 Other files

figReadable.m

function figReadable(saveFigs)

% For nicer output of Matlab figures

set(findall(gcf,’Type’,’text’),’FontSize’,14);

set(findall(gcf,’Type’,’axes’),’FontSize’,14);

set(findall(gcf,’Type’,’axes’),’LineWidth’,2);

set(findall(gcf,’Type’,’line’),’LineWidth’,2);

set(get(gca,’Title’),’FontSize’,18,’FontWeight’,’demi’);

if saveFigs, title(’’); end

circularSource.m

function v = circularSource(deltaD, radius, N, L, weighting)

% Create circular source for the ASA

% N - Number of lateral points of source plane
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% L - Number of lateral points of source

% Weighting - Initial peak velocity

Mvec = linspace(-N/2.0+1, N/2.0, N);

u = (sqrt( (repmat(Mvec’, 1, N)*deltaD).^2 + ...

(repmat(Mvec, N, 1) *deltaD).^2 ) <= radius) * weighting;

elemx = round(N/2 - L/2);

v = u(elemx:elemx + L-1, elemx:elemx + L-1);

changeColormap.m

% Define new colormap that prints

% correctly in gray-scale

CMRmap = [0.00 0.00 0.00;

0.15 0.15 0.50;

0.30 0.15 0.75;

0.60 0.20 0.50;

1.00 0.25 0.15;

0.90 0.50 0.00;

0.90 0.75 0.10;

0.90 0.90 0.50;

1.00 1.00 1.00];

x = 1:8/63:9; % 64 color levels

xl = 1:9;

for i=1:3

sCMRmap(:,i) = spline(xl,CMRmap(:,i),x)’;

end

sCMRmap = abs(sCMRmap/max(sCMRmap(:)));

colormap(sCMRmap);

C.6 Calls to the simulator

function exampleRuns(Ex)

% Calls to the simulator for examples in the thesis.

cp = strcmp(Ex, ’cp’);

%etc...

% Wu 3-D plots

if wu

f0 = 3e6; c = 1500; lambda = c/f0;

A = 16*lambda; B = 12*lambda;

P = ASAParam3D(f0, c, 1, A, B, 1.0, 512, 400, 2, 2);

P.textinfo = ’Wu 3D-example’;

ASAlinear3D(P,1)
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end

% Parker linear example: circular unfocused piston operating in water

if cp

...

end

% Zemp linear example

if zemp

...

end

% Parker nonlinear example: circular unfocused piston operating in water

if cpNL

f0 = 2.25e6; c = 1500;

maxHarm = 30;

A = 0.019; B=A;

N = 512;

Zmax = 1125;

Zincr = 10;

FsFact = 4;

lambda = c/f0;

deltaD = lambda/FsFact;

weighting = 0.0667; % Initial velocity

L = round((2*A)/deltaD);

u = circularSource(deltaD, A, N, L, weighting);

P = ASAParam3D(f0, c, maxHarm, A, B, u, N, Zmax, Zincr, FsFact);

P.textinfo = ’Parker nonlinear example’;

ASAlinear3D(P,1,1)

ASAnonlinear3D(P,1)

plotCP(0)

end

if tichy

f0 = 2e5; c = 1500; lambda = c/f0; % 0.0075 m

A = 0.0345; B=A;

FsFact = 4;

deltaD = lambda/FsFact;

% Initial velocity:

weighting = 0.5893; % 1000 W

Zincr = 5;

maxHarm = 30;
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N = 512;

L = round((2*A)/deltaD);

u = circularSource(deltaD, A, N, L, weighting);

Win = window(@hamming,L);

u = u .* (Win*Win.’); % Apply weighting to transducer

Zmax = 2000; % 15 m

P = ASAParam3D(f0, c, maxHarm, A, B, u, N, Zmax, Zincr, FsFact);

P.rho = 1027; % This simulation is in freshwater

P.textinfo = ’Tichy’;

P.weighting = weighting;

ASAlinear3D(P,1,1)

ASAnonlinear3D(P,1)

plotTichy(weighting, 1)

end



Appendix D

Additional figures

This chapter contains some additional figures included for illustratory
purposes. It may be skipped without loss of comprehension of the text.
A detailed discription of the figures will not be given, but the various figures
are commented in their respective captions.
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Fig. D.1: Axial field of the 2.25 MHz circular transducer, computed with the
FDSBE given by Christopher and Parker. This version of the FDSBE
resulted in too little energy being transferred to the higher harmonics.
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(a) The zooming in of Fig. D.1, to give the same
view as in (b). This is equal to the results given
by Fjellestad (2000) and Synnevåg (1998).
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(b) Fig. 6.12(b) repeated for comparison, com-
puted with the FDSBE as given by Eq. (5.9). Note
that the level of the higher harmonics is higher
compared to (b). This is consistent with the mea-
surements of Baker et al.

Fig. D.2: Axial field of the 2.25 MHz circular transducer.
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(a) ∆z = λ
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(b) ∆z = 2λ
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(c) ∆z = 4λ
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(d) ∆z = 10λ
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(e) ∆z = 15λ

Fig. D.3: Axial field of the transducer used by Baker et al., simulated with the
incorrect value b = 1.1, for different stepsizes. The higher harmonics
tend to infinity for large step-sizes.
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(a) q=1
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(b) q=2

Fig. D.4: Axial field of the transducer used by Baker et al., simulated with the
incorrect value b = 1.1, 30 harmonics included, ∆z = 10. Fs = 1,
N = 512. The value of q seemed to make no difference.
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(a) Axial field

Fig. D.5: Axial field of the transducer used by Baker et al., simulated with the
incorrect value b = 1.1. Ten harmonics included, q=0.5, ∆z = 10.
Fs = 1, N = 1024. Apparently spatial aliasing was not the cause of
the error.
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Fig. D.6: Axial field of the 2.25 MHz transducer calculated with 50 harmonics.
Field tends to infinity due to the incorrect value b = 1.1. No upramping
of the attenuation used here, ∆z = 2, with Fs = 1, N = 512.



133

200 400 600 800 1000
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency [kHz]

dB
 R

E
 1

. H
A

R
M

O
N

IC

(a) 0.25 m.
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(b) 1 m.
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(c) 7 m.
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(d) 12 m.

Fig. D.7: Averaged FFT of field at different ranges, for the power setting 1000 W.
Value in point of interest averaged with points approximately 6 cm away.


